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1

Introduction

This thesis aims to give a generalisation of deterministic models for network epidemics
with Markovian infectious process and non-Markovian recovery process. We develop the
models for the fixed and the general case, simulate explicitly the stochastic process for
comparison with the solutions of the resulting systems and study the most important fea-
tures, such as reproduction number and implicitly given final size relation. These results
are summarised in three scientific papers of Istvan Kiss, Gergely Rost and the author
of this thesis, see [49], [70] and [71]. We consider SIR dynamics, but the introduced
framework may be applied to more exotic dynamics as well.

Mathematical epidemiology has a long history, going back to the smallpox model of
Daniel Bernoulli in 1760. The first fundamental results were developed in the first half of
the 20th century and this field is in continuous progression nowadays. Mathematical epi-
demiology differs from most sciences in availability of experimental validation of models.
Experiments are usually impossible and would probably be unethical. This gives great
importance to mathematical models as a possible tool for the comparison of strategies to
plan for an anticipated epidemic or pandemic, and real-time control of disease outbreak.

The predominant majority of disease models are based on a compartmentalization
of individuals or hosts according to their disease status ([48], [5], [7], [33], [69]). The
basic models describe the number of individuals (or proportion of the population) that
are susceptible to, infected with and recovered from a particular disease (the SIR mod-
els). Many of the details of the progression of infection are therefore neglected, as are
differences in response between individuals. The SIR model is appropriate for infec-
tious diseases that confer lifelong immunity, such as measles or whooping cough ([48],
[5], [33], [69]). The SIS model, where the infected individuals become susceptible again
after recovery from the disease, is primarily used for sexually transmitted diseases, such

as chlamydia or gonorrhoea, where repeated infections are common ([38], [28]). Many
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modifications have been made to this basic framework, usually involving the inclusion of
more heterogeneities by further subdividing the S, I and R classification to reflect either
more complex pathogen biology ([4], [34]) or greater structure within the host population
(138], [29], [42]).

It has long been acknowledged that the connectivity pattern between individuals in
a population is an important factor in determining the properties of a disease spreading
process ([10], [62], [65], [20]). Using networks to model disease transmission, where indi-
viduals are represented as nodes in a network and the connectivity between individuals
is represented by links between the nodes, allowed us to capture a high level of detail
of many realistic processes and led to more accurate models, especially when compared
to classical compartmental models which operate on the assumption of homogeneous
random mixing.

There is a significant amount of research investigating network epidemic models with
the aim of understanding how network properties influence the disease spread ([46]).
Many different modelling approaches have been introduced, which fall into three broad
classes: exact Markovian or state-based models ([77], [80]), individual-based stochastic
simulation or micro models ([46]) and deterministic ODE-based macro models ([72], [66],
[43], [81], [80]). This classification refers to the scale (e.g. individual level or population
level) at which the modelling is being carried out. The links between state-based, micro
and macro models are explored in detail by [32].

While networks provide a clear departure from classic compartmental models, the role
of simplest macro-level models, i.e. mean-field models remains crucial. These offer us a
reliable way to obtain analytical results, such as epidemic threshold ([64], [53]) and final
epidemic size [43], which in turn can be used to uncover the interplay between network
properties and dynamic processes on networks. Probably the most well-known mean-field
model for network epidemics is the degree-based or heterogeneous mean-field model ([64],
[65]).

Pairwise approximation - a link-level macro-modelling approach - aims to model the
spread of infection on generic networks where higher-order structure has been ignored.
Rather than modelling a network of interactions in its entirety, pairwise models, as the
name suggests, examine the various types of connected pairs found within a population
([12], [27], [35], [37], [42], [43], [67]). Pairwise models have been used to examine a number
of epidemiological issues: fade-out and critical community size for childhood infections
([42]); evolution of pathogen virulence ([12]); spread and control of sexually transmitted
diseases in heterogeneous populations ([23], [27]) and modelling epidemics on adaptive

networks ([35], [79]). This modelling scheme can be applied in study of social interactions
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([21]) and ecological systems ([37]).

While networks offer an accurate representation of contact patterns, many network
epidemic models consider only Markovian epidemics with both the infectious and recovery
processes being memoryless. However, empirical observations show that the Markovian
framework is not satisfactory in describing temporal statistics, such as time intervals
between discrete, consecutive events. Examples include inter-trade durations in finan-
cial markets ([73]), socio-networks ([55]), or contacts between individuals being dynamic
([59]). In the context of epidemiology, the period of infectiousness has a key role ([44],
[54]). The empirical distribution of infectious periods of various diseases is often ap-
proximated by log-normal and gamma (smallpox [24], [63]), fixed-length (measles [6]) or
Weibull distributions (ebola [19]).

Nowadays, there is a renewed interest in non-Markovian processes, such as epidemics
on networks ([11], [17], [18], [40], [47], [58], [82]), random walks ([39]) and temporal
networks ([59]). Several different approaches exist to model non-Markovian epidemics
on networks. These are largely guided by the choice of the model and variables to be
tracked. Notable examples include the message passing approach, often referred to as
the cavity model ([41], [85], [86]), and the percolation based approach ([47], [56], [57],
[61]). While the latter only offers information about the final state of the epidemic, the
former describes the temporal evolution of the epidemic. Generalisations of the pairwise
model to gamma-distributed infectious periods have also been proposed and this has been
developed for both homogeneous and heterogeneous networks ([75], [76]), non-Markovian
SIS model is considered in [17, 82].

This thesis is motivated by this renewed interest in non-Markovian processes and
aims to extend the pairwise model from Markovian to non-Markovian epidemic dynamics
where the infection process remains Markovian but the infectious period is taken from an
arbitrary distribution. Unfortunately, the reliable tools and mathematical machinery of
Markovian theory do not translate directly to modelling and analysis of non-Markovian
systems, and this leads to many significant challenges.

In Chapter 2, we present the fundamental models of mathematical epidemiology and
network epidemics to give a complete picture about the preliminary results of this rel-
evant topic. We start with the classical STR model and introduce the stochastic and
deterministic approaches considering Markovian infection and recovery processes and
homogeneous mixing in the population. As a possible improvement, we recall the results
of Sharkey et. al [74] about exact master equations for stochastic process on networks.
By introducing the node-level and link-level approximations, we write down the mean-

field and pairwise models for the simplest SIR type epidemic process. These equations



1. INTRODUCTION 4

are the starting points of this research. In the last part of this chapter, we introduce
the most commonly used simulation algorithms for stochastic processes, such as syn-
chronously and asynchronously updating paradigms. In the last section, we summarise
briefly two possible simulation approaches for non-Markovian systems: the one we use
through this thesis and a generalised version of Gillespie algorithm from Boguna et al
[11].

The most important quantities derived for SIR dynamics are the reproduction num-
ber and the implicitly given epidemic final size. We recall the classical results for STR
model with mass action and introduce the general concept of reproduction numbers in
Chapter 3. We obtain analytical formulae for the basic reproduction number of mean-
field type systems and the newly introduced concept of pairwise reproduction number
for link-level models. These definitions were published in our first paper about non-
Markovian epidemics in [49]. As an application, we calculate these measurements for
exponentially distributed and fixed recovery times. In the last section, we summarise the
general functional forms of final size relations for both type of models, highlighting the
relation between these equations.

As it is expected, the distribution of the recovery time has a great impact on the
disease spread and knowing as much as possible about it is a key factor in understanding
the dynamics. In Chapter 4 we illustrate the behaviour of the epidemic process for the
most widely observed distributions, such as gamma, uniform and lognormal distributions
and study the interesting phenomenon, that the pairwise reproduction number is de-
creasing if the variance of the recovery time is increasing. We can analitically prove this
statement for the case of gamma and uniform distribution and find numerical evidence
for lognormal distribution. We prove a theorem for the general case with a condition for
the integral functions of cumulative distribution functions and show an example for its
application. As a conclusion, we see that this result holds within one family of distribu-
tions, but different types of distributions with the same mean and variance may produce
significantly different pairwise reproduction numbers.

The first generalisations of mean-field and pairwise models are presented in Chapter
5, where we consider fixed recovery time and develop the models from first principles.
We investigate the basic properties, such as positivity of solutions of the resulting de-
layed differential equations and reduce the dimensionality by finding a first integral to
the pairwise system. We explore the relation between the occurrence of an epidemic
and reproduction numbers by investigating linearisation of models and the associated
characteristic roots. The main results are the derivation of implicit equations for final

epidemic size. In the last part of this chapter, we test the validity of our models with nu-
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merical simulations and present a possible extension of the model for more heterogeneous
networks.

After all these studies, the question arises naturally, how to develop a model for
arbitrarily distributed recovery time. First we consider a hyperbolic system of partial
differential equations, where the population of infective nodes and links are structured
by the time elapsed since the beginning of the infectious period, also called as age since
infection. By solving the partial differential equations, the model is transformed into a
system of integro-differential equations, which is analysed both from a mathematical and
numerical point of view. The associated lengthy calculations are included in the first
section of Chapter 6. The further sections follow the scheme of Chapter 5: after the
positivity results and performing calculations for showing the relation between epidemic
outbreak and reproduction numbers, the final size relations are obtained for mean-field
and pairwise models through several pages of calculations. Since there is no general
solver for integro-differential equations, we implement an algorithm adapting collocation
schemes of [15]. In the last part, we investigate the special choices for distributions and
from the general model we get back the Markovian models (for exponential distribution),
systems for fixed case in Chapter 5 and system of ordinary differential equations published

in [75] (for gamma distribution).



2

Mathematical framework

2.1 SIR epidemic with homogeneous mixing

During the Great Plague in London in 1665-1666, the disease appeared suddenly, grew
in intensity and then disappeared, leaving the 85 % of the population untouched. One
of the early triumphs of mathematical epidemiology was the formulation of the model
by Kermack and McKendrick [48], whose predictions are very similar to this behaviour,
observed in countless epidemics. The model is based on relatively simple assumptions on
the rates of flow between different classes of members of the population.

We will work with compartmental models, i.e. we divide the population studied
into several disjoint classes. The most used classes are S (susceptible), I (infected),
R (recovered), E (exposed) and A (asymptomatic) compartments. In the case of SIR
models, the susceptible members of the population are affected by the disease due to a
contact with an infected individual and recover at the end of the infectious period (this

duration may be called recovery time in this simplified model), see Fig. 2.1.

BS! 4
Figure 2.1: Flowchart of SIR dynamics

2.1.1 Stochastic approach

In a stochastic model we consider, that each individual may have only one state S, I or
R. The state of the system is a triple (z,y, z), where the elements are the number of

individuals in state S, I and R, respectively. The probability of transition from (x,y, z)
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to (r—1,y+1, 2) is depending on x and y and changing to (x,y —1, z+1) is proportional
to y. Clearly, for a given population and considering precisely given rules for transitions
(see [3]), an epidemic may be considered as an recorded output of the projection of the
stochastic model and thus may differ for repeated projections.

Throughout this thesis, we neglect the effects of births and deaths, thus population
size N is assumed to be constant, because the duration of an epidemic is measured on
a shorter temporal scale, thus the demographic changes can be neglected. Initially, we
have a fully susceptible population, and a small number of infected individuals is added
at time ¢t = 0.

One of the most important assumptions, that the population is homogeneously mixed,
i.e. every individual interacts identically with every other. This is called the law of mass
action. Events occur at discrete time steps, furthermore the infection and recovery occur

with constant probability at each time step. This latter assumption is called Markovian
property.

2.1.2 Deterministic approach

If a population is large, however, we may consider probabilities of changing between states
as rates, and derive differential equations. These describe the expected proportion of the
(large) population in each state at each time, as the continuum limit of the stochastic
processes. The usefulness of a differential equation approach is that it is deterministic;
it tells us something about a typical epidemic, whereas any one projection output of the
stochastic model does not give insight into how the next epidemic might arise.

We can introduce variables S(t), I(t), R(t) for the number/proportion of suscepti-
ble, infected and recovered individuals, respectively at time ¢. Therefore, we have the

following system:

S = —BS(I)
i) = BSWI) —I(t) 21)
R(t) = ~I(t),

where overdot represents the derivative with respect to time. We can interpret the
equations as follows. First, the susceptible individuals may only be depleted, because
there is no mechanism allowing infected or recovered to re-enter the S state. Next, the law
of mass action implies that this depletion happens at a constant rate [ proportional to
S(t)I(t) and this decrease in S(t) causes replenishment in /(¢). Finally, the depletion from
I(t) happens by the recovery at the constant rate  proportional to I(¢) and recovered
population fills at this rate. Naturally, the initial conditions satisfy S(0), I(0), R(0) > 0
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and S(0) 4+ 1(0) + R(0) = N. Adding up equations in (2.1), we have S+1+R =N =0,
thus the population has constant size over time.

This model appears as a very special case in [48], which was the basis for research
in mathematical epidemiology during the last 90 years. In Chapter 3, we define the key
parameters, e.g. basic reproduction number and study the most important properties of
model (2.1).

2.2 Heterogeneity in interactions: networks

Figure 2.2: Disease-spread on a small network. Grey, black and white nodes are suscep-
tible, infected and recovered, respectively. The contact network is generated in Wolfram
Mathematica 10 with Barabasi-Albert graph distribution. In the second and third figure,
a new infected and recovered node (highlighted by enlarging) appears, respectively.

In general, a disease outbreak starts with a small number of infective individuals and
the transmission of infection is a stochastic event depending on the pattern of contacts
between members of the population. For a more realistic modelling approach we should
take this pattern into account.

Determining a complete mixing network requires knowledge of every individual in a
population and every relationship between individuals. For all but the smallest popula-
tions, this is an impractically time-consuming task. The networks commonly used are
generated by computer simulation to conform to several observed social characteristics.
Several forms of computer-generated networks have been studied in the context of disease
transmission. Each of these idealized networks can be defined in terms of how individu-
als are distributed in space (which may be geographical or social) and how connections
are formed, thereby simplifying and making explicit the many and complex processes
involved in network formation within real populations.

In random networks, the spatial position of individuals is irrelevant, and connections

are formed at random. In the most analytically tractable version of the random network,
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each individual has a fixed number of contacts (called degree in graph theory) through
which infection can spread. In special case, when all degrees are equal, we get a homoge-
neous random network. An alternative formulation of the random network is to connect
any two nodes with probability p. This leads to the Erdds-Rényi network model ([25]).
Beside random networks, where the connections are unstructured, lattices ([68]), small-
world- ([84]), spatial- ([45]) and scale-free networks ([8]) are the most popular network
types in applications.

Any given contact network, whether generated using a theoretical algorithm or con-
structed from real-world observations, can be described by a simple adjacency matrix
which is then used in the construction of exact Kolmogorov/ master equations, which
describe the probability of the population being in each and every possible configuration.
In the following, let us now recall the notations and models from [74].

We consider the general stochastic system I' whose state is denoted by I'*,a €
{1,2,...,3Y}. The evolution in the state space can be described by a continuous time
Markov-process. The time-dependent probabilities

Poy(t) = P(system I' is in state I'* at time ¢)

can be calculated from the master equations:
3N
=3[Ry t) ~ B OPo 0] (2:2)

where R%“ denotes the Poissonian transition rate from state I'” to state I'*. The solution
of these master equations leads to an exact description of the dynamics of the full system.
Since the system size of the master equations scales exponentially with population size,
even with modern advances in computing power we are unable to numerically integrate

these equations for realistic populations.

2.2.1 Node-level and link-level approximations

We suppose that within the system I', there exist well-defined smaller systems which we
refer to as subsystems. One way to reduce the dimensionality of system (2.2) to split T
into a set of Z coupled subsystems ¢;,i =1,2,..., 7.

For each subsystem ;, we can write master equations to describe the state probabil-
ities P q)(t) = P(ith subsystem 1); is in state ¥ at time t):

Pia(t Z [RYPiay(t) = RYP Py (1) (2.3)
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where the indices a and b denote two of the m; possible states of the ith subsystem and
R; denotes the matrix of transition rates between states for the ith subsystem and is,
in general, dependent on the states of the other subsystems. The number of equations
m = Y27 m; can be far smaller than the 3" master equations for the complete system,
but at the cost that these equations are not closed.

An obvious subsystem is formed by the nodes themselves. For probabilities

PX(t) = P(node i is in state X at time t),

(2

where X € {S,I, R}, Eq. (2.3) becomes

PA(t) = —RMP(t)
P/(t) = RMP’(t)— R"P/(1). (2.4)
PR(t) = RIMP/(1).

Similarly, we can introduce the following notations:

Pz)gy(t) = P(node 7is in state X, node jis in state Y at time t),

R}gkyz(t) = P(node 7is in state X, node jis in state Y, node kis in state Z at time t),
where XY, Z € {S,I,R}. It can be seen, if the contact network is represented by an
undirected graph G = (V, E) with vertex/node set V' with N vertices, edge/link set E

and the adjacency matrix, which is an N x N matrix G = (G ,) defined as:

1, if vertices jand k are linked,

Gy =
Ih {0, otherwise.;

we have
N P[,S
SI i
Ri - Z TGj’i PS
=1 i

1,8

where 7 denotes the transition rate, 7 denotes the recovery rate. It is not always
necessary to determine all time-dependent probabilities, since the expected values of
the number /proportion of susceptible, infected or recovered nodes are equally valuable.
These expected values at time ¢ are denoted by [S](¢), [I](t) and [R](t) respectively and

can be expressed as follows,

(X)) = %BX(L‘),XE{S,I,R}.

i=1
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Similar expressions can be obtained for the expected number of X —Y links and X —-Y —Z
triplets,

(XY)(t) = Y3 Gy ()

(XY Z](1) = _Z_ GiiGinPiy” (1), (2.5)
i, kesith
where XY, Z € {S,I, R}. It follows from (2.4) that:
[S)(t) = —7[S1(t)
1) = ~S1(t) = A[1]) (2.6)

(
).

The interpretation is clear, since [S](t) is depleted at constant rate 7[SI|(t) (i.e.
proportional to the expected number of S — [ links), which is a rate of increase of
infected nodes. Infection is, as in the previous section, depleted at rate [I](¢), which is
the rate of increase in [R](f). We observe, that the system (2.6) is not closed, we have
variable [ST](t) without any governing equation. A possible way to solve this problem
to close the system (2.6) at the level of nodes. For elaborating this, we need a formula
for [ST](t), which depends only on the node-level variables [S](¢) and [I](t). Notice, that
the expected number of X — Y links in a homogeneous network with uniform degree

distribution (k) = n (which is an n-regular graph) is

v]

[XY] ~ n[X]W (2.7)
Using (2.7), we obtain the node-level system, called mean-field model:
810 = —rx[S1)
1) = T%[S] [L](t) = ~[1](2) (2.8)

which has the same form as (2.1).
On the other hand, we can introduce the subsystem of links as an extension of node-

level view. In this case, the complete reduced master equations for the link dynamics
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are:
55,8 1 SS S,S,1
Pj,i (t> = _ZTGk]ijz )_ ZTleF)]zk ()7
ke ki Kokt
P]I,;S(t) = Z TGkJ kIjSzS(t) - Z Tle ]Izs;cl(t) - TGj71PjIzS(t) - /YPJI,;S(t)7
ke kA kkAj
PIAW) = = 3 rGrPRY (1) + P, (2.9)
k.k#j
PII) = X rGu P 0) + X 7GR )~ rCu, P ) — 29 P ),
k,k#£i k.k#£j
BRI =GP0+ P )~ PR,
k.k#j
PRt = PR+ P

Due to the symmetry of the graph, we have G, ; = G;;, so [XY] = [Y X]. Furthermore,
applying formulae in (2.5) for PSS PI  and P” expressions in (2.9), we obtain

[SS](t) = —27[SSI(t),
[SI|(t) = 7[SSI)(t) — 7[IST)(t) — T[SI|(t) — A[SI](t), (2.10)

[I1)(t) = 2r[ISI|(t) 4 27[SI](t) — 2v[11](2).

We observe that equations in (2.10) depend on the variables of triplets. We will
approximate the variable [ XY Z] by a function of [XY],[YZ] and [Y]. The detailed
explanation of the following moment-closure approximation formula can be found in [18]
and [43]:
n—1[XY][YZ]

n Y]

Applying (2.11), we can obtain the following self-consistent system by including the

XYZ] = (2.11)

equations for variables of nodes and links:

[S](t) = —7[S1](1)

@) = 7[SI](8) = ~U]()

[SS)() = —2r ";HSS][(;%E)K), (2.12)
Sne) = [SS][(?S”( )2l [Sl][(g[(f)”(t) —r[S1](t) —A[ST)(2).

System (2.12) is the simplest link-level approximation, called pairwise SIR model.
The number of links in an n-homogeneous network with N nodes is Nn/2, thus the sum
of variables [XY], X, Y € {S, I, R} equals to Nn. This gives a condition for initial values
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[XY]o. In our simulations in this thesis, we consider a small number of infecteds in a
fully susceptible population, thus the initial values [SS]y = %[S]3, [SI]o = %[Slo[]o are
reasonable for (2.12).

The models (2.8) and (2.12) are describing epidemics with Markovian recovery, be-
cause the recovery process is assumed to be Markovian. The main goal of this dissertation
is giving a generalisation for these fundamental models by relaxing the Markovian as-

sumption for the recovery process.

2.2.2 Stochastic simulation

o
o

o
H

o
w

o
N

o
—

Proportion of infected nodes

o
o

Time

Figure 2.3: Several outputs of individual-based stochastic simulation for Markovian epi-
demic on network and the average epidemic curve. We consider homogeneous networks
with N = 1000 nodes and degree n = 15. The initial number of susceptibles is [S]op = 999,
the transmission rate is 7 = 0.3 and recovery rate is v = 1. The thick curve shows the
mean of 100 simulations.

As an alternative for solving master equations, individual-based stochastic simulations
can be performed on the full network. Taking the average of a large number of such
simulations remains the most viable way to explore dynamics on large, complex networks
(see Fig. 2.3). Unfortunately, all information about rare events is lost in the averaging
process, whereas if the master equation could be solved, the probability of any possible
event could be calculated.

A simple technique for simulating stochastic systems is the synchronously updating
implementation. Here, discrete-time simulations can be performed by fixing a time step

At and, at every step, allowing every possible event to occur with a probability calculated
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from the various disease parameters, the current state of the network and the magnitude
of At, and the state of the system is updated at each time step. An example from this
type of simulations is the tau-leaping method.

Synchronously updating simulations can be very efficient to implement in terms of
coding complexity. However, allowing multiple events to occur simultaneously is not in
keeping with the Markovian nature of stochastic models and hence At needs to be small
enough to avoid this happening. Moreover, in general synchronous updating approach
may generate non-realistic behaviour and strange patterns ([26]).

An alternative simulation approach is the asynchronously updating paradigm. In
general, this technique allows at most only one event at each time step, which simulates
better the continuous-time phenomena. For asynchronously updating algorithms with
time step Atgsyne, Where inter-event time is fixed and synchronous version with time step
Atgyne allowing n events, we have Atgyn. = AL zoyne.

A special type of asynchronously updating algorithms with dynamically changing
inter-event times is known as Gillespie algorithm [30], whereby the time to next event, T,
is an exponentially distributed random variable chosen from an exponential distribution
parametrised by Ryoa, Where Ry, is the rate of all possible transitions given the current
status of all individuals. It follows that working out R, amounts to summing all
infection and recovery rates across the whole network. As the inter-event time is directly
related to the total rate, large rates result in small inter-event times. Once the time
to next event is determined, a single event out of all possible is chosen at random but
proportionally to its rate.

In detail, assuming Markovian infection and recovery process, the Gillespie algorithm

for simulating network epidemics has the following steps:

1. Initialization. Set initial time, states of the nodes and the associated rates based

on the state of the node and the neighbouring nodes.

2. Sample an inter-event time. Generate an exponentially distributed inter-event time,

where the parameter is the reciprocal of the sum of all rates.

3. Sample a node. Choose a node to be updated by generating a uniformly distributed

random number and using the cumulative sums of rates.
4. Update. Update time, the state of the node and the rates calculated to the nodes.

It is clear, that the Gillespie algorithm can be applied to system of discrete Markovian
stochastic processes. The algorithm takes advantage of the theory of superposition of a

fixed number of renewal processes.
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2.3 Non-Markovian stochastic simulations
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Figure 2.4: Several outputs of individual-based stochastic simulation for non-Markovian
epidemic on network and the average epidemic curve. We consider Weibull distributed
recovery time with scale A = 1 and shape k = 1 on homogeneous networks with N = 1000
nodes. The initial number of susceptibles is [S]o = 999 and infection rate is 7 = 0.3. The
thick curve shows the mean of 100 simulations.

Since the Gillespie algorithm builds on the memorylessness property of the inter-
event times, the generalisation of this algorithm is a challenging task. In the following,
we describe the algorithm we used in the simulations, which was implemented in Wolfram
Mathematica 10. The code highly exploits the new developments of the previous version 9,
namely, the built-in functions for generating arbitrary random networks. The program is
very flexible for further extension of the stochastic model, such as dynamically changing,
more realistic networks.

The main program executes the event-based simulation, where waiting times for all
possible events are generated from appropriate distributions. During an update the
event with the smallest waiting time is executed followed by the necessary update of the
waiting times of events affected by the most recent change. The two types of update are
implemented in two modules, which update the states and waiting times according to
the type of the event. Several outputs of a sample run and the average epidemic curve
can be seen in Fig. 2.4. For more details, see Appendix.

The simulation framework for non-Markovian processes has also been improved by
Bogund et al. [11], by proposing an equivalent of the efficient Gillespie algorithm for

Poisson processes. In this paper, they describe an algorithm simulating statistically
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independent discrete stochastic processes with arbitrary inter-event distribution. This
approach stores the time elapsed since the last occurrence of each process up to a given
point in time and uses these values and the associated survival and density functions to
calculate the time until the next event. The nMGA ('non-Markovian Gillespie algorithm’)
is an approximation of the exact simulations assuming that N >> 1, but uses the list of

elapsed times and survival functions.

2.4 Functional differential equations

In this thesis, we introduce deterministic models for non-Markovian STR network epi-
demics, which fall in a more general class of differential equations, namely delay and
integro-differential equations. Delay differential equations are widely used in infectious
disease modelling, applied for malaria ([60]), influenza ([50]) or in immuno-epidemiology
([9]). In population dynamics, Volterra-type integral and integro-differential equations
are applied for modelling e.g. predator-prey systems ([83]).

A general form of a delay differential equation (DDE) is

l‘(t) - f(tv xt):

where z,(0) = z(t+0),—r <6 <0and f : Rx C([-r,0],R") — R™ is a given continuous
function. One of the most important difference compared to ordinary differential equa-
tions (ODE), that for a DDE we have to prescribe an initial function ¢(6) € C([—r, 0], R™)
to define an initial-value problem.

If f(t,z) = f(t,z(t),z(t —r)), where r > 0 constant, we have a differential equation
with discrete delay. A term like

/tt k(t — s)x(s)ds = /OT k(s)z(t — s)ds,

T

where 0 < r < oo is referred to as a distributed delay. On the one hand, if we want
to define a dynamical system for an autonomous DDE, the state space will be clearly
C([—=r,0],R™), which is an infinite dimensional Banach space, compared to an ODE,
where the state space is finite dimensional. On the other hand, considering the simplest
DDE

(t) = —x(t — 1),

and deriving the associated characteristic equation

A4e =0,
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we have infinitely many characteristic roots and linearly independent solutions of the form
eM. An excellent introduction about DDEs with applications in mathematical biology
can be found in [36].

Clearly, the stability definitions can be extended to DDEs. We consider the system

of delay differential equations

$(t) = f(t7$t>7
T, = ¢ (2.13)

where f(t,0) = 0,¢t € R, thus x(t) = 0 is a solution. The solution z = 0 is stable, if
for any 0 € R and € > 0, there exists 0 = d(o,€) > 0 such that ¢ € C([—r,0],R") and
|lo|| < 0 implies that x;(0, @) < €, where ||¢|| = sup{|¢(0)| : —r < 8 <0} and z(¢, 0, ¢) is
the solution of (2.13). It is asymptotically stable, if it is stable and if there exists b(o) > 0
such that, whenever ¢ € C([—r,0],R") and ||¢|| < b(c), then z(t,o,¢) — 0, — 0.
Finally, © = 0 is unstable, if it is not stable.

An integral equation is an equation in which the unknown function x(¢) appears under

an integral sign, e.g.,

£(t) = h(t,2(8) + /ab(t) k(t, 5, 2(5))ds, ¢ > a,

where h(t), f(t),b(t) and k(t,s,x) are given functions and we wish to determine z(t).
The function k(t, s, z) is called the kernel of the integral equation. A first-order integro-

differential equation involves both integral and derivative of the unknown function, e.g.
b(t)
#(t) = h(t, z(1)) +/ k(t, s, 2(s))ds, t > a.

An equation is Volterra-type, if b(t) = t and Fredholm-type, if b(t) = b, where b is
constant. An integral/integro-differential equation is of the first kind, if h = 0 and of
the second kind otherwise. In this thesis, we will work with Volterra integro-differential

equations of the second kind
t
() = h(t, z(1)) +/ k(t, s, 2(s))ds, t > 0,
0

and investigate a convolution-type linear Volterra integral equation of the first kind has

the form .
z(t) :/ 2(t — )K(s)ds, t > 0,
0

Despite the fact, that for the integral/integro-differential equations above only an initial
value at the starting time point is enough to determine an initial-value problem, the sim-
plest linear equations have infinitely many solutions in the form of e’. However, it is pos-

sible to specify the unknown function on an initial interval, which may influence greatly
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the solutions of the equation. More details about Volterra integral/integro-differential
equations can be found in [16]. The stability definitions for initial-value problems are
similar to definitions in ODE theory (prescribed initial value) and DDE theory (for initial
functions).



3

Reproduction numbers and final size
relations

An epidemic, which acts on a short temporal scale, may be described as a sudden out-
break of a disease that infects a substantial portion of the population in a region before
it disappears. Epidemics usually leave many members untouched. The number of un-
touched individuals appears in the final size relation, which gives a relationship between
the size of the epidemic (number of members of the population who are infected over the
course of the epidemic) and the associated reproduction number.

Reproduction numbers play a crucial role in mathematical epidemiology and are de-
fined as the expected number of secondary infections caused by a ‘typical” infected indi-
vidual during its infectious period when placed in a fully susceptible population, which
is a definition understood at the level of individuals ([22]).

3.1 Results for classical STR model (2.1)

The most important results for SR models are the explicit formula of basic reproduction
number and an implicit equation for the final epidemic size containing R,. For the
classical STR model (2.1), it is easy to see, that I, = tll>r_(1>10 I(t) = 0. Epidemic may
occur, if I'(0) > 0, which is equivalent to condition Ry := % > 1. Here, Ry is the basic
reproduction number associated to model (2.1) and can be interpreted as the number of
newly infected individuals per unit time (75p) over the average infectious period (%)

Furthermore, we can reduce dI/dS and integrate it to obtain

Seo) Soo
1n<SO>—RO<SO -1).
Soo

We will use the notation s,, = o Clearly, attack rate is 1 — sy. (Technically, the

attack rate should be called an attack ratio, since it is dimensionless and is not a rate.)

19
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Using these formulae, we have
Inse = Ry (Se0 — 1) (3.1)

This equation is called final size relation and gives an implicit equation for the proportion
of remaining individuals after the disease outbreak. Clearly, larger the Ry, smaller the
Seo (thus larger the attack rate) we have, which is in harmony with the meaning of basic

reproduction number.

3.2 Concept of reproduction numbers for networks

In the following, we introduce a general concept for the reproduction number associated
to the mean-field and pairwise models. We introduced these definitions in [49] and use
these concepts and results in our further papers in this topic ([70], [71]). The pairwise
model is written at the level of links and describes the dynamics of susceptible (S — 5)
and infected (S — I) links. This leads to the definition of a new type of reproduction
numbers, which we call pairwise reproduction number. More precisely, we distinguish the

following two useful quantities:

(a) the basic reproduction number is the expected lifetime of an I node multiplied by

the number of newly infected nodes per unit time (denoted by Rg);

(b) the pairwise reproduction number is the expected lifetime of an S—1 link multiplied

by the number of newly generated S — I links per unit time (denoted by RY).

The expected life time of an infectious node is the expected value of a random variable
7 corresponding to the distribution of the length of infectious periods. In contrast, an
S — I link can be removed either due to the recovery of the I node or the infection of
the S node. Therefore, the expected lifetime of the S — I link is the expected value
of the minimum of two random variables. If we assume that the transmission process
of infection along such a link has density function f; with survival function §;, and the
process of recovery has density function f7 with survival function &z, then, denoting by

Z the random variable defined by the lifetime of an S — I link, we have

B(Z) = [ t(f0&) + f060) dr. (32)

From the assumption that the infection time along S — I links is exponentially dis-

tributed (i.e. f;(t) = 7e" ™, &(t) = ™), the number of newly infected nodes per unit



3. REPRODUCTION NUMBERS AND FINAL SIZE RELATIONS 21

time in the mean-field and pairwise model are £7[S]y and 7%+ [fSﬁlO = 724(S]o, respec-
tively, where we used the approximation
o2
55T = TeIST (3.3

which is consistent with the assumption of introducing small amount of infected nodes
at t = 0. Moreover, we will see in Ch. 6, that Eq. (3.3) comes automatically from the
general model.

To calculate the expected lifetime of an S — I link, if the infection is Markovian
and the recovery is arbitrary with density function fz(¢) and survival function &z (t), we

integrate by parts and we obtain

E(Z)= [t (FO&0) + fO&@) dt = [t (re7enlt) + e r(0)) d
= /0 - tre Tz (t)dt + /0 T et fr(t)dt

- K—te” - ej) gz(t)r - /0 - (te” + ej) fz(t)dt + /0 R fr(t)dt
— i—i%“fﬂﬁwﬁza_EFM”,

where L][fz](7) denotes the Laplace transform of fr at 7. Multiplying this formula with

n—1

the expected number of newly generated S — I links 75

[S]o, we have the following
general formula for pairwise reproduction number:
n—1

Ro =~ [5lo(1 = LIf](7))- (3.4)

Clearly, the basic reproduction number R, for arbitrary recovery time is

Ry = %TIE(I)[S]O. (3.5)

3.3 Special cases

For Markovian recovery (where recovery time is exponentially distributed with parameter
7, thus fz(t) = ye "), it is straightforward to obtain, that pairwise reproduction number

1S

Ripun = "y 1800 (1= €010 = " 18l (1= -2 ) =" sl T

where Rgﬂxp(v) denotes the pairwise reproduction number for exponentially distributed

recovery time with mean length % Since the Markovian mean-field model (2.8) has the
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same functional form as the classical STR model (2.1), the basic reproduction number is

clearly
n 1

n
Ropxp(r) = TN[S]OE(I> = NT[S]();

For fixed recovery time o, the survival function is {7(t) = 1if 0 < ¢ < ¢ and &z(t) = 0

if t > o, and the density function fz(¢) is the Dirac-delta §(¢ — o). Using fundamental

properties of the delta function, we have

n—1 n—1

Rg,Fixed(a) = T[S]O (1 - L[f7](1)) = N [S]o (1 — e‘”) )

p . . . .
where RO,Fixed(o) denotes the pairwise reproduction number for fixed recovery time o.

Obviously, the basic reproduction number R for fixed recovery time o is

n n
Ro,Fixed(o) NT[S]OE(I) = NT[S]OU-

In Ch. 5, we develop the mean-field and pairwise models for fixed recovery time and
investigate the essential properties of these systems. The general case is covered in Ch.
6 and the study of general model gives an insight to the role of reproduction numbers

defined above. The most important cases for Ry and R{ are summarised in Table 3.1.

Ro Ro
Markovian w315 L;%[S]o
Fixed +10[S]o 211 —e)[S]o
General LTE(T)[S]o | 5 (1 — L[fZ)(1)) [STo

Table 3.1: Basic and pairwise reproduction numbers for different recovery distributions.
L[fz](7) denotes the Laplace transform of fz, the density of the recovery process, at 7.

3.4 Final size relations
It is easy to see for mean-field model (2.8), that the final size relation is
Insew =Ro(50 —1), (3.6)

where Ro = Ropxp(y)- It is clear, that the derivation of the final size relation is more
complicated for the pairwise model. A possible derivation may have the following major

steps:

(a) find an invariant to reduce the dimensionality of the system,
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(b) integrate the equation for [ST]|(t),
(c) integrate the equation for [S](¢) on [0, c0),
(d) employ algebraic manipulations to obtain the final size relation.

For (2.12) as we will show for general case in Ch. 6, this procedure yields

1

51 not
=R (scx? —1>, (3.7)

n—1

where R = Rngxp(ﬂ/). Observe, that taking the limit of n — oo in (3.7) gives rise to
In(s00) = RY(S0o—1), which is equivalent to the ‘standard’ form of (3.6). This shows that,
in a sense, by a suitable scaling of parameters one can obtain the mean-field model as a
limit of the pairwise model, since in fully connected graphs the pairwise approximation
tells us that the number of [AB] pairs can be expressed as [AB] = [A][B].



4

Impact of distribution on disease
spread

In this chapter, we study how the distribution of infectious periods influences the dy-
namics of epidemics on networks. These results are summarised in our second paper in
this topic [70]. Note, while Ry depends on the expected value only, (see Table 3.1, case
'General’), the pairwise reproduction number Rf, uses the complete density function,
thus the average length of infectious period does not determine exactly the reproduction
number. It implies, that for an epidemic we have to know as precisely as possible the
shape of the distribution.

Besides exponential, the most commonly used distributions in epidemiology - because
of their simplicity and their good fit to empirical observations - are gamma, uniform
and lognormal distributions. We will show for these typical families of distributions
that higher variance in the recovery times generates lower reproduction numbers and
different epidemic curves within each distribution family. We also show that knowing the
expected value and the variance of the recovery times is not sufficient to determine the key
characteristics of the epidemics such as initial growth rate, peak size, peak time and final
epidemic size. For accurate predictions, more detailed information on the distribution of
the infectious period is required, thus carefully estimating this distribution in the case of
a real epidemics has paramount public health importance.

4.1 Gamma distribution

The gamma distribution is one of the most commonly used distributions in the epidemiol-
ogy literature to approximate empirically observed latent periods and infectious periods.
For example, it has been fitted to the incubation period and infectious period of small-

pox [24], bluetongue disease [31] and so on. It is applied in a wide spectrum of models,

24
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Figure 4.1: (a) Epidemic curves as averages of explicit stochastic simulations for non-
Markovian epidemics, where the transmission rate is 7 = 0.3 and the initial number of
susceptibles is [S]p = 999 on a homogeneous network with N = 1000 nodes and degree
n = 15. The circles/squares/diamonds correspond to simulations for gamma distributed
recovery time with parameters (a,b) = (2,0.5)/(1,1)/(0.5,2), respectively. (b) The solid
curve shows the reproduction number RE as a function of variance v for fixed m = 1, and
the circle/square/diamond represent the cases simulated in Fig. (a). In the inset figure,
the shapes of the three corresponding probability density functions are presented.

because of its flexibility and the possibility of incorporating it into ordinary differential
equation models by the method of stages (also called linear chain) [54].

The usual notation of gamma distribution is Gamma(a, b), where a is called the shape
parameter and b is called the scale parameter. The probability density function and its

Laplace transform are

_z
Z,afle b

frle) = e £ = (1555)

where I'(a) is the gamma function evaluated at a. If the infectious period Z is gamma
distributed with shape parameter a and scale parameter b, that is Z ~ Gamma(a,b),
then the expected value is m := E(Z) = ab, and the variance is v := Var(Z) = ab?
and for simplicity later we shall use the notation m and v to denote the mean (expected
value) and the variance of distributions.

The monotonicity of the reproduction number in the variance is depicted in Fig.
4.1(b). For a fixed mean but different variances of the gamma distribution, we can ob-
serve different epidemic curves in Fig. 4.1(a), and correspondingly different reproduction
numbers (see Fig. 4.1(b)). The dependence of Rj; on the distribution parameters is

detailed in Fig. 4.2. In the following proposition we summarise our observations.

Proposition 4.1.1. Consider two random wvariables Z; ~ Gamma(aq,by) and Iy ~
Gammal(ag, by) such that E(Z,) = E(Zy) and Var(Z,) < Var(Zy). If I and I, repre-

sent the recovery time distribution, then for the corresponding reproduction numbers the
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Figure 4.2: Contour lines of R} as a two-variable function of the parameters of the gamma
distribution. The transmission rate is 7 = 0.3, the network has N = 1000 nodes and degree
n = 15 and initial number of susceptibles is [S]p = 999. In (a), the contour lines are given
as the function of the shape and scale parameter, while in (b) they are depicted as the
function of the mean and the variance of the gamma distribution.

relation Rg 7, > Rz, holds (i.e. for gamma distributions with a given mean, the pairwise

reproduction number is monotonically decreasing with respect to the variance).

Let us remark, that the exponential distribution is also an element of this family
(Gamma(1, 1) = Exp(A)) and the sum n of independent exponentially distributed ran-
dom variables with the same parameter A is Gamma distributed with parameters shape

n and scale  (i.e. Y7 Exp(A\) = Gamma(n, 1)).

Proof. Fix m as the common mean of Z; and Z,, then the scale parameter can be ex-
pressed as b = . Using that v = Var(Z) = ab* and

L) = (1)

1+7b

we can express the parameters in terms of the mean m and variance v, and thus the
Laplace transform can be written as

2

)\m(T;U)izﬁ[fz](T)=< ! )

I+ ~v

where the notation A, (7;v) for the Laplace transform is meant to emphasize that the
Laplace transform evaluated at 7 for a fixed m is a function of v. For arbitrary 0 < x <
y < 1land 0 < a < b, the inequalities

hold. For v; < vy and for 7 > 0 we have (1 + %vz)_l < (1 + %vl)_l, and using the

relations above we obtain
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Figure 4.3: (a) Epidemic curves as averages of explicit stochastic simulations for non-
Markovian epidemics, where transmission rate is 7 = 0.3 and initial number of susceptibles
is [S]o = 999, on homogeneous network with N = 1000 nodes and degree n = 15. The
circles/squares/diamonds correspond to simulations for uniformly distributed recovery time
with parameters (a,b) = (0.9,1.1)/(0.5,1.5)/(0,2), respectively. (b) The solid curve shows
the reproduction number R} as the function of variance v for fixed m = 1, and the cir-
cle/square/diamond represent the cases simulated in Fig. (a). In the inset figure, the three
uniform density functions are depicted.

7n2

1 1 1 ) 1 )
_ < | — < | — ,
1—|—%U1 o 1—{—%1]1 - 1+%’l}2

which means that \,,(7;v) is monotone increasing in v. Therefore, the pairwise repro-
duction number .
n J—

= 1Slo(1 = An(7:0))

is monotone decreasing in v. ]

)
Roz =

4.2 Uniform distribution

Since its simplicity allows us to make explicit calculations, in this section we outline
how the reproduction number and the disease dynamics behave when the recovery time
follows uniform distribution. Uniformly distributed incubation and infectious periods
have been used for example, in the modelling of avian influenza [87].

Let Uniform(a,b) denote a uniform distribution corresponding to the interval [a, b],

where a > 0,b > a. If Z ~ Uniform(a,b), then the expected value is m = E(Z) = %b,

and the variance is v = Var(Z) = % The probability density function and its Laplace
transform are given as
fora<axz<b e — g=sb

Lfzl(s) =

1
r) =0 :
f2(@) 0 otherwise s(b—a)
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Figure 4.4: (a) Contour lines of R} as a two-variable function of the parameters of the
uniform distribution. (b) Contour lines of RY as a two-variable function of m and v for
uniform distribution. For both (a) and (b), the transmission rate is 7 = 0.3, the network
has N = 1000 nodes and degree n = 15 with an initial number of susceptibles [S]y = 999.

The monotonicity of the reproduction number in the variance is depicted in Fig. 4.3(b).
Similarly to the gamma distribution, for a fixed mean but different variances of the
uniform distribution we can observe different epidemic curves in Fig. 4.3(a), and corre-
spondingly different reproduction numbers (see Fig. 4.3(b)). The dependence of Rf ; on
the distribution parameters is detailed in Fig. 4.4.

Proposition 4.2.1. Consider two random variables 7, ~ Uniform(ay,by) and Iy ~
Uniform(ag, be) such that E(Z,) = E(Z,) and Var(Z,) < Var(Zy). If Z) and I, represent
the recovery time distribution, then for the corresponding reproduction numbers the rela-
tion Rgll > Rg,b holds (i.e. for uniform distributions with a given mean, the pairwise

reproduction number is monotonically decreasing with respect to the variance).

Proof. Fixing the mean m, the right endpoint of the interval is b = 2m — a. Using that
v = Var(Z) = % and L[f7](T) = %, by simple algebra we can express the
parameters by m and the variance v, and consequently the Laplace transform can be

written as the function of v:

e~ Tm oT 3v e—'r\/3'u

2m V30U ’

where v € (O, %2} from our assumptions on a and b. Expanding the exponentials in

Am(T30) =

Am(7;0) into Taylor series, we can notice that the negative terms cancel out, and we
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Figure 4.5: (a) Epidemic curves as averages of explicit stochastic simulations for non-
Markovian epidemics, where transmission rate is 7 = 0.3 and initial number of susceptibles
is [S]o = 999, on homogeneous network with N = 1000 nodes and degree n = 15. The
circles/squares/diamonds correspond to simulations for lognormally distributed recovery
time with parameters (p,o) = (70.03125,0.25)/(71%3),\/E)/(O,Q), respectively. (b)
The solid curve shows the reproduction number RY as the function of variance v for fixed
m = 1, and the circle/square/diamond represent the cases simulated in Fig. (a). Inset
figure shows the shape of these three distributions.

obtain
e (1+ (rv/Bo)+.. ) = (1= (1v3o) + .. )

2m ™V/3v

_emoryBu 2

2m TV 3U
—Tm 00 (7_ 32))271

- 2 (2n+ 1)

m n=0

)‘m(7-3 U) =

®

(4.1)

which is monotone increasing in v for m > 0 and 7 > 0. Therefore, the pairwise repro-

duction number Rf; = “52[S]o(1 — A (7;v)) is monotone decreasing in . O

4.3 Lognormal distribution

The lognormal distribution is also widely used in epidemiology. They have been fitted,
among others, to the incubation and infectious periods of smallpox [63]. Let InN (u, 0?)
denote a lognormal distribution, i.e. its logarithm is a normal distribution with expected
value p and variance o. Then for the lognormal distribution m = E(Z) = e’”é, v =

Var(Z) = e21+20% _ g2ut9® and the probability density function is, for z > 0,

1 _ (—ptin(a))?
e 202 .

)= e

Unfortunately a closed form does not exist for its Laplace transform, thus we cannot

perform a full analysis as in the previous two sections. We can still investigate numerically
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(a) 1RE=0.6 Rp=1 RO=2.2

variance (v)
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Figure 4.6: (a) Contour lines of RY as a two-variable function of the parameters of the
lognormal distribution. (b) Contour lines of RE as a two-variable function of the mean and
variance for lognormal distribution. For both (a) and (b), the transmission rate is 7 = 0.3,
the network has NV = 1000 nodes and degree n = 15 with an initial number of susceptibles

is [S]o = 999.

the impact of m and v on the reproduction number and the time course of the epidemic.
The density function can again be expressed in terms of m and v by the formula
1 B (ln(z)fln(m)+% 1n(ﬁ+1))2
fm(z;v) = e 2z +1) , for z > 0. (4.2)
rv/2m,/In (# + 1)

By straightforward calculation, we can find y = In(m) — {1n (1 + #) and 0? =
In (1 + #), and then the formula above can be derived. Using this formula for the
density, we can numerically determine its Laplace transform and plot the pairwise re-
production number as a function of the variance for any given m, see Fig. 4.5(b). The
epidemic curves corresponding to these distributions can be seen in Fig. 4.5(a), and the

dependence of R on the distribution parameters is detailed in Fig. 4.6.

4.4 (General case

In the last section we give some simple conditions for the general case, which may guar-
antee, that smaller variance induces higher pairwise reproduction number. We consider
a random variable Z corresponding to recovery times with probability density functions
fz(t), cumulative distribution function Fr(t) = fy fz(s)ds and integral function of CDF
Fr(t) := [§ Fr(s)ds. Clearly, j—;fz(t) = 4F7(t) = fz(t). Moreover, F7(0) = F7(0) = 0.

Theorem 4.4.1. Consider two random variables I, and Iy such that

E(Z,) = E(Z,) < oo, (4.3)
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and
Var(Z,) < Var(Zy) < oo.

Let us assume, that
lim t*f7(t) =0

t—o0

and for allt > 0,
fIl(t) 7é ‘FIQ(t)'
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(4.4)

(4.5)

(4.6)

holds. If I, and Iy represent the recovery time distribution, then for the corresponding

reproduction numbers the relation Rg 7, > Rf 7, holds.
Proof. Using assumption (4.3), we deduce
[Tt 0~ ) = 10~ FL )~ [0 — Pr o)
= tlipgot(FZl (t) - FIz(t)) - [ffl (t) - Fzz (t>]80
[+] :
5 i (5, (1) — Fa(t) = 0

thus
lim (P (1) — P (1)) = 0.

To see [*], i.e. tlim t(Fr, (t) — Fr,(t)) = 0, we need some algebraic manipulations:

| P~ Fol®) un ) —
Ji (P (1) = ) = fin SR gy SO

= —Jim () - fr,(t) 20,

where L’H refers to the L’Hospital rule. From assumption (4.4), we have

Var(T) = E(T) - (B(T)? < BT) — (B(T,))® = Var(T,)
O g(12) < E(22).

(4.7)

or equivalently [;° ¢2(fz, — fz,)dt < 0. We can carry out some calculation on the left-hand

side of this inequality:

| B0 — )it = [BF ) ~ Py —2 [ () — Fu()d
= Jim 2P (1) = Po(t) = 2(Fn () - Fr ()

L2 /0 T F () — Fo(t)dt
=D 2 lim H(Fp (1) — F (1) +2 /0 T Fu(t) = Fr(D)dt

=2 [T F (1) - Fr (0,
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consequently .
| @) = Fr @t <0 (4.8)

To prove [*x], i.e. Jim t2(Fr, (t) — Fr,(t)) = Jim t(Fr, (t) — Fr,(t)) = 0, we have

P () - F5,(t) v i 5 () —1F12 ()
t—o00 : t—o00 e

= — lim ¢*(Fr,(t) — Fr,(t))

2t gy IO TR0 L (10— )

lim ¢(Fz, () — F,(t))

t—o00 3

45)

0.

Since Fr(t) > 0,t > 0 and monotone increasing, the integral function of CDF Fz(t) is

monotone increasing and convex. Using (4.6) and (4.8), we obtain
Fr, () < Fr, (1), (4.9)

for all ¢ > 0. Clearly, for Rj 7, > R 7,, it is enough to prove, that L[f7,](7) < L[fz,](7),
Le. [5°e ™ (fr,(t) — fr,(t))dt < 0. First, we perform some algebraic manipulation on the
left-hand side:

[T e Um0~ fro)dt = [T ) - Fr o)
tr /0 T e Py () — Fy(1)dt
= 7leTT(Fr(t) — Fn,)]F
72 /0 T e (F (1) — Fo(8))dt
R /0 T e (Fr () — Fo, (1))t

In conclusion, we have

[T e (Fa ) - Fre)de <o,
0

therefore L[fz,](7) < L[fz,](7), which gives Rf 7, > R{ 7, O

As an example, we consider Z; ~ Exp(v) and Z, ~ Fixed (%), Le. fr,(t) =~e "t >0
and f7,(t) =0 (t - %), where §(¢) denotes the Dirac delta function. Clearly, we obtain
Fr,(t) =t + %e‘”t - % and Fz,(t) =t — %, thus there is no to > 0, such that Fz, (¢y) =
Fr,(to). Since E(Z,) = E(Z,) = %, 7% = Var(Z,) > Var(Z,) = 0 and the other conditions
of Theorem 4.4.1 are satisfied, we find Rf 7, < Rz,
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Figure 4.7: (a) Comparison of three epidemic curves after averaging explicit stochastic
simulations with three different distributions of recovery times. The diamond/circle/square

corresponds to Gamma(0.5,2), In\ <1né3), \/ln(3))) and Weibull(0.72,0.81) distributions,

respectively. All three distributions have mean m = 1 and variance v = 2. (b) Probability
density functions corresponding to the three distributions.

4.5 Conclusions

For two-parameter distribution families, it is possible to regard R} as a function depend-
ing on two variables, e.g. the mean m and variance v, see Figs. 4.2, 4.4, 4.6. Since
the general final size relation (3.7) is monotone in RY, we conclude that smaller variance
generates more infections. In Fig. 4.7, we compared three distributions from different
families, each having m = 1 and v = 2. Besides the gamma and the lognormal distri-
butions, for the sake of comparison we selected a third type of continuous distribution,
namely Weibull distribution, which has been fitted to the infectious period for the recent
ebola outbreak [19]. Fig. 4.7 illustrates that the mean and the variance of the recovery
times alone are not able to determine the key characteristics of the epidemic curves, and
a large variety of outbreaks can be generated from having the same mean and variance.
This is especially the case in Fig. 4.7, where the gamma distributed infectious period
leads to a very different epidemic, compared to that corresponding to the lognormally
distributed infectious period, despite the mean and the variance are being identical.
Therefore, in a real life situation, it is crucial to estimate the empirical distribution of
the infectious period as accurately as possible, since the mean and the variance alone do

not provide enough information for accurate predictions.
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Models with fixed recovery time

In this chapter, we consider a non-Markovian epidemic process with fixed recovery time.
We generalise the concept of mean-field and pairwise models by developing their anal-
ysis for this case. First, a fixed infectious period, denoted by o, is considered, and the
derivation of the approximating deterministic models from first principles is illustrated.
We show that the non-Markovian dynamics can be described by a system of delay dif-
ferential equations with constant and distributed delays. The results of this chapter are

summarised in our first paper on non-Markovian network epidemics [49].

5.1 Model development

The infection process is assumed to be Markovian, thus the equation for [S](¢) is the
same as before (see Eq. (2.12)), i.e.

[S)(t) = —[S1](2).

The number of infected nodes at time ¢ is replenished by 7[ST](¢) and we assume through
this chapter, that all initial infected nodes are newborn at ¢ = 0, thus there is no recovery

for 0 <t < o and we have

[1)(t) = [ST)(#),
for ¢t < o and [I](t) is depleted by 7[SI](t — o) for t > o, that yields
[1)(8) = 7[SI)(t) = 7[SI)(t — o).

The equation for the number of S — S links is the same as in Eq. (2.12), because the

infection process is Markovian thus

n = 1[SS)()[ST)(1)

[SS](t) = —27 - S0

34
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In a similar manner, the number of S — I links is replenished by

_n — 1[SS)()[SI](1)
n [S]@)

which is the half of the rate of depletion of S — S links (due to symmetry property
[SI] = [1S]). Furthermore, depletion of S — I links occurs due to the infection within
S — I pairs, 7[SI](t), and due to the infection of the S node from outside the pair,

n — 1[SI](t)[SI](t)

n [51()
It is clear, that for 0 <t < ¢ no recovery happens, thus the governing equation for S — I
links is
; n— 1[SS](#)[ST](#) n— 1[SI](t)[ST](t)
SI|(t) =1 —T7|SI|(t) — 1 .
[ST](t) . S0 [S1](¢) - 51

The derivation above gives the following model for 0 <t < o:

[S](t) = —7[S1](?), (5.1a)
[11(t) = 7[ST](2), (5.1b)
o n—1[SSI®[STI(1)
S5](1) = —2r™ =P g (5.1¢)
S = Ao LSSOISIE o) n=1ISTOISIE) (5.14)

n [51(2) [51(¢)

The Eq. (5.1) is a system of ordinary differential equations, given initial values [S]o, [{]o,
[SS]p and [ST]y at t = 0 are sufficient to guarantee a unique solution. Let us denote the
solution of (5.1) on the time interval [0, o] by

XH(t) = ([ST(8), UT*(2), [SS1(2), [STI"(#))-

At time t = o, the initial infected nodes recover ’instantly’, thus a discontinuity appears

and obviously, the solution for ¢ > o starts from

X = ([S*(0), [1]*(0) = [T]o, [SS)"(0), [ST)*(0) — [ST]o).

On the other hand, for ¢t > o, there are S — I links, which survive for time o, but will
be removed due to the recovery of the I node. Next, we need to take into account for the
removal of S — I links which were created precisely o times ago. By the first intuition,
one would believe that this term is simply proportional to

n—1[95](t — o)[SI|(t — o)
-
n [S](t — o)
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However, one must take into consideration that, in the time interval (t — o,t), an
S — I link could have been destroyed due to either within pair infection or by infection
of the S node from outside. Hence, a discount factor needs to be determined to capture
this effect. To calculate this factor, S — I links, that are created at the same time, are
considered as a cohort denoted by x, and we model infection within and from outside by

writing down the following evolution equation,

[ST](2)

(t) = —1(n — 1)n[5](t)

x(t) — Tz(t),

where, the first term denotes the ‘outer’ infection of the S node, while the second term
stands for ‘inner’ infection of the S node. We note that the outside infection is simply

proportional to the probability that an S node with an already engaged link has a further
[ST)(t)
n[S](t)"

infected neighbour, 7(n—1) The solution of the latter evolution equation in [t—o, t]

is
x(t) — x(t _ o')e_ fttfa (TnTil [fsl]](iz? +7‘)du

and this provides the depletion or discount rate of S — I links. In this case,

n—1[88](t — o)[SI|(t — o)

x(t—o)=r1 - 5]t — o) ;

which is the replenishment of S — I links. Therefore, summarising all the above, the

pairwise approximation for t > o is

3)6) = ~r{S1(), (5.2
[1](t) = 7[S1](t) — 7IST](t — o) (5.2b)
55](1) = 2" 1 ][(éﬁf)] ) (5.2¢)
sty == [55][(3 [f)n 0 sy - =118 [(?] [(f)[] (0
PSSO =0) - o

Let us mention, that Eq. (5.2) is a system of delay differential equations with discrete
and distributed delays. Despite the fact, that the initial function

X*(t), ift
Xy =4~ W it <o,
X, if t = o,

is not continuous, the solution of Eq. (5.2) is continuous for ¢ > ¢. Similarly to Markovian
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case, the non-Markovian mean-field model for fixed infectious period is

$)(6) = =T ISIOI(E), (5.3a)
1) = - [SIO@), (5.3b)
for 0 <t <o and
51 =~ [SI 1), (5.4a)
1)) = TSI = 7S]t = o)1)t~ o), (5.4b)

for ¢t > o. Here, if we denote the solution of (5.3) for initial values [S]y, [[]o and for time
interval ¢ € [0,0] by X/ (t) = ([S]*(¢), [I]*(t)), the initial function associated to (5.4) is
X (t) for 0 <t < o and ([S]*(0), [I]*(c) — [I]o) at ¢ = 0. These systems are now the

main subjects of our investigation from analytical and numerical point of view.

5.2 Analytical results

In this section, we explore the most important features of systems (5.1)-(5.2) and (5.3)-
(5.4). First, we find a first integral of the pairwise model (5.1)-(5.2), which allows us
to reduce the dimensionality. We show that the solutions of the models are biologically
meaningful, i.e. solutions with non-negative data remain non-negative for ¢ > 0. The
paramount results of this part are the theorems for occurrence of an outbreak and the

implicit relations between the reproduction number and the final epidemic size.

5.2.1 First integral
We use (5.2a) and (5.2¢) to find an invariant of the system.

Proposition 5.2.1. The function U(t) = [ngfi],(f)() is a first integral of system (5.1)-
(
(5.2).

Proof. To see this, let us divide Eq.(5.2¢) by Eq.(5.2a), which gives

dss) _ —2"T gt n—1[SS]

ds] — —rsn T n S

Solving this equation, we find [SS] = K[S]*"+, where K is a constant, thus U(t) =
% is an invariant quantity in the system and its value is
o (t

[5S](0) _ [SSly _ nISlolSE  m
UO) =K =202 2200 TN
W [SP50) s e N

O3 v

[5T5-




5. MODELS WITH FIXED RECOVERY TIME 38

[]
Consequently, using this first integral, we obtain
n 2 n—1
1SS1(t) = (8§ [ST2°5 (1) (55)
Applying Eq.(5.5), we can reduce our pairwise model to a two-dimensional system:
[S)(t) = —r[ST)(®),
; n—2 n— 1[SI](t)
SI|(t) = 7r|S| = (t)[SI|(t) —7|SI|(t)—T ST|(t
[S1](2) (ST @) [ST](t) — 7[SI](¢) - [5](t>[ 1(t)
n—2 t n—1 [ST](u
R[St — 0)[ST](t — o)e e T S T (5.6)
where L
n — 2
h=—y 1515 - (5.7)

On the other hand, it is clear, that [SS]y =
the same as Eq. (3.3).

#£[S]3 holds, which is exactly

5.2.2 Positivity

We are interested only in nonnegative solutions of system (5.1)-(5.2). The following
proposition shows, that the solutions remain nonnegative provided that the initial con-

ditions are nonnegative.

Proposition 5.2.2. If initial conditions [S]o, [SS]o, [I]o and [SI]y for (5.1) and (5.83) are
nonnegative, then [S](t) > 0, [SS|(t) > 0, [I](t) > 0 and [SI|(t) > 0 hold for t > 0 in
both mean-field model (5.3)-(5.4) and pairwise model (5.1)-(5.2).

Proof. Tt is clear, that [SS](f) remains nonnegative, if the initial condition [SS](0) is

nonnegative, because [SS](t) can be expressed from Eq.(5.2¢) in the form

[SS](t) = [SS]y e 27 Jo ol e, (5.8)

Moreover, if [SS]y is positive, then [SS](t) > 0 for all ¢ > 0. From Eq. (5.5) we
obtain that [S](¢) cannot be zero, if [SS](t) is positive for all ¢ > 0, which implies (from
continuity of solutions) [S](t) > 0 for ¢t > 0. For [I](¢) and [SI](t), we have the following

formulae:

() = {[I]o + [y T[SI(a)da, if 0<t < o (5.9)

I, 7S1)(a)da, ift>o.
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for 0 <t <o,
ST = (810 + [ 7 [55][(;)([5)1]@)64%_1 S ag,  (5.10)

and for ¢t > o,
o = GO Eo o

It can be seen that [/](t) remains nonnegative if [ST](t) is nonnegative for ¢ > 0. On
the other hand, [SI](fy) cannot be zero for some ¢, > 0, because the formulae (5.10)-
(5.11) depends on the [S]|(t;t € [t — o,t]) and [SS](t;t € [t — o,t]), which are positive,
hence [ST](t) > 0. O

In the case of the mean-field model (5.3)-(5.4), the positivity of [S](¢) is clear. To see
the positivity of [I](t), we substitute (2.7) into (5.9), which gives

11(6) = {mo oIS\ @) (a)da, 0 <t <o 5.12)

I, mxS(a)[I](a)da, ift>o.

Notice that [](t) remains nonnegative if [S](¢) is nonnegative for ¢ > 0.

5.2.3 Epidemic outbreak and reproduction numbers

A disease with a very long exposed period in a population into which a small number of
infectives is introduced, the number of infectives could decrease initially before starting
to grow as exposed individuals become infective. The following definition was proposed
in [14].

Definition 1. In a disease transmission model with no demographic effects, there is no
epidemic if the equilibrium with all members of the population susceptible is (locally)
asymptotically stable, and there is an epidemic if this equilibrium is unstable, in each

case considering only perturbations of the equilibrium with positive infected initial states.

Using this concept, we state the following theorems for the relation between epidemic

outbreak and reproduction numbers.

Theorem 5.2.1. There is an epidemic for the model (5.3)-(5.4) if and only if Ry > 1,

where the basic reproduction number is Ry = 74[S]o0.
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Proof. Clearly, (S,1) = ([S]0,0),0 < [S]o < N are equilibria of the mean-field model
(5.3)-(5.4), thus we have infinitely many equilibria. On the other hand, [/](¢) is monotone
increasing on time interval [0, o], but for long-term behaviour we will study (5.4). This

system can be rewritten in the form

816 = —rISIOI),
N6 = [ relsi@lneda=ry [ - a1 - da
Formal linearisation at (S, ) = ([S]o,0) gives
i) = —r[Sloi(h),

thus the characteristic equation is

—A —7 x50 _
det ( 0 7x[S)oJy e Mda—1 ) =0

There are two real roots of the characteristic equation, namely A = 0 and the real solution
of equation
G(\) = 73[5]0/ e dg = 1.
N 0

First, the eigenspace associated to characteristic root A = 0 contains only the equilibrium

points. Indeed, searching for solution in form <[ ] ) eM . we find

[1]"
AS) = = [SloldT",
1 = 7lSk /0”[1]*6—%@,

thus for A = 0, we obtain [/]* = 0.

Second, G(A) is monotone decreasing with respect to A and the real solution of the equa-
tion G(A) = 1 is positive, if and only if G(0) > 1 or equivalently, G(0) = 75[S]o [y da =
T3 [S]oo = Ro > 1.

Third, let us assume there is a non-real characteristic root p with positive real part for
Ro < 1. Then we have

g
/ e "da
0

which is a contradiction. In conclusion, we have an epidemic if and only if Ry > 1. [

n
1= TN[S]O

< T%[S]O/OJ e da < %[S]O /OU da = T%[S]OO' — Ro,
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Similar procedure can be done for the pairwise model (5.1)-(5.2). In that case, we
study the system in form

1)) = —7[S),
s10) = [ TSI @lsT)(aye i R g
= [ SIS - a)ls - e K B g,

and the associated formally linearised system

s(t) = —rsi(t),

n—1 o
(T — da.
[S]O/O si(t —a)e a

si(t) = 7 I

The non-trivial characteristic roots come from the equation

n—1
N

Gp(A) =71 [S]o /OU e T M da = 1,

and obviously,

n—1
N

Gp(0) =T

T e e™” n—1
S [ e da = 7" [S]O[_T] -

0

The remarks above can be summarised in the following theorem:

Theorem 5.2.2. There is an epidemic for the model (5.1)-(5.2) if and only if Rf > 1,

where the pairwise reproduction number is Ry = "T’l[S]o(l —e 7).

5.2.4 Final size relation

In this part, we derive final size relations that allow us to calculate the total number

of infected nodes during an epidemic outbreak on the network. We use the notation

So0 = %, where [S]e = limy_o[S](¢) (this limit exists, since [S](¢) is positive for

t>0).

Theorem 5.2.3. The final size relation associated to the mean-field model (5.3)-(5.4) is
In(8s) = Ro (S0 — 1), (5.13)

where the basic reproduction number is Rog = 7+[Soo, see details in Section 3.2.

Notice, that Eq. (5.13) has the same functional form as the classical final size relation.
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Proof. From Eq. (5.4a), we have

for t > o and

On the other hand, for t > o

n

1)(t) = [ w2 18] = w)I)(E — w)duw,

where 7%[S](t — w)[I](t — w) is the new infections at ¢ —w. Hence

ln(ﬁ}ﬁo) - - :°m w=—r / / 18] (= w))(w — w)dwd
= < ;):/OJ/:O [I(u — w)dudw

~(ry) ([ dq+/ dq)dw
AT (Feotons st e

where we used the fact, that [I](t) = [I]ee ¥ Jo S grom Eq. (5.3b). By neglecting the

small amount of initial infected nodes, on the one hand, we have the approximation

In (@f) = (+2) o [T1S1@aMa = o (5] ~ [S]o)

On the other hand, from Eq. (5.3a) we have [S], = [S]pe ™V J5 Hwdu “thus (from small

fraction of initial infected nodes) we obtain the approximation [S], ~ [S]o. Therefore,

() =5t (555 1)

which is equivalent to (5.13). O

In the following, we derive the final-size relation for the pairwise system (5.1)-(5.2).

Theorem 5.2.4. The final size relation associated to the pairwise model (5.1)-(5.2) is

Lol
R (soo - 1) (5.14)

L
-1

where the pairwise reproduction number R = “*[S]o(1 — e7™), see details in Section
3.2.
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Proof. As we have seen earlier, if we have an equation in the following form
W (1) = in(t) — out (w(t) — in(t — o)e” Jes o0t
its solution can be expressed as
w(t) = /tta in(u)e” L. out()ds gy,
for t > 0. From Eq. (5.6), our setting is

in(t) = 7x[S]T ()[SI)(t),
n —1[SI)(t)
n St

out(t) =

the equation for [SI](t) is

t —1 [SI](s)

7RIS (w)[ST)(w)e Ju T+ BT gy,

st = |

t—o

Applying [S](t) = —7[SI](t), we obtain

n—1 [SI](s)

[SI](t) = /t;Tﬁ[S]"nQ(u)[SI](u)e‘f«f””n S0 4 duy

n—1 [5](t) d

= [ RISIWIS) T (w)e e T T g

[ 8 e (T 0) (97 @)

t—o

= RIS [ 18] @8] T
Substituting back to Eq. (5.2a), we get
15](t) = 7r[S]" (1) /t ;[S]i(u) 18] (a9 .

Formally solving this scalar equation as a separable first-order differential equation, we

derive

1—n=1L

[S]""" (s) =[Sly ™ +7K <1 —

Y 1 8 e - dudr.

For the final size relation, we consider the equation at s = oo and obtain

5] = [SIF + / % et tio[S]i(u)[S](u)emdudt. (5.15)
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First, we compute the double integral:

[T [ s @isiwer du

t—o

u+to
/ (u)e™ / e "dtdu

=~ (1= ) [TI81H @)1 (w)du

1 o\ | 1S )]
“La-em) [{ ]n;l< )}
= (1-em) (11 = (5™ )

Thus,

44
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Note, that taking the limit of n — oo in (5.14) gives rise to In(so) = R{(See—1), which
is equivalent to the ‘standard’ form of final size relations. Indeed, using L.’Hospital’s rule,
it is easy to see, that the limit of the left-hand side as n — oo is

sk —1 sk —1n—-1 58 — 1
lim T = lim i = lim i
n— o0 n—oo = n n—oo =

n—1 n n
| o s Ins
= lim = lim -=
m—0 m m—0 1
= Inss

Moreover, the implicit relation between final size and R is conserved between the Marko-
vian and non-Markovian DDE model (see Eq. (3.7)).

5.3 Numerical simulations

In Fig. 5.1(a,b) homogeneous (or regular random) and Erdés-Rényi random networks are
considered, respectively. Here, the mean of 100 simulations is compared to the solution
of system (5.2). The agreement is excellent for homogeneous networks, even for low de-
grees. Despite the pairwise model not explicitly accounting for degree heterogeneity, the
agreement is surprisingly good for relatively dense Erdds-Rényi networks. The figure also
shows that the fixed infectious period significantly accelerates the growth and turnover
of the epidemic compared to the purely Markovian case.

In Fig. 5.1(c), the differences between simulations, mean-field and pairwise models
for the non-Markovian case are compared. For denser networks, (k) = 15, both models
perform well with the pairwise yielding a better agreement. However, the difference is
striking for sparser networks, (k) = 5, where the mean-field approximation performs
poorly, while the pairwise DDE model leads to good agreement with simulation, even in
this case.

In Fig. 5.1(d), analytic final size relations are tested against simulation results for a
range of different infectious period distributions, all sharing the same mean. Surprisingly,
the final epidemic size can vary by as much as 15%, see 7 ~ 0.083, simply due to the
recovery time distributions. The inset in Fig. 1(d) shows that the same value of R{
produces the same attack rate, regardless of the distribution from where it originates

from, in accordance with our formula (5.14).
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Figure 5.1: Simulations of non-Markovian epidemics on networks with N = 1000 nodes:
(a) solid lines show the solution of (5.1)-(5.2) and the circles/squares/diamonds correspond
to simulations for homogeneous (random regular) graphs with (k) = 5/10/15, respectively;
dotted, (k) = 5, and dashed, (k) = 15, lines correspond to purely Markovian epidemics given
by (2.12); (b) the same as before but for Erdds-Rényi random graphs with (k) = 5/10/15;
(c) the solid and dashed lines show the solution of pairwise (5.1)-(5.2) and mean-field (5.4)-
(5.4) models, respectively and, for regular random graphs with (k) = 5 and (k) = 15. For
(a), (b) and (c¢) the transmission rate is 7 = 0.55 and the infectious period is fixed, o = 1.
Finally, (d) the diamonds/circles/squares correspond to simulations using regular random
graphs with (k) = 15 and using fixed and two different but gamma distributed infectious
periods (o - shape o = 2, scale § = %, [J - shape a = %, scale 8 = 2), respectively. The solid
lines correspond to the analytical final size for fixed (5.1)-(5.2) and general (5.14) infectious
periods, with the dashed line denoting the purely Markovian case. The inset shows the
analytical and the simulated final epidemic sizes plotted against the reproduction number.
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Based on Table 3.1, the analytical expressions for RE are

Ry = P (LY gy DIk ()
orG2 N VI+2r) ToBe® T N 1)
_ (=15 4 _ (n =15 -

R1077F(27%) - N 1- (2 + 7-)2 ’Rg,Fixed(l) - N (1 - ¢ ) ’

where I'(a,b) denotes Gamma-distribution with parameters a and b, and satisfy the
following inequality

p P P P
RUI(%’Q) < Romspn) < RO,F(Z,%) < R Fixed(1)- (5.16)

We note that (a) all recovery time distributions have the same mean 1 and (b) the
variances satisfy the converse inequality, with higher variance in recovery time (i.e. 2, 1,
1/2 and 0) giving a smaller R{) value, despite 7 being fixed. We have seen more details

about this phenomenon in Ch. 4.

5.4 Conclusions

The proposed model provides a viable framework for a more systematic analysis of non-
Markovian processes on networks with several future research directions. Similarly to
the evolution of the original pairwise model for Markovian dynamics, the proposed model
and new closure can be extended to networks with heterogeneous degree distribution [23],
clustering or to directed and weighted networks. For example, we show how the current
pairwise equations extend naturally to heterogeneous networks. In this case variables,

such as
1. [Si](t) - expected number of susceptible nodes of degree i,
2. [L;](t) - expected number of infected nodes of degree 1,

3. [SiS}](t) - expected number of S — S links, where S and S have degrees i and j,

respectively,

4. [5;1;](t) - expected number of S — I links, where S and I have degrees ¢ and j,
respectively,

need to be considered, where i, j € {kmin, kmin+1, ..., kmasz } represent the various degrees

in the networks.
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The slightly more technical part is replicating derivation of Eq. (5.2d) to degree
dependent [SI] pairs. This can be done as follows. Let z(t) denote the factor by which
[S;1;] links needs to be discounted by. The equation for z(t) is given by

i — 13, [Sil]

(t) = —7 . Wx(t) —7z(t), (5.17)

where in fact the factor x only depends on the degree of the susceptible node so it could

be denoted by z;. It is worth noting that
k[Silk]
i[Si]

gives the probability that a stub emanating from a susceptible node with 7 links will

connect to an infected node, and (i — 1) stands for the remaining stubs emanating from

an S; node which is already connected to another node, in this case an infected node.
This can be integrated as before and the non-Markovian pairwise system for hetero-

geneous network yields
[S)(t) = - >_[SiL](t)
1Lt = 72 ASTN(E) — T Y _[Si )t

S8 — —Tjglm;[sjmw—# bl ; (5.13)
Sipl) = S SIS0 o ) SISI0 - oS

— L[SiS))(t — 0)[SLl(t — o) - Jieo ( %+ )d“_

L St~ o)

where 4, 7,k € {kmin, kmin + 1, ..., Kmaz }-
Additionally, this framework can be employed to model different dynamics, such as SIS

epidemics or more complex systems, such as adaptive networks.



6

General recovery time

In this chapter, we present the generalised mean-field and pairwise models for non-
Markovian epidemics on networks with any kind of recovery time distributions. A lengthy,
but very instructive derivation gives a system of integro-differential equations, which is
analysed both from a mathematical and numerical point of view. After the study of
asymptotic behaviour, as an illustration of the applicability of the general model we

recover known results.

6.1 The model

We want to build mean-field and pairwise models for the STR type epidemic process with
exponentially distributed transmission and general recovery time distribution. First, let
i(t,a) represent the density of infected nodes with respect to the age of infection a at the
current time ¢, then [I](t) = [;°i(t,a)da. Similarly, Si(t,a) and 15i(t,a) describe the
density of S — ¢ links and I — S — ¢ triplets, respectively, where the infected node i has
age a at time ¢ and [SI](t) = [;° Si(t,a)da, [ISI|(t) = [5° 1Si(t,a)da. We assume that
the infection process along S — [ links is Markovian with transmission rate 7 > 0. The
recovery part is considered to be non-Markovian, with a cumulative distribution function
Fr(a) and probability density function fr(a). We use the associated survival function

¢7(a) = 1 — Fr(a) and hazard function hz(a) = —%I(C(LS) = ggg;

49
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Using the notations above, we arrive at the following model

[5](t) = —7[ST](¢), (6.1a)

(; " 5;) i(t, @) = —hr(a)ift, a). (6.1b)
[SS](t) = —27[SSI](¢), (6.1c)
0,9 = —71Si hr(a))Si d
(815 + Ba) i(t,a) = —71Si(t,a) — (T + hz(a))Si(t, a), (6.1d)

subject to the boundary conditions

i(t,0) = 7[ST](t), (6.2a)
Si(t,0) = T[SSI|(t), (6.2b)
and initial conditions
[51(0) = [S]o, [55](0) = [SS]o, (0, a) = ¢(a), (6.3a)
$i(0, @) = x(a) ~ <-[S)oi (0, 0) = < [Slog(a). (6.3b)

We shall use the biologically feasible assumption lim, . ¢(a) = 0. To break the depen-
dence on higher order moments, we apply the closure approximation formula (2.11) for

ISi(t,a) in the form _
ity = 1150SH0) 0

To obtain a self-consistent system for classical network variables [S], [SS], [{] and [S]],

further calculations are needed. Repeating Eq. (6.1a) and applying the moment-closure
formula (2.11) to Eq. (6.1c), we have

([S)(t) = —r[ST](),

: - n —1[SS](¢)[ST](t)
[SS|(t) = —2r " 510 :

Using [I|(t) = [;7i(t, a)da, from Eq. (6.1b) we obtain

() = /0 - ;i(t,b)db _ /0 - (—hz(b)z’(t,b) - aabi(t,b)) db
S / " ha(B)i(t, b)db — (i(t, 00) — i(t,0))

_ /0°° hz(b)i(t, b)db — i(t, 00) + i(t, 0). (6.5)
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Solving the first-order linear PDE (6.1b) along characteristic lines, we obtain

(t.a) i(t —a,0)e” Jo ha®)db it ¢ > g
i(t,a) = e
i(0,a —t)e fa—thz(b)db, if t < a.

Plugging (6.2a) and (6.3a) into the solution above, we have

SIN(t — a)e Jo OB ip 4 5 g
i(t,a) = T[ST( Cl}f hO o 1 a (6.6)
ola —t)e Jot VT it t < a.
Applying this formula for [/](¢) = [;° i(t, a)da, we find
t a oo a
1]() = / 7ISI)(t — a)e™Jo hz®OB g 4 / ola — t)e JaiT OB gy (6.7)
0 ¢

Finally, using that along the characteristic lines, (¢, 00) = (0, 00) = ¢(00) = 0 from the
assumption, substituting (6.6) and the boundary condition (6.2a) into (6.5), we get

[1)(t) = 7[SI)(t) — /tT[SI](t — a)hg(a)e™ Jo hr®dbg,

- / (a — t)hg(a)e Jai"TOPgq, (6.8)
Using the definition and properties of hazard function, we can deduce the following
formulae:
—f hz(b)db _ (a) 6.9
é—I(O) éZ(a)7 ( . a’)
—[* hz(®)db {1(a)
e Ja-t 6.9b
= Gla—D (6.9b)
hz(a)e Jo MrO® — ¢ (q), (6.9¢)
e o _ 0 6.9d
z(a) {r(a—1) (6:5)

Applying these formulae to Eq.(6.7) and (6.8), we have

o o0 {z(a)
[1](t) = /0 FISI](t — a)éx(a)da + /t pla— )2 s da (6.10)
and

110) = 7ls1)6) ~ [ 1811~ ) rlada— [~ ota— 1) 2D o

To compute the equation for [ST](¢), we follow the calculation process above. First,
applying (6.4) to Eq. (6.1d), we get

(gt ai) Sit,a) = ‘T(nn_ - [fg—g](it;&(t?a)—(T+hz(a))5i(t,a).

(6.11)
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Using [SI](t) = [;° Si(t,a)da, from Eq. (6.11) we find

snw =[5 fsz
_ _T(n—l)[Sl](t)i N [0 P
- / ( n [S](t)s(t’ )>d |+ ha(@)Sitt, ayd
—/ szta
_T”—l[sﬂ() - i o
S| SN0 -~ 7157 /0 he(a)Si(t, a)d
—Si(t,00) + Si(t, 0). 6.12)

We want to express the variable Si(¢,a) as a function of classical network variables. To

achieve this, let us consider the following first-order PDE:

o 0
(574 a5) ot = ~Ix)a(t.0) = g(0yatt0
with boundary conditions

2(1,0) = o(t), x(0,a) = ¥(a).

Solving along the characteristic lines ¢ — a = ¢, we find that

e i fr()ds — [T gb)db :
x(t,a):{(b(t a)e e Jo , ift > a; (6.13)

Y(a—t)e” Jo Fr()ds e faa—tg(b)db, ift <a.

In our case, #(t,a) = Si(t,a), fr(t) = T2 EAY g(a) = 74h1(a), o(t) = 72 EEQEIG,

(from closure approximation (6.4)) and (a) = §[Slo¢(a), hence from Eq. (6.13) we get

n [S](t—a)

—1[S0)(s) g (6-14)
2[Slop(a — t)e o5 BTt L HRzO® iy <

. potlSslt—alsiii=a) — [, v [fs’&ii’ds o Eha®d gy s g
Si(t,a) =

Again, along the characteristic lines we have Si(t,00) = Si(0,00) = x(c0) = 0. Putting
(6.14) into [SI|(t) = [5° Si(t,a)da, we obtain

0= 1[SSI(t = )SI(E =) [ et i
— t—a n [S](s) 0 z
[ST](t) /07' - St —a) e da
+/OO n Ogo(a _t)e fOtT se, :_tT+hI(b)ddeL. (615)
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If we substitute (6.14) back to Eq.(6.12), we derive

n—1[SS|(t)[SI](t) 71(n—1)[SI]|(t)

[S1](t) =

) G R L
B /tTn —1 [SS](t - a)[S[](t — a) e_ftt—aTT[fS‘I]](())ds
o n [S](t — a)

% e - I T+hz(b)dbp, (a)da
o0 n=1 [s 1<s> a

(6.16)

Applying the formulae (6.9a)-(6.9d) for Eq. (6.15) and (6.16), we have

s = | tT”; ! [SS]“[;@[EQ)“_“)@—IZJ"nl M+ (a)da

+AOO %[S]me B t) ro=l SI](())Jersinz(i)t) da, (617)

and

R L R [ﬁgfffﬁsno s
. /t n 1 [SS)— [T ) 7 e
B

n=1 506 fz(a)
o a— t 7' ©) +7ds da
/ Slowe( £x(a—1)

Putting together the results above, the pairwise system is the following integro-differential

*fr(a)da

equation:
31 = ~rlsn(®) (6.150)
[amw:—%ﬂ;1WQg£T“> (6.18D)
1](¢) = 7[ST)(t) — /0 HSII(t - a) frla)da — /t T oa—t) gIJ(CZ(f)t) da  (6.18¢)
81y = r = BRGS0 el D s - s
/Otf”_l 55 = at _Sg)(t‘%-ﬁaf LER 4T 0V da
lwg} log(a — t)edo T Sumzii?wda (6.18d)
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From Eq.(6.18), the associated mean-field model can be easily deduced by using the
closure approximation formula (2.7), the node-level system becomes

81 = —r S ISIO®) (6.190)
1) = SO — [ 7S]~ )lI](¢ — o) fr(a)da
> fz(a)
_/t wla— t)&(a — t>da. (6.19b)

In the following, we investigate these systems from mathematical and numerical point of

view, focussing on the epidemiologically meaningful properties of the models.

6.2 Analytical results

Next, similarly to Section 5.2, we summarize the biologically meaningful properties of
systems (6.18) and (6.19). Note, that Prop. 5.2.1 holds for the pairwise system, thus we
can reduce the model (6.18) to the following two-dimensional system:

S)(t) = —r[ST](),

S0 = S OIS - rlsne - =L 00

[STI(t)

n [S](t)
t o t n—1 s
— [ eSS0 — e e B )
0
n — [frn=t [B1G) 4 g fI(a)
_ [ Mg e b me s Yy 6.20
| % 1Slopla— e e (6.20)
where |
n— 2
k= [S]g -

6.2.1 Positivity

The first proposition of this section states, that the solutions remain nonnegative provided
that the initial conditions are nonnegative.

Proposition 6.2.1. If initial conditions [S]o, [SS]o are nonnegative and ¢(a) > 0 for
a >0, then [S|(t) >0, [SS](t) > 0, [I](t) > 0 and [SI](t) > 0 hold fort > 0.

Proof. 1t is clear, that [SS](f) remains nonnegative, if the initial condition [SS](0) is
nonnegative, because [SS|(t) can be expressed in form (5.8) Moreover, if [SS] is positive,
then [SS](t) > 0 for all t > 0. From Eq. (5.5) we obtain that [S](¢) cannot be zero, if
[SS](t) is positive for all £ > 0, which implies (from continuity of solutions) [S](¢) > 0 for
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t > 0. It can be seen from (6.10) that [/](#) remains nonnegative if [ST](¢) is nonnegative
for t > 0. On the other hand, [SI|(ty) cannot be zero for some t; > 0, because the
right-hand side of (6.17) depends on the [S](t;t < to), [SS]|(t;t < to) and [S](¢;t < 1),
which are positive, hence [ST](t) > 0. O

6.2.2 Epidemic outbreak and reproduction numbers

As we have seen in Chapter 5, there is a relation between reproduction numbers and
occurrence of epidemic outbreak. We investigated a transformed version of the mean-field
and pairwise models by formal linearisation and proved, that the disease-free equilibrium
is unstable if and only if the associated reproduction number is above one, thus epidemic
occurs. This analysis could be performed, because we could apply the methods of stability
theory of dynamical systems. Unfortunately, the general mean-field (6.19) and pairwise
(6.18) models do not induce a dynamical system directly, thus stability analysis does not
work. However, the relation is preserved for the general case, which will be shown in the
following with some formal and intuitive calculations. First we can rewrite the mean-field
model (6.19) to the form

[S)(t) = —TN[S](t)[[](t),
[t on > €z(a)
1) = [ ISl - olilt - gzla)da+ [ pla—1)g o e, (6:21)

and pairwise system (6.20) to the form

S0 = —rS1()
ST = [ TSI ¢ @[S - a)e e BT g )
n /t > %[ Slop(a— t)e Jo 5 +TdS§;ZL <a_)t)da. (6.22)

Following the procedure in [14], we may study the associated limit equations to investigate

the asymptotic behaviour, which is

816 = —rISIOU®),
1) = [7rlSIe - @)l - a)éla)da, (6:23)

[S)(t) = —r[SI](),

ST = [ SIS (- a)lST( - a)e r(a)da, (6:22)
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for (6.22). Then formal linearisation gives

n

{0 = —r Sl
i(t) = /OOOT%[S}Oi(t—@gI(a)da, (6.25)
for (6.23) and
§(t) = —rsi(t),
si(t) = T”;[l[S]o [ st — a)eer(a)a (6.26)

for (6.24). Calculating the characteristic equations, the non-trivial roots are given by the

equation .
Gn(N) =7 15s / e (a)da = 1
0
for (6.25) and
n—1

G,(\) =7 N [STo /OOO e ez (a)da = 1,

for (6.26). Applying the same argument as in the proof of Theorem 5.2.1, the positive
real root appears, when G,,(0) > 1 and G,(0) > 1, or equivalently

Gm(0) = T%[S]o /000 ér(a)da = T%[S]o /0OO /aoo fz(v)dvda
— T%[S]o /00O /OU fr(v)dadv
_ T%[S]O /OOO vfr(v)dv = T%[S]OE(I) R > L,

for the mean-field approach and

G,(0) = T”;]l[S]o [ emeran = T”;]l[S]O [T [T twyivda
= Sl [ geto) ([ ereda) d
_ T”;[l[S]O/Ow f2(v) [e_m]odv
= 1[5]0/00 F2() (—e” + T) dv
= Sk ([T rwido = [T g an)
n—1

for the pairwise approximation.
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6.2.3 Final size relation

o7

In this section, we prove, that the functional forms (5.13) and (5.14) hold for arbitrary

recovery time distribution.

Theorem 6.2.1. The final size relation associated to the mean-field model (6.19) is

In($s) = Ro (500 — 1),

where the basic reproduction number Ro = 7[S|oE(T), see details in Section 3.2.

Proof. Similarly to proof for fixed recovery time, from (6.19a), we obtain

n o0

[Sloo = [Slo = =7 | 1S} (@)[I](u)du

S]lee = m
In ( Slo ) = —TN/O [I(u)du.
Substituting (6.19b) into (6.29), we get

n(f5) = vk
5l

and

(u—a)[I](u— a)éz(a)dadu

n
N

I
/u (a —u) &(a) ————dadu.

§z(a —u)

Neglecting the small initial amount of infected nodes (¢(a) = 0), we obtain

ln<[;]]°:) ( ) / / (u— a)[I](u — a)éz(a)dadu.

After some algebraic manipulation, we obtain

(53) -3

/OO /u[S](u —a)[I](u — a)éz(a)dadu

0

dv

)
)
) [Tisi@ [ [ et vy
= (2 [T [ [~ e a

(6.27)

(6.28)

(6.29)

(6.30)
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Il
\]

Zlzz[z3 =23 2323

[ t)an| ([8)(0) - [](0)

7 [ feadadp (15)(00) = S1(0)
[ se@ydpda) (1)) - 15](0))
[ atzayda] (1S)(00) = [](0)
E(Z) ([S](c0) ~ [](0))

I
\]

Il
\]

Il
\]

I
\]

where Z denotes the infectious period of an infected node. Therefore, we found
In(8s) = Ro (S0 — 1),
where Ry = 7%E(Z)[STo. O
In the following, we derive the final-size relation for the pairwise system (6.18).

Theorem 6.2.2. The final size relation associated to the pairwise model (6.18) is

1

51 -
i : :Rg(soé” —1),

n—1

where the pairwise reproduction number is R = 5+ (1 — L[fz)(7)) [Slo, see details Sec-

tion 3.2.

Proof. The second equation of the two-dimensional system (6.20) has the general form
(1) = a(t) — b(t)x(t),
where

alc) = TH[S]nTﬂ(C)[S[](C)
— [ 781 (e = )S](e - a) frla)e ST R g

_ /COO %[S]Ogo(a — C)&{z(i)c)e— e [le]]<(ssj)+7dsda,
n—1[SI](w)
n [S)(w)

z(t) = [SI|(1),
and has the solution

olu) = e I 0) 1 [T eI () de, (6.31)
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Using (6.1a), simple calculations give the relations
n—1
e nlST0)
[S]™+(0)
o [ rrnst S0 o

S o ST (W)
Using these relations, from (6.31) we get

IST0) gt

S :(0) (5] (u)

+ [ rRISITR @IS ) e TS (u)de

- / ' / Cm[S] l(c— a)[ST)(c — a) fz(a) x e~ Te™e"HS]

e n (u) da de
- n —c 7&(@) e[S (u) da de
[ e = g e S (w) dade

Then, substituting this formula into the first equation of (6.20), we find an equation in
general form

[S1](u)

[S1'(1)

1

—TA()[S] (1),

where

Alu) = |51

[7 —ru+/ TK[S O)[ST)(c)em e de
_/ / R[S % (¢ — a)[ST](c — a) fr(a)e e e~ da de
_/0 /COO;[S]SSD(CL—C)JEI(G)

e ™ dadec.
{z(a —c)

Solving this scalar equation, we have

Using the linearity of integration, we have to calculate the four integrals on the right-hand
side. For the first integral, we have

. /oo[SI](O)emdu: [S1](0) [e”‘r 1S1J(0)
o [S]%(0) S+ (0) 1
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After some algebraic manipulation, we obtain the following expression for the second

integral Io:

L =

/m/ums

0

/0 T rR[SE(Q[ST) ()™

1

1

T

— [ISIF O8N (e)de = ——x

)[ST](c)e"e

//7‘/@ c)[SI](c)e™

[ wlsIH @sTe)e [e_rrdc

“de du

e "“du ddc

C
—TC

de

-
1 n

(181" = 1817 ).

T n—1

The most challenging one is the third integral I3:

I, =

I

Jo oy etsr
:///m
///m
//

(c —a)[SI](c—a)fr(a)e” ™™ e ™da dc du

(c —a)[SI](c—a)fr(a)e”™e™e"™da du dc

(¢ = a)[ST](c - a)fz(a)e

—Ta ’TC

“"du da de

[S] 7% (¢ — a)[ST](c — a) fr(a)e e F_} " dade

“n(c—a)[ST)(c — a)fr(a)e

C

“"da dc

ola— c)&]i%e_mda de du
Fola — c)&‘](cz(i)c)e_mda du dc
ola—c) &{2 @0) e~"du da de
“‘%ﬁ@@ﬁﬂ o
ola— o)1=y g,

°) ¢r(a—c)
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Having a small amount of initial infecteds (i.e. [/](0) = [;° ¢(a)da << 1), the integrals
I, and I are approximately zero. We arrived to the relation

(1 — /Ooo fz(a)emda> ([5’];?1 — [S]J"l) .

After some algebraic manipulation and substituting back the formula of x, we have

512 = [S]5 + &

n—1

n—1

— ==Ll Sk (s - 1),

331-

S

1
n—1

where L[f7|(7) denotes the Laplace transform of fz, the PDF of recovery time at 7. [J

6.3 Numerical methods

For the numerical solution of integro-differential equations (6.18) and (6.19), we developed
a numerical scheme based on collocation method. The numerical methods in [15] were
adapted to the mean-field model and the reduced, but highly nonlinear pairwise system.
The development of this scheme for more general integral equations is an active research
topic nowadays ([1], [52], [88]).

Since we want to compare the result of stochastic simulation and the numerical so-
lutions of deterministic models, we assume, that the initial infecteds are 'newborn’, i.e.
the initial distribution of infected nodes ¢(a) = [I]pd(a), where d(a) is the Dirac delta

function. Then,

o fz(a) _
/t pla— t)mda = [I]ofz(t) (6.32)

and

cmn — [fpn=t[S00) 4 g fI(a)
—I[8 _ e o e e I
f wSloela=neh &a—1)""
- %[S]O[J]Oe* Jyret B e g (6.33)

A collocation solution uy, to a functional equation on an interval [ is an element from

some finite-dimensional function space (the collocation space) which satisfies the equation
on an appropriate finite subset of points in I (the set of collocation points), whose cardi-
nality essentially matches the dimension of the collocation space. For integro-differential
equations the collocation equations are not yet in a form amenable to numerical com-
putation, due to the presence of the memory term given by the integral operator, thus
another discretisation step, based on appropriate quadrature approximations, is neces-
sary to obtain the fully discretised collocation scheme. In the following, we derive the
numerical algorithm for solving the general systems. First, we introduce the following

notations:
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o [=[0,T,A={try €l: 0=t <tlag<tz3<---<tn=T}
o hyy=tpsy —ty, Ly = [testrsa], (k=1,..,N —1);

e 0 <y <cg <1 are the collocation parameters;

e P,: space of real polynomials of degree not exceeding 2.

The systems (6.19) and (6.20) are two-dimensional, thus the coordinates of wy(t) are

elements of S\° (1), where
() ={peCUR) :p|, € PO<n<N-1}.

Let up(t) = (zp(t), yn(t)). The quintessence of the collocation method is the local Lagrane

representation for zy(t) and yp(t):
yg(tk + Uhk) = Ll(’U)Yk,l + LQ(U))/;C,Q (634)
where 0 < v <1 and

Yii = y,(te + c1hg),
Yio = yp(te + c2hg),

. Co — U
Ll(v) - Cy — Cla
Lo(v) = 2’2__2 (6.35)
thus we obtain
Yn(ti + vhi) = yn(te) + he Y1 51(v) + hiYi2B2(v), (6.36)
where
o ~ v(2c0 —v)
Bi(v) = /0 Lio)do = 55,
o ~v(v —2¢)
Bv) = [ L= e (6.37)

a'(t) = M(xz(t),y(t)),

y(t) = My(ta(t),y(t) — | M(t~a x(a),y(a))da, (6.38)
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where
Ml(xuy) = —T57Y,
My(w.y) = 7ay-
n
t = —
M( ,Z’,y) TNfI
For pairwise model (6.20), we consider
2(t) = Pi(x(t),y(t))
y(t) = Pyx(t),y(t)) / Pi(t — a,x( o Ja Paale)u(sNds g,
t
—Pg <t, Pz d8>
where
Pl(xhy) = —TY,
n—1 2 2 n — 1y2
P2(x7y) = T N [S]ox nYy—TYy—T n z
n — 1 = n—2
Pi(t,x,y) = h@TN,MfT%
—1
732(1’, y) = n g + T,
n
n
Ps(t,z) = =[Sl ]06 “fz(t).

N

Considering the mean-field case, formally we have the following equations:

Z”h(tk + Clhk)
x (t, + cahy)
yp, (tr + c1hy)

yp, (tx + cahy)

M (2t + crhe), yn(te + cihe)),

My (zp(te + cohi), yn(tr + c2hy)),

Ma(ty + erhi, op(te + crhi), yn(te + c1h))
- /tk+61hk Mty + crhy, — a, zp(a), yn(a))da

)
)
0
My (ty, + cahy, p(tr + cah), yn(te + c2hy))
)

tg+cohy
—/O M(ty, + cohy, — a, zp(a), yn(a))da.

63

(6.39)

(6.40)

(6.41)
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Using the Lagrange representation, we obtain

Xia = My (xp(te) + heXi1P1(c1) + hie Xk 282(c1),

Yn(ti) + heYe1Bi(c1) + hiYi2B2(c1)),
Xio = My(xp(tr) + hieXg161(c2) + hpXi2082(c2),

Yn(tr) + heYe1P1(ca) + hipYi2fa(c2)),
Y1 = Mao(te + crhy, xp(ty) + hiXp151(c1) + hieXg202(c1),

yn(te) + hiYe1B1(c1) + hiYi2B2(c1))
tp+cihy
—/O Mty + erhy — a, 21(a), ya(a))da
Yio = Mao(ty, + cohi, xp(tr) + hieXi1B1(c2) + hi Xy, 252(02)7
Yn(te) + hi Y1 B1(c2) + hiYi202(c2))
(

tp+cohy
_/0 Mty + cohy, — a, zp(a), yn(a))da

Let us focus on the integral term; first, we can exploit the linearity of integral, thus we
get for o € {1,2}

t2+1
Z/ Mty + cali, — a, zp(a), yp(a))da

tp+cahi

+ Mty + cohi, — a, xp(a), yn(a))da.

tg

Applying substitutions @ = t; + h;b and a =}, + hybca, we have
Z hi/o Mty + cohi — (t; + hib), xp(t; + hib), yn(t; + hib))db
=0

1
+cahk/() M(tk + Cahk - (tk + bCahk), xh(tk + bCahk), yh(tk: + bcahk))db.

For integrals we apply the interpolatory quadrature formula using the abscissas based on

the collocation parameters, i.e.

/01 M(tk + Uhk)dl) ~ M(tk + Clhk)ﬁl(1> + M(tk + Cghk)ﬁg(l) (642)

Notice, that

1
/0 M(tk + UCahk)dU ~ M(tk + Clcahk>ﬁ1(1) + M(tk + Cgcahk)ﬁg(l)d’l}. (643)
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Considering the pairwise case, we have the following equations:

2y (te +erhy) = Pi(n(ts + cihe), yn(te + c1hy)),
oy, (te + c2hy) = Pr(an(ty + cohi), yn(te + c2hy)),
Ui (ts + erhe) = Polan(ty + cahu), yn(te + cihy)
[ Pt e~ a,ma), @) T PO g

tr+cihg
—Ps |t + C1hk,/0 Pa(x(s),y(s))ds | ,
Yn(tr + c2hi) = Po(wn(ty + cahi), yn(te + c2hi))
tp+cah ty+eoh
B /o Y Pyt + cohy — a, zp(a), yn(a))e” SR Pa(an(s) am ())ds g,

tp+cahy
—Ps (tk + CQhk;/O P2($(3)7y(5))d3) .

Using the Lagrange representation, we obtain

Xi1 = Pi(xp(ty) + hiXpa151(c1) + hi X 202(c1),
yn(tr) + hiYi1B1(c1) + heYi2B2(c1)),

Xio = Pr(xp(ty) + hiXp151(c2) + hi X 202(c2),
yn(te) + hi Y1 B1(c2) + hiYiof2(c2)),

and
Y1 = Pa(ty + crhg, op(ty) + hieXe11(c1) + heXi282(c1),
Yn(te) + hiYeafi(c) + hrYi2B2(c1))
- /Otﬁqhk Pi(ty + crhy — a, zp(a), yp(a))e” ST Patentshon()ds g

tp+cihy
= (et [ Ptete) st ).

Yio = Pty + cahy, p(ty) + hieXi11(c2) + hi X 202(c2),
Yn(te) + hi Y1 B1(c2) + hiYi2f2(c2))

tp+cahy tp+coh
a /0 Pi(ty + c2hy — a, zp(a), yn(a))e” LS P g

tp+cahy
—Ps (tk + CQhk;/O 7)2(33<3)7y(5))d3) :
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Again, for the integral term we obtain

k—1 tiv1 tr.+cah
Z /t + Pi(ty + cahy — a,z(a), yn(a))e” JuFT Palan (@ an(Nds g
i=1 "t

trp+cah tr.4cah
+ Pi(tr + cahy — a,zp(a), yn(a))e” JSTEE Pelan@ an D g

tg

Applying substitutions a = t; + h;b and a = t; + hibc,, we have

k—1 1
> hi/o Pi(te + cahe — (ti + hib), 24 (ti + hib), yn(t; + hib))
i=0

o tk+Cahk
we  Jithiv PZ(xh(s)vyh(s))dsdb

1
+Cahk/0 Pi(tr + cahi — (te + beahy), xp(te + beahy), yn(ty + beahy))

tp+cahy
- P : d
Xe Jtptbeahy 2(xn(5),yn(s)) sdb

By using the substitution s = ¢, + why, the exponent of the last term gets

trp+cahy Ca
L Patan(s)oynls)ds = [ Palwn(t+ whi), (b + whi)duw.

k+bcahy o
For k > 3 and i < k — 1, we can expand the exponents of the summands as follows:

/ttk+cahkPz(ih(5)>yh(8>)d5 = /tti+1 Pz(ﬂu"h(s)?yh(s))ds

ithib ithib
2l it
+ > / Pao(xn(s), yn(s))ds
j=it17t

thrCahk
[ Palan(s), un(s)ds,
tg

Applying the recenty used substitutions, we find

tp+cahg 1
/ L Paan(s) (s = | Polants + hiw),gn(ti + haw))dw
k—1 1

+ Z hj/() Pg(xh(tj—l—hjw),yh(tj —|—hjw))dw
j=i+1
1
—|—Cahk/0 PQ(LUh(tk + cahkw),yh(tk + cahkw))dw.

On the other hand, we can obtain

tk“l’cahk
(1 e [ Pt o))

ti+cahy

_ P, (tk+cahk,; /t;”l Po(n(s), yn(s))ds + Pg(xh(s),yh(s))ds>

ti

k—1 1 ] ) 1
PS (tk + Cahka Z hz / P? (x(l) (w)a y(l) (w))dw +Cahk / ,P2<x(k) (Ca’LU), y(k) (caw)ds> )
i=1 70 0
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where

29 (w) = xp(t + haw) = xp(t;) + hi X1 61(w) + hi X; 252 (w)
Z/(i) (w) = yn(t; + haw) = yu(t;) + hiY;181(w) + h;Y;282(w).

Similarly to the interpolatory formulae (6.42)-(6.43), we can derive

/01 Pl(tk + ’Uhk)dv ~ Pl(tk + Clhk)ﬂl(l) + Pl(tk + CQhk)ﬁg(l)

and
1
/0 Pl (tk + UCahk)d”U ~ Pl (tk + Clcahk)ﬁl(l) + Pl (tk + CQCahk)Bg(l)dU.

We implemented this recursive algorithm and solved the Egs. (6.19) and (6.18) with
it. In Fig. 6.1, homogeneous (or regular random) networks were considered and the
average of 100 simulations is compared to the numerical solutions of mean-field (6.19)
and pairwise (6.18) models. Several observations can be made: (a) the agreement of the
simulation results with the numerical solution of pairwise model is excellent, and (b) the
mean-field model, which largely ignores the network structure, performs poorly. This
gives us great confidence that the generalised pairwise model can and will be used in

different contexts as dictated by empirical or other theoretical studies.

Time

Figure 6.1: Stochastic and numerical experiments for non-Markovian epidemic with various
recovery time distributions on homogeneous networks with N = 1000 nodes and infection
rate 7 = 0.35. Squares, circles, diamonds show the mean of 100 simulations on random
regular graphs with average degree (k) = 15 for exponential distribution with parameter A =
2 (mean = %,variance = %), gamma distribution with shape oz = 3 and rate 8 = 2 (mean =
5,variance = %), uniform distribution on interval [a,b] = [1,2] (mean = %,variance = 1—12),
respectively. Dashed and solid lines correspond to the numerical solution of the mean-field

(6.19) and parwise (6.18) models, respectively.
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6.4 Special cases

In this section, we investigate some common choices for the recovery time. As we expect,
if Z ~ Exp(y) (i.e. the infectious period Z is exponentially distributed), we get back
the classical Markovian models (2.8) and (2.12). In the case of fixed recovery time, the
models reduce to the systems (5.3)-(5.4) and (5.1)-(5.2). We can also recover the multi-
stage infection model of [75] with gamma distributed recovery time. Finally, we consider
Z ~ Uniform(A, B) and write down the associated equations in a compact form. In
this section we assume, that the initial infecteds are 'newborn’, thus we use formulae
(6.32)-(6.33).

6.4.1 Markovian recovery time: exponential distribution with
parameter -y

The most widely used distribution in disease modelling is the exponential distribution.
Both the stochastic and deterministic approaches exploit the memorylessness property
to build tractable models. The resulting deterministic systems are ordinary differential
equations with the advantage of relatively simple structure and numerical solvability. In
the exponential case, £7(t) = e and fz(t) = ~ve . Using the assumption ¢(a) =
[Iod(a), (6.10) and f7(t) = v&z(¢), from (6.18¢) we obtain

[1)(t) = 7[ST](t) = ~11](8),

which gives the classical Markovian type pairwise equation for [7](¢). With similar argu-

ments, from (6.18d) we obtain

sy = BN B s - risn)

—S1](1).

For the mean-field model (6.19), the same calculation gives the classical Markovian mean-
field equation for I(t):

[1)(8) = 7SN = A[)(0)-

6.4.2 Fixed recovery time o

In several models, it is a reasonable assumption for the infectious period to have a fixed,

constant duration, e.g. for measles [6]. In the case of fixed recovery time o, we have

1 if0<t<o,
t) = =
&(t) {0 ift>o,
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and
fz(t) = 6(t — o),

where §(t) denotes the Dirac-delta function. Applying the fundamental property of 6(t),
from (6.18¢) and ¢(a) = [I]od(a) we have

if0<t<o,

: 0 =
[[](t) = T[S[](t) - {T[Sﬂ(t _ 0—) ift > o,

and from (6.18d), if 0 < ¢ < o, we obtain

mn@>::Tnglwﬂg%gﬂﬂ—Tnglﬁggﬁwuﬂ—fwn@.

Ift>o, we get

n—1[SS)OISI®) _ n—1[S1)

_ = 1[SS](t —0)[SI](t — o) -t restif@ g
n [S](t — o)

which is exactly the same system, that was studied in detail in Ch. 5. The mean-field

model (5.3)-(5.4) can also be derived from (6.19b) using the same arguments.

6.4.3 Gamma distribution with shape K € Z" and rate K~

The case of gamma distributed recovery time was studied in [75]. Using pairwise ap-
proximation with a standard closure, the authors have been able to analytically derive a
number of important characteristics of disease dynamics. These included the final size of
an epidemic and the epidemic threshold. Their results have shown that a higher number
of disease stages, but with the same average duration of the infectious period, results
in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the

epidemic. The pairwise model in [75] has the following equations for nodes:

5] = —r (ST

i=

—_

) K
(L] = 7Y [SL] = Kv[1]
i=1
where I;, i = 1,2,..., K are the infectious stages, where nodes spend an exponentially

distributed time with parameter K. The distribution of the total infectious period is
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the sum of K exponential distributions with parameter K=, which gives the gamma
distribution with shape K and rate K+ (thus the expected infectious period is K X
1/K~vy = 1/v). Clearly, [I](t) = Z]K:l[l,-](t) and [SI](t) = K, [SL](t) and the sum of
equations for infectious stages gives

[11(t) = T[STI(t) — Kr[L](t)-
On the other hand, using (6.32), the PDF and survival function of Gamma distribution

(KV)K K—1_—K~a

fr(a) = ma e ,
K-1 k
alo) = oy Bt

and inserting into (6.18c) and (6.10), we have

1) = rlsnw -y | STt - a)((?z e e
(K5 ey — Kt
-K [I]Omt e
(6.45)
and
1](t) = g) ( /0 "SI - a)(Klj!)ake_KWda _ [1]0”?!)%@—“) . (6.46)
These equations suggest the relations
, _ tT 4 (KV)jilaj—le—Kwa a (Ky)~! j=1,— Kt
e = [ 80w - a5 dat Uy gy,
i=12 . .. K (6.47)

To show this, we consider the equations for infectious stages in (6.44) as a first-order,

linear differential equations with variation of constants formulae
t
L)1) = [](0)e 57 + / e K= 7S 1) (s)ds (6.48)
0
and

L)) = [0 + [ e k(1) (s)ds, (6.49)
j=23.. . K.
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If all infecteds are newborn, we have [11](0) = [{]o and [I5](0) = [I3](0) = --- = [I](0) =
0. Proceeding by induction yields that (6.47) satisfies (6.48) for j = 1 and (6.49) for
j=2,3,...,K. Indeed, letting 7 = 1 in (6.47), we have

1](t) = /0 "HISTI(t — a)e K da + [T)ye

which comes directly from (6.48). Assuming that (6.47) holds for 1 < j, we prove that
it holds for j + 1. Indeed, we can do the following elaboration:

Lal®) = L)+ [ K 1) s)ds
= /()teK7ts)K’y/ T[Sl](s—a)((fz)jl;! a’ e K1 dads
+/ ~KA(t=9) i (1] ((KV) ) o= K7s g
(K7) oK (t=s j—1g—Kya
= /(]—1 ( )(/ )a da)ds
(Kv) —Knt j—1
—f—[[]ome /0 s’ ds
P (Ky) oK (s * Ve K0 gy ds
_ /o(j—1) ( ></0 AST)(w)(s — ) ( )d>d
KV i ko
+[[]0(j7)tje
o t (KW)j —K~(t—u t oG-
— ./o We (=02 [ST] (u) (/u (s —u) ds> du
_'_[]]0([(‘;}/) t] — Kyt
- /0 lsI(w) (12.,7) (t = u) e " du + 1], ([§7>jtjef<w
! K i kv K i ke
:/0 T[SI](t—a)( ]7) a’e da—l—[[]o( ]7> tle .

It is analogous to derive the equations for [SI;](t).

6.4.4 Uniform distribution on interval [A, B]

The uniform distribution is one of the most natural probability distributions and preferred
in agent-based modeling [51], and was applied also for avian influenza [87]. Let the

recovery time be distributed uniformly on interval [A, B] (we assume 0 < A < B), i.e

A1) = {BlA if t € (A, B),

0 otherwise,
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and
1 if t <A,
&(t) = % if t € (A, B),
0 ift > B.

We have to study the three cases t < A, A <t < B and t > B. Writing the equation for
[1](t), we have (after changing the variable):

0 ift <A,
[1)(t = 7[ST)(t) — { fo~* 50w gy, 4 Mo if ¢ € [A, B,
s Tgf]f;)du if t > B.

With a more compact notation,

where ¢4, p)(t) is the indicator function of interval [A, B]. The same argument gives

ta,B)(1),

Sy = "B B s - risn)
etz n= LSS - e e,
max(0,t—-B) B—A n [S](u)

_ 1 [SI s) Il
N[ Joe b s [_]OAL[A,B](t).

For t > B the model becomes a system of differential equations with distributed delays.

6.5 Conclusions

The generalised pairwise model provides a description of a possible deterministic ap-
proximation of non-Markovian epidemic processes on networks. The integro-differential
system, which describes the dynamics at the level of nodes and links, is a powerful tool for
investigating the classical quantities of an STR-type epidemic, such as the reproduction
number and final epidemic size. The generalised model is more challenging to analyse
due to its complexity but it largely relies on tools from the theory of integro-differential
equations. Further extensions of the model could focus on relaxing the assumption of
homogeneous networks and extend the model to networks with heterogeneous degree
distribution, see for example [76, 78], or to consider modelling the situation where both
the infectious and recovery processes are non-Markovian. With the model proposed we
wanted to emphasise opportunities to frame problems and models of network epidemics

in more rigorous mathematical terms and use existing mathematical theory to enhance
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our understanding of stochastic processes on networks and their average behaviour as
captured by mean-field models.



7

Summary

Networks (or graphs) offer a flexible framework to explicitly incorporate various hetero-
geneities in how individuals within a population interact. This framework has led to a
number of models where the strong assumptions of random mixing of the classical com-
partmental models can be relaxed. Because of the flexibility of the network approach,
nodes can represent not only single individuals but also groups of individuals or loca-
tions. Similarly, links can represent contacts between individuals along which diseases can
spread, or interactions between groups such as flight routes between different locations.

Most SIR (susceptible-infected-recovered) models on networks assume that both the
disease transmission and recovery process are Markovian. The assumption of Marko-
vianity is a strong simplifying assumption, as especially in the context of epidemiol-
ogy, the period of infectiousness has paramount importance, and often this is approxi-
mated from the empirical distribution of observed infectious periods of various diseases
by non-exponential distributions. Recently, however there is renewed interest in mod-
elling non-Markovian processes, such as epidemics on networks. A possible modelling
approach involves mean-field approximations, which are based on the classical compart-
mental principles and pairwise models, which have been very successful in capturing the
average behaviour of a stochastic epidemics on networks.

This thesis aims to extend the pairwise model from Markovian to non-Markovian
epidemic dynamics where the infection process remains Markovian but the infectious
period is taken from an arbitrary distribution. In addition, we want to perform the
full mathematical analysis of the resulting systems, with focus on the positivity of so-
lutions, associated reproduction numbers and the implicit relation concerning the final
epidemic size and implement explicit stochastic simulations and numerical solvers to test
the validity of these models.

In Chapter 3, we introduce the new concept of reproduction numbers for mean-field

74
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and pairwise models. In this systematic approach, we give analytical formulae for the
basic reproduction number Ry of mean-field type systems and the pairwise reproduction
number R} of link-level models. As an illustration, we calculate these key parameters for
Markovian and fixed recovery times. In the last part, we summarise the general forms of
implicitly given final size equations for both type of models.

It can be easily seen, while in general Ry depends on the expected value only, the
pairwise reproduction number R uses the complete density function, thus the average
length of infectious period does not determine exactly the reproduction number. We
study how the distribution of infectious periods influences the dynamics of epidemics on
networks in Chapter 4. From studying typical families of distributions, we obtain the

following results:

e For gamma and uniformly distributed recovery times it is shown, that higher vari-
ance in the recovery times generates lower reproduction numbers and different

epidemic curves within each distribution family.
e The same phenomenon is numerically evidenced for lognormal distribution.

e We prove, that lower variance produces higher reproduction number in the general

case.

e By comparing epidemics generated by different types of the recovery time distri-
butions, we illustrate that estimating the expected value and the variance of the

recovery time is not sufficient to give a realistic description of the epidemics.

The first generalisation of mean-field and pairwise models is presented in Chapter 5.
For the case of infectious periods of fixed length, the resulting pairwise model is a system
of delay differential equations, which shows excellent agreement with results based on

stochastic simulations. The proposed framework includes the following results:

e The derivation of the pairwise model from first principles is illustrated. The term
associated to the recovery is determined by an evolution equation and results in a
differential equation with discrete and distributed delays.

e Investigating the basic properties of the systems, an invariant can be found and

positivity of the solutions can be shown.

e An important relation between reproduction numbers and epidemic outbreaks can
be explored by linearisation and study of the characteristic roots. The condition

for an epidemic is exactly the same as in the Markovian case.
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The final size relations can be derived for both mean-field and pairwise models via
lengthy calculations. The results are consistent with the classical functional form
of final size relation.

Stochastic simulations for the epidemic process are performed and compared with
the numerical solution of the deterministic models and very good agreement is

found.

A possible extension for more heterogeneous networks is proposed.

The generalised mean-field and pairwise models for non-Markovian epidemics on net-

works with arbitrary recovery time distributions are presented in Chapter 6. The main

section of this dissertation involves a wide spectrum of analytical and numerical results

proposing a systematic framework to investigate non-Markovian SIR models on net-

works. We have the following results:

Considering a first-order partial differential equation, where the population of infec-
tive nodes and links are structured by age since infection, the model is transformed

into a system of integro-differential equations.

Positivity of the solutions and condition for a disease outbreak is obtained. An
intuitive picture is given about the role of the reproduction number in stability

analysis of equilibria of linearised equations.

Complete mathematical analysis is performed to obtain the general functional form
of final size relations. The relation between final size and reproduction number is

exactly described.

A numerical scheme based on collocation method of Volterra integro-differential
equations is developed and implemented to solve the mean-field and pairwise sys-

tems.

As an illustration of the applicability of the general model we recover known results
for the fixed, exponentially and gamma distributed recovery times and obtain new
pairwise models with uniformly distributed infectious period.

The general framework that we proposed shows a more complete picture of the impact

of non-Markovian recovery on network epidemics. With the model proposed we wanted

to emphasise opportunities to frame problems and models of network epidemics in more

rigorous mathematical terms and use existing and new mathematical theories to enhance

our understanding of stochastic processes on networks.
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This dissertation is based on three papers with co-authors Istvan Kiss and Gergely
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e Kiss, I.Z., Rost, G. and Vizi, Z., 2015. Generalization of pairwise models to
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e Rost, G., Vizi, Z. and Kiss, [.Z., 2015. Impact of non-Markovian recovery on
network epidemics. In Biomat 2015: Proceedings of the International Symposium
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e Rost, G., Vizi, Z. and Kiss, .Z., 2016. Pairwise approximation for SIR type network
epidemics with non-Markovian recovery. arXiv preprint arXiv:1605.02933.

Further publications of the author are the following:

e Rost, G. and Vizi, Z., 2014. Backward bifurcation for pulse vaccination. Nonlinear
Analysis: Hybrid Systems, 14, pp.99-113.

e Barbarossa, M.V., Dénes, A., Kiss, G., Nakata, Y., Rost, G. and Vizi, Z., 2015.
Transmission dynamics and final epidemic size of Ebola virus disease outbreaks
with varying interventions. PloS one, 10(7), p.e0131398.



8

Osszefoglalas

A hélozatok (vagy grafok) olyan struktirdk, amelyek lehet&séget nyujtanak a populécio
tagjai kozotti kapcsolatok heterogenitasanak feltarasara, modellekbe torténd beépitésére.
Szamos modell, amely korabban feltételezte a klasszikus rekeszrendszeres megkozelitéshez
tartozo egyenletes (homogén) keveredést, a halézatok alkalmazasaval fejlédott tovabb.
A struktura rugalmassagat fémjelzi, hogy a csicsok az egyedek mellett csoportokat és
teriileteket is reprezentalhatnak. Hasonlban, az 6sszekottetések (élek) az egyedek kozotti
kapcsolatokon til, csoportok kozotti interakciot és foldrajzi helyek kozotti itvonalakat
is jelenthetnek.

A legtobb STR (fogékony (susceptible)-fertézott (infected)-felgyégyult (recovered) ti-
pusu hélézatos jarvanyterjedési modell a fertozési és felgyogyulasi folyamatot egyarant
Markovinak (meméria nélkiilinek) feltételezi. Ez a feltétel tulsagosan erdsnek bizonyul,
példaul az epidemiologia esetében, ahol kimagaslo jelentoséggel bir a fertozési periédus
eloszlasa és szamtalan esetben a mérési adatokbol nyert empirikus eloszlasokat nem-
exponencialis eloszlassal kozelitik. Napjainkban tjra elétérbe keriilt a nem-Markovi
folyamatok vizsgalata, kiilondsen jarvanyterjedés halézaton torténé modellezésénél. Egy
lehetséges megkozelités az atlag-tér (mean-field) és paronkénti (pairwise) modellek alka-
Imazasa: mig elobbi a rekeszrendszerek elvén alapul, utobbival eredményesen kozelithetok
a halézatos sztochasztikus jarvanyterjedési folyamatok.

A disszertacié célkitlizése a paronkénti modellek kidolgozasa nem-Markovi jarvanyter-
jedési dinamikara, ahol a fertézés Markovi marad, de a felgyogyulasi folyamatban a
fertozéstél a felgydgyulasig eltelt id6 tetszdleges eloszlasu lehet. A kapott rendszerek
teljes analizise esetén a megoldasok pozitivitasara, a modellekhez tartozé reproduk-
cids szamokra és a végallapot-egyenletekre 6sszpontositunk. A modellek érvényességét
egyrészt explicit sztochasztikus szimuldciok, masrészt numerikus megoldé algoritmusok

implementalasaval vizsgaljuk.

78



8. OSSZEFOGLALAS 79

A 3. fejezetben bevezetjiilk az atlag-tér és paronkénti modellekhez tartoz6 repro-
dukcids szamok fogalmat. A szisztematikus felépités lehetéséget ad analitikus formulak
levezetésére az atlag-tér tipusi modellek Ry alap reprodukciés szama és a kapcsolat
szintli modellek R} paronkénti reprodukcids szdma esetén. Példaként levezetjitk az expo-
nencidalis eloszlasu és konstans felgyogyuldsi idétartamhoz tartozé formuldkat. A fejezet
utolsé részében Osszegezziik az implicit mdédon felirt végallapot egyenletek funkciondlis
alakjara vonatkoz6 eredményeket mindkét modell esetében.

Ezekbol a kifejezésekbol konnyen lathato, hogy mig Ry csak a fertozési periddus
hosszanak varhato értéktél fiigg, addig az RE paronkénti reprodukeiés szam kiszdmitasahoz
a teljes strliségfiiggvényre sziitkség van, igy az atlagos periédusidé nem hatérozza meg
egyértelmtien RY értékét. A 4. fejezetben azt vizsgdljuk, hogy a fertézési idétartam
hosszanak eloszlasa hogyan befolyasolja a paronkénti reprodukcios szamot. A jellegzetes
eloszlascsaladokat vizsgalva a kovetkez6 eredményeket kapjuk:

e Gamma és egyenletes eloszlasu felgyogyulasi idétartamokra belatjuk, hogy a nagy-
obb varianciaju periddushoz alacsonyabb reprodukciés szam és mas jarvanygorbe

tartozik.
e Ezt a jelenséget numerikusan vizsgaljuk a lognormalis eloszlas esetére.

e Bebizonyitjuk az dltaldanos esetben is, hogy az azonos varhaté értékkel rendelkezo

eloszlasok esetén kisebb variancia nagyobb reprodukcios szamot general.

e Az azonos varhato értékkel és varianciaval rendelkez6é eloszlasokra generalt jarvanygor-
bék 6sszehasonlitasaval illusztraljuk, hogy a varhaté érték és a variancia ismerete

onmagaban még nem elégséges a jarvany teljeskord leirasara.

Az atlag-tér és paronkénti modellek elsd altalanositasat a 5. fejezetben targyaljuk.
A rogzitett fertézési periddus esetén a modellek késleltetett differencidlegyenletekbdl
allo rendszereket eredményeznek, amelyek megoldasai kivalé egyezést mutatnak a sz-
tochasztikus szimulaciokbodl kapott eredményekkel. A fejezet a kovetkezd eredményeket

tartalmazza:

e Levezetjilkk a parokénti modellt, amelyben a felgyégyulast leird tagot egy popula-
ci6 egyedszamanak valtozasat leird differencidlegyenletbol kapjuk. A felirt modell

konstans és eloszlasbeli (distributed) késleltetéseket tartalmaz.

e A modell alapveté tulajdonsagait vizsgalva felirhaté egy elsé integral és megmu-

tathato a megoldésok pozitivitasa.
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A jarvany kitorése és a reprodukcios szamok kozotti fontos kapesolatot egy tétel-
ben mondjuk ki, amelyben a rendszerek linearizéltjanak karakterisztikus gyokeit
vizsgaljuk. A felirt feltétel megegyezik a Markovi esetben levezethetével.

o A végallapot-egyenletet mind az atlag-tér, mind a paronkénti modellre levezetjiik.
Az eredmények konzisztensek a végallapot egyenletek klasszikus funkcionalis alakjara

vonatkozé eredményekkel.

e A jarvanyterjedési folyamatra lefuttatott szimulacidkat osszehasonlitjuk a deter-

minisztikus modellek numerikus megoldasaval és kivalo egyezést tapasztalunk.

e Végiil felirjuk a modell erésen heterogén halozatok egy csaladjara vonatkozé al-
talanositasat.

Az atlag-tér és paronkénti modellek tetszoleges felgydgyulasi idotartamra torténo al-
talanositasat a 6. fejezetben targyaljuk. A disszertacié legfontosabb fejezete az analitikus
és numerikus eredmények széles spektrumat tartalmazza, szisztematikusan vizsgaljuk a

nem-Markovi STR modellekkel kapcsolatos kovetkezo, fontos eredményeket:

e A kiindulasként tekintett parcialis differencialegyenletet, ahol a fert6zott csticsok és
Osszekottetések a fert6zodéstol eltelt ido szerint is struktirdlva vannak, egy integro-

differencidlegyenletté transzformaljuk.

e Bizonyitjuk a megoldasok pozitivitasat és feltételt adunk a jarvany kitorésének
bekovetkezésére. Egy intuitiv levezetésseé kapcsolatot teremtiink a reprodukcios

szamok és a linearizalt egyenletek egyensiilyi helyzetének stabilitasa kozott.

o A végallapot-egyenletek levezetése lehetoséget ad a reprodukcios szamok és a végal-

lapot kozotti kapcesolat felirasara.

e A Volterra tipusu integro-differencialegyenletekhez kidolgozott kollokdcios modsz-
eren (collocation method) alapulé numerikus sémat fejlesztiink az dtlag-tér és a

parokénti modellek numerikus megoldéasara.

e Néhany specidlis esetet vizsgalva az altalanos rendszerekbdl levezetjiik a mar 1étezo
modelleket (Markovi, exponencidlis és gamma), illetve egy 1j modellt irunk fel

egyenletes eloszlasu felgyogyulasi idotartam esetén.

A leirt médszerek teljesebb képet adnak a nem-Markovi tipusu felgyogyulas haldzaton

torténd jarvanyterjedésre gyakorolt hatasardl. A modellek a halozati jarvanyterjedéssel
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kapcsolatos problémak matematikailag is precizebb targyaldsara adnak lehetOséget és
segitik a halozaton vett sztochasztikus folyamatok megértését.

A disszertacio az aldbbi harom, Rost Gergellyel és Kiss Istvannal kozos publikaciéra
épil:

e Kiss, 1.Z., Rost, G. and Vizi, Z., 2015. Generalization of pairwise models to
non-Markovian epidemics on networks. Physical review letters, 115(7), p.078701.
http://dx.doi.org/10.1103 /PhysRevLett.115.078701

e Rost, G., Vizi, Z. and Kiss, [.Z., 2015. Impact of non-Markovian recovery on
network epidemics. In Biomat 2015: Proceedings of the International Symposium

on Mathematical and Computational Biology

e Rost, G., Vizi, Z. and Kiss, [.Z., 2016. Pairwise approximation for SIR type network
epidemics with non-Markovian recovery. arXiv preprint arXiv:1605.02933.

A szerz6 tovabbi publikacioi:

e Rost, G. and Vizi, Z., 2014. Backward bifurcation for pulse vaccination. Nonlinear
Analysis: Hybrid Systems, 14, pp.99-113.

e Barbarossa, M.V., Dénes, A., Kiss, G., Nakata, Y., Rost, G. and Vizi, Z., 2015.
Transmission dynamics and final epidemic size of Ebola virus disease outbreaks
with varying interventions. PloS one, 10(7), p.e0131398.
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Appendix

Sample run

o Description

A code of sample run to simulate the non-Markovian stochastic process on networks.
We consider Weibull distributed recovery time with parameters a and b, homogeneous
random network with uniform degree distribution (k) = 15 and N = 1000 nodes. The
loop in simulation stores the actual state of the system in alist to export the output at
the end of the epidemic.

o Initialisation

Nn = 1000;
network =
RandomGraph [DegreeGraphDistribution [
Table [15, {i,1, Nn}111;
tau =0.3;
a=1.0;
b= 1.0;
t = 0;
timelist = {t};
counter =1;
S = 999;
Il =Nn-S;
R = 0;
config = {{S, Il , R}};
tstop = 1000;

links =
N[Table [{EdgeRules [network ][[k, 111,
EdgeRules [network 1[[k,2 171},
{k, 1, EdgeCount [network ]1}11;

label = Join [Table [-1., {i,1, S}I,
Table [0.,, {i, S+1, S+l }]11;

inflinks =
Select [links
((label [[#[[1111] =-1.&& label [[#[[2]1111=20) ||
(label [[#[[2111] = -1.&& label [[#[[1]111]1 20)) &I:



Sllinks =
Table [If [label [[inflinks [[n,171]17 =-1,,
{inflinks [[n,17]], inflinks [[n,211},
{inflinks [[Nn, 2 1], inflinks [[n, 111},
{n, 1, Length  [inflinks 1}1;
(»sampling exponentially distributed waiting time

for all S -1 links %)
timetoinf = Table [
RandomVariate [ExponentialDistribution [tau 11,

{k, 1, Length  [Sllinks 1}7;
(*list of infected nodes *)
infectednodes =Table [i, {i, S+1, S+l }1;

(*sampling time to recovery for infected nodes
timetorec = Table [
RandomVariate [WeibullDistribution [a, b]].
{k, 1, Length [infectednodes 1}1;
(*lists for export *)
labels = {label };
infectednodeslist = {infectednodes };
timetoinflist = {timetoinf  };
Sllinkslist = {Sllinks };
timetoreclist = {timetorec };
(»variables for minimum of list 'timetorec' and '
timetoinf' *)
minforinf = 0;
minforrec = 0;

o Simulating the epidemics

While [ (t <tstop && minforrec < oo && minforinf <o &&Il > 0),
(»time to the next infection and recovery,
respectively *)
minforrec = Min [timetorec  ];
minforinf = Min [timetoinf  1];
(*finding the infecting link and recovering *)
eventSllink = If [minforinf < o,
Sllinks [ [Flatten [Position [timetoinf , minforinf 1711,
{11
eventinode =If [minforrec < oo,
infectednodes [[
Flatten [Position [timetorec , minforrec 1111, {}1;
(»executing infection or recovery *)
simulation = process [tau, a, b, t, label , links , S,
Il , R, minforrec , eventlnode , infectednodes |,
timetorec , minforinf , eventSllink , Sllinks , timetoinf

(»updating lists and variables for next step and
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t =simulation [[1,1 ]];

label =simulation [[2]];

currentconfig = simulation  [[3]];

S = currentconfig [[111;

Il = currentconfig [[217;

R = currentconfig [[311;

Sllinks = simulation  [[4]];

timetoinf = simulation  [[5]1;

infectednodes = simulation  [[6]];

timetorec = simulation [[7]];

labels = Join [labels , ({label }7;

timelist = Join [timelist , {t}];

Sllinkslist = Join [Sllinkslist , {Sllinks }7;
config =Join [config , {currentconfig 11;
timetoinflist = Join [timetoinflist , {timetoinf  }1;
counter ++

1

Module “inf”: the infecting process

o Description

This module executes the infection subprocess. First, it updates the labels of nodes,
which are infected in this step. Next, we modify the lists associated to S| links.
Finally, we change the lists associated to infected nodes and calculate the returning
values of the module.

O Parameters:

t au_: transmission parameter

a__: shape parameter of Gamma distribution

b_: scale parameter of Gamma distribution

t _:time of system

| abel Li st: list of nodes’ labels

I i nks_Li st : links of the network

S _: number of susceptible nodes at timet

I'I _: number of infected nodes at timet

R_: number of recovered nodes at timet

m nf or r ec_: timeto the next recovery

event | node_Li st : list of recovering nodes

i nfect ednodes_Li st : list of infected nodes
ti metorec_Li st list of timeto recovery for al infected nodes
m nf ori nf _: timeto the next infection
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event SI i nk_Li st: list of S links, where infection goes along
SI1inks_List:listof S1links
ti metoi nf_Li st list of timeto infection for al S-I links

(*Module executing the infecting process *)
inf [tau_, a_, b_, t_, label _List, links_List, S, Il_,
R, mnforrec_, eventlnode List, infectednodes_ Li st,
timetorec_List, mnforinf_, eventSllink_List,
Sl links_List, timetoinf_List]:=
Module [ {noofchanges , outputSllinks , remSl, newSl,
updatedlabels , suscnod , updremSiw , newSlw,
outputSllinkswaiting , remSlw, updiw, outputinodes
outputinodewaiting , remrp },
(*xupdating labels of all nodes *)
noofchanges = Length [event SI|ink];
updatedlabels =
Table [If [(MemberQ[eventSIlink[[AIl, 1L ]11,N[n]]),
N[O], If [(l abel [[N]] < &&! abel [[Nn]] 20),
| abel [[n]] +mi nforinf, [abel [[N]1]]1],
{n, 1, Length [l abel 1}1;
(xupdating list of S -1 links %)
suscnod = N[Flatten [Position [updatedlabels , -1.117;
remS| = Select [SI|inks,
! MemberQ[event SITink [[Al, 1 11, #[[1]11] &1;
newSl| =
Select [
N[
Flatten [
Table [
If [
(MemberQ[! i nks, {eventSIlink[[l,211]],
suscnod [[KI1}] I
MemberQ[! i nks, {suscnod [[k]],
eventSIink[[l,111}1),
{suscnod [[k]], eventSIlink[[l,111}, {O,0 }7,
{I', 1, noofchanges 3}, {k, 1, Length [suscnod ]1}1,1 1],
#[[111 #0&];

outputSllinks =Join [remSl, newSlJ;
(*updating waiting times of S -1 links %)
remrp =

Flatten [

Table [If [MemberQ[event SIIink[[AllL1 711,
Sihinks[[i, 17111, {}, {i}1,
{i,1, Length [SIlinks]}11;
remSlw =ti nmetoi nf [[remrp ]7;



updremSIlw =remSIlw - m nfori nf;
newSlw =
Table [RandomVariate [ExponentialDistribution [tau]],

{i,1, Length [newSlI]1}1;

outputSllinkswaiting = Join [updremSIlw , newSIw];

(»updating list of infected nodes *)

outputinodes = Join [i nf ect ednodes,
eventSIink[[AIlLL 1171;

(xupdating waiting times of infected nodes *)

updlw = Table [tinmetorec[[i]] -m nforinf,
{i,1 Length [tinetorec]}];

outputinodewaiting =

Join [updlw ,
Table [RandomVariate [WeibullDistribution [a, b]1,
{i, 1, noofchanges 1}117;
(=returning values *)
{{t + m nforinf}, updatedlabels |,
{S - noofchanges , |1 +noofchanges , R}, outputSllinks ,
outputSllinkswaiting , outputinodes , outputinodewaiting }

1

Module ‘rec’: the infecting process

o Description

This module executes the recovery subprocess. First, it updates the labels of nodes,
which are recovered in this step. Next, we modify the lists associated to S-I links.
Finally, we change the lists associated to infected nodes and calculate the returning
values of the module.

O Parameters

See Section Parameters’ of module qnf .

(*Module executing the recovery process *)

rec [tau_, a_, b_, t_, label _List, links_List, S, Il_,
R, mnforrec_, eventlnode List, infectednodes Li st,
timetorec_List, mnforinf_, eventSllink_List,
Sllinks List, timetoinf List]:=

Module [ {outputSllinks , outputSllinkswaiting , updremSlw ,
newSlw, remSl, newSl, updatedlabels , noofchanges |,
remSlw, outputlnodes , reml , remlw, outputinodewaiting ,
remrp },

(*updating labels *)
noofchanges = Length [event| node];
updatedlabels =



Table [If [MemberQ[event | node, N [n]], oo,
If [(label [[n]] 20&&I abel [[N]] < «),
| abel [[n]] + mi nforrec, | abel [[N]1]11],
{n, 1, Length [l abel 1}1;
(»updating list of S -1 links %)
remrp =
Flatten [
Table [If [MemberQ[event | node // N, N[SIlinks[[i,2]111],
{}, {1}¥1, {i,1, Length [SIlinks]}]1];
outputSllinks =Sl links[[remrp ]1];
(*updating waiting times of S -1 links )
remSlw =ti nmetoi nf [[remrp ]7;
outputSllinkswaiting =
Table [remSlw [[i ]] -m nforrec, {i, 1, Length [remSIlw]1}];
(=updating list of infected nodes *)
reml =
Flatten [
Table [If [MemberQ[event | node, | nfectednodes[[i]]1],
{}, {i}1, {i,1, Length [infectednodes]}]];
outputinodes =i nf ect ednodes [ [reml ]];
(»updating waiting times of infected nodes *)
remlw =tinmetorec[[reml ]];
outputinodewaiting =
Table [remlw [[i ]] - m nforrec, {i, 1, Length [remlw ]1}];
{{t + m nforrec}, updatedlabels
{S, Il -noofchanges , R+ noofchanges 1}, outputSllinks ,
outputSllinkswaiting , outputinodes , outputinodewaiting }
I

Module ‘process’: executing the next subprocess

o Description

This module makes the decision, which subprocess is executed in this step.

o Parameters:

See Section Parameters’ of module inf .

(*Main function for choosing and executing the event
according to the minimum of 'minforinf and 'minforrec’ *)
process [tau_, a_, b_, t_, label _List, links_List, S,
Il , R, mnforrec_, eventlnode_ List, infectednodes_Li st,
timetorec_List, mnforinf_, eventSllink_List,
Sl links_List, timetoinf_List]:=
If [mnforrec <mnforinf,
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rec [tau, a, b, t, label, links, S, Il, R, mnforrec,
event | node, i nfectednodes, tinetorec, mnforinf,
event Sllink, SlIlinks, tinetoinf],

inf [tau, a, b, t, label, links, S, Il, R, mnforrec,
event | node, i nfectednodes, tinetorec, m nforinf,
event Sllink, SlIlinks, tinmetoinf]

1



