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“Plant a kernel of wheat and you reap a pint;
plant a pint and you reap a bushel.
Always the law works to give you back more than you give.”

Anthony Norwell

Preface

Let us begin this thesis, constructed around the notion of the popular "kernel-idea"
which researchers are now applying to machine learning, with the interpretation of the
quotation above. But to do so we first have to explain the kernel idea in a nutshell:

We can say that the kernel idea is nothing more than the implicit transformation
of a problem into a space probably more suitable for the solution.

It has been proved in a number of studies that the extra computation needed for the
transformation pays off in the solving of numerous machine learning problems.

Structure of the thesis. The goal of this thesis is twofold, and a separate part is de-
voted to each. The first one summarizes the kernel idea and its properties, then presents
some linear feature extraction algorithms and their non-linear counterparts derived with
the help of the kernel functions. We will discuss both supervised and unsupervised
feature extraction — Principal Component Analysis (PCA) and Independent Compo-
nent Analysis (ICA) belonging to the first group, Linear Discriminant Analysis (LDA)
and Springy Discriminant Analysis (SDA) belonging to the latter one. The non-linear
versions of these methods (Kernel-PCA, Kernel-ICA, Kernel-LDA, Kernel-SDA) can,
of course, be categorized the same way. We also demonstrate the behavior of each
method on artificial data sets in order to help the reader gain a visual impression of
how they work. The second part of the thesis is about speech technology applications,
namely speech recognition, speech therapy and teaching reading. We shall demon-
strate that the feature extraction methods defined in the first part do indeed increase
classification performance.
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Notation

natural numbers

real numbers

positive reals

space of input patterns; the input space

dimension of input patterns

number of input patterns

input patterns; column vectors

possible class labels of input patterns; » € N

indicator function; L(7) gives the class label of the sample x;
kernel feature space

matrix of the input patterns; X =[x, ,X,]"
transpose of a vector, matrix

mapping to a kernel feature space; ¢ : X — F
image patterns under ¢

image matrix; F' = (¢(x1), -+, ¢(xx))

inner product or dot product between x and z
kernel function; x: X x X — R

kernel matrix; [K];; = ¢(x;) - ¢(x;)
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Chapter 1

Introduction — Machine Learning:

Pattern Recognition Systems

“The problem of learning is arguably at the
very core of the problem of intelligence,
both biological and artificial.”

T. Poggio and C. R. Shelton

In this thesis we concentrate on two key topics in artificial intelligence (Al): machine
learning (ML) and its application to speech technology (ST).

Creating intelligent machines is an old dream of mankind. It was realized back
in the middle of the last century that the construction of intelligent systems requires
automatized learning and decision making [24; 71]. These topics, however, gave rise to
considerable problems. "Learning" in the machine learning sense means the application
of the model method. That is, we aim at creating models that correctly simulate
human thinking. The best way of doing this is to specify the model by means of a
large amount of training patterns; decisions regarding a new pattern are made based on
this model. But what is a "pattern"? Watanabe defines pattern "as the opposite of a
chaos; it is an entity, vaguely defined, that could be given a name" [98]. For example, a
speech signal, a portrait, a piece of writing, a fingerprint or a DNA sequence can all be
regarded as patterns. And a typical example of decision making based on these patterns
is the identification of persons. At the present time, in most sophisticated pattern
recognition tasks humans still outperform computers. However, in certain specific tasks
that require only a limited level of intelligence, computer models can do better than
humans. In speech recognition, for example, humans currently seem unbeatable, but
when it comes to the classification of phonemes (the building blocks of speech) based on
20-30 ms signal excerpts, computers have the advantage. Increasing the pattern length
from phonemes to syllables, words or sentences, the task of classification becomes
increasingly involved, and the computer gradually loses its superiority. Several fields
of science like philosophy (as the science of sciences), physics, mathematics, biology,
chemistry and theoretical computer science have all contributed to those tools that Al
researchers build their models with. Such building blocks are, for example, short and
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Training phase Classification

training pattern test pattern

—»| Preprocessing |»—————«»———————« Preprocessing

A

Feature Feature
. LY —————————————————— .
extraction |? < € extraction

i i

Learning »—————————«»———————« Classification

i

Design cycle

Figure 1.1: Model for pattern recognition.

long-term memory, hierarchical model construction, model hybridization, clustering,
data-invariant methods, optimization and approximation. The main problem currently
is that, although we are able to construct pattern classification systems that outperform
humans on simple subtasks with the help of these tools, the proper way of organizing
them into metastructures capable of solving more complex — and thus more "human"
problems — is still unknown. Another critical issue deals with the massive parallelism of
the human brain, and the collection and handling of the enormous amount of training
pattern required for the tuning of the models. Fortunately, the digital revolution,
the rapid development of computers and finally the Internet have together made many
considerable innovations possible. In fact, these rapid developments have made possible
pattern recognition systems that can attain or even exceed human performance. The
results of this thesis are also based on the new advances of one such rapidly developing
field, namely, non-linear approximation theory.

1.1 Pattern Recognition

The are many well-known approaches of pattern recognition, such as the template
matching [6; 36], the syntactical and structural [25; 79], and the neural and statisti-
cal approaches [11; 19-21; 68; 91]. What they all have in common is that they are
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all comprised of two steps, a learning and a classification phase (see Fig. 1.1). The
learning phase means the systematic tuning of the model. That is, after preprocessing
the training samples, informative features are extracted and, making use of the training
samples, we set the model parameters such that they enable the system to be capable
of making good decisions about new samples. When designing the system, the param-
eters of certain steps may require several re-adjustments for optimal performance. As a
result of the training phase we obtain a parameter-tuned model, capable of classifying
previously unseen samples. During classification, we virtually repeat the same calcula-
tions as in the training stage, but now by employing those parameter values obtained
from the training.

In this thesis we will adopt the statistical pattern recognition approach. The samples
will be represented as points of an n-dimensional vector space, and our goal is the
optimal separation of those points which belong to different classes.

1.2 Summary by Chapters

The present thesis consists of two main parts. The first part (Chapters 2, 3 and 4)
discusses four linear and four non-linear feature extraction algorithms, while the second
(Chapter 5 and 6) deals with the application of these methods to speech technology.

The second chapter holds the key to the non-linear feature extraction algorithms
discussed later. It presents the kernel idea — a method currently being used in machine
learning research — that allows us to turn the linear feature extraction algorithms into
non-linear ones. The chapter gives a concise overview of some mathematical concepts
on the topic. It summarizes the properties of kernel functions, the methods of kernel
construction, and provides an overview of the dot product spaces induced by these func-
tions. Finally, at the end of the chapter simple examples are provided to illustrate the
application of the kernel idea.

The third chapter discusses four linear feature extraction methods from a unified
stand point. Three of them — the Principal Component Analysis (PCA), the Inde-
pendent Component Analysis (ICA) and the Linear Discriminant Analysis (LDA) — are
well-known, while the Springy Discriminant Analysis (SDA) is based on a novel idea,
which we first proposed in [60]. These methods linearly transform the initial feature
space in order to make a subsequent classification more efficient, faster and less sensi-
tive to noise. They can be dealt with in a unified framework owing to the fact that all
of them find the optimal parameters of the row vectors of the transformation matrix
by optimizing an objective function given in the form of a Rayleigh quotient. This
optimization is relatively straightforward to do as it involves solving a (generalized)
eigenvalue problem, and numerous off-the-shelf library routines are available for solving
them. The Rayleigh-quotient based approach that we follow during the thesis is based
on two papers of ours, the first one [57] presenting PCA, ICA and LDA, while the
second one is a summary paper [62] that deals with all the four linear methods in the
unified scheme. This chapter virtually provides the whole background for the non-linear
methods of the following chapter.
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The fourth chapter exploits what the kernel idea and the Rayleigh-quotient based
unified view both offer. However, bringing the problem into a Rayleigh-quotient form
is not sufficient in itself. We need some further insight. We may soon realize, that the
four linear methods lead to the optimization of a Rayleigh quotient which has a special
form, where the matrices appearing in the numerator and denominator are both a unique
function of the input vectors of the algorithm. Afterwards we derive this special form
of the Rayleigh quotient in the dot product space induced by the kernel functions and,
analogous to the kernel generalization of PCA suggested by B. Schélkopf et al. [87], the
three other methods (ICA, LDA and SDA) can be generalized as well. We proposed the
latter kernel based methods in monographs [59],[58] and [60], respectively. Apart from
the derivation, the chapter demonstrates the behavior of these methods on artificial 2
and 3 dimensional examples.

In Chapter 5 we commence with the second part of the thesis. In the framework
of our OASIS speech recognition system we prepare and execute a segmental phoneme
classification test [56; 57; 62]. The aim of the test is to study how the application of the
feature extraction algorithms discussed in the previous chapters affects the classification
performance of a number of standard classification algorithms (Timbl, OC1, C4.5,
GMM, ANN). After briefly introducing the OASIS system we present the conditions
and results of the experiment.

The topic of Chapter 6 is again phoneme recognition, but here the application is
real-time. The framework of the tests is our "SpeechMaster" software package, an
application for speech therapy, teaching reading and reading therapy. The benefits
of feature transformation are again studied in combination with several classification
methods (ANN, SVM, PPL, GMM). The experiments are based on the techniques we
presented in [58-60].

Chapter 7 provides a short summary of the thesis. Lastly, we round off the work
with an Appendix containing a partial list of kernel functions and mathematical proofs,
followed by a brief summary of the principal results of the thesis.

1.3 Summary by Results

As the dissertation consists of two main parts, the results will separated into two
main parts.

The results of the first group of the thesis includes the construction of novel feature
extraction algorithms applicable to machine learning problems. These are presented in
detail in the first part of the dissertation in Chapters 3 and 4.

|/1. Eight feature extraction algorithms, 4 linear (PCA, ICA, LDA, SDA) and 4 non-
linear (Kernel-PCA, Kernel-ICA, Kernel-LDA, Kernel-SDA) are discussed — in a
uniform framework — via the optimization of Rayleigh quotient formulas [56-62].
The 4 non-linear methods are derived by non-linearizing the corresponding linear
algorithms applying the so-called kernel non-linearization technique.
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No. |PCA|ICA|LDA |SDA | Kernel-PCA | Kernel-ICA | Kernel-LDA | Kernel-SDA | framework
[56]| e o OASIS
[57]| @ | @ | @ OASIS
[58] ° ° SpeechMaster
[59] ° . SpeechMaster
[60] ° SpeechMaster
[62]| @ | @ | @ | @ ° ° ° ° OASIS

Table 1.1: The relation between the thesis topics and the corresponding publications.

|/2. We constructed a novel linear method called SDA [62], which fits in nicely with
3 linear methods (PCA, ICA, LDA) well-known from the literature.

|/3. Making use of the kernel idea we non-linearized the ICA, LDA and SDA linear
algorithms. This resulted in the non-linear methods Kernel-ICA [59], Kernel-
LDA [58] and Kernel-SDA [60].

The topic of the second group of the thesis is the use of the methods of the first part
in speech technology applications. These are presented in the fifth and sixth chapters
of the dissertation.

[I/1. We designed and executed several segmental phoneme classification tests within
the framework of the OASIS speech recognizer [56; 57; 62]. The goal of these
tests was to study how the feature extraction methods affect classification per-
formance.

[I/2. To improve the real-time phoneme classification accuracy of the "SpeechMas-
ter" speech therapy, teaching reading and reading therapy software package, we
designed and conducted several additional classification tests [58-60].

Finally, Table 1.1 summarizes which publication covers which method of the thesis and
which software environment was used in tests carried out.
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Chapter 2

The Kernel Idea

Theoretical developments generally have their own very different, unique histories before
they find any practical application. One such example is the “kernel-idea”, which had
appeared in several fields of mathematics [38; 78] and mathematical physics before it
became a key notion in machine learning. The basic idea behind the kernel technique
was originally introduced for pattern recognition in [2] and was again employed in the
general purpose Support Vector Machine [12; 96, 97], which was followed by a great
number of novel kernel-based methods [5; 7; 15; 52; 58-62; 87-90].

Already back in the 60s researchers found it necessary to stress that examples
demonstrating the limited computational capabilities of linear functions are very easy
to construct. But complex real-world applications in general require more efficient
computational models. These models, however, in most cases are much more time
consuming than the linear ones. For this reason there is serious need for methods that
extend the flexibility of simpler models without significantly increasing their computa-
tional complexity.

The kernel idea does exactly this. It can be applied to almost any case when the
input of an algorithm are pairwise dot products of n-dimensional vectors over a dot
product space. In such cases properly non-linearizing the two-operand dot product op-
eration allows us to perform the algorithm in a new dot product space, hopefully with
a higher degree of freedom. This relatively simple idea of operand replacement should,
however, be performed with care. To facilitate this here we give a brief overview of the
“kernel-idea” based on classic works [15; 16]. The technical part of this chapter is as
follows. After outlining the basic properties of kernel functions, we discuss their con-
struction possibilities and the kernel feature space induced by them. Finally, at the end
of the chapter two examples are provided to illustrate the application of the kernel idea.

2.1 Mercer kernels

First we define the so-called Mercel kernels, next we devote ourselves to the issue of their
existence, then we finish with a discussion of the invariance properties of kernels. In the
following we will assume that X’ is a compact set in an n-dimensional Euclidean space.
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Definition 2.1 A function k : X x X — R is a 'Mercer kernel’, if and only if it is

a) continuous
b) symmetric

c) positive definite
Definition 2.2 Let us define KK(X') as a set of every 'Mercer kernel over X x X.

The notion of continuity and symmetry is well-known, but positive-definiteness is prob-
ably not. Hence we supply a definition of the latter in the following.

Definition 2.3 A function k : X x X — R is positive definite if for every finite set
{x1, ..., x,} C X the k x k matrix

’%(thl) e K/(X17Xk)

R(Xp,X1) -+ K(Xk, Xg)
is positive semi-definite.

First, we recall that a symmetric matrix K is positive semi-definite if and only if
a' Ka >0, for all . Second, throughout this work, we call the positive semi-definite
matrix defined in Eq. (2.1) a kernel matrix.

Definition 2.4 Let x(X, Z) be the short-hand notation for the k x t matrix

H(Xl,Zl) e K’(Xlazt)

f(x 1) e KX 72)

where X = (X1,...,Xx) is a k-tuple, while Z = (zy,...,%;) is a t-tuple of X.

With this notation we can simply refer to the kernel matrix as (X, X). Similarly,
the ith row and jth column of the kernel matrix will be referred to by the notations
k(x;, X) and (X, x;), respectively. Sometimes, when it is not confusing, we will refer
to the kernel matrix simply by K.

Finding out whether a function is continuous and symmetric is a relatively straight-
forward task. But checking its positive-definiteness is far from trivial. Are there any
Mercer kernels at all? We will reply to this question now as it is an important one.

Proposition 2.1 The simple dot product k(x,z) =x'z, x,z € X isin K(X).
From Proposition 2.1 it is obvious that KC(x) contains at least one element. But we
can say much more. In fact, |K(x)| = oo, which can be proved from the following
statement on the closure properties of (x).
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Proposition 2.2 K(X) is closed under addition, multiplication, positive scalar addi-
tion and positive scalar multiplication, i.e. the following functions are in K(X):

i) k(x,2z) k1(X,2z) + Ra(X, z), K1, ke € K(&X),
i) k(x,z) = Ki(x,2)k(X,2), K1, ke € K(&X),
i) k(x,z) = A+ ki(x,2), AeRy, k1 € K(X),
iv) k(X,z) Ak1(X,2), ANeRy, k1 € K(X)

Corollary 2.1 Let p(z) be a polynomial with positive coeficients and r, be a kernel
over X x X. Then the following functions are also in IC(X):

I) I{(Xu Z) = p(ﬁl (Xv Z))'
i) k(x,2) = exp(ki(x,2z)/0) witho > 0.
Proposition 2.3 Elementary properties of Mercer kernels.

Positivity on the diagonal:

N
~—r

K(x
x,z)? < k(x,x)k(z,2) X,z € X,
x,x) =0 forall xe X =
x,z) =0 for all x,z € X.

K

Cauchy-Schwarz inequality:  k(
Vanishing diagonals: k(

(

K

One or other kernel function may exhibit some of the following invariance properties.

Definition 2.5 Invariance properties.

Scaling invariance: k(x,z) = k(A\iX, \oz) A, A2 € Ry
Translation invariance: k(x,z) = k(x+d,z+d) d € R"
Unitary invariance: r(x,z) = k(Ux,Uz) Ur=uU"! € R»"

2.2 Construction of Kernels

This chapter furnishes recipes for creating kernel functions. But first we need some
definitions.

Definition 2.6 A function f : [0,00) — R is completely monotonic if it is C* and
(=1)*f®(r) >0 for all > 0 and k > 0. Here f*) denotes the kth derivative of f.

Definition 2.7 A real function g : (a,b) — R is convex on (a,b) iff for all uy,us €
(a,b) and o € (0,1)

flaug + (1 = a)ug)) < af(ur) + (1 — ) f(uz). (2.3)

Proposition 2.4 Let X be a compact domain in R", f :[0,00) — R a completely
monotonic function, g a continuous, even function on R, which is convex and decreasing
on (0,00), h: X — R andv : X — R™ are continuous functions, ko € K(R™), and B
is a symmetric positive definite n x n matrix. Then the following functions are Mercer
kernels:
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Now we present some concrete examples of kernel functions popular among the

researchers of the kernel methods. Based on the propositions above, it is easy to prove

that these functions are indeed kernels.

Examples of kernel functions:

e Gaussian RBF Kernel:

2
exp (—M) ocecRy. (2.4)

g

This function is a kernel, because f(t) = exp(—t/o) is completely monotonic.
As regards the invariance properties, it is translation and unitary invariant.

Polynomial Kernel:
(x'z+0)? €N, occR,. (2.5)

The polynomial kernel is obtained from applying i) of Corollary 2.1 on the positive
coefficient polynomial (x 4 ¢)9. This kernel is unitary invariant.

Cosine Polynomial Kernel:
r(x,z) = (cos(£(x,2)) +0)? qeN, ogeR,. (2.6)

To show that this function is a Mercer kernel, making use of Corollary 2.1 it is

sufficient to prove that

XTZ

cos(/(x,z)) = (2.7)

1| []]z|

is a Mercer kernel. The proof follows in exactly the same way as that for Propo-
sition 2.1, but the vectors have to be normalized. A Cosine Polynomial Kernel
has scaling and unitary invariance.

Inverse Multi-Quadratic Kernel:
1

Vik =zl +o

This function is indeed a Mercer kernel, as the function (¢ 4 o)

o ER,. (2.8)

~1/2 is completely

monotonic. The invariance properties of it are the same as those of the Gaussian
RBF Kernel, that is it is translation and unitary invariant.
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k(x,2) = ¢(x) - ¢(z)

Figure 2.1: The "kernel-idea". The dot product in the kernel feature space F is
implicitly defined.

Finally we note that a somewhat more extensive list of kernel functions can be found
in Appendix A.1. A figure for the Gaussian and Polynomial Kernels is also given in
Appendices A.2 and A.3.

2.3 Kernel-Induced Feature Spaces

The previous sections defined the Mercer kernels and discussed their properties and
construction. Now we will examine what kind of feature spaces the Mercel kernels
implicitly induce and how can these be exploited in the non-linearization of certain
types of algorithms. First we commence with the following theorem.

Theorem 2.1 For a Mercer kernel k over X x X there exists a dot product space F
with a map ¢ : X — F, such that for all x,z € X

w(%,2) = 6(x) - 6(z). (2.9)

Usually F is called the kernel feature space and ¢ is the feature map. We have two
immediate consequences. When ¢ is the identity, the function x(x,z) = x -z (the
simple dot product over the space X') is symmetric, continuous and positive definite,
so it constitutes a proper Mercer kernel. Going the other way, when applying a general
Mercer kernel we can assume a space F over which we perform dot product calculations.
This space and dot product calculations over it are defined only implicitly via the kernel
function itself. The space F and map ¢ may not be explicitly known. We need only
define the kernel function, which then ensures an implicit evaluation.
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Figure 2.2: Example: Voronoi partitioning in the input space (A) and, in a kernel
feature space (B).

Based on Theorem 2.1, the essence of the kernel trick can be summarized as follows:
If the output of an algorithm is formulated in terms of a Mercer kernel, then alternative
algorithms can be constructed by replacing the kernel with a different Mercer kernel.

Now we will provide two example applications of the kernel idea. The first one is for
demonstration purposes only, while the latter will form the basis of the non-linearization
of the feature extraction algorithms presented in the next chapter.
Example: Voronoi partitioning. Let there be k given centers on the 2D Euclidean
plane, and let us partition the points of the plane by labelling them according to the
label of the nearest center point. Those points for which the labelling is ambiguous
form the borders of the partitions called a Voronoi polygon. Let us define the distance
measure as the Euclidian distance, that is

x—z|f=x"x+2z"'z—2x"z. (2.10)

Clearly, on the right hand side there are only Mercer kernels. This fact allows us to
apply the kernel idea. Let there be a kernel map ¢ : R? — F and the corresponding
kernel function k. Then the Euclidean distance in the kernel feature space F can be
computed as

l6(x) — ¢(2)][3 = o(

( ) - 6(x) + 6(2) - B(2) — 26(x) - 6(2) (2.11)

¢
K(x,X) + Kk(z,2) — 2Kk(x,2)

X
X

Figure 2.2A shows the result of the partitioning using Eq. (2.10), while Figure 2.2B
demonstrates the partitioning applying Eq. (2.11) with a 3rd order polynomial kernel.
As can be seen, in the second case the separating points are not straight lines but
non-linear curves, owing to the effect of the kernel function. However, one should not
forget that, according to Theorem 1, these curves are straight lines in the kernel feature
space F and form a real Voronoi polygon.
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Example: Linear Mappings in Kernel Feature Spaces. Let us start with the
definition of linear mappings from X to R. In this case we map the vectors by ap-

Tz, where z is an arbitrary element of X and a is a fixed,

plying a mapping z — a
real n-dimensional vector. If we assume that a is a linear combination of vectors
X1,...,X; € X, i.e. @ = a1X; + -+ Xy, the linear mapping will have the following
dot product form:

Z — a1X, Z+ -+ apx, z. (2.12)

Let us now choose a fixed Mercer Kernel x and let ¢ : X — F be a mapping
that satisfies Theorem 2.1. Let us also consider the analogue of the linear mapping of
Eq. (2.12) in the kernel feature space F

$(2) = 1d(x1) - 9(z) + - -+ + ard(xx) - $(2), (2.13)
which — taking into account the fact that ¢(x;) - ¢(z) = k(x;,z) — is equivalent to
d(z) — ark(x1,2) + -+ + apk(Xy, 2). (2.14)
Since the mapping z — ¢(z) is generally non-linear, the composite mapping
z — Kk(X1,2) + - - + apk(Xk, 2) (2.15)

yields a non-linear function. In this way linear mappings may easily be extended to
non-linear ones. Later this generalization scheme will be employed in Chapter 4 to
extend a set of linear feature extraction methods.

2.4 Summary

In this chapter we reviewed a non-linearization idea (which is becoming evermore
widespread) because it will be a key part for the developments described in the later
chapters. We should like to stress that here we did not intend to give a detailed
overview of the theory behind kernels. We deliberately insisted on working with Mercer
kernels in our discussions, but Theorem 2.1 also holds for conditionally positive definite
(CPD) functions, a class which is wider than Mercer kernels [67; 90]. Though from
the theory of CPD functions [22; 63; 101] one could gain a deeper insight into the
relations underlying the kernel functions, and though they would provide access to a
further set of kernel functions, from a practical point of view the Mercer kernels have
just the degree of freedom necessary for solving real-world problems.






Chapter 3

Linear Feature Extraction

In most classification problems it is normal to view the objects to be classified as
points in a feature space of proper dimensions. The space has to have a sufficient
degree of freedom so that the object classes are sufficiently 'separable’. Making use
of superfluous components, however, can confuse classification algorithms. A general
practical observation is that it is worth decreasing the dimensionality of the given feature
space until we can still guarantee that the overall structure of the data points remains
intact. A simple way to do this is by means of a linear transformation that linearly maps
an initial feature space into a new features space, usually one with fewer dimensions.
Along with dimension reduction, the transformation may also aim at simplifying or
emphasizing the structure of the data at the same time.

The mathematical goal of a linear transformation intended for feature extraction
can be defined several ways. For example, we may choose the basis vectors of the
transformed space as those directions of the original space along which the data shows
a large variance (PCA — Principal Component Analysis), or when their distribution
greatly differs from a Gaussian one (ICA — Independent Component Analysis). Since
these methods ignore the class information of the data, they are called unsupervised.
In the opposite case, when an algorithm makes use of the class labels it is called
supervised. These algorithms all try to push the classes apart, while keeping the data
belonging to the same class close together. Besides the two unsupervised method
(PCA, ICA) the chapter presents two supervised methods as well, one of them — Linear
Discriminant Analysis (LDA) — is well-known, while the other — Springy Discriminant
Analysis (SDA) — is based on a novel idea. This method is based on our springy model,
which creates attractive and repulsive forces between the pairs of data points and selects
those directions with a high potential [60].

We should say here that, as in the following, we intend to non-linearize the four
methods just mentioned using kernel functions. The goal of this chapter is to place the
linear algorithms in a unified framework and prepare the groundwork for the coming
chapter. We used this unified view for describing PCA, ICA and LDA in [57] and for
PCA, ICA, LDA and SDA in [62].

17
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3.1 Introduction

Now without loss of generality we shall assume that, as a realization of multivariate
random variables, there are n-dimensional real attribute vectors in a compact set X’ over
R™ describing objects in a certain domain, and that we have a finite n x k sample matrix
X = (x1,...,X) containing k random observations. Actually, X’ constitutes the initial
feature space and X is the input data for the linear feature extraction algorithms which
defines a linear mapping

h: X —=R™

z — Vz

(3.1)

for the extraction of a new feature vector. The m x n (m < n) matrix of the linear
mapping — which may inherently include a dimension reduction — is denoted by V', and
for any z € X we will refer to the result h(z) = V'z of the mapping as z*.

With the linear feature extraction methods we search for an optimal matrix V/,
where the precise definition of optimality can vary from method to method. Although
it is possible to define functions that measure the optimality of m directions (i.e. the
row vectors of V') all together, here we will find each particular direction of the optimal
transformations one-by-one, employing a 7 : R® — R objective function for each
direction separately. Intuitively, if larger values of 7 indicate better directions and the
chosen m directions need to be independent in some ways, then choosing stationary
points that have the m largest function values is a reasonable strategy. Obtaining the
above stationary points of a general objective function is a difficult global optimization
problem. But if 7 is defined by a Rayleigh quotient formulae, i.e.

T
B
T(V) . v 1V

_ Y 2w 2
VB (3.2)

where By and B, are symmetric n X n matrices and Bj is positive definite — finding the
solution is relatively quick and straightforward when formulated as a simple eigenvalue
problem. The above well-known property is asserted in the following proposition.

Proposition 3.1 The stationary points of 7(v) are precisely the eigenvectors of matrix
B; ' By, and the corresponding eigenvalues are the values 7(v) takes at these points'.

Actually, the Rayleigh quotient-based approach offers a unified view of the linear trans-
formation methods discussed in this chapter.

Because two of the four methods to be discussed belong to the supervised family,?
we should expect to make use of the class labels. To do this let us assume as well that
we have 7 classes and an indicator function £ : {1,...,k} — {1,...,r}, where L(i)
gives the class label of the sample x;. Let k; further denote the number of vectors
associated with label j in the sample data.

We note that since B, is positive definite, and thus invertible, the simple eigenvalue-eigenvector
problem Bg_lle = Ax is equivalent to the generalized eigenproblem Bix = ABox

2The two types of feature vector space transformations (supervised or unsupervised) can be dis-
tinguished by whether they utilize an indicator function containing the class information or not.
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3.2 Principal Component Analysis

Principal component analysis is a ubiquitous statistical method for unsupervised fea-
ture extraction, data analysis, and compression. It has a very extensive literature, an
overview of which can be found in several monographs (e.g. [20; 49]). Some further
classic discussions of the technique are given in [42; 51; 72; 73; 80]. From among the
widespread applications of PCA we could mention the recognition of objects [53], image
processing and image compression [34]. We also applied successfully this method to
speech technology in [56; 57; 62].

3.2.1 Derivation of the Method

Normally in PCA the objective function 7 for selecting new directions is defined by

rw) = YO 53)
where
C = E{(x - E{x})(x — E{x})"} (3.4)

is the sample covariance matrix. Here E denotes the mean value. The following
proposition asserts a well-known property of Eq. (3.3).

Proposition 3.2 Eq. (3.3) defines 7(v) as the variance of the centralized sample
vectors

x; — BE{x},...,x, — E{x} (3.5)

projected onto vector v/||v||.

Hence this method prefers directions which have a large variance. From Proposition 3.1
we know that the stationary points of Eq. (3.3) correspond to the right eigenvectors of
the sample covariance matrix C' where the eigenvalues form the corresponding optimum
values. If we assume that the eigenpairs of C' are (c1,A1),...,(cn, Ay) and Ay >
.-+ > \,, then the transformation matrix V will be [ci,...,c,,]", i.e. the eigenvectors
with the largest m eigenvalues. Notice that since the sample covariance matrix is
symmetric and positive semidefinite its eigenvalues are nonnegative and its eigenvectors
are orthogonal. Moreover, after applying the above orthogonal transformation V' on the
sample data X, we find that VX is uncorrelated, i.e. its covariance matrix is diagonal
with \i, ..., A, being along the diagonal:

E{(Vx — BE{Vx})(Vx — E{Vx})"} = VCV" =diag(\1, ..., ). (3.6)

Transformation of test vectors. For an arbitrary test vector z € X’ the PCA transfor-
mation can be performed using z* = Vz. But if the output data needs to be centralized
we can apply V(z — E{x}) as well.
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Figure 3.1: The effect of PCA on 2D and 3D data sets. The artificial data sets
of Fig. (A) and (C) were transformed using PCA and the results are shown in
Fig. (B) and (D), respectively. Besides the data sets themselves we also plotted their
distribution along the axes.

3.2.2 2D and 3D Examples

For the purpose of demonstration we generated two artificial data sets shown in Fig. 3.1.
The set of Fig. (A) is 2-dimensional, while the set shown in Fig. (C) is of 3 dimensions.
Although PCA does not make use of the class information, we chose to represent the
class labels using the colors red, blue and yellow. We did so because, after all, we
transform the data in order to make the classes more separable, so it is important to
see how the transform affects class separability. For ease of understanding the effect
of the transformation, the distribution of the data along the x and y-axis was also
plotted. When examining Fig. (B) showing the data of Fig. (A) after PCA, we can see
that PCA indeed found the direction with the largest variance in Fig. (A), however, this
direction is not the most useful for class separability. The same can be said about the
PCA transform of (C), shown in Fig. (D).
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3.3 Independent Component Analysis

Independent Component Analysis [9; 13; 18; 23; 45-48; 50] is a general purpose
statistical method that originally arose from the study of blind source separation (BSS).
A typical BSS problem is the cocktail-party problem where several people are speaking
simultaneously in the same room and several microphones record a mixture of speech
signals. The task is to separate the voices of different speakers using the recorded
samples. Another application of ICA is unsupervised feature extraction, where the aim
is to linearly transform the input data into uncorrelated components, along which the
distribution of the sample set is the least Gaussian. The reason for doing this is that,
along these directions, the data is supposedly easier to classify. We also tried to exploit
this property in speech technology applications in [57; 59; 62].

For optimal selection of the independent directions, several objective functions were
defined using approximately equivalent approaches. Here we follow the way proposed
by A. Hyvarinen et al. [23; 45—-48]. Generally speaking, we expect these functions to be
non-negative and have a zero value for the Gaussian distribution. Negentropy is a useful
measure having just this property, which is used for assessing non-Gaussianity (i.e. the
least Gaussianity). Since obtaining this quantity via its definition is computationally
rather difficult, a simple easily-computable approximation is normally employed. The
negentropy of a variable  with zero mean and unit variance is estimated by using the
formula

Jo(n) = (B{G(n)} — B{G(1)})* (3.7)

where G : R — R is an appropriate non-quadratic function, E again denotes the
expectation value and v is a standardized Gaussian variable. The following three choices
of G are conventionally used:

Gi(n) = 7,
Ga(n) = log (cosh (n)), (3.8)
Gs(n) = —exp(=7°/2).

It should be mentioned that in Eq. (3.7) the expectation value of G(v) is a constant,
its value only depending on the selected function (e.g. E{G;(v)} = 3).

3.3.1 Derivation of the Method

In A. Hyvérinen's FastICA algorithm for the selection of a new direction v the following
7 objective function is used:

1o(v) = (B{G(vT2)} — E{G(»)}), (3.9)

which can be obtained by replacing 7 in the negentropy approximant Eq. (3.7) with v-z,
the dot product of the direction v and sample z. FastICA is an approximate Newton
iteration procedure for the local optimization of the function 7(v). Before running
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the optimization procedure, however, the raw input data X must first be preprocessed
— by centering and whitening it3.

Centering. An essential step is to shift the original sample set x1,...,x; with its
mean E{x}, to obtain data x| = x; — E{x}, ..., X} = x; — E{x}, with a mean of 0.

Whitening. The goal of this step is to transform the centered samples x/, ..., %}
via an orthogonal transformation () into vectors z; = Qx},...,z; = @x) where
the covariance matrix E{zz '} is the unit matrix. Since standard Principal Component
Analysis transforms the covariance matrix into a diagonal form [49], where the diagonal
elements are the eigenvalues of the original covariance matrix E{x'x’"}, it only remains
to transform each diagonal element to one. Now if we assume that the eigenpairs of
E{x'x'T} are (ci,\1),..., (€, A\y) and A\ > ... > \,, the transformation matrix
@ will take the form [cl)\l_l/2,...,cm)\fnl/2]T. If m is less than n a dimensionality
reduction is employed.

Following the approach proposed by A. Hyvérinen et al., it is now worth noting
some basic properties of the preprocessing stage.

Proposition 3.3 Properties of the preprocessing stage. After centering and whitening
the following properties are fulfilled.
i) For every normalized v the mean of v'zy, ..., vz, is set to zero, and its variance
is set to one.
i1) For any matrix W the covariance matrix of the transformed, preprocessed points
Wz, ..., Wz will remain a unit matrix if and only if W is orthogonal.

Actually property i) is essential since Eq. (3.7) requires that 1 should have a zero mean
and variance of one hence, with the substitution 7 = v 'z, the projected data v - z
must also have this property. Moreover, after preprocessing based on property i) it is
sufficient to look for a new orthogonal base W for the preprocessed data, where the
values of the non-Gaussianity measure 7 for the base vectors are large. Note that since
the data remains whitened after an orthogonal transformation, ICA can be considered
an extension of PCA.

Now we briefly outline how the optimization procedure of the FastICA algorithm
works (cf. [23; 47]). The input for this algorithm (see the next page) is the centered
& whitened sample Z = [z, ..., 2;] and the non-linear function GG, while the output is
the transformation matrix 1. The first and second order derivatives of GG are denoted
by G’ and G”. In the pseudo-code (W;W,")~/2I¥; means a symmetric decorrelation,
where (W;W,")~/2 can be readily obtained from its eigenvalue decomposition®.

Transformation of test vectors. For an arbitrary test vector x € X the ICA transfor-
mation can be performed using z* = W(Qx. Here W denotes the orthogonal transfor-
mation matrix we obtained as the output from FastICA, while @ is the matrix obtained
from whitening. Much like that in PCA, if we require that the output data be centralized
then z* = WQ(x — E{x}).

3There are many other iterative methods for performing Independent Component Analysis, some
of these (similar to FastICA) do require centering and whitening, while others do not. In general,
experience has taught us that all these algorithms should converge faster on centered and whitened
data, even with those which do not really require it.

Hf W,W,T = VDV, then (W;W,")~1/2 is equal to VD=2V T,
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procedure FastlICA_Opt(Z, G);

% initialization

let W be a random m x m matrix;

Wo = (WoW) =12 W

1= 0;

% approximate Newton iteration

While W has not converged;

for j=1tom

let the column vector s; be the jth row vector of W;;
W, = E{ZG/(S;—Z)} - E{G“(SJTZ)}SJ-;

end;

1=1+4+1;

Wi =[wi,...,wn|";

W, = (W,W,h) 12w
do

End procedure

3.3.2 2D and 3D Examples

We will demonstrate the behavior of ICA on the same data sets that were used for PCA.
The results are shown in Fig. 3.2, organized in a fashion similar to Fig. 3.1. Inspecting
Fig. (B), we can say that in this case the distribution along the z-axis seems more
convenient from a classification point of view than it was in the case of PCA. We arrive
at similar conclusion from examining the 3-torus example of Figs. (C-D). From this we
may conclude that forcing the data projections to be the least Gaussian might be a
better idea from a classification point of view.

Let us make a useful remark here. As we have seen, the preprocessing step of
ICA is a PCA, possibly including a dimension reduction. The next step is the Fas-
tICA_Opt routine, resulting in an orthogonal transformation that further transforms
our data. Here we again have an opportunity for dimension reduction, that is to omit
those components along with the data distribution similar to a Gaussian one. It is
important not to reduce the dimensions too much during the preprocessing, otherwise
the FastlCA _Opt procedure will not have enough degrees of freedom to find a proper
direction. This problem may arise especially in situations when we are working with a
small number of dimensions. For instance, in the case of the 3-torus example, if we
had kept only 2 dimensions instead of 3 after preprocessing (see Fig. 3.1D), we could
have not found the direction optimal for class separation, as shown in Fig. (D).

In addition to the points above, we note that the task of distinguishing features
optimal for classification from those that may confuse the classifier belongs to the topic
of feature selection. There are many possible feature selection strategies both for PCA
and ICA. Unfortunately, for optimal performance all subsets of the features should be
examined [14], but in practice there are quite good heuristics available. Such strategies,
like the SFFS [81] method, are available in the literature.
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Figure 3.2: The effect of ICA on 2D and 3D data sets. The artificial data sets of
Figs. (A) and (C) were ICA transformed and the results depicted in Figs. (B) and (D), re-
spectively. Besides the data sets themselves the axis-wise distributions are also plotted.

3.4 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a traditional supervised feature extraction method
[24; 27] which has proved to be one of the most successful preprocessing techniques
for classification®. The goal of LDA is to find a new (not necessarily orthogonal) basis
for the data which provides the optimal separation between groups of sample points
(classes)®. This method was also applied in our speech recognition studies [57; 58; 62].
Now we continue with a derivation of the method.

50ne should note here that the technique can be directly used for classification as well.

6The mathematical background underlying the LDA method has been extensively studied. It turned
out that for two classes having the same covariance matrix the direction found by LDA is Bayes optimal
[21]. However, if the covariance matrices are different the optimal decision surface is quadratic [27]. It
has also been shown that LDA is closely related to the artificial neural nets with one hidden layer [11].
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3.4.1 Derivation of the Method

In order to define the transformation matrix of LDA we first define the objective function
7 : R®™ — R which depends not only on the sample data X, but also on the indicator
function £ owing to the supervised nature of this method. Let us define

v Bv
T(v) = ST (3.10)

where B is the Between-class Scatter Matrix, while W is the Within-class Scatter
Matrix. Here the Between-class Scatter Matrix B shows the scatter of the class mean
vectors m; around the overall mean vector m:

T k;
B = Zj:l 7(mj - m)(m] - m)T
m = 13" x (3.11)
m; = % Zﬁ(i):j Xi

The Within-class Scatter Matrix W represents the weighted average scatter of the
covariance matrices C; of the sample vectors having label j:
roky
W= 253G (3.12)
C; = ;%7 (i) (X —my)(x; — m;)".
The value of the function 7(v) is large when its nominator is large and its denominator
is small or, equivalently, when the within-class averages of the sample projected onto v
are far from each other and the variance of the classes is small. The larger the value of
7(v) the farther the classes will be spaced and the smaller their spreads will be. As we
saw earlier (cf. Proposition 3.1) the stationary points of Eq. (3.10) correspond to the
right eigenvectors of W18, where the eigenvalues form the corresponding function
values. Before defining the LDA transformation, we will assert a well-known result
which gives a maxima for the rank of W™1B.

Proposition 3.4 The rank of W' B, where the matrices are defined in Egs. (3.11)
and (3.12), is less than the class number r.

Since W~!B is not necessarily symmetrical and its rank is at most the class number
minus one (r — 1), the number of its real, not necessarily orthogonal eigenvectors is less
than r. This means that if » < n we have a limit for the number of new features which
can be extracted. Besides this, numerical problems can arise when computing W1 if
det(W) is zero or the condition number of W is too large. The most probable cause
for this could be the redundancy of feature components. But we know W is positive
semidefinite. So if we add a small positive constant ¢ to its diagonal, that is we work
with W + el instead of W, this matrix is guaranteed to be positive definite and hence
should always be invertible. If we assume that the real eigenvectors with the largest
m(< r) real eigenvalues of (W +el)"*Barec;,...,c,,, then the transformation matrix
V will be [cq,...,¢n]".

Transformation of test vectors. For an arbitrary test vector z € X’ the LDA trans-
formation can be performed using z* = Vz.



26 Linear Feature Extraction

01
0)

Figure 3.3: The effect of LDA on 2D and 3D data sets. Figures (A) and (C) show two
artificial data sets, while Figs. (B) and (D) depict both after LDA. Besides the data,
its axis-wise distribution is also plotted using one curve for each class.

3.4.2 2D and 3D Examples

Figure 3.3. depicts the conception of our first supervised feature extraction algorithm,
LDA. As can be seen in Figs. (B) and (D), after LDA the data become easily separable
along the x-axis in both the 2D and 3D cases. One should also realize that in the case
of data set (A) no orthogonal transform could have resulted in a similarly well separated
data distribution.
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3.5 Springy Discriminant Analysis

We saw that LDA can become numerically unstable because of the invertibility problem
of the Within-class Scatter Matrix. Furthermore, the nonorthogonality and the limited
dimension of the resulting transformation matrix may prove disadvantageous. These
issues give rise to the need for an objective function 7 that leads to a supervised
transformation which vyields similar results to LDA, but the transformation matrix is
orthogonal and avoids the numerical problems mentioned earlier. Springy Discriminant
Analysis (SDA) is a method of ours that takes all these issues into consideration.
Although we originally proposed it in a non-linear form [60; 61], we later published the
corresponding linear version as well [62].

3.5.1 Derivation of the Method

The name Springy Discriminant Analysis stems from the utilization of a spring & anti-
spring model, which involves searching for directions with optimal potential energy using
attractive and repulsive forces. In our case sample pairs in each class are connected by
springs, while those of different classes are connected by antisprings. New features can
be easily extracted by taking the projection of a new point in those directions where a
small spread in each class is obtained, while different classes are spaced out as much
as possible.

Let §(v), the potential of the spring model along the direction v, be defined by

5 = 3 (=% Tv) (M), (313)

t,j=1
where

-1, e =£G)
[M]”_{ 1. otherwise i,j=1,... k. (3.14)

Naturally, the elements of matrix M can be initialized with values different from +1 as
well. The elements can be considered as a kind of force constant and can be set to a
different value for any pair of data points.

It is easy to see that the value of 0 is largest when those components of the
elements of the same class that fall in the given direction v (v € R") are close, and
the components of the elements of different classes are far at the same time.

Now with the introduction of the matrix
D=> (xi—x) (xi — ;)" [M]; (3.15)

we immediately obtain the result that §(v) = v'Dv. Based on this, the objective
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Figure 3.4: The effect of SDA on 2D and 3D data sets. The artificial data sets
of Figs. (A) and (C) were transformed using SDA and the results are shown in
Figs. (B) and (D). Besides the data the axis-wise distributions are also shown using one
curve for each class.

function 7 can be defined as the Rayleigh quotient

(3.16)

Obviously, the optimization of 7 leads to the eigenvalue decomposition of D, just
like in the case of PCA. Because D is symmetric, its eigenvalues are real and its
eigenvectors are orthogonal. The matrix V' of the SDA transformation is defined using
those eigenvectors corresponding to the m dominant eigenvalues of D.

Transformation of test vectors. For an arbitrary test vector z € X' the SDA trans-
formation can be performed using z* = Vz.
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3.5.2 2D and 3D Examples

Figure 3.4 readily shows the behavior of SDA. By adjusting the force constant matrix M
we can shift the emphasis between the minimization of inter-class variance and the
maximization of between-class distance. For the data set (A) SDA found a direction
(see Fig. (B)) along which the red and blue points are easily separable, but the yellow
ones are not. But, of course, we cannot expect any linear algorithm to separate this
latter class. Fig. (D) shows the data set of Fig. (C) after SDA. We can see that,
compared to LDA, the distributions associated with these classes are less concentrated
than in the case of LDA. This means that minimizing the inter-class variance was less
important for SDA than for LDA. On the other hand, the gain is that now the classes
are separable not only along the z-axis, but also along the y-axis.

3.6 Summary

In this chapter four linear feature extraction algorithms were presented, all of them
working by optimizing a Rayleigh quotient in order to find those directions that, after
projecting the data on them, result in a new better feature set [62]. We saw that,
thanks to the Rayleigh quotient formulation, the optimization can be performed very
efficiently by solving a (generalized) eigenvalue problem.

The general concept of all the four methods is summarized in the following:

PCA concentrates on those independent directions with the largest variances.

ICA besides keeping the directions independent, chooses directions along which
the non-Gaussianity is large.

LDA prefers those directions along which the class centers are far away and the
average variance of the classes is small.

SDA creates attractive forces between the samples belonging to the same class
and repulsive forces between samples of different classes. Then it chooses
those directions along which the potential energy of the system is maximal.

In the next chapter we will non-linearize these methods, one after the other, using the
kernel idea.






Chapter 4

Non-linear Feature Extraction

with Kernels

The approach of feature extraction could be either linear or non-linear, but it seems
the kernel-idea is, in some sense, breaking down the barrier between the two types.
As we have already seen in Chapter 2 if some linear method uses only the pairwise
dot product of its input vectors during its computations then, just by altering the dot
product operation in a suitable way, we can create a non-linear version of it. The effect
of the replacement of the operation is that the original linear method will implicitly be
performed in a space of more (possibly even infinite) dimensions, and thus with a higher
degree of freedom. In the following this notion is also used to derive the non-linear
counterparts of PCA, ICA, LDA and SDA. The non-linear version of PCA (Kernel-PCA)
was first proposed by B. Schélkopf et al. [87]. We applied this algorithm to speech
technology in [56, 62], the method itself also being described in this article in detail
with a minor modification of the derivation. The main result of this chapter is the three
other kernel based feature extraction methods (Kernel-ICA, Kernel-LDA, Kernel-SDA),
which we proposed in monographs [59],[58] and [60], respectively.

4.1 Introduction

Let us assume that there are n-dimensional real attribute vectors in a compact set X’
over R™ describing objects belonging to r classes in a certain domain. Furthermore, we
will assume that we have a finite n x k& sample matrix

X = (x1,...,Xp) (4.1)
containing k random observations and an indicator function
L:{1,...)k} = {1,...,r}, (4.2)

where L(7) gives the class label of the sample x;. Here k; denotes the number of
vectors associated with label j in the sample data.

31
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Our goal is now to perform the linear transformations of the previous chapter in
kernel feature spaces. To this end let the dot product be defined by a Mercer kernel
, which induces non-linearly a dot product space denoted by F via a feature map ¢
(see Theorem 2.1). First, let us examine the Rayleigh quotient of Eq. (3.2) in this
space. Formally,

(V)= —5—, veF (4.3)

where B; and B, are symmetric matrices of size dim(F) x dim(F), and B is positive
definite. Unfortunately, this form is not restrictive enough so that we could express
7(v) as a function of the kernel .

Let us now observe that in the case of all the linear transformations the matrices
in the nominator of the Rayleigh quotient were always a unique function of the sample
matrix X. They all had the common form

J
Xox" =Y [O;xx/, [0];cR (4.4)
i=1
(cf. Egs. (3.3), (3.10) and (3.16)), where © was a symmetric real matrix specific to
the method. The matrix in the denominator was the unity matrix for PCA, ICA, SDA,
and in the case of LDA it was again of the form of Eq. (4.4) (see Eq. (3.12)). Based
on this observation, the linear methods of Chapter 3 take the following special Rayleigh
quotient form

v X0, XTv

VI (X0 XT +46I)v’ (45)

where v € X, X is the matrix containing the samples, ©1,©, are method-dependent
real symmetric matrices of size n x n, and 6 € R,. In the case of LDA ¢ = 0, and for
PCA, ICA and SDA § = 1 and O, is the zero matrix.

Now we can formalize the Rayleigh quotient that corresponds to Eq. (4.5) in the
kernel feature space. For this we simply have to substitute matrix

F=(o(x1),...,o(xx)) (4.6)
for
X = (x1,...,Xk) (4.7)
and vector v € F for v € X
v FO,FTv
= . 4.
") = T FeFT 61w (48)
Now let us have a look at the stationary points of 7(v).
Proposition 4.1 v e span(p(xy),--- ,¢(x,)) holds for all stationary points of T(v)

That is, we can assume that v = ay0(x1) + - - - + @, 0(x,,) = Fa. With this we arrive
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at the following form of the Rayleigh quotient defined in Eq. (4.8), now depending on
vector a:

(@) o' FTFO,F Fa
(o) =
a' FT(FO,FT 4+ 01)Fa

(4.9)

And because F'TF is equivalent to the kernel matrix K = (X, X), we obtain the

formula
o' KO Ka

= 4.10
7(e) a(K6O,K +0K)a’ (4.10)

where, according to Proposition 2.1, the eigenvectors of the following matrix
(K&K +6K) K6 K (4.11)

are the stationary points. Let us define the matrix of the eigenvectors corresponding
to the m dominant eigenvalues by

A=(ai,...,o)". (4.12)

Now we may formalize the analogue of the linear mapping of Eq. (3.1) in the kernel
feature space F by

o(z) — Vo(z), (4.13)

where U = AFT. Taking into account that F''¢(z) = x(X,z) and that the kernel
function induces a z — ¢(z) feature map, for the Rayleigh-quotient based kernel feature
extraction scheme we have the following composite mapping

z — Ar(X, z). (4.14)

Having obtained the uniform framework, we can now proceed with the derivation
of the 'kernelized’ methods, one after the other.

4.2 Kernel Principal Component Analysis

After the Support Vector Machine [97], the second-best-known kernel algorithm is
perhaps the Kernel Principal Component Analysis (Kernel-PCA) proposed by Schélkopf
et al. [87; 88]. This method fits nicely into the unified scheme presented here. It
has been employed in a wide range of practical problems such as handwritten digit
recognition [65] and human face recognition. We also applied this method to speech
technology applications [56; 62].

The following derivation of the method will use our unified scheme, and thus will
differ slightly from the original one. However, the resulting formula will obviously be
equivalent to the one proposed in the original derivation.
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4.2.1 Derivation of the Method

Having chosen a proper (according to Theorem 2.1) « kernel function for which

k(x,z) = ¢(x) - ¢(z), x,2€X, (4.15)

holds for a mapping ¢ : X — F, we now give the PCA transformation in F.
First, let us examine the form of the 7 objective function of PCA (Eq. (3.3)) in the
kernel feature space F:

T(v) = UUTC:, (4.16)
where C is the covariance matrix of the sample ¢(x1),. .., p(xx):
C = E{(¢(x) — E{o(x)}) (6(x) — E{o(x)})" }- (4.17)

Much like the PCA approach, we define the Kernel-PCA transformation based on the
stationary points of Eq. (4.16), which are given as the eigenvectors of the symmetric
positive semidefinite matrix C. However, since this matrix is of the form

C= Z[@l]ijqb(xi)qb(xjf = FOF", (4.18)

we may suppose the following equation holds during the analysis of the stationary points
(cf. Proposition 4.1):

v= Z a;P(x;). (4.19)

Based on the above assumption the variational parameters of 7 can be the vector a
instead of v:

. (zi: aio(x)7) C (z:‘:_l ao(x))) )
(Zi:l ai(b(xi)T) (Ej:l O‘j¢(xj))

In the following proposition we derive Eq. (4.20) making use of the kernel matrix.

Proposition 4.2 The 7 function of Kernel-PCA is of the form

a"lK(I-Ka

T(a) = kKo (4.21)
where [K;; = ¢(x;) - ¢(x;) = k(x;,X;) is the Kernel matrix and
1 - 1
p=1 (4.22)
= _

1 .- 1
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Having defined 7, we proceed with the derivation of its stationary points. The stationary
points of Eq. (4.21) are the solution vectors of the general eigenvalue problem

1 A
ZK(I - )Ka=\Ka. (4.23)

However, to find solution of Eq. (4.23) we may solve the eigenvalue problem

1 ~
S0~ DEe =)o (4.24)

for nonzero eigenvalues. Although the matrix (I — 1)K is not symmetric, its eigenvalues
are real and non-negative, and those eigenvectors that correspond to positive eigenval-
ues are orthogonal. It is straightforward to see since, if we left-multiply Eq. (4.24) by

1. . .
LI - DEKa =)Mo (4.25)
and, taking into account the fact that I7 = and I(I — I)K = (I — I)K is the zero
matrix, we have that Jo = 0. This means that (4.24) is equivalent to the problem

%(1 ~ DK - I)a = e (4.26)
for solutions with nonzero eigenvalues. Since the matrix +(I — IK(I — 1) is positive
semidefinite the eigenvalues are non-negative and the eigenvectors are orthogonal.

In fact the best approach for solving Eq. (4.24) is to solve the symmetric eigen-
problem defined in Eq. (4.26). We note that we would have arrived at the same
eigenproblem had we assumed that

k

v=) a(d(x)— E{¢(x)}) (4.27)

i=1

(as B. Schélkopf et al. did) instead of Eq. (4.19). With this assumption we would
have obtained the function

) = aL(r- IZK(] - (I — I:)K(] - ]A)a‘ (4.28)
a'(I-1)K(I -1«

Now let the m positive dominant eigenvalues of Eq. (4.26) be denoted by A\ > ... > A,
and the corresponding eigenvectors be at, . . ., a,,,. Then the matrix A of the non-linear
transformation in Eq. (4.14) can be calculated as:

A= (a,...,a)". (4.29)
Transformation of test vectors. For an arbitrary test vector z € X’ the Kernel-PCA
transformation can be done using

7" = AF ' ¢(z) = Ax(X, 2). (4.30)

Of course, if it is desired the norm of the ax eigenvectors can easily be chosen such that
the two-norm (i.e. Euclidean norm) of the column vectors of AF'T becomes 1.
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Figure 4.1: The effect of Kernel-PCA on 2D and 3D data sets. The Kernel-PCA
transformed versions of the artificial data sets (A) and (C) are shown in Figs. (B) and
(D). Besides the data sets themselves their distributions along the axes have also been
represented in visual form.

4.2.2 2D and 3D Examples

Figure 4.1 shows the Kernel-PCA transform of a 2D and a 3D data set, respectively.
Fig. (B) shows what shape the distribution of the data set of Fig. (A) took after
transformation. It can be easily seen that the transform is indeed non-linear. The
distributions along both the z and y-axis confirm the fact that, we obtained large-
variance directions with Kernel-PCA that could not have been achieved with a linear
method. The transformation seems beneficial from a classification point of view as well.

Now let us examine the 3D data set of Fig. (C), along with its transformed version
in Fig. (D). We again obtain directions corresponding to large variances. In this case,
however, the transformation is absolutely unhelpful for a subsequent classification. It

suggests that a dimension reduction by Kernel-PCA should be performed with caution.
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4.3 Kernel Independent Component Analysis

The idea of non-linearizing Independent Component Analysis was proposed quite early,
with the aim of non-linearly separating mixed signals [76; 77; 100]. We first mentioned
applying the 'kernel trick’ to the non-linearization of ICA in [56], and discussed the
Kernel-ICA method in detail in [59]. Possibly in parallel or perhaps later and in a
different context, other ICA algorithms were kernelized as well [5; 39]. In this thesis we
follow our own derivation to present the Kernel-ICA algorithm.

4.3.1 Derivation of the Method

In this section we derive the kernel counterpart of Fast/CA [59]. To this end, let
the inner product be implicitly defined by the kernel function x in F with associated
transformation ¢. As we saw earlier, the FastICA algorithm consists of two main blocks:
centering & whitening, and the subsequent approximate Newton algorithm. In these we
will extend non-linearly only the centering and whitening procedure of the data, since
afterwards we get uncorrelated data in the kernel feature space F in a non-linear way.
However, although it could be done,® the second, iterative part of FastICA will not be
non-linearized here.

Let us first examine how the centering and whitening preprocessing steps can be
performed in the kernel feature space.

Centering in F. We shift the data ¢(x1),..., ¢(xx) with its mean E{¢p(x)}, to

obtain the data
P(x1) = o(x1) — E{p(x)}
; (4.31)
¢ (xx) = o(xp) — E{o(x)}
with a mean of 0.

Whitening in F. Much like that in linear ICA, the goal of this step is to find a
transformation matrix Q such that the covariance matrix

k
Zq% ;) (X (4.32)

?vIH

of the sample A
P(x1) = Q¢'(x1)
: (4.33)

dx) = QF(xu)

is a unit matrix. Since standard principal component analysis [49] — just like its kernel-
based counterpart — transforms the covariance matrix into a diagonal form, where the

1Obviously Eq. (3.9) could be very easily non-linearized using kernels, as the formula contains
only one dot product, v'z. We chose to disregard this step because it did not fit into our Rayleigh
quotient based non-linearization approach.
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diagonal elements are the eigenvalues of the data covariance matrix

C= Z & (x:)d (%), (4.34)

=

it only remains to transform each diagonal element to 1. Based on this observation,
the required whitening transformation is obtained by slightly modifying the formulas
presented in the section on Kernel-PCA. That is, based on the formula we got in
Kernel-PCA (cf. Eq. (4.29)), the centering & whitening transformation matrix can

be defined by 0 - AFT

A = (A;l/gal, A o), (4.35)
F = <¢<X1)77¢<Xk)>7

where (a1, A1), ..., (Qun, \y) are the dominant m eigenpairs of Eq. (4.26). The
preprocessing phase is again followed by the approximate Newton iteration that we
already discussed when we presented the ICA algorithm.

Transformation of test vectors. For an arbitrary test vector z € X the Kernel-ICA
transformation can be performed using

2" =WQ¢(z) = WAKR(X, z). (4.36)

Here W denotes the orthogonal transformation matrix we obtained as the output from
the iterative section of FastlICA2, while () is the matrix obtained from kernel centering
& whitening. Practically speaking, here Kernel-FastlCA = Kernel-Centering + Kernel-
Whitening + iterative section of the original FastICA.

4.3.2 2D and 3D Examples

Figure 4.2 demonstrates the effect of Kernel-ICA on artificial data sets. The 2D set of
Fig. (A) is the same as the one used to test Kernel-PCA. The result of the transformation
is shown in Fig. (B). As we can see, the direction found to have a distribution very
different from Gaussian and chosen as the new z-axis is very good from a classification
point of view, despite the fact that the method is unsupervised. Fig. (C) is the example
of three toruses with the result of the transforms shown in Fig. (D). When comparing
the results with those of Fig. 3.2 — that is, linear ICA — the difference owing to the
non-linear nature of the feature extraction is obvious. However, after observing the
distribution of the data sets along the x-axis, we should remark that the separability of
the classes is now somewhat worse than that obtained in the linear case.

Similar to the linear case, performing a radical dimension reduction is recommended
only after the approximate Newton iteration and not immediately after kernel centering
& whitening. For the dimension reduction it is worth ordering the directions in accor-
dance with the corresponding non-Gaussianity, and keeping only those directions with
the m largest values. For example, in Fig. (D) we retained only two directions of the
three, according to this scheme.

2Matlab code is available in [23].
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Figure 4.2: The effect of Kernel-ICA on 2D and 3D data sets. The artificial data sets
of Fig. (A) and (C) were transformed with Kernel-ICA, and the resulting distributions
are shown in Figs. (B) and (D), respectively. Besides the data, their distribution along
the axes are depicted as well.

4.4 Kernel Linear Discriminant Analysis

The "kernelized’ counterpart of Linear Discriminant Analysis, the Kernel-LDA is a super-
vised feature extraction method very suitable for classification. There are many authors
who have studied this method in parallel. For the two class case S. Mika et al. were the
first to present a formulation [66]; the same was later introduced by S. A. Billings [10].
We proposed the multi-class version of the method to be used for phoneme recognition
[95], publishing the technical details only a little later [58]. The multi-class version,
with minor modifications, can also be found in [7; 84]. In addition several authors
[30; 99] have reported that Kernel-LDA is practically equivalent to the LSSVM method
elaborated by J. A. K. Suykens et al. [93].

We will now continue with the derivation of Kernel-LDA, of course following our
unified scheme.
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4.4.1 Derivation of the Method

Let us consider the following function for a fixed kernel function &, a kernel map ¢ and

a kernel feature space F.
(v) v Bv
7(v) = —/—
v Wv'

where the matrices needed for LDA (see Egs. (3.11) and (3.12)) are now given in F:

(4.37)

B o= 3 Yy )y~ )
k
po= %Zéb(xz‘) (4.38)

¢ = & _(¢(Xi)—uj)(¢(xz—)—uj)T

We suppose without loss of generality here that v = Zle a;¢(x;) holds during the
search for the stationary points of Eq. (4.37). With this assumption, after some
algebraic rearrangement we obtain the following.

Proposition 4.3 The 7(a) function of Kernel-LDA has the form:

A

a'K(R—- Ko
a'K(I - RKa’

(4.39)

where K is the kernel matrix, I is defined in Proposition 4.2 and

R, = { Loif t=L(i) = L(j) (4.40)

0 otherwise.

This means that Eq. (4.37) can be expressed as dot products of ¢(x;),. .., ¢(xx) and
that the stationary points of this equation can be computed using the real eigenvectors
of (K(I — R)K)'K(R —I)K. Since K(I — R)K is in general a positive semidefinite
matrix, it can be forced to be invertible using the technique presented in the section
on LDA. For defining the transformation matrix A of Kernel-LDA we will use only
those eigenvectors which correspond to the m dominant real eigenvalues, denoted by
Qag, ..., Q.

Transformation of test vectors. For an arbitrary test vector z € X the Kernel-LDA
transformation can be performed using z* = AF " ¢(z) = Ax(X, z).
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Figure 4.3: The effect of Kernel-LDA on 2D data sets. Figs. (A) and (C) show artificial
2D input sets. The result of Kernel-LDA applied on these sets are depicted in Figs. (B)
and (D), respectively.

4.4.2 2D and 3D Examples

To examine how Kernel-LDA affects the distribution of data sets let us analyze Fig. 4.3.
The 3-class sets of Figs. (A) and (C) were transformed with Kernel-LDA, and the
results are shown in Figs. (B) and (D). It can be clearly seen that in Figs. (A) and (C)
separating the classes linearly is no longer possible. However, in Fig. (B) the classes are
perfectly separable along the x-axis. In accordance with the Kernel-LDA criterion, the
variance of each class is small, while the distance among the classes is large. Similar
observations can be made regarding Fig. (D). Once again the separability of the classes
is surprisingly good.

We can reasonably conclude that applying the non-linear approach made the LDA
criterion even more effective for the separation of the classes.
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Figure 4.4: The effect of Kernel-LDA on 3D data sets. Figs. (A) and (C) depict 3-
dimensional data sets, and their distribution after Kernel-LDA in 2 dimensions is shown
in Figs. (B) and (D), respectively.

The behavior of Kernel-LDA on 3-dimensional artificial data is shown in Fig. 4.4.
The data set of Fig. (A) consists of the usual 'snake-like parallel curves'. The result of
using the Kernel-LDA method, depicted in Fig. (B) is similar to those of the 2-D exam-
ples. The example of Fig. (C) contains 4 classes in the form of 4 intertwined toruses.
As illustrated in Fig. (D), Kernel-LDA is able to non-linearly separate them. These 3D
examples justify our claim that Kernel-LDA is very effective in class separation.

Based on these 2-dimensional and 3-dimensional examples we can expect that,
with the help of Kernel-LDA, even more sophisticated topological constructions may
be readily separable.
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4.5 Kernel Springy Discriminant Analysis

The non-linear version of Springy Discriminant Analysis (Kernel-SDA) was invented
with goals very similar to those of Kernel-LDA. We first published the method in [60],
which was followed by a summary paper containing Kernel-SDA together with the seven
algorithms discussed up to this point.

Following our unified framework, we now transform the formulas of linear SDA into
ones for the kernel feature space.

4.5.1 Derivation of the Method

Now let the dot product be implicitly defined by the kernel function x in some finite or
infinite dimensional feature space F with associated transformation ¢:

k(x,2z) = ¢(x) - ¢(z), x,z € F. (4.41)

Let §(v), the potential of the spring model along the direction v in F, be defined by

k
> ((00x) = o)) o) My, vEF (4.42)
where | | |
My = { _1 Icfthcef:v)vis:eﬁ(j) Li=1....k (4.43)

Naturally, different M settings may also be reasonable when defining §, just as we saw
in the case of the linear version.
In space F the 7 function takes the form

T(v) = % = UUTZU, (4.44)
where )
D= Z (P(x:) — (x;)) (¢(x:) — ¢(Xj))T [M];;. (4.45)

Technically speaking, with the above 7 definition Kernel-SDA searches for those direc-
tions v along which a large potential is obtained.

Let us now examine the stationary points of 7(v). Without loss of generality we
may assume that vector v has the form

k

v = Z (%) = Fla (4.46)

i=1

With this assumption we will consider the form of 7(v) where the variable is . In the
following proposition we will express Eq. (4.44) as a function of «.
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Figure 4.5: The effect of Kernel-SDA on 2D data sets. Figs. (A) and (C) depict 2-
dimensional data sets. Their distribution after Kernel-SDA in 2 dimensions are shown
in Figs. (B) and (D), respectively.

Proposition 4.4 The Rayleigh quotient for Kernel-SDA has the form:

o K(M - MK«
—9 4.47

where K is the kernel matrix and M is a diagonal matrix with the sum of each row of
M in the diagonal.

As we have already seen the stationary points of 7(a) can be obtained via an eigen-
analysis of the following generalized eigenproblem:

(K(M - M)K"a = \Ka. (4.48)
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Figure 4.6: The effect of Kernel-SDA on 3D data sets. Figs. (A) and (C) depict 3-
dimensional data sets. Their distributions after Kernel-SDA in 2 dimensions are shown
in Figs. (B) and (D), respectively.

If we assume that the dominant m eigenvectors are a1, - - - , @, then the transformation
matrix A is defined by (ay, -, ).

Transformation of test vectors. For an arbitrary test vector z € X' the Kernel-SDA
transformation can be performed using z* = AF "¢(z) = Ax(X, z).

Finally, we remark that if we had not insisted on using the form Eq. (4.44) of the
Rayleigh quotient and had defined 7(ax) as 6 (F' ") /||cx||? instead of 6 (F' T ) /|| F T ||?),
we would have arrived at the relatively simple symmetric eigenproblem

(K(M — M)K o = \x (4.49)

instead of a generalized eigenvalue problem. As in the case of the Kernel-SDA the
numerator contains information about both shrinking the classes and moving them
apart, hence we have the option to modify the denominator if we wish.
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4.5.2 2D and 3D Examples

To test Kernel-SDA we employed the same data sets as those used for the testing of
Kernel-LDA. The results in the 2D case are shown in Fig. 4.5, and in the 3D case of
the 3D data in Fig. 4.6. One can see that the transformation was almost as effective as
that for Kernel-LDA. The only difference is that the Kernel-SDA approach emphasized
the partitioning of the classes rather than shrinking their data points. Of course, this
behavior can be adjusted by a proper redefinition of the force constant matrix M. This
flexibility is a great advantage of Kernel-SDA and could be exploited here.

4.6 Reducing the Computational Cost

As we have already seen, all four methods lead to a (generalized) eigenproblem that
involves finding the stationary points of the objective function 7(v), defined in the
form of a Rayleigh quotient. During optimalization, the vector v consists of the linear
combinations of the images of the data points X in the kernel feature space. Without
doubt, if the amount of data points (k) is large, the k& x k sized matrices that are
needed for constructing 7(v) — hence for solving the eigenproblem — can be so big that
they pose serious computational and memory management problems.

Fortunately, in most practical problems good v directions can be found even if we
use only ¢ << k data points instead of & when constructing the linear combinations.
Let us denote the indices of these r samples by 1 < iy < --- < i, < k. It is easy to
check that by just using these data items the formulas we obtain for the function 7(c)
can be expressed as the following:

a" LK (I - K e

KPCA, KICA: : 4.50
o' Kya ( )
o' K] (R— DK o
KLDA: L 4.51
oK (I - RK,a’ (451)
ot (KI(M\Z - 2M)K1> o
KSDA: (4.52)

o' Ko ’

where « is a vector of dimension ¢, K is the matrix constructed from the columns
i1, 14 of the kernel matrix K, and K5 is the minor matrix determined by the rows
and columns of K with indices iy, - - - ,i,. Based on these formulas, the eigenproblems
to be solved are now reduced to a matrix of size ¢ x ¢. In practice, this matrix usually
has no more than a couple of dozen or a couple of hundred rows and columns.

Of course, a key issue here is the strategy for choosing the ¢ indices. Numerous
selection strategies are possible from the random selection to the exhaustive search
approach. At the time of writing we are working on the kernel counterparts of some
standard feature selection methods suitable for dimension reduction. The discussion of
this techniques is, however, out of the scope of this thesis.
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4.7 Summary

This chapter presented the non-linear counterparts of the linear methods of the previous
chapter, obtained with the help of the kernel idea. For the non-linearization we exploited
the fact that the Rayleigh quotients defining the linear methods all have a special form
(see Eq. (4.8)). This allowed us to derive the corresponding counterparts of these
functions in the kernel feature space F so that they depend only implicitly — via the
kernel functions — on the points of F (see Eq. (4.10)).

We also demonstrated the efficiency of the methods on 2D and 3D artificial data
sets. The following table summarizes what the methods focus on during non-linear
feature extraction.

Kernel-PCA concentrates on those non-linear directions along which the variance of
the data set is large.

Kernel-ICA searches non-linearly for those directions which are independent, and
along which the distribution of the data significantly differs from a
Gaussian one.

Kernel-LDA performs non-linear feature extraction with the aim of class separation.
The data in different classes are pushed apart while the data points
belonging to the same class are pulled together.

Kernel-SDA non-linearly maps the initial feature space, and in the space obtained
it seeks to separate classes just as Kernel-LDA does, but by means of
defining attractive and repulsive forces.
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Chapter 5
Speech Recognition

Automatic speech recognition is a special pattern classification problem which aims to
mimic the perception and processing of speech in humans. For this reason it clearly
belongs to the fields of machine learning and artificial intelligence. For historical reasons,
however, it has mostly been ranked as a sub-field of electrical engineering, with its own
unique technologies, conferences and journals. In the last two decades the dominant
method for speech recognition has been the hidden Markov modeling approach. Since
then the theory of machine learning has developed considerably and now has a wide
variety of learning and classification algorithms for pattern recognition problems. The
main goal of this chapter is to study the applicability of some of these methods to
phoneme classification.

In essence, this chapter deals with the linear (PCA, ICA, LDA, SDA) and kernel-
based feature extraction methods (Kernel-PCA, Kernel-ICA, Kernel-LDA, Kernel-SDA),
described in Chapters 3 and 4, applied prior to learning in order to improve classification
rates. Their effect on classification performance is tested in combination with classifiers
like the IB1 algorithm (TiMBL), ID3 tree learning (C4.5), oblique tree learning (OC1),
artificial neural nets (ANN) and Gaussian mixture modeling (GMM). We compare these
methods with a traditional hidden Markov phoneme model (HMM), working with the
linear prediction-based cepstral coefficient features (LPCC). The empirical issues de-
scribed in this chapter are based on our three experimental studies [56; 57; 62].

5.1 The Task of Phoneme Classification

Speech recognition is a pattern classification problem in which a continuously varying
signal has to be mapped to a string of symbols (the phonetic transcription). Speech
signals display so many variations that attempts to build knowledge-based speech rec-
ognizers have mostly been abandoned. Currently researchers tackle speech recognition
only with statistical pattern recognition techniques. Here, however a number of special
problems arise that have to be dealt with. The first one is the question of the recogni-
tion unit. The basis of the statistical approach is the assumption that we have a finite
set of units (in other words, classes), the distribution of which is modelled statistically

51
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Figure 5.1: The three-state left-to-right phoneme HMM.

from a large set of training examples. During recognition an unknown input is classified
as one of these units using some kind of similarity measure. Since the number of pos-
sible sentences or even words is 'potentially infinite’, some sort of smaller recognition
units have to be chosen in a general speech recognition task. The most commonly
used unit of this kind is the phoneme, hence this chapter deals with the classification
problem of phonemes.

The other special problem is that the length of the units may vary, that is utterances
get warped along the time axis. The only known way of solving this is to perform
a search in order to locate the most probable mapping between the signal and the
possible transcriptions. Normally a depth-first search is applied (implemented with
dynamic programming), but a breadth-first search with a good heuristic is a viable
option as well.

5.2 Phoneme Modeling

Hidden Markov Models [83] synchronously handle both the problems mentioned above.
Each phoneme in the speech signal is given as a series of observation vectors

O:Oh...,OT, (51)

and one has one model for each unit of recognition. These models eventually return
a class-conditional likelihood P(O|c), where ¢ refers to these units. The models are
composed of states, and for each state we model the probability that a given observation
vector belongs to (“was omitted by") this state. Time warping is handled by state
transition probabilities, that is the probability that a certain state follows the given
state. The final 'global’ probability is obtained as the product of the proper omission
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and state-transition probabilities.

When applied to phoneme recognition, the most common state topology is the
three-state left-to-right model (see Fig. 5.1). We use three states s;, sy and s3
because the first and last parts of a phoneme are usually different from the middle due
to coarticulation. This means that in a sense we do not really model phonemes but
rather phoneme thirds.

Because the observation vectors usually have continuous values the state omission
probabilities have to be modeled as multidimensional likelihoods. The usual procedure
is to employ a mixture of weighted Gaussian distributions for all state s; of the form

p(ols;) = D aiN (o, i, %), (5.2)

where N (o, u;, ¥;) denotes the multidimensional normal distribution with mean p; and
covariance matrix X;, k is the number of mixtures, and «; are non-negative weighting
factors which sum to 1.

A possible alternative to HMM are the Stochastic Segmental Models. The more
sophisticated segmental techniques fit parametric curves to the feature trajectories of
the phonemes [74]. There is, however, a much simpler methodology [33; 54; 55] that
applies non-uniform smoothing and sampling in order to parametrize any phoneme with
the same number of features, independent of its length. The advantage of this uniform
parametrization is that it allows us to apply any sort of machine learning algorithm for
the phoneme classification task. This is why we chose this type of segmental modeling
for the experiments performed and also for our speech recognition system [95].

Hidden Markov Models describe the class conditional likelihoods P(O|c). These
type of models are called generative, because they model the probability that an obser-
vation O was generated by a class c. However, the final goal of classification is to find
the most probable class c. We can readily compute the posterior probabilities P(c|O)
from P(O|c) using Bayes' law since

P(O|c)P(c)

P(0) = =5

(5.3)
Another approach is to model the posteriors directly. This is how discriminative learn-
ers work. Instead of describing the distribution of the classes, these methods model
the surfaces that separate the classes and usually perform slightly better than genera-
tive models.

In this chapter in the phoneme classification tests we work with both generative
and discriminative methods. But before coming to the point, we shall briefly introduce
the OASIS speech recognition system [54; 55], developed at the Research Group on
Artificial Intelligence, which served as a framework for all the tests.



54 Speech Recognition

"OASIS" Block Diagram

features

phoneme
evaluator

ha (tS)  0.198
he t(tS)  0.132
03 (tS)  0.086
nel_gy(gyS) 0.043

X

e S - - nyjol tsz  0.012
(k_Sg)ye(gt):/(t%)w matching engine e_gy(pj)  0.008
ha1rom ezer 001
(tS)izen  0.001
dictionary
sorted list of
hypothesis space candidates

Figure 5.2: Block diagram for the OASIS speech recognizer.

5.3 The Oasis System

When choosing the directions of our speech recognition research, we decided to focus
on Hungarian with the hope that we could address some special issues concerning the
processing of our national language, and also that we could make use of our previ-
ous experience with NLP (Natural Language Processing) for Hungarian. In addition,
we were looking for a flexible framework that allowed experimentation with different
preprocessing techniques, feature-space transformation methods and machine learning
algorithms. These expectations led us to the stochastic segmental approach which,
in a certain sense, can be viewed as an extension of hidden Markov modeling. Our
recognition system, OASIS!, was designed to be as modular as possible, so we can
easily conduct experiments with combining different techniques for the several subtasks
of recognition. The first module is the usual frame-based preprocessing phase of the
speech signal. After this an additional step, the modeling of phonetic segments was
inserted. This allows the combination of different preprocessing techniques and also

The acronym comes from "Our Acoustics-based Speaker-Independent Speech recognizer”.
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the incorporation of phonetic knowledge. The output of this module are the so-called
segmental features, which are used by the phoneme classifier for the classification of
a segment. For this task, again several possible learning algorithms can be applied.
Finally, the segmental classification scores are combined by the matching engine, which
performs an utterance-level search in the graph of the possible segmentations. Its goal
is to find the best matching transcription from those provided by the language model.
The system is flexible enough for use in trying out many search techniques and strate-
gies. The main steps of the recognition process are illustrated in the block diagram
(see Fig. 5.2).

5.4 Phoneme Classification Results

Now we continue with a description of the experiments. First, we describe the evaluation
domain. Then we present the initial frame-based features and how these are converted
into segmental features. This is followed by an elaboration of how the feature extraction
techniques of Chapters 3 and 4 were applied along with a brief explanation of the
learning algorithms used. Finally we discuss the test settings, the results and, of course,
their evaluation.

5.4.1 Evaluation Domain

The classification techniques combined with feature extraction methods were compared
using a relatively small corpus which consists of several speakers pronouncing Hungarian
numbers. More precisely, 20 speakers were used for training and 6 for testing, and 52
utterances were recorded from each person. The ratio of male and female talkers was
50%-50% in both the training and testing sets. The recordings were made using a
cheap commercial microphone in a reasonably quiet environment, at a sample rate of
22050Hz. The whole corpus was manually segmented and labelled. Since the corpus
contained only numbers, we had occurrences of only 32 phones, which is approximately
two thirds of the Hungarian phoneme set. Since some of these labels represented only
allophonic variations of the same phoneme, some labels were fused, and so we actually
worked with a set of 28 labels. We made tests as well with two other groupings
where the labels were grouped into 11 and 5 classes, respectively, based on phonetic
similarity. We had two good reasons for doing experiments with these gross phonetic
classes. Firstly, this way we could increase the number of training examples in each
class and monitor the effects of this on the learning algorithms. Secondly, our speech
recognition system has a first-pass procedure, where the segments are classified into
gross phonetic categories only.

Hence we had three phonetic groupings, which henceforth will be denoted by grpl,
grp2 and grp3. With the first grouping the number of occurrences of the different
labels in the training set was between 40 and 599. This value was between 120 and
1158 for the second, and between 716 and 2158 for the third grouping.
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5.4.2 Acoustic Features

In the following we describe the initial feature extraction techniques which were em-
ployed in our tests. For each test a certain subset of these features was chosen. The
only exception was the recognizer, which used its own traditional features (for details
see 5.4.5).

Critical Band Log-Energies (CBLE)

Before the initial feature extraction the energy of each word was normalized. After this
the signals were processed in 512-point frames (23.2 ms), where the frames overlapped
by a factor of 3/4. A Fast Fourier Transform was applied on each frame. After that
critical band energies were approximated by the use of triangular-shaped weighting
functions. 24 such filters were used to cover the frequency range from 0 to 11025Hz,
the bandwidth of each filter being 1 bark. The energy values were then measured on a
logarithmic scale.

Mel-Frequency Cepstral Coefficients (MFCC)

In order to incorporate the most common preprocessing method, that is MFCC into our
features, we made additional tests after taking the discrete cosine transform (DCT) of
the critical band log-energies calculated above. The test used the first 16 coefficients
(including the zeroth one).

A point which should be mentioned here is that since the spectrum has already
been smoothed by the critical band filters, the calculation of the cepstrum does not
fulfil its original task of removing the effect of pitch. Instead, its supposed benefit is
the decorrelation of features. In fact, it can be proved that the DCT approximates the
PCA quite closely for most signals [3], so it is worth comparing the classification results
for MFCC with critical band log-energies plus PCA.

Formant Band Gravity Centers (FBGC)

Besides the above ones we also wanted to do experiments with some more phonetically
based features like formants. However, since we had no reliable formant tracker (which
is known to be a very difficult task anyway), we instead used gravity centers as a crude
approximation for formants [4]. The gravity centers were calculated from the power
spectrum in the following four frequency bands:

[200Hz, 1400Hz],

[1000Hz, 3000Hz],
[2500Hz, 4000Hz],
[3000Hz, 11025Hz].

(5.4)
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The formula for the gravity center G(a,b) of a band [a,b] is

fbe(f)df
G(a,b) = “——, (5.5)
J S(f)df

a

where S(f) denotes the power spectrum.

Since the gravity centers can give misleading values at parts which have no clear
formant structure (e.g. silence), the "spreading ratio" D(a, b) of the gravity center was
employed as a kind of measure for the strength or reliability of the formant. We defined
this as the ratio of the deviance of the spectrum in intensity D;(a,b) and frequency
Dj(a,b). That s,

1 b52 df — [ bS d :
Dl _ \/ e | S2(0)df (b_a{ ) f) o
,foS(f)df

b - g2(a7 b)
[ S(Hdf

Thus the four gravity centers and four spreading ratios gave eight additional features.

5.4.3 Segmental Features

From Frame-Based to Segmental Measurements

Although HMM is the most widely used technology for speech recognition, it is not
without its critics. When it comes to phoneme modeling it has a number of deficiencies.
The most serious criticisms levelled against HMM as a phoneme model ( cf. also [75])
are that

e its duration modeling abilities are poor

e as it works with uniform-sized frames, it does not permit the incorporation of
long-term (segmental) measurements

e it assumes that the frames which belong to a given state are independent

One possible way of overcoming these limitations is to work within a segmental frame-
work like that of [33] or [74]. Since working with variable-sized segments instead of
frames introduces many new problems, switching to such an approach requires very
strong justification. One convincing proof would be if we found phoneme models
which were not only intuitively more appealing, but also led to better classification
results. Recently great efforts have been made to find good segmental phoneme mod-
els [26; 28; 32; 75].
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Rather than employ these sophisticated techniques we decided to follow a very
simple procedure, the idea having been taken from [37]. For each feature we took the
average of the frame-based measurements for the first quarter, the central part and the
last quarter of the phoneme. In this way we obtained 3n features for each phoneme,
where n is the number of the features for one frame. Our reasons for modeling the
segments this way were twofold. On one hand we needed to describe each phoneme
with the same number of features otherwise the discriminative learners could not have
been applied at all. On the other we wanted to use features which were very closely
related to the original spectrum, and learn what the transformations being studied
would produce from them.

Duration

In HMM the duration of the phonemes is modeled only implicitly: the usual 3-state left-
to-right model remains in a state with an exponentially decaying probability, which is
quite a poor approximation of how the length of phonemes (or rather, phoneme thirds)
is distributed in the real world. In segmental models phonemic duration can be modeled
explicitly, which we think is especially important in languages like Hungarian, where
most of the phonemes have a “short” and a “long” version (that is, duration has a
characteristic role). Our experiments showed that adding duration to the segmental
feature set indeed increased classification accuracy, so duration was used in all of our
experiments. However, our statistical measurements indicated that the duration of the
phonemes has a huge scatter. This means that speaking rate normalization would be
very beneficial for recognition.

5.4.4 Feature Extraction

Applying the linear and non-linear transformations of Chapter 3 and 4 we transform the
segmental features, hoping for a better classification. In the case of PCA, ICA, SDA,
Kernel-PCA, Kernel-ICA and Kernel-SDA the original feature space was reduced to 32
dimensions, while in the case of LDA and Kernel-LDA the number of features kept was
always the number of classes minus one.

Naturally when we applied a certain transformation on the training set before learn-
ing, we applied the same transformation on the test data during testing.

5.4.5 Learning Methods

The following sections briefly present the applied generative and discriminative learning
techniques along with their evaluation method in the experiments.
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Applied Generative Learners

Hidden Markov Model (HMM)

Hidden Markov Modeling is currently the dominant technology in speech recogni-
tion [83]. This is why in the tests the HMM was trained on its "standard" features
and not on those utilized in all the other experiments. The intention behind this was
to have a reference point for the current state-of-the-art technology, something to
judge things by.

The hidden Markov models for the experiments were trained using the FlexiVoice
speech engine [94]. The system used a feature vector of 34 components, which consisted
of 16 lpc-derived cepstrum coefficients plus the frame energy, and the first derivatives
of these. The frame size was 30 msec while the step size was 10 msec.

One model was assigned to each of the phonemes, that is 28, 11 and 5 models were
trained for the groupings grpl, grp2 and grp3, respectively. The phoneme models were
of the 3-state strictly left-to-right type, that is each state had one self transition and
one transition to the next state. In each case the observations were modeled using a
mixture of 4 Gaussians with diagonal covariance matrices. The models were trained
using the Viterbi training algorithm [40].

Gaussian Mixture Model (GMM)

Gaussian Mixture Modeling [21] assumes that the class-conditional probability distribu-
tion p(x|c) can be well approximated by a distribution of the form

k
f<X> - Zai/\/(x? 229 21)7 (57)

where N (x, p;, 3;) denotes the multidimensional normal distribution with mean p; and
covariance matrix Y;, k is the number of mixtures and «; are non-negative weighting
factors which sum to 1. This is virtually the same as the state omission formula of
HMM (see Eq. (5.2)), but in this case it is used to parametrize a whole phoneme and
not frame-based observation vectors, i.e. x represents an element of the feature space
describing phonemes.

Unfortunately there is no closed formula for the optimal parameters of the mixture
model, so normally the expectation maximization (EM) algorithm is used to find proper
parameters, but it guarantees only a locally optimal solution. This iterative technique
is very sensitive to initial parameter values, so we used k-means clustering [83] to find
a good starting parameter set. Since k-means clustering again guaranteed finding only
a local optimum, we ran it 15 times with random parameters and used the one with
the highest log-likelihood to initialize the EM algorithm. After experimenting, the best
value for the number of mixtures k was found to be 3, 7 and 20 for the three groupings
used in the tests.

In all cases the covariance matrices were forced to be diagonal, since training full
matrices would have required much more training data (and computation time as well).
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Applied Discriminative Learners

C4.5

(4.5 [82] is based on the well-known /D3 tree learning algorithm. It is able to learn
pre-defined discrete classes from labelled examples. The result of the learning process is
an axis-parallel decision tree. This means that, during the training, the sample space is
divided into subspaces by hyperplanes that are parallel to every axis but one. In this way
we get many n-dimensional rectangular regions that are labelled with class labels and
organized in a hierarchical way, which can then be encoded into the tree. Since C4.5
considers attribute vectors as points in an n-dimensional space, using continuous-valued
sample attributes naturally makes sense.

Although the learning is quite fast, the results are often unsatisfactory. This is mainly
due to two reasons. Firstly, C4.5 uses the “divide and conquer” technique, which means
that regions are split during learning whenever they are insufficiently homogeneous.
Under certain circumstances this strategy results in a huge number of regions that are
needlessly split. The second reason is the knowledge representation itself — it would
seem that axis parallel decision trees are not flexible enough for phoneme recognition.

Three main cases should be mentioned where C4.5 apparently faces serious difficul-
ties. There are

e Non-rectangular regions. Even with reasonable feature space transformations
the phoneme classes are found in non-rectangular regions. To achieve the desired
accuracy (4.5 should increase the number of regions without limit, but some
reduction is inevitable because of time and space considerations. No matter how
carefully it is performed, the reduction of tree size increases the misclassifica-
tion rate.

e Poorly separated regions. When the algorithm divides the search space, its
goal is to create near-homogeneous regions. In addition, early splits determine the
direction towards which the whole procedure progresses. However if the samples
are scattered or noisy (e.g. classes are distributed randomly along certain axes)
there is scarce guidance for the initial divisions. The overall result is a set of
numerous regions (in other words large decision trees) with a substantial number
of misclassifications, whereas only a few well-placed regions would assure the
same accuracy.

e Fragmented regions. Irrelevant attributes force C4.5 to create too many re-
gions as the examples become mixed along one or more axes. The consequence
of this are errors similar to those mentioned above.

Despite the problems outlined here, C4.5 achieved good results when it had to
decide from among only a few, well separated classes. The greatest advantage of the
method is time complexity. In the worst case it is O(dn?), where d is the number of
features and n is the number of samples.
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OC1

The OC1 (Oblique Classifier 1) algorithm [70] learns by creating oblique decision trees.
The advantages and drawbacks are similar to those of C4.5, although in many cases OCI
produces better results. Having more freedom when splitting regions not surprisingly
increases accuracy and decreases the tree size. Then some non-rectangular regions
become efficiently learnable.

OC1 chooses oblique splits through its perturbation algorithm by performing random
jumps. There are two consequences of this. One is that it eliminates the problem of
early splits being so crucial. The other is that it assures an efficient algorithm, the time
complexity being of O(dn?logn). This is only logn times more than that seen in C4.5.

TiMBL

TiMBL [17] is a Memory Based Learner which means a new example is evaluated by
consuming the previous examples stored in the memory. Since no rule or decision is
made before the actual classification, this approach is called lazy learning. Typically,
this kind of machine learning has a very short training time but the classification of
new data takes rather a long time. The storing and processing of millions of examples
can also be a serious handicap.

TiMBL is based on IB1, which is a version of the k-Nearest Neighbour algorithm
with a special difference metric. TiMBL has many advanced tools to get the most out
of the k-NN approach. Information theory is applied to both the difference metrics and
attribute weighting. Measuring the information gain ratio of different attributes yields
valuable information about useful information-rich and information-poor attributes as
well. In this way irrelevant features can be skipped over. Due to the underlying strategy,
however, redundant features evidently run the risk of being overweighted, which may
corrupt the classification by excessively dominating the metric.

TiMBL uses a tree storing model as a solution for the time and space problems
mentioned previously. Training samples are stored in a tree-like manner to decrease
both computational time and the memory required for data storage.

Although the results given by TiMBL are satisfactory, there are obvious reasons why
we cannot suppose a better classification. One of the principal problems is that /B1
is designed to run on discrete features. Generally speaking, it can deal with numerical
features only by discretising them.

Artificial Neural Networks (ANN)

Artificial Neural Networks [91] now count among the conventional pattern recognition
tools, so we will not describe them here. In the experiments we employed the most
common feed-forward multilayer perceptron network with the backpropagation learning
rule. The number of neurons in the hidden layer was set to be three times the number
of features (i.e. the number of input neurons). Training was stopped when, for the last
20 iterations, the decrease in the error between two consecutive iteration steps stayed
below a certain threshold.
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Evaluation Method

The task of pattern classification is to map a given feature vector x to one of the classes.
Some of the standard machine learning algorithms we tried (C4.5, OCI1, TiMBL) do
just this, that is they return a label (i.e. a class) for each test vector. With these
methods the calculation of the recognition rate is quite straightforward.

The learning methods which model the a posteriori probabilities P(c|x) return a
probability value for each class ¢ given a test vector x. The so-called Bayes's decision
rule states [91] that the optimal way of converting these values to a class label is
to choose the class with the maximum a posteriori probability. We used this rule to
calculate the classification error for ANN.

Finally, other learning techniques such as HMM and GMM model the class-conditional
probabilities P(x|c). From this P(c|x) can be obtained by employing the rule

P(x|e)P(e)

P(c|x) = Px)

(5.8)
Thus, according to the Bayes decision rule, we have to choose that class for which
P(x|c)P(c) is maximal. (P(x) is independent of ¢ and so can be omitted.) Instead of
doing this we did not multiply by the factor P(c) in the evaluation, since handling this
probability calculation traditionally belongs to the language model. Moreover, prelim-
inary tests showed that multiplication with P(c) led only to marginal improvements,
clearly because the relative frequencies of the phonemes were quite well balanced.

5.4.6 Experimental Results

The experiments were performed on five feature sets as described below. As all sets
contained duration, we do not mention them separately. Setl consisted of the MFCC
coefficients as these are the most commonly used features. To have the opportunity of
studying the importance of the cosine transform we also conducted tests on the filter
bank energies themselves (Set3). By augmenting Setl and Set3 with the gravity center
features we acquired two further sets Set2 and Set4. We expected the addition of these
phonetics-based features to lead to a slight improvement. Lastly, the largest set (Set5)
contained all the features, that is filter bank energies, MFCC coefficients and gravity
centers. Our interest was in seeing whether the transformations could effectively select
the important ones, and in finding out whether combining all the features would confuse
the learning algorithms.

The same experiments were carried out on the three phoneme groupings grpl, grp2,
grp3, all the learning methods being tested not just on each set but with each trans-
formation technique. The only exception was HMM, which we used as a comparison
using the current "standard" technique, so it used its own feature extraction method
(see 5.4.5) but, of course, with the same training and test corpus.

The tables below depict the recognition accuracies for grpl, grp2 and grp3, respec-
tively. The columns show the five feature sets and the rows correspond to the transfor-
mation methods (including "none") applied. The numbers in the diagonal correspond
to the recognition accuracies of TIMBL, C4.5, OC1, ANN and GMM, respectively.
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M s MFCC |MFCC+FBGC CBLE |CBLE+FBGC all
R (Set1) (Set2) (Set3) (Set4) (Set5)
GMM
75.29 72.22 80.37 77.89 75.23
52.30 50.60 60.90 63.80 56.20
PCA 60.64 55.79 64.83 64.48 60.17
83.45 84.81 85.82 86.82 84.46
72.22 73.88 71.93 72.93 74.82
75.79 76.39 78.09 71.89 69.70
53.90 54.30 55.30 48.60 44.70
ICA 59.81 55.67 62.71 55.67 52.90
79.02 72.87 82.92 77.90 78.13
72.70 72.75 70.57 72.70 72.70
83.33 82.62 83.56 83.21 83.33
67.30 69.20 66.70 69.10 67.80
LDA 72.04 71.28 71.63 71.16 70.86
88.48 86.41 87.00 86.94 86.94
85.82 85.34 85.87 85.52 86.23
80.67 79.50 79.84 80.61 80.49
66.70 67.60 64.20 66.80 66.90
SDA 69.39 71.93 68.56 70.33 68.91
87.94 84.93 85.22 84.99 83.22
80.02 79.02 78.14 77.13 79.85
81.41 77.42 83.59 81.59 80.42
55.50 58.40 64.00 62.80 63.20
Kernel-PCA 63.43 68.28 71.06 70.35 70.76
82.94 84.89 83.76 86.13 84.65
82.94 79.27 85.24 84.36 83.82
80.81 82.23 84.33 77.61 77.11
55.00 58.70 61.00 61.40 61.10
Kernel-ICA 67.69 63.61 69.82 68.16 67.22
83.06 82.05 78.74 76.14 82.76
82.05 75.49 80.93 77.09 77.38
88.78 90.26 90.38 89.85 89.32
81.50 83.60 80.80 83.10 83.80
Kernel-LDA 76.38 78.68 77.74 80.22 75.55
89.44 90.15 90.86 89.97 90.86
88.26 88.38 88.67 88.55 89.20
86.60 87.48 87.96 87.60 88.07
77.80 77.80 78.60 76.90 78.90
Kernel-SDA 74.54 74.84 77.68 74.96 78.56
86.19 87.02 86.66 86.19 87.67
86.54 83.65 85.60 83.17 82.94

Table 5.1: Recognition accuracies for Grpl (28 phonemes).

for this grouping.

HMM scored 90.66%
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TiMBL
cas MFCC MFCC+FBGC CBLE CBLE+FBGC all
R (Set1) (Set2) (Set3) (Set4) (Set5)
GMM
81.14 80.37 86.17 86.46 82.74
57.60 63.10 73.90 75.20 69.30
PCA 68.91 68.44 77.25 77.48 74.41
86.76 87.41 89.78 90.96 90.60
84.04 78.66 75.77 80.73 80.91
79.13 80.26 83.09 77.18 76.83
67.00 67.20 72.20 64.40 61.00
ICA 72.70 71.39 80.50 71.45 70.04
85.46 78.96 89.13 84.34 85.05
84.46 78.37 79.96 83.10 83.45
84.81 85.57 83.03 86.17 86.11
79.80 84.00 81.00 82.40 83.00
LDA 86.11 85.87 82.74 84.40 85.22
90.78 90.07 90.25 88.83 89.78
88.89 86.88 87.29 87.12 87.12
86.46 87.29 84.81 86.05 84.21
80.60 79.80 79.30 80.50 79.60
SDA 79.26 82.98 78.01 80.44 81.56
90.25 88.89 88.30 89.48 89.18
83.63 82.15 82.51 85.99 84.04
83.18 85.31 88.50 86.73 85.13
63.80 69.30 77.50 74.90 75.80
Kernel-PCA 76.47 75.52 83.50 82.97 81.55
86.75 88.76 91.72 91.60 90.95
90.77 84.21 85.45 89.12 88.41
84.51 86.10 87.92 81.91 83.68
68.00 69.70 75.90 77.40 75.30
Kernel-ICA 74.10 74.34 78.12 79.90 78.95
87.70 88.17 86.87 90.24 89.23
90.65 82.61 88.11 85.51 86.99
92.66 90.82 93.25 93.96 93.96
88.10 89.80 90.10 92.50 92.20
Kernel-LDA 87.22 88.58 88.17 91.54 88.58
90.59 91.01 93.78 94.73 92.84
91.42 90.18 90.71 92.13 91.89
91.24 90.47 93.01 93.01 93.13
88.10 89.80 90.70 91.60 90.40
Kernel-SDA 87.40 84.74 87.93 87.46 87.22
90.30 90.83 93.31 93.49 92.48
89.88 90.30 92.19 89.59 86.87

Table 5.2: Recognition accuracies for Grp2 (11 phonetic categories). HMM scored
95.27% for this grouping.
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TiMBL
cas MFCC MFCC4+FBGC CBLE CBLE+FBGC all
OcC1
ANN (Setl) (Set2) (Set3) (Set4) (Set5)
GMM
84.75 84.75 90.24 87.64 88.17
70.40 74.70 85.40 83.90 79.10
PCA 82.15 81.80 87.23 88.30 86.88
92.43 92.67 93.68 93.44 93.09
90.78 86.11 84.34 89.60 90.13
84.45 83.35 87.41 86.46 86.99
73.80 78.20 83.00 78.60 76.40
ICA 82.57 82.74 84.99 81.74 81.66
91.37 85.76 93.03 87.71 91.13
89.13 82.92 85.05 85.40 88.59
89.47 89.47 88.71 91.07 90.95
89.40 90.40 87.60 91.50 92.50
LDA 91.78 91.55 89.66 93.09 92.67
91.43 92.26 90.31 93.09 93.09
91.37 91.84 88.42 90.69 92.26
90.48 90.24 89.53 90.36 89.47
89.70 90.80 87.10 90.90 90.00
SDA 87.59 89.48 87.59 88.83 86.35
92.55 93.56 93.62 92.61 92.20
87.29 86.17 83.69 89.24 81.73
87.64 88.23 91.48 91.42 89.59
74.90 81.70 84.80 85.60 83.10
Kernel-PCA 83.51 86.58 90.66 88.71 89.59
92.37 92.78 95.80 95.09 94.68
92.96 89.42 88.53 93.32 92.55
85.81 85.63 90.36 87.46 89.41
79.10 80.20 86.20 87.60 85.10
Kernel-ICA 82.15 84.57 90.07 87.29 88.23
91.96 91.54 93.02 92.37 93.49
92.73 87.76 90.89 90.13 90.48
95.32 94.26 92.01 93.90 95.62
93.60 95.30 89.90 93.60 94.30
Kernel-LDA 93.85 94.32 90.54 94.32 95.39
95.15 94.44 95.39 93.20 94.68
93.20 95.39 92.31 93.26 93.61
93.90 94.67 91.24 94.49 95.62
94.60 94.30 91.10 93.70 96.60
Kernel-SDA 91.66 95.09 93.14 93.85 92.84
94.44 94.74 94.68 95.74 95.80
92.73 92.55 92.08 93.14 89.06
Table 5.3: Recognition accuracies for Grp3 (5 gross phonetic categories). HMM scored

96.75% for this grouping.
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Discussion

When inspecting the results the first thing one notices is that only the neural net could
attain the efficiency of the HMM, all the other learners producing an error rate of 1.5 to
2 times bigger. We attribute this to our very simple segment model which used only the
feature averages for the three pre-selected segment parts. Actually, the fact that the
neural net could achieve the results of the HMM in spite of this drastic data reduction
clearly showed the advantages of discriminative learning over generative types. The
drawbacks of our primitive segment modeling becomes even more apparent when we
compare the results of the HMM with those of the GMM, since HMM uses Gaussian
mixtures too, but in a more refined way. The results of our comparison obviously
indicate that we must look for a more sophisticated segment representation later on.

As for the other algorithms, from the results it seems that C4.5 and OCI are quite
unsuitable for the task of phoneme recognition, at least in this form. Nevertheless for
grp3 (the case of gross phonetic categories) they worked reasonably well and their fast
learning may be a justification for their use in this case.

Finally TiMBL (namely, the /BI algorithm) worked quite well, and it appears that
in the case of sparse training data it may turn out to work better than the parametric
learners. Its major drawback, however, is its long evaluation time.

On examining the features the first thing to notice is that each learner performed the
same or better with the filter bank energies (SetI) than with their corresponding cosine-
transformed version (Set3). The only exception was GMM where the decorrelating
effect of the DCT proved beneficial — but PCA was always performed much better.

Another thing we realized was that including the gravity center features did not bring
about any general improvement. The main exception was grp3, where they helped in
many cases. It seems that they are fairly useful in identifying gross phonetic categories,
but not consistent enough for classifying phonemes.

With the feature set "all", we found that in general it was neither better nor worse
than the other sets. It seems that while using all the features together did not confuse
the learners, it could not significantly help them either.

As regards the feature extraction algorithms we reached the following overall conclu-
sion. Independent of the learning method, the non-linear methods always outperformed
their linear counterparts by some extent. As expected, the supervised methods were al-
most always better than the unsupervised ones. In most cases the dimension reduction
inherent in the transforms was also beneficial or, at least, did not noticeably degrade per-
formance. The feature space transformations, especially the supervised non-linear ones,
lead to a significant increase in the classification performance of the weaker learners.

Finally we note that the goals of feature extraction and learning are practically the
same. That is, if we have a very efficient learner then there is almost no need for
feature extraction. Put the other way round, a proper transformation of the feature
space may make the data so easily separable that quite simple learners will suffice.
These are, of course, extreme examples. In practice this simply means that solving
the problem in two steps by first transforming and then learning should usually prove
to be the best approach.
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5.5 Beyond the Phoneme Level

Up to this point we have been concerned only with phonetic classification. That is,
in our experiments we supposed that the start and end points of the phonemes were
known, and that the classifiers return a "hard-label". However, when using the phonetic
classifiers in a speech recognizer the phonetic boundaries are not actually known, and the
phoneme models are supposed to return probabilities. As regards the former problem —
finding "the" correct phonetic segmentation of an utterance (if there is such thing at all)
— remains unsolved. So if we insist on working with segments the best we can do
is to try many possible segmentations, assign scores to them and pick the best one
according to some evaluation criterion. If the evaluation means mapping probabilities
to the segmentations, the best one means the most probable one — and we arrive at a
probabilistic framework [33].

Other authors arrived at a segmental probabilistic structure in a different way. They
had been trying to find models that overcome the limitations of the HMM, yet keep
its advantages. These authors seek to present a mathematically unified framework
where the HMM is just a special case [74]. A survey of these probabilistic segmental
recognizers is beyond the scope of this work, but we suppose that our phonetic classifiers
can be incorporated in such a recognition system. For a description of our segmental
recognizer see [54] or [95].

The second problem we mentioned above is that the usual speech recognition frame-
works (be they frame-based or segmental) expect the acoustic module to return prob-
abilities and not "hard labels". This clearly does not cause a problem for the methods
which model the class-conditional or the a posteriori probabilities, but we have to do
something in the case of those non-parametric models which return only a class label.
Some of these algorithms can be modified to return probabilities, but some of them
cannot. In the latter case a possible solution is to train a set of classifiers on randomly
chosen subsets of the training data, and approximate the probability of a class based
on the votes of these. Although this seems plausible, we are unaware of any such
theoretical study in the machine learning literature.

Although word recognition is beyond the scope of this thesis we should mention
that when it comes to recognizing Hungarian numbers our OASIS speech recognition
system performs very well indeed [95].

5.6 Summary

This chapter sought to study the effects of the linear and non-linear feature trans-
formation methods of the previous chapters on phoneme classification, a basic task
of speech recognition. During the tests the phoneme classification performance was
studied as a function of the three main steps of statistical pattern recognition, that is
initial feature extraction (acoustic/segmental features), feature space transformation
(PCA, ICA, etc.) and the application of some machine learning algorithm. After view-
ing the test results we may confidently say that it is worth experimenting with feature
transformations in order to obtain better classification results.






Chapter 6
Phonological Awareness Teaching

An important clue to the process of learning to read in alphabet-based languages is the
ability to separate and identify consecutive sounds that make words and to associate
these sounds with their corresponding written form [1; 85]. To learn to read in a
fruitful way young learners must, of course, also be aware of the phonemes and be
able to manipulate them. Many children with learning disabilities have problems in
their ability to process phonological information. Furthermore, phonological awareness
teaching has also great importance for the speech and hearing handicapped, along with
developing the corresponding articulatory strategies of tongue movement.

In this chapter we study the application of automatic phoneme classification to
the computer-aided training of the speech and hearing handicapped as well as to the
learning of reading. Since a highly efficient automatic phoneme recognizer can make the
teaching system more reliable, we decided to examine whether the feature extraction
techniques could improve the recognition accuracy. The material in this chapter is
based on results of the experimental studies we described in articles [58-60)].

6.1 Introduction — The SpeechMaster

Before going into detail of the experiments performed, first we will give a concise
overview of a real-world application which induced us to perform the tests discussed
in this Chapter.

The "SpeechMaster" package (Fig. 6.1) seeks to apply speech recognition technol-
ogy to speech therapy (Fig. 6.2) and the teaching of reading (Fig. 6.3), where the role of
speech recognition is to provide visual phonetic feedback. In the first case it is intended
to replace the missing auditive feedback of the hearing impaired, while in the latter
case it is to reinforce the 'correct’ association between the phoneme-grapheme pairs.

With the aid of a computer children can practice without the need for the continuous
presence of the teacher. This is very important because the therapy of the hearing
impaired requires a long and tedious fixation phase. Furthermore, our experiments
and general observations show that young people are more willing to practice with the
computer than with traditional drills. We found we could make impressive progress in
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Figure 6.1: A screenshot of the start screen of the "SpeechMaster" software package.
As the menu shows, the user can select one of the two main modules, the reading
therapy — reading teaching one or the speech therapy one.

a very short training period.

The "SpeechMaster" program was designed after listening to the advice from teach-
ers who had a lot of experience of reading teaching and/or the speech training of the
hearing impaired. It contains exercises for each main phase of the methodologies tradi-
tionally employed in these areas. Since both groups of our intended users consist mostly
of young children it was most important that the design of the software interface be
made attractive and novel with interesting, playful graphics. Although the reading
teaching part also has the usual letter-to-phoneme and word-to-letter association drills
using images, the core of the software is the real-time phoneme recognition component.
Here the pronounced phones immediately appear on the screen in the form of flickering
letters, their identity and brightness being related to the speech recognizer's output.

We realized early on that the real-time visual feedback the software provides must
be kept simple, otherwise the human eye cannot follow it. Basically this is why the
output of a speech recognizer seems better suited to this goal than the usual method
where only the short-time spectrum is displayed: a few flickering discrete symbols are
much easier to follow than a spectrum curve, which requires further mental processing.
This is especially the case with very young children.

Figures 6.2 and 6.3 show the user interface of "SpeechMaster" in the speech therapy
and teaching reading applications, respectively. As one can see, in the first case the
flickering letter is positioned over a web camera image (Fig. 6.2D) to help the impaired
student learn the proper articulator positions while in the second case it is combined
with a traditional picture for associating the word and word sound (Fig. 6.3A).

From the speech recognition point of view the need for a real-time output poses a
number of special problems. Owing to the need for very fast classification we cannot
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Figure 6.2: Some screenshots from the speech therapy part of the "SpeechMaster"
software package. (A) — a vocalization drill, (B) — a drill for loudness control, (C) — a

drill for pitch control, (D) — real-time phoneme recognition, (E) — learning the phoneme
positions within words, (F) — a reading drill.

delay the response even until the end of phonemes, hence we cannot employ complicated
long-term models. The algorithm should process no more than a few neighboring
frames. Furthermore, since the program has to recognize vowels pronounced in isolation
as well, a language model cannot be applied.

So that the real-time recognition performance can be improved the "SpeechMas-
er" package was designed to be able to use the output of the following machine learn-
ing algorithms: Artificial Neural Networks, Gaussian Mixture Models, Support Vector
Machines, Projection Pursuit Learners and the family of feature extraction methods
described in Chapters 2 and 3.

All these methods require training data as input, which in a speech recognition
application means collecting a large amount of speech recordings. We carefully designed
the contents of this speech corpus before making the recordings. To this end we studied
the vocabulary of 13 reading textbooks used in the reading teaching of children. For
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Figure 6.3: Some screenshots from the teaching reading part of the "SpeechMaster"
software package. (A) — practicing vowels with the help of calling pictures, (B) -
practicing consonants with the help of calling pictures, (C) — a drill to practice the
positions of a letter within a word, (D) — a syllable reading exercise, (E-F) drills for
excluding the rotation of letters.

the speech training of the hearing impaired, the vocabulary used in the speech drills of
the deaf was collected and analyzed. This study resulted in a frequency dictionary for
both the reading textbooks and the hearing impaired exercises. These lists influenced
the selection of the words that were recorded for the speech corpus. Altogether 700
recordings were made which were phonetically segmented and labelled and formed the
proper input for the machine learning algorithms.

The "SpeechMaster" program is not yet fully developed; it will be tested in several
elementary schools, and in several schools for the hearing impaired all around in Hun-
gary. On the basis of these tests, we will assemble the best methodology of how to use
the software package in reading teaching and in improving the speech of the hearing
impaired. These methodologies and, of course, the software itself will be freely available
in 2004 so that all the teachers will have the opportunity to try it out for themselves.
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6.2 Experimental Results

In this section we discuss the real-time phoneme recognition tests. We will talk about
the extraction of the acoustic features, the way the transformations were applied, the
learners we employed and, finally, about the setup and evaluation of the experiments.

6.2.1 Evaluation Domain

For training and testing purposes we recorded samples from 160 children aged between
6 and 8. The ratio of girls and boys was 50% - 50%.The speech signals were recorded
and stored at a sampling rate of 22050Hz in 16-bit quality. Each speaker uttered all the
Hungarian vowels, one after the other, separated by a short pause. Since we decided not
to discriminate their long and short versions, we only worked with 9 vowels altogether.
The recordings were divided into a train and a test set in a ratio of 50% - 50%.

6.2.2 Acoustic Features

There are numerous methods for obtaining representative feature vectors from speech
data [43], but their common property is that they are all extracted from 20-30 ms
chunks or "frames" of the signal in 5-10 ms time steps. The simplest possible feature
set consists of the so-called bark-scaled filterbank log-energies (FBLE). This means
that the signal is decomposed with a special filterbank and the energies in these filters
are used to parameterize speech on a frame-by-frame basis. In our tests the filters
were approximated via Fourier analysis with a triangular weighting, as described in [43].
Altogether 24 filters were necessary to cover the frequency range from 0 to 11025 Hz.
Although the resulting log-energy values are usually sent through a cosine transform
to obtain the well-known mel-frequency cepstral coefficients, we abandoned it for two
reasons. First, the transforms we were going to apply have a similar decorrelating effect.
Second, we observed earlier that the learners we work with - apart from GMM - are
not sensitive to feature correlation so, consequently, the cosine transform would bring
no significant improvement [57].

The filterbank log-energies seem to be a proper feature set for a general speech
recognition task as their spectro-temporal modulation is supposed to carry all the speech
information [69]. But in the special task of classifying vowels pronounced in isolation it
is only the gross spectral shape that carries the phonetic information. More precisely,
it is known from phonetics that the spectral peaks (called formants) code the identity
of vowels [69]. To estimate the formants, we implemented a simple algorithm that
calculates the gravity centers and the variance of the mass in certain frequency bands
[4]. The frequency bands are chosen so that they cover the possible place of the first,
second and third formants. This resulted in 6 new features altogether.

A more sophisticated option for the analysis of the spectral shape would be to apply
some kind of auditory model [35]. Unfortunately, most of these models are too slow for
a real-time application. For this reason we experimented with the In-Synchrony-Bands-
Spectrum of Ghitza, because it is computationally simple and attempts to model the
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dominance relations of the spectral components [31]. The model analyses the signal
using a filterbank that is approximated by weighting the output of a FFT - quite
similar to the FBLE analysis. In this case, however, the output is not the total energy
of the filter, but the frequency of the component that has the maximal energy, and
so dominates the given frequency band. Obviously, the output resulting from this
analysis contains no information about the energies in the filters, but only about their
relative dominance. Hence we supposed that this feature set complements the FBLE
features in a certain sense.

6.2.3 Feature Extraction

When applying the feature extraction methods (see Chapters 3 and 4) we invariably
kept only 8 of the new features. We performed this severe dimension reduction in order
to show that, when combined with the transformations, the classifiers can yield the
same scores in spite of the reduced feature set. To study the effects of non-linearity,
the linear version of each transformation was also used on each feature set. Naturally,
when we applied a certain transformation on the training set before learning, we applied
the same transformation on the test data during testing.

6.2.4 Learners

Describing the mathematical background of the learning algorithms applied is beyond
the scope of this work. Besides, we believe that they are familiar to those who are
acquainted with pattern recognition. So in the following we specify only the parameters
and the training algorithms employed with each learner, respectively.

Gaussian mixture modeling

The most widely used method for modeling the class-conditional (continuous) distribu-
tion of the features is to approximate it by means of a weighted sum of Gaussians [21].
In the GMM experiments, three Gaussian components were used and the expectation-
maximization (EM) algorithm was initialized by k-means clustering [27]. To find a
good starting parameter set we ran it 15 times and used the one with the highest
log-likelihood. In every case the covariance matrices were forced to be diagonal.

Artificial neural networks

Since it was realized that, under proper conditions, ANNs can model the class poste-
riors [11], neural nets are becoming evermore popular in the speech recognition com-
munity. In the ANN experiments we used the most common feed-forward multilayer
perceptron network with the backpropagation learning rule. The number of neurons in
the hidden layer was set at 18 in each experiment (this value was chosen empirically,
based on preliminary experiments). Training was stopped based on the cross-validation
of 15% of the training data.
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Projection Pursuit Learning

Projection pursuit learning is a relatively little-known modelling technique. It can be
viewed as a neural net where the rigid sigmoid function is replaced by an interpolating
polynomial. With this modification the representation power of the model is increased,
so less units are necessary. Moreover, there is no need for additional hidden layers:
one layer plus a second layer with linear combinations will suffice. During learning
the model looks for directions in which the projection of the data points can be well
approximated by its polynomials, thus the mean square error will have the smallest
value (hence the name ‘projection pursuit’). Our implementation is based on the results
described in paper [44]. In each experiment, a model with 8 projections and a 5th-
order polynomial was applied.

Support Vector Machines

Support vector machines is a classifier algorithm that is based on the same kernel idea
we presented earlier. It first maps the data points into a high-dimensional feature space
by applying some kernel function. Then, assuming that the data points have become
more easily separable in the kernel-space, it performs linear classifications to separate
the classes. A linear hyperplane is chosen with a maximal margin. For further details
on SVM the reader may peruse [97]. In all the experiments with SVM the radial basis
kernel function was applied.

6.2.5 Experiments

In the experiments 5 feature sets were constructed from the initial acoustic features
described in Section 6.2.2. Setl contained the 24 FBLE features. In Set2 we combined
Set1 with the gravity center features, so Set2 contained 30 measurements. Set3 was
composed of the 24 SBS features, while in Set4 we combined the FBLE and SBS sets.
Lastly, in Set5 we added all the FBLE, SBS and gravity center features, thus obtaining
a set of 54 values.

In the classification experiments every transformation was combined with every
classifier on every feature set. This resulted in the large table of Table 6.1. In the
header of the table PCA, ICA, LDA and SDA stand for the linear transformations (i.e.
the kernel x"z was used), while KPCA, KICA, KLDA and KSDA stand for the non-
linear transformations (with an exponential kernel), respectively. The numbers shown
are the recognition errors on the test data. The number in parentheses denotes the
number of features preserved after a transformation. The best scores of each set are
given in bold.

6.2.6 Results and Discussion

Upon inspecting the results the first thing one notices is that the SBS feature set (Set3)
did about twice as badly as the other sets, no matter what transformation or classifier
was tried. When combined with the FBLE features (SetI) both the gravity center and
the SBS features brought some improvement, but this improvement is quite small and
varies from method to method.
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feature classifier none PCA ICA LDA SDA KPCA KICA KLDA KSDA
set (all) (8) (8) (8) ® ®  ®  ®  ®
GMM 16.38 13.81 16.45 1437 15.06 15.20 13.68 12.43 12.70
ANN 10.34 9.86 9.93 10.97 958 986 958 8.05 7.98
Setl (24) PPL 11.04 10.06 10.69 9.51 993 895 951 7.98 8.75
SVM 9.93 10.00 8.95 8.056 805 888 820 6.73 7.22
GMM 13.33 11.38 13.33 12.84 1333 13.47 1236 10.27 11.31
ANN 7.43 8.05 7.36 7.77 6.18 652 8.19 569 6.66
Set2 (30) PPL 9.37 859 654 6.11 6.45 659 645 4.93 6.66
SVM 8.33 6.66 6.66 6.45 513 736 6.11 527 534
GMM 2590 23.19 2590 2291 2437 25.13 24.65 23.05 21.45
ANN 20.00 18.88 19.58 21.45 20.00 21.04 18.54 18.26 17.84
Set3 (24) PPL 20.48 20.69 19.58 20.00 20.76 18.88 19.16 17.84 18.54
SVM 19.65 20.69 18.88 17.36 19.58 19.79 18.33 16.52 16.45
GMM 13.95 12.01 1590 13.81 14.16 15.34 12.08 10.00 9.93
ANN 10.27 9.86 8.05 9.02 895 736 9.86 5.55 7.56
Set4 (48) PPL 10.48 8.95 9.37 895 944 736 9.09 6.18 7.98
SVM 9.09 9.79  8.26 6.04 756 875 597 576 6.25
GMM 1548 1229 1333 11.04 13.75 11.73 11.87 10.83 11.59
ANN 8.68 7.01 6.45 10.00 756 9.09 659 7.15 4093
Set5 (54) PPL 8.26 9.23 7.36 6.52 729 805 777 6.18 7.77
SVM 9.37 8.54 576 4.65 562 6.11 576 6.18 4.23

Table 6.1: Recognition accuracies for each feature set as a function of the transformation and classification applied.
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When focusing on the performance of the classifiers, we see that ANN, PPL and
SVM vyielded very similar results. They, however, consistently outperformed GMM,
which is still the method most commonly used in speech technology today. Firstly, this
can be attributed to the fact that the functions that a GMM (with diagonal covariances)
is able to represent are more restricted in shape than those of ANN or PPL. Secondly,
it is a consequence of modeling the classes separately, rather than in the case of the
other three classifiers that optimize a discriminative error function.

As regards the transformations, an important observation is that after the transfor-
mations the classification scores did not get worse compared to the classifications when
no transformation was applied. This is so in spite of the dimension reduction, which
shows that the features are highly redundant. Removing this redundancy by means of
a transformation can make the classification more robust and, of course, faster.

Comparing the linear and the kernel-based algorithms, there is a slight preference
towards the supervised transformations rather than the unsupervised ones. Similarly,
the non-linear transforms yielded somewhat better scores than the linear ones. The best
transformation-classifier combination, however, varies from set to set. This warns us
that no such broad claim can really be made about one transformation being superior
to the others. This is always dependent on the feature set and the classifier. This is, of
course, in accordance with the “no free lunch’” theorem which claims that, for different
learning tasks, a different inductive bias can be beneficial [21].

Finally, we should make some general remarks. First of all, we must emphasize that
both the transformations and the classifiers have quite a lot of adjustable parameters,
and to examine all parameter combinations is practically impossible. Changing some of
these parameters can sometimes have a significant effect on the classification scores.
Keeping this (and the no free lunch theorem) in mind, our goal in this work was
to show that the non-linear supervised transformations have the tendency to perform
better (with any given classifier) than the linear and/or unsupervised methods. The
results here seem to justify our hypothesis.

6.3 Summary

The main purpose of this chapter was to compare several classification and transfor-
mation methods applied to real-time phoneme classification. The goal of applying a
transformation can be dimension reduction, improvement of the classification scores, or
increasing the robustness of the learning by removing the noisy and redundant features.

We found that non-linear transformations in general lead to better classifications
than the non-linear ones, and thus are a promising new direction for research. We also
found that the supervised transformations are usually better than the unsupervised ones.
These transformations greatly improved our phonological awareness teaching system by
offering a robust and reliable real-time phoneme classification.

Finally, we should mention that finding the optimal parameters both for the trans-
formations and the classifiers is quite a difficult problem. A combined optimization
should probably produce better results if done.






Chapter 7
Conclusions

In the first part of this thesis we non-linearized several linear feature extraction meth-
ods with the help of the kernel idea. In the second part, to demonstrate the effect
of the methods, we performed phoneme recognition tasks within the framework of
speech technology applications.

In the case of the linear feature extraction methods employed here, their non-
linearization was made possible by the property that they all lead to the optimization of
a Rayleigh quotient, both its numerator and denominator being a special function of the
training samples. Thanks to this special form the Rayleigh quotient could be formulated
as the function of the pairwise dot product of the samples. Exploiting this, to non-
linearize these formulas we simply had to redefine the dot product operation making
use of kernel functions. The effect of this operation replacement (see Theorem 2.1)
is that the whole calculation can be performed implicitly in a different dot product
space. The linear transformations themselves still remain linear in this other space
but, when viewing the transformation as the function of the original space elements,
it is non-linear. This is because owing to the kernel functions, the connection between
the original and the new space is non-linear.

Practically speaking, with the application of the kernel functions we open a door
into 'parallel’ dot product spaces, the 'passage’ to which is non-linear. The kernel idea
and the linear and non-linear methods presented in this thesis demonstrate that perhaps
the gap between linear and non-linear models is not that big at all. More precisely, a
subset of the non-linear models is linear but in another space.

The results of the speech technology applications demonstrated that, in order to
increase classification performance, it is worth decomposing the classification problem
into a feature extraction and a learning step. Albeit both the feature extraction and
the learning algorithms aim to separate the classes, performing it in two steps usu-
ally proves more efficient.

Next we should remark that as the construction of pattern recognition systems
requires the construction of proper models, it is very important to exhaustively study
the possible building blocks of these models, or even to create new ones. The kernel
idea is undoubtedly a good example of the latter, seeing how much progress it has
already brought to the discipline.
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Appendix A

Kernel Functions

A.1 List of Kernel Functions

2
Gaussian RBF Kernel exp (_M) oec Ry
o
Polynomial Kernel (x'z + o)1 geN, oceRy
x'z a
Cosine Polynomial Kernel (HXHHZH + J) geN, oceR,
1
Inverse Multi-Quadratic Kernel oceRy
Vix—z|?+0o
12
Rational Quadratic Kernel 1— M oceR,
Ix—z|]* +o
Sigmoidal Kernel* tanh(clez + o) c,c0 €ER
Triangular Kernel 1- w B > supy, xex |[X1 — Xa|

Table A.1: A partial list of useful kernel functions.

* With the exception of the Sigmoidal kernel (cf. [92]), all the functions listed here are Mercer kernels
with any parameter value in the given range.
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A.2 Graph of Radial Basis Kernel Functions
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Figure A.1: Graph of exp(—||x — z|| /o) for o € {2,4,8,16, 32,64, 128,256}

A.3 Graph of Polynomial Kernels
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Figure A.2: Graph of (x¥z + 1)? for ¢ € {2,4,6} and q € {3,5, 7}, respectively.



Appendix B

Proofs

This appendix contains the proofs of the propositions mentioned in Chapters 2 — 4.

B.1 Proof of Proposition 2.1

Proof

Let X = (x31,...,X;) be a k-tuple of X. It is sufficient to prove that the following K

matrix — the Gram matrix —

X[ X] o XXy
T T
Xk X]_ cc Xk 5 Xt

is positive semidefinite. And this is easy to see because

-
X1

o Ka=a' : (X1,"',Xk>a:H Xa "220

-
X

holds for any arbitrary a.

B.2 Proof of Proposition 2.2

Proof

(B.1)

It is trivial to prove that the functions defined in the proposition are continuous

and symmetric. To prove that they are positive definite, first we define a finite set
{x1,..., Xk} C X. Next, let us denote the matrices (X, X), x1(X, X) and ko (X, X)

by K, Kl and KQ.

i) Since a' (K, + Ky)a = a'Kja + a' Kya > 0 the matrix K = K| + Ko is

positive semidefinite, hence x is a Mercer kernel.
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i1) Let the entry-wise product of the matrices K and K, be denoted by K; o K.
This product is usually called the Hadamard or Schur product. According to the
Schur product theorem [41] which states that the Hadamard product of positive
semidefinite matrices is positive semidefinite! the X = K, o K, matrix is also
positive semidefinite, proving our initial statement.

i1i) Because matrix K is positive semidefinite, matrix K; + Al is obviously also
positive semidefinite for an arbitrary non-negative \.

iv) Similar to that in iii), the positive semidefiniteness of matrix K; implies the
positive semidefiniteness of matrix AK; for any non-negative \.

B.3 Proof of Corollary 2.1

Proof
i) It is an immediate corollary of Proposition 2.2 since, applying the operations
in 7) — 4v), one can construct any polynomial of the kernel function that has
positive coefficients.

i1) Since the exponential function can be arbitrarily closely approximated by polyno-
mials with positive coefficients and the kernels are closed under taking point-wise
limits, the result follows.

B.4 Proof of Proposition 2.3

Proof
i) Positivity on the diagonal. This is trivial since the kernel matrix is positive
semidefinite and the diagonal elements of a positive semidefinite matrix are non-
negative.

i1) Cauchy-Schwarz inequality. The kernel matrix

<,§(x, x)) K (X, Z)) (B.3)

constructed for the X = (x,z) 2-tuple of X" is positive semidefinite and, conse-
quently, its determinant is non-negative. This, after noting the symmetry of the
kernel function, proves the statement.

To give a fast proof to the Schur product theorem, first let x and y be independent random
vectors with covariance matrices A and B, respectively. Next it is easy to verify that the covariance
matrix of the random vector z = x oy is Ao B. Then, recalling that every covariance matrix is
positive definite, the theorem directly follows.
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i1i) Vanishing diagonals. If both k(x,x) and k(z,z) equal 0 then, from the Cauchy-
Schwarz inequality,

k(x,2)* < k(x,X)k(z,2) X,z€ X (B.4)

we get that x(x,z) = 0. O

B.5 Proof of Proposition 2.4

Proof
i) This statement of the proposition was originally proved by Schoenberg, together
with its converse, which is much more difficult to prove [86]. Later Baxter
constructed a shorter geometric proof [8]. We will not repeat the proof here,
because it is rather lengthy and technical.

i1) The proof readily follows from a well-know result of Polya. A real function
g(t1 — ta), t1,t2 € R is positive definite if ¢ is continuous, even function on R,
which is convex and decreasing on (0, 00).

ii1) The following derivation proves the statement.
a'Ka = a'|k(x,x;)]F_ o

= o' [h(xi)h(x)]} ;o e

h(x1)
= a' <h(x1)’ . ,h(sz)> « (59)
h(xk)

(s o) =0

iv) It is known from topology that a continuous mapping preserves the compactness
of a set. Let the image of X under ¢ be denoted by Z. Since ry € KL(R™) it
also follows that ko € K(Z). Thus k € K(X).

v) Let us examine the eigenvalue decomposition V' DV of matrix B. Since matrix
B is symmetric positive definite and its eigenvalues are thus non-negative, we can
assume that VDV = VT DY2DY2V . Applying the notation A = D2V we
find that

k(x,y) =x' Bz = (Ax)" (Az). (B.6)
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Using the latter form of the kernel function for an arbitrary X = (xy,---,Xx)
finite k-tuple of X the kernel matrix takes the form XTATAX. Its positive
semidefiniteness immediately follows from

o' XTATAXa =|| AXa ||*> 0. (B.7)
O

B.6 Proof of Theorem 2.1

Proof
Here we sketch two possible proofs (see [64; 90| for details ). In fact, we present two
different methods for creating a Hilbert space F which satisfies the proposition?.

The first one is obtained from a theorem of Mercer's from 1909, while the con-
struction of the second one is based on the reproducing property of Mercer kernels.
Obviously, giving two different constructions is unnecessary, because any two separable
Hilbert spaces are isometrically isomorph. But we present both of them here for his-
torical, rather then mathematical reasons. When the undoubtedly most popular kernel
algorithm - the SVM - was published, kernel functions were introduced following the
first, operator-theoretic approach. The second approach, however, is more general and,
in fact, does not require the compactness of X'. We note that in this thesis we always

assume the compactness® for the sake of simplicity, in accordance with the results of
Cucker and Smale [16].

a.) Mercer's Theorem. Let X' be a compact subset of R", v is a Borel measure, and
k is a Mercer kernel over X x X. Let \;, be the kth eigenvalue of the integral operator
L La(X,v) — La(X,v),

L)) = [ rlx) fa)dv(a), (B3)
X
and {1 }r>1 the orthonormal eigenfunctions. For all x,z € X
K(x,2) = > Mth(x)ix(2) (B.9)
k=1

where the convergence is absolute and uniform.

If we now substitute the Hilbert space ¢, for the space F of Theorem 2.1, and we
define the function ¢ : X — 5 as ¢(x) = (VAe®r(X))r=1...00 then, for any arbitrary
x,z € X, we get that k(x,2z) = ¢(x) - ¢(z).

2A complete dot product space is a Hilbert space.
3Had we not insisted on compactness, we would have had to elaborate on positive definite kernels
in general instead of Mercer kernels.
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b.) Let us have a positive definite kernel function x over X x X'. We then define a
map from X into the space of functions mapping X" into R,

¢: X —-R*
x — K(.,X).

(B.10)

Here, RY = {f|f : X — R} and ¢(x) denotes the function which assigns the value
k(z,x) to z € X, in other word, ¢(x)(.) = k(.,x). It can be readily seen that the set
of all linear combinations of the form

m

FO =Y aun(,xy), (B.11)

=1

where m € N, a; € R, x; € X are arbitrary, forms a vector space. The dot product
between f and

g()=>_Bir(.,x}), (B.12)
j=1
where m’ € N, 3; € R, x;- € X, is defined by
f-9= Z Z i BiK(Xi, X). (B.13)
i=1 j=1

It is straightforward to prove that it is well-defined, i.e. Eq. (B.13) is symmetric,
bilinear and strictly positive definite. Up to this point we have only defined a dot
product space. To turn it into a Hilbert space we need to complete it with the limit
points of sequences which are convergent in the norm ||x|| = +/f - f. Finally, let F be
defined by this Hilbert space, and, by the dot product definition

o(x) - d(z) = k(.,x) - k(.,2) = K(x,2), (B.14)

which proves the theorem. O

B.7 Proof of Proposition 3.1

Proof
Let us take the derivative of 7(v)

v Byv
v Byv
B (Vv Bv)v! Byv — (Vv Bov)v! Byv (B.15)
(v Byv)?
2B1vv' Byv — 2Byvv ! Byv
(VvT Byv)? '

Vr(v) =




Proofs

Now if we examine whether the numerator can become the zero vector, we have that

2B1vv' Byv — 2Byvv ' Byv 0
Bivv' Byv Byvv ! Byv
v Byv (B.16)

B = B

v v Byv ¥
T
1 v' Bv
By Biv = VTBQVV’

which means that the stationary points satisfy the eigenvalue-eigenvector equation. Put
the other way round: if, for some A and v,

By 'Byv=\v (B.17)
holds, then
v Byv v ByB; ' B;v v Bv
By;'Byv = v = 2 = : B.18
z 1V v Byv M v Byv VTBQVV (B.18)

Finally, from Eq. (B.16) and Eq. (B.18) we find that v must necessarily be a stationary
point. O

B.8 Proof of Proposition 3.2

Proof
For ease of notation we introduce a new notation for the centralized data:

z; = x1— FE{x},

: (B.19)
zr = X, — FE{x}.
If we now project the zy,--- ,z; samples onto a vector ﬁ and examine the variance
of the resulting points, we find that
k 2 k
2 () = 22 () ()
— —7; = - —z; | |z, —
2\ 2\ I
vi (1~ 1) v (B.20)
= T | 7 7,72, —_ '
IR 2; V]| O
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B.9 Proof of Proposition 3.3

Proof
i) The following equalities prove the statement.

E{v'z} =v'E{z} =v'0=0 (B.21)
E{v'z)?}=E{v'zz'v} =v'E{zz" }v=v'Iv=1 (B.22)

i1) Let W be an arbitrary n x n matrix. Then, for the covariance matrix Cy, of the
set Wzy,--- , Wz, we find that

Cw = E{Wz(Wz)'}

_ Ty T
= WE{zz }W (B.23)
= WIWT
= WWw'.

Finally, W is a unit matrix if and only if 1 is orthogonal. O

B.10 Proof of Proposition 3.4

Proof

According to the rank theorem of product matrices, it is sufficient to show that one of
the factors of product matrix W~'B has a rank smaller than r. In this case we will
demonstrate that the rank of matrix

T k:
B = JZ:; ?J(mj —m)(m; — m)’ (B.24)
cannot be more than » — 1. This simply follows from the fact that the vectors

m; —m, - ,m; —m (B.25)

are dependent which, in turn, follows from the equation

ki(m; —m) + -+ + k. (my —m) = 0. (B.26)
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B.11 Proof of Proposition 4.1
Proof

From the proof of Proposition 3.1 we know that the stationary points of 7(v) can be
obtained as the solution of the generalized eigenvalue-eigenvector problem

FO\F'v = \NFO,F" +6I)v (B.27)

Now, if v = v; 4+ vy, where v; € SPAN (é(X1), -+ , (X)) and v1 Lvy, then, exploit-
ing the fact that F''v = F'Tv;, we may obtain the result

FO,FTv, = A\FO,F v, + \w, (B.28)

where, in the case of A\d # 0, equality is possible if and only if v = v;. O

B.12 Proof of Proposition 4.2

Proof
Let us examine what form the covariance matrix takes in F.

C = B{(¢(x) — E{¢(x)}) (6(x) = E{¢(x)}) '}
= B{o(x)o(x)"} — E{E{¢(x)}o(x)"}

—E{¢(x)E{6(x)"}} + E{E{s(x)} E{o(x) " }}

(B.29)
= E{o(x)¢(x)"} — E{o(x)} E{s(x)"}
(N R
= EF]F _EF[F
1 5T
= SFU-DF,
Thus R .
o' FTAF(I-DNDF"Fa oa"iK(I-Ka
T(a) = D) _ o R e (B.30)

o' FTFa a o' Ko
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B.13 Proof of Proposition 4.3

Proof

Let us first examine B and W.

Then,

7(a)

k.

= Z 2y = ) (s — )"

"k 4 k
j=1 j=1

1 . 1
= ZFRF" - ZFIFT — =
k k k

1

a"FTLF(R-DFTFa

R 1 .
FIFT + EFIFT

~

a'K(R- Ko

 a'FTIF(I-RF Fa

a'K(I-RKa

(B.31)

(B.32)

(B.33)
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B.14 Proof of Proposition 4.4

Proof

Let us first examine D.

Then,

k

> (6(x) = 6(x7)) (9(x) = d(x;)) " [M]

3 6000 [ — 3% 6(x)60x) Ml
A k (B.34)
ap>) d(x;)p(x;) " [M]i; + ,Zzl¢(xj)¢(xj)T[M]z‘j

FMFT — FMFT — FMFT + FMFT

F(2M —2M)F".

Q' FTF2M —2M)F"Fa  o'tK(2M - 2M)Ko

- . B.35
o' F'"Fa a'Ka ( D)




Appendix C

Summary

C.1 Summary in English

Introduction

In this thesis we concentrate on two key topics in artificial intelligence (Al): machine
learning (ML) and its application to speech technology (ST).

"Learning" in the machine learning sense means the application of the model
method. That is, we aim at creating models that simulate human thinking correctly.
The best way of doing this is to specify the model by means of a large amount of
training patterns; decisions regarding a new pattern are made based on this model.

This summary is structured similar to the thesis itself. That is, it consists of two
main parts. In the first one we constructed algorithms that may form the building
blocks of certain models used in intelligent systems [58—62]. We have defined a unified
mathematical framework for a set of linear feature extractions algorithms. With the
application of the kernel idea - a method currently being used in machine learning
research - this unified framework allowed us to non-linearize all the linear methods
in an analogous way [62]. In the second part we demonstrated the usefulness of the
methods derived in the first part. We did so by performing phoneme classification
tests in the framework of speech technology applications, namely the OASIS speech
recognizer [56; 57; 62] and the "SpeechMaster" speech therapy and reading teaching
software [58-60].

Kernel-Based Feature Extraction
The Kernel Idea

Theoretical findings generally have their own very different, unique histories before
they find any practical application. One such example is the “kernel-idea”, which had
appeared in several fields of mathematics [38; 78] and mathematical physics before it
became a key notion in machine learning. The basic idea behind the kernel technique
was originally introduced for pattern recognition in [2] and was again employed in the
general purpose Support Vector Machine [12; 96; 97], which was followed by other
kernel-based methods [52].

The kernel idea can be applied in any case when the input of some algorithm consists
of the pairwise dot (scalar) products of the elements of an n-dimensional dot product
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space. In this case, simply by a proper redefinition of the two-operand operation of
the dot product, we can achieve that the algorithm will now be executed in a different
dot product space, which is probably more suitable for solving the original problem. Of
course, when replacing the operand, we have to satisfy certain criteria, because not
every function is suitable to implicitly generate a dot product space. The family of the
Mercer Kernels is an appropriate choice (according to Mercer's theorem) [16; 64]. The
thesis summarizes the properties of this function class, along with the possibilities of
constructing such functions, and we also give an overview of the dot product spaces
(also called kernel feature spaces) induced by them.

Linear Feature Extraction

In most classification problems it is normal to view the objects to be classified as
points in a feature space of proper dimensions. The space has to have a sufficient
degree of freedom so that the object classes are separable enough. Making use of
superfluous components, however, can confuse classification algorithms. A general
practical observation is that it is worth slightly decreasing the dimensionality of the
given feature space so that we can still guarantee that the overall structure of the data
points remains intact. A simple way to do this is by means of a linear transformation
that linearly maps an initial feature space into a new features space, usually one with
fewer dimensions. Along with dimension reduction, the transformation may also aim at
simplifying or emphasizing the structure of the data at the same time.

The mathematical goal of a linear transformation intended for feature extraction
can be defined several ways. For example, we may choose the basis vectors of the
transformed space as those directions of the original space along which the data shows
a large variance (PCA — Principal Component Analysis), or when their distribution
greatly differs from a Gaussian one (ICA — Independent Component Analysis). Since
these methods ignore the class information of the data, they are called unsupervised. In
the opposite case, if an algorithm makes use of the class labels it is called supervised.
These algorithms all try to push the classes apart, while keeping the data belonging to
the same class close together. Two supervised methods will be presented in this thesis,
one of them — Linear Discriminant Analysis (LDA) — is well-known, while the other —
Springy Discriminant Analysis (SDA) — is based on a novel idea [60; 61].

Handling all the four linear feature extraction methods in a unified framework is
made possible by the fact that in all cases the row vectors of the matrix of the linear
mapping can be obtained by optimizing a function given in the form of a Rayleigh
quotient. This otpimization can be performed relatively easily, as it leads to a (general-
ized) eigenvalue-eigenvector problem, and many reliable and fast libraries are available
to solve these kind of tasks.

Non-linear Feature Extraction with Kernels

Bringing the problem into a Rayleigh-quotient form is not sufficient in itself. We need
some further insight. We may soon realize, that all methods lead to the optimization
of a Rayleigh quotient that has a special form, where the matrices appearing in the
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numerator and denominator are both a unique function of the input vectors of the
algorithm. In fact, this property allows us to express the formulas as the function
of the pairwise inner products of the sample vectors. After this all that is left is to
redefine the inner product operation by using proper kernel functions. The effect of
this substitution of the operation - as we already know - is that the algorithm will be
executed implicitly in a different inner product space. The linear feature extraction
will still perform a linear transformation, but now in this new inner product space.
So, viewing the transformations as a function of the vectors in the original space, this
function will be non-linear, because the connection between the original and the new
space is non-linear, thanks to the kernel functions.

Besides deriving the Kernel-PCA, Kernel-ICA, Kernel-LDA and Kernel-SDA algo-
rithms [58-62], we also demonstrate their effect in the thesis by plotting their results
when using simple artificial 2- and 3-dimensional data sets as input data.

Speech Technology Applications

Speech Recognition

Automatic speech recognition is a special pattern classification problem which aims to
mimic the perception and processing of speech in humans. For this reason it clearly
belongs to the fields of machine learning and artificial intelligence. For historical reasons,
however, it is mostly ranked as a sub-field of electrical engineering, with its own unique
technologies, conferences and journals. In the last two decades the dominant method
for speech recognition has been the hidden Markov modeling approach. Meanwhile,
the theory of machine learning has developed considerably and now has a wide variety
of learning and classification algorithms for pattern recognition problems. The primary
goal of this Chapter is to study the applicability of some of these methods to phoneme
classification.

When choosing the directions of our speech recognition research, we decided to
focus on Hungarian with the hopes that we can address some special issues concerning
the processing of our national language, and also that we can make use of our previous
experience with NLP for Hungarian. Furthermore, we were looking for a flexible frame-
work that allows experimentation with different preprocessing techniques, feature-space
transformation methods and machine learning algorithms. These expectations led us
to the stochastic segmental approach which, in a certain sense, can be viewed as an
extension of hidden Markov modeling. Our recognition system, OASIS!, was designed
to be as modular as possible, so we can easily conduct experiments with combining
different techniques for the several subtasks of recognition.

In the thesis we designed and performed a segmental phoneme classification tests
within the framework of the OASIS speech recognizer [56; 57; 62]. The goal of this test
was to examine how the feature extraction algorithms - when combined with classifica-
tion algorithms (Timbl, OC1, C4.5, GMM, ANN) - influence the classification accuracy.

Examining the results of the many tests performed, we can claim that in the hope of
better classification it is worth applying feature extraction algorithms prior to learning.

The acronym is from "Our Acoustics-based Speaker-Independent Speech recognizer’.
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Phonological Awareness Teaching

An important clue to the process of learning to read in alphabet-based languages is the
ability to separate and identify consecutive sounds that make words and to associate
these sounds with its corresponding written form [1; 85]. To learn to read in a fruitful
way young learners must, of course, also be aware of the phonemes and be able to
manipulate them. Many children with learning disabilities have problems in their ability
to process phonological information. Furthermore, phonological awareness teaching has
also great importance for the speech and hearing handicapped, along with evolving the
corresponding articulatory strategies of tongue movement.

The "SpeechMaster" software developed by our team seeks to apply speech recog-
nition technology to speech therapy and the teaching of reading. Both applications
require a real-time response from the system in the form of an easily comprehensible
visual feedback. With the simplest display setting feedback is given by means of flick-
ering letters, their identity and brightness being adjusted to the speech recognizer's
output. In speech therapy it is intended to supplement the missing auditive feedback
of the hearing impaired, while in teaching reading it is to reinforce the correct associ-
ation between the phoneme-grapheme pairs. With the aid of a computer children can
practice without the need for the continuous presence of the teacher. This is very im-
portant because the therapy of the hearing impaired requires a long and tedious fixation
phase. Furthermore, experience shows that most children prefer computer exercises to
conventional drills.

In the tests performed in this thesis within the "SpeechMaster" software package
we again studied how the combination of feature extraction algorithms with classifiers
(ANN, PLL, GMM) affects classification [58—60]. We found that non-linear transfor-
mations in general lead to a better classification than the non-linear ones, and thus are
a promising new direction for research. We also found that the supervised transfor-
mations are usually better than the unsupervised ones. These transformations greatly
improved our phonological awareness teaching system by offering a robust and reliable
real-time phoneme classification.

Conclusion

The kernel idea and the linear and non-linear feature extraction methods presented in
this thesis demonstrate that perhaps the gap between linear and non-linear models is
not that big at all. More precisely, a subset of the non-linear models is linear but in
another space.

The results of the speech technology applications demonstrated that, in order to
increase classification performance, it is worth decomposing the classification problem
into a feature extraction and a learning step. Albeit both the feature extraction and
the learning algorithms aim to separate the classes, performing it in two steps usually
proves more efficient.
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C.2 Summary in Hungarian

Bevezetés

A tézis témakdre tagabb értelemben a mesterséges intelligencia, szorosabb értelem-
ben pedig a gépi tanulas.

A mesterséges intelligencidban a tanulds a modell-médszer alkalmazasat jelenti.
Megprobalunk olyan modelleket létrehozni, amelyek jol szimulaljak az emberi intelli-
genciat. Ennek a legjobb lehetséges médja az, hogy mintak sokasagat figyelembe véve
specifikaljuk a modelliinket, és a dontéseinket j mintak esetére ezen modell alkalma-
zasaval hozzuk meg.

Ez az dsszefoglalé koveti a tézis felépitését. A tézis két részre tagolédik. Az elsd
részben olyan algoritmusok konstrukciéjat adtuk meg, amelyek épitékoveit képezhetik
intelligens rendszerekben hasznalt modelleknek [58-62]. Egy olyan egységes matemati-
kai keretet definialtunk linearis tulajdonsagkinyerd algoritmusok egy halmazahoz, amely
egy, a gépi tanulasi kutatasok fokuszaban allé otlet, a kernel &tlet alkalmazasaval le-
het6vé tette ezen eljarasok nemlinearizalasat [62]. A masodik részben pedig konkrét
beszédtechnolégiai alkalmazasok, az OASIS beszédfelismers [56; 57; 62], illetve a
SpeechMaster beszédjavitas-terapiai és olvasasfejleszts rendszer keretein beliil [58-60],
fonémafelismerési tesztekkel demonstraltuk az elsé rész eljarasainak hasznossagat.

Tulajdonsagkinyerés kernel fiiggvényekkel

A kernel 6tlet

Mire egy-egy elméleti felfedezés eljut a gyakorlati alkalmazasig, az sokszor hosszas
folyamat eredménye lehet. Erre példa a kernel Gtlet is, amely a matematika [38; 78],
illetve matematikai fizika szadmos teriiletén felbukkant, miel6tt a gépi tanulasi kutatasok
fokuszaba keriilt. Az alapotlet mintafelismerési alkalmazasat eredetileg majd 40 éve
Aizerman javasolta [2]. A médszer azonban igazan ismertté csak sokkal késébb, a
support vektor gépek publikalasakor valt [12; 96; 97]. Az &tlet alkalmazasa nem allt
meg, s6t igazabél manapsag éli fénykorat, sorra jelennek meg Gjabb és Gjabb kernel
eljarasok [52].

A kernel 6tlet olyan esetekben alkalmazhaté, amikor egy algoritmus bemenetét egy
n-dimenzids belsé szorzat tér vektorainak paronkénti belsé szorzata jelenti. Ekkor pusz-
tan a belsé szorzat, vagy skalaris szorzat, kétoperandust miivelet alkalmas, nemlineéris
megvaltoztatasaval elérhetjiik, hogy az elébbi algoritmus immaron egy masik, esetleg
az algoritmus céljainak jobban megfeleld belsd szorzat térben hajtédjon végre. Persze
nem minden fliggvény alkalmas az el6bbi kritériumnak megfelelé miveletcserére, hiszen
nem minden fliggvény general implicit médon egy masik bels szorzat teret. Viszont a
Mercer kernelek csaladja egy lehetséges j6 valasztas (Mercer tétele) [16; 64]. A tézisben
osszefoglaljuk ennek a fiiggvényosztalynak a tulajdonsagait, konstrukciés lehetéségeit és
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attekintjiik az altaluk indukalt belss szorzat tereket, vagy masnéven kernel tulajdonsag
tereket.

Linearis tulajdonsagkinyerés

A legtdbb klasszifikaciés probléma megoldasa soran a klasszifikalandé komplex objektu-
mokat célszerii egy, a dimenziéjat tekintve megfelel6en nagy tulajdonsagtér pontjaival
abrazolni. Ennek a térnek elég szabadsagi fokanak kell lennie ahhoz, hogy a kiilon-
b6z6 osztalyokhoz tartozé objektumok elégségesen elszeparalhatéak legyenek, azonban
a felesleges komponensek megzavarhatjak a klasszifikaciés algoritmusok miikddését. Al-
talanos gyakorlati tapasztalat, hogy érdemes a tulajdonsagtér dimenziéjat csokkenteni
mindaddig, amig az adatok struktdraja nem sériil. Ennek egy egyszerii lehetésége a
linearis lekepezések hasznalata, amikor is az inicialis tulajdonsagteret linearisan leképez-
ziik egy 0], rendszerint kisebb dimenziés tulajdonsagtérbe. Ennek a transzformaciénak
nemcsak a dimenziécsokkentés lehet a célja, hanem az adatok struktiarajanak kiemelése,
vildgosabba, egyszeriibbé tétele.

A linearis transzformaciékat a tulajdonsagkinyerés érdekében kiilonféle céllal ve-
gezhetjiik. Az 0] tér bazisvektorai példaul lehetnek olyan iranyok az eredeti térben,
amelyek mentén az adatok nagy varianciat mutatnak — ilyen médszer a PCA (Prin-
cipal Component Analysis), vagy esetleg nagyon eltérnek a Gaussz-eloszlastél, mint
az ICA (Independent Component Analysis) esetében. Mivel ezen iranyok meghataro-
zasahoz az osztalyinformacidkat nem kell szamitasba venni, ezek a mddszerek az an.
nem felligyelt tulajdonsagkinyeré eljarasok csaladjaba tartoznak. Ellenkezd esetben,
ha az osztalyinformaciokat is felhasznaljuk a szamitasok soran, akkor feliigyelt linearis
tulajdonsagkinyeré eljarasokrdl beszélhetiink. Ebben az esetben a transzformacié al-
kalmazasaval igyeksziink a kiilonb6z6 osztalyokhoz tartozé objektumokat eltavolitani,
mikdzben elvarjuk, hogy az azonos osztalyba tartozé elemek kézeledjenek egymashoz.
Feliigyelt tulajdonsagkinyerésre is két eljarast mutatunk be a dolgozatban, az egyik a
kézismert LDA (Linear Discriminant Analysis), a masik pedig az ajszeri SDA (Springy
Discriminant Analysis) [60; 61].

A tézisben a négy linearis tulajdonsagkinyerésre alkalmas modszer egységes tar-
gyalasmédjat az adja, hogy minden eljaras esetében a linearis leképezés matrixanak
sorvektorait egy-egy Rayleigh-hanyados alakban megadott fliggvény optimalizalasaval
hatarozhatjuk meg. Ez az optimalizacié azonban viszonylag egyszeriien elvégezhetd,
hiszen (4ltalanos) sajatérték-sajatvektor problémara vezet, amely megoldasara rendel-
kezésre allnak megbizhato, relative gyors konyvtari rutinok.

Nemlinearis tulajdonsagkinyerés kernel fiiggvényekkel

Az elébbi linearis tulajdonsagkinyers eljarasok kernel fliggvényes nemlinearizalasahoz
a Rayleigh-hanyados alak 6nmagaban nem elég. Tovabbi észrevételek sziikségesek.
Konnyen belathatd, hogy ezek a mddszerek olyan specialis Rayleigh-hanyados alakd
formulak optimalizalasara vezetnek, ahol a szamlaléban és a nevezében szerepld mat-
rixok mindegyike az algoritmusok bemenetét képezé mintavektorok sajatos fliggvénye.
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Tulajdonképpen ennek kdszénhets, hogy a formulakat ki tudjuk fejezni a mintavekto-
rok paronként vett belsé szorzatanak fliggvényeként. Ezek utadn a nemlinearizalashoz
nem kell mast tenni, mint a belsé szorzat miveletet atdefinialni alkalmas kernel fiigg-
vények segitségével. Ennek a miiveletcserének — mint tudjuk — az a hatasa, hogy az
eljaras implicit médon egy masik belsé szorzat térben fog végrehajtédni. A lineéaris tu-
lajdonsagkinyeré eljarasok tovabbra is linearis transzformaciékat fognak meghatarozni
ebben a masik térben, viszont ha a kapott leképezéseket az eredeti tér vektorainak
fliggvényeként tekintjiik, akkor az mar nemlineéris lesz, hiszen az eredeti és az aj tér
kozott a kernel fliggvények alkalmazéasa miatt a kapcsolat nemlineéris.

A tézisben a Kernel-PCA, Kernel-ICA, Kernel-LDA és Kernel-SDA [58-62] mdd-
szerek levezetésén tul egyszerli mesterséges 2-, és 3-dimenziés mintakon keresztiil de-
monstraljuk az eljarasok miikddését.

Beszédtechnolégiai alkalmazasok

Beszédfelismerés

Az automatikus beszédfelismerés egy olyan mintafelismerési probléma, amelynek a célja
az ember beszédfeldolgozasi képességének modellezése. Ezért nyilvanvaléan a gépi ta-
nulassal és mesterséges intelligenciaval foglalkoz6 tudomany részét képezi. Tradicionalis
okokbdl azonban az elektromérndki tudomanyok részteriileteként szokas megjeldlni. Az
utébbi néhany évtizedben a beszédfelismerés dominans technolégiaja a rejtett Markov
modell (HMM) alapt megkdzelités volt. Ekdzben viszont a gépi tanulas elmélete so-
kat fejl6dott és szamos aj tanulé és klasszifikaciés eljaras valt elérhetévé [11; 21; 27].
A disszertaciéban a beszédfelismerési fejezetek célja a bevezetett tulajdonsagkinyers
eljarasok alkalmazhatésaganak vizsgalata a fonémafelismerés feladatan.

Amikor beszédfelismerési kutatasaink iranyat megvalasztottuk, elhataroztuk, hogy
olyan flexibilis rendszert fejlesztiink, amely lehetévé teszi a kisérletezést kiilonféle els-
feldolgozo, tulajdonsagkinyers és gépi tanulé algoritmusokkal. Ezek az elvarasok elve-
zettek egy sztochasztikus szegmentalis beszédfelismers rendszer, az OASIS [95] kifej-
lesztéséhez, amelynek a moduljai egy sajatos script nyelv segitségével vezérelhetSek. A
modularis felépités és a magas szintii vezérlési lehet8ség intenziv kutatémunkat tesz
lehetévé a beszédfelismerés teriiletén.

A disszertacioban az OASIS beszédfelismeré rendszer keretein beliil el6készitettiink
és végrehajtottunk szegmentalis fonémafelismerési teszteket [56; 57; 62]. A tesztekben
azt vizsgaltuk, hogy a tulajdonsagkinyerd algoritmusok kombinalva kiilonféle klasszifi-
kaciés algoritmusokkal (Timbl, OC1, C4.5, GMM, ANN) hogyan befolyasoljak a felis-
merési pontossagot.

A nagyszama teszt eredményének ismeretében kijelenthetjiik, hogy a hatékonyabb

klasszifikacié6 reményében tanulas el6tt érdemes tulajdonsagkinyerd algoritmusokat al-
kalmazni.
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Fonoldégiai tudatossag tanitas

Az alfabetikus nyelvek esetében az olvasastanulas folyamataban nagyon fontos a szava-
kat alkoté egymast kovets hangok szeparalasanak és azonositasanak képessége, vala-
mint a beszédhangok és irasjelek helyes asszociacidja [1; 85]. Ahhoz, hogy az olvasas-
tanulas eredményes legyen, a tanulékban valamiféle fonolégiai tudatossagnak kell ki-
alakulni, s6t a gyerekeknek képesnek kell lenniiik manipulalni is ezeket. A legtobb
tanulasi nehézségekkel kiizdé gyermeknek problémaja van a fonoldgiai informaciék fel-
dolgozasaval. Mindezek mellett a fonoldgiai tudatossag kialakitasanak és tanitasanak
szintén nagy szerepe van a siket gyermekek beszédjavitas-terapiajaban is.

Az altalunk kifejlesztett , Beszédmester” szoftvercsomag beszédfelismerési techno-
|6giakat alkalmaz olvasasfejlesztésre és beszédjavitas-terapiara. A beszédfelismerés fe-
ladata egy vizualis fonetikai visszacsatolas megvaldsitasa egy megbizhat6 valés ideji
fonémafelismers segitségével [58-60]. A képernydn a kiejtés pillanataban a felismerd
kimenete alapjan megjelenik egy bet(i, amelynek a fényessége éppen a felismerésének
valdsziniiségével aranyos. Mig a beszédjavitas-terapiaban a siket gyermekek hianyzé
auditiv visszacsatolasanak helyettesitése a cél, addig az olvasastanitasban a fonéma-
lehetGsége jelentds, hiszen a tanar allando jelenléte nem sziikséges hozza. Rendszerint
a siket gyermekek esetében nagyon hosszi terapias folyamat eredményez elérehaladast,
amelyet a, Beszédmester" akar jelentSsen is meggyorsithat. Tovabba a tapasztalatok azt
mutatjak, hogy a gyermekek elényben részesitik a szamitégépes munkat a hagyomanyos
feladatokkal szemben.

A disszertaciéban, a,Beszédmester’ programcsomag keretein beliil elvégzett tesztek
soran szintén azt vizsgaltuk, hogy a javasolt tulajdonsagkinyeré eljarasok milyen hatast
fejtenek ki klasszifikaciés algoritmusok egy halmazara (ANN, PPL, GMM, SVM) a fe-
lismerési pontossag tekintetében [58—60]. Az eredmények azt mutattak, hogy a transz-
formaciok koziil a nemlinearisak rendszerint kisebb klasszifikaciés hibat eredményeztek.
A feliigyelt és nem feliigyelt médszerek viszonylataban pedig a felligyelt eljarasok voltak
sikeresebbek. Mindezek az eredmények nagyban hozzajarultak, hogy a , Beszédmester”
szoftveriink hatékonyabb és megbizhatébb valés idejii fonémaklasszifikaciot, és ezaltal
eredményesebb terapiat végezhessen.

KonklGzidé

A disszertacioban szerepld linearis tulajdonsagkinyeré eljarasok, illetve ezek kernel fligg-
vényeket hasznalé nemlinearizalt valtozata jél demonstralja, hogy talan matematikai
értelemben nem is olyan nagy a kiilonbség a linearis és a nemlinearis modellek kdzott.
Pontosabban a nemlinearis modellek egy halmaza linearis, de egy masik térben.

A beszédtechnoldgiai alkalmazasok eredményeibél kideriilt, hogy a hatékonysag no-
velése érdekében érdemes a felismerés problémajat két részre bontani: el6szor tulaj-
donsagkinyerésre, majd tanulasra. Noha mind a tulajdonsagkinyerést végzs, mind a
tanulast megvaldsité matematikai modellek célja a szeparacio, a végcél tobb lépésben

P4

torténd elérése sokszor célravezetének bizonyul.
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C.1. tablazat. A tézis témajanak és az azt fedd sajat publikacidknak a viszonya.

A disszertacio tézisei
Mivel a disszertacio két f6 részre tagolddik, az eredményeket is ennek megfeleléen két csoportra
fogjuk felosztani.

Az els6 téziscsoport eredményeit a gépi tanulas témakdrébe tartozd Gjszerii tulajdonsagki-
nyerd algoritmusok konstrukciéja képezi, amelyeket a szerzé a disszertacié elsé részében a 3.
és 4. fejezetekben mutat be.

|/1. A szerzb egy olyan egységes matematikai keretet definialt linearis tulajdonsagkinyeré al-
goritmusok egy halmazahoz, amely egy, a gépi tanulasi kutatasok fékuszaban allé &tlet,
a kernel &tlet alkalmazasaval lehetévé tette ezen eljarasok nemlinearis valtozatanak ki-
dolgozasat. A disszertacioban 8 tulajdonsagkinyerd eljarast, 4 linearis (PCA, ICA, LDA,
SDA) és 4 nemlinearis médszert (Kernel-PCA, Kernel-ICA, Kernel-LDA, Kernel-SDA)
mutat be egy egységes megkézelitésben a Rayleigh-hanyados optimalizalasaval [56-62].

1/2. Az irodalombdl korabban ismert 3 linearis médszer (PCA, ICA, LDA) kiegészitéseként
a szerz6 megkonstrualt egy ujszerd linearis eljarast az SDA-t [62].

|/3. A szerzé megadta az ICA, LDA és SDA linearis eljarasok nemlinearis valtozatat, amelyek
eredményeképpen 3 tovabbi ij algoritmus, a Kernel-ICA [59], Kernel-LDA [58] és Kernel-
SDA [60] jott létre.

A masodik téziscsoport témajat az elsd téziscsoportban felsorolt linearis, illetve nemlinearis
tulajdonsagkinyerd eljarasok beszédtechnolégiai alkalmazasa alkotja, amely megtalalhaté a
disszertaci6 5. és 6. fejezetében.

[I/1. A szerzé megtervezett, és munkatarsaival egyiitt végrehajtott az OASIS beszédfelismers
rendszer keretében olyan szegmens-alapt fonémafelismerési teszteket, amelyek demons-
traljak a kifejlesztett tulajdonsagkinyerd eljarasok hatasat a felismerési pontossag tekin-
tetében [56, 57; 62]. A szerzé sajat munkajat képezi a tervezésen kiviil a tulajdonsag-
kinyeré eljarasok implementalasa és futtatasa is.

[1/2. A Beszédmester beszédjavitds-terdpiai, olvasasfejlesztd és olvasasterapiai rendszer valés
idejii fonémafelismerési hatékonysdganak megndvelése érdekében a szerz& tovabbi felis-
merési teszteket tervezett meg és végzett el munkatarsaival [58—-60]. A munkavégzés
itt is az elébbi tézispontban leirt munkavégzési kondicicknak megfeleléen tortént®.

Végiil a C.1-es tablazat dsszefoglalja, hogy a disszertacié eredményeihez kapcsolédé pub-
likaciok milyen tulajdonsagkinyers eljarasokat ismertetnek, és hogy az alkalmazasok melyik
keretrendszer felhasznalasaval késziiltek.

2Noha az elmult évek soran mind az OASIS, mind a , Beszédmester’ rendszerek esetében a szerz6
projekt- és témavezetSként vett részt a munkalatokban, a két rendszert magat nem sorolja a disszer-
tacié eredményei kozé, hiszen ezekben az esetekben a munkatarsakkal kdzos és szétvalaszthatatlan
eredményekrél van sz6.
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