
Szegedi Tudományegyetem
Szoftverfejlesztés Tanszék

C++ Forráskód Modellezése
és Visszatervezése

Ph.D. értekezés tézisei

Ferenc Rudolf

Témavezető:

Dr. Gyimóthy Tibor

Szeged
2004





Bevezetés

A szoftverrendszerek gyorsan növekednek és változnak, ı́gy a ma meǵırt forráskód nagyon rövid idő

alatt elavul, úgynevezett örökölt kóddá válik. Ez főleg a piac gyorsan változó igényei és a folyama-

tosan változó, új technológiák következménye. A mindig szoros határidők miatt a legtöbbször nem

sikerül tisztességesen kibocsátani a terméket naprakész dokumentációval (mint amilyenek például a

tervezési léırások és a forráskód kommentek). Ezekben az esetekben az egyetlen érvényes dokumentáció

maga a forráskód. Az előbb vázolt helyzet következménye lehet például sok klón a forráskódban, ha-

lott kódrészletek és a kód hibákra való hajlama. E problémák orvoslására törekszik az újratervezés

(reenginering) tudománya, amely különböző módszereket, technikákat és eszközöket ḱısérletez ki a

programmegértés és karbantartás megkönnýıtésére. Az újratervezés első fele a visszatervezés (reverse

engineering), amely
”
a vizsgált rendszer analizálásának a folyamata, hogy (a) beazonośıtsuk a rend-

szer komponenseit és azok egymás közötti viszonyát és (b) megalkossuk a rendszer ábrázolását egy

más formában vagy egy magasabb absztrakciós szinten” [3].

Az objektum-orientáltság lett az elmúlt években a legnépszerűbb paradigma a nagy szoftver-

rendszerek tervezésére és implementálására. Mára már sok objektum-orientált rendszer került olyan

állapotba, hogy örökölt kódként lehet tekinteni rájuk, amelyeket újra kell tervezni. A régebbi progra-

mozási nyelvekkel (mint például a COBOL) ellentétben az objektum-orientált nyelvekhez kifejlesztett

módszerek még nincsenek teljesen kidolgozva. Az igazán nagy és komplex rendszerek, mint például a

telekommunikációs és irodai szoftverek általában C++ nyelven vannak meǵırva. Ez a programozási

nyelv valósźınűleg a legkomplexebb mind közül és ı́gy, nem meglepő módon, a legkevésbé támogatott

újratervező módszerekkel és eszközökkel. Ez a nyelv adja nekünk a legizgalmasabb kih́ıvásokat és

lehetőségeket a kutatásra.

Hogy megértsünk egy ismeretlen szoftverrendszert sok különböző dolgot kell tudnunk róla. Ezeket

az információkat a forráskódról szóló tényeknek nevezzük. Egy tény például a kód mérete. Egy másik

tény az, hogy egy osztálynak van-e ősosztálya. Valójában minden információt, amely seǵıt egy isme-

retlen programkód megértésében, ténynek nevezünk az értekezésben. Magától értődő, hogy a tények

kézzel történő feltárása csak aránylag kis forráskód vizsgálatakor lehetséges. Valós rendszerek, amelyek

több millió programsorból állnak csakis szoftvereszközök felhasználásával analizálhatók.

A mi megközeĺıtésünkben az eszközzel támogatott tényfeltárás egy automatizált eljárás, amely

során a vizsgált rendszert fájlonként elemezzük analizáló eszközökkel, hogy beazonośıtsuk a forráskód

különféle tulajdonságait és egymás közötti viszonyait, valamint létrehozzuk a kinyert információ va-

lamilyen magasabb szintű ábrázolását. Ezek az információk a későbbiekben felhasználhatók különféle

újratervező eszközökben, mint például a metrikaszáḿıtókban és szoftvervizualizálókban. Azonban

az analizáló eszközök kimeneti formátuma sajnos nem szabványośıtott, a legtöbb eszköznek saját

formátuma van ami együttműködési problémákhoz vezethet. Minden eszköz, amely szeretné fel-

használni egy másik eszköz összegyűjtött információit, különféle konvertereket implementál az adatok

elérésére.

Ezt a problematikus helyzetet felismerték a kutatók és jelentős erőfesźıtéseket tettek, hogy jav́ıtsa-

nak rajta. Egyik fő eredménye ennek a munkának a GXL [20] (Graph eXchange Language/Gráf Adat-

cserélő Nyelv). De a GXL használata még nem elegendő, mert nyújt ugyan egy szabványos csa-

tornát gráfok (csomópontok és élek) adatcseréjére, de nem határozza meg, hogy hogyan ábrázoljuk

a különféle programnyelv-specifikus entitásokat, mint például a C++ osztályokat és függvényeket.

1



A kutatók már foglalkoztak ezzel a területtel is (pl. [4–7; 16; 19; 22]), és több megoldást is ja-

vasoltak, ám egyik sem lett széleskörűen elfogadva és használva. Egy közös szabványos formátum

(séma) nélkül nehéz a különböző C++ visszatervező eszközök közötti gördülékeny adatcserét meg-

valóśıtani. Sémának nevezzük az adatok formátumának a léırását attribútumokkal ellátott entitásokkal

és relációkkal. Egy séma példány (más szavakkal modell) a séma egy megtestesülése, amely egy

konkrét szoftverrendszert modellez. Ez hasonló az adatbázisokhoz, amelyek szintén rendelkeznek

sémával (általában E-R diagramokkal megadva) és ennek megfelelő konkrét adatokkal (rekordok).

Az értekezésben bemutatunk egy sémát a C++ nyelvhez.

A tényfeltárás eredményeire sok kutatás épül az újra- és visszatervezés területén. Ilyenek például

a szoftvermérések (különféle metrikák), vizualizáció, dokumentálás és a programmegértés. De vi-

szonylag kevés cikk foglalkozik a tényleges tényfeltárási eljárással C++ forráskódból. Mi bemutatunk

olyan módszereket, amelyekkel megvalóśıtható a valós szoftverek automatikus tényfeltárása. Kifejlesz-

tettünk egy Columbus [8–12; 14; 15] nevű keretrendszert ezen módszerek támogatására és a vissza-

tervezésre általában, mely gondoskodik a tények ábrázolásáról, szűréséről és konverziójáról különféle

formátumokra, hogy előseǵıtsük az eszközök közötti adatcserét. A keretrendszert mára már a világ

számos egyetemén és kutatóközpontjában használják kutatási és oktatási célokra.

Hogy még egy szinttel magasabbra lépjünk az elemzett szoftverrendszer absztrakciójában, új

módszereket fejlesztettünk ki a tervezési minták felismerésére a séma példányainkban, és ı́gy egyúttal a

forráskódban is. A tervezési minták hasznos megoldásokat reprezentálnak objektum-orientált alakban

és a legtermészetesebb lehetőséget nyújtják az elemzett rendszer mögött rejlő architektúrális tervezési

megfontolások rekonstruálására a forráskódból.

Annak demonstrálására, hogy a módszereink nagyméretű, valós rendszereken is jól használhatók,

analizáltuk a népszerű Mozilla [27] internetes programcsomag számos verziójának a forráskódját és

különféle metrikákat száḿıtottunk ki belőle, hogy előrejelezzük a kód hibára való hajlamát. Összeha-

sonĺıtottuk a Mozilla hét különböző verziójának a metrikáit és bemutattuk, hogyan változott a szoftver

hibára való hajlama a fejlesztése folyamán.

Az értekezés négy tézist tartalmaz, melyek a következők:

1. Séma a C++ programozási nyelvhez.

2. C++ tényfeltáró eljárás és keretrendszer.

3. Tervezési minták felismerése C++ forráskódban.

4. Nýılt forráskódú szoftverek hibára való hajlamosságának vizsgálata.

A következő fejezetekben röviden bemutatom ezeket a téziseket. Minden fejezet végén külön kiemelem

a saját hozzájárulásomat az eredményhez.

2



1. Séma a C++ programozási nyelvhez

Ezt a munkát az a felismerés motiválta, hogy rendḱıvüli a fontossága annak, hogy a különböző

újratervező eszközök (mint például elemzők, metrikaszáḿıtók és klón felismerők) adatokat tudja-

nak cserélni egymással. E cél eléréséhez szükség van egy közös formátumra, melynek seǵıtségével

kommunikálni tudnak egymással ezen eszközök. Részletesen kidolgoztunk egy sémát, melynek a

neve Columbus Séma a C++-hoz [7; 12; 16], amely C++ nyelven ı́ródott forráskódról képes in-

formációkat ábrázolni. A séma moduláris, aminek következtében rugalmasan bőv́ıthető és módośıtható.

Aprólékosan ábrázol minden fontos tényt a forráskódról úgy, hogy egy logikailag ekvivalens forráskód

generálható a példányaiból. A séma kidolgozása egy hiánypótló munka, mert ilyen részletességgel még

senki sem publikált sémát a C++ nyelvhez. Ennek oka valósźınűleg a C++ nyelv rendḱıvüli komp-

lexitásában keresendő. Az értekezés első tézise magában foglalja a séma megtervezése mellett annak

implementációját is. Az implementáció, melyet a C++ elemzőnk is használ, tartalmaz még algorit-

musokat névfeloldásra, t́ıpus ellenőrzésre, mentésre/betöltésre, osztálydiagram és függvényh́ıvási gráf

generálásra, hogy csak néhányat emĺıtsünk.

A séma léırása szabványos UML osztálydiagramokkal van megadva, amely által egyszerűen imp-

lementálható és fizikailag is könnyen ábrázolható (pl. GXL seǵıtségével). Annak ellenére, hogy nem

alkalmas formális léırásokra, az UML-t választottuk, mert mára egyeduralkodó szabvánnyá vált az

objektum-orientált tervezésben és ı́gy könnyebben elsaját́ıtható a séma a felhasználók számára.

A séma struktúrája

A C++ nyelv nagy komplexitása miatt úgy döntöttünk, hogy modularizáljuk a sémánkat hasonlóan

a [16] cikkben léırtakhoz. Ez egyben lehetőséget biztośıt a séma bőv́ıtésére és módośıtására is. A

sémát hat csomagra bontottuk, melyek a következők:

• base: alapcsomag, amely ősosztályokat és adatt́ıpusokat tartalmaz a séma többi része számára.

• struc : ez a csomag modellezi a fő program entitásokat a beágyazási struktúrájuknak megfelelően

(pl. objektumok, függvények és osztályok).

• type: az ebben a csomagban található osztályok ábrázolják az entitások t́ıpusait.

• templ : ez a csomag ábrázolja a sablonparaméter és argumentum listákat.

• statm: ebben a csomagban találhatók az utaśıtások modellezésére szolgáló osztályok.

• expr : ez a csomag modellezi a kifejezéseket.

Ebben a tézisfüzetben csak a legérdekesebb diagramot mutatjuk be, a struc csomagét (lásd a 3.

ábrát). A teljes séma léırása az értekezésben található.

A séma használatát egy példán keresztül illusztráljuk. Az 1. ábrán található példa C++ forráskódot

használjuk fel erre a célra. A példához tartozó séma példány a 2. ábrán látható. Egy objektumdiagram-

szerű jelölést használunk, ahol a csomópontok a séma osztályainak az objektumpéldányait ábrázolják,

az őket összekötő élek pedig a különféle asszociációs és aggregációs relációk megtestesülését jeleńıtik

meg. A diagramot leegyszerűśıtettük a könnyebb érthetőség érdekében azzal, hogy elhagytunk bizonyos

attribútumokat, mint például azt, hogy melyik fájl hányadik sorából származnak az entitások.

3



template <typename T, int Size>
class Array {

T arr[Size];
public:

virtual const T& get(int idx) const {
return arr[idx];

};
virtual void set(int idx, const T& val) {

arr[idx] = val;
}

};

1. ábra. C++ forráskód példa.

� � � � � � � � � �

� � � � � � � � � �

� � � � � 	 � 
 � � � 	 � � � � � � � � 
 �

	 � � � 	 � � � � � � �

	 � � � 	 � � � � � 
 �
	 � � � 	 � � � � � 
 �

	 � � � 	 � � � � � 
 �

	 � � � 	 � � � � � 
 �

	 � � � 	 � � � � � 
 �

� � � � � 	 � 
 � � � 	 � � � � � � � � 
 �

	 � � � 	 � � � � � 
 �

� 	 	 � � � � � �


 � � � � 
 � � � � � � 	 � 
 � � � 	 � � � � � � �
� � 
 � � � � � �


 � � � � 
 � � � � � � 	 � 
 � � � 	 � � � �
� � 
 � � �


 
 � � � 	 �  � � ! � � � � � � 
 � �
� � 
 � � " # # $ %


 & � � � 	 �  � � ' ( ) �  �
� � 
 � � $ # #
�   � � � � ( � � � � � � �  * � 	 � + � � �

 � � � � � � � � 
 �


 , � � � 	 �  � � - � �  � � � �
� � 
 � � . � /
 � � � � 0 � � � � � � � �  + * ! � � � �
� � 0 � 	 � � � � � � 	 � �
�   � � � � ( � � � � � � �  * � � ( � �  

 � � � � � � � � 1 �

� � � � � � � � � �


 1 � � � 
 � � � � � � 	 � 
 � � � 	 2 � � �

� � � � � 	 � 
 � � � 	 2 � � �

 � � � � � � � � 1 � � � � � � � � � 
 �

� � � � � � � � � �


 3 � � � 	 �  � � � � 	 � 
 � � � 	
� � 
 � � � 4 5

 � � � � � � � � 
 �

� � � � � � � � � �

� 6 � � � � � � � � � � � � � �

 � � � � � � � � 
 �

� 
 � � � � � � � � � � � - � 	 
 � 	 � � 	
* � � 7 � � � * � � � � 	 � �  �

� 8 � � � � � � � � � � � - � 	 
 � 	 - � �  

� 9 � � � � � � � � � � � � � �
 � � � � 0 � � � � � � � �  + * ! � � � �

� � � � � � � 	 � � � � � � � �

� 1 � � � � � � � � � � � - � 	 
 � 	 � � � �

 � � � � � � � � 
 �  � � � � � � � � 1 �

� � � � � � � � � � � � � � � �

� 1 � � � � � � � � � � � � � �

	 � � � 	 � � � � � � �

	 � � � 	 � � � � � � �


 � � � 	 �  � � � � 
 � � � �  �
� � 
 � � . : ; < $ : = $ > � ? @ $ A �

 � � � � � � � � 
 �

� � � � � � � � � � � � � - � 	 
 � 	 � � � �

� 3 � � � � � � � � � � � - � 	 
 � 	 � � � �

 � � � � � � � � 
 �

� & � � � � � � � � � � � - � 	 
 � 	 B 	 	

 � � � � � � � � 
 �  � � � � � � � � 1 �

� , � � C � 	 � � D 7

1 � � � � 	 �  � � - � �  � � � �
� � 
 � � ? � /
 � � � � 0 � � � � � � � �  + * � � � �
� � 0 � 	 � � � � � � 	 � �
�   � � � � ( � � � � � � �  * � � ( � �  

 � � � � � � � � � �

1 � � � � 	 �  � � � � 	 � 
 � � � 	
� � 
 � � � 4 5

 � � � � � � � � 
 �

1 & � � � 	 �  � � � � 	 � 
 � � � 	
� � 
 � � E $ :

 � � � � � � � � 1 �
 6 � � � � � 
 � � F � �  *

� � � F � 7 �

1 , � � � � � 
 � � F � �  *

� � � F � 7 �
 � � � � � � � � 
 �


 8 � � � � � 
 � � � � � � 	 �

� � � � � � � 	 � 0 � � � �

1 9 � � C � 	 � � B 	 	 � � � � ( �  	 � � �

 � � � � � � � � � � � � �

1 
 � � C � 	 � � D 7

 � � � � � � � � 	 � G � � �

1 1 � � C � 	 � � D 7

 � � � � � � � � 
 �

1 3 � � C � 	 � � B � � � G � 
 � � �

 � � � � � � � � � � � � �

1 6 � � C � 	 � � B 	 	 � � � � ( �  	 � � �

 � � � � � � � � � � � � �  � � � � � � � � 	 � G � � �

� 9 � � C � 	 � � D 71 8 � � C � 	 � � D 7

 � � � � � � � � 	 � G � � �

� 
 � � C � 	 � � D 7

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � - � 	 
 � 	 - � �  

� � � � � � � 	 � � � � � � � �

 � � � � � � � � 
 �

� & � � � � � � � � � � � � � �

� , � � � � � � � � � � � - � 	 
 � 	 � � � �

 � � � � � � � � 
 �

� � � � � � � � � 
 � � � � � � �
* � � 7 � ? / H I ; � 4

	 � � � 	 � � � � � � �

� � � � � 	 � 
 � � � 	 � � � � � � � � 1 �

1 � � � � � � � � � 
 � � � � � � �
* � � 7 � ? / H J = /

� � � � � � � � � �

� � � � � � � � � �

2. ábra. A fenti kód séma példánya (modellje).

Adatcsere más eszközökkel

A Columbus rendszer által kinyert, a sémának megfelelő adatok cseréjét több gyakorlati alkalmazásban

is megvalóśıtottuk. Az első ilyen felhasználás egy a Nokia Kutatóközponttal együttműködésben lezaj-

lott K+F projekt keretein belül történt. Ekkor a Columbus keretrendszert a Nokia saját TDE [31]

nevű UML tervező eszközéhez használtuk fel C++ analizátorként. A feléṕıtett sémapéldányokból

osztálydiagramokat álĺıtottunk elő és egy COM interfészen keresztül átszálĺıtottuk azokat a TDE-be.

4



� � � �

� � � �

� � � �

� � � � � 	 
 � � 
 
 � � � �
� � 
 � � 
 � � � � � 	 � � � � � � �
� � 
 � � � � � � � 	 � � � � � � �

� � � � �

� � 
 � � � � � � � 	 � � � � � � �

� � �  ! " � # $ % � � � �  ! " � # % "

� & � � ' � � � ( � & � 	 ) � � � � '
� � � � � 	 * + � � � � � � � � � �
� � 
 , � � � + � � 	 � � � � � � �
� � 
 - + � � , � � � + � � 	 � � � � � � �
� � 
 . � � � � � 	 � � � � � � �
� � 
 / 0 1 � � � � � 	 � � � � � � �

2 � � 3 # $ % �

2 � � 3 # $ % � 4 !  5 �

2 � � 3 # $ % � 4 !  5 � 6 5 ! 3

� � � � � 
 
 � � � � � � 7 	 � � � � 
 
 � � � � � � 7 � � � �
� 
 � � � � ' � 
 � � 
 
 	 ) � � � � ' � 
 � � 
 
 � � � �
� � � � � � ' � ) 1 � � � � � � � � � � � 	 ) � � � � '
� � � � . ) � ) 1 � � 	 ) � � � � '

8 9 : ; 9 <

= �  ! � 5 � 3 !

= �  ! � 5 � 3 ! > � $ � �

� � 
 / � � � 1 
 � 
 	 � � � � � � �

? � " �  ! # ! "

@ A B C 9 4 D 5 ! E ! F

� � � � � 	 G 
 � � ' � � � �

H � $ � I

� � � � � 
 J � K � & � � �

L M N ! 3 #

� � � � � 4 !  5 �

� � � � � 4 !  5 � 6 5 ! 3

� � & 1 � 	 	 ? � " �  ! # ! " O $ � #

P � 
 J 7 1 � � � 1

P � 
 J 7 1 � � � 1

P � 
 J � & 1 � - � � � & � � � � 


P � 
 J � & 1 � - � � � & � � � � 


4 !  5 � Q � � # � � 3 !

� � & 1 � 	 	 > " I �  ! � # O $ � #
P � 
 J � & 1 � � � ' + & � � � 
 P � 
 J � & 1 � � � ' + & � � � 


P � 
 J � & 1 � � � ' + & � � � 


� � 
 � � � � � � � � 


� � 
 � � � � � � � � 


� � 
 � � � � � � � � 


 1 � � � � � � R � 



 1 � � � � � � R � 


S

T U U S
P � 
 � � � 7

S

V
� � � � � � � � �

� � � � � � � 


S V
� � � � � � � � �

P � 
 / � + & � � � � � �
S

V
� � � � � � � � �

� � � � � � � 


� � 
 � 	 	 W X : 9 Y

� � 
 � � � � � � � � 


� 0 1 � 	 	 Z [ C < 9 \ \ ] B ^

S

T U U S

P � 
 � � � , � � + �

S

T U U S

P � 
 . � � � , � � + �

� 7 1 � 	 	 4 D 5 ! _ ! 5

V

T U U S

� � � � � � � 


� � � � � 
 J � ( � & � 
 1 � � �

� � � �

P � 
 J 7 1 � � � 1

V

V

� P � � ` 
 J 7 1 � � � 1
S

V

P � 
 . � a � � � �

 � � � & 	 	 Q E O � M ! �


 � � � & 	 	 b � % 3 c

P � 
 J 7 1 � � � 1

� � � � � 
 
 � � � � � � 7 	 � � � � 
 
 � � � � � � 7 � � � �
� � 
 , � � � + � � 	 � � � � � � �

b � � ! 6 5 ! 3 $ F $ ! "

2 " $ ! � E 6 5 ! 3 $ F $ ! "

� � 
 � 	 	 d B \ ] e ] B ^ 9 Y

S

V
P � 
 � � 
 � ) 1 � � � � � � �

SV
P � 
 * � � � � � ) 1 � � � � � � �

S

V
� � � � � � � � �

P � 
 J � & 1 � � � ' + & � � � 


S

V
� � � � � � � � �

P � 
 J � & 1 � � � ' + & � � � 


� � � � f � 
 * � � &
� � � � f � 
 * � � &

' � � � � 
 * � � � � � 
 P � 1
' � � � � 
 * � � � � � 
 P � 1

' � � � � 
 * � � � � � 
 P � 1
� � � �

S

T U U S

P � 
 � � � � � � � �

S

T U U S

P � 
 , � � + �


 � � � & 	 	 4 " D b � % 3 c

S

T U U S
P � 
 � � � 7

g !  Q � $ # $ � � $ h ! "

S

V
� � � � � � � � �

P � 
 
 � � 
 � � + � � � � . � � � � � � � R � �

� 0 1 � 	 	 � i 5 " ! � � $ % � O $ � #

P � 
 � � ' + & � � � 


� � � � � � � � R � 
 � � � � � � � � R � 


� � � 0 � 	 ) � � � � '

> �  

� � 
 � 	 	 d B \ ] e ] B ^ 9 Y

S

T U U S

P � 
 . � � � , � � + �

� � � �

� 
 / � + & � � � � � � � �

3. ábra. A struc csomag osztálydiagramja (egy a séma hat csomagja közül).

A Helsinki Egyetemen zajló Maisa projektben [25; 26] is sikeresen volt használva a Columbus ki-

menete tervezési minták felismerésére C++ forráskódban. A séma alkalmazásra került a FAMOOS

projektben is a Crocodile metrikás eszközzel [29]. Egy fontos felhasználás még a jelenleg is zajló fej-

lesztés a Columbus és a GUPRO eszköz [6] közötti adatcserének a megvalóśıtására GXL seǵıtségével.

Sikeres adatcserét valóśıtottunk meg a rigi gráf vizualizáló eszközzel [24; 28] is. Nemrégiben a

kanadai Waterloo Egyetemmel kezdtünk el egy közös kutatást, melynek keretein belül Columbus

sémapéldányokat szeretnénk vizualizálni a PBS – Portable Bookshelf-ben [17].

Saját hozzájárulás

Ezt a munkát az a meglátás motiválta, hogy a sikeres adatcsere kulcsfontosságú az újra- és visszater-

vező eszközök számára. Ehhez szükség van egy olyan közös formátumra, amely egységesen használható

a különféle eszközökben, mint amilyenek az elemzők és a metrikaszáḿıtók. Egy szabványos séma

felálĺıtása még mindig várat magára. Ebben az értekezésben erre a célra egy adatcserére alkalmas

sémát mutatok be a C++ nyelvhez, melynek a neve Columbus Séma a C++ nyelvre.

A Columbus sémát én terveztem, implementáltam és a Columbus visszatervező keretrendszer

részévé tettem. Az implementáció tartalmaz még különféle algoritmusokat névfeloldásra, t́ıpus el-

lenőrzésre, mentésre/betöltésre, osztálydiagram és függvényh́ıvási gráf generálásra, hogy csak néhányat

emĺıtsek.

5



2. C++ tényfeltáró eljárás és keretrendszer

Egy kis program tényfeltárása aránylag egyszerű és könnyedén elvégezhető kézzel is. Az igazi kih́ıvást

egy olyan valódi szoftver elemzése jelenti, amely több millió programsorból áll. Az értekezésben be-

mutatunk egy eljárást [15], amely öt kulcsfontosságú lépésből áll, amelyek végrehajtásával sikere-

sen el lehet végezni egy C++ tényfeltáró eljárást. Az eljárás olyan fontos dolgokra tér ki, mint

például a konfigurációk kezelése, a sémapéldányok összefésülése, a feltárt tények szűrése, majd kon-

vertálása. Részletesen bemutatjuk a Columbus visszatervező keretrendszert [12] is, amely messze-

menően támogatja az eljárást. A keretrendszert széleskörűen használják a világ különböző egyetemein,

és az értekezés ı́rásáig több mint 600 letöltést regisztráltunk.

A tényfeltáró eljárás

A tényfeltáró és prezentáló eljárás vázlata a 4. ábrán látható. Az eljárás öt egymást követő lépésből

áll, ahol mindegyik lépés felhasználja az előző lépés eredményét. A következőkben ezeket a lépéseket

mutatjuk be.

A javasolt módszer fontos előnye, hogy a lépések inkrementálisan végezhetők el, vagyis ha az egyes

lépések eredményei készen állnak és a lépés bemenete nem változott, akkor az eredményeket nem kell

újra létrehozni.

1. lépés: Projekt/konfigurációs információk kinyerése

A szoftverrendszerek forráskódja rendszerint több fájlra van osztva, és a fájlok is könyvtárakba és

alkönyvtárakba vannak rendezve. Ráadásul különféle előfeldolgozási konfigurációk lehetnek érvényesek

rájuk. Az az információ, hogy ezek a fájlok hogyan viszonyulnak egymáshoz és milyen beálĺıtások

érvényesek rájuk általában makefile-okban (amennyiben a szoftvert a make eszközzel ford́ıtjuk) vagy

különféle projekt fájlokban (amennyiben a szoftvert IDE – integrált fejlesztő környezetekkel ford́ıtjuk)

vannak eltárolva. Ezekből a fájlokból a projekt/konfigurációs információk kinyerése nem egy triviális

feladat, mivel a különféle IDE-k különböző (és a legtöbb esetben dokumentálatlan) fájlformátumokat

használnak. A makefile-ok további nehézségeket okoznak: az információ kinyerése belőlük különösen

nehéz, mert nem csak kizárólag programford́ıtásra használhatók, hanem egyéb feladatokra is alkal-

masak. Bemutatunk egy úgynevezett ford́ıtóprogram elrejtési módszert a makefile információk hasz-

nośıtására és két különböző módszert az IDE projekt fájlok kezelésére: az IDE integrációt és a projekt

fájl importálást.

2. lépés: A forráskód analizálása – a sémapéldányok létrehozása

Ebben a lépésben a bemenő fájlokat egyesével fel kell dolgozni az előző lépésben kinyert információk

alapján. Először a fájlok előfeldolgozása és az előfeldolgozással kapcsolatos információk feltárása

történik meg az előfeldolgozó seǵıtségével. Ezután az előfeldolgozott fájlokat a C++ analizáló le-

elemzi és feltárja belőlük a C++ nyelvvel kapcsolatos tényeket. Mindkét eszköz létrehozza a megfelelő

sémapéldányokat.

6



� � � � �

� � �

� � � � �
� � �

	 � � � �

	 � � � � � 
 � 	 � � � � � � 
 � � �� � �

� � �

� � �

� � � � �

� 	 � 
 � � �
� � 
 � �

� � � � �

	 � � � �


 � � �

� � � � �


 � � �

� � � � � � � � � �

� � � � �  
� 	 � �  	 � � �


 � 	 � � �
� � � � �  

� 	 � �  	 � � �

� � 
 � � � � �
� � � � �  

� 	 � �  	 � � �

� � ! � � � � � �
! � � � � �

� � � " � � � � 


� � � " # � � � � � �

� � �

� � � � 


� � $

� � � � %

� � ! & � � � '
� ! 	 � � ( � �  � � ! 	

� 	 � ! � �  � � ! 	

� � ) � � � � 	 (
� � ! & � � � '

� ! 	 � � ( � �  � � ! 	
� 	 � ! � �  � � ! 	

� � ! & � � �
� � 
 � � �  � � � � 
 � �

� 	 � � � � ! �
 	  
 * � � �

� � �

4. ábra. A tényfeltáró eljárás.

3. lépés: A sémapéldányok összefésülése

Miután mindegyik sémapéldány fájl elkészült, ezen példányokat össze kell fésülni. Ezáltal, hasonlóan az

igazi ford́ıtóprogramokhoz, amelyek különálló fájlokat késźıtenek a logikailag összetartozó entitásoknak

(mint például a könyvtármodulok és a futtathatók), az egymással kapcsolatban álló entitások megfe-

lelően csoportośıtva lesznek.

4. lépés: A sémapéldányok szűrése

Nagy rendszerek esetén az előző lépések nagy sémapéldányokat tudnak eredményezni, amelyek óriási

mennyiségű kinyert adatot tartalmaznak. Ezt nehéz használható módon prezentálni, ezért különféle

szűrési módszereket kell alkalmazni, mint például csak bizonyos vizsgált modulokat meghagyni további

feldolgozásra.

5. lépés: A sémapéldányok feldolgozása

Mivel a különféle C++ újra- és visszatervező eszközök különböző sémákat használnak az adataik

ábrázolására, a (szűrt) sémapéldányokat konvertálni kell egyéb formátumokra, hogy széleskörűen fel

lehessen azokat használni.

A Columbus keretrendszer

A tényfeltáró eljárást a visszatervező keretrendszerünk támogatja, amelyet a továbbiakban muta-

tunk be. A Columbus Visszatervező Keretrendszert [8–12; 14; 15] egy a Nokia Kutatóközponttal

együttműködésben lezajlott K+F projekt keretén belül fejlesztettük ki. A fő célkitűzésünk az volt,

hogy létrehozzunk egy keretrendszert, amely támogatja a tényfeltárást és egy közös interfészt biztośıt

egyéb visszatervező feladatok elvégzésére is. A főprogramot Columbus REE-nek (Reverse Engineering

Environment/Visszatervező Környezet) h́ıvják, amely egyben a grafikus felhasználói interfésze is a

7



� � � � � � � �
� � �

	 
 
 � � 
 � � � 
 � �

	 � � � � � � � � � 
 � �

� � � � � � � � � � 
 � �

� �
�

��
�

� � 

! " � � � � � � 
 � �

	 # $ � �

	 # $ % 	 � � & '

	 # $ � � ( )

* + � � � � � � � 
 � �

, � � " � - � � � � � 
 � �

. # � - " " � - � � � � � 
 � �

/ � � � � � � � 
 � �

� � 
 � � � � � � � � � 
 � �

	 # $ % ! � '

	 # $ % , & ' " & �

	 # $ % . � & � � " & �

	 # $ % � � � � �

	 # $ % * 
 & '

	 # $ % / � &

	 # $ % � � 
 � � � �

	 # $

0 1 � � 2 � � 3 4 � �

	 # $ . � ' 
 � �

5 6 . � � � � � 
 � �

7 	 ! � � � � � 
 � �

	 # $ % 5 � 8

	 # $ % 7 � 9

5. ábra. A Columbus REE C++-specifikus konfigurációja.

keretrendszernek. A Columbus REE nincs a C++ nyelvre korlátozva, a C++-specifikus feladatokat

a megfelelő bőv́ıtő modulok látják el. Ezáltal a REE könnyedén bőv́ıthető más programnyelvekkel, és

egyéb visszatervezési feladatokra is alkalmassá tehető. A konkrét analizálási és tényfeldolgozási fela-

datok különféle parancssori programokkal vannak megvalóśıtva, amelyeket a Columbus REE vezényel.

A Columbus keretrendszer a következő eszközöket tartalmazza:

• Columbus REE. A keretrendszer grafikus felhasználói felülete.

• Columbus IDE Add-inek. A keretrendszer grafikus felhasználói felülete IDE-kben.

• CANGccWrapper eszközkészlet. GCC ford́ıtóprogram elrejtő eszközkészlet.

• CANPP. C/C++ előfeldolgozó és sémapéldány éṕıtő eszköz.

• CAN. C/C++ analizáló és sémapéldány éṕıtő eszköz.

• CANLink. C++ sémapéldány összefésülő eszköz.

• CANFilter. C++ sémapéldány szűrő eszköz.

• CAN2*. C++ sémapéldány konvertáló és feldolgozó eszközök.

Columbus REE (Reverse Engineering Environment)

A Columbus REE egy általános visszatervező környezet, melyben minden C++-specifikus felada-

tot valamely bőv́ıtő modul lát el. Ezek a modulok extractor-, linker- és exporter modulok lehetnek.

Az 5. ábrán látható a rendszer aktuális C++-specifikus konfigurációja.

Columbus IDE Add-inek

A Columbus REE egy jelentős része a projekt (konfiguráció) kezelésével van elfoglalva. Ezt megteszik

a népszerű IDE-k is, ı́gy logikus volt, hogy a Columbus REE maradék részét – azt, amely a tényfeltáró

eljárással foglalkozik – becsomagoljuk egy különálló, Columbus DLL nevű komponensbe is, amely kom-

munikál az úgynevezett Columbus IDE Add-inekkel. Ezek az add-inek pedig olyan modulok, amelyek

beépülnek az IDE-kbe és azok funkcionalitását bőv́ıtik.

8



Ford́ıtóprogram elrejtés

A make program és a makefile-ok rugalmas eszközök a szoftverrendszerek konfigurálására és ford́ıtására.

A makefile-ok a ford́ıtandó fájlokon és azok beálĺıtásain ḱıvül tartalmazhatnak különféle más paran-

csokat is, mint például külső programok futtatása. Ezek a lehetőségek nyilván fejfájást okoznak a

visszatervező szakembereknek, mert a makefile-okban található parancsokat valahogyan szimulálni

kell a visszatervező eszközben.

Mi ehhez a problémához más irányból közeĺıtettünk és úgy oldottuk meg, hogy ideiglenesen
”
el-

rejtjük” a ford́ıtóprogramot egy eszközkészlettel. Az eszközünk megváltoztatja a PATH környezeti

változót úgy, hogy a mi programjainkra mutasson, amelyek a ford́ıtó programjainak a neveit viselik.

Így amikor az igazi ford́ıtónak kellene elindulni, a mi programunk fog megh́ıvódni helyette, amely

miután lefuttatta az eredeti ford́ıtót, elind́ıtja a mi analizáló eszközeinket is. A módszert sikeresen

alkalmaztuk a GCC ford́ıtóprogrammal a nýılt forráskódú valós méretű Mozilla rendszeren, és ezzel

igazoltuk a működőképességét.

Szűrés

A CANFilter eszköz három módszert tartalmaz melyek seǵıtenek a sémapéldányok szűrésében: a C++

entitások szerinti-, a bemenő fájlok szerinti- és az érvényességi kör szerinti szűrést.

Séma példány konverziók

Mivel a különféle C++ újra- és visszatervező eszközök különböző sémákat használnak az adataik

ábrázolására, a sémapéldányokat konvertálni lehet más formátumokra, hogy elérjük az eszközök közötti

együttműködést. A sémapéldányainkat a következő formátumokra tudjuk átalaḱıtani: CPPML, GXL,

UML XMI, FAMIX XMI, RSF, VCG, Maisa és HTML.

Származtatott kimenetek

A séma példányainkat különféle származtatott kimenetek előálĺıtására is használhatjuk. Ez további

száḿıtások elvégzését jelenti a példányokon. A következő kimenetek állnak rendelkezésre: metrikák,

tervezési minta felismerő és a SourceAudit forráskód ellenőrző.

Saját hozzájárulás

Létrehoztam egy eljárást, amely öt pontban meghatározza azokat a lépéseket, amelyeket meg kell

tenni ahhoz, hogy sikeresen el lehessen végezni egy tényfeltáró feladatot. A Columbus visszatervező

keretrendszer több részét én terveztem és implementáltam (többek között az 5. ábrán a cśıkos mintával

ellátott részeket). A keretrendszer különféle eszközöket és bőv́ıtési mechanizmusokat tartalmaz, ı́gy

megszabad́ıtja a kutatókat attól a tehertől, hogy különböző feladatokra újabb és újabb elemzőket

kelljen ı́rni, ı́gy a saját konkrét feladatukra összpontośıthatnak.

Én terveztem és implementáltam a keretrendszer következő részeit: Columbus REE, C++ linker

modul, CPPML/GXL/Maisa exporter modulok, Columbus IDE Add-inek, CANLink, CANFilter és

a CANGccWrapper eszközkészlet, továbbá a következő konvertáló algoritmusokat: CPPML – C++

Markup Language/C++ Jelölő Nyelv (beleértve a nyelv megtervezését is), GXL – Graph eXchange

Language és Maisa (az algoritmusok a CAN2Cppml, CAN2Gxl és CAN2Maisa eszközökben vannak

implementálva). Részt vettem a tervezési minta felismerő modul fejlesztésében is.

9



3. Tervezési minták felismerése C++ forráskódban

A meglévő visszatervező eszközök sokrétű absztrakt szoftverábrázolást képesek jelenleg is előálĺıtani.

Az objektum-orientált programok absztrakt ábrázolásának egy természetes módja az UML diagramok

használata, de aḿıg a forráskódból több eszköz is képes UML diagramokat előálĺıtani, addig a tervezési

minták [18] felismerésére gyakorlatilag nincs szoftveres támogatás. Pedig ahhoz, hogy megb́ızhatóan

rekonstruálni lehessen a forráskód architektúráját és a mögötte rejlő döntéseket, a tervezési minták

felismerése elengedhetetlen. Az értekezés harmadik tézispontja két módszert taglal a tervezési minták

felismerésére C++ forráskódban. Először bemutatunk egy módszert [13] és eszközkészletet tervezési

minták felismerésére a Columbus és a Maisa [25; 26] szoftverek integrációjával. Ez a módszer kibőv́ıti

a Columbus keretrendszer tényfeltáró képességeit a Maisa mintafelismerő képességével. A második

módszer egy paraméterezhető, gyors gráfillesztő algoritmus, amely egy új megoldást ad a tervezési

minta keresés problémájára [1]. Az algoritmus a sémapéldányainkban keresi a tervezési minták előfordu-

lásait. A keresés tartalmazza a függvényh́ıvások, objektumlétrehozások és operáció felüldefiniálások

felismerését is. Ezek azok az elemek, amelyekkel képesek vagyunk pontosabban meghatározni a min-

tapéldányokat. A keresett minták az általunk definiált új, XML-alapú, Design Pattern Markup Lan-

guage/Tervezési Minta Jelölő Nyelv (DPML) nevű nyelven vannak léırva. Ezáltal a mintaléırásokat

szabadon lehet módośıtani, hozzáilleszteni bizonyos helyzetekhez illetve akár új léırásokat is létre lehet

hozni.

A Columbus és a Maisa integrációja

A Maisa egy a szoftverarchitektúrák analizálására szolgáló eszköz, amelyet a Helsinki Egyetemen fej-

lesztettek ki egy kutatási projekt keretében. A Maisa fő feladata a tervezési UML diagramok analizálása

és architektúra szintű metrikák száḿıtása a szoftverrendszer korai minőség-előrejelzésére. Továbbá a

Maisa képes tervezési minta példányokat keresni a UML diagramokban. Az absztrakció szintje kulcs-

fontosságú az anaĺızis sikeréhez: minél részletesebbek a diagramok, annál pontosabbak lesznek az

eredmények. Így a forráskódból rendelkezésre álló részletes információból történő tervezési minták

keresése egy biztató út a Maisa gyakorlati használhatóságának növelésére.

Mivel a Maisa teljes egészében Java-ban lett implementálva, nem tudja közvetlenül elérni a

sémapéldányainkat a memóriában, ı́gy egy triviális utat választottunk a két eszköz összekapcsolására:

a Columbus keretrendszerben egy exporter modul késźıt egy fájlt a Maisa bemenő formátumában,

amelyet azután a Maisa be tud tölteni, és fel tud dolgozni. A Columbus által létrehozott fájl PROLOG

tények formájában tárolja a forráskódból feltárt szükséges információt a fő programbeli entitásokról

(osztályok, attribútumok, stb.) és a köztük levő kapcsolatokról (öröklődés, kompoźıció, stb.).

Ḱısérletek

A módszer egyszerű ḱısérletekkel lett tesztelve. Leimplementáltunk néhány szabványos tervezési mintát

C++-ban (Singleton, Visitor, Builder, Factory Method, Prototype, Proxy és Memento) és a Columbus

seǵıtségével analizáltuk a kódot és elkésźıtettük a Maisa bemeneti fájljait. Végül a Maisa-val elvégez-

tettük a keresést, ami sikeres volt ezekben az esetekben. Ezek az egyszerű ḱısérletek már jelzik a

módszer potenciális képességeit, de ennél szélesebb körű, valós világból vett szoftvereken elvégzett

ḱısérletekre van még szükség, hogy leellenőrizzük a módszer igazi hatékonyságát.

10



Mintabányászó algoritmus a Columbus-ban

A legtöbb a tervezési minták forráskódból történő felismerésével foglalkozó megközeĺıtés csak a minták

alapvető struktúrájával foglalkozik. Mi kifejlesztettünk egy új módszert, amely túlmutat ezen azáltal,

hogy annyi hasznos információt hasznośıt a forráskódból amennyi csak lehetséges. Először analizáljuk

a C++ forráskódot a Columbus keretrendszerrel, amely feléṕıti a megfelelő séma példányt. Azután

betöltjük a minta léırásainkat, amelyek DPML fájlokban vannak eltárolva. Végül az algoritmusunk

hozzárendeli a forráskódban talált osztályokat a minta léırásban találtakhoz és ellenőrzi, hogy olyan

kapcsolatban állnak-e egymással, mint ahogyan a léırás azt elő́ırja. Itt kompoźıciós, aggregációs,

asszociációs és öröklődési kapcsolatokat figyelünk az osztályok esetében és függvényh́ıvási, objektum

létrehozási és operáció felüldefiniálási relációkat az operációk esetében. A függvénytörzs anaĺızisének

az eredménye a korábbi módszerekhez képest nagyobb pontosságot biztośıt.

Ḱısérletek

Négy valós világból vett publikusan elérhető C++ projekten végeztünk ḱısérleteket. Ezek a következők:

• Jikes [21]. Nýılt forráskódú Java ford́ıtó rendszer az IBM-től.

• LEDA [23]. Hatékony adatt́ıpusok és algoritmusok könyvtára (library of efficient data types and

algorithms).

• StarOffice Calc [30]. A StarOffice táblázatkezelője. Egy nagy C++ projekt, amely 6 307 forrás

fájlból áll (több mint 1,2 millió nem előfeldolgozott nem üres programsor).

• StarOffice Writer [30]. A StarOffice szövegszerkesztője. Egy nagy C++ projekt amely, 6 794

forrás fájlból áll (több mint 1,5 millió nem előfeldolgozott nem üres programsor).

Az 1. táblázat mutatja a teszt projektekben beazonośıtott különböző tervezési minták számát. A

legtöbb tervezési mintához elkésźıtettünk egy
”
lágy” (

”
soft”) léırást is, amelyben kissé enyh́ıtettünk az

eredeti, a [18]-ból vett specifikációkon (például nem követeltük meg némely osztálytól, hogy absztrakt

legyen). A LEDA kivételével a többi projekt újabb, és észrevehető, hogy sokkal több tervezési mintát

alkalmaztak bennük.

Saját hozzájárulás

Két módszert mutattam be a tervezési minták felismerésére C++ forráskódban.

Először léırtam egy módszert és eszközkészletet tervezési minták felismerésére a Columbus és a

Maisa szoftverek integrációjával. Ez a módszer kibőv́ıti a Columbus keretrendszer tényfeltáró képes-

ségeit a Maisa mintafelismerő képességével. A C++ kódot először analizáltam a Columbus seǵıtségével,

majd késźıtettem egy sémapéldány konvertáló algoritmust, amely adatokat gyárt a Maisa bemeneti

formátumában, amely egy PROLOG-jellegű nyelv.

A másik módszerrel egy új megoldást adtam a tervezési minta keresés problémájára, amely magában

foglalja a függvényh́ıvások, objektumlétrehozások és operáció felüldefiniálások felismerését is. Ezek

azok az elemek, amelyekkel pontosabban meg lehet határozni a mintapéldányokat. A keresett minták

az általam definiált új, XML-alapú, Design Pattern Markup Language (DPML) nevű nyelven vannak

11



Statistics Jikes LEDA Calc Writer

Abstract Factory - - - -
Builder - - 2 7
Builder soft - - 17 9
Factory Method - - - -
Factory Method soft - - 1 9
Prototype 1 - - 1
Prototype soft 1 - - 1
Singleton - - - -

Adapter Class - - - 16
Adapter Class soft - - 13 16
Adapter Object 54 - 27 62
Adapter Object soft 62 - 153 135
Bridge - - - -
Bridge soft - - 73 80
Decorator - - - -
Decorator soft - - - -
Proxy 36 - - 4
Proxy soft 44 - - 5

Chain of Responsibility - - - -
Iterator - - - -
Iterator soft - - 1 -
Strategy 4 1 10 5
Strategy soft 12 2 20 32
Template Method 5 - 94 101
Visitor - - - -
Visitor soft - - - 5

Sum total 235 6 442 525

1. táblázat. A beazonośıtott tervezési minta példányok száma.

léırva. Ezáltal a mintaléırásokat szabadon lehet módośıtani, hozzáilleszteni bizonyos helyzetekhez il-

letve akár új léırásokat is létre lehet hozni. A módszer négy szabadon elérhető szoftveren lett tesztelve.

12



4. Nýılt forráskódú szoftverek hibára való hajlamosságának
vizsgálata

Napjainkban a nýılt forráskódú szoftverek egyre fontosabbakká válnak. Sok nagy cég támogat nýılt

forráskódú projekteket, és sok közülük használja is ezeket a szoftvereket a mindennapi munka során.

Következésképpen, sok ilyen projekt rohamosan fejlődik és gyorsan nő a mérete. Mivel a nýılt forráskódú

szoftvereket általában önkéntesek fejlesztik a szabad idejükben, a forráskód minősége és megb́ızható-

sága kétséges lehet. Különböző kódmérések igazán hasznosak lehetnek, hogy többet tudjunk a kód

minőségéről és hibára való hajlamosságáról. A ford́ıtóprogram elrejtő eszközkészletünk seǵıtségével

kiszáḿıtottuk az irodalomban [2] ismertetett, a forráskód hibára való hajlamát előjelző metrikákat a

nýılt forráskódú, Mozilla [27] nevű internetes szoftvercsomag forráskódjából. Ezután összehasonĺıtottuk

a kapott eredményeket a [2]-ben publikáltakkal. Az egyik célkitűzésünk az volt, hogy kiegésźıtsük az

eredményeiket egy valós világból vett szoftver mérési eredményeivel. Ezen ḱıvül összehasonĺıtottuk a

Mozilla hét különböző verziójának (lásd a 2. táblázatot) mért értékeit hogy megvizsgálhassuk hogyan

változott a hibára való hajlamossága a fejlesztése során.

ver. NCL TLOC TNM TNA A metrikák defińıciói
1.0 4 770 1 127 391 69 474 47 428 NCL: Az osztályok száma. (Number of Classes.)

1.1 4 823 1 145 470 70 247 48 070 TLOC: Az összes nem üres sor száma.
1.2 4 686 1 154 685 70 803 46 695 (Total number of non-empty lines of code.)

1.3 4 730 1 151 525 70 805 47 012 TNM: A rendszer összes metódusának száma.
1.4 4 967 1 171 503 72 096 48 389 (Total Number of Methods in the system.)

1.5 5 007 1 169 537 72 458 47 436 TNA: A rendszer összes attribútumának száma.
1.6 4 991 1 165 768 72 314 47 608 (Total Number of Attributes in the system.)

2. táblázat. Rendszer szintű metrikák a Mozilla hét verziójához.

Itt meg kell emĺıtenünk, hogy a Mozilla hét verziójának a teljes tényfeltárását elvégeztük és

feléṕıtettük a hozzájuk tartozó séma példányokat, amelyek felhasználhatók további újra- és visszater-

vezési célokra, mint például architektúra helyreálĺıtásra és vizualizálásra. Itt csak a metrikák kiszáḿı-

tására használtuk őket. Nem osztályoztuk a metrikákat kifejezőképességük vagy használhatóságuk

szerint, ehelyett felhasználtuk a Basili és társai által kapott eredményeket [2] és a metrikákat eszerint

tanulmányoztuk.

Basili és társai diákok által C++ nyelven ı́rt objektum-orientált rendszereket vizsgáltak. Egy

ḱısérletet végeztek el, ahol a diákokat nyolc darab háromfős csoportba osztották, és minden csoportnak

ugyanaz volt a feladata – egy kis/közepes méretű projekt fejlesztése. Mivel minden szükséges doku-

mentáció (például a fejlesztés során előforduló hibák jelentései és azok jav́ıtása) rendelkezésükre állt,

képesek voltak a hibák gyakorisága és a metrikák közti kapcsolatok vizsgálatára. Erre a célra hat met-

rikát választottak ki és vizsgálták azok eloszlásait, valamint a köztük lévő korrelációkat. Ezután a met-

rikák és az osztályokban található hibák közti kapcsolatot elemezték. Erre a projektre a későbbiekben

referencia projektként fogunk hivatkozni. Az általuk vizsgált hat metrika a következő:

• WMC – Metódusok súlyozott száma osztályonként (Weighted Methods per Class).

• DIT – Öröklődési fa mélysége (Depth of Inheritance Tree).

• RFC – Osztály válasza (Response For a Class).

• NOC – Gyerekek száma (Number Of Children).

• LCOM – Metódusok kohéziójának hiánya (Lack of Cohesion on Methods).

• CBO – Objektum osztályok közötti csatolások (Coupling Between Object classes).

13



A referencia projekt és a Mozilla összehasonĺıtása

0 10 20 30 40 50 60 70 80 90 100

60

50

40

30

20

10

0
0 1 2 3 4 5 6 7 8 9 10

60

50

40

30

20

10

0
0 11 22 33 44 55 66 77 88 99 110

30

20

10

0

WMC DIT RFC

0 1 2 3 4 5 6 7 8 9 10

90
80
70
60
50
40
30
20
10
0

0 45 90 135 180 225 270 315 360 405 450

100
90
80
70
60
50
40
30
20
10
0

0 3 6 9 12 15 18 21 24 27 30

60

50

40

30

20

10

0

NOC LCOM CBO

Az X tengelyen a metrikák értékei találhatók. Az Y tengelyen azon osztályok
számának százaléka található, amelyek az adott metrikaértékhez tartoznak.
A sötétebb oszlopok a referencia projekt értékeit mutatják [2], ḿıg a világosabbak
a Mozilla 1.6 értékeit ábrázolják.

6. ábra. A referencia projekt és a Mozilla metrikáinak eloszlása.

Összehasonĺıtottuk a Mozilla 1.6-ra kiszámolt metrikákat a referencia projekt metrikáival. A 6. ábra

mutatja metrikák eloszlásának összehasonĺıtását. Látható, hogy a WMC, RFC, NOC és LCOM met-

rikák eloszlásai nagyon hasonĺıtanak egymásra, ḿıg a DIT és CBO metrikák eloszlásai eléggé külön-

böznek.

Ref. | Moz. WMC DIT RFC
Maximum 99,00 337,00 9,00 33,00 105,00 1 074,00
Minimum 1,00 0,00 0,00 0,00 0,00 0,00
Medián 9,50 7,00 0,00 2,00 19,50 21,00
Várható érték 13,40 14,12 1,32 2,39 33,91 48,95
Szórás 14,90 22,16 1,99 2,90 33,37 81,99

Ref. | Moz. NOC LCOM CBO
Maximum 13,00 1 213,00 426,00 55 198,00 30,00 70,00
Minimum 0,00 0,00 0,00 0,00 0,00 0,00
Medián 0,00 0,00 0,00 15,00 5,00 2,00
Várható érték 0,23 1,06 9,70 273,82 6,80 5,11
Szórás 1,54 17,44 63,77 1,597,53 7,56 7,49

A félkövér számok a Mozilla 1.6 értékeit reprezentálják, ḿıg a
normális számok a referencia projekt értékeit.

3. táblázat. A referencia projekt és a Mozilla 1.6 osztályainak alapvető statisztikái.

Az eloszlások mellet más statisztikákat is összehasonĺıtottunk. A 3. ábra mutatja a két projekt

alapvető statisztikáit. A Minimum értékek majdnem megegyeznek, de a Maximum értékek jelentősen

nőttek, ami nem meglepő, ha figyelembe vesszük azt, hogy a Mozilla-nak megközeĺıtőleg 30-szor több

osztálya van, mint a referencia projektnek. Mivel az LCOM az osztályok méretének (pontosabban a

tagfüggvények számának) a négyzetével arányos, ezért az ilyen mértékű növekedés várható volt. A

14



Mozilla-ban megközeĺıtőleg ötezer osztály található, ezért első pillantásra a NOC különösen magas

értéke meglepő lehet. De ha figyelembe vesszük azt, hogy a második legnagyobb NOC érték csak 115,

akkor azt feltételezhetjük, hogy a nagy NOC értékkel rendelkező osztály egy közös ősosztály, amelyből

a legtöbb osztály származik. A Medián és a Várható érték
”
egyfajta átlagot” fejez ki, ami többé-

kevésbé azonos mindkét esetben, kivéve az LCOM esetében (hasonlóan a Maximumnál léırtakhoz).

Mivel a Mozilla-ban sokkal több osztály található, és ezek sokkal változatosabbak, ezért a metrikák

sokkal szélesebb skálán mozognak.

Referencia WMC DIT RFC NOC LCOM CBO
WMC 1 0,02 0,24 0 0,38 0,13
DIT 1 0 0 0,01 0
RFC 1 0 0,09 0,31
NOC 1 0 0
LCOM 1 0,01
CBO 1

Mozilla WMC DIT RFC NOC LCOM CBO
WMC 1 0,16 0,53 0 0,64 0,39
DIT 1 0,54 0 0,08 0,23
RFC 1 0 0,31 0,51
NOC 1 0 0
LCOM 1 0,16
CBO 1

A félkövér számok a szignifikáns korrelációkat jelölik.

4. táblázat. A referencia projekt és a Mozilla metrikáinak korrelációi.

Basili és társai [2] a metrikák korrelációját is kiszámolták (az eredmények a 4. táblázatban

láthatók). Azt találták, hogy a lineáris Pearson-féle korreláció az általuk vizsgált metrikák esetében

általában nagyon kicsi. Annak ellenére, hogy három együttható valamivel jelentősebb korrelációra

utal, azt a következtetést vonták le, hogy ezek a metrikák statisztikai szempontból függetlenek. Mi is

kiszámoltuk ezeket a korrelációkat a Mozilla 1.6 esetében, de eltérő eredményeket kaptunk. A NOC

független a többi metrikától, hasonlóan, mint a referencia projekt esetében, de a többi metrika esetében

valamekkora korreláció azért megfigyelhető. Három esetben ez a korreláció kicsi, de a többi esetben

ez többé-kevésbé szignifikáns. Mi több, néhány esetben ez az érték igen nagy (például a WMC és az

LCOM között), amiből az következik, hogy ezek a metrikák nem teljesen függetlenek és redundáns

információt tartalmaznak. Ez azért meglepő, mert Basili és társai azt találták, hogy ezen metrikák

közül némelyek használhatók a hibák észlelésére, ḿıg mások nem.

A Mozilla-n mért metrikák változásának tanulmányozása

Basili és társai hat hipotézist álĺıtottak fel (mindegyik metrikához egyet), amelyek kifejezik a várható

kapcsolatot a metrikák és a kód hibára való hajlama között [2]. Ezeket a hipotéziseket ellenőrizték,

és azt találták, hogy némelyik metrika jól használható a hibák felismerésére, ḿıg mások nem.

A továbbiakban bemutatjuk az összes hipotézist és következtetést a metrikák a kód hibára való

hajlamának felismerésre vonatkozó
”
jóságával” kapcsolatban, amelyek a [2]-ben találhatók, és ezeket

felhasználva elemezzük a Mozilla változásait.

15



WMC hipotézis:
”
Azon osztályok, amelyeknek jelentősen több tagfüggvényük van, mint a többi-

nek, sokkal bonyolultabbak, ezért várhatóan nagyobb a hibára való hajlamuk.” A WMC-t valamennyire

szignifikánsnak találták a [2]-ben. A Mozilla-ban a nagy WMC-vel rendelkező osztályok aránya kicsit

csökkent, de nem jelentősen. Ez alapján csak azt mondhatjuk, hogy a Mozilla nem romlott e metrika

szerint.

DIT hipotézis:
”
Ha egy osztály mélyebben helyezkedik el az öröklődési hierarchiában, akkor

várhatóan hajlamosabb lesz a hibákra a sok örökölt defińıció miatt.” A DIT nagyon szignifikánsnak

bizonyult a [2] szerint, ami azt jelenti, hogy minél nagyobb a DIT érték, annál nagyobb a hibának

a valósźınűsége. A Mozilla esetében azon osztályok aránya, amelyeknek legalább hét ősük van, kissé

nőtt, de ezen osztályok aránya elhanyagolható a többihez képest. Viszont a kettő vagy annál kevesebb

őssel rendelkező osztályok aránya jelentősen nőtt, ḿıg a több mint kettő de kevesebb, mint hét őssel

rendelkező osztályok aránya számottevően csökkent. Ez azt sugallja, hogy a Mozilla újabb verzióiban

kevesebb hiba lehet.

RFC hipotézis:
”
A nagyobb válaszadó halmazzal rendelkező osztályok összetettebb funkcionalitást

valóśıtanak meg, ezért nagyobb a hibára való hajlamuk.” Az RFC a [2] szerint nagyon szignifikáns. Ez

azt jelenti, hogy ha egy osztálynak nagyobb az RFC értéke, akkor nagyobb a hibára való hajlama is. A

Mozilla esetében azon osztályok aránya, amelyeknek az RFC értékük nagyobb, mint t́ız csökkent (az

osztályok több mint 70%-a tartozik ide), ḿıg a többi osztály aránya nőtt. Összességében ez a Mozilla

minőségének javulását jelenti (vagyis kevésbé hajlamos a hibákra).

NOC hipotézis:
”
Azt várjuk, hogy a sok gyerekkel rendelkező osztályok hajlamosabbak a hibákra.”

A NOC nagyon szignifikánsnak bizonyult, de az iránya ellentétes volt azzal, amit a NOC hipotézisben

álĺıtottak, azaz minél nagyobb a NOC értéke, annál kevésbé hajlamos a hibákra az osztály. A Mozilla

esetében a három vagy több gyerekkel rendelkező osztályok aránya elhanyagolható és ott nem is

változtak jelentősen a metrikák. A nulla vagy kettő gyerekkel rendelkező osztályok aránya csökkent,

ḿıg az egy gyerekkel rendelkező osztályok aránya nőtt. Ennek megfelelően a Mozilla kicsit javult.

LCOM hipotézis:
”
Azon osztályok, amelyeknek a metódusai között kicsi a kohézió feltehetően

rosszul lettek megtervezve, ezért valósźınűleg nagyobb a hibára való hajlamuk.” Az LCOM a [2] szerint

nem szignifikáns, de a hipotézis szerint a Mozilla enyhén romlott, mert a legalább tizenegy LCOM

értékkel rendelkező osztályok aránya nőtt, ḿıg a többi alig változott.

CBO hipotézis:
”
A szorosan csatolt osztályok hibára való hajlama nagyobb, mint a gyengén

csatoltaké.” A [2] szerint a CBO szignifikáns, de e metrika alapján nehéz bármit is mondani a Mozilla-

ról, mert nőtt azon osztályok aránya, amelyeknek a CBO értéke egy és három között van és csökkent

a négy és hat közötti értékű osztályok aránya, ami jó és minőségbeli javulást jelenthetne. Másfelöl a

nagy CBO értékkel rendelkező osztályok aránya is nőtt, ami romlást jelenthet.

Saját hozzájárulás

Ez a munka három fő eredményt mutat be, amelyek közül az első és a harmadik a saját eredményeim:

(1) bemutattam, hogy a ford́ıtóprogram elrejtő eszközkészletem megvalóśıtja a tényfeltáró eljárást

valós világból vett szoftveren; (2) az összegyűjtött tények felhasználásával objektum-orientált metrikák

lettek kiszáḿıtva és egy előző munka [2] ki lett egésźıtve a valós világból vett Mozilla szoftveren végzett

mérésekkel; és (3) a kiszáḿıtott metrikák seǵıtségével tanulmányoztam, hogy hogyan változott a

Mozilla hibára való hajlama hét verzión keresztül, ami másfél év fejlesztést jelent.

16



N o. [16] [7] [12] [13] [1] [15]
1. • • •
2. • •
3. • •
4. •

5. táblázat. A tézisek és a velük kapcsolatos publikációk viszonya.

Konklúziók

Az értekezésben bemutattunk egy rendszert, amely seǵıtségével lehetőség nýılik nagy, valós világból

vett, C++ programozási nyelven ı́rt szoftverrendszerek forráskódjának a visszatervezésére. Mi több,

ehhez nem kell módośıtani sem a forráskódot, sem a makefile- vagy projekt fájlokat.

A tényfeltáró eljárás során a keretrendszerünk elkésźıti az analizált C++ rendszer egy modelljét egy

jól meghatározott sémának megfelelően. Egy ilyen séma birtokában lehetőség nýılik az újra- és vissza-

tervező eszközök továbbfejlesztésére, valamint újak létrehozására, amelyek már zökkenőmentesen

képesek lesznek a tanulmányozott rendszerről információt cserélni. A keretrendszerünket kibőv́ıtettem

egy a sémára alapozott programozói interfésszel is, amellyel a feltárt tények könnyedén elérhetők és

felhasználhatók. Különböző formátumú kimeneti fájlok is késźıthetők, hogy még inkább előseǵıtsük az

eszközök közötti együttműködést.

Azzal, hogy a keretrendszer különféle algoritmusokat is tartalmaz származtatott kimenetek késźı-

tésére (pl. objektum-orientált metrikák), egy teljes megoldást nyújt C++ kód visszatervezésére, ı́gy

már nem kell a kutatóknak elemzőket késźıteni különböző célokra és a saját konkrét visszatervezési

feladatukra összpontośıthatnak.

A tényfeltáró- és ábrázoló technológiánk seǵıtségével elértem két további eredményt is. Először

is, új módszereket dolgoztam ki a tervezési minták felismerésére C++ forráskódban. Másodszor, ana-

lizáltam a nýılt forráskódú Mozilla internetes programcsomag különböző verzióit és tanulmányoztam

a hibára való hajlamának a változásait.

Végül, az 5. táblázat összefoglalja, hogy mely publikációk tartalmazzák az értekezés téziseit.

Köszönetnyilváńıtás

Először is, szeretném megköszönni témavezetőmnek, Dr. Gyimóthy Tibornak a szakmai támogatását,

valamint azt, hogy a nagyon motiváló légkörű Szoftverfejlesztés Tanszéken dolgozhatok. Szeretnék

köszönetet mondani kollégáimnak és barátaimnak, Beszédes Árpádnak, Magyar Ferencnek, Vidács

Lászlónak, Szokody Fedornak, Lóki Gábornak, Siket Istvánnak, Siket Péternek, Balanyi Zsoltnak és

Müller Lászlónak – akik mind részt vettek a Columbus keretrendszer fejlesztésében és tesztelésében –

hogy olyan nagy odaadással dolgoztak ezen a szoftveren. Köszönettel tartozom még David Curleynek

az értekezés angol nyelvű ellenőrzéséért és Kocsor Andrásnak a hasznos tanácsaiért.

Végül, de nem utolsósorban, őszinte köszönettel tartozom feleségemnek, Györgyinek, a türelméért

és a biztos családi háttérért.

Ferenc Rudolf, 2004. november 20.

17



Hivatkozások

[1] Zsolt Balanyi and Rudolf Ferenc. Mining Design Patterns from C++ Source Code. In Proceedings
of the 19th International Conference on Software Maintenance (ICSM 2003), pages 305–314.
IEEE Computer Society, September 2003.

[2] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A Validation of Object-Oriented Design
Metrics as Quality Indicators. In IEEE Transactions on Software Engineering, volume 22, pages
751–761, October 1996.

[3] E. J. Chikofsky and J. H. Cross II. Reverse Engineering and Design Recovery: A Taxonomy. In
IEEE Software 7, pages 13–17, January 1990.

[4] Thomas R. Dean, Andrew J. Malton, and Ric Holt. Union Schemas as a Basis for a C++
Extractor. In Proceedings of WCRE’01, pages 59–67, October 2001.

[5] S. Demeyer, S. Ducasse, and M. Lanza. A Hybrid Reverse Engineering Platform Combining
Metrics and Program Visualization. In Proceedings of WCRE’99, 1999.

[6] J Ebert, R Gimnich, H H Stasch, and A Winter. GUPRO – Generische Umgebung zum Pro-
grammverstehen, 1998.

[7] Rudolf Ferenc and Árpád Beszédes. Data Exchange with the Columbus Schema for C++. In
Proceedings of the 6th European Conference on Software Maintenance and Reengineering (CSMR
2002), pages 59–66. IEEE Computer Society, March 2002.

[8] Rudolf Ferenc and Árpád Beszédes. Az Objektumvezérelt Szoftverek Elemzése. In VIII. Országos
(Centenáriumi) Neumann Kongresszus Elõadások és Összefoglalók, pages 463–474. Neumann
János Száḿıtógép-tudományi Társaság, October 2003.

[9] Rudolf Ferenc, Árpád Beszédes, and Tibor Gyimóthy. Extracting Facts with Columbus from C++
Code. In Tool Demonstrations of the 8th European Conference on Software Maintenance and
Reengineering (CSMR 2004), pages 4–8, March 2004.

[10] Rudolf Ferenc, Árpád Beszédes, and Tibor Gyimóthy. Fact Extraction and Code Auditing with
Columbus and SourceAudit. In Proceedings of the 20th International Conference on Software
Maintenance (ICSM 2004), page 513. IEEE Computer Society, September 2004.

[11] Rudolf Ferenc, Árpád Beszédes, and Tibor Gyimóthy. Tools for Software Maintenance and
Reengineering, chapter Extracting Facts with Columbus from C++ Code, pages 16–31. Franco
Angeli Milano, 2004.

[12] Rudolf Ferenc, Árpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy. Columbus – Reverse
Engineering Tool and Schema for C++. In Proceedings of the 18th International Conference on
Software Maintenance (ICSM 2002), pages 172–181. IEEE Computer Society, October 2002.

[13] Rudolf Ferenc, Juha Gustafsson, László Müller, and Jukka Paakki. Recognizing Design Patterns
in C++ programs with the integration of Columbus and Maisa. Acta Cybernetica, 15:669–682,
2002.

[14] Rudolf Ferenc, Ferenc Magyar, Árpád Beszédes, Ákos Kiss, and Mikko Tarkiainen. Columbus –
Tool for Reverse Engineering Large Object Oriented Software Systems. In Proceedings of the
7th Symposium on Programming Languages and Software Tools (SPLST 2001), pages 16–27.
University of Szeged, June 2001.

18



[15] Rudolf Ferenc, István Siket, and Tibor Gyimóthy. Extracting Facts from Open Source Software.
In Proceedings of the 20th International Conference on Software Maintenance (ICSM 2004),
pages 60–69. IEEE Computer Society, September 2004.

[16] Rudolf Ferenc, Susan Elliott Sim, Richard C Holt, Rainer Koschke, and Tibor Gyimóthy. Towards
a Standard Schema for C/C++. In Proceedings of the 8th Working Conference on Reverse
Engineering (WCRE 2001), pages 49–58. IEEE Computer Society, October 2001.

[17] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. Mueller, J. Mylopoulos, S. Perelgut,
M. Stanley, and K. Wong. The Software Bookshelf. In IBM Systems Journal, volume 36, pages
564–593, November 1997.

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns : Elements of
Reusable Object-Oriented Software. Addison-Wesley Pub Co, 1995.

[19] Ric Holt, Ahmed E. Hassan, Bruno Laguë, Sébastien Lapierre, and Charles Leduc. E/R Schema
for the Datrix C/C++/Java Exchange Format. In Proceedings of WCRE’00, November 2000.

[20] Ric Holt, Andreas Winter, and Andy Schürr. GXL: Towards a Standard Exchange Format. In
Proceedings of WCRE’00, pages 162–171, November 2000.

[21] IBM Jikes Project.
http://oss.software.ibm.com/developerworks/opensource/jikes.

[22] E Mamas and K Kontogiannis. Towards Portable Source Code Representations Using XML. In
Proceedings of WCRE’00, pages 172–182, November 2000.

[23] K. Mehlhorn and S. Naeher. LEDA: A Platform for Combinatorial and Geometric Computing. In
Cambridge University Press, 1997.

[24] Hausi A Müller, Kenny Wong, and Scott R Tilley. Understanding Software Systems Using Reverse
Engineering Technology. In Proceedings of ACFAS, 1994.

[25] L. Nenonen, J. Gustafsson, J. Paakki, and A.I. Verkamo. Measuring Object-Oriented Software
Architectures from UML Diagrams. In Proceedings of the 4th International ECOOP Workshop
on Quantitative Approaches in Object-Oriented Software Engineering, pages 87–100, 2000.

[26] J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and A.I. Verkamo. Software Metrics by
Architectural Pattern Mining. In Proceedings of he International Conference on Software: Theory
and Practice (16th IFIP World Computer Congress)., pages 325–332, 2000.

[27] Christian Robottom Reis and Renata Pontin de Mattos Fortes. An Overview of the Software
Engineering Process and Tools in the Mozilla Project. In Proceedings of the Workshop on Open
Source Software Development, pages 155–175, February 2002.

[28] The Rigi Homepage. http://www.rigi.csc.uvic.ca.

[29] Claudio Riva, Michael Przybilski, and Kai Koskimies. Environment for Software Assessment. In
Proceedings of ECOOP’99, 1999.

[30] The StarOffice Homepage.
http://www.sun.com/software/star/staroffice.

[31] A Taivalsaari and S Vaaraniemi. TDE: Supporting Geographically Distributed Software Design
with Shared, Collaborative Workspaces. In Proceedings of CAiSE’97, LNCS 1250, pages 389–408.
Springer Verlag, 1997.

19


