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Bevezetés 

Az idegtudomány egyik fontos célja annak a megértése, hogy az agy 
miként vezérli az összetett viselkedésmintákat. A jelen tanulmány, egy a 
magasabb kognitív funkciókért felelős régióban, a hippokampuszban 
(HP) folyó információ feldolgozást vizsgálja szabadon mozgó 
patkányban. 

A HP anatómiailag négy területre osztható: CA1, CA2, CA3 és a gyrus 
dentatus (GD). A CA1 régió további proximális, középső és disztális 
alrégiókra osztható, míg a CA3 régió CA3a (a CA2-höz közeli), b és c 
(GD-hez közeli) alterületekre osztható. Ezeken az alrégiókon belül a 
sejtek egyformán kompakt és párhuzamos rétegekbe rendeződnek. A 
HP legerősebb bemenetét az entorhinális kéreg (EK) adja a 
„triszinaptikus pályán“ keresztül, mely magában foglalja az EK II. 
rétegéből (layer II, LII) a GD-ba futó „perforáns pályát“, a CA3-ba futó 
„moharostokat“ és a CA3-ból a CA1-be futó „Schaffer-
kollaterálisokat“. A CA1 az információt visszaküldi a subiculumba és az 
EK mély rétegeibe (layer V, LV rétegek), majd onnan tovább más 
területekre. Néhány parallel rost fut a LII-ből (EK) a CA3-ba és CA2-
be, illetve a III. rétegből (layer III, LIII) a CA1-be. Hasonló képpen, az 
EK különböző részei a CA1 régió eltérő alterületeit idegzik be: a 
mediális entorhinális kéreg (MEK) a proximális alrégiót célozza meg, a 
laterális entorhinális kéreg (LEK) pedig a disztális alrégiót. 

A sejtek in vivo tüzelési mintázatait nagyrészt a szinaptikus bemenetek 
és a sejtek intrinsic tulajdonságai alakítják ki. A hippokampális piramis 
sejtek alacsony tüzelési rátával (0,5-2 Hz), sporadikusan, jellemzően 
rövid idő alatt több akciós potenciált generálnak (ún. burstökben 
„tüzelnek”). Az interneuronokat nagyobb tüzelési frekvencia jellemzi, 
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mely széles tartományban változhat (2-3 Hz-től 10-30 Hz-ig). Az 
extracelluláris jelben regisztrált különböző akciós potenciálok 
hullámformája és ritmicitása jellemző a különböző neurontípusokra, így 
lehetővé teszi a különböző idegsejttípusok osztályozását az 
extracelluláris jel alapján. 

A hippokampusz egysejt aktivitására jellemző, hogy a principális sejtek 
tüzelését befolyásolja az állat pozíciója. Azokat a sejteket, melyek akkor 
válnak aktivvá (növelik a tüzelési frekvenciájukat, TF), amikor az állat a 
tér egy adott pontjába ér (és inaktívvá válnak, amikor az állat elhagyja 
azt), „place sejteknek“ nevezzük. Azt a területet pedig, ahol a sejt aktív, 
„place fieldnek“ nevezzük. Minden place sejtnek egy vagy akár több 
place fieldje lehet. 

A HP populációsaktivitás-mintázata egyszerűen azonosítható az igen 
jellemző mezőpotenciáloknak (Local Field Potential, LFP) 
köszönhetően. Az egyik legfontosabb ilyen mintázat a théta oszcilláció 
(mely a lokomóció, a környezet felfedezése és az alvás közbeni gyors 
szemmozgások (Rapid Eyes Movement, REM fázis) alatt jelentkezik). 
Ez az 5-10 Hz-es hullám a hippokampusz összes sejtjét modulálja, és 
minden régió (CA1, CA2, CA3) a ciklus más-más fázisában válik 
aktívvá. Bár a théta kialakulásának mechanizmusa ezidáig ismeretlen, 
az eddigi eredmények arra utalnak, hogy a septum lehet a fő konduktora 
ennek az oszcillációnak. A théta ritmus egyik érdekessége, hogy a place 
sejtek tüzelése a place fielden történő áthaladás közben fokozatosan 
korábbi théta fázisba kerül, melyet fázisprecessziónak nevezünk. Egy 
másik jellegzetes mintázat az ún. éleshullám-fodor (sharp wave-ripple, 
SPW-R) ritmus. Az SPW-R egyrészt, egy a stratum radiatumban zajló 
lassú, negatív hullámforma (éleshullám, sharp wave, SPW) áll, másrészt 
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a piramisrétegben lezajló gyors (~140 Hz) oszcillációból (fodor - ripple) 
áll. A CA3 alrégió ismerten fontos szerepet játszik az SPW 
generálásában, nevezetesen a CA3a piramissejtek aktivitása és azok 
rekurrens kollaterálisai révén, melyek részt vesznek a populációs 
események kialakulásában. A CA2 régióra ugyanúgy jellemző a CA3a 
régió számos tulajdonsága, azonban az eddigi SPW-R kialakulását 
vizsgáló kutatások során figyelmen kívül hagyták. Az SPW-R 
mintázatoknak nyugalomban és a nem REM alvás alatt szerepe van az 
emlékek rögzülésében. A HP további mintázatai a gamma oszcillációk, 
melyek a figyelemhez és a szenzoros érzékeléshez köthető 30-150 Hz-
es ritmusok. A HP különböző rétegeiben, különböző frekvenciákkal 
fordulnak elő. Bár a kezdeti gamma oszcillációkat egy egységes 
jelenségnek gondolták, mára már ismert, hogy számos mechanizmus 
játszhat közre ezen mintázatok kialakításában. 

A HP funkcionális szerepe intenzíven kutatott amióta felismerték, hogy 
fontos szerepet játszik a memória kialakulásában és a térbeli 
navigációban. Egy híres humán vizsgálat rámutatott, hogy az az alany, 
akinek műtétileg eltávolították a hippokampuszát, képtelen volt új 
emlékeket megjegyezni. Azóta a neurofiziológiai és anatómiai 
vizsgálatoknak köszönhetően tudjuk, hogy a HP elengedhetetlen 
fontosságú az epizódikus memória kialakításában. A HP egy másik fő 
funkciójára derült fény, amikor kiderült, hogy a patkány CA1 
régiójának piramissejtjei (place sejtek) a tér egy bizonyos pontján 
tüzelnek. Összességében a HP az agyon belüli „térbeli- és kognitív 
térkép“ központjává vált, és számos tanulmány igazolta, hogy a HP 
különböző régiói miként vesznek részt ezen „térkép“ kialakításában és 
dinamikus frissítésében. 
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Célkitűzések 

Kísérleteink alapvető célja az információ feldolgozás folyamatának 
vizsgálata volt szabadon mozgó patkányban, egyidőben a HP 
valamennyi alrégiójában. Elektrofiziológiai eredményekkel támasztjuk 
alá a HP egyes idegsejt populációi közti különbségeket. A konkrét célok 
az alábbiak voltak: 

- A CA1, CA2 és CA3 régiók közti élettani különbségek 
vizsgálata a sejtek szintjén, viselkedő állatmodellben. 

- A hálózat térbeli-időbeli dinamikájának jellemzése a HP egyes 
régiói közti információ áramlás során. 

- Megvizsgálni a CA1, CA2 és CA3 alrégióinak jellemzőit a 
térbeli információkódolás során. 

- A szinaptikus bemenetek és a lokális hálózati aktivitás 
vizsgálata a HP egyes alrégióiban. 
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Anyagok és Módszerek 

Kísérleteinkhez először izoflurán anesztézia mellett egy implantációs 
műtétet végeztünk Long-Evans patkányokon. Az állatok fejét 
sztereotaxiás készülékbe fogtuk, majd a koponyát feltártuk és szilicium 
elektródákat implantáltuk az agyba, melyek egyidejűleg lefedték a CA1, 
CA2 és CA3 régiókat is. Az elektródát mozgató microdrive-ot fogászati 
cementtel rögzítettük a koponyán, mely segítségével az elektródát 
naponta mélyebbre pozicionáltuk. A felépítményt a koponyához 
cementezett, földelt rézhálóval vettük körbe. Az elektródát egy olyan 
multiplexelő előerősítőhöz csatlakoztattuk, melynek kábele lehetővé 
tette az állat szabad mozgását. Az állat aktuális helyzetét a rézhálóra 
cementezett két, eltérő színű fénykibocsájtó dióda segítségével 
detektáltuk. A neuronális aktivitást különböző labirintusokban végzett 
feladatok végrehajtása közben regisztráltuk. A jel mintavételezése 20 
kHz-cel történt. Az LFP különválasztása a jel aluláteresztő szűrésével és 
1250 Hz-es újramintavételezésével, a sejtek tüzelését jelző 
hullámformák (spike-ok) észlelése sáváteresztő szűrő (0,5-5 kHz) 
segítségével a spikedetekt2 programban történt. A spike-ok automatikus 
csoportosítását a Klustakwik2 program végezte, melynek utólagos kézi 
finomhangolását a KlustaViewa program segítségével végeztük. 

A kísérletek végén az állatokat először 0,9%-os sóoldattal, majd 4%-os 
paraformaldehiddel perfundáltuk transzkardiálisan. Az agyakat 
eltávolítottuk és vibratommal (Leica Vibratome) 70 μm vastag 
metszeteket készítettünk, melyeket anti-PCP4-el (CA2 specifikus 
ellenanyag) immunjelöltünk. Ehhez a metszeteket háromszor 1%-os 
PBS-Tx oldatban mostuk, majd 3%-os BSA (1%-os PBX-Tx-ben oldva) 
oldatban blokkoltuk, és az elsődleges antitesttel (nyúl anti-PCP4, 1:300) 
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inkubálták egy éjszakát át. Végül a metszeteket háromszor PBS-Tx 
oldatban mostuk, majd 2 órán át inkubáltuk kecske anti-nyúl Alexa 
Fluor-488 (1:500) másodlagos antitesttel. A metszeteket tárgylemezre 
húztuk, majd fluoreszcens lefedőanyaggal lefedtük. 

Az összes analízis MATLAB program segítségével készült, beépített 
funkciók és saját készítésű programok használatával. Az állat pozícióját 
is regisztráltuk majd a tér 5 cm-es szakaszaihoz tartozó spike számokból 
és az ott töltött idő arányából TF-térképeket készítettünk. A place 
fieldeket a tér azon legalább 15 cm-es része(i)ként definiáltuk, ahol a TF 
a maximális érték 10%-át elérte. A place field-ek számát, a térbeli 
információt és a szelektivitást az összes sejtre kiszámoltuk. 
Meghatároztuk az spikeokhoz tartozó pillanatnyi théta fázist, és a 
fázisprecesszió ábrázolása céljából ezeket a fázis értékekeket a pozíció 
függvényében ábrázoltuk. E két változó függését a cirkuláris-lineáris 
regressziójuk meredekségének és erősségének kiszámításával, valamint 
a fázistartomány meghatározásável jellemeztük.  

A futás alatti théta szakaszokat (5-11 Hz között szűrt CA1 piramisréteg 
LFP) RUN-nak, az alvás alattikat REM-nek neveztük. Az alacsony théta 
teljesítéményű, futás-mentes szakaszokat (2 cm/s-nál lassabb mozgás) 
ébrenlét alatt WAKE-nek, míg alvás alatt lassú hullámú alvásnak (non-
REM) definiáltuk. A pillanatnyi théta fázisokat Hilbert 
transzformációval számoltuk ki (0°: théta csúcs, 180°: völgy). A sejtek 
aktivitásának théta függését a pillanatnyi fázisértékek vektoriális 
összegének a hosszával jellemeztük, és a kapcsoltság szignifikáns voltát 
Rayleigh tesztel ellenőriztük. A spikeok théta fázistól való függéshez az 
összes pillanatnyi fázis eloszlását vetettük össze a szignifikánsan 
modulált sejtek preferált fázisainak eloszlásával. 
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A ripple-ök detektálásához kizártuk az analízisből a théta szakaszokat és 
a piramissejtekből származó LFP-t a kívánt frekvencián (80-250 Hz) 
szűrtük. A szűrt jel teljesítményének az átlagtól legalább négy 
szórásnyival történő emelkedését tekintettük ripple eseménynek, melyek 
időbeli határainak a két szórásnyi határ átlépést tekintettük. A 
teljesítménycsúcs környékén lévő legközelebbi völgyet használtuk az 
események időbeli illesztéséhez („0” időpont). Ezt a detektálást minden 
elektródaszár egy-egy referenciacsatornáján elvégeztük.  

A sejtek ripple alatti aktivitásának vizsgálatához a ripple-ket független 
eseményként kezeltük a különböző régiókban. A ripple-ök időtartamát 
normalizáltuk, és a ripple körüli 100 ms-os ablakot vettük figyelembe a 
ripple keresztkorrelogrammok és azok 95%-os konfidencia 
intervallumának számításánál, amely alapján pozitívan vagy negatívan 
modulált csoportokba soroltuk a sejteket. A sejtek tüzelési mintázatából 
peri-ripple (100 ms-os ablak) tüzelési hisztogrammot képesztünk, 
melyek - normalizálás után - a populációs átlagok alapjául szolgáltak.  

A különböző régiók (CA1, CA2 és CA3) ripple körüli aktivitásának 
vizsgálatához a régiók sejtjeinek kummulált aktivitását használtuk. 
Minden keresztkorrelogrammhoz a szignifikáns keresztkorrelogram 
csúcsok meghatározása érdekében randomizált kontrollcsoportokat 
alkottunk a spike-ok időpontjának ±50 ms-mal történő véletlenszerű 
eltolásával. Az egyes sejtpárok közötti keresztkorrelogrammokat is 
vizsgáltuk a monoszinaptikus funkcionális párok észlelése érdekében. A 
keresztkorrelogrammok 5 ms-on belüli éles csúcsait tekintettük a 
monoszinaptikus kapcsolatok indirekt jelzőjének. 
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Eredmények 

Egyidejűleg regisztráltunk a HP transzverzális síkjának összes 
régiójából, alrégiójából és rétegéből sejtaktivitást és LFP-t. A különböző 
régiók és alrégiók elkülönítése fiziológiai és szövettani paraméterek 
segítségével történt. 

Az egyes régiók közötti állapotfüggő tüzelési mintázatok és 
funkcionális kapcsolatok  

Megvizsgáltuk az idegsejtek tüzelési rátáját, hogy feltárhassuk a 
különböző viselkedési állapotokhoz kapcsolódó funkcionális 
különbségeket az egyes alrégiók között. A CA2 sejtek tüzelési rátája 
volt a legnagyobb mindegyik állapot során, melyet a sorban a CA1 és a 
CA3 sejtek követtek. A CA1 proximális sejtek nagyobb tüzelési rátát 
mutattak, mint a disztálisan elhelyezkedők, míg a CA3 régióban a 
disztális (CA3a) sejtek mutattak nagyobb tüzelési rátát a proximálisan 
elhelyezkedőkkel szemben (CA3c). A CA1 és CA2 piramisrétegének 
mélyebb (a stratum oriens felé lévő) részén elhelyezkedő sejtek 
nagyobb tüzelési rátát mutattak, mint a szuperficiálisan (a stratum 
radiatum irányába) lévők. A CA2 kivételével az összes régióban 
emelkedettebb tüzelési frekvencia volt megfigyelhető futás alatt, mint 
ébrenlét alatt. A legalacsonyabb tüzelési rátát a REM szakasz alatt 
mértünk. 

Az eltérő elhelyezkedésű neuronok tüzelése a théta alatt is eltérő volt. A 
CA1 piramisréteg sejtjei a théta felszálló szakaszában tüzeltek, míg a 
CA3 piramisréteg sejtjei a leszálló szakaszban. Bár a CA1 sejtek 
jellemző tüzelési fázisa a proximális-disztális irányban konstans maradt, 
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a mélyebben fekvő sejtek preferenciája 180°-kal elcsúszott REM alatt. 
A legtöbb idegsejt nagymértékű théta moduláltságot mutatott, 
különösen a REM alatt összehasonlítva a RUN állapottal, illetve a CA3 
régió összehasonlítva a CA2 és CA1 régiókkal. 

A különböző régiókban lévő sejtek közötti kapcsoltság valószínűsége 
eltérő volt. Míg a CA3a piramissejtjei főleg a proximális CA1 
interneuronjaival alakítanak ki kapcsolatot, addig a CA3c sejtek inkább 
a CA1 disztális részébe küldenek axonokat. A CA2 régióban a sejtek 
főleg a CA1 proximális részében lévő sejtekkel alakítottak ki 
szinaptikus kapcsolatot, a CA2 mély rétegében lévő sejtek pedig 
különösen preferálták a CA1 mély rétegének proximálisan elhelyezkedő 
interneuronjait. Nagyszámú kapcsolat volt megfigyelhető továbbá a 
CA2-ből a CA3a irányába, összehasonlítva a CA3b és a CA3c-vel. A 
CA3-ból a CA1-be futó szinaptikus kapcsolatok erőssége nagyobb volt, 
mint a CA2 és a CA1 között. 

A térbeli kódolás jellemzői a hippokampusz transzverzális tengelye 
mentén 

A CA3 régióval összehasonlítva, jóval több place sejtet találtunk a CA2 
és CA1 régiókban. A több place fielddel rendelkező place sejtek főleg a 
CA2, CA3a és a CA1 disztális részére voltak jellemzőek, míg az 
egyetlen place field-el rendelkező sejtek a CA1 proximális részén és a 
CA3c régióban voltak megfigyelhetőek. A place field mérete nagyobb 
volt a CA1 disztális részén a proximális részhez képest, illetve nagyobb 
volt a CA3a-ban mint a CA3c-ben. A CA1 és CA2 régiók mélyebben 
fekvő sejtjeinek place fieldjén belül a tüzelési frekvencia magasabb volt, 
mint a szuperficiális rétegbeli sejteknél. Azonban a CA3 
szuperficiálisan elhelyezkedő sejtjeinek tüzelési rátája magasabb volt, 
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mint a mélyebben fekvő sejteké. A place sejtek szelektívebbek voltak a 
CA3 régióban, és ez emelkedést mutatott a CA3a-CA3c irányban. A 
CA1 régió proximális sejtjei sokkal szelektívebbnek bizonyultak a 
disztálisan elhelyezkedőkhöz képest, illetve a szuperficiális sejtek 
nagyobb szelektivitást mutattak a mélyebben fekvőkhöz képest. A CA3 
sejtek több térbeli információt hordoztak mint a CA1 sejtjei, melyek 
még így is informatívabbnak bizonyultak a CA2 sejtekhez képest. A 
CA1 proximális sejtjeinek nagyobb volt a térbeli információs indexe 
mint a CA1 disztális sejtjeié, és az értékek a CA2-tól a CA3c irányába 
növekedtek. 

A fázisprecesszálás eltérő jellemzőket mutatott az egyes régiók között. 
Azt találtuk, hogy a fázistartomány, mely a sejtek théta ciklusbeli 
precesszálását jellemzi, kisebb volt a CA2-ben és a CA3-ban, mint a 
CA1-ben. A fázis-pozíció korrelációjának meredeksége és erőssége 
nagyon nagy volt a CA1-ben, míg a CA2-ben és CA3-ban kisebb. A 
CA1 régión belül a proximálisan elhelyezkedő sejtek nagyobb erősséget 
mutattak, mint a disztális sejtek. 

A hippokampusz alrégióik aktivációjának dinamikája az SPW-R alatt 

A különböző régiók SPW-R kialakulásában játszott szerepének 
vizsgálatához először megvizsgáltuk a különböző neuron populációk 
tüzelését és LFP mintázatát az SPW-R alatt. Azt találtuk, hogy a ripple-
ök a CA2 régióban kétféle mintázatot generálnak: az egyik egy 
klasszikus válasz a CA1-ben (negatív sharp-wave a stratum radiatumban 
és pozitív a piramisrétegben), a másik pedig egy negatív hullám a 
stratum oriensben és egy pozitív hullám a radiatumban. A CA1-ben az 
SPW-R alatt detektált spektrumok teljesítménycsúcsa időben 
korábbinak bizonyult a CA2 régióban mind az alvás, mind az ébrenlét 
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alatt. A CA1 és CA3 régiókban ez az erő nagyobb volt alvás alatt, a 
CA2-ben pedig ébrenlét alatt. 

 

Eredményeink alapján az SPW-R alatt a CA1-ben és a CA3 összes 
alrégiójában a sejtek többségének tüzelési dinamikája pozitívan 
modulált (nő a tüzelési frekvencia) mind a CA1-ben detektált ripple-ök 
alatt, mind a CA2-ben detektált ripple-ök alatt. Ezzel szemben a CA2 
régióban a sejtpopulációnak mindössze a fele volt pozitívan modulált a 
CA1-ben detektált ripple-ök alatt, míg a másik fele egy lassú rámpa-
szerű, pár száz ezredmásodperccel korábbi növekedést produkált a CA1 
ripple-ök előtt, majd a ripple bekövetkeztekor elcsendesült. Továbbá 
mindkét populáció egységesen növelte a tüzelési rátáját a CA2 ripple-ök 
alatt. Ezen két neuron csoportot „ripple-ramping“ sejteknek (a CA2 
ripple-ök alatt növelik a tüzelési frekvenciájukat, majd a CA1 ripple 
alatt elcsendesednek) és fázikus sejteknek (növelik a tüzelési 
frekvenciájukat a CA2 és a CA1 ripple-ök alatt is) neveztük el. A két 
alpopulációk ripple alatti tüzelési frekvencia csúcsa térbeli korrelációt 
mutatott az anatómiával (a CA2 „ramping“ csoport aktív először, majd a 
CA2 fázikus, CA3a, CA3b, CA3c és végül a CA1). A CA2 két 
alpopulációja anatómiai szegregációt mutatott. Amíg a ripple-ramping 
sejtek főként a mély rétegekben voltak jellemzőek, addig a fázikus 
sejtek inkább a szuperficiális rétegben fordultak elő. 
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Megbeszélés 

Az egyes HP régiók kapcsolatrendszere, tüzelési mintázata és élettani 
tulajdonságai 

A HP neuronjainak TF-ja eltérőnek bizonyult a különböző viselkedési 
formák során. Az összes régióban (kivéve CA2) a futás alatti magasabb 
TF és a REM alatti alacsonyabb TF összhangban van azzal az 
elképzeléssel, miszerint az idegsejtek TF-ja homeosztatikusan 
szabályozott, a szenzoros igényeknek köszönhetően nő ébrenlét alatt, 
alvás során viszont csökken. Az ébrenlét alatti emelkedett TF-ra a CA2 
régióban magyarázatot ad a CA2-ben található funkcionális hálózat, 
mely az állat pozícióját kódolja nyugvó állapotban. 

Az általunk végzett funkcionális monoszinaptikus analízis megerősíti a 
korábbi anatómiai vizsgálatok eredményét, miszerint a CA3a alrégió 
jellemzően a CA1 proximális részébe, a CA3c a CA1 disztális részébe 
küld projekciókat, illetve alátámasztja a direkt funkcionális kapcsolatot 
a CA2 és a CA1 régió között. A CA3 és CA1 régió kapcsolatának 
szorossága vélhetően az információ áramlás fő útvonalához (a 
triszinaptikus pályán keresztül, melynek utolsó állomása a CA3-ból a 
CA1-be halad) köthető. 

Théta fáziskapcsoltság és fázisprecesszió a hippokampuszban 

Munkánkban egy átfogó keretrendszert mutatunk be, amely magába 
foglalja a CA1 és CA3 alrégióinak théta fázisprefenciáját, beleértve a 
különböző piramis rétegen belüli mélységek különbségeit. A fokozatos 
fáziseltolódás, kezdve a CA3c sejtektől (leszálló szakasz) a CA3a és 
CA2 sejtek (felszálló szakasz, hasonló a CA1-hez) felé, a moharostok 
CA3 tengely menti topológiájának eredménye (a rostok nagy része a 
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CA3c régiót idegzi be, míg a kisebb hányaduk a CA3a-ba és a CA2-be 
fut). A REM alatt a CA1 piramissejtek eltolódása az EK-ből jövő, a 
szuperficiális rétegbe érkező bemenetekhez képest a nagyobb hatás 
következménye. Ismert, hogy az interneuronok esetében a preferált fázis 
bimodális eloszlása a különböző interneuron típusoknak köszönhető. 
Mivel ezek az altípusok különböző hálózati mechanizmusokat 
generálnak, ezért a théta ciklus eltérő részén válnak aktívvá. 

A fázisprecesszió karakterisztikája nagyon eltérőnek bizonyult az egyes 
régiók esetén. Úgy véljük, hogy ez a CA1, CA2 és CA3 területek 
precesszáló sejtjeit érő, az EK-ből jövő, anatómiailag eltérő 
bemeneteknek tudható be. A fázis-pozíció korrelációjának erőssége a 
CA1 régió proximális részén, valószínűleg ezen különbségeknek 
köszönhető. A CA1 régió eltérő precessziós tartományát, 
összehasonlítva a CA2 és CA3 sejtekkel, az eltérő EK rétegekből jövő 
bemenetek befolyásolhatják. 

A különböző hippokampális alrégiók térbeli kódolási tulajdonságai 

A CA3 sejtek nagyobb térbeli szelektivitása igazolja a régió mintázat 
kiegészítő szerepét, amely egy autoasszociációs hálózatként működik, 
lehetővé téve a tér egy adott pontjára, mint „jutalomra“ való 
asszociálást, illetve szükség esetén a „kiegészítést“. A disztális CA1 
területére jellemző sejtenkénti több place fieldet korábban a mediális 
EK proximális CA1-, míg a laterális EK disztális CA1 területére 
vetítésével magyarázták. A CA3 tengelyhez kapcsolódó eredményeink 
(a CA3a-ban több place field található, mint a CA3c-ben) azonban arra 
utalnak, hogy a CA3a eleve multifieldes információt küld a CA1 
proximális részébe, ezzel hozzájárulva ezen régió specifitásához, 
összehasonlítva a CA1 disztális részének kisebb mértékű specifitásával. 
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Az SPW-R keletkezésének és terjedésének mechanizmusa 

Az eredeti elképzelés szerint az SPW-R a CA3a régióban generálódik, 
ahol nagy mennyiségű rekurrens kollaterális található, de a CA2 régió 
szerepét ezidáig még nem vizsgálták. Az SPW-R alatti viselkedésük 
alapján két, fiziológiailag eltérő alpopulációt írtunk le (fázikus és 
ramping sejtek), és azt találtuk, hogy az időbeli terjedés korrelál az 
anatómiával, hiszen a CA2 régió aktiválódik elsőként, mialatt az SPW-
R esemény épp hogy detektálható. A poppulációs aktivitás terjedése volt 
megfigyelhető a CA2 ramping sejtektől a CA2 fázikus sejtek, a CA3a, 
CA3b, CA3c és végül a CA1 régió irányába. A CA2 sejtek a CA3a 
sejtek számos tulajdonságát utánozták, többek között a nagy 
mennyiségű rekurrens kollaterálisok és a magas excitábilitási 
tulajdonságok voltak jellemzőek, melyek mind a régió SPW-R 
kialakítási képességéhez járultak hozzá. A kétféle CA2 által generált 
LFP mintázat megfelel az alvás alatti CA2-CA3-CA1 irányba történő 
terjedéssel, és egy direkt CA2-CA1 átvitellel ébrenlét alatt. Ez nem 
meglepő, hiszen a különböző viselkedési állapotok különböző 
hálózatokat aktiválnak, azonban még fontosabb, hogy bizonyítják a 
CA2 kiemelt szerepét az immobilizált állapot alatt. Ugyan a 
mechanizmus nem tisztázott, azonban mégis úgy tűnik, hogy az SPW-R 
mechanizmusa egy bizonyos szintű excitáció eléréséhez kötött, mely 
aztán egy populációs kisülést eredményez. Ezt a CA2-CA3a rekurrens 
rendszeréből számos mechanizmus indíthatja (pl. mesterséges külső 
ingerlés, EK bemenetek vagy akár egy elegendő rekurrnes kapcsolattal 
rendelkező egyetlen sejt is). 
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