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1 Introduction

One of the first sentences of the seminal paper Fxtremal polynomials associated with a
system of curves in the complex plane by Harold Widom is ”All asymptotic formulas have
refinements”. This thesis has been written with a similar mindset. Our aim is to refine,
extend and establish asymptotic formulas for orthogonal polynomials with respect to
generalized Jacobi measures, i. e. for measures having an algebraic singularity |z — xo|“dx
around some xy in their support. They are the generalizations of the classical Jacobi
measure

du(r) = (1 —2)*(1 +2)°dx, x€[-1,1]

with no restriction made about the support, absolute continuity and the location of the
algebraic singularities. In this section first we shall precisely define the mathematical ob-

jects of our study, collect the classical results and state our new results.

Let p be a finite Borel measure supported on the complex plane with infinitely many

points in its support and suppose that for all k, we have

[ 1eautz) < .
that is, all of its moments are finite. Then the polynomials are in L?(x) and using the
Gram-Schmidt orthogonalization process, it is easy to see that there is a unique sequence
of orthonormal polynomials {p, }2°, such that

Pty 2) = pul(2) = W2" 4+ ..., 7w >0.

pn is called the n-th orthonormal polynomial with respect to u. If we define the so-called

Christoffel-Darboux kernel as

the identity
tyos(a) = [ Tas(9) Kol )dita)
holds for every polynomial 11, _; of degree at most n — 1 for measuers supported on the

real line. In this case, K, (x,y) can be expressed in terms of p, and p,_; as

Kn(ZL’, y) _ 7:/;1 pn(l‘)pn—l(ya): : zn—l(x)pn(y) ’ (12)



where v, (1) = v, denotes the leading coefficient of p,. This is called the Christoffel-
Darboux formula. Along the real diagonal x = y, the Christoffel-Darboux kernel can be
written in terms of the so-called Christoffel functions. The n-th Christoffel function with

respect to p is defined as
. P(2)]”
An(pty 20) = inf / du(z), 1.3
(# 0) deg(Pn)<n ’Pn(Z(])’Q H’( ) ( )

where the infimum is taken for polynomials P, of degree at most n — 1 with |P,(z¢)| # 0.
In other words, A, (1, 2o) is the (—1/2)-th power of the norm of the evaluation functional
at zo defined in P,_; N L*(u), where P,, denotes the linear subspace of polynomials of

degree at most n. It is known that

1

o [P (20)?

An(Hs 20) = (1.4)

which is very useful, since the Christoffel functions admit to a strong localization principle.

The study of Christoffel functions has started in the beginning of the XXth century,
one important early result is due to Gabor Szegd. The theorem of Szegé says that if p is
a measure supported on the unit circle T which is absolutely continuous with du(e’) =
w(e™)dt and

% /7; logw(e™)dt > —o0

holds, which is called Szeg6 condition, then we have

et + 2

et — z

1 [" ,
; _ _ 2 . it
nh_g)lo A, 2) = (1 — |2|7) exp <27T /_Tr Re[ } log w(e )dt), 2| < 1.

The influence of this result can be seen in the asymptotic theory of orthogonal polynomials,
but it has also served as a motivation to study Hardy spaces. The details can be found in
[14] and [15], and for a detailed historical account see [29].

If we study the asymptotics in the points of the unit circle, we have

lim A, 2) = (=), 1el = 1

which is zero, if the measure is absolutely continuous, therefore this does not provide much
useful information. The proof of this fact can be found for example at [36, Theorem 2.2.1.]

or in [25]. In this case, the main question is to determine the exact order of asymptotics.



A. Mété, P. Nevai and V. Totik proved in the seminal paper [25] that if x4 is supported
on the unit circle with du(e”) = w(e™)dt + du,(e™) there, then if the Szegd condition

1 (" »
Dy log w(e™)dt > —o0

holds, we have

lim nA,(u, ™) = 2rw(e™)
n—oo

for t € [—m, m) almost everywhere. A similar result is known for measures supported on
the real line. In the same paper, Maté, Nevai and Totik also proved that it p is supported
on the interval [—1,1] with du(z) = w(x)dx + dus(x) there, then if

' logw(x)

-1 7T\/1—l’2

holds, which is also called Szeg6 condition, we have

dz > —0o0

lim nA,(u, ) = 7v1 — 22w(x)

n—oo

for x € [—1, 1] almost everywhere.

In this same paper, the authors also studied how the Szegd condition can be weakened.
If the Szegd condition is only required for a subinterval I C [—1, 1], then global conditions
are needed on the measure in order to have similar results. Such a condition is the so-
called Stahl-Totik regularity, which plays an important role. A measure y is said to be
reqular in the sense of Stahl and Totik (or p € Reg in short), if for every sequence of

nonzero polynomials {P,}° ;, the estimate

<1 (1.5)

|Pn(Z)’ ) 1/ deg(Pr)

!
ey (HPnum

n—oo
holds for all z € supp(u) \ H, where H is a set of zero logarithmic capacity. (For the
definition of logarithmic capacity, see Section 2.1 below.) Thus Mé&té, Nevai and Totik
proved that if p is supported on the interval [—1,1] and regular in the sense of Stahl-
Totik, then if the local Szegd condition

/log w(x)dr > —o0 (1.6)

I

holds for some interval I C [—1, 1], we have

lim nA\, (g, z) = 7v1 — 2?2w(x)

n—oo



for x € I almost everywhere.

For measures supported on a general compact subset of the real line, the above results
were extended by Totik in [39] using the polynomial inverse image method developed by
him in [42]. He showed that if p is regular in the sense of Stahl-Totik and it is supported
on a compact set supp(p) = K with du(z) = w(x)de + dus(z) there, then if the local

Szeg6 condition

/log(w(m))w;((x)dm

I

holds, where wy is the density function of the equilibrium measure (see Section 2.1 about

the most important potential theoretic concepts), we have

Jim o 2) = S

for x € I almost everywhere. Asymptotics are also established for measures supported
on a set of disjoint Jordan arcs and curves. Totik proved in [41] that if p is supported
on a disjoint union of Jordan curves 7 lying exterior to each other, then if z; € v and
o is absolutely continuous with respect to the arc length measure s, in a small subarc
containing zy and du(z) = w(z)ds,(z) there for some continuous and strictly positive
weight w, we have

- w(zo)
1 An (14, = )
8 Al ) = 5 o)

(1.7)
where w., again denotes the Radon-Nikodym derivative of the equilibrium measure with
respect to the arc length measure s,. Note that although this theorem requires continuity
of the weight around zy, which is stronger than a local Szeg6 condition, it not only gives
an almost everywhere result, it gives the asymptotics at the prescribed point z,. Totik
also managed to prove similar results in [40] when 7 contains Jordan arcs and zy can be
an endpoint.

If, however, w(z) is not continuous or positive at the prescribed point 2y, the asymp-
totics in (1.7) does not hold anymore. The goal of Section 4 is to generalize this result for
measures exhibiting a power-type singularity du(z) = w(z)|z — 29|*ds,(z) around 2, for

some « > —1. Our main result in this setting is the following.

Theorem 1.1. Let v be a disjoint union of rectifiable Jordan curves lying exterior to each
other and let p be a finite Borel measure reqular in the sense of Stahl-Totik with support

supp(p) = 7. Suppose that for a zy € 7y, there is an open set U such that J = U N~y



is a C? smooth Jordan arc and u is absolutely continuous with respect to the arc length
measure and

du(z) = w(z)|z — 20|%ds,(2), z€J

there for some a > —1 and some weight function w which is strictly positive and contin-

uous at zy. Then

. atl B w(zp) i +1 a+3
A n s 20) = oy () () (18)

holds, where I'(z) denotes the Gamma function and w., again denotes the Radon-Nikodym

derivative of the equilibrium measure with respect to the arc length measure s. .

Note that since I'(1/2) = /7 and I'(3/2) = \/7/2, in the special case @ = 0 the for-
mula (1.8) yields (1.7). Theorem 1.1 is one of the main results of [4]. In there, asymptotics
were also established when there can be Jordan arcs present and 2, can be an endpoint

of one of them.

Asymptotics for the Christoffel-Darboux kernel can also be studied off the diagonal,
where we no longer have (1.4), therefore Christoffel functions cannot be used directly.
One area of interest is the so-called universality limits for random matrices, which is
an intensively studied topic of mathematical physics, having several applications even
outside mathematics. A detailed account on the various and diverse applications can
be found in [11]. For ensembles of n x n Hermitian random matrices invariant under
unitary conjugation, a connection with orthogonal polynomials can be established. If the

eigenvalue distribution is given by
1 N
p(xla"'wrn) = Z_n H |xl_x]|2Hw(xk)dIk7
1<i<j<n k=1

then the k-point correlation functions defined by

n!
Rk,n(dlh...,xk):m/.../p(xl,...,a:n)dxkﬂ...xn

can be expressed as

Rin(1, ..., 25) = det (Kn(xi, :L“j))n

3,7=1"

(1.9)

where K, (z,y) = v/w(@)w(y) K, (z,y) denotes the normalized Christoffel-Darboux kernel.

This was originally shown for Gaussian ensembles by Mehta and Gaudin in [26], but later



this technique was developed for more general ensembles, see in particular [7, (4.89)] or
for example [6] [8] [9] [31].
Because of (1.9), scaling limits of the type

. Kn(l'o—i‘%,xo‘{‘%)
lim ,
n—r00 Kn(ﬂ?o, .To)

a,b e R, (1.10)

which are called universality limits, are playing an especially important role in the study
of eigenvalue distributions for random matrices. For measures supported on [—1, 1], a new
approach for universality limits was developed by D. S. Lubinsky in the seminal papers
[19] [20] [21]. In [19] it was shown that if x is a finite Borel measure supported on [—1, 1]
which is regular in the sense of Stahl-Totik (see (1.5)) and absolutely continuous with
du(z) = w(x)dr in a neighbourhood of zy € (—1,1), where w(x) is also continuous and

strictly positive, then

~ . ) |
lim f <x0 ’ I?”ff”’o""/’ﬂ)’xo " ffn(a:o,a:o)> _ sin7(b—a)

n—o00 Kn<x07 1’0) n 7T(b — a)

(1.11)

holds, where K, (z,y) = vw(z)w(y) K, (r,y) denotes the normalized Christoffel-Darboux
kernel. Before this result of Lubinsky, analiticity of the weight function was required on
the whole support [—1, 1], therefore this was a large step ahead.

An important part of Lubinsky’s method is that if one is able to deduce limits of the
type (1.10) with @ = b, then this can be used to obtain (1.10) in general. The analysis
was largely based upon Christoffel functions. (1.4) implies that

K, (xg + &, w0 + %) An (14, o)

K,(o, 0) (o +2)

holds, therefore this way universality limits can be translated to Christoffel functions.
This has proven to be very useful, because Christoffel functions exhibit strong localization
properties. Lubinsky’s result was simultaneously extended for measures supported on more
general subsets of the real line by B. Simon in [35] and by V. Totik in [43], although they
used very different methods.

When the measure exhibits singular behavior at the prescribed point x, for example
it behaves like |z — zg|*dx for some o > —1, it no longer shows the same behavior and
instead of the sinc kernel, something else appears. Generalized Jacobi measures of the
form

du(z) = (1 — 2)*(1 + 2)°h(2)dr, =€ [-1,1],

6



where h(z) is positive and analytic, were studied by A. B. J. Kuijlaars and M. Vanlessen
in [17]. Using Riemann-Hilbert methods, they showed that

lim — K (1 @ b ):Ja(a,b) (1.12)

nooo 2n2 " B ﬁ’ B ﬁ
uniformly for a, b in compact subsets of (0, c0), where J,(a, b) is the so-called Bessel kernel

defined as
Ja(v/a)VBIL (VD) — Jo(Vb)Va.(/a)
2(a—b)

and J,(x) denotes the Bessel function of the first kind and order «. (Actually, they showed

Ja(a,b) = (1.13)

a much stronger result, from which (1.12) follows.) This was extended by Lubinsky in
[20]. He proved that if 4 is a finite Borel measure supported on [—1, 1] which is absolutely
continuous on [1 — ¢, 1] for some £ > 0 with

du(z) = w(z)lz — 1%, z €[l —¢g,1]
there, where w(x) is strictly positive and continuous at 1, then

: 1 a b i
lim st (1- g1 ga) = a(eod)

holds, where J* (a,b) = 22 s the entire version of the Bessel kernel. It was also shown

a®/2pa/

by Lubinsky in [21] that if K is a compact subset of the real line and zy € K is a right
endpoint of K (i.e. there exists an ¢ > 0 such that K N (zg, 29 + ¢) = @), then if p is
a finite Borel measure with supp(p) = K which is absolutely continuous in a small left
neighbourhood of xy with

du(x) = |x — zo|dx

there for some a > —1, then

Kn(zo — ann, z0 —an,) I (a,a)

li = 1.14
nl—{{‘lo Kn(x(b 1:0) JZ(()? 0) ( )
for all a € [0, 00) implies
. Kn@o — anp, Lo — bnn) J* <a7 b)
| =2 1.15
AT Ro(ao,a0) 70,0 (119)

uniformly for a,b on compact subsets of the complex plane, where the sequence n, is
N = (J5(0,0)/ K, (0, 20))/@+Y). In such a general setting, it was not known if (1.14)
holds. Our aim in Sections 5 and 6 is twofold. On the one hand, we will show that (1.14)
does indeed hold, hence (1.15) also holds as well. On the other hand, we also aim to

7



establish universality limits in the case when the singularity is located in the interior of
the support rather than at the hard edge.
In order to express universality limits for measures exhibiting power-type singularity

in the interior of its support, we define the kernel function for a,b € R by

(

k- <Ja+1( a)Jaz1 (b) - J%H(b)J%(a)) if a,b >0,

La(a,b) = V(j( b’; (Ja+1( @)Jos (—b) + J%ﬂ(—b)JaT_l(aD ifa>0b<0, (1.16)

Lo(—a,—b) else,

where J,(x) denotes the Bessel functions of the first kind and order v. Note that

La(a.0) = 2 (Joga (o) Jacs (Jal) ~ s () Zos () ).
Since J,(z) = 2G(z) where G(z) is an entire function, we can define the entire version

of the kernel function for arbitrary complex arguments as

La(a,b) La(a,a)
a /2ba/2’ L(X(a) = a—a7 G/,b e C. (117)

L (a,b) =

We emphasize that L,(a,b) is defined with different formulas for the cases ab > 0 and

ab < 0, and without the normalization in the definition (1.17), this would cause problems.

This way however, using that J,(—z) = (—1)"J,(z), we see that in fact the two formulas
n (1.16) coincide after normalization.

Our main results in Sections 5 and 6 are the following four theorems. The first two

deals with the asymptotics of Christoffel functions when the power type singularity is in

the interior (in other words, in the bulk) or at an endpoint (in other words, at the hard

edge). The last two theorems are concerned with universality limits in the same cases.

Theorem 1.2. Let p be a finite Borel measure which is reqular in the sense of Stahl-
Totik and suppose that p is supported on a compact set K = supp(u) on the real line. Let
xo € int(K) be a point from the interior of its support and suppose that on some interval

(xo — €0, o + €0) containing xo, the measure p is absolutely continuous with
du(x) = w(z)|x — x|z, x € (xrg— 0,20 + €0)
there for some a > —1 and o # 0, where w is strictly positive and continuous at xy. Then

lim n*TA, <M7l’0 + %) = %(LZ (muK(:EO)a)>_l (1.18)

oo (mwi (o)

holds uniformly for a in compact subsets of the real line, where I’ () is defined by (1.17).

8



The analogue for the edge is the following.

Theorem 1.3. Let p be a finite Borel measure which is regular in the sense of Stahl-
Totik and suppose that p is supported on a compact set K = supp(u) on the real line. Let
zo € K be a right endpoint of K (i.e. KN (xg,x0+€1) = & for some ey > 0) and assume

that on some interval (xg — €o, xo| the measure p is absolutely continuous with
du(z) = w(z)|x — xo|*dz, = € (o — €0, 20
there for some a > —1, where w s strictly positive and left continuous at xy. Then

: 2042 Ay w(xo) a+1 7 2 ) !
A ) = )|

holds uniformly for a in compact subsets of [0,00), where J%(+) is the Bessel kernel defined

by (1.13) and M (K, xo) is defined by

M(K,z0) = lim V2r|z — zo| 2w (z). (1.20)

T—To—

By symmetry, there is a similar result for left endpoints. Both of these theorems are in
agreement with Theorem 1.1 in the case when K is a finite union of intervals and a = 0.

From the asymptotics for Christoffel functions we obtain universality limits.

Theorem 1.4. With the assumptions of Theorem 1.2, we have

o Kalmo+ 3imo+ 3) L (mwk (o), mwic(0)b) (1.21)
n—00 Kn(l‘o,xo) LZ(an)

uniformly for a,b in compact subsets of the complex plane.

Theorem 1.5. With the assumptions of Theorem 1.3, we have
Kn(IO - #,.ﬁo — 5 ) o JZ(M(K7 .T0)2CL, M(Kv x0)2b)

2n2

n—>Hc}o Kn(flf(],l'o) JZ(0,0)

(1.22)

uniformly for a,b in compact subsets of the complex plane.

Again by symmetry, there is a similar result for left endpoints.
The proofs of the main results are done in several steps. First, we study the measures
pb and p¢ supported on [—1,1] and defined by
dpig(w) = |z, @ e [-1,1]

9



and

dﬂZ(x) = |3j - 1|a7 VS {_17 1]

Using the Riemann-Hilbert method, we shall prove (1.18) for p® and (1.19) for u¢, which
shall serve as a model case for our investigations about measures supported on the real

line. Then we transform some of the results to obtain (1.8) for the measure y’ defined by
dul(e) = e —i|*dt, t¢€ [, 7).

After this, we shall transform these model cases using the polynomial inverse image
method of Totik, to obtain Theorems 1.1, 1.2 and 1.3. Then we set out to prove The-
orems 1.4 and 1.5. The latter one is an immediate consequence of Theorem 1.3 using
Lubinsky’s result [21, Theorem 1.2] which was mentioned earlier, see (1.14) and (1.15).
However, this cannot be used to handle the situation where the singularity is located in
the interior of the support, therefore we have to build the same machinery. This will be

done in Section 6.

2 Mathematical tools

The purpose of this section is to collect the tools used to prove our main results and

to provide an overview of the concepts which are important for us.

2.1 Potential theory

To study universality limits and Christoffel functions for measures supported on gen-
eral compact sets, we shall need a few concepts from logarithmic potential theory, most
importantly the concept of equilibrium measures. For a detailed account on logarithmic
potential theory, see the books [32] and [34]. If x is a finite Borel measure supported on

the complex plane, its energy is defined as

I(p) = / / log — dp(z)dp(w).

|2 — w
We can define the energy of a set K C C as the infimum of energies for probability

measures supported inside K, i.e.



where M;(K) denotes the set of Borel probability measures with support lying in K.
(The quantity I(K) is also known as Robin’s constant.) The logarithmic capacity of K is
defined as

cap(K) = e 1K),

Sets of zero logarithmic capacity are called polar sets. They are playing the role of negli-
gible sets in logarithmic potential theory. If K is a compact subset of the complex plane
with nonzero logarithmic capacity, then there is a unique measure denoted by v such
that I(vk) = I(K). The measure vk is called the equilibrium measure for K, and its

Radon-Nikodym derivative, if it exists, is denoted by wg(x). For example, we have

1
Al =

which is the arcsine distribution.

(2.1)

For a domain D C C_, which contains a neighbourhood of oo, the Green’s function
with pole at infinity is the unique function gp(-,00) : D — [—00, 00) for which
(a) gp(z,00) is harmonic on D C C,, and bounded outside the neighbourhoods of oo,
(b) gp(z,00) =log|z| + O(1) as z — oo,

(¢) gp(z,00) > 0as z — &€ dD\ H, where H is a set of zero logarithmic capacity.

A compact set K, if ) denotes the unbounded component of its complement, is said to
be regular with respect to the Dirichlet problem, if go(z,00) — 0 as z — & for all £ € 99,

i.e. the exceptional set H in property (c) is empty.

Along with local conditions imposed on the measure, (for example the Szegé condition
like in [25], continuity of weight function like in [19], or singular behavior of type |x—xo|“dx
as in our case) some kind of global condition is needed. The so-called Stahl-Totik regularity
is such a property. A measure y is said to be regular in the sense of Stahl-Totik (or 4 € Reg
in short), if for every sequence of nonzero polynomials {P, }5°,,

lim sup <||n#)|) <1 (2.2)

n—00 |Pn||L2(,u) -

holds for all z € supp(u) \ H, where H is a set of zero logarithmic capacity. If C\ supp(u)
is regular with respect to the Dirichlet problem, Stahl-Totik regularity is equivalent with

11



the uniform estimate

Pn su 1/ deg(Pn)
lim sup (HH—pp(“)) < 1. (2.3)
oo \ [ Pallz2

There are several criteria for regularity, most notably the Erdés-Turan criterion. In a spe-
cial case, it says that if p is a measure supported on the interval [—1, 1] and it is absolutely
continuous with du(z) = w(x)dz, then "w(xz) > 0 almost everywhere on [—1,1]” implies
that p is regular in the sense of Stahl-Totik. For a detailed account on the Reg class for

measures, see [37].

2.2 The polynomial inverse image method

The main idea of the polynomial inverse image method, developed by Geronimo and
Van Assche in [23] and Totik in [42], is that for some special sets, most frequently the unit
interval [—1, 1] or the unit circle T, we have strong tools and special results, however similar
tools are unavailable for general sets. For example, Bernstein’s inequality for algebraic

polynomials says that if P, is a polynomial of degree n, then

|P(x)| < n z e (-1,1).

1
izl

What happens if we replace [—1,1] with a more general set? It can be difficult to find
a proof which works on general sets, but using polynomial inverse images, sometimes
the result can be transformed. Using this method, Totik proved in [42] that if K is an

arbitrary compact subset of the real line, then
| P (2)] < nawg ()| Pall, @ € int(K),

where wg is the equilibrium density of K, which was defined in Section 2.1.

A crucial step in the method is approximating general sets with polynomial inverse im-
ages, i.e. sets of the form Th'([—1,1]) or T *(T). First we talk about the approximability

of unions of Jordan curves. Let Ty (z) be a polynomial of degree N. The set
o={2€C:|Ty(2)| =1},

which is the level line of Ty, is called a lemniscate. The domain L = {z € C : |Tx(z)| < 1}
is called the enclosed lemniscate domain. Assume that ¢ has no self-intersections. Since

the normal derivative of the Green’s function with pole at infinity of the outer domain

12



to o is [T (2)|/N (see [41, (2.2)]) and this normal derivative is 27 times the equilibrium

density (see [41, Theorem 3.2]), it follows that the equilibrium density of o can be written

as
Tv(2)|

o(2) = ——. 2.4

wnlz) = TR (2.4

For every z € o, we introduce the notation Ty'(z) = {z1,...,2x}. Then for every inte-

grable f, we have (see [41, (2.12)])

/ (Zf Z@)|TN Jldso(2) = N / FE)IT3(2)lds(2). (2.5)

Furthermore, if g : T — C is arbitrary, we have (see [41, (2.14)])

[T ds, () = / (2.6)

Lemniscates can be used to approximate unions of Jordan curves in a precise way. The

following theorem was proved in [28].

Theorem 2.1. Let v consist of finitely many Jordan curves lying exterior to each other,
let zy € 7y, and assume that in a neighborhood of zy the curve v is C* smooth. Then, for
every € > 0, there is a lemniscate o, consisting of Jordan curves such that o, touches vy
at zo, the lemniscate o, contains 7y in its interior except for the point zy, every component

of 0., contains in its interior precisely one component of vy, and
wy(20) < wo,, (20) + €. (2.7)

Also, for every e > 0, there exists another lemniscate o,, consisting of Jordan curves such
that o touches 7y at zy, the lemniscate o, lies strictly inside v except for the point 2y, 0,

has exactly one component lying inside every component of v, and
Wo, (20) < wy(20) + €. (2.8)

This method also has an analogue for sets on the real line. Let Ty (z) be a polynomial
of degree N. Ty is called admissible if all of its zeros are real and simple, moreover if
Ty (zo) = 0 for some xq (i.e. o is a local extrema for Ty ), then |Tn(x)| > 1. The inverse
images of the interval [—1,1] taken with respect to admissible polynomials (sometimes
called real lemniscates) enjoy many pleasant approximating properties. If we define Ey =

Tx'([~1,1]), then it is easy to see that Ey = UN_'[ax, by], where Tl restricted to [ax, by]
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is a bijection between it and [—1, 1]. Moreover, for every integrable function f and for

each k € {0,1,..., N — 1} the formula

1 by
/_1 flz)dz = f(TN(ﬂf))!T]’V(x)\dx

X (2.9)
= [ SEv@)|Ty(z)de
En
also holds. For example, if P, is a polynomial of degree N, we have
1 by,
| P@Plalde = [ IPTv@)PITy @) Ty (o) dz
- fk (2.10)

= /. | Pa(Tn ()| T (2) || Ty (@) |,

which will be especially useful to us. In addition, the equilibrium density for Ey is given

by the formula
(o) — 1T
N Nmy/1—Ty(2)?

see [42] for details. (Or use (2.9) and the fact that the equilibrium measure on Ey is the

(2.11)

pullback of the equilibrium measure on [—1, 1] with respect to the mapping Ty .)

Regarding the approximation properties of polynomial inverse images on the real line,

we have the following.

Lemma 2.2. Let K be a compact set. Suppose that x¢ € int(K) is a point in its interior
and let € > 0 and n > 0 be arbitrary. There exists a set Ey = U,ivz’ol lag, bi], br < ags1
such that
(a) Ex = Ty'([-1,1]), where Ty is an admissible polynomial of degree N with Ty () = 0
and T} (zo) > 0,
(b) K C Ey,
(¢) dist(K, En) < e, where dist(K, Ex) denotes the Hausdorff distance of K and Ey,
(d) ﬁw;{(xo) < wpy (o) < wk(xg), where ws(x) denotes the equilibrium density of a set
S.
Moreover, we have

_ [T (o)

CUEN(JT()) = N—’/T (212)

Proof. Since K is a compact subset, its complement can be obtained as

oo

R\ K = (~00,a") U (b, 00) U ( (i ).

k=0

14



where a* < a} and b} < b* for all k € {1,2,...}. Hence the set

Fr =R\ ((=00,0") U (5", 00) U (U(a;, )

is a finite union of intervals. If m is large enough, dist(K, F},,) < £/2 and, as [43, Lemma

4.2] implies,

(ﬁ) Y e (20) < wp (20) < wxc(z0)

holds. Now [42, Theorem 2.1] gives an admissible polynomial Ty and an inverse image
set By = Ty'([~1,1]) = U [k, bk] such that the endpoints of Ey are arbitrarily
close to the endpoints of F,,. Using Chebyshev polynomials 7, (z) and replacing Ty (z)
with Ty (7»(x)) and introducing a very small shift if necessary it can be achieved that
Tn(zg) = 0. (For details on this idea, see [44].) By multiplying with (—1) if necessary,
it can also be achieved that T} (xo) > 0, therefore the conditions (a)-(c) are satisfied. If
the endpoints of Ey are close enough to the endpoints of F,, then [43, Lemma 4.2] again
implies that Ey satisfies the condition (d). The identity (2.12) is a direct consequence of
(2.11). O

If 2 is an endpoint of our compact set K (i.e., for example, there is a 9 > 0 such that
K N (xg,x0+¢0) = ), the previous lemma has an analogue. In this case, the equilibrium
density of K is not defined at z(, but a related quantity takes its place. The behavior of
the equilibrium density wg (z) at an endpoint can be quantified as

M(K,z0) = lim V2r|z — zo|Ywi(2).

T—T0—

This quantity is finite and well defined in our case. (The constant /27 is usually not
incorporated in the definition of M (K, z), but we have found it more convenient to do
so.) It has appeared several times in the literature, for example it was shown by Totik that
this is the asymptotically best possible constant in Markov inequalities for polynomials

in several intervals, see [42, Theorem 4.1]. The analogue of Lemma 2.2 is the following.

Lemma 2.3. Let K be a compact subset of the real line and let vy € K be a point such
that K N (xg,x0 4+ €0) = & and [xg — €9, 20| C K for some eg > 0. Let e > 0 and n > 0 be
arbitrary. There exists a set By = Uff:_ol [ak, bk], b < ags1 such that

(a) Exy = Tx'([=1,1]), where Ty is an admissible polynomial of degree N, xq is a right
endpoint of En with Ty (z9) = 1 and T\ (x) > 0,

15



(b) K C E,

(c) dist(K, Ex) < €, where dist(K, Ex) denotes the Hausdorff distance of K and El,
(d) 5 M(K,20) < M(Ey,x) < M(K, x0).

Moreover, we have

[T (20)] = N*M(Ew, z0). (2.13)

Proof. The proof of (a)-(d) is almost identical to the proof of Lemma 2.2, except where
we select the set Fy,, = U }[a}, b;] which is a finite union of intervals containing K, we
make sure that xg is a right endpoint of F,,. Then we select Ey using [42, Theorem 2.1},
again in such a way that xg remains a right endpoint of Ey.

To prove (d), first note that the convergence of wg, () is locally uniform in (z¢—eg, x¢)
as granted by [43, Lemma 4.2]. Now [27, Lemma 2.1] says that if S is any compact subset of
the real line for which x is a right endpoint, then for any * > 0 there is a dy (independent

of S) such that
’\/571'(&)5(23)‘.% — :1:0\1/2 — M(S,zo)| <e*, x€ (xrg— do,x0)

holds. If we select Ex such that zg is still an endpoint and cap(FEy) is sufficiently close

to cap(K), we have

|M(K, 20) — M(Ey, )| < |M(K,x0) — V2mwi (z)|x — z0|/?]
+ [V2rwk(z) — V21w, (2)]|z — 20|/
+ ’M(EN,xo) — \/§7erN(a:)|x — x0\1/2|

< 3e™.

If we fix an z € (xg — do, zp) and select a sufficiently small €%, (d) follows. Finally, the

formula (2.13) is just [42, (4.10)]. O

2.3 Polynomial inequalities

To prove our main results, we often need to compare different norms of the same
polynomial or same norm of different polynomials, for which some basic polynomial in-
equalities will be our aid. We shall collect them in this section without proofs. First we

start with a weighted Nikolskii-type inequality.
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Lemma 2.4. Let P, be a polynomial of degree n and let « > —1. Then there exists a

constant C,, such that the inequality

1 1/2
Pl < Contt ([ 17, 0Plefas
-1

holds with o* = max{1, a}, where ||P,||(-11 denotes the supremum norm.

The proof of this lemma can be found at [4, Lemma 2.8]. Note that if a = 0, this is a
special case of the classical Nikolskii-inequality. Nikolskii-type inequalities are also needed

on different sets than intervals, for example Jordan arcs and curves.

Lemma 2.5. Let J be a C'* smooth Jordan arc (i.e. it is C1*% smooth for some 6 > 0)
and let J* C J be a subarc of J which has no common endpoint with J. Let zog € J be a

fized point and define the measure
dve(2) = w(2)|z — 20|%ds s (2), =z € J,

where a > —1, the function w(z) is strictly positive and continuous, and s;(z) denotes
the arc length measure with respect to J. Then there is a constant C depending on o, J

and J* such that for any polynomials P, of degree at most n, we have
1Pall g+ < OO P 12,0,
where of = max{0, a}.
The proof can be found in [4, Lemma 2.7]. Next, a Bernstein type inequality.

Lemma 2.6. Let J be a C? smooth closed Jordan arc and let J, be a closed subarc of J
not having common endpoint with J. Then for every D > 0 there is a constant Cp such
that

|P!(2)| < Cpnl||P,l|;, dist(z,J1) < D/n

holds for every polynomial P, of degree n.

For proof, see [41, Corollary 7.4].

2.4 Fast decreasing polynomials

Recall that the n-th Christoffel function with respect to a measure p was defined by

. ‘Pn(z)|2
A = f ————d )
n(l’[w ZO) deg(llgln)<n |Pn(ZO)|2 N(Z)
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By using test polynomials P, such that P, is small outside some small neighborhood of z,
this definition suggests that the asymptotic behavior of the Christoffel functions might be
localized. Indeed, as we shall see later this is the case. To use this "localization argument”
precisely, we need such fast decreasing polynomials on both Jordan curves and on the real

line. In this section we collect the most important constructions used by us.

For compact subsets of the complex plane, we have the following lemmas.

Lemma 2.7. Let K be a compact set on C, let Q) denote the unbounded component of
C\ K and let zy € 09). Suppose that there is a disk in S that contains zy on its boundary.
Then, for every v > 1 there are constants c,,Cy and for every n polynomials S, ., k of

degree at most n such that S, ., x(20) = 1, |Sn.0.x(2)] <1 for all z € K and
‘Sn,zo,K<Z>| < C»yeincﬂziz()‘v, ze K.

For proof, see [41, Theorem 4.1]. As an immediate corollary, we have the following,

which will be also useful to us.

Lemma 2.8. With the assumptions of Lemma 2.7, for every 0 < 7 < 1 there exists

positive constants c¢;,Cr, 19 and for every n a polynomial S, ., x of degree o(n) such that

Sname(ZO) = 17 |Sn7zo7K(Z)| S 1 hOldS fO?" all z € K; and
S0 (2)| < Cre™ ™ |z — 2] > 7.

Proof. Let € > 0 be sufficiently small and select v > 1 such that 1 —¢ — 7y > 0. Lemma
2.7 tells us that there is a polynomial S,, ., x with deg(S, ., x) < n'~¢ such that
|Sh 20,5 (2)] < 076_07”17(6”7), |z — 20| > n77".

This S, ., x satisfies our requirements. O

There is a version of Lemma 2.7 where the decrease is not exponentially small, but

starts much earlier than in Lemma 2.7.

Lemma 2.9. Let K be as in Lemma 2.7. Then for every B < 1 there are constants
cg, Cg > 0 and for every n = 1,2,... polynomials S, ., xk of degree at most n such that
Snzok(20) =1, [Sp 2k (2)] <1 forall z € K and

|Sn,z0,K(Z)| S 056_63(”‘2_20057 z€e K.
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For proof, see [45, Lemma 4]. The situation is somewhat simpler on the real line,
because there is no maximum modulus principle there. For example, if we consider the
annulus {z € C : 1 < z < 2}, there are no fast decreasing polynomials for this set in

zo = 1. If K is a compact subset of the real line and z¢y € K, polynomials of the type

— 2\ Lnn]
= 1 - O Tin (T7\
Sn,xo,K (.I') ( (2 dlam(K> > ) ’

where 1 > 0 is an arbitrary number and diam(/K') denotes the diameter of K, will be suf-
ficient for us. This S, ., x is nonnegative, fast decreasing on K, moreover deg(Sy »,.x) =

2|nn], which can be made arbitrarily small (though always O(n)) by choosing 7 accord-

ingly.

2.5 Apriori estimates for Christoffel functions

When establishing asymptotics for A\, (i, z), we often do it only for some subsequence
ng. It is enough to study special subsequences from which the asymptotic behavior of the
complete sequence is implied. This is summarized in the following lemma, which will be

used frequently.

Lemma 2.10. Let {n;}2, be a subsequence of N such that ngy1/ng — 1 as k — oc.

Then for every k > 0,

lign inf nf A, (1, ) = liminf n"\, (u, x)
—00

n—o0
and
lim sup nj\,, (@, ) = lim sup n" A, (p, x)
k—o0 n—r00
holds.

Proof. 1f k is selected such that n; < n < ng,q, the monotonicity of A, (i, z) in n implies

n

(2 wrmetia) < 00 () <
n

i ) ”Z+1>\nk+1 (:ua 1;)

Nk41

Since n/ny — 1 as k — oo, this implies what we need to prove. O

Next we prove a simple bound for Christoffel functions on Jordan curves, which will

be useful later.
Lemma 2.11. Let p be a measure as in Theorem 1.1. Then
M, 20) < Ot
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Proof. Let S, ., be the fast decreasing polynomial given by Lemma 2.9 with g = 1/2
and K = ~. Let 6 > 0 be so small that in the J-neighbourhood of z, we have du(z) =
w(z)|z — 20|*ds,(2). Outside this neighbourhood

1/2

|Sn,zoﬁ(z)’ < Cﬁe_cﬁ(né) )

therefore

1/2

/|Sn,zo,v(z)|2dﬂ(z) < 0/6—265(n|t)1/2|t|adt + Ce—?q;(né) < Crn—a—I’

which is what we needed to prove. ]

2.6 The Riemann-Hilbert method

The Riemann-Hilbert problem is a boundary value problem for functions analytic on
the complex plane except at points of a contour, where the function has a prescribed
jump. It is connected with Hilbert’s 21th problem regarding proof of the existence of
linear differential equations having a prescribed monodromic group. Recently it has been
discovered that certain orthogonal polynomials can be characterized as a solution of a
2 x 2 matrix valued Riemann-Hilbert problem, and since then, it was used to solve several
previously untouchable problems. The method was pioneered by P. Deift and X. Zhou
in [10]. The purpose of this section is to provide a very brief overview about the use of

Riemann-Hilbert method for orthogonal polynomials on [—1, 1]. For more details, see [6]

and [16].

Let v € C be a disjoint union of oriented arcs and curves on the complex plane
and denote ~? its points except points of self-intersection and endpoints. The orientation
defines a positive and negative side of the curves. (For example, if our curve is the unit
circle oriented clockwise, the positive side is the outside of the circle, the negative side is
the inside of the circle.) Denote the positive and negative side with 4+ and v~ respectively.
Suppose that V(z) : v — C**? is a given matrix valued function. We say that Y(z) is
a solution of the Riemann-Hilbert problem with respect to v and V(z) if the following
holds.

(MRH1) Y(z) : C\ v — C*? is analytic. (That is, its elements are analytic.)
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(MRH2) The limits

Yi(20) = Jlim Y(2), Y_(2)= lim Y(2)
zeyt zev~

exist and the jump condition Y, (29) = Y_(29)V (20) holds for all zy € 7°.
(MRH3) Y(2) — I as z — oo, where I denotes the 2 x 2 identity matrix.

If the jump matrix V(z) satisfies some general conditions, the solution exists, however
it may not be unique. If the behavior of Y(z) is prescribed around infinity and around

the points of v\ 7, we may have unicity.

If the contour 7 is the interval [—1, 1] with a special jump matrix and the solution is
normalized around infinity, Y'(z) can be written in terms of orthogonal polynomials. Let
w(x) be a function analytic and stictly positive on the interval [—1,1]. We seek a 2 x 2
matrix valued function Y'(z) : C\ [—1,1] — C?*? which satisfies the following.

(OPRH1) Y (z) is analytic on C\ [—1,1].
(OPRH2) For all z € (—1,1) the limits

Vi) = lm Y, Y@= lm Y(e)
Im(z)>0 Im(z)<0

exist and the jump condition

holds.
(OPRH3) Near infinity, the behavior of Y'(z) is

V() = (1+0(:") |
as z — 00.
(OPRH4) Near the endpoints —1 and 1, the behavior of Y (2) is

1 loglz — (=1)"|
1 log|z — (=1)"]

as z — (=1)*in C \ [-1,1].
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It can be shown that Y'(z) can be written in terms of orthogonal polynomials, i. e. we

have

1 mn(z) 7,0
Y(Z) = 2 i 1 ()

_27”72—17771—1(2) _'7721—1 f_1 7@4@(@

where m,(z) denotes the monic orthogonal polynomials with respect to the measure
w(z)dr and 7, denotes the leading coefficient of the n-th orthonormal polynomial p,(z).
This is useful, because by transforming the Riemann-Hilbert problem adequately, we can
obtain an asymptotic formula for m,, which is due to the following theorem, see [16,

Theorem 3.1].

Theorem 2.12. Let v be a positively oriented simple closed contour and let €2 be an open
neighbourhood of . Then there exists constants C' and ¢ such that if Y (2) is a solution of
the Riemann-Hilbert problem (MRH1) - (MRH3) with a jump matriz V' that is analytic
on €1, then

1Y (z) = 1| < C[|V = I]|q

holds for every z € C\ ~, where the norm is defined by the mazimum row sum norm

[R(2)]| = max{|[Ri(2)] + [Ri2(2)], | Rar(2)] + [Ra2(2)[} and [|Rllo = sup.cq [|R(2)]]-

In other words, if the jump matrix is small, the solution is also small. Although the
jump matrix in (OPRH2) is not small, we can transform the problem into an other one

with small jump matrix, therefore obtaining an asymptotic formula like
M(2)Y (2)T(z) = I + O(1/n),

where M (z) and T'(z) are some 2 x 2 transform matrices.

3 Model cases

Our goal in this section is to prove Theorems 1.1, 1.2 and 1.3 for very special cases.

These results then will be used to prove the mentioned theorems in their full generality.

3.1 Measures on [-1,1]

First we study measures supported on the interval [—1, 1]. Define the measures u’, and
fig, by
dpig () = |z, @ e [~1,1] (3.1)
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and

dut(z) =z — 1%, =z e€[-1,1]. (3.2)

First we prove (1.21) for p2. Although A, (18, 0) was studied in [30] (along with A, (1, 1)),
we need to study A, (u’,a/n) for an arbitrary a. To do this, we use the Riemann-Hilbert
method. For a brief introduction, see Section 2.6. During this part we follow closely
the lines of [17] and [46]. Although the Riemann-Hilbert analysis for generalized Jacobi
measures was carried out by M. Vanlessen in [46], it does not cover the asymptotics
for the Christoffel-Darboux kernels. First we define a Riemann-Hilbert problem for the
2 x 2 matrix-valued function Y (z) : C — C**? which can be expressed in terms of the
orthogonal polynomials. Then via a series of transformations Y +— T +— S +— R a 2 x 2
matrix-valued function R(z) can be obtained for which asymptotic behavior is known.
These transformations can be unraveled to obtain strong asymptotics for the orthogonal

polynomials for p® which will yield (1.21) in this special case.

Proposition 3.1. Let u? be the measure supported on [—1,1] defined as
dpe(x) = |z|*dz, = € [-1,1],

where a > —1 and o # 0. Then for the normalized Christoffel-Darbouz kernel,

1z, (9 9) — Lo(a,b) + 0<W> (3.3)

n n’'n n
holds uniformly for a,b in bounded subsets of (—oo,0) U (0,00), where L,(a,b) is defined
by (1.16). Moreover, for the non-normalized Christoffel-Darboux kernel, we have

#Kn (2 9) = L%(a,b) + O(1/n) (3.4)

n'n
uniformly for a,b in compact subsets of the real line, where LY (a,b) is defined by (1.17).

Proof. First we show (3.3) using the Riemann-Hilbert method following the steps of Kui-
jlaars and Vanlessen [17] and Vanlessen [46], then we show (3.4) by normalizing and
appealing to known results for a = b = 0. We define the Riemann-Hilbert problem for the
2 x 2 matrix valued function Y'(z) = (Y;(2)); =, as in [46]. Suppose that

(a) Y(2) is analytic for z € C\ [—1, 1].

(b) For all x € (—1,0) U (0,1) the limits

Vi@ = lm V(). Y-@)= lm V()
Im(2)>0 Im(z)<0
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exist and the jump condition

holds.

(c) For the behavior of Y(z) near infinity we have

2" 0
Y(z) = +0(z") :
0 ="
as z — 00.
(d) For the behavior of Y'(z) near 0 we have
(
1 |Z|a/2
O ita<0
1 ‘Z’a/2
Y(z) =
11
O if >0
11

as z — 0in C\ [—1,1].

(e) For the behavior of Y(z) near the endpoints (—1)* for k = 1,2 we have

vy [* el 1
1 log|z — (—1)

as z — (—1)*in C\ [-1,1].

The unique solution for this Riemann-Hilbert problem can be expressed in terms of
orthogonal polynomials. If 7, (12, 2) = 7,(2) denotes the monic orthogonal polynomial of
degree n with respect to the measure p® and v,(u’) = 7, denotes the leading coefficient
of the orthonormal polynomial p,(u?, 2) = p,(2), then, see [46, Theorem 2.2], Y'(2) takes

the form
1 (1 m(=@) 7,0
Tn(2 == —=du (x
Y(z) = ( ) 2mi 71 v—z GH ( ) . (35)
—2min a1 (2) iy [ PRy ()
To give an asymptotic formula for Y(z), we need to introduce some special functions. Let
w(z) be an analytic continuation of the function |z|* to the two half-planes defined by
(—2)* if Re(z) <0,
w(z) = (3.6)
2% if Re(z) > 0.
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as in [46, (3.4)], and define the function W (z) for all z € C \ R similarly by

2/2 if Re(z) <0,
W(z) = (3.7)
(—2)*2 if Re(z) >0

so that overall, we have

w(z)e ™ if Re(z)Im(z) > 0,
= [ (2)m(z) > .
w(z)e™ if Re(z)Im(z) < 0.

The function ¢(z) = z + V22 — 1 denotes the conformal mapping of C \ [—1, 1] onto the

exterior of the unit circle and the auxiliary function f(z) is defined by

tlogp(z) —ilog (0 if Im(z) > 0,
£2) = g o(2) g ¢+ (0) (2) > (39)

—ilogp(z) —ilogpy(0) if Im(z) <0,

where ¢, (0) = lim, o m(»)>0¥(2) = i. Now we divide the complex plane into eight

congruent octants defined by

k—1 k
Ol:{z%éarg(z)§£}7 221,2,,8

Define a 2 x 2 matrix valued function ¢(z) in the first and fourth octants Oy and Oy by

(

—i2etly 7r(2) - i2adlo rp(1)
e T TH (z) —ietT 1 o (2
%\/7721/2 ot (2) #( ) z € Oy,
S HD, () o (2)
U(z) = o SN (3.10)
’a“Ha( 2)  —e “Ha( z)
Ly/A(—2) 12 2 3 €0,
\ —ie T (=) T (<)
2 2

where H§ ) and H ) denotes the Hankel functions of the first and second kind of order 7.
For more on the Hankel functions, see [1, 9.1.3, 9.1.4]. The 2 x 2 matrix o3 denotes the

Pauli matrix



The definition of ¥(z) can be extended to the whole complex plane, but to avoid com-
plications, we shall define it only on O; and Oy, because this will be sufficient for our
purposes. For the complete definition, see [46, Section 4.2]. The function N(z), which is

a solution of a so-called model Riemann-Hilbert problem, is defined as

a(z)ta(z)"t  a(z)—a(z)”!

N(z) = D% 2 % D(z)* 3.11
<Z) X\ a(z)—az)"!  a(z)+a(z)?! (Z) ’ ( )
—2i 2
where a(z) = % and D(z) is the Szegd function (associated to the measure ),
which is given by
D Za/2
e

and Do, = lim, ,,, D(2). Finally we define the auxiliary function E,(z) on the first and

fourth octant O and O, as

, o 1 1
N(z)VV(Z)‘”(3%7”032""“’36_Z“’3\/L5 z € Oy,
v 1
E,(2) = 1 (3.12)
. . 1 1
N(z)I/V(z)”Be’Z’”"?’z'””i"’e’Z““\/LE z € Oy.
1

\

E,(2) can also be defined on the whole complex plane, but we shall only work on the first

and fourth octant. For the complete definition see [46, Section 4.3].

In order to prove (3.3), we shall need two lemmas which are the analogues of [17,

Lemmas 3.3 and 3.5].
Lemma 3.2. For every x € (0,9), where 6 is small enough, the first column of Y (z) given
by (3.5) takes the form

Yii(x
u(@) S 2793 M, (2)(m /2 — arccos z) /2

Yo (2) w(®)

(3.13)

€% Jou1 (n(m/2 — arccos z))
X 2 :
e i Joa (n(m/2 — arccos x))

26



and for every x € (—6,0), it takes the form

Yu(@) = [ g-nos M (x)(arccos z — m/2)Y/?
‘() v (3.14)
y —e~'% Jops (n(arccosz — m/2))
e ' Joa (n(arccos x — 7/2))
where M(z) denotes
M(z) = R(2)E,(2) (3.15)

and My (x) = lim._,; tm(z)>0 M (2). Moreover, det M (z) = 1, M(z) is analytic in Oy U Oy,
and also M(z) and LM (z) are uniformly bounded in (O; U Os) N{z : |z| < 6}.

Proof. Unraveling the series of transformations Y + T+ S — R described in [46] it can
be obtained that in the first and fourth octant Oy, O4 and near the origin, Y (z) takes the

form

Vi) =2 " REE e W | ) (3.16)
w(z)

where R(z) is analytic and R(z) = I 4+ O(1/n) uniformly in a small neighbourhood of the

origin. From now on, we have to distinguish between the cases x € (0,) and x € (—4,0).

First case: © € (0,9). To obtain (3.13), we work in Oy and let z — x in there. Since
(3.8) gives that W (z) = w'/?(2)e""*/2 for z € Oy,

T 1 0 w(z) " 2eime/2 0
(Z) 1 1 N w(z>71/2€7iﬂ'a/2 w(z)l/Qefiﬂa/2
w(z)

Combining this with (3.16) we obtain that for z € Oy,

}/11(2) - . eiﬂa/Q
= w(z) P2 R(2)Ba(2)d (nf(2)) |
}/’21(2) efma/Z
eiﬂ'a/Q
holds. Now we aim to express ¥ (nf(z)) o in terms of Bessel functions. Since
e—mra

H,Sl)(z) + HP(2) = 2J,(2), see [1, 9.1.2 and 9.1.3], we have

eiﬂ'a/Q e—zﬁr/4JL+1 (Z)

27



which gives

O ey eymre e Gy () T

Yarl) e oy (nf ()
For the f(z) defined by (3.9) we have f,(z) = 7/2 —arccos x, therefore the above identity
gives (3.13). Since det R(z) = 1 (use that det R(z) is analytic and R(z) = I + O(1/z2)
around infinity, see [46, Section 3.3]), it follows easily from (3.11) that det M (z) = 1.
Moreover, M (z) is analytic in the octant Oy near the origin. The boundedness of R(z) is
implied by [46, (3.30)], and since it is actually analytic in some small neighbourhood of
0, the Cauchy integral formula gives that d%R(z) is also bounded in some small disk with
center at the origin. The same can be said about E,(z), see [46, Proposition 4.5, which
implies that M (z) = R(2)E,(z) and LM (z) is uniformly bounded in a small disk around

0 as n — oo.

Second case: x € (—6,0). Calculating similarly as in the first case, we obtain that for

z € Oy4, we have

YH(Z) - o e—iﬂ'a/Q
= w(2) P2 R() B () (nf () |
}/21<Z) ewroz/
We also get
—ira/2 o —Z%Ja (=
o) | = V/m(=2)"? e.,r S )
6171’01/2 G_ZZJaTA(—Z)

which gives

Yii(z —e 7T Jan (—nf(z
W) e R B (e [T )
Via(2) e Jus (< f ().
Similarly as in the first case, letting z — z through O, yields (3.14). O]

The next lemma, which is the analogue of [17, Lemma 3.5], studies the asymptotic

behavior of J, (n(% — arccos %))

Lemma 3.3. Let a € R\ {0}. Define a,, = a/n and a, = n(% — arccos|a,|). Then

. lal®

and

To(in) = Ja(lal) + 0('a|2+a> (3.18)

n2

holds.

28



Proof. Without the loss of generality we can assume that a > 0. Since 7/2 — arccosz =
x + O(x®) (just use the Taylor expansion of 7/2 — arccosx = arcsinz), the asymptotic
formula (3.17) easily follows. As for the behavior of the Bessel functions, [1, 9.1.10] says
that J,(2) = 2%G(z), where G(z) is an entire function. It follows that

o= (o)) (o +0(2)
e(ro(Z)) o +o(2)

= Jula) +0(>

n2

which is what we needed to show. O

To show (3.3), we shall distinguish between the four cases (i) a,b > 0, (ii) @ > 0,b < 0,
(iii) @ < 0,b > 0, (iv) a,b < 0. Because of the symmetry of p®, we have K,(z,y) =
K, (—x,—y), therefore it is enough to deal with the first two cases.

First case: a,b > 0. Let a,b € (0,00) and define a,, = a/n, b, = b/n, moreover let
a, = n(g — arccos an), l;n = n(g — arccos bn). First we shall express I?n(x, y) in terms
of Y11(z) and Y (x). (3.5) gives that Yii(x) = Winpn(x) and Yo (z) = =271y, 1pn—1(2).

Using the Christoffel-Darboux formula (1.2) with Lemma 3.2 yields

L R(an, be) = m w(an) ) (Yaa (o) Vor(tn) = Yis () Yan o)
\/Tdet Yll an) Y11<bn)
27‘(’2 b—CL Ygl( ) YVQl(bn)
S L e [ Vel Vi)
27i(b — a) \/—aanl Vw(br)Ya1(by)

n
= —2(a =) det

M. (a,)(@n/n)"? JQTHW O)
M BBy 7 ;
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_n (@n /)2 Jagi (@) (ba/n)"/? Jass (by)
Aa—1) det [M+(bn){ :

+ My (by) " (M (an) — Mi(by))

X

(@ /n)"/2 T s (@) 0 H
(an/n)l/QJanl(an) 0

Since M (z) is uniformly bounded and its determinant is 1 (see Lemma 3.2), M(z)™!

is also uniformly bounded, moreover the uniform boundedness of LM (z) imply that
M, (an) — My (b,) = O(%2). We also have J,(a,) = O(a®) (use (3.18) and the fact that

Juo(2) = 2*G(z), where G(z) is an entire function), which gives

i /)2 J a1 (@) 0 O(%La"") 0
ML) (0 a) = Ao (1)t @) 0) (O )
(@n/n)/? Jaz1 (@) 0 O(%5az) 0
From these and det M (z) = 1 it follows that
1[? (@ b) 1 det &'}/2JL+1(EL7L> + O(“T*baaTQ) 6717,/2JL+1(Z~711>
—Np\Qp,0p) = € 2 ~ 2
n 2(& - b) &711/2(]%71 dn) + O(%a%) b%/QJanl (bn)
~1/271/2 ~ 7 a/2pa
e () ) o)
a — ~ n
Jai(an) Jaz1(bn) (3.19)
Cath e T T ot 0T Jagi (@n) = b7 Japi (b) 0T Jasi (by)
2a=b) 0 Tt () = 67T Jaca (B) 57T s (B)

0 (aa/2ba/2> |
n

where the error term is uniform for a,b on bounded subsets of (0,00), even intervals of

the form (0, ¢|. Lemma 3.3 gives

and

which imply




and

0% Jaca () = b~ T oo (by)

n2

a—1 a—1 2 — b2
:a_zj%d@—h_2J%d®+O(a ).

Continuing (3.19) with these, we have

1~ aL/2pL/2 Jot1(a) Jati (b
_Kn(ambn) = &det ; ( ) ; ( )
n 2(a —b) Jazi(a) Jaza(b)
s (07T e (@) =0T e (0) O(5)
+ det a—1 a—1 2
2(a—b) T e (0) = b S (8) O(%)

O (aa/2ba/2)
n

In the second term, since J,(z) = 2G(z) where G(z) is an entire function, by the mean
value theorem we have
0T Jazi (a) = 57T Jazi (b)
a—b

—0(1), (3.20)

hence the second term is O(W) In the first term a,, = a + 0(2—2) and Z;n =b+

O(Z_z) can be replaced with a and b respectively, because the resulting error terms can be

absorbed into the previous error term. Overall, we have

~ af2po/2
lKn <g é) = La(aab) +O(a b )7

n n'n n

which is uniform for a,b € (0,00) in bounded sets, even when a — b is small.

Second case: a > 0,b < 0. Let a > 0,b < 0 and define a,, = a/n, b, = b/n, moreover
let a, = n(% — arccos an), b, = n(arccos b, — %) = n(% — arccos]bn]). With similar
calculations as before but with (3.14) instead of (3.13) we obtain (3.20). (Note that the
definition of L, (a, b) differs when a > 0 and b < 0, see (1.16).)

By normalizing (3.3) with a®/26%/2 we obtain (3.4) uniformly for a,b in bounded
subsets of R\ {0}. Using [4, Theorem 1.1] we see that this actually holds uniformly for

a,b in compact subsets of R, and this is what we had to show. O

By letting b — a in (3.4) we obtain the formula

#Kn(ﬁ 9) — Li(a)+0(1/n),

n'n
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which can be written in terms of Christoffel functions as

-1
lim n°*' A, (1l a/n) = (L;(@) . (3.21)
n—oo
By using that J,(z) => "7, %(%)2”“’, we obtain by letting a to 0 in (3.21) that
1 3
lim 7oA, (12, 0) = 2a+1r(0‘; )r(o‘; ) (3.22)
n—oo

This last identity can also be established by considering (3.23) for @ = 0 and using the

transformation x — 222 — 1.

To establish the model case when the singularity is at an endpoint of the support, we

shall study the measure uf defined by (3.2). For this, we have the following.

Proposition 3.4. Let i be the measure supported on [—1,1] defined as
dﬂ“i(w) = |ZE - 1|adx7 2 [_17 1]7
where a > —1. Then

: 2a42 e . — a+1 = N
lim n**™N, (ua, 1 o2 ) (2 Ja(a)> (3.23)
holds.

Since classical Jacobi measures are very well studied, this result along with much

stronger results were already known, see [17]. (3.23) is a special case of [17, Theorem 1.3

(c)].

3.2 Measures on the unit circle

To prove Theorem 1.1, first we shall study a special measure on the unit circle. We
will use the transformation e ~— cost to establish asymptotics of the Christoffel function
for the pullback measure of ;% which was defined by (3.1), then we use this to study the
measure

dul(e™) = |e® — i|“dt,

which will be our model case.
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Proposition 3.5. Let ul be the measure supported on the unit circle T defined as
dul(e™) = |e —i|*dt, te[-m,7), (3.24)

where a« > —1. Then we have

. 1
lim na+1)\n(ﬂg762ﬂ/2) _ 22a+2r<a + >F<Oé + 3) (325)

Proof. First we prove a result analogous to (3.25) for the pullback measure of 1 defined
by (3.1). Let 52 be the measure on the unit circle T defined by

|62it + 1‘04 |62it _ 1‘
2¢ 2

dn>(e) = dt.

For arbitrary integrable function f, we have

™ 2it 1]e 29t 1 1
/ f(cost) e + 11" Je |dt = 2/ f(z)|x|%dx,
- -1

A 2
which means that 7" is indeed the pullback measure of ;2 with respect to the mapping

e+ cost. First our aim is to prove that

. 1
lim na+1/\n(ng7 €z7r/2) _ 22a+2r<06 + )F(Oé + 3>

To do this, it is enough to show the upper and lower estimates

, 1
lim sup n® ™\, (T, e™/?) < 22a+2F<a i )F(a i 3)

and

4 1
lim infno‘H)\n(nE, em/Q) Z 22a+2r<a + >F<Oé + 3)

n—oo 2 2

Upper estimate. Let P, be the extremal polynomial for \,(12,0) and define

. 1 i(t—m/2)\ lml
Sn(ezt) _ Pn(COS f;)( + 62 ) ezn(tfﬂ/Q),

where 1 > 0 is arbitrary. S, is a polynomial of degree 2n + |[nn| (which can be seen by
using that cost = (¢ + e~%)/2), moreover we have S, (e"™/?) = 1.
On the one hand, for any fixed 0 < § < 1, we have

w246 ' ‘ /246
[, ISPt < [ R eost)Pav(e)

w/2—8 /2—6

/yp )[2|2]*dz

An(22,,0).
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On the other hand, to estimate the corresponding integral over [—m,7/2 — §] and over
[7/2 4 6, 7], we notice that

1+ ¢ilt=7/2) L] .
sup — = 0(q") (3.26)

te|—m,m|\[r/2—8,7/2+6]

for some ¢ < 1. It follows from Lemma 2.4 that
1Pl < Cr 2 Pyl 2y < Ot 102,

where in the last step we used that || P,[|12(.s) < 1, which follows by considering that P,
is extremal and using 1 in the definition (1.3). Thus, it follows that
w/2—8 ™ A ]
([0 [ Yisaeripavieny < Cqrmtsers  ofu-esd),
-7 w/2+5

It follows from these preceding estimates that
)\deg(Sn)Ojg? eiﬂ-/2> S An(:ugn 0) + O(n_(a+l))7
and by this and (3.22), we have

lim sup(2n + (7)) Aapg yn) (12, /2

n—oo

< limsup(2 + [nn] /n) N, (1, 0)

n—oo

1
= (1 /)i () ( 3).

Since > 0 was arbitrary, Lemma 2.10 gives that

, 1 3
lim sup n®* 1\, (nI, e™/?) < 22O‘+2F<a a )F(a il ), (3.27)

n—o0 2 2

which is the desired upper estimate.

Lower estimate. To prove the matching lower estimate, let Sy, (e”) be the extremal

polynomial for g, (1T, €™/2). Define

i(t—m/2) \ 2|lnmm]
Pr(e")San(e") (HeT(/)> o~ (L ))i(t—m/2)
and

P,(cost) = P(e") + Pr(e™™).
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P,(cost) is a polynomial in cost, moreover deg(P,) < n+ |nn] and P,(0) = 1. With this,

we have

Adestr (1,0 /\P Plafde =5 [ IP(costPai(en).  (328)

This P, has some useful localization properties. Let 0 < § < 1 be fixed. Then we claim

that
|Po(cost)|? = |P:(e®)|* + O(¢™), te€[r/2—087/2+4],

|Pu(cost)|? = |Pr(e ™)+ O(q"), te€[-n/2—6,—7/2+ 4], (3.29)
|P,(cost)|* = O(¢") otherwise

holds for some ¢ < 1. To show this, consider that

|Pa(cost)[* = |P(e") + Py(e")]”
4 4 . | (3.30)
< PP+ 21 (eN)|1Py (e + [P (e ).

Now if we apply Lemma 2.5 to two subarcs of T that contains the upper and respectively

the lower half of the unit circle and in addition they cover the whole circle, we obtain that
1P lle < [[Sanllr < CnHD 28y, || 12n) < CnOHD2,
which, along with (3.26), implies
|P*(e)] < CqmntHel/2 ¢ e [—x 7))\ [7/2 — 6, 7/2 + 4].

This gives that the terms in (3.30) are exponentially small with possibly only one excep-

tion, which gives (3.29). Now we have

™ w/2+0 —7 /240
JNCRAS ( [+ )|P (cos B)2dnE(e)
-7 /2—68 —7/2—68
—7/2—48 w/2—6 ‘
< / / / )|Pn(cost)|2dn;f(e“).
m/24+6 /248

(3.29) implies that the last three terms are of magnitude O(g™), while for the other two
terms we have

w/246 ' /246 ' ‘
[ PeostiPaniiet) = [P ParEe) + Ola)

w/2—0 w/2—0

w/246 A .
< / [Son ()2 () + O(q")
T/2—8

< Nan (g, €™%) + O(g"),
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and similarly

—7/24+6 ‘ '
[ IPcostPanie) < a7 + O,
—7/2—6

Combining these with (3.28), we have

)\deg(Pn)(:ulc)w O) < )\271(775’1:7 eiﬂ-/2) -+ O(q"),
thus

lim inf deg(P,)™* Adeg(p,) (1, 0) < i inf(n + [0 )™ (Aan (12, €72) + O(q"))
n—oo

n—oo
1

< i nf(1 o+ Lin] /)™ oz (20)" Aan i, €715

Now by letting 7 to 0, Lemma 2.10 and (3.22) implies that

| |
22a+2r<a il )r(o‘ ; 3) < liminf n®+H, (nF, €7/2). (3.31)

2 n—oo

(3.27) and (3.31) implies that

. 1
hm na-‘rlAn(ng’ 67,71’/2) — 22a+21‘\<& + )F(a + 3>7

which is almost what we wanted. We need the same for A, (u", €7™/2) instead of A, (1=, €"™/2).

Proof of (3.25). First notice that

dpig (¢72) = w(e)dng (e"),

[0}

where w is continuous in a neighbourhood of €/? and w(e™™/?) = 1. For an arbitrary

7 > 0, select 6 > 0 in a way that

1 .
< it < _
1+T_w(e)_1+7, ten/2—0,7/2+ 0]

holds. If we carry out the preceding arguments with this § and 7. replaced with ul, we

obtain that

1 1 3 .
_22a+2F(a + )F(a + > < liminf /\n(M£> 627r/2)
1+7 2 2 n—0o0

< liminf A, (pX, e™/2)
n—oo

1 3
<( +T)22°“+2r(a‘2F )F(O‘; )

Since 7 > 0 was arbitrary, (3.25) follows.
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4 Asymptotics for the Christoffel functions with re-
spect to generalized Jacobi measures supported on

a system of Jordan curves

4.1 Lemniscates

Now we prove Theorem 1.1 on lemniscates. For the definition and basic properties of

lemniscates, see Section 2.2.

Let Ty (z) be a polynomial of degree N and consider the lemniscate defined by the set

o0={2€C:|Tn(z)| =1}. Let 2y € o be arbitrary and define the measure
dis(z) = |z — 20|%ds,(2), z €0 (4.1)

for some o« > —1, where s, denotes the arc length measure with respect to . Without loss
of generality we can assume that Ty (zy) = €¢™/2. Our plan is to compare the Christoffel
functions for the measure y, with that for the measure u>, which is supported on the

unit circle and was defined by (3.24). Our aim is to prove

1 a+1 a+3
Hm n® N, (1. 20) = —2a+1r< )r( ) 42
A Ml 20) = o e 2 2 (42)

To do this, it is enough to prove the upper and lower estimates like in the proof of Propo-

sition 3.5.

Upper estimate. Let 7 > 0 be an arbitrary small number and select 6 > 0 such that

for every z with |z — 29| < 0, we have

1 , :
(1) m‘TN('ZU)’ < Ty (=) < (1 +n)|Tx(20)] "
(2) ﬁ‘TJI\/(zO)HZ — 20| < [Tn(2) = Tiv(20)| < (1 +0)[Ti(20)l12 — 20l-

Note that T (z) # 0, because ¢ has no self-intersections. Let @, be the extremal poly-
nomial for \,(ul, e™/?), where ul is defined by (3.24). Define R, as

Rn(2) = Qn(Tn(2))Sn z0,0(2),

where S, ., 1 is the fast decreasing polynomial given by Lemma 2.8 for the enclosed

lemniscate domain L = {z € C : |Ty(2)] < 1}. (The 0 < 7 < 1 in Lemma 2.8 can be
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anything.) R, is a polynomial of degree nN + o(n) with R, (z9) = 1. Since S, ., is fast
decreasing, we have

sup [Snz0,2(2)] = O(¢"")

z€L\z:|z—20|<d

for some ¢ < 1 and 75 > 0. The Nikolskii-type inequality in Lemma 2.5 applied to two

subarcs of T containing the upper and respectively the lower part of the unit circle yields
1Qullr < CnHeD/2)1Q, |2y < Cn (1+lab/2

therefore

nTo/2
sup  |Ra(2)] = 0(¢""),
2€L\z:|z—20|<6

from which it follows that

/ 56 |Ru(2)|2 = 20/ dso(2) = O(¢""). (4.4)

On the other hand, with (4.3), we have
[ IR = alvdsa()
|z—2z0]<é

< / Qu(Tw ()P 1z — 20/ dso (2)
|z—z0|<6
(1+ )t
= e Gl

(1 +n)|a\+1
= T4 (z0)]* 1

(1 + 77)|a|+1 /2
Ty (Zo)|0‘+1/\”(uaé’6 ).

This and (4.4) imply that

/ » |@n(Tx(2))*| T (2) = Tiv (20)|*[ Ty ()]s (2)
/0 |Qn<ez’t)|2|€it . 6i7r/2|adt

+ )\a|+1
Ty (2

Nes(rt 1o 20) < |( Dl )+ O™,

from which the model case (3.25) gives
lim sup deg(Rn)aH)\deg(Rn)(ua, 20)
n—oo
1 |41
< limsup(nN + o(n))aH%

)\n T,Biﬂ—/2
m T (ot e €

(14 ek 22a+zr(a;1)r<a;3)_

Ty (z0)*

Since i > 0 is arbitrary, Lemma 2.10 and (2.4) yields the desired upper estimate

1 a+1 a+3
fimsupn® I (e, 0) € e (SN0 @
1211_)801;pn (oy20) < (mwo(20)) T 2 2 (45)
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Lower estimate. Let P, be the extremal polynomial for A, (f, 20) and let S, ,, 1, be
the fast decreasing polynomial given by Lemma 2.8 for the enclosed lemniscate domain

o, where 0 < 7 < 1 is fixed. Lemma 2.5 again implies that
I1Plo = O(n(1+|a|)/2). (4.6)

Define
R, (2) = Po(2)Sh.z.0(2).

R, is a polynomial of degree at most n + o(n) with R,,(z) = 1. Similarly as in the upper

estimate, we have

sup [Ru(2)| = O(¢"""), (4.7)

z€L\z:|z—2z0|<8
for some |g| < 1 and 75 > 0. Since the expression S.r | R,(z;), where {z1,..., 2y} =
T (Ty(2)), is symmetric in the variables 2, it is a sum of elementary symmetric polyno-
mials. For more details on this idea, see [44]. Therefore there is a polynomial @,, of degree

at most deg(R,)/N = (n+ o(n))/N such that

Qn(Tn(2)) = ZRn(zk), z € o.

We claim that for every z € o, we have

Qu(Tw () < D |Ralz)* + O(a"™"). (4.8)

Indeed, since o has no self intersection, |z — z| cannot be arbitrarily small for distinct k
and [. As a consequence, for every z at most one z; belongs to the set {z : |z — 29| < 0}

if 0 is sufficiently small, and hence (4.6) and (4.7) implies that in the sum

|Qn(Tn(z ZZ n ()| B (20)]

every term with k # [ is O(¢"™"").
Now let § > 0 be so small such that (4.3) holds for every z with |z — zy| < d. Then
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(2.5) and (4.8) yield
/lQn(TN(Z))|2|TN(Z)|'|TN(Z) — Tiv(20)|"dss(2)

o™+ | ( 2 |Rn<zk>\2) T (2) = T (o)l T3 (2)ldso (2)

= 0™+ [ (X IR L)~ Tl ) T s

—0("™") + N / Ru(2) 1T (2) — T (20)| Tl (2))dso (2)

< O(g"™"”) + (1 + )l Ty (20)[*H' N |[Pu(2) ]2 — 20[ds (2)

|z—20]<é

<O(¢"™") + (141 T (20)| " N Ao, 20).
Since ¢ has no self-intersections, @, (Tn(z0)) = 1+0(1), this along with (2.6) implies that

21
/ Qu(T () PIT(2) — Ty (20)]*| T (2) s () = N / Qu(e)Ple? — 62| dt
< (14 0(1)) N Mgy (1o €77),

where we recall that Ty (zp) = €™/2. These estimates give the inequality

(14 0(1)) Macg(@n) (e €7/%) < O(g"™") + (14 0) T T (20) | A (110, 20)-
Using that deg(Q,) < (n+ o(n))/N, we have

lim inf deg(@n)aH)\deg(Qn) (U, e”/z)

n—oo
n + o(n)

a+1
N ) )\n(,uay ZO)

< (1 + )Ty (20) |2 lim inf <
n—oo

! a+1
o +1 T\ (20)] . a+tl
S (]_ +77) Whﬂg}fn )\n(/LU,Z()).
Since n > 0 was arbitrary, (2.4) and (3.25) implies the desired lower estimate

1

(Twe(20)) !

(4.5) and (4.9) give (4.2), and this is what we wanted to show in this section.

1 3
2a+1f‘<a i )F(Oé;_ ) < liminf '\, (o, 20). (4.9)

2 n—oo

4.2 Union of Jordan curves

Now we set out to prove Theorem 1.1, the first main result of the thesis. Let therefore

v be a disjoint union of rectifiable Jordan curves lying exterior to each other and let u be
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a finite Borel measure with support v regular in the sense of Stahl-Totik. Suppose that
for a zy € 7 there is an open set U such that J = U N~ is a C? smooth Jordan arc and p

is absolutely continuous there with
du(z) = w(z)|z — 20|%ds,(2), z€J,

where a > —1 and w is strictly positive and continuous at zy. Our aim is to show

+1 a+3
lim oy, __ w(zo) 2a+1r<a )r( )
nl—>nc}on (M?ZO) (7w7(20)>a+1 2 9 )

for which, similarly to the previous sections, enough to show the matching upper and

lower estimates.

Lower estimate. Let P, be the extremal polynomial for A, (u, zo) and for some 7 > 0
let S, 0.k be the fast decreasing polynomial given by Lemma 2.7 with some v > 1 to be
determined below, where K denotes the set enclosed by 7. Let o0 = 0., be the lemniscate
given by the second part of Theorem 2.1, i.e. o lies inside v and w,. (20) < w,(20)+¢, where
e > 0 is arbitrary. Without the loss of generality, we can assume that o = {z : [T (2)| = 1}

and T (z) = €™/2. Similarly as before, define

R, (2) = Pu(2)Srnz0.0i(2).

Again, R, is a polynomial of degree at most (1 + 7)n with R,(zy) = 1. These will be
our test polynomials in estimating the Christoffel functions. Before we carry out our

estimations, we shall need two lemmas.

Lemma 4.1. Let% < B < 1 be fized. For each z € vy with |2 — 2| < 2n7", let 2* € o be the
point such that s, ([0, 2*]) = s,([20, 2]) (there are in fact two such points, we choose the one
which lies closer to z). Then the mapping q(z) = z* is one to one, |q(z) — z| < C|z — 2%,
ds,(z) = dy(2*), |¢'(20)] = 1, and with the notation I, = {z* € o : [2* — 29| < n™P} we

have

[ IR = aftds, () = [ (R = wlds, ()] = o). (010

z*€l,

Proof. By the selection of o and the C* smoothness of the curves is clear that ¢(z) =
2+ O(|z — 2|?). Tt follows that |¢'(29)| = 1, which implies that if |z — 2| is small enough,
we have

laz) = 2ol

1—e<
|z — 2]

<1l+e.
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We proceed to prove (4.10).

/‘Iua@wmz—%wwAfwif Ru(2)P)z — z0|*ds. (2)
z*ely,

z*€el,

<| [ (IRP = )l — sl )

S /
z*ely

Using the Holder and Minkowski inequalities we can continue as

[Ru(2") 2 = | Ral2) 2| |2 = 20]7ds, (2) = A

A<( [ IR = R = s ()

A etz = k@) + ([ 1mPE -l e) |

(4.11)
We estimate these integrals term by term. Since P, is extremal for A, (u, zo) and A, (p, 20) =

O(n~*"1) (see Lemma 2.11), we have

1/2
</ IR, (2) %]z — zo|°‘dsv(z)) <Cn 7, (4.12)
z¥el,
which estimates the third term. To estimate the other terms, we shall differentiate between
the cases o > 0 and o < 0.

First case: o > 0. From Lemma 2.5 we get that for any closed subarc J; C J

1Ralls < Cn D2 Ryl 12, < C,

where we used Lemma 2.11 and |R,,(z)| < |P.(z)|. Choose this J; so that it contains z, in
its interior. Next we note that if 2* € I,, then |2*—z| < Cn=%?, therefore dist(z*, 2) < C/n.
Therefore an application of Lemma 2.6 yields for such z that

|Rn(q(2)) — Ra(2)]
lq(z) — 2|

< COn|| Ryl 5
holds and so we have
|Rn(q(2)) — Ru(2)| < Cnlq(z) — 2| < Cn'~27. (4.13)

Since s,(I,,) < Cn~" is also true, we have (recall that z* = ¢(z))

1/2

1/2
</ |Rn(2%) — Rn(2)|?]2 — zo|ad37(z)) < C(n‘ﬁnz_wn_aﬂ)
z*Elp

= CnlfHTaB.
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This is the required estimate for the first term in (4.11). For the middle term, we have

1/2
([ IRl = s, )
z*ely,

- (/z*efn "Rn(z*)P — [Ra(2)* + |Rn(2)‘2‘\2 - ZO\O‘dSV(Z))m

< (/Z*Eln )an(Z*)F — |Rn(z)|2‘|z B Zo|ad87(z))1/2

1/2
([ IR - aldso)
z*€el,

a+1

< AYV24on,

where A is the left-hand side in (4.11) and we also used (4.12). Combining these estimates

we get

A< Cn'"TP(AYV2 y O~ ") < CAV2p! =" F 4 Cpa—5—"0F

a+5 1 o «a+5b
2

< Cmax{AY?p!=%78 p2=2-7F)

1_ o a+tb

Therefore A < Cn?~ (@498 or A < Cn2=2-"28 If B < 1 is sufficiently close to 1, both
imply A =o(n=271).

Second case: a < 0. From Lemma 2.5 we get that for any closed subarc J; C J
1Rally < 1Pallsy < OnY2|[ Pl g2y < O/

holds, and we may assume that here J; is such that it contains the neighbourhood of z.

Therefore in this case (4.13) takes the form
IR, (2*) — Ry(2)| < Cnlme/2725,

Since
/ |z — 20|%ds,(2) < Cn~ 7P,
z*€l,
we obtain

1/2 1
(/ [Ru(=") = Ru(2)2 = 20|“d37(2)> < Cn'87208,
z*€ln

which is the required estimate for the first term in (4.11). Finally, for the middle term in
(4.11), we get

1/2
(/ |Rn(z*>|2‘z — Zo‘adS,Y(Z)) < A1/2 + Cn,aTJrl
z*eln
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As previously, we can conclude from these that

a+1

A< Cnl_%_m_TB(Al/2 +n

_atl

),

which implies

A S Omax{nQ_a_4B_(a+l)ﬁ’ n%_a_2ﬁ_a7+15}

If B < 1 is sufficiently close to 1, then this yields again A = o(n~*"!), and this is what

we needed to prove. O

In the following lemma we keep the notations from the preceeding proof. Denote the
disk of radius ¢ about zy with As(zp). Note that up to this point the v > 1 in Lemma 2.7

was arbitrary. Now we specify how close it should be to 1.

Lemma 4.2. If 0 < 8 < 1 is fivzed and v > 1 is chosen so that By < 1 holds, then

IRallz\a, s, (20) = O(n="71), (4.14)

n*fa/Z
where K 1is the set enclosed by .

Proof. Let us fix a ¢ > 0 such that the intersection v N Ag(zp) lies in the interior of the
arc J from Theorem 1.1. Since p is regular in the sense of Stahl-Totik and the trivial
estimate ||F,| 2¢,) = O(1) holds, we get that no matter how small € > 0 is given, for

sufficiently large n we have || P,[|, < (1 +¢)". On the other hand, in view of Lemma 2.7,

for z ¢ As(z0) and z € K we have
[Sen o1 (2)] < Crem™,
SO
1Rl \a5(20) = 0(77) (4.15)
holds.
Consider now K N As(zp). Its boundary consists of the arc v N Ag(2o), which is a part

of J, and of an arc on the boundary of As(z), where we already know the bound (4.15).
On the other hand, on v N Aj(2p), by Lemma 2.5 we have

|P,(2)] < CntHeD/2)| P 12, < CnOHD/2,

Therefore, by the maximum principle, we obtain the same bound (for large n) on the

whole set K N As(zp). As a consequence, for z € K\ A5/,
|Rn(Z)| < Cn(1+|a‘)/26_6"{7”(”_ﬂ/2)’y _ O(n_a_l)
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holds, if v > 1 is choosen in Lemma 2.7 such that fv < 1, and this is what we had to

show. O

After these preliminary lemmas we are ready to prove the lower estimate for Theorem
1.1.

Let n > 0 be arbitrary and let n be so large that (recall that z* = ¢(z))

(1) wle) < w(e) < (1 + i)
I+n
@) ol =20l < lae) =l < (14 )l =

hold for all z* € I,,, where I, is defined in Lemma 4.1. Then using this Lemma, we obtain

[ R Pl = safdsa()
Z*eln

1+nW/WR Y|z — zolds (2)
u+nm/MR )2z — 20| ds, (2) + o(n="1)
1 |a\+1

< L ‘“7 /rR (2)] — z0]ds, () + o(n~"Y)
(1 + 77)|o¢\+1

< W)‘n(ﬂa z) +o(n™*77).

On the other hand, if we note that if for some z € o we have z* ¢ I, then necessarily

|z — 20| > n~?/2, we obtain from Lemma 4.2 that

l/ Ru(=")2)2" — 20/ds (%) = o(n="Y).
z*eo\Iy

Combining these estimates it follows that

Nmmmwm%)éf Ra(=") 12" — 20*dso (")

zEeo

o] +1
< %/\n(u, 20) +o(n~*7h).

Since deg(R,) < (14 7)n, we can conclude from (4.2) that

1 a+1 a+1 a+3 T atl
(Twy(z0)) T F( 2 >P< 2 >_hmmfdeg(Rn) Adeg(Rn) (Hors 20)

n—oo

1 loe|+1
< liminf(1 + T)aﬂ%naﬂ)\n(,u, 20).
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But since 7,7 > 0 are arbitrary, we have

w(zo) atl (a+1> <a+3) et
R S A— < .
(oo (20)) o 297 i r 5 )= hyxlggfn An (e, 20)

As w,(29) < wy(20) + € (see (2.8)), by letting ¢ — 0 we finally obtan the desired lower

estimate

w(zo) +1 (Oé + ].) (Oé + 3) .. +1
) gatlp r < liminf n®t\,, (1, 20). 4.16
(mwn (20) )0 9 5 = Amintn (4, 20) (4.16)

Upper estimate. Now let ¢ be the lemniscate given by the first part of Theorem 2.1

and let P, be the extremal polynomial for A, (i, z0). For some 7 > 0 define

Rn(z) = Pn(z)STn7ZO,L(Z)7

where S;, .,z is the fast decreasing polynomial given by Lemma 2.7 for the lemniscate
domain L enclosed by 7. (The v in Lemma 2.7 can be arbitrary.) Let n > 0 be arbitrary,
let 1/2 < § < 1 as before, and suppose that n is so large such that

(1) ) < () < (1 +nua)
Q) IS
B) T3l =l < laf) = 2l < (14 )l =

hold for all |2 — 2| < nP. Using Lemma 4.1 (more precisely its version when o encloses

) we have
/ IR Pua) |z = sl 2
z*ely,

<@emut) [ IRP] - alds (@)

z*ely,

< (14 n)w(z) / Ru(2)PJz — 20|dsy (") + o(n1)

z*el,

< (14 )P e z) / Ra()212* — z0/dso(=*) + o(n—")
zxely

< (L) (z0) A (10, 20) + 0(n ™).

On the other hand, Lemma 4.2 (but now applied to o rather than ) implies, as before,
that

/ ’Rn<2)|2|2 — Zoladlu(z) = O(n*afl)
’Y\An_ﬁ/Q(’ZO)
holds, therefore

Adeg(Ry) (145 20) < (1 + 1w (z0) An (o 20) + 0(n*7H),
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which, similarly to the lower estimate, by using (4.9) and letting 7,7 — 0 implies

+1 a+3
1. a—i—l)\n < ﬂ2a+lr(a )F( >
1£nﬁs;}pn (M, Zo) = (ng(zo))aﬂ 2 2

But, as w,(20) < we(20) + € (see (2.7)), by letting ¢ — 0 we obtain the desired upper

estimate

- at1 < w(zo) arip(at1 a+3
hgl—igpn A”(“’ZO)—(WV(%))MQ F( 5 )F( 5 ) (4.17)

(4.16) and (4.17) give the proof of Theorem 1.1.

5 Christoffel functions on the real line for generalized

Jacobi measures

5.1 Small perturbations in Christoffel functions

In order to study the asymptotic behavior of A, (i, z¢ + a/n) for measures supported
on general compact sets, we use polynomial inverse images to transform the results (3.21)
and (3.21) obtained as model cases. Because of this, using the polynomial T (x), the point

a/n will be transformed to something like z+ eI +o(n~!). Because we want to study
N

the asymptotics of the Christoffel functions only at xy + m, we shall need a tool
N
to control small perturbations. The next lemma takes care of this when the power-type

singularity is in the bulk of the support.

Lemma 5.1. Let i be a finite Borel measure and suppose that u is supported on a compact
set K = supp(u) on the real line. Let ¢ € int(K) be a point from the interior of its support
and suppose that for some € > 0 the measure i is absolutely continuous on (xg—e,xo+¢)
with

du(z) = w(z)|x — xol|%dz, x € (xg—e,20+¢€)

there for some a > —1, where w is strictly positive and continuous at xo. Then for a given

sequence €, = o(n™1),

lim Aty o + a/n)

=1
n—o0 A\, (1, o + a/n + &,)

holds uniformly for a € R in compact subsets of the real line.
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Proof. During the proof, constants are denoted with C' and their value often varies from
line to line. We can assume without the loss of generality that xq = 0. The classical bound
of Nevai [30, p. 120 Theorem 28] says that there is a constant C' independent of x such

that

e (R B A ey (MRS IR G TERTE B

holds, where 12 is defined by (3.1). We wish to establish the same bounds for A, (u, x).
Let 6 > 0 be so small such that § < ¢ and
0
# <w(z) <2w(0), x € (=6,0)
holds. Suppose that P,(z) is extremal for A,(u, 1) for some z1 € (=46,6), i.e. P,(x) is a
polynomial of degree less than n with P, (1) =1 and [ |P,|*du = A, (i, z1). Then

w(0 0 w(0
M) 2“5 [P @lelede = PPN (ol -anf@)de, ).

where xp(x) denotes the characteristic function of the set H. After scaling the mea-
sures appropriately, the bound (5.1) can also be applied for the Christoffel function
A (|2|*X (65 (z)dx, 1), thus there is a constant C' such that

An(pt, 1) > %(w + %)a o1 € (—6/2,5/2). (5.2)

On the other hand, let b > 0 be so large such that K C [—b,b], let P,(x) be extremal for

A (|2|*X (b (x)dz, 21) and define the polynomial

R.(z) = P,(x) (1 - 5

R, (x) is a polynomial of degree at most 3n, moreover R, (z1) = 1 and |R,(x)| < |P,(x)]
for all x € [—b,b]. Then

Nanpts 1) < / Ry(2)Pdpu(x)

<o) [ PE@Pera sy [ R@PaE 69

< 2w(0)An (| X by () da, 1) + p(K)Y" | Bl

where
(x — )% |"

1— o
2 diam(K)

< 1.

Y= sup
z€K\[-4,0]
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As the Erdés-Turdn criterion implies, the measure |z|*x[_pdx is regular in the sense
of Stahl and Totik moreover its support [—b,b] is regular with respect to the Dirichlet
problem. Then (2.3) gives that for every 7 > 0,

n o 1/2
1Palli-bay < (14 7)"An (|21 Xy (2)dr, 1)

holds if n is large enough. Since A, (|z|*x[—p(z)dz, 21) = O(1) (use the constant polyno-
mial 1 in the definition (1.3)), then it follows that if 7 is chosen such that ¢ = y(147) < 1,
we have

P [ Pallx = O(q")-

This together with Lemma 2.10, (5.1) and (5.3) imply that there is a constant C' such

that

Ml 21 < %(|x1| + %)a,xl € (=5/2,6/2). (5.4)

Now define the polynomial @, (z) as

__Aalpa/n)
@nl) = An(pya/n+x)

Q. () is indeed a polynomial of degree 2n — 2 as implied by (1.4), moreover @), (0) = 1.
(5.2) and (5.4) gives that

la/n[ +1/n
la/n+z|+1/n

1Qula)] < o( ) <C, xel[-5/4.6/4 (5.5)

that is @, (z) is bounded on the small but fixed interval [—d /4, 0/4], moreover the bound
holds uniformly for a in compact subsets of the real line. The iterated Bernstein inequality

for [—0/4,8/4], see [3, p. 260 Exercise 5e|, gives that
QV(0)] < CM*nt (5.6)

holds for some constants C' and M. Overall, since &, = o(n™!), we have

2n—2

QW (0)] = Mnkek
Qu(ea)l < Y e S1+C Y =" <1+0(1), (5.7)
k=0 k=1

and since (5.5) holds uniformly for a in compact subsets of the real line, the above bound

is also uniform. This implies

lim sup Y™
n—00 An(a/n + En)
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which is half of what we need. To obtain the matching estimate

)\TL n
lim sup (Y™ FEn)
oo An(pt,afn)
define the polynomial
An(a/n+ey)

Qn(x) = /\n(/%a/n"i_gn —|—l’)
and repeat the argument given in (5.5) - (5.7) to see that we have |Q,(—¢,)| < 140(1). O

The analogue of the previous lemma for the edge of the support is the following.

Lemma 5.2. Let i1 be a finite Borel measure and suppose that . is supported on a compact
set K = supp(p) on the real line. Let xy € K be a right endpoint of K (i.e. K N (xo, zo +
£0) = @ for some g9 > 0) and assume that for some £ > 0 the measure p is absolutely

continuous on (xy — €, x| with
du(z) = w(z)|x — xo|*dz, x € (xo — €, 20

there for some a > —1, where w s strictly positive and left continuous at xo. Then for a

given sequence €, = o(n™?) for which xo — a/n*+¢, € K,

_ 2
lim An(ft, g — a/n?)

=1
n—oo A\, (1, g — a/n? + €;,)

holds for all a € [0,00).

Proof. The proof follows in a similar tune to Lemma 5.1, with a few differences. Without
the loss of generality we can assume that xqg = 1. Let § > 0 be so small such that

w(l)

— 7~ Swlr) <2w(l), we(l-61]

holds and K N (1,1 +0) = @. The classical bound of Nevai [30, p. 120 Theorem 28| once

more says that there is a constant C' independent of  such that

1

1 1 2041 C 2041
a(\/l—x‘i‘E) SAn(MZ,Zﬂ)SE(\/l—I’—FE) s $€(1/2,1]

holds. Similarly like in the proof of Lemma 5.1, we shall show that this holds if we replace
pe, with p. The proof of the lower estimate

1 1 2a+1
m(\/l—x‘i‘ﬁ) SAn(/,L7I'>7 376(1—(5,1]
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goes through verbatim as in the proof of Lemma 5.1, though the upper estimate is slightly
different. Let b > 0 be so large such that K C [—b,b] and let P,(x) be extremal for

An(|e = 1|*X[—p1)(z)dz, 21). Define the polynomial R, (z) as

e - n1- €5

where k is an integer yet to be determined. The degree of R, is at most (2k + 1)n and

R, (z1) = 1. Now we have
Nakrn (1) < [ [Rao)Pd(a)

< 2u(1) / PPl =11 + /K |Ro(2) Pdu(o).

\[1-6,1]

On the one hand, the extremality of P, implies that
1
| 1Pu@Ple = 117 < Al = 1 x s (o), ).
1-6

On the other hand, since

(x — 1)*

1—
2b

sup <A

z€K\[1-5,1]

for some |y| < 1 depending on k, we have

/ Ro(@) Pdul) < u(K)y" | Pall o
K\[1-6,1]

Since the measure |z — 1|%x|_p1(2)dx is regular in the sense of Stahl and Totik, (2.3)

implies that for all 7 > 0
1Palli-o1 < (14 7)Ao — L X (2)da, 21)

holds if n is large enough. In addition, the Bernstein-Walsh lemma, see [32, Theorem
5.5.7a], gives that
1Palli-o < "1 Palli-by

holds for some, possibly very large constant c. Overall, we have

/ oy B ) < O (0 7 A= 1), )
K\[1-6,1

If the integer & in the definition of R, (z) is selected such that ye(1+7) < 1 holds (recall

that v depends on k), the above integral is small, that is,
[ Ra@)Pduta) = 0(a")
K\[1-6,1]
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for some |g| < 1. These estimates give that

Akt 1)n (i, 71) < CAp(|7 — 1" X (py (7)d, 1),

where is C' is a fixed constant. Now Lemma 2.10 yields

C 1 2a+1
An(ﬂ>x>§_<\/1—x+ ) ) {EE(l—é,l]
n

n
for some possibly different constant C'. Overall, we have

1 1 2a+1 C 1 2a+1

n

Now define the polynomial @,(x) as

The bound (5.8) gives that
Qn(2)| < C, € [-a/n?, /2,

holds uniformly for a in compact subsets of [0, 00). The classical Markov inequality for

[—a/n? /2], see [12, Chapter 4, Theorem 1.4], implies that
QP (x)] < CM*n?*,  x € [—a/n? 6/2],

where M is some fixed constant. Now we have

2n—2 ~(k) -2 5k, 2k _k
Qn 0 MF*n €n
Qe < 319 Ol oy o3 05— o),
k=0 ’ k=1 ’
which yields
2
lim sup At 1 = a/n7) 1.

n—00 )\n(,ua 1— CL/Tl2 + €n) N
To obtain the matching bound

A, 1 — 2 n
lim sup (1, a/n”+ en) <1,
00 An(p, 1 —a/n?)

define the polynomial
Ao(p, 1 —a/n® +&,)
A, 1 —a/n?+¢e, —x)

Qn(x) =

and repeat the same argument as above to see that |Q,(—¢,)| < 1+ o(1). O
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5.2 Christoffel functions in the bulk

Throughout this section, let K be a compact set and let g € K be an element in
its interior. Let p be a measure with supp(u) = K and suppose that p is absolutely

continuous in a small neighbourhood of zy with
du(x) = w(z)|x — zo|dz

there, where o« > —1 and w(x) is strictly positive and continuous in 2. Our aim in this

section is to prove Theorem 1.2, for which it is enough to show that the upper and lower

estimates

i a4 w(zo) . -1

1 M 1, oy o wlw)

linﬁsogp (N Ty + n) (rwre (20) )1 ( a(WWK(iUo)CL))
and

w(zo) * -1 o a

(rwg (o)) t! (La (ka(m)a)) < hrrlr_l>1£f A <M, To + E)

hold.

Upper estimate. Let 7 > 0 be arbitrary and let Ey = Up ' [ax, bx] = T'([—1,1])
and Ty be the approximating set and the matching admissible polynomial granted by
Lemma 2.2. (For the purpose of the upper estimate, ¢ > 0 in Lemma 2.2 can be chosen
arbitrarily. However, this will not be the case for the lower estimate.) It can be assumed

without the loss of generality that xy € (ao, by) and T} (xg) > 0. Select a § > 0 so small

such that )
(1) i) < wle) < (1 +nula),
2) ﬁrwx)\ < [Tl (zo)l|z — 20| < (1+1)[Tw(z)], (5.9)
(3) ﬁm@(as)\ < Thy(ao)] < (14 )| T (o).

holds for all [xg — d, 29 + 0]. (This can be achieved since w is continuous and Ty is
continuously differentiable at xq.) Let £ € R be arbitrary and let xy + &, be the unique
element of [ag, by] such that Ty (xo + &,) = £/n. Since Ty is a polynomial, &, = O(n™1)

and

& = Tloo + &) = T(ao) + Th @)t + O(n~?) = T (w) + On ),

which implies

§

= T (wo)n

+o(n™h). (5.10)
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Assume that P, is extremal for \,(u%,&/n) and define

RH(I) = PH(TN(x))Sn,mo—&-En,K('I)a

where S, yo+e, 1 () is defined by

Lm]
x0+§n—x>2> (5.11)

Shyotén, K (T) = (1 - ( diam(K)

(The reason why we choose an arbitrary ¢ € R instead of the a appearing in (1.18)
will become apparent at the end of our calculations, where it will be clear that some
scaling is necessary.) This way R, is a polynomial of degree less than nN + 2|nn| with

R,(zo+&,) = 1. Now we have
st 0+ 60) < [ 1Rule) P

zo+0
= / |Rn(x)]2w(x)|x — xo|%dx
zo—0

+ [ [Rao) ().
K\[xo—(s,a)o-‘r(ﬂ

On the one hand, (2.10) and (5.9) gives

zo+0
/ |Rn(x)|2w(x)|x — xo|dx
To—0

0—

:E0+§
< / |Pu(Ty () (@)l — ol *de
zo—0

zo+9 i T a+1
[ i@

w(z)|r — xo|dx

EEST
< @t A [ )T o) s
w(xo)

< (147)+? | Py (el PIT3 @) T() o da

ao

[Ty (o) |+

w(zo) /1 9
_— P,(2)|°|z|%dx
C(Zo)lo‘—H . ’ ( )| ’ |

= (L+n)"*
T (

at2 W(o) b
=(1+n) WM(MM(S/”)-

On the other hand, as implied by the Erdds-Turan criterion, z is regular in the sense of

Stahl-Totik, hence for every 7 > 0
[Palli—1,0) < (L4 7)" [ Pall 2y < C(A+7)"

holds for all large n, where we used the extremality of P, with respect to \,(u’,£/n) and
(3.21). The polynomial S, ;o+¢, k() defined by (5.11) is decreasing exponentially fast,
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that is
|| Snzo+&n, 5 || K\ [wo—5,20+6] < V"

holds for some |y| < 1if n is large enough. If 7 is selected so small that ¢ = (1+7)7y < 1,
then

/ [Ra(0) ) = O(a"),
K\[zo—d,20+4]
that is, this residual integral is also decreasing exponentially fast. Combining these esti-

mates, it follows that

w(zo)

b
WATL(M&7 &/n).

)‘HN+2LT]nJ (ﬂ? To + fn) < O(qn) + (1 + 77>a+2

This is almost what we need. Since

Lnn]
¢ eN 2 lmly
= (14+2n/N) + =
[T (zo)ln [T (zo)|(nN + 2[nn]) T (o) nN + 2[nn] (5.12)
EN 1
= 14+2n/N)+o(n "),
TGl 2y 2N
it follows from Lemma 5.1, (5.10) and (5.12) that
lim sup(nN + 2[nn])* ™ Non2 () (1 To + &)
n—oo
= limsup(nN + 2|nn])*™! (5.13)
n—oo
¢N(1+2n/N) )
X A nl | M To + .
e (“ 0 T3 o) [(nV - 2[m])
If k is selected such that nN +2|nn| <k < (n+ 1)N + 2|n(n +1)], we have
nNHLmJ)““ 1 ( EN(1+ 2n/N) )
e R W T
(5 Ot el (W +20m]) -

. N(1+2n/N
< (RN +2[nn]) T Nont2(m) (M,Io + ENV n/) >

Ty (xo)[(nN + 2[nn])
Since (nN + 2|nn|)/k = 1 + o(1), these estimates, along with Lemma 5.1, (2.12) and
(3.21) imply

. N(1+2n/N)
lim supk®™t A ( , T +£

< limsup(nN + 2Lnnj)"‘+1)\n]v+2mnj (1, w0 + &)

k—o0

_ 2|nn | )QH o W(zo) NH
<limsup ( 1+ —— 14+n)ot2 22 oI\ (Wb €/n

(5.15)
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£(142n/N)
TWE, (To)

which, by selecting a = , gives

limsup kTN, (,LL, Ty + %)

k—00

(20 @yt
< (14 20/NVH(1 4 1)ot2 w(xg (L*(WWEN xoa)) '
Since n was arbitrary and L (-) is continuous, we have
-1
lim sup kg [ 1, 20 + 9) < wlw) (JL* Wi (T0)a ) . 5.17
k—>oop k(” Y (Twey (z0))> ™! a(7T B (0) ) (5.17)

The approximating set Fy was selected such that wg, (z¢) is arbitrarily close to wg (o),

therefore this gives us the desired upper estimate

lim sup K>\, <u, To + %) < WZ((% <]L; (ﬂ'MK(QZO)CL)) - (5.18)

k—o00

Note that since (3.21) is uniform for a in compact subsets of the real line, this upper

estimate is also uniform.

Lower estimate for sets regular with respect to the Dirichlet problem. For
the upper estimate the Stahl-Totik regularity of p was not used. However, it will be
needed for the lower estimate, therefore we prove it first for sets regular with respect
to the Dirichlet problem to reduce technical difficulties. If a set is such, the Stahl-Totik
regularity for a measure supported there gives us the uniform estimate (2.3). Therefore
assume that K is regular with respect to the Dirichlet problem. Let n > 0 be arbitrary

but fixed, moreover let 9; > 0 so small such that

1 —

T (w0) S wl@) < (L+mw(zo) (5.19)

holds for all € [zg— 01,20+ 91]. Now let Ey = UfCV:_Ol lak, bx] be the approximating set for
K and Tl be the matching admissible polynomial given by Lemma 2.2. We can assume
without loss of generality that zq € (ag,bp). At the moment, the ¢ which controls the
distance of Ey and K is arbitrary, but soon we’ll select this parameter according to our

purpose. Assume that P, is extremal for A, (u, xo + a/n). Let

Rn(x) - Pn(m)sn,xo-l—a/n,E(I)y

where Sy, zo+a/n,5(7) is defined similarly as in (5.11), i.e. let E' = [—m,m] be an interval

so large such that K C [-m/2,m/2] and for an arbitrary n > 0 define

[nm]
To+a/n— x\2
Sy () = (1 _ (#) ) |

2m
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The large interval E = [—m,m] is needed to avoid dependence of S, yy1q/n,z On the
approximating set Ey. We only need S, ;+q/n,r to be fast decreasing on Ey, but we also
want to make sure that the rate of decrease does not depend on Ey, because actually the
set Ey will be choosen to fit the rate of decrease of S, z4a/m,E().

Because 1 is regular in the sense of Stahl-Totik, (2.3) gives that for arbitrary 7 > 0,
[Pl < (14 7)" | Bl 2

holds if n is large enough. Now the Bernstein-Walsh lemma, see [32, Theorem 5.5.7al, says
that if Ey is selected accordingly (that is, the Hausdorff distance dist(Ey, K) is small
enough), we have

[Pallzy < (14 7)" [ Pall e

Overall, since SUP,e o\ [wo—61 0-+61] | Snzota/m,B(T)] <A™ for some v < 1,

IRl Ex 0510481 < (1 + 7)1 Pall 22y < (14 7)"9" (5.20)

holds, where in the final step we used the extremality of P,. Now select 7 such that
q = (1 + 7)*y < 1. Note that this means fixing Fy, because small 7 can be achieved if
dist(Fy, K) is small enough in Lemma 2.2.

Let 05 > 0 be so small such that d; < d;, moreover [zg — ds, xo + 2] C [ag, by] and

1 ! / /
(2) W’TN@:O” < [Ty ()] < (1 +n)[Ti(20)l, _—
(3) m!T]’V(xo)llx — 0| < |Tv(2)| < (14 )T (xo)lx — ol

holds for all z € [xg — d2, 29 + d2]. Since w(x)|z — x4|* is bounded from above and below
on the intervals [xg — 01, 29 — d2] and [z + d2, 2 + 01], Nikolskii’s inequality can be used,

see [12, Chapter 4, Theorem 2.6], which gives

HPTL”[xo—51,960-1-51}\[380—52,0604-52] < CnHPnHLQ(u) < Cn=

for some constant C', where again the extremality of P, was used. It follows that we have

|| Rn || [x0—01,20+01]\[x0—0d2,20+02] < Cr'n (522)

for some |r| < 1, which is dependent on Ey through d,. Inside the interval [z — 2, 2o+ 0],
the Nikolskii-type inequality [4, Lemma 2.7] for generalized Jacobi weights can be used
to obtain

HRN H [xo—82,x0+62] < Cnmax{1/2,(1+a)/2} . (523)
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For arbitrary y € Ey we introduce the notation

{Yo, 91, yn—1} = T (ITn(v)).

It can be assumed without loss of generality that yy € [ag, bg]. Define

N-1

Ry (y) = > Bnl(yr)-

k=

[en]

R* is a polynomial of degree less than n + 2|nn| and there exists a polynomial V,, of

degree at most (n + 2|nn])/N such that
R (y) = Va(Tn(y))- (5.24)

The proof of this fact can be found, for example in [44, Section 5]. For R? it is also true

that
1By W)]° = [Ra(y)] +O(a"),  y € lwo — d2,0 + 0]
(5.25)
R (y)]” = O(q"), y € [ao, bo] \ [x0 — d2, 0 + &)
holds for some |¢| < 1. Indeed, in general, we have
N-1N-1
[R5 (y Z [ R ()| B () (5.26)
1=0 k=
Because among the values {yo,y1,...,yv_1} = T (T (y)) only y = y, is contained in

[ag, bo], the estimates (5.20) and (5.22) gives that all terms |R,(y;)| with the possible
exception of | R, (yo)| are exponentially small, which gives (5.25).
Now we can proceed to estimate the Christoffel functions. Let o, be the unique element
n [—1, 1] such that Ty (zo + a/n) = a,. Using the Taylor expansion of Ty(z), it is clear
that
a, = T]/V(JI(])% +o(n™h).
For the polynomial V,,(z) defined in (5.24), according to (5.25) we have V,(«,) = 140(1),

which implies

1
(14 o) i () < [ Valw)Ploda
-1

= [ W) PiT() | T (o)

ao

z0+02 )
- / IR (2) P T ()| T () e

0—02

(/ o /W)m* )P T ()| Ty ()| dx.
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On the one hand, using (5.19), (5.21) and (5.25) we have

zo+02
| B @ P ) T o) ds

0—02

N T (2 a+1 zo+0d2 . N
< (e TR [ 0 4 IRy )P ule - alda
T ()T zo+92
<0+ @ B [ e putole - aopds
0 z0—02
T! (1,0)|a+1
<O(g™) + (1 + a+2| N
< Ol + (14 ) EAO

On the other hand, (5.25) also implies that

(/ . /xo+52)lR* )T (@) | T (2)lde = O(q"),

therefore the combination of these two estimates gives

e Th ()™ |

w(z)

A (s, o + a/n).

(1 + 0(1)) Adeg(vi) (Has @) < O(q") + (1 +1) n(tt; To + a/n).

Similarly as in (5.12) - (5.18), this implies the lower estimate

-1
% <]LZ (muK(xo)a)> <liminf A, (u, xo + %),

(Twi (o) oo

which holds if K is regular with respect to the Dirichlet problem. Note again that since
(3.21) is uniform for a in compact subsets of the real line, this upper estimate is also

uniform.

Lower estimate for general sets. Now we omit the assumption that C\ K is regular
with respect to the Dirichlet problem. To overcome the problem caused by this, we apply
an idea from [43]. For every 7 > 0 and m € N define the the set

Ky = {:E € K: sup |Q"( )
deg(Qn)=n HQ?’LHL2

<(1+7)",n> m}.

F,. ; is compact, F,, ; C Fy,41,, moreover, since y is regular in the sense of Stahl-Totik,
we have UX_ F,, - = K \ H, where H is a set of zero logarithmic capacity. Let 6 > 0 be
arbitrary and choose m so large such that cap(F,,,) > cap(K) — 6/2. Ancona’s theorem
says, see [2], that there is a set K C F),,, such that K is regular with respect to the

Dirichlet problem and

cap(K) > cap(Fy,.) —0/2 > cap(K) — 0
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holds. Define Ky = K} U [xg — €, ¢ + €], where € > 0 is so small such that u is absolutely
continuous there and Ky C K. Now Kj is regular with respect to the Dirichlet problem,

and due to the construction of Ky,

HQnHKe S (1 + T)deg(Qn)

1@QnllL2 ()

holds for an arbitrary sequence of nonzero polynomials {Q,, }°°, if n is large enough. From
this point, proceeding similarly as in the case of sets regular with respect to the Dirichlet

problem, we obtain

w(xo)
(7w, (o)

1 a
< liminf A, (u, o + —) .
n

o <]LZ (Tw, (a:o)a)> m in

Since [43, Lemma 4.2] implies that wg,(z9) — wk(xo) as 8 — 0, and since 0 > 0 was

arbitrary, the desired lower estimate

w(zo) (LZ(WWK(%)G))

(Twk (o))

follows. (5.18) and (5.27) gives (1.18), which completes the proof of Theorem 1.2.

1
< liminf A, (,u, xo + E) (5.27)
n

n—o0

5.3 Christoffel functions at the edge

Our aim now is to prove Theorem 1.3. Let K be a compact subset of the real line and
suppose that xy € K is a right endpoint, i.e. there is an &1 > 0 such that KN (xg, z9+¢1) =
@ and K N[zg—e1,x0] = [0 — €1, To]. Let pu be a measure with supp(u) = K and suppose

that p is absolutely continuous in (z¢ — &g, zo| for some g3 > 0 and
du(z) = w(z)|x — xol*dx, = € (xg — €0, To)

there, where o > —1 and w(z) is strictly positive and left-continuous in z,. When z; is
a right endpoint, the density of the equilibrium measure is undefined there, but a related
quantity takes its place instead. The behavior of the equilibrium density wg(z) at an

endpoint of K can be quantified as

M(K,z¢) = lim V2r|z — x| ?wi (z).

T—>To—

This quantity is finite and well defined in our case. (The constant v/27 is usually not

incorporated in the definition of M (K, z), but we have found it more convenient to do
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so.) It has appeared several times in the literature, for example it was shown by Totik that
this is the asymptotically best possible constant in Markov inequalities for polynomials
in several intervals, see [42, Theorem 4.1]. To show (1.19), we shall again prove matching
upper and lower estimates. In order to avoid excessive repetition, we only discuss the
upper estimate, with an emphasis on the differences. The lower estimate works similarly,

aside from the same differences.

As in the bulk, let > 0 be arbitrary and let Ey = Uy 'ax, bx] = T ([~1,1]) and
Ty be the approximating set and the matching admissible polynomial granted by Lemma
2.3. We can assume without the loss of generality that xq = by, as it is implied by [42,

Theorem 2.1] and the remark after it. Select a 6 > 0 so small such that
1

(1) o) < wle) < (1+nul)
@) T lTelen) =11 < T@lle =l < 0 +n)lTula)l, (528)
) 35 Tl < [T(@)] < (14 1) (o)

holds for all x € [xg — §,x0]. Let & € [0,00) be arbitrary and let ¢y — &, be the unique

element of [ag, by| such that Ty (zo —&,) = 1 —&/(2n?). Since Ty is a polynomial, we have

- &~ T~ 6 = 1 Tl + ol )

which implies

_ §
T (o) 202

Assume that P, is extremal for A, (,ug, 1 § ) and define

T o2

fn + 0(7”&72).

R, (z) = PH(TN(x))Snvzo—En,K(x%

where Sy, 20—,k () is defined as

[nn]
o — £n —x\?2
Shzo+60,5(T) = (1 N <m> ) 7

as usual. Then R, is a polynomial of degree less than nN + 2|nn| with R, (x¢ — &,) = 1.
Then, similarly as before, (5.28) gives

o
)\nN+2L17nJ (pJ, Zo — gn) < / 5 |Rn(x)|2w(x)|x - x0|adl’

zo

+/ Ro(@) (@) — aol*de
K\[zo—d,z0]

<o) + LI wlly (lf L= 2%2)

T (o) |+ v
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Now the application of Lemma 2.10 and Lemma 5.2 yields that

limsup(nN + 2[nn])** P Xunt2(m) (1 o — &)

n—00
: 1 +n/N)*¢
=1 k2a+2)\ o ( )
i ¢ <“ 0T M (B, )R

(1+2n/N)?¢

which, along with the previous estimate, by selecting a = (GITE implies

1- k2a+2)\ o i
im sup 0 — 55

(14 )2 (1 + 20/ N> (o) (oo ( M(Bxowo)® \)
= M (Ey, 20 (2 "5 +2n/N)2a)>

Since ) was arbitrary and Ey was choosen such that Lemma 2.2 (d) holds, this implies
the desired upper estimate

lim sup K22\, ( 1, 2o — i %(T“J* (M(K,z )Qa)>_1 (5.29)

The lower estimate

__wiw) <2a+1J* (M(K x0)2a)>_1 < liminf B>\, ( p, 20 — 2 (5.30)
MK, a2 Ja MK, < limin 0 o

can be obtained as we did in Theorem 1.2, except of course with the same differences
which also appeared at the upper estimate as well. Finally, (5.29) and (5.30) gives (1.19),

and this is what we had to prove.

6 Universality limits

Our aim in this section is to prove Theorems 1.4 and 1.5. Theorem 1.5 is a direct
corollary of Theorem 1.3 using the result [21, Theorem 1.2]. To prove Theorem 1.4, we
employ the second method of Lubinsky which is based upon the theory of entire functions

of exponential type. We say that an entire function g(z) is of orderp if

= limsup log (log (supy,—, l9(2)])) |
r—00 IOgT

An entire function of order 1 is said to be of the exponential type o if

. supy,, log |9(2)]
o = limsup .
r—00 r
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If g(z) is of the exponential type, it belongs to the Cartwright class if

/°° log™ |g()|

522 dr < 0.
T

o0
A sequence of entire functions {g,(z)}>2, is said to be normal, if every subsequence con-
tains a subsequence which converges uniformly on compact subsets of the complex plane.
It is known, see [33, Theorem 14.6], that if {g,(z)}>2, is uniformly bounded on each com-

pact subset of the complex plane, then it is normal.

In this section we follow the lines of [21]. First we develop reproducing identities for
the kernel function L}, then we use the theory of entire functions of exponential type to

deduce universality limits from Theorem 1.2.

6.1 Reproducing kernel identities for L},

Theorem 6.1. Let g be an entire function of exponential type 1 and suppose that we have

|z|*/2g(x) € L*(R) for some a > —1. Then

g(z) = / " gLz, )]s (6.1)

e}

holds for all z € C.

The proof of Theorem 6.1, given in the next lemma, is almost verbatim to the proof
of [21, Theorem 6.1], therefore we shall not carry it out in detail. It depends on Lemma

6.2, which is an analogue of [21, Lemma 6.2].

Lemma 6.2. Let o > —1.
(a) For all a,b € R we have

L (a,b) = /_ L (0, )LE (s, b)[s[ds. (6.2)

[e.9]

(0) If {Jar}i> . denotes the zeros of x=*J,(x), then

| Lala o 9L oy Dol de = St o ot )

—00

(c) Let {ck}32 . € I*(Z). Then

o0 * y _1 2 [e.e]
/ ( Z Lalegt ) ) |z|%dx = Z cr.

Cr
*© \ k=—0c0 \/L2<JQT*1,]€7]“T*1J€) k=—o00
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(d) Let g be an entire function of exponential type 1. If |x|*/?g(x) € L*(R), then

> LZ(jQT_l,kaz)

9(z) = Z g(janl,k)L*

k=—00 a(j%,k’j%,k)

holds for all z € C, and the series converge uniformly on compact sets.

Proof. (a) This proof was kindly provided to us by D. S. Lubinsky [22]. Using the repro-
ducing kernel relations for K, (u’,z,y), where u’ is defined by (3.1), we have

1
Kalpbyo/nibfn) = [ Kol a/n )il b fda,
—1

Substituting z = s/n, the asymptotic formula (3.4) implies

1
nonrl

L!(a,b) =

1
/ Kol afn, @) Ka(uil, 2, b/m)le|da + o(1)
—1

1 —r/n r/n 1 X b
e / e / . / ) Kl a/m, @) Kuph, 2, b/l dz + o(1)

noe—l—l

_ / L: (a, )L (s, b)ds

1

+ naJrl

(/:/” - /:)K"(% a/n, x) K (1, 2, b/n)lx|*dz + o1).

We will show that the last integrals are small in terms of n and r. To do this, we shall use
Pollard’s decomposition of the Christoffel-Darboux kernel. According to [48, (4.6)-(4.8)]

and the formula after, we have

Kn(pl,2,y) = Kpa(pl, 2, y) + Koo (b, ,y) + Ko (1l 2, y),

where

Kou1(12, 2,9) = anpn(z)pa(y),

11—y L )gn—
Kn,z(u27x,y)=bn( Y )Pn(@)gn1(y)

r—y
1_LU2 n n—1\T
Knv?v(/ﬁﬁ,w):bn( )5_(%2(] ! >7

where a,,, b, are bounded constants, p,,(x) is the n-th orthonormal polynomial with respect
to the measure |z|*dxr and g, () is the n-th orthonormal polynomial with respect to the

measure (1 — z?)|z|*dz. Using [30, Lemma 29, p. 170], we obtain the estimates

(@)’ < (VI—w+1/n) " (VI+o+1/n)7 (2] +1/n)7°,
w@)? < (V1—2+1/0)(1+z+1/n) (x| +1/n)"
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Now the Cauchy-Schwarz inequality gives

1 1
/ Ko (b, a/n, ) K, (b, 2, b/n)|z|*dx
r/n

na—H
) L 1/2
g( =y KM&W%@%WM)
n r/n

1 1 1/2
b 21 |l
X (na—i-l [/nKn(ﬂa;x,b/n) |ZE| dlL‘) .

Suppose that r > max{a,b}. We have the following estimates. (In the following calcula-

tions the constant ¢ often varies from line to line.)

1 ! .
notl // K1 (pl, a/n, x)?|z)*dz

s‘jf (/) Lo () P2z

+1
ne n

C

1
<2 [ lpule)Plaldo

n n

c
S_

n

1 ! .
notl // Ky a(up, a/n, z)?|x]*dx

1 2 2
c o| L =2 g1 (2) |7, 1o
< izt | a2 g
1/2 1
gf/ m*w+5/\uwW%r
n Jr/n nJi/2
C C
<<4=
T n
I X
5t | Kuotoafn.2)is
1
¢ 2/ 212 o] Pn(2)
< na+1/rn|1_a /17 gn-1(a/n)] z—a/n

o 12 e [
< —/ |z|2dx + —/ 11— x| 2dx
nJi

nJr/n /2
c c
<-4+ -
romn
These altogether give that
1 1 1

na+1 r

Overall, we have

LZQ@b):t/wEgﬁusﬁg(&bﬂsﬁds+—0(0<%—%1),

—_r r
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|x|“dx

1
| Ealhsafna) Koz, bfmlalds < e+ 7).
r/n n

(6.3)

(6.4)

(6.5)



from which (6.2) follows by letting first n then r to infinity.
(b) is a simple consequence of (a) and the proofs of (¢)-(d) go through verbatim as in [21,
Lemma 6.2]. O

6.2 Limits of K,

From now on, K, (z,w) will always denote the n-th Christoffel-Darboux kernel with

respect to the measure p in Theorem 1.2. Define

K, (xo + ., T+ )
4 (a,b) = Terlton oty . a,beC. 6.6
fn(a,b) K, (20, 70) (6.6)
For convenience we shall use the notation
z
= 6.7
Twi (o) (6.7)

for all z in the complex plane, so this way f,(a,b) takes the form

K, (zo + a*/n,xo + b*/n)

fn(a’ b) B K, (.To I'(])

First shall prove that { f,(a,b)}%, is a normal family of entire functions in both variable

and then we will study its possible limits.

Lemma 6.3. For all a,b € C, we have
| fu(a,0)] < creTm@OHIMON( 4 Re(a)[)=*/2(1 + | Re(b)[) /2 (6.8)

for some positive constants c1, cs. In particular, { f,(a,b)}, is a normal family of func-

tions for a,b in compact subsets of the complex plane.

Proof. Since by definition (note that the complex conjugate has been left off for purpose)

we have .
= pe(2)pi(w)
k=0

the Cauchy-Schwarz inequality in R™ implies

< (S foloo+ ) oo+ 5)])
(Z’pk :c0+ )(nl)p :c0+ )2) (6.9)

k=0

_ (An<u7$o+%*>) (A”(“’xﬁ%))
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(Recall that A, (1, 2) = (3278 |pe(2)]?).) Similarly as in the proof of Lemma 5.1, define
the polynomial
)\n(ﬂ’v o + g/n)
An(ps o +&/n + 2)
for an arbitrary ¢ € R. As (1.4) implies, P, is indeed a polynomial with P,(0) = 1.

Pn(z> =

Therefore for an arbitrary n € R we have

2n—2

(k)
P(in/m) =1+ Y P”k,(o) (zg)k
k=1 )

According to (5.6), |P{"(0)] < CM*n* for some constants C' and M, therefore

2n—2 | (k) (0) | k 2n—2 Mk
) n n l M|n|
P, <1 — = <1 C < Ce™rn
Painj <1430 ER L <14 30 02 <

Together with this and (6.9), we have

a* b*\ |2 a* -1 b* -1
Ka(wo+ S0+ 2)[ < (Mmoo + L)) (a(mwo+ =)
n n n n
< OeMum(a*)\Kn ($o + Re(a ),900 + Re(a ))
n n

x eMITm®)l e (xo + w To + %)
n n

s L0

Now, Theorem 1.2 says that

Koo+ §.0+ 5

Kooz~ (G ol)ka(mox (o))

uniformly for £ in compact subsets of the real line. Using the formulas [1, 9.1.27], we have

Lo(0) = gy (Teps () ozt (0) = Ty (0) ozt (a)

_ ! ((JQT_l(a) _ar 1Ja.;1(a)>Ja;1(a)

2001 2a
(e (@) + R s (@)) e (a)).

a—1

a
With this and some elementary trigonometric identities, [1, 9.2.1] gives that for large &
we have N @tlr 1

Jat1(a) = (—) <COS (a g " Z) + O(l/a)>

and

Ja-1(a) = (£>1/2<sin (a — @ — %) + O(l/a)),

which yields that
L% (a) =

[0}

(14 0(1)), (6.10)

mlale
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therefore LY (mwg (70)€) < ClE[~* holds for large £. Since L (mwg (x9)§) < C(1 4+ [€])~°

obviously holds in any bounded set containing 0 for some constant, we have

Ko (2o + %20+ 2) |

< CecIm@IHIM®D (1 1| Re(a)]) (1 4 | Re(d)]) ™
K, (2o, 70) < (1+|Re(a)|)~"(1 + [Re(b)])

for some constants ¢, C' and this implies (6.8). O

Now we study the possible limits of {f,(a,b)} ;. In the next lemmas we prove that
a limit of its subsequence is an entire function of exponential type belonging to the
Cartwright class and we take a look at its zeros. The exponential type and the behavior
of the zeros are connected, because if g(z) is an entire function of exponential type o

belonging to the Cartwright class, then

r—00 2r m

holds, where n(g, ) is the number of zeros of g in a disk of radius r centered at zero. (See
[18, Theorem 17.2.1] for details.) Before we state our next lemma, we fix some notations

about the zeros of some frequently used functions.

First define the function

%(37 w) = pn(z)pn—l(w) - pn(UJ)pn_l(Z). (6'11)

For real £, the zeros of ¥,,(&, ) will be denoted as

e < t—l,n(g) < tOn(g) - 5 < tln(§> tet e (612)

Note that these zeros are indeed real, see [14, Theorem 3.1], and they are centered around
&, moreover to,(§) = ¢ is indeed a zero of ¥, (&, -). The zeros of K, (xo+a/n,-) are denoted
as

s <oy p(a) <x0+% < xipa) < ... (6.13)

For convenience, we write xo,(a) = zo + a/n. Note again that since K, (&, €) is strictly

positive, zg,(a) cannot be a zero of K,(xy+a/n,-). The Christoffel-Darboux formula (1.2)

says that
Kn<£€, y) _ Yn—1 ¢n<$, y) :
Tn T Y
therefore
Tgn(a) = tgn(zo + a/n) (6.14)
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holds for all integer k for which the above expression makes sense. In our case, the zeros

of fu(a,-) are also important, thus they will be denoted as
e < pognla) <a < prpla) < ...

and again we write pg,(a) = a for convenience. Since f,(a,a) is strictly positive, po,(a)

cannot be a zero of f,(a,-). The definition of f,(a,b) implies that

prn(a) = nmwi (o) (zrn(a™) — x0) (6.15)
holds for all integers k for which the above expression makes sense, where a* = a/(mwg (z0)).

Lemma 6.4. Let f(a,b) = limg_,o0 fn,(a,b) for some subsequence ny.
(a) If a € R, then all the zeros of f(a,-) are real. Moreover, if n(f(a,-),r) denotes the
number of zeros of f(a,-) in the disk of center 0 with radius r, then
(b) Let
< pa<p<0<p<pp <

denote the zeros of f(0,-) ordered around zero and write py = 0 for convenience. Then
Pen(0) = pg, N — 0 (6.17)
holds for all k > 0 and there are positive constants ci, co such that

Pk — Prk—1 < €1,
(6.18)
Pk — Pr—2 = C2.

In particular, the zeros of f(0,-) are at most double.

Proof. (a) The Christoffel-Darboux formula (1.2) gives that

71'WK(QZO)n Tn—1 1%(1‘0 + il_*’ To + %)
Kn(xo, 1‘0) Tn a—z

fn<a7 Z) =

Y

where 1, (2, w) is defined by (6.11). As we mentioned earlier, for real £, all zeros of ¢, (¢, -)
are real, see for example [14, Theorem 3.1]. Hence Hurwitz’s theorem implies that the zeros
of f(a,-) are also real for all a € R. The proof of (6.16) goes exactly as in [21, Lemma

4.3], which we include for completeness. It is known that if z1,, < z9, < -+ < x,, denotes
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the zeros of the orthonormal polynomial p,,, then if p,(§)pn—1(§) # 0, the function ¢, (¢, )

has a simple zero in each of the intervals

(xlna x2n)7 R ("L‘n—l,ny xnn)

plus one zero outside [T1y,, Tpy), and if p, (&)p,—1(§) = 0, then 1, (&, -) is a multiple of p,,_4
or p,, hence the interlacing property of the zeros of orthogonal polynomials imply that in

the former case 1, (&, ) has a zero in each of the intervals

(-Tln7 I2n)a ceey (In—l,na xnn)a

and in the latter case the zeros of 1, (&, -) coincide with the zeros of p,,. For these facts, see
Theorem 2.3 and the proof of Theorem 3.1 in [14]. Therefore, if n(y,(a,-), [c, d]) denotes
the zeros of 1, (a, ) in the interval [c, d], then

|n(¢n(aa ')7 [szmxkn]) - (m - k’)| <1.

Now, if {z;,(a)} denotes the zeros of K,(x¢ + a/n,-) centered around zy + a/n as in
(6.13), then pg,(a) = nrwk(xo)(zkn(a™) — xo), where a* = a/(mwk(x)). (Recall that
the definition of f,(a,b) included the scaling constant mwg (zo).) This, together with the
previous observations about the location of the zeros of i, (a,-), means that if r is fixed

and n is large,
|n<fn(a7 ')7 T) - n(fn(()? ')7 7“)| <M
for some constant M. Hurwitz’s theorem implies again that the above holds for f, there-

fore we have (6.16).

(b) First note that py can never be a zero of f(0,-), since f,(0,0) = 1 for all n. Now
(6.17) is immediate from Hurwitz’s theorem. Since y is a doubling measure (i.e. there is a
constant L such that u([z—2d, 24 20]) < Lu([x — 9,2+ 6]) holds for all z and ¢) in a small
neighborhood (xg—eg, xg+¢¢) of ¢ (note that du(z) = w(x)|z—1x¢|* there for a continuous
and positive w), [47, Theorem 1.1] says that if Zp,, Tri1ms--.,T1n € (To — €0, %0 + €0),
then

C
C < i — T < =, me=kk+1,...1—1 (6.19)
n n

holds for some constants ¢ and C' independent of m and n. Together with (6.19) and the
above observation about the location of the zeros of f,(a,-), we have

C
xkn(()) - :Ckfl,n<0) S E
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and

Ll?]m<0) — l'ka,n(O) Z

S|o

for some possibly different constants, therefore, since pg,(0) = nrwg (zo)(r,(0) — o),

using Hurwitz’s theorem once more gives (6.18). O

Lemma 6.5. Let f(a,b) = limy_,o0 fn, (a,b) for some subsequence ny,.

(a) f(a,-) is entire of exponential type o, and

[ it nPede < 50 (6.20)

holds.

(b) f(a,-) belongs to the Cartwright class.

(¢) The exponential type o, of the entire function f(a,-) is independent of a.

Proof. (a) Tt is clear that f(a,b) is entire in both variables, since it is a locally uniform
limit of entire functions. Moreover, the bound (6.8) holds for f(a,b) as well, which implies
that f(a,-) is of exponential type. We shall denote its exponential type with o, for the
time being. (In fact, we shall show later that the type is independent of a and it is 1.) As
for the proof of (6.20), we proceed similarly as in [21, Lemma 4.2 (b)]. For all z € C, we
have
zo+r/n

Ko(2,%) = / Ko (2, 2)[2dp(z) > / Ko (2, 2) 2w (@) |z — 20|*da

zo—r/n

for large n. After the substitution z = zo + a*/n, ©r = xo + t* /n, we have

a* a*
Kn<xo + —, 70+ —)
n n

a* T\ |2
K, (ZL‘Q + Rkl + 5) ‘ w(xo + t*/n)|t|*dt

1 T
>
~ (mwi (20) ) Fnott /r

which gives

T 2
ot > [ e T e

By letting n — oo through the subsequence ny, (1.18) gives

() = [ %<w<xo>>a+le<o>|t|adt,

from which (6.20) follows.
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(b) To prove that f(a,-) belongs to the Cartwright class, we have to show that

/°° log™ | f(a,t)]

e dt < o0o.

[e. 9]

Since f(a,-) is entire, it is clear that f ' Wdt < 0. Next, using the well known

facts log™ ab < log™ a + log™ b and log™ a® = blog™ a, we have

o0 + 00 + 24| 0o +
[ Wy o [P
S ! 1+¢2 L 1+22

The second integral is finite. For the first one, define

A, ={teR:e" < |f(a,t)]*|t]* < et}

The bound (6.20) and Markov’s inequality about the measure of level sets of L' functions

< log" | f(a,t) [t / log™ | f(a,t)|[t]*
dt = dt
/1 142 Z 142

gives that

1 log™ |f(a,t)]?[t|*

EanE dt can be done in the same way, which

The estimation of the integral [~
shows that f(a,-) belongs to the Cartwright class.

(¢) This proof is identical to the one in [21, Lemma 4.3]. Because f(a,-) belongs to

the Cartwright class, we have

Oq : n(f(af)’r)

— = lim ,
s r—00 2r
which, combined with (6.16), yields that o, is independent of a. ]

From now on, since Lemma 6.5 (c) gives that o, is independent of a, we shall denote

the exponential type of f(a,-) with o.
Lemma 6.6. For all a € R, we have
[ (Lelntin L0,
—w\fla/o,a/o) Li(a,a)
o ! (6.21)

flajo,a/o)L;(0,0)  Li(a,a)’

Moreover,

o>1. (6.22)
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Proof. (6.20) implies that |x|*/2f(a/o,t/0) € L*(R), therefore after expanding the left
hand side of (6.21), (6.1) and (6.2) gives (6.21). Using that the left hand side of (6.21) is
nonnegative, substituting a = 0 and keeping in mind that f(0,0) = 1 gives o > 1. O

The inequality (6.21) and (1.18) imply that if o = 1, then f(a,t) = ig"((g’é)) for all

a,t € R, which, since f(a,b) is entire in both variables, would imply Theorem 1.4.

Lemma 6.7. Let k > | be given integers. Then

k—1 1 a+1 a+1

* Py — P
— < Li0,0)——T (6.23)
7 Fp;) a+1 prm

Proof. The Markov-Stieltjes inequalities along with (1.4) imply, as in [14, p. 33 (5.10)],
that

— | thn (20) X
Z Kn(tjn(x())atjn(l‘o)) S/t ) d,LL(;U) < Z Kn(tjn(x0)7tjn(xo))’ (624)

j=l+1 in j=l
where t;,(x9) denotes the zeros of ¥, (o, ) = pn(20)Pn-1(-) — Pn(-)Pn—1(z0) centered
around zy such that to,(z¢) = x9. Now suppose that ;,(zo) and tg,(x¢) belongs to
(xo — €0, %0 + €0), where g¢ is so small that p is absolutely continuous in this interval.
Then, substituting * = xo + s*/n (recall that s* = s/(mwk (o)) by definition) and using
(6.14) with (6.15), the integral in the middle takes the form

tin (o) trn(z0)
7w = [ wi@)le - aufde
t t

ln(xO) ln(l'(])
pk:n
_ / wigo ¥ 5/)) oy
na—f—l o 7er $0))a+1

On the other hand, by definition Zz(inlzoltin(ro) _ = fn(pjn(0), pjn(0)). Multiplying with

Kn(z0,20)
K, (xg,20) in (6.24) we obtain

k—1

|s|“ds

1 < K, (g, xo) /”’m(o) w(zo + s/n)
fn(pjn<o)apjn<o)) N notl pin(0) (ﬂ—wK(xO))aJrl

which, after letting n to infinity and using (1.18) with (6.17), yields (6.23). O

j=l+1

n(Pin (0 pjn(O)) ’

The next lemma is an analogue of [21, Lemma 5.3|, for which the proof also goes in

an identical way.
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Lemma 6.8. Let 6 > 0 be arbitrary.

(a) There exists a positive integer L, such that if k > 1> L, are selected in a way that

holds, we have

k—1—1< (14 g)rPe=p (6.26)
T

Similarly, there exists a negative integer L_ such that if L_ > 1 > k are selected in a way

that
o] < (1+6)|pi|
holds,
l—k—1< (1 + 5)\04-&-1 |pk| _ |pl|
s
follows.
(b) For the function f(a,-),
n ((l, ')7 T) 1
lim sup < -
7—00 2r ™
holds. In particular, we have
o<1 (6.27)

Proof. (a) We only show the existence of L, the existence of L_ follows similarly. (Or by
reflecting the measure p around xy.) Since (1.18) gives that f(a,a) = L (a,a)/L(0,0),

the number & — [ — 1 can be written as

k-1 %
E—1—1= Z L 10J7pj> )
l+1L )f(:ojapj>

If L is large enough, then (6.10) implies that for all j > L,

holds. Combining these with (6.23), we obtain

k—1
L7 (ps: 5)
k—l—1= ) el
146 1 1
< —
7L (0,0) min{pf, pi'} fpjs p5)
1+5 pa-i-l p;)t-f—l
m(1 4 o) min{pf", pii}
< (145 méX{pi,ps}’
m  min{pf, pi}

j=l+1
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where the mean value theorem was used in the last step. (6.25) gives that

max{pf", pi }

—_— e 146 ‘04|7
wmin{prpr) = 0

therefore overall we have

k—1—-1<(1+ 5)\@4“@)
7r

which gives (6.26). The proof of (b) goes exactly as [21, Lemma 5.3 (b)]. O

Proof of Theorem 1.4. (6.22) and (6.27) gives that the exponential type of f(a,-)
is 0 = 1. Substituting this back to the inequality (6.21), we obtain that for all real b, we
have

L7 (a,b)

fla,b) = L:(0,0) a,b € R.

Since f(a, b) is entire in both variables, it follows that the above equality holds for complex

a,b. Because the family {f,(a,b)}>°, is normal and the above inequality is independent
of the particular subsequence (recall that f(a,b) = limg_,o fn, (@, b) for some subsequence
ng), it follows that lim,, ., fn(a,b) exists and it is f(a,b). Moreover, the convergence is

uniform for a,b in compact subsets of the complex plane, as stated.
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7 Summary

In this thesis we are studying the asymptotic behavior of orthogonal polynomials with
respect to generalized Jacobi measures, i.e. measures having an algebraic singularity of
the type du(z) = |z — x|*dz for some zy in the support. Our study is focused on the

asymptotics of the Christoffel-Darboux kernel defined as

n—1

Ka(zw) = 3 pu(2)pe(w),

where p,(z) denotes the n-th orthonormal polynomial with respect to the p, and the
Christoffel functions defined as
n—1
k=0
In Section 1 we briefly review the classical results of the subject and set the stage for
our investigations. In Section 2 we collect the mathematical tools which will be used in
the proofs. In Section 3 we prove the special cases of our main theorems. These so-called
model cases will serve as our starting point, and our strategy is to transfer these special
results to more general ones using the polynomial inverse image method. After this we
first study generalized Jacobi measures supported on a system of Jordan curves in Section
4. There we will prove that if y is a measure which is supported on a system of Jordan

curves v, regular in the sense of Stahl and Totik, behaving like
du(2) = w(z)|z — 20[*dsy(2)

in the neighbourhood of some interior point zy € v for some o > —1 and some weight

function w(z) which is strictly positive and continuous at zg, then

+1 a+3
lim no+A ___wlo) _ 2 () (222)
A Al 20) = o e 2 7

holds, where w,(2) denotes the density of the equilibrium measure for .

In Section 5 we move over to the real line. First we show an analogous, but slightly
more general result than what we have for Jordan curves. Suppose that p is a measure
supported on an arbitrary compact subset K of the real line, p is regular in the sense of

Stahl and Totik, behaving like
du(x) = w(z)|x — zo|*dz
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in the neighbourhood of some z( in the support, where @ > —1 and w(z) is continuous
and strictly positive at xy. Then if xg is an interior point of the support,

w(z)

n—+00 (rwi (o)

lim n*tt\, (,u,xo + %) =

ot (]L:; (muK(xo)a)> -

holds uniformly for a in compact subsets of the real line, where L’ (+) is the Bessel kernel
for the bulk defined by (1.17). Analogously, if xq is a right endpoint of the support,

a w(zo)

: 200+2 _
fm 2™ A (“’wo - 2_n2> ~ M(K, zg)20+2

-1
(2““3; (M(K, xo)Qa))
n—oo
holds uniformly for a in compact subsets of [0, 00), where J (-) is the Bessel kernel for the
edge defined by (1.13) and M (K, zg) is defined by
M(K,z0) = lim V2r|z — zo| 2wk (z).

T—T0—

These results are further generalized in Section 6, where we study the so-called uni-
versality limits. Under the same conditions for the measure as in the previous section, we

prove that if zy in the interior of the support,

’ Kn(:vo + &, 1w + %) L (mwk (o) a, mwg (x0)b)
im =

n—00 Kn<I0,ZCO) LZ(0,0)

holds uniformly for a, b in compact subsets of the complex plane, and if x( is an endpoint

of the support, we have
Kn(l'O - %a To — . ) o JZ (M(Ka x0)2a7 M(K7 $0)2b)

. on2
llm n 2n

n—00 K, (o, o) J%(0,0)

also uniformly for a,b in compact subsets of the complex plane.
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8 Osszefoglalés

A doktori disszertaciomban olyan ortogondlis polinomok aszimptotikajaval kapcsolatos
tételeket bizonyitok, ahol az ortogonalitdas mértéke un. altalanositott Jacobi-mérték, azaz
olyan, melyre a tarté valamely xy belsé pontjaban du(z) = |z — xo|*dx tipusi algebrai
szingularitas taldlhato. A vizsgalatok kozéppontjaban a

n—1

formuldval definidlt Christoffel-Darboux kernel all, ahol p,(z) az n-edik ortonormaélt poli-

nomot jeloli. Mésik vizsgalt mennyiség a

Al 20) = (Z ()l

formulaval definidlt Christoffel-fliggvény.

Az 1. Fejezetben roviden attekintjiik a teriilet klasszikus eredményeit és megalapozzuk
a késobbi vizsgalatokat, kimondjuk a tézis f6bb eredményeit. A 2. Fejezetben 6sszegyijtjiik
a 16 tételek bizonyitasaihoz sziikséges eszkozoket. A 3. Fejezetben a 6 tételek specidlis es-
eteit bizonyitjuk, amik az altalanos esetben adott bizonyitasok kiindulépontjaként fognak
szolgalni. Ezen 1n. modell-esetekre meglevo bizonyitasok nem alkalmazhatéak minden
esetben, de a polinom inverkép maédszerrel az eredmények atvihetok az altalanos esetre.
Mi ezt az utat fogjuk kovetni. A modell-esetek elkészitése utan a 4. Fejezetben olyan
altalanositott Jacobi-mértékeket vizsgalunk, amely tartéja Jordan-gorbék unidja. Ebben
a fejezetben azt bizonyitjuk, hogy ha p egy Stahl-Totik értelemben vett regularis mérték,

amelynek ~ tartdja Jordan-gorbék véges unidja és valamely zg € v esetén
dp(z) = w(z)|z — 20| "ds, (2),

ahol @ > —1, s, az ivhossz-mértéket jeloli valamint w(z) szigortan pozitiv és folytonos

zo-ban, akkor

. at1 _&““ atl ots
nlggon An(M’ZO)_(WwV(Zo))QHQ F( 2 )F< 2 >’

ahol w,(z) a v egyensilyi mértékének sulyfiiggvényét jeloli.
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Az 5. Fejezetben attériink a valos egyenesen értelmezett mértékekre. El6szor bizonyit-
unk egy, a Jordan-gorbéken latottakhoz analég, de kissé altalanosabb tételt. Legyen tehat
1 egy véges Borel-mérték, mely tartdja egy tetszoleges K C R kompakt halmaz, valamint

p Stahl-Totik értelemben reguldris és
du(z) = w(z)|r — xo|dx

az ro € K valamely kérnyezetében, ahol o > —1, valamint w(z) szigorian pozitiv és
folytonos zg-ban. Azt allitjuk, hogy ha xq a tarté egy belsoé pontja, akkor

lim n*+i\, (M,Io i 2) _ %(Lz(ww[((m)a))—l

n—00 n Twi (o)
a-ban kompakt halmazokon egyenletesen, ahol L’ (+) a bels6é ponthoz tartozé Bessel magfiigg-
vény (lasd (1.17)); illetve ha zy a K halmaz egy végpontja, akkor

. w(zo) (2“+1JZ(M(K’ xo)Qa)>1

: 200+2 _
im 1720 (150 = 52) = 5777, e

n—oo
egyenletesen a-ban [0, 00)-beli kompakt halmazokon, ahol J!(-) a végponthoz tartozd
Bessel magfliggvény (lasd (1.13)), illetve M (K, z¢) pedig a

M(K,z0) = lim V2r|z — 0| ?wi (2)

T—T0—

formula altal definidlt mennyiség.

A fenti tételeket tovabb altalanositjuk a 6. Fejezetben, ahol in. univerzalitast igazol-
unk a Christoffel-Darboux kernelre xq koriil. Ebben az esetben azt allitjuk, hogy ha z( a

K tarto egy bels6 pontja, akkor

i K, (a:o + % 2o + %) L (mwk (xo)a, 7wk (x0)b)
im =
n—oo Kn<,f[,‘0’ ,Z'D) Lz(o, O)

egyenletesen a, b-ben C-beli kompakt halmazokon; illetve ha xg a K tart6 valamely végpont-

ja, akkor
i Ko (29 — 5%, 20 — 5) _ It (M (K, z0)?a, M(K, 10)%b)

n—o0 Kn(x()’xo) J(’;(0,0) 7

szintén egyenletesen a, b-ben C-beli kompakt halmazokon.
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