Szegedi Tudomanyegyetem
Szoftverfejlesztés Tanszék

C+4+ Forraskod Modellezése
és Visszatervezése

Ph.D. értekezés tézisei

Ferenc Rudolf

Témavezeto:

Dr. Gyiméthy Tibor

Szeged
2004

Bevezetés

A szoftverrendszerek gyorsan novekednek és valtoznak, igy a ma megirt forraskéd nagyon rovid id6
alatt elavul, Ggynevezett orokolt kédda valik. Ez foleg a piac gyorsan véltozd igényei és a folyama-
tosan viéltozd, (j technolégidk kovetkezménye. A mindig szoros hataridok miatt a legtobbszor nem
sikerul tisztességesen kibocsatani a terméket naprakész dokumentaciéval (mint amilyenek példaul a
tervezési leirdsok és a forraskdd kommentek). Ezekben az esetekben az egyetlen érvényes dokumentécié
maga a forraskdd. Az elobb vazolt helyzet kovetkezménye lehet példdul sok klén a forrdskédban, ha-
lott kodrészletek és a kdd hibdkra valé hajlama. E problémak orvoslasara torekszik az djratervezés
(reenginering) tudomanya, amely kiilonb6z6 mddszereket, technikdkat és eszkozoket kisérletez ki a
programmegértés és karbantartas megkonnyitésére. Az Ujratervezés elsé fele a visszatervezés (reverse
engineering), amely , a vizsgdlt rendszer analizildsdnak a folyamata, hogy (a) beazonositsuk a rend-
szer komponenseit és azok egymas kozotti viszonyét és (b) megalkossuk a rendszer dbrizolasat egy
mas formdban vagy egy magasabb absztrakcids szinten” [3].

Az objektum-orientdltsdg lett az elmuilt években a legnépszeriibb paradigma a nagy szoftver-
rendszerek tervezésére és implementdlasdra. Mdra mar sok objektum-orientdlt rendszer kertlt olyan
allapotba, hogy orokolt kédként lehet tekinteni rajuk, amelyeket djra kell tervezni. A régebbi progra-
mozasi nyelvekkel (mint példdul a COBOL) ellentétben az objektum-orientalt nyelvekhez kifejlesztett
maddszerek még nincsenek teljesen kidolgozva. Az igazdn nagy és komplex rendszerek, mint példaul a
telekommunikacids és irodai szoftverek altalaban C++ nyelven vannak megirva. Ez a programozasi
nyelv valdsziniileg a legkomplexebb mind kozul és igy, nem meglepé médon, a legkevésbé tamogatott
Ujratervezd6 moddszerekkel és eszkozokkel. Ez a nyelv adja nekiink a legizgalmasabb kihivasokat és
lehetoségeket a kutatdsra.

Hogy megértsiink egy ismeretlen szoftverrendszert sok kiilonbozé dolgot kell tudnunk réla. Ezeket
az informacidkat a forraskddrdl sz616 tényeknek nevezziik. Egy tény példdul a kéd mérete. Egy mdsik
tény az, hogy egy osztdlynak van-e Gsosztalya. Valdjaban minden informacidt, amely segit egy isme-
retlen programkdd megértésében, ténynek nevezink az értekezésben. Magdtdl ért6do, hogy a tények
kézzel torténo feltardsa csak aranylag kis forraskdd vizsgalatakor lehetséges. Valds rendszerek, amelyek
tobb millié programsorbdl dllnak csakis szoftvereszkozok felhasznélasaval analizalhatok.

A mi megkozelitésiinkben az eszkozzel tamogatott tényfeltards egy automatizalt eljards, amely
soran a vizsgalt rendszert fajlonként elemezziik analizalé eszkozokkel, hogy beazonositsuk a forraskéd
kulonféle tulajdonsagait és egymas kozotti viszonyait, valamint létrehozzuk a kinyert informacié va-
lamilyen magasabb szint(i abrazolasat. Ezek az informacidk a késdbbiekben felhaszndlhatdk kiilonféle
Ujratervezé eszkozokben, mint példaul a metrikaszamitékban és szoftvervizualizalokban. Azonban
az analizalé eszkozok kimeneti formatuma sajnos nem szabvanyositott, a legtobb eszkoznek sajat
formdatuma van ami egyuttmikodési problémdkhoz vezethet. Minden eszkoz, amely szeretné fel-
haszndlni egy masik eszkoz Osszegylijtott informacidit, kiillonféle konvertereket implementdl az adatok
elérésére.

Ezt a problematikus helyzetet felismerték a kutatdk és jelentds erdfeszitéseket tettek, hogy javitsa-
nak rajta. Egyik fé6 eredménye ennek a munkanak a GXL [20] (Graph eXchange Language/Graf Adat-
cserélé Nyelv). De a GXL hasznilata még nem elegendd, mert nydjt ugyan egy szabvdnyos csa-
tornat grafok (csomdpontok és élek) adatcseréjére, de nem hatarozza meg, hogy hogyan abrazoljuk
a kilonféle programnyelv-specifikus entitdsokat, mint példaul a C++ osztalyokat és fiiggvényeket.

A kutaték mar foglalkoztak ezzel a teriilettel is (pl. [4-7; 16; 19; 22]), és tobb megoldast is ja-
vasoltak, am egyik sem lett széleskoriien elfogadva és hasznalva. Egy kozos szabvanyos formatum
(séma) nélkiil nehéz a kiilonbozé C++ visszatervezd eszkozok kozotti gordiilékeny adatcserét meg-
valdsitani. Sémanak nevezziik az adatok formatumanak a leirasat attribldtumokkal elldtott entitasokkal
és reldcidokkal. Egy séma példany (mds szavakkal modell) a séma egy megtestesiilése, amely egy
konkrét szoftverrendszert modellez. Ez hasonlé az adatbazisokhoz, amelyek szintén rendelkeznek
sémdval (3ltaldban E-R diagramokkal megadva) és ennek megfeleld konkrét adatokkal (rekordok).
Az értekezésben bemutatunk egy sémat a C++ nyelvhez.

A tényfeltaras eredményeire sok kutatas épiil az Ujra- és visszatervezés teriletén. llyenek példaul
a szoftvermérések (kildnféle metrikdk), vizualizicid, dokumentdlds és a programmegértés. De vi-
szonylag kevés cikk foglalkozik a tényleges tényfeltarasi eljarassal C++ forraskédbdl. Mi bemutatunk
olyan médszereket, amelyekkel megvaldsithaté a valds szoftverek automatikus tényfeltarasa. Kifejlesz-
tettiink egy Columbus [8-12; 14; 15] nevii keretrendszert ezen mddszerek tdmogatdsara és a vissza-
tervezésre dltalaban, mely gondoskodik a tények abrazolasardl, sziirésérol és konverzidjardl kilonféle
formatumokra, hogy el6segitsiik az eszkozok kozotti adatcserét. A keretrendszert mara mar a vilag
szamos egyetemén és kutatékozpontjaban hasznaljak kutatasi és oktatasi célokra.

Hogy még egy szinttel magasabbra |épjink az elemzett szoftverrendszer absztrakcidjaban, Uuj
modszereket fejlesztettiink ki a tervezési mintak felismerésére a séma példanyainkban, és igy egydttal a
forraskddban is. A tervezési mintdk hasznos megolddsokat reprezentdlnak objektum-orientalt alakban
és a legtermészetesebb lehetOséget nydjtjdk az elemzett rendszer mogott rejlé architektiralis tervezési
megfontoldsok rekonstrualdsara a forraskédbdl.

Annak demonstraldsara, hogy a mddszereink nagyméretii, valds rendszereken is j6l hasznalhatdk,
analizaltuk a népszerii Mozilla [27] internetes programcsomag szamos verzidjanak a forraskédjat és
kilonféle metrikdkat szamitottunk ki beldle, hogy el6rejelezziik a kéd hibara valé hajlamat. Osszeha-
sonlitottuk a Mozilla hét kiilonbozo verzidjanak a metrikait és bemutattuk, hogyan valtozott a szoftver
hibara valé hajlama a fejlesztése folyaman.

Az értekezés négy tézist tartalmaz, melyek a kovetkezok:
1. Séma a C++ programozasi nyelvhez.
2. C++ tényfeltard eljaras és keretrendszer.
3. Tervezési mintdk felismerése C++ forraskédban.
4. Nyilt forraskédu szoftverek hibara valé hajlamossaganak vizsgalata.

A kovetkezo fejezetekben roviden bemutatom ezeket a téziseket. Minden fejezet végén kiilon kiemelem
a sajat hozzajaruldsomat az eredményhez.

1. Séma a C++4 programozasi nyelvhez

Ezt a munkat az a felismerés motivalta, hogy rendkivuli a fontossdga annak, hogy a kulonbozo
Ujratervezd eszkozok (mint példaul elemzdk, metrikaszamitdk és klon felismerdk) adatokat tudja-
nak cserélni egymdssal. E cél eléréséhez szikség van egy kozos formdtumra, melynek segitségével
kommunikalni tudnak egymassal ezen eszkozok. Részletesen kidolgoztunk egy sémdt, melynek a
neve Columbus Séma a C++-hoz [7; 12; 16], amely C++ nyelven irédott forraskddrdl képes in-
formacidkat dbrazolni. A séma modularis, aminek kovetkeztében rugalmasan bovithetd és médosithaté.
Aprélékosan abrazol minden fontos tényt a forrdskddrdl gy, hogy egy logikailag ekvivalens forrdaskdd
generalhatd a példanyaibdl. A séma kidolgozasa egy hidnypétlé munka, mert ilyen részletességgel még
senki sem publikalt sémat a C++ nyelvhez. Ennek oka valdsziniileg a C++ nyelv rendkivili komp-
lexitasdban keresendd. Az értekezés elso tézise magaban foglalja a séma megtervezése mellett annak
implementdcidjat is. Az implementacidé, melyet a C++ elemzonk is hasznal, tartalmaz még algorit-
musokat névfelolddsra, tipus ellenérzésre, mentésre/betdltésre, osztdlydiagram és fiiggvényhivasi graf
generalasra, hogy csak néhanyat emlitsiink.

A séma leirdsa szabvanyos UML osztdlydiagramokkal van megadva, amely dltal egyszeriien imp-
lementélhaté és fizikailag is kdnnyen dbrdzolhaté (pl. GXL segitségével). Annak ellenére, hogy nem
alkalmas formalis leirasokra, az UML-t valasztottuk, mert mara egyeduralkodé szabvannya valt az
objektum-orientalt tervezésben és igy konnyebben elsajatithatd a séma a felhaszndlok szamara.

A séma strukturaja

A C++ nyelv nagy komplexitasa miatt Ggy dontottink, hogy modularizaljuk a sémankat hasonldan
a [16] cikkben leirtakhoz. Ez egyben lehetSséget biztosit a séma bovitésére és mddositasara is. A
sémat hat csomagra bontottuk, melyek a kovetkezok:

e base: alapcsomag, amely 6sosztdlyokat és adattipusokat tartalmaz a séma tobbi része szamara.

e struc: ez a csomag modellezi a f6 program entitdsokat a bedgyazasi struktirajuknak megfelelen
(pl. objektumok, fiiggvények és osztalyok).

e type: az ebben a csomagban taldlhatd osztdlyok dbrazoljdk az entitdsok tipusait.

e templ: ez a csomag abradzolja a sablonparaméter és argumentum listakat.

e statm: ebben a csomagban taldlhatdk az utasitdsok modellezésére szolgald osztalyok.
e expr: ez a csomag modellezi a kifejezéseket.

Ebben a tézisfiizetben csak a legérdekesebb diagramot mutatjuk be, a struc csomagét (lasd a 3.
abrat). A teljes séma leirdsa az értekezésben taldlhatd.

A séma hasznalatat egy példan keresztiil illusztraljuk. Az 1. abran talalhaté példa C++ forraskédot
hasznaljuk fel erre a célra. A példahoz tartozd séma példany a 2. abran lathatd. Egy objektumdiagram-
szer(i jelolést haszndlunk, ahol a csomdpontok a séma osztdlyainak az objektumpélddnyait dbrazoljak,
az Oket 0sszekoto élek pedig a kiilonféle asszociacids és aggregacids relaciok megtestesulését jelenitik
meg. A diagramot leegyszerisitettik a konnyebb érthetdség érdekében azzal, hogy elhagytunk bizonyos
attribdtumokat, mint példaul azt, hogy melyik fajl hanyadik sorabdl szarmaznak az entitdsok.

3

template <typename T, int Size>
class Array {
T arr[Size];
public:
virtual const T& get(int idx) comnst {
return arr[idx];
};
virtual void set(int idx, const T& val) {
arr[idx] = val;

3

1. dbra. C++ forraskdd példa.

1 strue:Namestac2
nzme : global namespace
sontains (1)

11 strue:ClassT ampl

hasParameterList name : Array
‘2:templ:Parametert ist contains 11} centains (2) contains (@)
Pl R

contains (1) contains (2)

15 gtrue::Object
name :arr
accessibility : ackPrivate

“8: strae:Function
name : get
constvolatile : evkConst
isvirtual : true
accessibliity : ackPublic

23 sfruc:Functien
name : set
hasBady costVoatie revkNone

isvirtual : tne
acoesshllity : ackPublic
18 statm: Block comains (1) contains (2)
V4 X

contains (1) 24: grue Parameter
name : ldy

13 templ: ParameterType 14: templ: ParareterNonType
name : T name : Slze

contains (1)

hasBody

17 struc:Parameter

25 stuc:Parameater
name : val

19: statm :Return

hasRetunvalue

_hask
20: expr:ArraySubserict
)

con:ains (ef) sontains (rignt;

hasTypeRep

26 statm :Block

contains (1)

27: expr:Assignment

eontairs (Iaf) cantains (dght)

28: expArraySubscript

contains (left) ecntains (right)

hacTyoerep wforaToName

32 twe:TypeRep

contains (1) contains i1)

39: type TypeFormerFunc

hasRetumTyg eRep

hasParameterT ypeRep (1)

33: tupe TvpeFormerType referaToName

refersToName

roforeToTypo hesTypeRop

2: type: SimrleType
kind - stkint

referEToName hasParameterTypeRep (1)

43: type:TypeRep

contains (1)

44: tyne: TypeForme-Func

hasParameterTypeRer (2)
-~ =

refersToName

47 type:TypeRep
constolatile : evkCarst

contains (2) contains (1) contains (2}
A

34 typeTypeRer

contains (1)

hasRoturnTypeRep
(35 type:T: oeFormerAT) (37 type: TypeFormerT pe) 41: type TvpeFormerPir | (42: type:TypeFermerType
knd - ptkR efsrence e TioeEs
pe_TypeRep
contains i1)

arravSize

refersToTyoe 46 type: TypaFormerType

rafereToType

refersToType 3 type SirpleType

kind stkVold

2. dbra. A fenti kéd séma példanya (modellje).

Adatcsere mas eszkozokkel

A Columbus rendszer altal kinyert, a sémanak megfelel6 adatok cseréjét tobb gyakorlati alkalmazasban
is megvaldsitottuk. Az elsé ilyen felhaszndlas egy a Nokia Kutatékozponttal egylttmiikodésben lezaj-
lott K+F projekt keretein beliil tortént. Ekkor a Columbus keretrendszert a Nokia sajat TDE [31]
nevi. UML tervezd eszkozéhez hasznaltuk fel C++ analizatorként. A felépitett sémapéldanyokbdl
osztalydiagramokat allitottunk el6 és egy COM interfészen keresztul atszéllitottuk azokat a TDE-be.

0.1

[pase:Named | [pase: Positioned| [exer st ror:Exp |

\
\ \ FSPR X 4
hasArpuments | |
. \—‘7 nasDpVa ue
(ordered) hasVa ue

contains Member . hasinifvialu ,
Faocessibiify Accessimity<md defraret hasConstruccorin tializer [Meminitializer] hesinifvalue Parameter
LetorageClass StorageClasskind -
refersToMember y TsETpsis - Boolean
String 0.1 ordsrod) ORY 1 osBitfols
Lnon SOSpec : String

intializes| - {OR} - |initializes N
z}éﬁ T Tzf S oy
\ L \

pase: Positioned| 1
7~ 1 [
1
o] Scope | [NamespaceAllas] [Using | [Templinstance] [Enumeration | [Enumerator | Function ’ADbJe:t H [Tyeeder | [Asm
[\ [\ [«md uswngwrc\ [\ PsDefned Baa\eaﬂ [\ [mangladName : String [[\ }tex- String \
o Hkind - Furctionk nd 0 7 -
- . <ﬁ isvitua : Boolean contains
Fccessbiity - Accesabl &ykind| R} oryesrom denvesFrom nasEnumerator | LisPursVirtusl : Boolean
I . rdord) [1 hasTypeRap
IsVIrtual : Boolean p rotersToNbmaspace \sEnumeratorof © isinl ne : Boolean RaeT yperep
N isExplic : Boclean
hgsBaseSpacifer Class ‘szespace 2 yAN hasT ypeR.
1 j Tind - Classking eeTypeRep

throweTyper g haeTyperep

hasBody atm Block
01
R}
PR o oo
o 01
Pasldiabel statm:IdLabel

hasFriendSpecif er gl sAbetrast Boolean e
. sDefined : Boolean naTemelArguments
arentsFridndship o
Friondspocifor—> grantsFrisndship instandares
|

I crantsFriendship umetion'T empl
ClassTempl

hasTemolParameters JAN
<pdvializes hasTemplParamezers
)) nstant ates [FunctionTemplSpec

[c1assTempispec in:antiates %ﬁ‘
p Isf
nasTemplArguments — hasTemplAguments
o

hasTemplArgum ents
hasTemplArguments

{ordered} forderec}

3. dbra. A struc csomag osztélydiagramja (egy a séma hat csomagja koziil).

A Helsinki Egyetemen zajlé Maisa projektben [25; 26] is sikeresen volt hasznalva a Columbus ki-
menete tervezési mintak felismerésére C++ forraskédban. A séma alkalmazasra keriilt a FAMOOS
projektben is a Crocodile metrikds eszkdzzel [29]. Egy fontos felhaszndlds még a jelenleg is zajl6 fej-
lesztés a Columbus és a GUPRO eszkoz [6] kozotti adatcserének a megvaldsitasara GXL segitségével.
Sikeres adatcserét valdsitottunk meg a rigi graf vizualizalé eszkozzel [24; 28] is. Nemrégiben a
kanadai Waterloo Egyetemmel kezdtiink el egy kozos kutatast, melynek keretein belil Columbus
sémapéldanyokat szeretnénk vizualizdlni a PBS — Portable Bookshelf-ben [17].

Sajat hozzdjarulas

Ezt a munkat az a meglatas motivalta, hogy a sikeres adatcsere kulcsfontossagu az tjra- és visszater-
vez6 eszkozok szamdéra. Ehhez sziikség van egy olyan kozos formatumra, amely egységesen hasznalhaté
a kulonféle eszkozokben, mint amilyenek az elemzék és a metrikaszamitok. Egy szabvdnyos séma
felallitdsa még mindig varat magara. Ebben az értekezésben erre a célra egy adatcserére alkalmas
sémat mutatok be a C++ nyelvhez, melynek a neve Columbus Séma a C++ nyelvre.

A Columbus sémat én terveztem, implementdltam és a Columbus visszatervezé keretrendszer
részévé tettem. Az implementdcié tartalmaz még kiilonféle algoritmusokat névfeloldasra, tipus el-
lenGrzésre, mentésre/betdltésre, osztalydiagram és fliggvényhivési graf generalasra, hogy csak néhdnyat
emlitsek.

2. C+H+ tényfeltaro eljaras és keretrendszer

Egy kis program tényfeltarasa aranylag egyszerii és konnyedén elvégezheto kézzel is. Az igazi kihivast
egy olyan valddi szoftver elemzése jelenti, amely tobb millié programsorbdl all. Az értekezésben be-
mutatunk egy eljdrast [15], amely 6t kulcsfontossagi 1épésbdl &ll, amelyek végrehajtasdval sikere-
sen el lehet végezni egy C++ tényfeltdrd eljardst. Az eljaras olyan fontos dolgokra tér ki, mint
példaul a konfiguracidk kezelése, a sémapéldanyok osszefésiilése, a feltart tények sziirése, majd kon-
vertaldsa. Részletesen bemutatjuk a Columbus visszatervezd keretrendszert [12] is, amely messze-
menden tamogatja az eljdrdst. A keretrendszert széleskorlien hasznaljak a vilag kilonboz6 egyetemein,
és az értekezés irdsdig tobb mint 600 letoltést regisztraltunk.

A tényfeltard eljaras

A tényfeltard és prezentald eljarads vazlata a 4. abran lathatd. Az eljdrds ot egymast kovetd 1épésbdl
all, ahol mindegyik [épés felhaszndlja az el6zé [épés eredményét. A kovetkezokben ezeket a Iépéseket
mutatjuk be.

A javasolt médszer fontos elénye, hogy a |épések inkrementalisan végezhetok el, vagyis ha az egyes
|épések eredményei készen allnak és a |1épés bemenete nem valtozott, akkor az eredményeket nem kell
tjra létrehozni.

1. lépés: Projekt/konfiguraciés informacidk kinyerése

A szoftverrendszerek forrdskddja rendszerint tobb fajlra van osztva, és a féjlok is konyvtarakba és
alkonyvtdrakba vannak rendezve. Raadasul kiilonféle eléfeldolgozasi konfiguracidk lehetnek érvényesek
rajuk. Az az informacid, hogy ezek a fijlok hogyan viszonyulnak egymashoz és milyen beallitasok
érvényesek rajuk altaldban makefile-okban (amennyiben a szoftvert a make eszkozzel forditjuk) vagy
kiilonféle projekt fajlokban (amennyiben a szoftvert IDE — integrélt fejleszté kornyezetekkel forditjuk)
vannak eltarolva. Ezekbdl a fajlokbdl a projekt/konfigurdcids informacidk kinyerése nem egy trivialis
feladat, mivel a kiilonféle IDE-k kiilonboz6 (és a legtobb esetben dokumentalatlan) féjlformatumokat
hasznadlnak. A makefile-ok tovabbi nehézségeket okoznak: az informacié kinyerése beldlik kilonosen
nehéz, mert nem csak kizardlag programforditasra haszndlhatdk, hanem egyéb feladatokra is alkal-
masak. Bemutatunk egy ugynevezett forditoprogram elrejtési mddszert a makefile informacidk hasz-
nositdsara és két kulonbozo mddszert az IDE projekt fajlok kezelésére: az IDE integraciot és a projekt
fajl importalast.

2. lépés: A forraskdd analizalasa — a sémapéldanyok létrehozasa

Ebben a Iépésben a bemend fajlokat egyesével fel kell dolgozni az el6z6 1épésben kinyert informacidk
alapjan. El6szor a féjlok el6feldolgozasa és az el6feldolgozassal kapcsolatos informacidk feltarasa
torténik meg az eldfeldolgozd segitségével. Ezutdn az elofeldolgozott fajlokat a C++ analizalé le-
elemzi és feltdrja beldlik a C++ nyelvvel kapcsolatos tényeket. Mindkét eszkoz létrehozza a megfeleld
sémapéldanyokat.

Step 1 Step 2 Step 3 Step 4 Step 5

Acquiring
project /
configuration
information

project /
configuration
(\nformatio

CAN2Cppml

AN
[GER] | E0ERT

CAN2Metrics

makefiles
n.cpp
input for schema “?\ked ﬁlthered processed
analysis instances _schema _scnema output
instances instances

4. 4bra. A tényfeltaro eljaras.

3. lépés: A sémapéldanyok osszefésiilése

Miutdn mindegyik sémapéldany fajl elkésziilt, ezen példanyokat ossze kell fésuilni. Ezaltal, hasonldan az
igazi forditéprogramokhoz, amelyek kiilonall6 fajlokat készitenek a logikailag osszetartozé entitdsoknak
(mint példaul a konyvtdrmodulok és a futtathatdk), az egymdssal kapcsolatban allé entitasok megfe-
leléen csoportositva lesznek.

4. lépés: A sémapéldanyok sziirése

Nagy rendszerek esetén az el6zo |épések nagy sémapéldanyokat tudnak eredményezni, amelyek 6ridsi
mennyiségl kinyert adatot tartalmaznak. Ezt nehéz haszndlhaté médon prezentdlni, ezért kilonféle
szlirési mdédszereket kell alkalmazni, mint példdul csak bizonyos vizsgélt modulokat meghagyni tovabbi
feldolgozasra.

5. 1épés: A sémapéldanyok feldolgozasa

Mivel a kiilonféle C++ Ujra- és visszatervezd eszkozok kulonbozé sémdkat hasznalnak az adataik
abrazoldsara, a (sziirt) sémapéldanyokat konvertalni kell egyéb formatumokra, hogy széleskoriien fel
lehessen azokat haszndlni.

A Columbus keretrendszer

A tényfeltdrd eljarast a visszatervezo keretrendszerlink tdmogatja, amelyet a tovabbiakban muta-
tunk be. A Columbus Visszatervezé Keretrendszert [8-12; 14; 15] egy a Nokia Kutatékdzponttal
egyuttmiikodésben lezajlott K+F projekt keretén belil fejlesztettik ki. A fo célkitlizésiink az volt,
hogy létrehozzunk egy keretrendszert, amely tdmogatja a tényfeltarast és egy kozos interfészt biztosit
egyéb visszatervezé feladatok elvégzésére is. A féprogramot Columbus REE-nek (Reverse Engineering
Environment/Visszatervezd Kornyezet) hivjak, amely egyben a grafikus felhaszndldi interfésze is a

Visual shell

[PPV Exporter |+ [_CANZCEPmI_]
[GXLExporter 1<—~—>[CAN2GxI |
[UML XM Exporter_|«—»[CAN2UmIXmi_|

[FAMIXXNI Exporter |«—» CANZFamixxmi |

Columbus | RSFExporter J«—»__CANZRst]

REE [VCGExporter |« _CAN2vVeg]
\ ’f-lf-thi:a"Eiiiodérf-' 1<—«>[CAN2Maisa |
HTML Exporter \4—»[CAN2HtmI]
DPM Exporter \4—»[CAN2Dpm |

CH++ Exlractoﬂ

[Metrics Exporter \«—»[CAN2Metrics |

5. dbra. A Columbus REE C++-specifikus konfiguracidja.

keretrendszernek. A Columbus REE nincs a C++ nyelvre korlatozva, a C++-specifikus feladatokat
a megfelel6 bovité modulok Iatjdk el. Ezaltal a REE konnyedén bovithetd mas programnyelvekkel, és

/////

datok kulonféle parancssori programokkal vannak megvaldsitva, amelyeket a Columbus REE vezényel.
A Columbus keretrendszer a kovetkezd eszkozoket tartalmazza:

e Columbus REE. A keretrendszer grafikus felhasznaldi felulete.

e Columbus IDE Add-inek. A keretrendszer grafikus felhasznaléi feltlete IDE-kben.
o CANGccWrapper eszkozkészlet. GCC forditéprogram elrejtd eszkozkészlet.

e CANPP. C/C++ el6feldolgozé és sémapéldany épitd eszkoz.

e CAN. C/C++ analizal6 és sémapéldany épitd eszkoz.

e CANLink. C++ sémapéldany Osszefésiilo eszkoz.

e CANFilter. C++ sémapéldany sziir6 eszkoz.

o CAN2* C++ sémapéldany konvertalé és feldolgozé eszkozok.

Columbus REE (Reverse Engineering Environment)

A Columbus REE egy altaldnos visszatervezé kornyezet, melyben minden C-++-specifikus felada-
tot valamely bovité modul l1at el. Ezek a modulok extractor-, linker- és exporter modulok lehetnek.
Az 5. dbran lathaté a rendszer aktualis C+-+-specifikus konfiguracidja.

Columbus IDE Add-inek

A Columbus REE egy jelentds része a projekt (konfiguracid) kezelésével van elfoglalva. Ezt megteszik
a népszerli IDE-k is, igy logikus volt, hogy a Columbus REE maradék részét — azt, amely a tényfeltard
eljarassal foglalkozik — becsomagoljuk egy kiilonallé, Columbus DLL nevii komponensbe is, amely kom-
munikal az dgynevezett Columbus IDE Add-inekkel. Ezek az add-inek pedig olyan modulok, amelyek
beéplilnek az IDE-kbe és azok funkcionalitasit bévitik.

Forditoprogram elrejtés

A make program és a makefile-ok rugalmas eszkozok a szoftverrendszerek konfiguraldsara és forditasara.
A makefile-ok a forditandé fajlokon és azok bedllitasain kivul tartalmazhatnak kilonféle mas paran-
csokat is, mint példaul kiils6 programok futtatdsa. Ezek a lehetoségek nyilvan fejfdjast okoznak a
visszatervezd szakembereknek, mert a makefile-okban taldlhaté parancsokat valahogyan szimulalni
kell a visszatervezo eszkozben.

Mi ehhez a problémdhoz mas irdnybdl kozelitettiink és gy oldottuk meg, hogy ideiglenesen ,el-
rejtjuk” a forditéprogramot egy eszkozkészlettel. Az eszkoziink megvaltoztatja a PATH kornyezeti
valtozoét gy, hogy a mi programjainkra mutasson, amelyek a forditd programjainak a neveit viselik.
igy amikor az igazi forditénak kellene elindulni, a mi programunk fog meghivédni helyette, amely
miutan lefuttatta az eredeti forditét, elinditja a mi analizalé eszkozeinket is. A mddszert sikeresen
alkalmaztuk a GCC forditéprogrammal a nyilt forraskédi valés méretii Mozilla rendszeren, és ezzel
igazoltuk a miikodoképességét.

Szirés

A CANFilter eszkoz harom mddszert tartalmaz melyek segitenek a sémapéldanyok sziirésében: a C++
entitasok szerinti-, a bemené fdjlok szerinti- és az érvényességi kor szerinti szlirést.

Séma példany konverzidk

Mivel a kiilonféle C+-+ ujra- és visszatervez6 eszkozok kiilonboz6 sémdkat hasznalnak az adataik
abrazoldsdra, a sémapéldanyokat konvertalni lehet mas formatumokra, hogy elérjik az eszkozok kozotti
egylttmikodést. A sémapélddnyainkat a kovetkezd formatumokra tudjuk atalakitani: CPPML, GXL,
UML XMI, FAMIX XMI, RSF, VCG, Maisa és HTML.

Szarmaztatott kimenetek

A séma példanyainkat kilonféle szarmaztatott kimenetek elGallitdsara is hasznalhatjuk. Ez tovabbi
szamitasok elvégzését jelenti a példanyokon. A kovetkezo kimenetek allnak rendelkezésre: metrikak,
tervezési minta felismeré és a SourceAudit forraskdd ellendrzé.

Sajat hozzajarulas

Létrehoztam egy eljardst, amely ot pontban meghatarozza azokat a |épéseket, amelyeket meg kell
tenni ahhoz, hogy sikeresen el lehessen végezni egy tényfeltaré feladatot. A Columbus visszatervezd
keretrendszer tobb részét én terveztem és implementaltam (tobbek kozétt az 5. dbran a csikos mintaval
ellatott részeket). A keretrendszer kiilonféle eszkozdoket és bovitési mechanizmusokat tartalmaz, igy
megszabaditja a kutatdkat attdl a tehertdl, hogy kilonbozé feladatokra tjabb és tjabb elemzoket
kelljen irni, igy a sajat konkrét feladatukra O0sszpontosithatnak.

En terveztem és implementéaltam a keretrendszer kovetkezd részeit: Columbus REE, C++ linker
modul, CPPML/GXL/Maisa exporter modulok, Columbus IDE Add-inek, CANLink, CANFilter és
a CANGccWrapper eszkozkészlet, tovabba a kovetkez6 konvertdlé algoritmusokat: CPPML — C++
Markup Language/C++ Jelblé Nyelv (beleértve a nyelv megtervezését is), GXL — Graph eXchange
Language és Maisa (az algoritmusok a CAN2Cppml, CAN2GxI és CAN2Maisa eszkdzokben vannak
implementalva). Részt vettem a tervezési minta felismeré modul fejlesztésében is.

9

3. Tervezési mintak felismerése C+4+4 forraskdodban

A meglévé visszatervezd eszkozok sokrétili absztrakt szoftverdbrazolast képesek jelenleg is eldallitani.
Az objektum-orientalt programok absztrakt abrdzoldsanak egy természetes mdédja az UML diagramok
haszndlata, de amig a forrdskédbdl tobb eszkoz is képes UML diagramokat eldallitani, addig a tervezési
mintak [18] felismerésére gyakorlatilag nincs szoftveres tdmogatds. Pedig ahhoz, hogy megbizhatdan
rekonstrudlni lehessen a forraskdd architekturdjat és a mogotte rejlo dontéseket, a tervezési mintdk
felismerése elengedhetetlen. Az értekezés harmadik tézispontja két mddszert taglal a tervezési mintak
felismerésére C++ forrdskédban. El6szor bemutatunk egy mddszert [13] és eszkozkészletet tervezési
mintdk felismerésére a Columbus és a Maisa [25; 26] szoftverek integricidjaval. Ez a médszer kibdviti
a Columbus keretrendszer tényfeltard képességeit a Maisa mintafelismerd képességével. A masodik
modszer egy paraméterezhetd, gyors grafilleszté algoritmus, amely egy (j megoldast ad a tervezési
minta keresés problémajara [1]. Az algoritmus a sémapéldanyainkban keresi a tervezési mintdk eléfordu-
lasait. A keresés tartalmazza a fuggvényhivasok, objektumlétrehozasok és operacié feliildefinidlasok
felismerését is. Ezek azok az elemek, amelyekkel képesek vagyunk pontosabban meghatarozni a min-
tapéldanyokat. A keresett mintak az altalunk definiadlt Gj, XML-alapd, Design Pattern Markup Lan-
guage/ Tervezési Minta Jelbl6 Nyelv (DPML) nevii nyelven vannak leirva. Ezaltal a mintaleirdsokat
szabadon lehet mddositani, hozzailleszteni bizonyos helyzetekhez illetve akar 4j leirdasokat is létre lehet
hozni.

A Columbus és a Maisa integracidja

A Maisa egy a szoftverarchitektlrak analizaldsara szolgalé eszkoz, amelyet a Helsinki Egyetemen fej-
lesztettek ki egy kutatdsi projekt keretében. A Maisa f6 feladata a tervezési UML diagramok analizaldsa
és architektura szintli metrikdk szamitasa a szoftverrendszer korai mindség-elorejelzésére. Tovabba a
Maisa képes tervezési minta példanyokat keresni a UML diagramokban. Az absztrakcié szintje kulcs-
fontossagl az analizis sikeréhez: minél részletesebbek a diagramok, annal pontosabbak lesznek az
eredmények. fgy a forraskédbdl rendelkezésre allé részletes informacidbdl torténd tervezési mintdk
keresése egy biztatd (it a Maisa gyakorlati hasznalhatésdgdnak novelésére.

Mivel a Maisa teljes egészében Java-ban lett implementdlva, nem tudja kozvetlenul elérni a
sémapéldanyainkat a memaridban, igy egy trividlis utat valasztottunk a két eszkoz osszekapcsoldsara:
a Columbus keretrendszerben egy exporter modul készit egy fajlt a Maisa bemend formatumaban,
amelyet azutan a Maisa be tud tolteni, és fel tud dolgozni. A Columbus <al létrehozott fajl PROLOG
tények formajaban tarolja a forraskodbdl feltart sziikséges informaciét a fé programbeli entitasokrdl
(osztalyok, attribitumok, stb.) és a koztiik levd kapcsolatokrdl (6roklédés, kompozicid, stb.).

Kisérletek

A médszer egyszerii kisérletekkel lett tesztelve. Leimplementaltunk néhany szabvanyos tervezési mintat
C+-+-ban (Singleton, Visitor, Builder, Factory Method, Prototype, Proxy és Memento) és a Columbus
segitségével analizdltuk a kédot és elkészitettilk a Maisa bemeneti fajljait. Végul a Maisa-val elvégez-
tettik a keresést, ami sikeres volt ezekben az esetekben. Ezek az egyszer(i kisérletek mar jelzik a
modszer potencidlis képességeit, de ennél szélesebb korli, valds vilagbdl vett szoftvereken elvégzett
kisérletekre van még szukség, hogy leellendrizziik a médszer igazi hatékonysagat.

10

Mintabanyaszé algoritmus a Columbus-ban

A legtobb a tervezési mintak forraskddbdl torténd felismerésével foglalkozéd megkozelités csak a mintak
alapveté struktdrdjaval foglalkozik. Mi kifejlesztettiink egy (j mddszert, amely tilmutat ezen azaltal,
hogy annyi hasznos informaciét hasznosit a forraskddbdl amennyi csak lehetséges. El6szor analizaljuk
a C++ forraskédot a Columbus keretrendszerrel, amely felépiti a megfelelé séma példanyt. Azutén
betoltjik a minta leirdsainkat, amelyek DPML fajlokban vannak eltdrolva. Végiil az algoritmusunk
hozzarendeli a forrdskddban talalt osztalyokat a minta leirasban taldltakhoz és ellendrzi, hogy olyan
kapcsolatban 4llnak-e egymdssal, mint ahogyan a leirds azt eldirja. ltt kompozicids, aggregacids,
asszociacids és oroklodési kapcsolatokat figyeliink az osztalyok esetében és fuggvényhivési, objektum
|étrehozasi és operacid felildefinialdsi relacidkat az operacidk esetében. A fliggvénytorzs analizisének
az eredménye a kordbbi mdédszerekhez képest nagyobb pontossagot biztosit.

Kisérletek

Négy valds vilagbdl vett publikusan elérheté C++ projekten végeztiink kisérleteket. Ezek a kovetkezok:

o Jikes [21]. Nyilt forraskédd Java forditd rendszer az IBM-t4l.

e L EDA [23]. Hatékony adattipusok és algoritmusok konyvtéara (library of efficient data types and
algorithms).

e StarOffice Calc [30]. A StarOffice tablazatkezeldje. Egy nagy C++ projekt, amely 6 307 forras
fajlbdl all (tobb mint 1,2 millié nem el6feldolgozott nem lires programsor).

o StarOffice Writer [30]. A StarOffice szovegszerkesztéje. Egy nagy C++ projekt amely, 6 794
forras fajlbdl 4ll (tobb mint 1,5 millié nem eléfeldolgozott nem iires programsor).

Az 1. tablazat mutatja a teszt projektekben beazonositott kilonbozo tervezési mintak szamat. A
legtobb tervezési mintdhoz elkészitettiink egy , lagy” (,,soft") leirast is, amelyben kissé enyhitettiink az
eredeti, a [18]-bdl vett specifikacidkon (példdul nem koveteltiik meg némely osztélytdl, hogy absztrakt
legyen). A LEDA kivételével a tobbi projekt tjabb, és észrevehetd, hogy sokkal tobb tervezési mintat
alkalmaztak benniik.

Sajat hozzdjarulas
Két mdédszert mutattam be a tervezési mintak felismerésére C++ forraskédban.

El6szor leirtam egy mddszert és eszkozkészletet tervezési mintdk felismerésére a Columbus és a
Maisa szoftverek integracidjaval. Ez a mddszer kiboviti a Columbus keretrendszer tényfeltaré képes-
ségeit a Maisa mintafelismerd képességével. A C++ kédot elészor analizaltam a Columbus segitségével,
majd készitettem egy sémapéldany konvertalé algoritmust, amely adatokat gydrt a Maisa bemeneti
formatumaban, amely egy PROLOG-jellegii nyelv.

A masik mdédszerrel egy () megolddst adtam a tervezési minta keresés problémajara, amely magdban
foglalja a fliggvényhivasok, objektumlétrehozasok és operacié feliildefinidldsok felismerését is. Ezek
azok az elemek, amelyekkel pontosabban meg lehet hatdrozni a mintapéldanyokat. A keresett mintdk
az 3ltalam definidlt dj, XML-alapd, Design Pattern Markup Language (DPML) nevii nyelven vannak

11

Statistics | Jikes | LEDA | Calc [Writer

Abstract Factory - - - -
Builder - - 2 7
Builder soft - - 17 9
Factory Method - - - -
Factory Method soft - - 1 9
Prototype 1 - - 1
Prototype soft 1 - - 1
Singleton - - - -
Adapter Class - - - 16
Adapter Class soft - - 13 16
Adapter Object 54 - 27 62
Adapter Object soft 62 - | 153 135
Bridge - - - -
Bridge soft - - 73 80
Decorator - - - -
Decorator soft - - - -
Proxy 36 - - 4
Proxy soft 44 - - 5
Chain of Responsibility - - - -
Iterator - - - -
Iterator soft - 1 -
Strategy 4 1 10 5
Strategy soft 12 2 20 32
Template Method 5 - 94 101
Visitor - - - -
Visitor soft - - - 5
| Sum total | 235 | 6] 442 525 |

1. tabldzat. A beazonositott tervezési minta példanyok szama.

leirva. Ez3ltal a mintaleirdsokat szabadon lehet médositani, hozzdilleszteni bizonyos helyzetekhez il-
letve akar (j leirasokat is létre lehet hozni. A mddszer négy szabadon elérhetd szoftveren lett tesztelve.

12

4. Nyilt forraskdédu szoftverek hibara valé hajlamossaganak
vizsgalata

Napjainkban a nyilt forraskddd szoftverek egyre fontosabbakka valnak. Sok nagy cég tamogat nyilt
forraskddu projekteket, és sok kozuluk hasznélja is ezeket a szoftvereket a mindennapi munka soran.
Kovetkezésképpen, sok ilyen projekt rohamosan fejlodik és gyorsan n6 a mérete. Mivel a nyilt forraskédu
szoftvereket altalaban onkéntesek fejlesztik a szabad idejiikben, a forrdskéd mindsége és megbizhaté-
sdga kétséges lehet. Kiilonbozé kédmérések igazdn hasznosak lehetnek, hogy tobbet tudjunk a kdd
minOségérol és hibara valdé hajlamossagardl. A forditéprogram elrejté eszkozkészletiink segitségével
kiszdmitottuk az irodalomban [2] ismertetett, a forrdskdd hibara valé hajlamat eléjelzé metrikdkat a
nyilt forrdskédid, Mozilla [27] nevii internetes szoftvercsomag forraskédjabdl. Ezutan Gsszehasonlitottuk
a kapott eredményeket a [2]-ben publikaltakkal. Az egyik célkitiizésiink az volt, hogy kiegészitsiik az
eredményeiket egy valds vilagbdl vett szoftver mérési eredményeivel. Ezen kiviil osszehasonlitottuk a
Mozilla hét kiilonbozd verzidjdnak (ldsd a 2. tablazatot) mért értékeit hogy megvizsgalhassuk hogyan
valtozott a hibdra valé hajlamossaga a fejlesztése soran.

ver. NCL TLOC TNM TNA | A metrikdk definicidi

1.0 | 4770 | 1127 391 | 69 474 | 47 428 | NCL: Az osztdlyok szdma. (Number of Classes.)
1.1 | 4823 | 1145470 | 70 247 | 48 070 | TLOC: Az Osszes nem iires sor szama.

1.2 | 4686 | 1154685 | 70 803 | 46 695 | (Total number of non-empty lines of code.)

1.3 | 4730 | 1151525 | 70 805 | 47 012 | TNM: A rendszer 0sszes metédusdnak szama.
1.4 | 4967 | 1171503 | 72096 | 48 389 | (Total Number of Methods in the system.)

1.5 | 5007 | 1169537 | 72 458 | 47 436 | TNA: A rendszer osszes attriblitumdnak szama.
1.6 | 4991 | 1165768 | 72 314 | 47 608 | (Total Number of Attributes in the system.)

2. tablazat. Rendszer szint(i metrikdk a Mozilla hét verziéjahoz.

Itt meg kell emliteniink, hogy a Mozilla hét verzijanak a teljes tényfeltarasat elvégeztik és
felépitettiik a hozzdjuk tartozé séma példanyokat, amelyek felhasznalhatdk tovabbi Gjra- és visszater-
vezési célokra, mint példaul architektira helyredllitasra és vizualizalasra. Itt csak a metrikak kiszami-
tasdra haszndltuk Sket. Nem osztadlyoztuk a metrikdkat kifejezOképességiik vagy haszndlhatdésaguk
szerint, ehelyett felhaszndltuk a Basili és tarsai dltal kapott eredményeket [2] és a metrikdkat eszerint
tanulmanyoztuk.

Basili és tarsai didkok altal C++ nyelven irt objektum-orientalt rendszereket vizsgaltak. Egy
kisérletet végeztek el, ahol a didkokat nyolc darab haromfds csoportba osztottak, és minden csoportnak
ugyanaz volt a feladata — egy kis/kozepes méretii projekt fejlesztése. Mivel minden sziikséges doku-
mentdaci6 (példaul a fejlesztés sordn eléforduld hibdk jelentései és azok javitdsa) rendelkezésiikre &llt,
képesek voltak a hibadk gyakorisdga és a metrikdk kozti kapcsolatok vizsgdlatdra. Erre a célra hat met-
rikat vdlasztottak ki és vizsgaltak azok eloszlasait, valamint a koztiik 1évo korreldcidkat. Ezutan a met-
rikdk és az osztalyokban taldlhaté hibak kozti kapcsolatot elemezték. Erre a projektre a késobbiekben
referencia projektként fogunk hivatkozni. Az altaluk vizsgélt hat metrika a kovetkezo:

e WMC — Metédusok stlyozott szdma osztdlyonként (Weighted Methods per Class).

DIT — Oroklédési fa mélysége (Depth of Inheritance Tree).

RFC — Osztély vélasza (Response For a Class).

NOC — Gyerekek szdma (Number Of Children).

LCOM — Metédusok kohézidjanak hidnya (Lack of Cohesion on Methods).

CBO — Objektum osztélyok kozotti csatolasok (Coupling Between Object classes).

13

A referencia projekt és a Mozilla 6sszehasonlitasa

0
0 11 22 33 4 5 66 77 8 99 110

RFC

0O 10 20 30 40 50 60 70 80 90 100

WMC

LCOM CBO

Az X tengelyen a metrikdk értékei taldlhaték. Az Y tengelyen azon osztdlyok
szamanak szdzaléka taldlhatd, amelyek az adott metrikaértékhez tartoznak.

A sotétebb oszlopok a referencia projekt értékeit mutatjdk [2], mig a vildgosabbak
a Mozilla 1.6 értékeit dbrazoljak.

6. abra. A referencia projekt és a Mozilla metrikdinak eloszlasa.

Osszehasonlitottuk a Mozilla 1.6-ra kiszamolt metrikakat a referencia projekt metrikaival. A 6. 4bra
mutatja metrikak eloszldsanak osszehasonlitasat. Lathatd, hogy a WMC, RFC, NOC és LCOM met-
rikak eloszldsai nagyon hasonlitanak egymasra, mig a DIT és CBO metrikak eloszldsai eléggé kilon-

boznek.

Ref. | Moz. WMC DIT RFC

Maximum 99,00 337,00 9,00 33,00 | 105,00 1 074,00
Minimum 1,00 0,00 0,00 0,00 0,00 0,00
Medidn 9,50 7,00 0,00 2,00 | 19,50 21,00
Varhaté érték | 13,40 14,12 1,32 2,39 33,91 48,95
Széras 14,90 22,16 1,99 2,90 33,37 81,99
Ref. | Moz. NOC LCOM CBO

Maximum 13,00 1 213,00 | 426,00 55 198,00 30,00 70,00
Minimum 0,00 0,00 0,00 0,00 0,00 0,00
Median 0,00 0,00 0,00 15,00 5,00 2,00
Varhaté érték 0,23 1,06 9,70 273,82 6,30 5,11
Sz6rés 1,54 17,44 63,77 1,597,53 7,56 7,49

A félkovér szamok a Mozilla 1.6 értékeit reprezentaljdk, mig a
normalis szdmok a referencia projekt értékeit.

3. tablazat. A referencia projekt és a Mozilla 1.6 osztdlyainak alapvet6 statisztikai.

Az eloszldsok mellet mas statisztikakat is osszehasonlitottunk. A 3. dbra mutatja a két projekt
alapvet6 statisztikait. A Minimum értékek majdnem megegyeznek, de a Maximum értékek jelentdsen
nottek, ami nem meglepd, ha figyelembe vessziik azt, hogy a Mozilla-nak megkozelitéleg 30-szor tobb
osztalya van, mint a referencia projektnek. Mivel az LCOM az osztdlyok méretének (pontosabban a
tagfiiggvények szamanak) a négyzetével ardnyos, ezért az ilyen mértékii novekedés varhaté volt. A

14

Mozilla-ban megkozelitdleg Otezer osztdly taldlhatd, ezért els6 pillantdsra a NOC kilonosen magas
értéke meglepo lehet. De ha figyelembe vessziik azt, hogy a masodik legnagyobb NOC érték csak 115,
akkor azt feltételezhetjiik, hogy a nagy NOC értékkel rendelkezé osztaly egy kozos Gsosztaly, amelybdl
a legtobb osztaly szarmazik. A Median és a Varhato érték , egyfajta atlagot” fejez ki, ami tobbé-
kevésbé azonos mindkét esetben, kivéve az LCOM esetében (hasonléan a Maximumnal leirtakhoz).
Mivel a Mozilla-ban sokkal tobb osztaly taldlhatd, és ezek sokkal valtozatosabbak, ezért a metrikak
sokkal szélesebb skalan mozognak.

Referencia | WMC DIT RFC NOC LCOM CBO
WMC 1 0,02 0,24 0 0,38 0,13
DIT 1 0 0 0,01 0
RFC 1 0 0,09 0,31
NOC 1 0 0
LCOM 1 0,01
CBO 1
Mozilla WMC DIT RFC NOC LCOM (CBO
WMC 1 0,16 0,53 0 0,64 0,39
DIT 1 0,54 0 0,08 0,23
RFC 1 0 0,31 0,51
NOC 1 0 0
LCOM 1 0,16
CBO 1

A félkovér szamok a szignifikans korrelacidkat jelolik.

4. tablazat. A referencia projekt és a Mozilla metrikadinak korrelacidi.

Basili és tarsai [2] a metrikdk korreldcigjat is kiszdmoltdk (az eredmények a 4. tdblazatban
lathatdk). Azt taldltdk, hogy a linedris Pearson-féle korrelacié az altaluk vizsgalt metrikdk esetében
altaldban nagyon kicsi. Annak ellenére, hogy hdrom egyiitthaté valamivel jelentosebb korrelaciéra
utal, azt a kovetkeztetést vontak le, hogy ezek a metrikdk statisztikai szempontbdl fuggetlenek. Mi is
kiszamoltuk ezeket a korrelacidkat a Mozilla 1.6 esetében, de eltéré eredményeket kaptunk. A NOC
fuggetlen a tobbi metrikatdl, hasonldéan, mint a referencia projekt esetében, de a tobbi metrika esetében
valamekkora korrelacié azért megfigyelhetd. Harom esetben ez a korrelacié kicsi, de a tobbi esetben
ez tobbé-kevésbé szignifikdns. Mi tobb, néhdny esetben ez az érték igen nagy (példaul a WMC és az
LCOM kozott), amibél az kovetkezik, hogy ezek a metrikdk nem teljesen fiiggetlenek és redundans
informacidt tartalmaznak. Ez azért meglepd, mert Basili és tdrsai azt taldltdk, hogy ezen metrikak
kozil némelyek hasznalhatdk a hibdk észlelésére, mig mdasok nem.

A Mozilla-n mért metrikak valtozasanak tanulmanyozasa

Basili és tdrsai hat hipotézist éllitottak fel (mindegyik metrikdhoz egyet), amelyek kifejezik a varhaté
kapcsolatot a metrikdk és a kdd hibara valé hajlama kozott [2]. Ezeket a hipotéziseket ellendrizték,
és azt taldltdk, hogy némelyik metrika j6l hasznalhatd a hibak felismerésére, mig masok nem.

A tovabbiakban bemutatjuk az oOsszes hipotézist és kovetkeztetést a metrikdk a kéd hibara vald
hajlamanak felismerésre vonatkozd , jésdgdval” kapcsolatban, amelyek a [2]-ben taldlhatdk, és ezeket
felhasznalva elemezziik a Mozilla véltozasait.

15

WMC hipotézis: ,, Azon osztalyok, amelyeknek jelentésen tobb tagfiiggvényiik van, mint a tobbi-
nek, sokkal bonyolultabbak, ezért varhatéan nagyobb a hibara valé hajlamuk.” A WMC-t valamennyire
szignifikdnsnak taldltdk a [2]-ben. A Mozilla-ban a nagy WMC-vel rendelkez6 osztalyok ardnya kicsit
csokkent, de nem jelentosen. Ez alapjan csak azt mondhatjuk, hogy a Mozilla nem romlott e metrika
szerint.

DIT hipotézis: ,Ha egy osztaly mélyebben helyezkedik el az oroklédési hierarchiaban, akkor
varhatoan hajlamosabb lesz a hibakra a sok orokolt definicio miatt.” A DIT nagyon szignifikansnak
bizonyult a [2] szerint, ami azt jelenti, hogy minél nagyobb a DIT érték, annal nagyobb a hibanak
a valészinlisége. A Mozilla esetében azon osztdlyok ardnya, amelyeknek legalabb hét 6siik van, kissé
nott, de ezen osztdlyok aranya elhanyagolhaté a tobbihez képest. Viszont a kettd vagy annal kevesebb
ossel rendelkez6 osztalyok ardnya jelentosen nott, mig a tobb mint ketté de kevesebb, mint hét Ossel
rendelkez6 osztdlyok ardnya szamottevoen csokkent. Ez azt sugallja, hogy a Mozilla Gjabb verzidiban
kevesebb hiba lehet.

RFC hipotézis: ,,A nagyobb vdlaszadé halmazzal rendelkezG osztalyok osszetettebb funkcionalitast
valdsitanak meg, ezért nagyobb a hibdra valé hajlamuk.” Az RFC a [2] szerint nagyon szignifikans. Ez
azt jelenti, hogy ha egy osztalynak nagyobb az RFC értéke, akkor nagyobb a hibara valé hajlama is. A
Mozilla esetében azon osztélyok ardnya, amelyeknek az RFC értékiik nagyobb, mint tiz csokkent (az
osztalyok tobb mint 70%-a tartozik ide), mig a tobbi osztaly ardnya nétt. Osszességében ez a Mozilla
min&ségének javuldsat jelenti (vagyis kevésbé hajlamos a hibakra).

NOC hipotézis: , Azt varjuk, hogy a sok gyerekkel rendelkezé osztalyok hajlamosabbak a hibakra.”
A NOC nagyon szignifikdnsnak bizonyult, de az iranya ellentétes volt azzal, amit a NOC hipotézisben
allitottak, azaz minél nagyobb a NOC értéke, annal kevésbé hajlamos a hibdkra az osztaly. A Mozilla
esetében a hdrom vagy tobb gyerekkel rendelkezé osztdlyok ardnya elhanyagolhaté és ott nem is
valtoztak jelentosen a metrikdk. A nulla vagy ketto gyerekkel rendelkezé osztdlyok ardnya csokkent,
mig az egy gyerekkel rendelkez6 osztdlyok ardanya nott. Ennek megfeleléen a Mozilla kicsit javult.

LCOM hipotézis: ,,Azon osztilyok, amelyeknek a metddusai kozott kicsi a kohézié feltehetben
rosszul lettek megtervezve, ezért valdsziniileg nagyobb a hibdra vald hajlamuk.” Az LCOM a [2] szerint
nem szignifikdns, de a hipotézis szerint a Mozilla enyhén romlott, mert a legaldbb tizenegy LCOM
értékkel rendelkezo osztdlyok aranya nétt, mig a tobbi alig valtozott.

CBO hipotézis: , A szorosan csatolt osztalyok hibara valé hajlama nagyobb, mint a gyengén
csatoltaké.” A [2] szerint a CBO szignifikans, de e metrika alapjan nehéz barmit is mondani a Mozilla-
rél, mert nott azon osztdlyok ardnya, amelyeknek a CBO értéke egy és harom kozott van és csokkent
a négy és hat kozotti értékii osztdlyok ardnya, ami jé és mindségbeli javuldst jelenthetne. Mdasfelol a
nagy CBO értékkel rendelkezé osztalyok aranya is nétt, ami romlast jelenthet.

Sajat hozzajarulas

Ez a munka hdrom f6 eredményt mutat be, amelyek koziil az els6 és a harmadik a sajat eredményeim:
(1) bemutattam, hogy a forditéprogram elrejté eszkozkészletem megvaldsitja a tényfeltard eljarast
valds vildgbdl vett szoftveren; (2) az &sszegylijtott tények felhasznaldsaval objektum-orientdlt metrikdk
lettek kiszdmitva és egy el6z6 munka [2] ki lett egészitve a valds vildgbdl vett Mozilla szoftveren végzett

mérésekkel; és (3) a kiszamitott metrikdk segitségével tanulmanyoztam, hogy hogyan véltozott a
Mozilla hibara valé hajlama hét verzidn keresztil, ami masfél év fejlesztést jelent.

16

o.|[16] | [7]|[12] | [13]][1]|[15]

PP".’\’!—‘Z
°
°
°

5. tablazat. A tézisek és a veliik kapcsolatos publikacidk viszonya.

Konkluziok

Az értekezésben bemutattunk egy rendszert, amely segitségével lehetéség nyilik nagy, valds vilagbdl
vett, C++ programozasi nyelven irt szoftverrendszerek forraskédjanak a visszatervezésére. Mi tobb,
ehhez nem kell médositani sem a forraskddot, sem a makefile- vagy projekt fajlokat.

A tényfeltaréd eljaras soran a keretrendszertink elkésziti az analizalt C++ rendszer egy modelljét egy
jol meghatdrozott sémanak megfelelden. Egy ilyen séma birtokdban lehetdség nyilik az djra- és vissza-
tervezé eszkozok tovabbfejlesztésére, valamint djak létrehozasira, amelyek mar zokkenomentesen
képesek lesznek a tanulmanyozott rendszerrdl informaciot cserélni. A keretrendszeriinket kibovitettem
egy a sémara alapozott programozdi interfésszel is, amellyel a feltart tények konnyedén elérhetok és
felhasznalhatok. Kiilonbozo formatumd kimeneti fajlok is készithetok, hogy még inkabb eldsegitsuk az
eszkozok kozotti egyuttmiikodést.

Azzal, hogy a keretrendszer kiilonféle algoritmusokat is tartalmaz szarmaztatott kimenetek készi-
tésére (pl. objektum-orientdlt metrikdk), egy teljes megoldast nydjt C++ kdd visszatervezésére, igy
mar nem kell a kutatéknak elemzoket késziteni kiilonbozé célokra és a sajat konkrét visszatervezési
feladatukra osszpontosithatnak.

A tényfeltard- és dbrazold technoldgiank segitségével elértem két tovabbi eredményt is. El6szor
is, Uj mddszereket dolgoztam ki a tervezési mintak felismerésére C++ forraskédban. Masodszor, ana-
lizdltam a nyilt forrdskédid Mozilla internetes programcsomag kiilonbozo verzidit és tanulmanyoztam
a hibara vald hajlamédnak a véltozasait.

Végiil, az 5. tablazat osszefoglalja, hogy mely publikdcidk tartalmazzdk az értekezés téziseit.

Koszonetnyilvanitas

El6szor is, szeretném megkoszonni témavezetémnek, Dr. Gyiméthy Tibornak a szakmai tdmogatdsat,
valamint azt, hogy a nagyon motivalé légkorii Szoftverfejlesztés Tanszéken dolgozhatok. Szeretnék
koszonetet mondani kollégdimnak és bardtaimnak, Beszédes Arpédnak, Magyar Ferencnek, Vidacs
Laszlénak, Szokody Fedornak, Loki Gabornak, Siket Istvannak, Siket Péternek, Balanyi Zsoltnak és
Miuiller Laszlénak — akik mind részt vettek a Columbus keretrendszer fejlesztésében és tesztelésében —
hogy olyan nagy odaaddssal dolgoztak ezen a szoftveren. Koszonettel tartozom még David Curleynek
az értekezés angol nyelvii ellenérzéséért és Kocsor Andrasnak a hasznos tanacsaiért.

Végiil, de nem utolsésorban, 6szinte koszonettel tartozom feleségemnek, Gyorgyinek, a tiirelméért
és a biztos csalddi hattérért.

Ferenc Rudolf, 2004. november 20.

17

Hivatkozasok

[1]

2]

3]
[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Zsolt Balanyi and Rudolf Ferenc. Mining Design Patterns from C++ Source Code. In Proceedings
of the 19th International Conference on Software Maintenance (ICSM 2003), pages 305-314.
IEEE Computer Society, September 2003.

Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A Validation of Object-Oriented Design
Metrics as Quality Indicators. In /EEE Transactions on Software Engineering, volume 22, pages
751-761, October 1996.

E. J. Chikofsky and J. H. Cross II. Reverse Engineering and Design Recovery: A Taxonomy. In
IEEE Software 7, pages 13-17, January 1990.

Thomas R. Dean, Andrew J. Malton, and Ric Holt. Union Schemas as a Basis for a C++
Extractor. In Proceedings of WCRE'01, pages 59-67, October 2001.

S. Demeyer, S. Ducasse, and M. Lanza. A Hybrid Reverse Engineering Platform Combining
Metrics and Program Visualization. In Proceedings of WCRE'99, 1999.

J Ebert, R Gimnich, H H Stasch, and A Winter. GUPRO — Generische Umgebung zum Pro-
grammverstehen, 1998.

Rudolf Ferenc and Arpad Beszédes. Data Exchange with the Columbus Schema for C++. In
Proceedings of the 6th European Conference on Software Maintenance and Reengineering (CSMR
2002), pages 59-66. IEEE Computer Society, March 2002.

Rudolf Ferenc and Arpad Beszédes. Az Objektumvezérelt Szoftverek Elemzése. In VIII. Orszdgos

(Centendriumi) Neumann Kongresszus Eléaddsok és (jsszefog/a/o'k, pages 463-474. Neumann
Janos Szamitégép-tudomanyi Tarsasdg, October 2003.

Rudolf Ferenc, Arpad Beszédes, and Tibor Gyiméthy. Extracting Facts with Columbus from C++
Code. In Tool Demonstrations of the 8th European Conference on Software Maintenance and
Reengineering (CSMR 2004), pages 4-8, March 2004.

Rudolf Ferenc, Arpdd Beszédes, and Tibor Gyiméthy. Fact Extraction and Code Auditing with
Columbus and SourceAudit. In Proceedings of the 20th International Conference on Software
Maintenance (ICSM 2004), page 513. IEEE Computer Society, September 2004.

Rudolf Ferenc, Arpéd Beszédes, and Tibor Gyiméthy. Tools for Software Maintenance and
Reengineering, chapter Extracting Facts with Columbus from C++ Code, pages 16-31. Franco
Angeli Milano, 2004.

Rudolf Ferenc, Arpad Beszédes, Mikko Tarkiainen, and Tibor Gyiméthy. Columbus — Reverse
Engineering Tool and Schema for C++. In Proceedings of the 18th International Conference on
Software Maintenance (ICSM 2002), pages 172-181. IEEE Computer Society, October 2002.

Rudolf Ferenc, Juha Gustafsson, Laszlé Miiller, and Jukka Paakki. Recognizing Design Patterns
in C4++ programs with the integration of Columbus and Maisa. Acta Cybernetica, 15:669-682,
2002.

Rudolf Ferenc, Ferenc Magyar, Arpéd Beszédes, Akos Kiss, and Mikko Tarkiainen. Columbus —
Tool for Reverse Engineering Large Object Oriented Software Systems. In Proceedings of the
7th Symposium on Programming Languages and Software Tools (SPLST 2001), pages 16-27.
University of Szeged, June 2001.

18

[15]

[16]

[17]

18]
[19]
[20]
[21]
[22)
23]
[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

Rudolf Ferenc, Istvan Siket, and Tibor Gyiméthy. Extracting Facts from Open Source Software.
In Proceedings of the 20th International Conference on Software Maintenance (ICSM 2004),
pages 60-69. IEEE Computer Society, September 2004.

Rudolf Ferenc, Susan Elliott Sim, Richard C Holt, Rainer Koschke, and Tibor Gyiméthy. Towards
a Standard Schema for C/C++. In Proceedings of the 8th Working Conference on Reverse
Engineering (WCRE 2001), pages 49-58. IEEE Computer Society, October 2001.

P. Finnigan, R. Holt, |. Kalas, S. Kerr, K. Kontogiannis, H. Mueller, J. Mylopoulos, S. Perelgut,
M. Stanley, and K. Wong. The Software Bookshelf. In IBM Systems Journal, volume 36, pages
564-593, November 1997.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns : Elements of
Reusable Object-Oriented Software. Addison-Wesley Pub Co, 1995.

Ric Holt, Ahmed E. Hassan, Bruno Lagué, Sébastien Lapierre, and Charles Leduc. E/R Schema
for the Datrix C/C++/Java Exchange Format. In Proceedings of WCRE'00, November 2000.

Ric Holt, Andreas Winter, and Andy Schiirr. GXL: Towards a Standard Exchange Format. In
Proceedings of WCRE'00, pages 162-171, November 2000.

IBM Jikes Project.

http://oss.software.ibm.com/developerworks/opensource/jikes.

E Mamas and K Kontogiannis. Towards Portable Source Code Representations Using XML. In
Proceedings of WCRE'00, pages 172-182, November 2000.

K. Mehlhorn and S. Naeher. LEDA: A Platform for Combinatorial and Geometric Computing. In
Cambridge University Press, 1997.

Hausi A Miiller, Kenny Wong, and Scott R Tilley. Understanding Software Systems Using Reverse
Engineering Technology. In Proceedings of ACFAS, 1994.

L. Nenonen, J. Gustafsson, J. Paakki, and A.l. Verkamo. Measuring Object-Oriented Software
Architectures from UML Diagrams. In Proceedings of the 4th International ECOOP Workshop
on Quantitative Approaches in Object-Oriented Software Engineering, pages 87—-100, 2000.

J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and A.l. Verkamo. Software Metrics by
Architectural Pattern Mining. In Proceedings of he International Conference on Software: Theory
and Practice (16th IFIP World Computer Congress)., pages 325-332, 2000.

Christian Robottom Reis and Renata Pontin de Mattos Fortes. An Overview of the Software
Engineering Process and Tools in the Mozilla Project. In Proceedings of the Workshop on Open
Source Software Development, pages 155-175, February 2002.

The Rigi Homepage. http://www.rigi.csc.uvic.ca.

Claudio Riva, Michael Przybilski, and Kai Koskimies. Environment for Software Assessment. In
Proceedings of ECOOP’99, 1999.

The StarOffice Homepage.
http://www.sun.com/software/star/staroffice.

A Taivalsaari and S Vaaraniemi. TDE: Supporting Geographically Distributed Software Design
with Shared, Collaborative Workspaces. In Proceedings of CAISE'97, LNCS 1250, pages 389-408.
Springer Verlag, 1997.

19

