
Introduction

We study the local dynamics of the time-periodic scalar delay differential
equation

ẋ(t) = γ
(
a(t)x(t) + f(t, x(t − 1))

)
,

in a neighborhood of the critical values of the parameter. Such equations arise
very naturally in several applications (neural networks, population dynam-
ics, mechanical engineering). At certain critical values of the parameter the
dynamics dramatically change, for instance the equilibrium loses its stability,
appearance of periodic orbits can be observed, etc. The classical theory of bi-
furcations was established for one- and two-dimensional dynamical systems.
Using center manifold reduction and projection methods, one can general-
ize bifurcation theory to higher dimensional systems. For delay differential
equations the usual phase space is the infinite dimensional Banach space of
continuous functions on the initial interval. In the critical case, all the essen-
tial qualitative features of our dynamical system are captured by the center
manifold. Unfortunately, the classical process of computing the dynamical
system restricted to the center manifold using Hale bilinear forms can not
be applied directly to periodic equations. Recently a normal form theory
was presented for general periodic functional differential equations, but that
works only for equations with autonomous linear part.

The main achievement of this dissertation is that we give a complete bi-
furcation analysis for a wide class of periodic delay differential equations.
When the delay is the same as the period, then we are able to build up the
entire theory of Neimark-Sacker bifurcations for the infinite dimensional case
without any additional restrictions on the nonlinearity. The main technical
difficulty is that we need explicit computation of normal forms and finite
dimensional manifolds in our Banach space. To perform this, we use a func-
tional analytic approach, the spectral projection method. All the results are
explicit, we can determine the bifurcation points and the direction of bifur-
cations by the right hand side of our equation, this is important for specific
applications. We observe the appearance of invariant tori in an extended
phase space.

The equation

ẋ(t) = γf(t, x(t − 1))
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is not only a special case of the previous one, taking a(t) ≡ 0, but qualitatively
new phenomena may appear. In this situation we have bifurcations with
strong 1:4 resonance and the invariant torus does not necessarily exist. Strong
resonances have an extended theory, in this dissertation we also generalize
the case of 1:4 strong resonance to periodic delay equations. All our results
are explicit again.

We can apply our theorems to many well-known equations. Below we
discuss the main results of the dissertation and the applied mathematical
tools and techniques. All the statements are new results.

Neimark-Sacker Bifurcation

Consider the equation

ẋ(t) = γ
(
a(t)x(t) + f(t, x(t − 1))

)
, (1)

where γ is a real parameter, a : R → R and f : R × R → R are C4-smooth
functions satisfying a(t + 1) = a(t), f(t + 1, ξ) = f(t, ξ) and f(t, 0) = 0 for
all t, ξ ∈ R. As usual, the Banach-space C := C([−1, 0], R) of continuous
functions on the initial interval [−1, 0] serves as state space, equipped with
the supremum norm.

For every initial function φ ∈ C there is a unique continuous function
xφ : [−1,∞) → R, which is differentiable on (0,∞), satisfies the equation for
all t > 0 and xφ(t) = φ(t) for all t ∈ [−1, 0]. We call such a function xφ the
solution of the delay differential equation. The time-one map F : C → C is
defined by the relations

F (φ) = xφ
1 , xt(s) = x(t + s), s ∈ [−1, 0].

Using Floquet theory ([3]) we deduce the characteristic function h(λ) =

γα + γβe−λ − λ, where α =
∫ 0

−1
a(t)dt, β =

∫ 0

−1
fξ(t, 0)dt. The zeros of h(λ)

are the Floquet exponents. The Floquet multipliers are the eigenvalues of the
monodromy operator U , which is the derivative of the time-one map at the
equilibrium 0. Studying the characteristic equation we find the number of
Floquet multipliers inside the complex unit circle. We can detect the critical
values of the parameter when this number changes and we have Floquet
multipliers on the unit circle. We show that the conditions of the bifurcation

2



theorem are fulfilled. Varying the parameter, at the critical values a pair of
conjugate Floquet multipliers crosses the unit circle and an invariant curve
occurs on the center manifold. This is a Neimark-Sacker bifurcation. In an
extended phase space we can consider this as the appearance of an invariant
torus. To compute the restricted map on the center manifold and the direction
of the bifurcation, we generalize the projection method. The theorem of Riesz
and Schauder on spectral decompositions is an important tool to do this. The
spectral projection operator can be expressed by a Riesz-Dunford integral and
can be computed by solving a boundary value problem. Then we are able to
perform the complete bifurcation analysis. We give an explicit formula for the
coefficient that determines the direction of the bifurcation and the stability
properties of the bifurcated invariant curve. Combining all the information
we can get by the characteristic equation, the Neimark-Sacker bifurcation
theorem ([6]) and the smooth center manifold theorem for maps in Banach
spaces ([2], [5]), we obtain the following bifurcation theorem.

Theorem 1 The one-parameter family of time-one maps Fγ : C → C corre-
sponding to equation (1) has at the critical values γ = γj the fixed point φ = 0
with exactly two simple Floquet-multipliers ( eiθ and e−iθ) on the unit circle.
There is a neighborhood of 0 in which a unique closed invariant curve bifur-
cates from 0 as γ passes through γj, providing that the non-resonance condi-
tions µ4

j �= 1, µ3
j �= 1 hold. The transversality (Hopf) condition ∂|µ(γ)|

∂γ
|γj

�= 0 is
always fulfilled for (1), furthermore µ4

j = 1 if and only if α = 0, µ3
j = 1 if and

only if β = 2α. The two critical Floquet multipliers µj = eλj = eiγj

√
β2−α2

=

−α
β
− i

√
1 − α

β
2 and µ̄j = eλ̄j = e−iγj

√
β2−α2

= −α
β

+ i
√

1 − α2

β2 are simple.

The critical values of the parameter are γ±n = − ± arccos(−α
β

)+2nπ

±β sin
(

arccos(−α
β

)
) , n ∈ N.

For simplicity, let b(t) = γfξ(t, 0) and c(t) = γa(t). With this notation
the linear variational equation takes the form

ẏ(t) = c(t)y(t) + b(t)y(t − 1),

the eigenfunction corresponding to a simple eigenvalue is

χµ(t) : [−1, 0] � t �→ e
∫ t
−1[c(s)+

b(s)
µ

]ds ∈ C.

Solving a boundary value problem we can compute the resolvent of the
monodromy operator. The spectral projection operator is the residuum of
the resolvent.
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Theorem 2 The resolvent of the monodromy operator can be expressed as

(zI − U)−1(ψ)(t) = e
∫ t
−1[c(u)+

b(u)
z

]du

×
((

1

z
ψ(0) + e

∫ 0
−1[c(u)+

b(u)
z

]du

∫ 0

−1

1

z2
e−

∫ s
−1[c(u)+

b(u)
z

]dub(s)ψ(s)ds

)

× (
z − e

∫ 0
−1[c(u)+

b(u)
z

]du
)−1

+
1

z
e−

∫ t
−1[c(u)+

b(u)
z

]duψ(t)

+

∫ t

−1

1

z2
e−

∫ s
−1[c(u)+

b(u)
z

]dub(s)ψ(s)ds

)
, t ∈ [−1, 0], z ∈ C, ψ ∈ C.

(2)

Theorem 3 For a simple eigenvalue µ, the spectral projection operator has
the representation

Pµ(ψ) = χµRµ(ψ),

where

Rµ(ψ) =

(
1

µ + γβ

)(
ψ(0) +

∫ 0

−1

b(s)ψ(s)

χµ(s)
ds

)
.

By the spectral projection we can generalize the projection method. An
elaborative calculation leads to the restricted map on the center manifold
and a coefficient that determines the nature of the bifurcation. Define the
multilinear operators V := D2F (0) and W := D3F (0).

Theorem 4 The direction of the appearance of the invariant curve is deter-
mined by the sign of the coefficient

δ(γj) =
1

2
Re

(
1

µ
Rµ

(
W (χµ, χµ, χ̄µ) + 2V

(
χµ, (1 − U)−1V (χµ, χ̄µ)

)

+ V
(
χ̄µ, (µ

2 − U)−1V (χµ, χµ)
)))

,

where all the terms can be computed explicitly from (1).

Let us mention that the cases δ(γj) < 0 and δ(γj) > 0 are called super-
critical and subcritical Neimark-Sacker bifurcations. In the supercritical case
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a stable (only in a restricted sense, inside the center manifold) invariant curve
appears for γ > γj, while in the subcritical case an unstable invariant curve
disappears when γ increasingly crosses γj. When δ(γj) = 0, we need further
investigations. Here we suppose that the nondegeneracy condition δ(γj) �= 0
is fulfilled. The smoothness of Fγ is guaranteed by the smoothness of a(t)
and f(t, ξ).

In the extended phase space C × S1 the semi-dynamical system gen-
erated by the periodic delay differential equation can be considered as an
autonomous system. Denote the corresponding solution operators by G(t).

Theorem 5 If the conditions of the Neimark-Sacker bifurcation theorem
hold, then for the one-parameter family of dynamical systems generated by
the solution maps Gγ(t) : C × S1 → C × S1 corresponding to equation (1),
a unique invariant torus bifurcates from the periodic solution (0, t) as the
parameter γ passes through the critical value γj. The direction of the appear-
ance of the invariant torus is determined by the sign of the coefficient δ(γj),
which can be computed explicitly.

Applications

Our results can be applied to the periodic versions of many notable equa-
tions in the theory of delay differential equations, such as the Mackey-Glass,
Nicholson and Krisztin-Walther equations. In this way we prove several new
bifurcation theorems. In the sequel r(t) denotes a real function, which satis-
fies r(t) = r(t+1) > 0 for all t ∈ R. Similarly, m(t), q(t) are also non-negative
1-periodic functions. We use the notations R,M and Q, respectively, for the
integral of r(r),m(t) and q(t) on intervals of length 1. Let us start with a
rather general periodic form of the Krisztin-Walther equation.

Theorem 6 Suppose that 0 < R, g′(0) < 0, g′′(0) = 0 and g′′′(0) �= 0. Then
the one-parameter family of time-one maps Fγ : C → C corresponding to the
equation

ż(t) = γr(t)
( − mz(t) + g(z(t − 1)

)
(3)

undergoes a Neimark-Sacker bifurcation, as the parameter γ increasingly
passes through γ0. If g′′′(0) < 0 then the bifurcation is subcritical, if g′′′(0) > 0
then the bifurcation is supercritical.
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The next two theorems concern with the periodic variants of the Mackey-
Glass and the Nicholson equations.

Theorem 7 Suppose 0, 9 < M
Q

< 1. Then the one-parameter family of time-
one maps Fγ : C → C corresponding to equation

ẋ(t) = γ
(
− m(t)x(t) +

q(t)x(t − 1)

1 + x(t − 1)2

)
, (4)

undergoes a supercritical Neimark-Sacker bifurcation as the parameter γ in-
creasingly passes through γn.

Assume that the constants p, d, c, β satisfy p > d > 0, c > 0, β > 0.

Theorem 8 The one-parameter family of time-one maps Fγ : C → C cor-
responding to equation

Ṅ(t) = γr(t)
( − dN(t) + pN(t − 1)e−cN(t−1)

)
(5)

undergoes a supercritical Neimark-Sacker bifurcation in the neighborhood of
the positive equilibrium as the parameter γ increasingly crosses the critical
value γn, where n ≥ 1.

Finally we consider a Krisztin-Walther equation that describes the dy-
namics of a periodically excited neuron, and a more general class of equations
as well.

Theorem 9 Assume that 0, 9 < M
βQ

< 1. Then the one-parameter family of
time-one maps Fγ : C → C corresponding to equation

ẋ(t) = γ
( − m(t)x(t) + q(t) tanh(βx(t − 1))

)
, (6)

undergoes a supercritical Neimark-Sacker bifurcation as the parameter γ in-
creasingly crosses the critical value γn.

Theorem 10 Consider the equation

ẋ(t) = γ
( − m(t)x(t) + f(t, x(t − 1))

)
, (7)

where f : R×R → R is a C4-smooth function satistying f(t + 1, ξ) = f(t, ξ)
and f(t, 0) = 0 for all t, ξ ∈ R. Suppose that fξ(t, 0) > 0 for all t ∈ R and
0, 9 < M∫ 0

−1 fξ(s,0)ds
< 1. Then if fξξξ(t, 0) < 0 for all t ∈ R, the one-parameter

family of time-one maps Fγ : C → C corresponding to equation (7) undergoes
a supercritical ( if fξξξ(t, 0) > 0 for all t ∈ R, a subcritical) Neimark-Sacker
bifurcation, as the parameter γ increasingly crosses the critical value γn.
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Resonant Bifurcations

In this section we consider the equation

ẋ(t) = γf(t, x(t − 1)), (8)

which is the same as equation (1) taking a(t) ≡ 0. However, in this case the
non-resonance condition is not fulfilled and the bifurcation theorem is not
valid anymore. In the case of 1 : 4 strong resonance, it is possible, that the
invariant curve does not exist at all, but 4-periodic points bifurcate ([4]).
We give explicit conditions to detect all the possibilities. Stable and un-
stable invariant curves, stable and unstable families of 4-periodic points may
bifurcate. We find the resonant Poincaré normal form and we conclude that
in the case of periodic coefficient, the strong resonance has no effect on the
bifurcations. We illustrate this result on the specific example of the Wright
equation with periodic coefficient.

Theorem 11 Let g = gγ : C → C be a map depending on a parameter, of
the form

g(z) = µz+
ρ20

2
z2 +ρ11zz̄+

ρ02

2
z̄2 +

ρ30

6
z3 +

ρ21

2
z2z̄+

ρ12

2
zz̄2 +

ρ03

6
z̄3 +O(|z|4)

(9)
where µ = µ(γ) and the coefficients ρkl = ρkl(γ) are smooth functions of
the parameter, moreover µ(γj) = i at the critical values γ = γj. Then by a
coordinate transformation, depending smoothly on the parameter γ, the map
g can be transformed into

g̃(w) = iw + c1w
2w̄ + c2w̄

3 + O(|w|4),
where

c1 =
1 + 3i

4
ρ20ρ11 +

1 − i

2
ρ11ρ̄11 +

−1 − i

4
ρ02ρ̄02 +

ρ21

2

and
c2 =

i − 1

4
ρ11ρ02 +

−i − 1

4
ρ02ρ̄20 +

ρ03

6
.

The coefficient c1 is the same as in the nonresonant case, but the coeffi-
cient of the resonant term w̄3 can not be removed in case of strong resonance.
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The formula for the coefficient c1 is widely known, one can find c2 in [6] also,
but without the detailed computations. Nevertheless, in the literature one can
find miscalculated formulae, and some uses the false ones in applications. For
that reason we present in the dissertation the computations for the correct
formula with all the details. In specific applications it is important to deal
with the exact value of c2.

Let us define a1 = c1
i

, a2 = c2
i

, d = ∂|µ(γ)|
∂γ

|γ=γj
and

δ = |Im (a1) − BRe (a1)| − |a2|
√

1 + B2, (10)

where B is the integral of b(s) on an interval of length 1.

Theorem 12 For the time-one map corresponding to equation (8),

a1 = − i

2

[
Ri(W (χi, χi, χ̄i)) + 2Ri(V (χi, (1 − U)−1V (χi, χ̄i)))

+ Ri(V (χ̄i, (i
2 − U)−1V (χi, χi)))

]
,

(11)

a2 − i

6

[
Ri(W (χ̄i, χ̄i, χ̄i)) + 3Ri

(
V (χ̄i, (i

−2I − U)−1
(
V (χ̄i, χ̄i)

))]
. (12)

We extend the 1 : 4 resonant bifurcation theorem ([4]) to periodic delay
differential equations.

Theorem 13 The one-parameter family of time-one maps Fγ : C → C
corresponding to equation (8) has the fixed point φ = 0 with exactly two
critical, simple Floquet multipliers µj = i and µ̄j = −i on the unit circle.
This is a 1:4 strong resonance. The transversality condition holds. There
is a neighborhood of the equilibrium 0, in which a unique invariant curve
bifurcates (and no 4-periodic points), providing that δ > 0. The direction of
the bifurcation is determined by the sign of Re (a1). If δ < 0, then two families
of 4-periodic points (and no invariant curve) bifurcate from the equilibrium
0. Furthermore, if |a1| > |a2|, then the two families appearing on the same
side and at least one of them is unstable. If |a1| < |a2|, then the two families
appear on opposite sides and both of them are unstable.

Apparently, there are several different possible outcomes of the bifurca-
tion. Since our conditions are explicit, we are able to determine the type of
the bifurcation for any given equation. We show that in the case of periodic
coefficients the resonance does not affect the bifurcation.
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Theorem 14 Consider the equation

ẋ(t) = γr(t)f(x(t − 1)), (13)

where f(ξ) = ξ+ S
2
ξ2+ T

6
ξ3+O(ξ4) is a C4-smooth function, r(t) is 1-periodic.

The one-parameter family of time-one maps Fγ : C → C corresponding to
equation (13) undergoes a bifurcation and a unique invariant curve bifurcates
from the equilibrium 0, as the parameter γ passes through the critical value
γj. The bifurcation is supercritical if T < S2

(
11B+2

5B

)
and subcritical if T >

S2
(

11B+2
5B

)
.

The previous theorem can be applied to the celebrated Wright equation
with periodic coefficient. As an immediate consequence we find our bifurca-
tion theorem, being consistent with the well known bifurcation results for
the classical Wright equation.

Theorem 15 The one-parameter family of time-one maps Fγ : C → C
corresponding to the equation

ż(t) = −αr(t)(ez(t−1) − 1)

undergoes a supercritical bifurcation and a unique invariant curve bifurcates
from the equilibrium 0 as the parameter α crosses π

2
.

Some further questions are discussed in the final part of the dissertation,
such as the possible dynamics on the invariant tori, the problem of global
existence of invariant tori, the case of higher order equations and various
delays and periods.
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