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1

Introduction

This thesis aims to give a generalisation of deterministic models for network epidemics

with Markovian infectious process and non-Markovian recovery process. We develop the

models for the fixed and the general case, simulate explicitly the stochastic process for

comparison with the solutions of the resulting systems and study the most important fea-

tures, such as reproduction number and implicitly given final size relation. These results

are summarised in three scientific papers of István Kiss, Gergely Röst and the author

of this thesis, see [49], [70] and [71]. We consider SIR dynamics, but the introduced

framework may be applied to more exotic dynamics as well.

Mathematical epidemiology has a long history, going back to the smallpox model of

Daniel Bernoulli in 1760. The first fundamental results were developed in the first half of

the 20th century and this field is in continuous progression nowadays. Mathematical epi-

demiology differs from most sciences in availability of experimental validation of models.

Experiments are usually impossible and would probably be unethical. This gives great

importance to mathematical models as a possible tool for the comparison of strategies to

plan for an anticipated epidemic or pandemic, and real-time control of disease outbreak.

The predominant majority of disease models are based on a compartmentalization

of individuals or hosts according to their disease status ([48], [5], [7], [33], [69]). The

basic models describe the number of individuals (or proportion of the population) that

are susceptible to, infected with and recovered from a particular disease (the SIR mod-

els). Many of the details of the progression of infection are therefore neglected, as are

differences in response between individuals. The SIR model is appropriate for infec-

tious diseases that confer lifelong immunity, such as measles or whooping cough ([48],

[5], [33], [69]). The SIS model, where the infected individuals become susceptible again

after recovery from the disease, is primarily used for sexually transmitted diseases, such

as chlamydia or gonorrhoea, where repeated infections are common ([38], [28]). Many

1



1. INTRODUCTION 2

modifications have been made to this basic framework, usually involving the inclusion of

more heterogeneities by further subdividing the S, I and R classification to reflect either

more complex pathogen biology ([4], [34]) or greater structure within the host population

([38], [29], [42]).

It has long been acknowledged that the connectivity pattern between individuals in

a population is an important factor in determining the properties of a disease spreading

process ([10], [62], [65], [20]). Using networks to model disease transmission, where indi-

viduals are represented as nodes in a network and the connectivity between individuals

is represented by links between the nodes, allowed us to capture a high level of detail

of many realistic processes and led to more accurate models, especially when compared

to classical compartmental models which operate on the assumption of homogeneous

random mixing.

There is a significant amount of research investigating network epidemic models with

the aim of understanding how network properties influence the disease spread ([46]).

Many different modelling approaches have been introduced, which fall into three broad

classes: exact Markovian or state-based models ([77], [80]), individual-based stochastic

simulation or micro models ([46]) and deterministic ODE-based macro models ([72], [66],

[43], [81], [80]). This classification refers to the scale (e.g. individual level or population

level) at which the modelling is being carried out. The links between state-based, micro

and macro models are explored in detail by [32].

While networks provide a clear departure from classic compartmental models, the role

of simplest macro-level models, i.e. mean-field models remains crucial. These offer us a

reliable way to obtain analytical results, such as epidemic threshold ([64], [53]) and final

epidemic size [43], which in turn can be used to uncover the interplay between network

properties and dynamic processes on networks. Probably the most well-known mean-field

model for network epidemics is the degree-based or heterogeneous mean-field model ([64],

[65]).

Pairwise approximation - a link-level macro-modelling approach - aims to model the

spread of infection on generic networks where higher-order structure has been ignored.

Rather than modelling a network of interactions in its entirety, pairwise models, as the

name suggests, examine the various types of connected pairs found within a population

([12], [27], [35], [37], [42], [43], [67]). Pairwise models have been used to examine a number

of epidemiological issues: fade-out and critical community size for childhood infections

([42]); evolution of pathogen virulence ([12]); spread and control of sexually transmitted

diseases in heterogeneous populations ([23], [27]) and modelling epidemics on adaptive

networks ([35], [79]). This modelling scheme can be applied in study of social interactions
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([21]) and ecological systems ([37]).

While networks offer an accurate representation of contact patterns, many network

epidemic models consider only Markovian epidemics with both the infectious and recovery

processes being memoryless. However, empirical observations show that the Markovian

framework is not satisfactory in describing temporal statistics, such as time intervals

between discrete, consecutive events. Examples include inter-trade durations in finan-

cial markets ([73]), socio-networks ([55]), or contacts between individuals being dynamic

([59]). In the context of epidemiology, the period of infectiousness has a key role ([44],

[54]). The empirical distribution of infectious periods of various diseases is often ap-

proximated by log-normal and gamma (smallpox [24], [63]), fixed-length (measles [6]) or

Weibull distributions (ebola [19]).

Nowadays, there is a renewed interest in non-Markovian processes, such as epidemics

on networks ([11], [17], [18], [40], [47], [58], [82]), random walks ([39]) and temporal

networks ([59]). Several different approaches exist to model non-Markovian epidemics

on networks. These are largely guided by the choice of the model and variables to be

tracked. Notable examples include the message passing approach, often referred to as

the cavity model ([41], [85], [86]), and the percolation based approach ([47], [56], [57],

[61]). While the latter only offers information about the final state of the epidemic, the

former describes the temporal evolution of the epidemic. Generalisations of the pairwise

model to gamma-distributed infectious periods have also been proposed and this has been

developed for both homogeneous and heterogeneous networks ([75], [76]), non-Markovian

SIS model is considered in [17, 82].

This thesis is motivated by this renewed interest in non-Markovian processes and

aims to extend the pairwise model from Markovian to non-Markovian epidemic dynamics

where the infection process remains Markovian but the infectious period is taken from an

arbitrary distribution. Unfortunately, the reliable tools and mathematical machinery of

Markovian theory do not translate directly to modelling and analysis of non-Markovian

systems, and this leads to many significant challenges.

In Chapter 2, we present the fundamental models of mathematical epidemiology and

network epidemics to give a complete picture about the preliminary results of this rel-

evant topic. We start with the classical SIR model and introduce the stochastic and

deterministic approaches considering Markovian infection and recovery processes and

homogeneous mixing in the population. As a possible improvement, we recall the results

of Sharkey et. al [74] about exact master equations for stochastic process on networks.

By introducing the node-level and link-level approximations, we write down the mean-

field and pairwise models for the simplest SIR type epidemic process. These equations
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are the starting points of this research. In the last part of this chapter, we introduce

the most commonly used simulation algorithms for stochastic processes, such as syn-

chronously and asynchronously updating paradigms. In the last section, we summarise

briefly two possible simulation approaches for non-Markovian systems: the one we use

through this thesis and a generalised version of Gillespie algorithm from Boguna et al

[11].

The most important quantities derived for SIR dynamics are the reproduction num-

ber and the implicitly given epidemic final size. We recall the classical results for SIR

model with mass action and introduce the general concept of reproduction numbers in

Chapter 3. We obtain analytical formulae for the basic reproduction number of mean-

field type systems and the newly introduced concept of pairwise reproduction number

for link-level models. These definitions were published in our first paper about non-

Markovian epidemics in [49]. As an application, we calculate these measurements for

exponentially distributed and fixed recovery times. In the last section, we summarise the

general functional forms of final size relations for both type of models, highlighting the

relation between these equations.

As it is expected, the distribution of the recovery time has a great impact on the

disease spread and knowing as much as possible about it is a key factor in understanding

the dynamics. In Chapter 4 we illustrate the behaviour of the epidemic process for the

most widely observed distributions, such as gamma, uniform and lognormal distributions

and study the interesting phenomenon, that the pairwise reproduction number is de-

creasing if the variance of the recovery time is increasing. We can analitically prove this

statement for the case of gamma and uniform distribution and find numerical evidence

for lognormal distribution. We prove a theorem for the general case with a condition for

the integral functions of cumulative distribution functions and show an example for its

application. As a conclusion, we see that this result holds within one family of distribu-

tions, but different types of distributions with the same mean and variance may produce

significantly different pairwise reproduction numbers.

The first generalisations of mean-field and pairwise models are presented in Chapter

5, where we consider fixed recovery time and develop the models from first principles.

We investigate the basic properties, such as positivity of solutions of the resulting de-

layed differential equations and reduce the dimensionality by finding a first integral to

the pairwise system. We explore the relation between the occurrence of an epidemic

and reproduction numbers by investigating linearisation of models and the associated

characteristic roots. The main results are the derivation of implicit equations for final

epidemic size. In the last part of this chapter, we test the validity of our models with nu-
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merical simulations and present a possible extension of the model for more heterogeneous

networks.

After all these studies, the question arises naturally, how to develop a model for

arbitrarily distributed recovery time. First we consider a hyperbolic system of partial

differential equations, where the population of infective nodes and links are structured

by the time elapsed since the beginning of the infectious period, also called as age since

infection. By solving the partial differential equations, the model is transformed into a

system of integro-differential equations, which is analysed both from a mathematical and

numerical point of view. The associated lengthy calculations are included in the first

section of Chapter 6. The further sections follow the scheme of Chapter 5: after the

positivity results and performing calculations for showing the relation between epidemic

outbreak and reproduction numbers, the final size relations are obtained for mean-field

and pairwise models through several pages of calculations. Since there is no general

solver for integro-differential equations, we implement an algorithm adapting collocation

schemes of [15]. In the last part, we investigate the special choices for distributions and

from the general model we get back the Markovian models (for exponential distribution),

systems for fixed case in Chapter 5 and system of ordinary differential equations published

in [75] (for gamma distribution).



2

Mathematical framework

2.1 SIR epidemic with homogeneous mixing

During the Great Plague in London in 1665-1666, the disease appeared suddenly, grew

in intensity and then disappeared, leaving the 85 % of the population untouched. One

of the early triumphs of mathematical epidemiology was the formulation of the model

by Kermack and McKendrick [48], whose predictions are very similar to this behaviour,

observed in countless epidemics. The model is based on relatively simple assumptions on

the rates of flow between different classes of members of the population.

We will work with compartmental models, i.e. we divide the population studied

into several disjoint classes. The most used classes are S (susceptible), I (infected),

R (recovered), E (exposed) and A (asymptomatic) compartments. In the case of SIR

models, the susceptible members of the population are affected by the disease due to a

contact with an infected individual and recover at the end of the infectious period (this

duration may be called recovery time in this simplified model), see Fig. 2.1.

Figure 2.1: Flowchart of SIR dynamics

2.1.1 Stochastic approach

In a stochastic model we consider, that each individual may have only one state S, I or

R. The state of the system is a triple (x, y, z), where the elements are the number of

individuals in state S, I and R, respectively. The probability of transition from (x, y, z)

6



2. MATHEMATICAL FRAMEWORK 7

to (x−1, y +1, z) is depending on x and y and changing to (x, y −1, z +1) is proportional

to y. Clearly, for a given population and considering precisely given rules for transitions

(see [3]), an epidemic may be considered as an recorded output of the projection of the

stochastic model and thus may differ for repeated projections.

Throughout this thesis, we neglect the effects of births and deaths, thus population

size N is assumed to be constant, because the duration of an epidemic is measured on

a shorter temporal scale, thus the demographic changes can be neglected. Initially, we

have a fully susceptible population, and a small number of infected individuals is added

at time t = 0.

One of the most important assumptions, that the population is homogeneously mixed,

i.e. every individual interacts identically with every other. This is called the law of mass

action. Events occur at discrete time steps, furthermore the infection and recovery occur

with constant probability at each time step. This latter assumption is called Markovian

property.

2.1.2 Deterministic approach

If a population is large, however, we may consider probabilities of changing between states

as rates, and derive differential equations. These describe the expected proportion of the

(large) population in each state at each time, as the continuum limit of the stochastic

processes. The usefulness of a differential equation approach is that it is deterministic;

it tells us something about a typical epidemic, whereas any one projection output of the

stochastic model does not give insight into how the next epidemic might arise.

We can introduce variables S(t), I(t), R(t) for the number/proportion of suscepti-

ble, infected and recovered individuals, respectively at time t. Therefore, we have the

following system:

Ṡ(t) = −βS(t)I(t)

İ(t) = βS(t)I(t) − γI(t) (2.1)

Ṙ(t) = γI(t),

where overdot represents the derivative with respect to time. We can interpret the

equations as follows. First, the susceptible individuals may only be depleted, because

there is no mechanism allowing infected or recovered to re-enter the S state. Next, the law

of mass action implies that this depletion happens at a constant rate β proportional to

S(t)I(t) and this decrease in S(t) causes replenishment in I(t). Finally, the depletion from

I(t) happens by the recovery at the constant rate γ proportional to I(t) and recovered

population fills at this rate. Naturally, the initial conditions satisfy S(0), I(0), R(0) ≥ 0
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and S(0) + I(0) + R(0) = N . Adding up equations in (2.1), we have Ṡ + İ + Ṙ = Ṅ = 0,

thus the population has constant size over time.

This model appears as a very special case in [48], which was the basis for research

in mathematical epidemiology during the last 90 years. In Chapter 3, we define the key

parameters, e.g. basic reproduction number and study the most important properties of

model (2.1).

2.2 Heterogeneity in interactions: networks

Figure 2.2: Disease-spread on a small network. Grey, black and white nodes are suscep-
tible, infected and recovered, respectively. The contact network is generated in Wolfram
Mathematica 10 with Barabasi-Albert graph distribution. In the second and third figure,
a new infected and recovered node (highlighted by enlarging) appears, respectively.

In general, a disease outbreak starts with a small number of infective individuals and

the transmission of infection is a stochastic event depending on the pattern of contacts

between members of the population. For a more realistic modelling approach we should

take this pattern into account.

Determining a complete mixing network requires knowledge of every individual in a

population and every relationship between individuals. For all but the smallest popula-

tions, this is an impractically time-consuming task. The networks commonly used are

generated by computer simulation to conform to several observed social characteristics.

Several forms of computer-generated networks have been studied in the context of disease

transmission. Each of these idealized networks can be defined in terms of how individu-

als are distributed in space (which may be geographical or social) and how connections

are formed, thereby simplifying and making explicit the many and complex processes

involved in network formation within real populations.

In random networks, the spatial position of individuals is irrelevant, and connections

are formed at random. In the most analytically tractable version of the random network,
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each individual has a fixed number of contacts (called degree in graph theory) through

which infection can spread. In special case, when all degrees are equal, we get a homoge-

neous random network. An alternative formulation of the random network is to connect

any two nodes with probability p. This leads to the Erdős-Rényi network model ([25]).

Beside random networks, where the connections are unstructured, lattices ([68]), small-

world- ([84]), spatial- ([45]) and scale-free networks ([8]) are the most popular network

types in applications.

Any given contact network, whether generated using a theoretical algorithm or con-

structed from real-world observations, can be described by a simple adjacency matrix

which is then used in the construction of exact Kolmogorov/ master equations, which

describe the probability of the population being in each and every possible configuration.

In the following, let us now recall the notations and models from [74].

We consider the general stochastic system Γ whose state is denoted by Γα, α ∈
{1, 2, . . . , 3N}. The evolution in the state space can be described by a continuous time

Markov-process. The time-dependent probabilities

P(α)(t) = P(system Γ is in state Γα at time t)

can be calculated from the master equations:

Ṗ(α)(t) =
3N∑

β=1

[
Rβ,αP(β)(t)− Rα,βP(α)(t)

]
, (2.2)

where Rβ,α denotes the Poissonian transition rate from state Γβ to state Γα. The solution

of these master equations leads to an exact description of the dynamics of the full system.

Since the system size of the master equations scales exponentially with population size,

even with modern advances in computing power we are unable to numerically integrate

these equations for realistic populations.

2.2.1 Node-level and link-level approximations

We suppose that within the system Γ, there exist well-defined smaller systems which we

refer to as subsystems. One way to reduce the dimensionality of system (2.2) to split Γ

into a set of Z coupled subsystems ψi, i = 1, 2, . . . , Z.

For each subsystem ψi, we can write master equations to describe the state probabil-

ities P(i,a)(t) = P(ith subsystem ψi is in state ψa
i at time t):

Ṗ(i,a)(t) =
mi∑

β=1

[
Rb,a

i P(i,a)(t)− Ra,b
i P(i,b)(t)

]
, (2.3)
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where the indices a and b denote two of the mi possible states of the ith subsystem and

Ri denotes the matrix of transition rates between states for the ith subsystem and is,

in general, dependent on the states of the other subsystems. The number of equations

m =
∑Z

i=1 mi can be far smaller than the 3N master equations for the complete system,

but at the cost that these equations are not closed.

An obvious subsystem is formed by the nodes themselves. For probabilities

P X
i (t) = P(node i is in state X at time t),

where X ∈ {S, I, R}, Eq. (2.3) becomes

Ṗ S
i (t) = −RS,I

i P S
i (t)

Ṗ I
i (t) = RS,I

i P S
i (t) − RI,R

i P I
i (t). (2.4)

Ṗ R
i (t) = RI,R

i P I
i (t).

Similarly, we can introduce the following notations:

P X,Y
i,j (t) = P(node i is in state X, node j is in state Y at time t),

P X,Y,Z
i,j,k (t) = P(node i is in state X, node j is in state Y, node k is in state Z at time t),

where X, Y, Z ∈ {S, I, R}. It can be seen, if the contact network is represented by an

undirected graph G = (V, E) with vertex/node set V with N vertices, edge/link set E

and the adjacency matrix, which is an N × N matrix G = (Gj,k) defined as:

Gj,k =





1, if vertices j and k are linked,

0, otherwise.;

we have

RS,I
i =

N∑

j=1

τGj,i

P I,S
j,i

P S
i

RI,S
i = γ.

where τ denotes the transition rate, γ denotes the recovery rate. It is not always

necessary to determine all time-dependent probabilities, since the expected values of

the number/proportion of susceptible, infected or recovered nodes are equally valuable.

These expected values at time t are denoted by [S](t), [I](t) and [R](t) respectively and

can be expressed as follows,

[X](t) =
N∑

i=1

P X
i (t), X ∈ {S, I, R}.
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Similar expressions can be obtained for the expected number of X−Y links and X−Y −Z

triplets,

[XY ](t) =
N∑

i=1

N∑

j=1

Gi,jP
X,Y
i,j (t),

[XY Z](t) =
∑

i,j,k,i Ó=k

Gi,jGj,kP X,Y,Z
i,j,k (t), (2.5)

where X, Y, Z ∈ {S, I, R}. It follows from (2.4) that:

˙[S](t) = −τ [SI](t)

˙[I](t) = τ [SI](t) − γ[I](t) (2.6)

˙[R](t) = γ[I](t).

The interpretation is clear, since [S](t) is depleted at constant rate τ [SI](t) (i.e.

proportional to the expected number of S − I links), which is a rate of increase of

infected nodes. Infection is, as in the previous section, depleted at rate γ[I](t), which is

the rate of increase in [R](t). We observe, that the system (2.6) is not closed, we have

variable [SI](t) without any governing equation. A possible way to solve this problem

to close the system (2.6) at the level of nodes. For elaborating this, we need a formula

for [SI](t), which depends only on the node-level variables [S](t) and [I](t). Notice, that

the expected number of X − Y links in a homogeneous network with uniform degree

distribution 〈k〉 = n (which is an n-regular graph) is

[XY ] ≈ n[X]
[Y ]

N
. (2.7)

Using (2.7), we obtain the node-level system, called mean-field model:

˙[S](t) = −τ
n

N
[S][I](t)

˙[I](t) = τ
n

N
[S][I](t) − γ[I](t) (2.8)

˙[R](t) = γ[I](t),

which has the same form as (2.1).

On the other hand, we can introduce the subsystem of links as an extension of node-

level view. In this case, the complete reduced master equations for the link dynamics
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are:

Ṗ S,S
j,i (t) = −

∑

k,k Ó=i

τGk,jP
I,S,S
k,j,i (t) −

∑

k,k Ó=j

τGk,iP
S,S,I
j,i,k (t),

Ṗ I,S
j,i (t) =

∑

k,k Ó=i

τGk,jP
I,S,S
k,j,i (t) −

∑

k,k Ó=j

τGk,iP
I,S,I
j,i,k (t) − τGj,iP

I,S
j,i (t) − γP I,S

j,i (t),

Ṗ R,S
j,i (t) = −

∑

k,k Ó=j

τGk,iP
R,S,I
j,i,k (t) + γ P I,S

j,i (t), (2.9)

Ṗ I,I
j,i (t) =

∑

k,k Ó=i

τGk,iP
I,S,I
k,j,i (t) +

∑

k,k Ó=j

τGj,iP
I,S,I
j,i,k (t) − τGi,jP

S,I
j,i (t) − 2γP I,I

j,i (t),

Ṗ R,I
j,i (t) =

∑

k,k Ó=j

τGk,iP
R,S,I
j,i,k (t) + γ P I,I

j,i (t) − γ P R,I
j,i (t),

Ṗ R,R
j,i (t) = γ P R,I

j,i (t) + γ P I,R
j,i (t)

Due to the symmetry of the graph, we have Gi,j = Gj,i, so [XY ] = [Y X]. Furthermore,

applying formulae in (2.5) for P S,S
j,i , P I,S

j,i and P I,I
j,i expressions in (2.9), we obtain

˙[SS](t) = −2τ [SSI](t),

˙[SI](t) = τ [SSI](t) − τ [ISI](t) − τ [SI](t) − γ[SI](t), (2.10)

˙[II](t) = 2τ [ISI](t) + 2τ [SI](t) − 2γ[II](t).

We observe that equations in (2.10) depend on the variables of triplets. We will

approximate the variable [XY Z] by a function of [XY ], [Y Z] and [Y ]. The detailed

explanation of the following moment-closure approximation formula can be found in [18]

and [43]:

[XY Z] =
n − 1

n

[XY ][Y Z]

[Y ]
. (2.11)

Applying (2.11), we can obtain the following self-consistent system by including the

equations for variables of nodes and links:

˙[S](t) = −τ [SI](t)

˙[I](t) = τ [SI](t) − γ[I](t)

˙[SS](t) = −2τ
n − 1

n

[SS](t)[SI](t)

[S](t)
, (2.12)

˙[SI](t) = τ
n − 1

n

[SS](t)[SI](t)

[S](t)
− τ

n − 1

n

[SI](t)[SI](t)

[S](t)
− τ [SI](t) − γ[SI](t).

System (2.12) is the simplest link-level approximation, called pairwise SIR model.

The number of links in an n-homogeneous network with N nodes is Nn/2, thus the sum

of variables [XY ], X, Y ∈ {S, I, R} equals to Nn. This gives a condition for initial values
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[XY ]0. In our simulations in this thesis, we consider a small number of infecteds in a

fully susceptible population, thus the initial values [SS]0 = n
N

[S]20, [SI]0 = n
N

[S]0[I]0 are

reasonable for (2.12).

The models (2.8) and (2.12) are describing epidemics with Markovian recovery, be-

cause the recovery process is assumed to be Markovian. The main goal of this dissertation

is giving a generalisation for these fundamental models by relaxing the Markovian as-

sumption for the recovery process.

2.2.2 Stochastic simulation

Figure 2.3: Several outputs of individual-based stochastic simulation for Markovian epi-
demic on network and the average epidemic curve. We consider homogeneous networks
with N = 1000 nodes and degree n = 15. The initial number of susceptibles is [S]0 = 999,
the transmission rate is τ = 0.3 and recovery rate is γ = 1. The thick curve shows the
mean of 100 simulations.

As an alternative for solving master equations, individual-based stochastic simulations

can be performed on the full network. Taking the average of a large number of such

simulations remains the most viable way to explore dynamics on large, complex networks

(see Fig. 2.3). Unfortunately, all information about rare events is lost in the averaging

process, whereas if the master equation could be solved, the probability of any possible

event could be calculated.

A simple technique for simulating stochastic systems is the synchronously updating

implementation. Here, discrete-time simulations can be performed by fixing a time step

∆t and, at every step, allowing every possible event to occur with a probability calculated
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from the various disease parameters, the current state of the network and the magnitude

of ∆t, and the state of the system is updated at each time step. An example from this

type of simulations is the tau-leaping method.

Synchronously updating simulations can be very efficient to implement in terms of

coding complexity. However, allowing multiple events to occur simultaneously is not in

keeping with the Markovian nature of stochastic models and hence ∆t needs to be small

enough to avoid this happening. Moreover, in general synchronous updating approach

may generate non-realistic behaviour and strange patterns ([26]).

An alternative simulation approach is the asynchronously updating paradigm. In

general, this technique allows at most only one event at each time step, which simulates

better the continuous-time phenomena. For asynchronously updating algorithms with

time step ∆tasync, where inter-event time is fixed and synchronous version with time step

∆tsync allowing n events, we have ∆tsync ≈ n∆tasync.

A special type of asynchronously updating algorithms with dynamically changing

inter-event times is known as Gillespie algorithm [30], whereby the time to next event, T ,

is an exponentially distributed random variable chosen from an exponential distribution

parametrised by Rtotal, where Rtotal is the rate of all possible transitions given the current

status of all individuals. It follows that working out Rtotal amounts to summing all

infection and recovery rates across the whole network. As the inter-event time is directly

related to the total rate, large rates result in small inter-event times. Once the time

to next event is determined, a single event out of all possible is chosen at random but

proportionally to its rate.

In detail, assuming Markovian infection and recovery process, the Gillespie algorithm

for simulating network epidemics has the following steps:

1. Initialization. Set initial time, states of the nodes and the associated rates based

on the state of the node and the neighbouring nodes.

2. Sample an inter-event time. Generate an exponentially distributed inter-event time,

where the parameter is the reciprocal of the sum of all rates.

3. Sample a node. Choose a node to be updated by generating a uniformly distributed

random number and using the cumulative sums of rates.

4. Update. Update time, the state of the node and the rates calculated to the nodes.

It is clear, that the Gillespie algorithm can be applied to system of discrete Markovian

stochastic processes. The algorithm takes advantage of the theory of superposition of a

fixed number of renewal processes.



2. MATHEMATICAL FRAMEWORK 15

2.3 Non-Markovian stochastic simulations

Figure 2.4: Several outputs of individual-based stochastic simulation for non-Markovian
epidemic on network and the average epidemic curve. We consider Weibull distributed
recovery time with scale λ = 1 and shape k = 1 on homogeneous networks with N = 1000
nodes. The initial number of susceptibles is [S]0 = 999 and infection rate is τ = 0.3. The
thick curve shows the mean of 100 simulations.

Since the Gillespie algorithm builds on the memorylessness property of the inter-

event times, the generalisation of this algorithm is a challenging task. In the following,

we describe the algorithm we used in the simulations, which was implemented inWolfram

Mathematica 10. The code highly exploits the new developments of the previous version 9,

namely, the built-in functions for generating arbitrary random networks. The program is

very flexible for further extension of the stochastic model, such as dynamically changing,

more realistic networks.

The main program executes the event-based simulation, where waiting times for all

possible events are generated from appropriate distributions. During an update the

event with the smallest waiting time is executed followed by the necessary update of the

waiting times of events affected by the most recent change. The two types of update are

implemented in two modules, which update the states and waiting times according to

the type of the event. Several outputs of a sample run and the average epidemic curve

can be seen in Fig. 2.4. For more details, see Appendix.

The simulation framework for non-Markovian processes has also been improved by

Bogũná et al. [11], by proposing an equivalent of the efficient Gillespie algorithm for

Poisson processes. In this paper, they describe an algorithm simulating statistically
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independent discrete stochastic processes with arbitrary inter-event distribution. This

approach stores the time elapsed since the last occurrence of each process up to a given

point in time and uses these values and the associated survival and density functions to

calculate the time until the next event. The nMGA (’non-Markovian Gillespie algorithm’)

is an approximation of the exact simulations assuming that N >> 1, but uses the list of

elapsed times and survival functions.

2.4 Functional differential equations

In this thesis, we introduce deterministic models for non-Markovian SIR network epi-

demics, which fall in a more general class of differential equations, namely delay and

integro-differential equations. Delay differential equations are widely used in infectious

disease modelling, applied for malaria ([60]), influenza ([50]) or in immuno-epidemiology

([9]). In population dynamics, Volterra-type integral and integro-differential equations

are applied for modelling e.g. predator-prey systems ([83]).

A general form of a delay differential equation (DDE) is

ẋ(t) = f(t, xt),

where xt(θ) = x(t+θ), −r ≤ θ ≤ 0 and f : R×C([−r, 0],Rn) → R
n is a given continuous

function. One of the most important difference compared to ordinary differential equa-

tions (ODE), that for a DDE we have to prescribe an initial function φ(θ) ∈ C([−r, 0],Rn)

to define an initial-value problem.

If f(t, xt) = f(t, x(t), x(t − r)), where r > 0 constant, we have a differential equation

with discrete delay. A term like

∫ t

t−r
k(t − s)x(s)ds =

∫ r

0
k(s)x(t − s)ds,

where 0 ≤ r < ∞ is referred to as a distributed delay. On the one hand, if we want

to define a dynamical system for an autonomous DDE, the state space will be clearly

C([−r, 0],Rn), which is an infinite dimensional Banach space, compared to an ODE,

where the state space is finite dimensional. On the other hand, considering the simplest

DDE

ẋ(t) = −x(t − 1),

and deriving the associated characteristic equation

λ + e−λ = 0,
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we have infinitely many characteristic roots and linearly independent solutions of the form

eλt. An excellent introduction about DDEs with applications in mathematical biology

can be found in [36].

Clearly, the stability definitions can be extended to DDEs. We consider the system

of delay differential equations

ẋ(t) = f(t, xt),

xσ = φ (2.13)

where f(t, 0) = 0, t ∈ R, thus x(t) ≡ 0 is a solution. The solution x = 0 is stable, if

for any σ ∈ R and ǫ > 0, there exists δ = δ(σ, ǫ) > 0 such that φ ∈ C([−r, 0],Rn) and

‖φ‖ < δ implies that xt(σ, φ) < ǫ, where ‖φ‖ = sup{|φ(θ)| : −r ≤ θ ≤ 0} and x(t, σ, φ) is

the solution of (2.13). It is asymptotically stable, if it is stable and if there exists b(σ) > 0

such that, whenever φ ∈ C([−r, 0],Rn) and ‖φ‖ < b(σ), then x(t, σ, φ) → 0, t → ∞.

Finally, x = 0 is unstable, if it is not stable.

An integral equation is an equation in which the unknown function x(t) appears under

an integral sign, e.g.,

f(t) = h(t, x(t)) +
∫ b(t)

a
k(t, s, x(s))ds, t ≥ a,

where h(t), f(t), b(t) and k(t, s, x) are given functions and we wish to determine x(t).

The function k(t, s, x) is called the kernel of the integral equation. A first-order integro-

differential equation involves both integral and derivative of the unknown function, e.g.

ẋ(t) = h(t, x(t)) +
∫ b(t)

a
k(t, s, x(s))ds, t ≥ a.

An equation is Volterra-type, if b(t) = t and Fredholm-type, if b(t) ≡ b, where b is

constant. An integral/integro-differential equation is of the first kind, if h ≡ 0 and of

the second kind otherwise. In this thesis, we will work with Volterra integro-differential

equations of the second kind

ẋ(t) = h(t, x(t)) +
∫ t

0
k(t, s, x(s))ds, t ≥ 0,

and investigate a convolution-type linear Volterra integral equation of the first kind has

the form

x(t) =
∫ t

0
x(t − s)K(s)ds, t ≥ 0.

Despite the fact, that for the integral/integro-differential equations above only an initial

value at the starting time point is enough to determine an initial-value problem, the sim-

plest linear equations have infinitely many solutions in the form of eλt. However, it is pos-

sible to specify the unknown function on an initial interval, which may influence greatly
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the solutions of the equation. More details about Volterra integral/integro-differential

equations can be found in [16]. The stability definitions for initial-value problems are

similar to definitions in ODE theory (prescribed initial value) and DDE theory (for initial

functions).



3

Reproduction numbers and final size
relations

An epidemic, which acts on a short temporal scale, may be described as a sudden out-

break of a disease that infects a substantial portion of the population in a region before

it disappears. Epidemics usually leave many members untouched. The number of un-

touched individuals appears in the final size relation, which gives a relationship between

the size of the epidemic (number of members of the population who are infected over the

course of the epidemic) and the associated reproduction number.

Reproduction numbers play a crucial role in mathematical epidemiology and are de-

fined as the expected number of secondary infections caused by a ‘typical’ infected indi-

vidual during its infectious period when placed in a fully susceptible population, which

is a definition understood at the level of individuals ([22]).

3.1 Results for classical SIR model (2.1)

The most important results for SIR models are the explicit formula of basic reproduction

number and an implicit equation for the final epidemic size containing R0. For the

classical SIR model (2.1), it is easy to see, that I∞ = lim
t→∞

I(t) = 0. Epidemic may

occur, if I ′(0) > 0, which is equivalent to condition R0 :=
τS0

γ
> 1. Here, R0 is the basic

reproduction number associated to model (2.1) and can be interpreted as the number of

newly infected individuals per unit time (τS0) over the average infectious period
(
1
γ

)
.

Furthermore, we can reduce dI/dS and integrate it to obtain

ln
(

S∞

S0

)
= R0

(
S∞

S0
− 1

)
.

We will use the notation s∞ = S∞

S0
. Clearly, attack rate is 1 − s∞. (Technically, the

attack rate should be called an attack ratio, since it is dimensionless and is not a rate.)

19
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Using these formulae, we have

ln s∞ = R0 (s∞ − 1) . (3.1)

This equation is called final size relation and gives an implicit equation for the proportion

of remaining individuals after the disease outbreak. Clearly, larger the R0, smaller the

s∞ (thus larger the attack rate) we have, which is in harmony with the meaning of basic

reproduction number.

3.2 Concept of reproduction numbers for networks

In the following, we introduce a general concept for the reproduction number associated

to the mean-field and pairwise models. We introduced these definitions in [49] and use

these concepts and results in our further papers in this topic ([70], [71]). The pairwise

model is written at the level of links and describes the dynamics of susceptible (S − S)

and infected (S − I) links. This leads to the definition of a new type of reproduction

numbers, which we call pairwise reproduction number. More precisely, we distinguish the

following two useful quantities:

(a) the basic reproduction number is the expected lifetime of an I node multiplied by

the number of newly infected nodes per unit time (denoted by R0);

(b) the pairwise reproduction number is the expected lifetime of an S−I linkmultiplied

by the number of newly generated S − I links per unit time (denoted by Rp
0).

The expected life time of an infectious node is the expected value of a random variable

I corresponding to the distribution of the length of infectious periods. In contrast, an
S − I link can be removed either due to the recovery of the I node or the infection of

the S node. Therefore, the expected lifetime of the S − I link is the expected value

of the minimum of two random variables. If we assume that the transmission process

of infection along such a link has density function fi with survival function ξi, and the

process of recovery has density function fI with survival function ξI , then, denoting by

Z the random variable defined by the lifetime of an S − I link, we have

E(Z) =
∫ ∞

0
t (fi(t)ξI(t) + fI(t)ξi(t)) dt. (3.2)

From the assumption that the infection time along S − I links is exponentially dis-

tributed (i.e. fi(t) = τe−τt, ξi(t) = e−τt), the number of newly infected nodes per unit
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time in the mean-field and pairwise model are n
N

τ [S]0 and τ n−1
n

[SS]0
[S]0

= τ n−1
N
[S]0, respec-

tively, where we used the approximation

[SS]0 =
n

N
[S]20, (3.3)

which is consistent with the assumption of introducing small amount of infected nodes

at t = 0. Moreover, we will see in Ch. 6, that Eq. (3.3) comes automatically from the

general model.

To calculate the expected lifetime of an S − I link, if the infection is Markovian

and the recovery is arbitrary with density function fI(t) and survival function ξI(t), we

integrate by parts and we obtain

E(Z)=
∫ ∞

0
t (fi(t)ξI(t) + fI(t)ξi(t)) dt =

∫ ∞

0
t

(
τe−τtξI(t) + e−τtfI(t)

)
dt

=
∫ ∞

0
tτe−τtξI(t)dt+

∫ ∞

0
te−τtfI(t)dt

=

[(
−te−τt − e−τt

τ

)
ξI(t)

]∞

0

−
∫ ∞

0

(
te−τt +

e−τt

τ

)
fI(t)dt+

∫ ∞

0
te−τtfI(t)dt

=
1

τ
− 1

τ

∫ ∞

0
e−τtfI(t)dt =

1− L[fI ](τ)

τ
,

where L[fI ](τ) denotes the Laplace transform of fI at τ . Multiplying this formula with

the expected number of newly generated S − I links τ n−1
N
[S]0, we have the following

general formula for pairwise reproduction number:

Rp
0 =

n − 1
N

[S]0(1− L[f ](τ)). (3.4)

Clearly, the basic reproduction number R0 for arbitrary recovery time is

R0 =
n

N
τE(I)[S]0. (3.5)

3.3 Special cases

For Markovian recovery (where recovery time is exponentially distributed with parameter

γ, thus fI(t) = γe−γt), it is straightforward to obtain, that pairwise reproduction number

is

Rp
0,Exp(γ) =

n − 1
N

[S]0 (1− L[fI ](τ)) =
n − 1

N
[S]0

(
1− γ

τ + γ

)
=

n − 1
N

[S]0
τ

τ + γ
.

where Rp
0,Exp(γ) denotes the pairwise reproduction number for exponentially distributed

recovery time with mean length 1
γ
. Since the Markovian mean-field model (2.8) has the
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same functional form as the classical SIR model (2.1), the basic reproduction number is

clearly

R0,Exp(γ) = τ
n

N
[S]0E(I) =

n

N
τ [S]0

1

γ
.

For fixed recovery time σ, the survival function is ξI(t) = 1 if 0 ≤ t < σ and ξI(t) = 0

if t ≥ σ, and the density function fI(t) is the Dirac-delta δ(t − σ). Using fundamental

properties of the delta function, we have

Rp
0,Fixed(σ) =

n − 1
N

[S]0 (1− L[fI ](τ)) =
n − 1

N
[S]0

(
1− e−τσ

)
.

where Rp
0,Fixed(σ) denotes the pairwise reproduction number for fixed recovery time σ.

Obviously, the basic reproduction number R0 for fixed recovery time σ is

R0,Fixed(σ)
n

N
τ [S]0E(I) =

n

N
τ [S]0σ.

In Ch. 5, we develop the mean-field and pairwise models for fixed recovery time and

investigate the essential properties of these systems. The general case is covered in Ch.

6 and the study of general model gives an insight to the role of reproduction numbers

defined above. The most important cases for R0 and Rp
0 are summarised in Table 3.1.

R0 Rp
0

Markovian n
N

τ
γ
[S]0

n−1
N

τ
τ+γ
[S]0

Fixed n
N

τσ[S]0
n−1
N
(1− e−τσ)[S]0

General n
N

τE(I)[S]0 n−1
N
(1− L[fI ](τ)) [S]0

Table 3.1: Basic and pairwise reproduction numbers for different recovery distributions.
L[fI ](τ) denotes the Laplace transform of fI , the density of the recovery process, at τ .

3.4 Final size relations

It is easy to see for mean-field model (2.8), that the final size relation is

ln s∞ = R0 (s∞ − 1) , (3.6)

where R0 = R0,Exp(γ). It is clear, that the derivation of the final size relation is more

complicated for the pairwise model. A possible derivation may have the following major

steps:

(a) find an invariant to reduce the dimensionality of the system,
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(b) integrate the equation for [SI](t),

(c) integrate the equation for [S](t) on [0, ∞),

(d) employ algebraic manipulations to obtain the final size relation.

For (2.12) as we will show for general case in Ch. 6, this procedure yields

s
1
n∞ − 1
1

n−1
= Rp

0

(
s

n−1
n∞ − 1

)
, (3.7)

where Rp
0 = Rp

0,Exp(γ). Observe, that taking the limit of n → ∞ in (3.7) gives rise to

ln(s∞) = Rp
0(s∞−1), which is equivalent to the ‘standard’ form of (3.6). This shows that,

in a sense, by a suitable scaling of parameters one can obtain the mean-field model as a

limit of the pairwise model, since in fully connected graphs the pairwise approximation

tells us that the number of [AB] pairs can be expressed as [AB] = [A][B].



4

Impact of distribution on disease
spread

In this chapter, we study how the distribution of infectious periods influences the dy-

namics of epidemics on networks. These results are summarised in our second paper in

this topic [70]. Note, while R0 depends on the expected value only, (see Table 3.1, case

’General’), the pairwise reproduction number Rp
0, uses the complete density function,

thus the average length of infectious period does not determine exactly the reproduction

number. It implies, that for an epidemic we have to know as precisely as possible the

shape of the distribution.

Besides exponential, the most commonly used distributions in epidemiology - because

of their simplicity and their good fit to empirical observations - are gamma, uniform

and lognormal distributions. We will show for these typical families of distributions

that higher variance in the recovery times generates lower reproduction numbers and

different epidemic curves within each distribution family. We also show that knowing the

expected value and the variance of the recovery times is not sufficient to determine the key

characteristics of the epidemics such as initial growth rate, peak size, peak time and final

epidemic size. For accurate predictions, more detailed information on the distribution of

the infectious period is required, thus carefully estimating this distribution in the case of

a real epidemics has paramount public health importance.

4.1 Gamma distribution

The gamma distribution is one of the most commonly used distributions in the epidemiol-

ogy literature to approximate empirically observed latent periods and infectious periods.

For example, it has been fitted to the incubation period and infectious period of small-

pox [24], bluetongue disease [31] and so on. It is applied in a wide spectrum of models,

24
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Figure 4.1: (a) Epidemic curves as averages of explicit stochastic simulations for non-
Markovian epidemics, where the transmission rate is τ = 0.3 and the initial number of
susceptibles is [S]0 = 999 on a homogeneous network with N = 1000 nodes and degree
n = 15. The circles/squares/diamonds correspond to simulations for gamma distributed
recovery time with parameters (a, b) = (2, 0.5)/(1, 1)/(0.5, 2), respectively. (b) The solid
curve shows the reproduction number Rp

0 as a function of variance v for fixed m = 1, and
the circle/square/diamond represent the cases simulated in Fig. (a). In the inset figure,
the shapes of the three corresponding probability density functions are presented.

because of its flexibility and the possibility of incorporating it into ordinary differential

equation models by the method of stages (also called linear chain) [54].

The usual notation of gamma distribution is Gamma(a, b), where a is called the shape

parameter and b is called the scale parameter. The probability density function and its

Laplace transform are

fI(x) =
xa−1e− x

b

Γ(a)ba
, L[fI ](s) =

(
1

1 + sb

)a

,

where Γ(a) is the gamma function evaluated at a. If the infectious period I is gamma

distributed with shape parameter a and scale parameter b, that is I ∼ Gamma(a, b),

then the expected value is m := E(I) = ab, and the variance is v := Var(I) = ab2,

and for simplicity later we shall use the notation m and v to denote the mean (expected

value) and the variance of distributions.

The monotonicity of the reproduction number in the variance is depicted in Fig.

4.1(b). For a fixed mean but different variances of the gamma distribution, we can ob-

serve different epidemic curves in Fig. 4.1(a), and correspondingly different reproduction

numbers (see Fig. 4.1(b)). The dependence of Rp
0,I on the distribution parameters is

detailed in Fig. 4.2. In the following proposition we summarise our observations.

Proposition 4.1.1. Consider two random variables I1 ∼ Gamma(a1, b1) and I2 ∼
Gamma(a2, b2) such that E(I1) = E(I2) and Var(I1) ≤ Var(I2). If I1 and I2 repre-
sent the recovery time distribution, then for the corresponding reproduction numbers the



4. IMPACT OF DISTRIBUTION ON DISEASE SPREAD 26

Figure 4.2: Contour lines of Rp

0 as a two-variable function of the parameters of the gamma
distribution. The transmission rate is τ = 0.3, the network has N = 1000 nodes and degree
n = 15 and initial number of susceptibles is [S]0 = 999. In (a), the contour lines are given
as the function of the shape and scale parameter, while in (b) they are depicted as the
function of the mean and the variance of the gamma distribution.

relation Rp
0,I1

≥ Rp
0,I2

holds (i.e. for gamma distributions with a given mean, the pairwise

reproduction number is monotonically decreasing with respect to the variance).

Let us remark, that the exponential distribution is also an element of this family

(Gamma(1, 1
λ
) = Exp(λ)) and the sum n of independent exponentially distributed ran-

dom variables with the same parameter λ is Gamma distributed with parameters shape

n and scale 1
λ
(i.e.

∑n
i=1 Exp(λ) = Gamma(n, 1

λ
)).

Proof. Fix m as the common mean of I1 and I2, then the scale parameter can be ex-
pressed as b = m

a
. Using that v = Var(I) = ab2 and

L[fI ](τ) =
(

1

1 + τb

)a

,

we can express the parameters in terms of the mean m and variance v, and thus the

Laplace transform can be written as

λm(τ ; v) := L[fI ](τ) =

(
1

1 + τ
m

v

) m2

v

,

where the notation λm(τ ; v) for the Laplace transform is meant to emphasize that the

Laplace transform evaluated at τ for a fixed m is a function of v. For arbitrary 0 < x <

y < 1 and 0 < a < b, the inequalities

x
m2

a < x
m2

b , x
m2

b < y
m2

b

hold. For v1 ≤ v2 and for τ > 0 we have
(
1 + τ

m
v2

)−1 ≤
(
1 + τ

m
v1

)−1
, and using the

relations above we obtain
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Figure 4.3: (a) Epidemic curves as averages of explicit stochastic simulations for non-
Markovian epidemics, where transmission rate is τ = 0.3 and initial number of susceptibles
is [S]0 = 999, on homogeneous network with N = 1000 nodes and degree n = 15. The
circles/squares/diamonds correspond to simulations for uniformly distributed recovery time
with parameters (a, b) = (0.9, 1.1)/(0.5, 1.5)/(0, 2), respectively. (b) The solid curve shows
the reproduction number Rp

0 as the function of variance v for fixed m = 1, and the cir-
cle/square/diamond represent the cases simulated in Fig. (a). In the inset figure, the three
uniform density functions are depicted.

(
1

1 + τ
m

v1

) m2

v1

≤
(

1

1 + τ
m

v1

) m2

v2

≤
(

1

1 + τ
m

v2

) m2

v2

,

which means that λm(τ ; v) is monotone increasing in v. Therefore, the pairwise repro-

duction number

Rp
0,I =

n − 1
N

[S]0(1− λm(τ ; v))

is monotone decreasing in v.

4.2 Uniform distribution

Since its simplicity allows us to make explicit calculations, in this section we outline

how the reproduction number and the disease dynamics behave when the recovery time

follows uniform distribution. Uniformly distributed incubation and infectious periods

have been used for example, in the modelling of avian influenza [87].

Let Uniform(a, b) denote a uniform distribution corresponding to the interval [a, b],

where a ≥ 0, b > a. If I ∼ Uniform(a, b), then the expected value is m = E(I) = a+b
2
,

and the variance is v = Var(I) = (b−a)2

12
. The probability density function and its Laplace

transform are given as

fI(x) =





1
b−a

for a ≤ x ≤ b

0 otherwise
, L[fI ](s) =

e−sa − e−sb

s(b − a)
.
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Figure 4.4: (a) Contour lines of Rp

0 as a two-variable function of the parameters of the
uniform distribution. (b) Contour lines of Rp

0 as a two-variable function of m and v for
uniform distribution. For both (a) and (b), the transmission rate is τ = 0.3, the network
has N = 1000 nodes and degree n = 15 with an initial number of susceptibles [S]0 = 999.

The monotonicity of the reproduction number in the variance is depicted in Fig. 4.3(b).

Similarly to the gamma distribution, for a fixed mean but different variances of the

uniform distribution we can observe different epidemic curves in Fig. 4.3(a), and corre-

spondingly different reproduction numbers (see Fig. 4.3(b)). The dependence of Rp
0,I on

the distribution parameters is detailed in Fig. 4.4.

Proposition 4.2.1. Consider two random variables I1 ∼ Uniform(a1, b1) and I2 ∼
Uniform(a2, b2) such that E(I1) = E(I2) and Var(I1) ≤ Var(I2). If I1 and I2 represent
the recovery time distribution, then for the corresponding reproduction numbers the rela-

tion Rp
0,I1

≥ Rp
0,I2

holds (i.e. for uniform distributions with a given mean, the pairwise

reproduction number is monotonically decreasing with respect to the variance).

Proof. Fixing the mean m, the right endpoint of the interval is b = 2m − a. Using that

v = Var(I) = (b−a)2

12
and L[fI ](τ) =

e−τa−e−τb

τ(b−a)
, by simple algebra we can express the

parameters by m and the variance v, and consequently the Laplace transform can be

written as the function of v:

λm(τ ; v) =
e−τm

2m

eτ
√
3v − e−τ

√
3v

τ
√
3v

,

where v ∈
(
0, m2

3

]
from our assumptions on a and b. Expanding the exponentials in

λm(τ ; v) into Taylor series, we can notice that the negative terms cancel out, and we
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Figure 4.5: (a) Epidemic curves as averages of explicit stochastic simulations for non-
Markovian epidemics, where transmission rate is τ = 0.3 and initial number of susceptibles
is [S]0 = 999, on homogeneous network with N = 1000 nodes and degree n = 15. The
circles/squares/diamonds correspond to simulations for lognormally distributed recovery

time with parameters (µ, σ) = (−0.03125, 0.25)/(− ln(3)
2 ,

√
ln 3)/(0, 2), respectively. (b)

The solid curve shows the reproduction number Rp

0 as the function of variance v for fixed
m = 1, and the circle/square/diamond represent the cases simulated in Fig. (a). Inset
figure shows the shape of these three distributions.

obtain

λm(τ ; v) =
e−τm

2m

(
1 + (τ

√
3v) + . . .

)
−

(
1− (τ

√
3v) + . . .

)

τ
√
3v

=
e−τm

2m

2τ
√
3v + 2 (τ

√
3v)3

3!
+ . . .

τ
√
3v

=
e−τm

m

∞∑

n=0

(τ
√
3v)2n

(2n+ 1)!
, (4.1)

which is monotone increasing in v for m > 0 and τ > 0. Therefore, the pairwise repro-

duction number Rp
0,I =

n−1
N
[S]0(1− λm(τ ; v)) is monotone decreasing in v.

4.3 Lognormal distribution

The lognormal distribution is also widely used in epidemiology. They have been fitted,

among others, to the incubation and infectious periods of smallpox [63]. Let lnN (µ, σ2)

denote a lognormal distribution, i.e. its logarithm is a normal distribution with expected

value µ and variance σ. Then for the lognormal distribution m = E(I) = eµ+σ2

2 , v =

Var(I) = e2µ+2σ2 − e2µ+σ2
, and the probability density function is, for x > 0,

f(x) =
1

x
√
2πσ

e− (−µ+ln(x))2

2σ2 .

Unfortunately a closed form does not exist for its Laplace transform, thus we cannot

perform a full analysis as in the previous two sections. We can still investigate numerically
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Figure 4.6: (a) Contour lines of Rp

0 as a two-variable function of the parameters of the
lognormal distribution. (b) Contour lines of Rp

0 as a two-variable function of the mean and
variance for lognormal distribution. For both (a) and (b), the transmission rate is τ = 0.3,
the network has N = 1000 nodes and degree n = 15 with an initial number of susceptibles
is [S]0 = 999.

the impact of m and v on the reproduction number and the time course of the epidemic.

The density function can again be expressed in terms of m and v by the formula

fm(x; v) =
1

x
√
2π

√
ln

(
v

m2 + 1
)e

−
(ln(x)−ln(m)+ 1

2 ln( v

m2 +1))
2

2 ln( v

m2 +1) , for x > 0. (4.2)

By straightforward calculation, we can find µ = ln(m) − 1
2
ln

(
1 + v

m2

)
and σ2 =

ln
(
1 + v

m2

)
, and then the formula above can be derived. Using this formula for the

density, we can numerically determine its Laplace transform and plot the pairwise re-

production number as a function of the variance for any given m, see Fig. 4.5(b). The

epidemic curves corresponding to these distributions can be seen in Fig. 4.5(a), and the

dependence of Rp
0 on the distribution parameters is detailed in Fig. 4.6.

4.4 General case

In the last section we give some simple conditions for the general case, which may guar-

antee, that smaller variance induces higher pairwise reproduction number. We consider

a random variable I corresponding to recovery times with probability density functions
fI(t), cumulative distribution function FI(t) =

∫ t
0 fI(s)ds and integral function of CDF

FI(t) :=
∫ t
0 FI(s)ds. Clearly, d2

dt2
FI(t) =

d
dt

FI(t) = fI(t). Moreover, FI(0) = FI(0) = 0.

Theorem 4.4.1. Consider two random variables I1 and I2 such that

E(I1) = E(I2) < ∞, (4.3)
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and

Var(I1) < Var(I2) < ∞. (4.4)

Let us assume, that

lim
t→∞

t3fI(t) = 0 (4.5)

and for all t > 0,

FI1(t) Ó= FI2(t). (4.6)

holds. If I1 and I2 represent the recovery time distribution, then for the corresponding

reproduction numbers the relation Rp
0,I1

> Rp
0,I2

holds.

Proof. Using assumption (4.3), we deduce
∫ ∞

0
t (fI1(t)− fI2(t)) = [t(FI1(t)− FI2(t))]

∞
0 −

∫ ∞

0
(FI1(t)− FI2(t))dt

= lim
t→∞

t(FI1(t)− FI2(t))− [FI1(t)− FI2(t)]
∞
0

[∗]
= − lim

t→∞
(FI1(t)− FI2(t)) = 0

thus

lim
t→∞

(FI1(t)− FI2(t)) = 0. (4.7)

To see [∗], i.e. lim
t→∞

t(FI1(t)− FI2(t)) = 0, we need some algebraic manipulations:

lim
t→∞

t(FI1(t)− FI2(t)) = lim
t→∞

FI1(t)− FI2(t)
1
t

L′H
= lim

t→∞

fI1(t)− fI2(t)

− 1
t2

= − lim
t→∞

t2(fI1(t)− fI2(t)
(4.4)
= 0,

where L’H refers to the L’Hospital rule. From assumption (4.4), we have

Var(I1) = E(I21 )− (E(I1))2 < E(I22 )− (E(I2))2 = Var(I2)
(4.3)⇒ E(I21 ) < E(I22 ).

or equivalently
∫ ∞
0 t2(fI1 −fI2)dt < 0. We can carry out some calculation on the left-hand

side of this inequality:
∫ ∞

0
t2(fI1 − fI2)dt = [t2(FI1(t)− FI2(t))]

∞
0 − 2

∫ ∞

0
t(FI1(t)− FI2(t))dt

= lim
t→∞

t2(FI1(t)− FI2(t))− 2[t(FI1(t)− FI1(t))]
∞
0

+ 2
∫ ∞

0
FI1(t)− FI1(t)dt

[∗∗]
= −2 lim

t→∞
t(FI1(t)− FI1(t)) + 2

∫ ∞

0
FI1(t)− FI1(t)dt

[∗∗]
= 2

∫ ∞

0
FI1(t)− FI1(t)dt,
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consequently ∫ ∞

0
FI1(t)− FI1(t)dt < 0 (4.8)

To prove [∗∗], i.e. lim
t→∞

t2(FI1(t)− FI2(t)) = limt→∞
t(FI1(t)− FI1(t)) = 0, we have

lim
t→∞

t(FI1(t)− FI2(t)) = lim
t→∞

FI1(t)− FI2(t)
1
t

L′H
= lim

t→∞

FI1(t)− FI2(t)

− 1
t2

= − lim
t→∞

t2(FI1(t)− FI2(t))

L′H
= lim

t→∞

fI1(t)− fI2(t)
2
t3

=
1

2
lim
t→∞

t3(fI1(t)− fI2(t))

(4.5)
= 0.

Since FI(t) ≥ 0, t ≥ 0 and monotone increasing, the integral function of CDF FI(t) is

monotone increasing and convex. Using (4.6) and (4.8), we obtain

FI1(t) < FI2(t), (4.9)

for all t > 0. Clearly, for Rp
0,I1

> Rp
0,I2
, it is enough to prove, that L[fI1 ](τ) < L[fI2 ](τ),

i.e.
∫ ∞
0 e−τt(fI1(t)− fI2(t))dt < 0. First, we perform some algebraic manipulation on the

left-hand side:
∫ ∞

0
e−τt(fI1(t)− fI2(t))dt = [e−τt(FI1(t)− FI2(t))]

∞
0

+τ
∫ ∞

0
e−τt(FI1(t)− FI2(t))dt

= τ [e−τt(FI1(t)− FI2(t))]
∞
0

+τ 2
∫ ∞

0
e−τt(FI1(t)− FI2(t))dt

(4.7)
= τ 2

∫ ∞

0
e−τt(FI1(t)− FI2(t))dt.

In conclusion, we have

τ 2
∫ ∞

0
e−τt(FI1(t)− FI2(t))dt

(4.9)
< 0,

therefore L[fI1 ](τ) < L[fI2 ](τ), which gives Rp
0,I1

> Rp
0,I2
.

As an example, we consider I1 ∼ Exp(γ) and I2 ∼ Fixed
(
1
γ

)
, i.e. fI1(t) = γe−γt, t ≥ 0

and fI2(t) = δ
(
t − 1

γ

)
, where δ(t) denotes the Dirac delta function. Clearly, we obtain

FI1(t) = t + 1
γ
e−γt − 1

γ
and FI2(t) = t − 1

γ
, thus there is no t0 > 0, such that FI1(t0) =

FI2(t0). Since E(I1) = E(I2) = 1
γ
, 1

γ2 = Var(I1) > Var(I2) = 0 and the other conditions
of Theorem 4.4.1 are satisfied, we find Rp

0,I1
< Rp

0,I2
.
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Figure 4.7: (a) Comparison of three epidemic curves after averaging explicit stochastic
simulations with three different distributions of recovery times. The diamond/circle/square

corresponds to Gamma(0.5, 2), lnN
(

ln(3)
2 ,

√
ln(3))

)
and Weibull(0.72, 0.81) distributions,

respectively. All three distributions have mean m = 1 and variance v = 2. (b) Probability
density functions corresponding to the three distributions.

4.5 Conclusions

For two-parameter distribution families, it is possible to regard Rp
0 as a function depend-

ing on two variables, e.g. the mean m and variance v, see Figs. 4.2, 4.4, 4.6. Since

the general final size relation (3.7) is monotone in Rp
0, we conclude that smaller variance

generates more infections. In Fig. 4.7, we compared three distributions from different

families, each having m = 1 and v = 2. Besides the gamma and the lognormal distri-

butions, for the sake of comparison we selected a third type of continuous distribution,

namely Weibull distribution, which has been fitted to the infectious period for the recent

ebola outbreak [19]. Fig. 4.7 illustrates that the mean and the variance of the recovery

times alone are not able to determine the key characteristics of the epidemic curves, and

a large variety of outbreaks can be generated from having the same mean and variance.

This is especially the case in Fig. 4.7, where the gamma distributed infectious period

leads to a very different epidemic, compared to that corresponding to the lognormally

distributed infectious period, despite the mean and the variance are being identical.

Therefore, in a real life situation, it is crucial to estimate the empirical distribution of

the infectious period as accurately as possible, since the mean and the variance alone do

not provide enough information for accurate predictions.
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Models with fixed recovery time

In this chapter, we consider a non-Markovian epidemic process with fixed recovery time.

We generalise the concept of mean-field and pairwise models by developing their anal-

ysis for this case. First, a fixed infectious period, denoted by σ, is considered, and the

derivation of the approximating deterministic models from first principles is illustrated.

We show that the non-Markovian dynamics can be described by a system of delay dif-

ferential equations with constant and distributed delays. The results of this chapter are

summarised in our first paper on non-Markovian network epidemics [49].

5.1 Model development

The infection process is assumed to be Markovian, thus the equation for [S](t) is the

same as before (see Eq. (2.12)), i.e.

˙[S](t) = −τ [SI](t).

The number of infected nodes at time t is replenished by τ [SI](t) and we assume through

this chapter, that all initial infected nodes are newborn at t = 0, thus there is no recovery

for 0 ≤ t < σ and we have
˙[I](t) = τ [SI](t),

for t < σ and [I](t) is depleted by τ [SI](t − σ) for t > σ, that yields

˙[I](t) = τ [SI](t) − τ [SI](t − σ).

The equation for the number of S − S links is the same as in Eq. (2.12), because the

infection process is Markovian thus

˙[SS](t) = −2τ
n − 1

n

[SS](t)[SI](t)

[S](t)
.

34
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In a similar manner, the number of S − I links is replenished by

τ
n − 1

n

[SS](t)[SI](t)

[S](t)
,

which is the half of the rate of depletion of S − S links (due to symmetry property

[SI] = [IS]). Furthermore, depletion of S − I links occurs due to the infection within

S − I pairs, τ [SI](t), and due to the infection of the S node from outside the pair,

τ
n − 1

n

[SI](t)[SI](t)

[S](t)
.

It is clear, that for 0 ≤ t < σ no recovery happens, thus the governing equation for S − I

links is

˙[SI](t) = τ
n − 1

n

[SS](t)[SI](t)

[S](t)
− τ [SI](t) − τ

n − 1

n

[SI](t)[SI](t)

[S](t)
.

The derivation above gives the following model for 0 ≤ t < σ:

˙[S](t) = −τ [SI](t), (5.1a)
˙[I](t) = τ [SI](t), (5.1b)

˙[SS](t) = −2τ
n − 1

n

[SS](t)[SI](t)

[S](t)
, (5.1c)

˙[SI](t) = τ
n − 1

n

[SS](t)[SI](t)

[S](t)
− τ [SI](t) − τ

n − 1

n

[SI](t)[SI](t)

[S](t)
(5.1d)

The Eq. (5.1) is a system of ordinary differential equations, given initial values [S]0, [I]0,

[SS]0 and [SI]0 at t = 0 are sufficient to guarantee a unique solution. Let us denote the

solution of (5.1) on the time interval [0, σ] by

X∗(t) = ([S]∗(t), [I]∗(t), [SS]∗(t), [SI]∗(t)).

At time t = σ, the initial infected nodes recover ’instantly’, thus a discontinuity appears

and obviously, the solution for t > σ starts from

X̃ = ([S]∗(σ), [I]∗(σ) − [I]0, [SS]∗(σ), [SI]∗(σ) − [SI]0).

On the other hand, for t > σ, there are S − I links, which survive for time σ, but will

be removed due to the recovery of the I node. Next, we need to take into account for the

removal of S − I links which were created precisely σ times ago. By the first intuition,

one would believe that this term is simply proportional to

τ
n − 1

n

[SS](t − σ)[SI](t − σ)

[S](t − σ)
.
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However, one must take into consideration that, in the time interval (t − σ, t), an

S − I link could have been destroyed due to either within pair infection or by infection

of the S node from outside. Hence, a discount factor needs to be determined to capture

this effect. To calculate this factor, S − I links, that are created at the same time, are

considered as a cohort denoted by x, and we model infection within and from outside by

writing down the following evolution equation,

ẋ(t) = −τ(n − 1)
[SI](t)

n[S](t)
x(t) − τx(t),

where, the first term denotes the ‘outer’ infection of the S node, while the second term

stands for ‘inner’ infection of the S node. We note that the outside infection is simply

proportional to the probability that an S node with an already engaged link has a further

infected neighbour, τ(n−1) [SI](t)
n[S](t)

. The solution of the latter evolution equation in [t−σ, t]

is

x(t) = x(t − σ)e
−

∫ t

t−σ
(τ n−1

n

[SI](u)
[S](u)

+τ)du

and this provides the depletion or discount rate of S − I links. In this case,

x(t − σ) = τ
n − 1

n

[SS](t − σ)[SI](t − σ)

[S](t − σ)
,

which is the replenishment of S − I links. Therefore, summarising all the above, the

pairwise approximation for t > σ is

˙[S](t) = −τ [SI](t), (5.2a)

˙[I](t) = τ [SI](t) − τ [SI](t − σ) (5.2b)

˙[SS](t) = −2τ
n − 1

n

[SS](t)[SI](t)

[S](t)
, (5.2c)

˙[SI](t) = τ
n − 1

n

[SS](t)[SI](t)

[S](t)
− τ [SI](t) − τ

n − 1

n

[SI](t)[SI](t)

[S](t)

− τ
n − 1

n

[SS](t − σ)[SI](t − σ)

[S](t − σ)
e

−
∫ t

t−σ
τ n−1

n

[SI](u)
[S](u)

+τdu
. (5.2d)

Let us mention, that Eq. (5.2) is a system of delay differential equations with discrete

and distributed delays. Despite the fact, that the initial function

X(t) =





X∗(t), if t < σ,

X̃, if t = σ,

is not continuous, the solution of Eq. (5.2) is continuous for t > σ. Similarly to Markovian
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case, the non-Markovian mean-field model for fixed infectious period is

˙[S](t) = −τ
n

N
[S](t)[I](t), (5.3a)

˙[I](t) = τ
n

N
[S](t)[I](t), (5.3b)

for 0 ≤ t < σ and

˙[S](t) = −τ
n

N
[S](t)[I](t), (5.4a)

˙[I](t) = τ
n

N
[S](t)[I](t) − τ

n

N
[S](t − σ)[I](t − σ), (5.4b)

for t > σ. Here, if we denote the solution of (5.3) for initial values [S]0, [I]0 and for time

interval t ∈ [0, σ] by X∗
m(t) = ([S]∗(t), [I]∗(t)), the initial function associated to (5.4) is

X∗
m(t) for 0 ≤ t < σ and ([S]∗(σ), [I]∗(σ) − [I]0) at t = σ. These systems are now the

main subjects of our investigation from analytical and numerical point of view.

5.2 Analytical results

In this section, we explore the most important features of systems (5.1)-(5.2) and (5.3)-

(5.4). First, we find a first integral of the pairwise model (5.1)-(5.2), which allows us

to reduce the dimensionality. We show that the solutions of the models are biologically

meaningful, i.e. solutions with non-negative data remain non-negative for t ≥ 0. The

paramount results of this part are the theorems for occurrence of an outbreak and the

implicit relations between the reproduction number and the final epidemic size.

5.2.1 First integral

We use (5.2a) and (5.2c) to find an invariant of the system.

Proposition 5.2.1. The function U(t) = [SS](t)

[S]2
n−1

n (t)
is a first integral of system (5.1)-

(5.2).

Proof. To see this, let us divide Eq.(5.2c) by Eq.(5.2a), which gives

d[SS]

d[S]
=

−2τ n−1
n

[SS][SI]
[S]

−τ [SI]
= 2

n − 1

n

[SS]

[S]
.

Solving this equation, we find [SS] = K[S]2
n−1

n , where K is a constant, thus U(t) =
[SS](t)

[S]2
n−1

n (t)
is an invariant quantity in the system and its value is

U(0) = K =
[SS](0)

[S]2
n−1

n (0)
=

[SS]0

[S]
2n−1

n
0

=
n[S]0

[S]0
N

[S]
2n−1

n
0

=
n

N
[S]

2
n
0 .
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Consequently, using this first integral, we obtain

[SS](t) =
n

N
[S]

2
n
0 [S]

2n−1
n (t). (5.5)

Applying Eq.(5.5), we can reduce our pairwise model to a two-dimensional system:

˙[S](t) = −τ [SI](t),

˙[SI](t) = τκ[S]
n−2

n (t)[SI](t) − τ [SI](t) − τ
n − 1

n

[SI](t)

[S](t)
[SI](t)

−τκ[S]
n−2

n (t − σ)[SI](t − σ)e
−

∫ t

t−σ
τ n−1

n

[SI](u)
[S](u)

+τdu
, (5.6)

where

κ =
n − 1

N
[S]

2
n
0 . (5.7)

On the other hand, it is clear, that [SS]0 = n
N

[S]
2
n
0 [S]

2n−1
n

0 = n
N

[S]20 holds, which is exactly

the same as Eq. (3.3).

5.2.2 Positivity

We are interested only in nonnegative solutions of system (5.1)-(5.2). The following

proposition shows, that the solutions remain nonnegative provided that the initial con-

ditions are nonnegative.

Proposition 5.2.2. If initial conditions [S]0, [SS]0, [I]0 and [SI]0 for (5.1) and (5.3) are

nonnegative, then [S](t) ≥ 0, [SS](t) ≥ 0, [I](t) ≥ 0 and [SI](t) ≥ 0 hold for t ≥ 0 in

both mean-field model (5.3)-(5.4) and pairwise model (5.1)-(5.2).

Proof. It is clear, that [SS](t) remains nonnegative, if the initial condition [SS](0) is

nonnegative, because [SS](t) can be expressed from Eq.(5.2c) in the form

[SS](t) = [SS]0 e−2τ n−1
n

∫ t

0

[SI](s)
[S](s)

ds. (5.8)

Moreover, if [SS]0 is positive, then [SS](t) > 0 for all t ≥ 0. From Eq. (5.5) we

obtain that [S](t) cannot be zero, if [SS](t) is positive for all t ≥ 0, which implies (from

continuity of solutions) [S](t) > 0 for t ≥ 0. For [I](t) and [SI](t), we have the following

formulae:

[I](t) =





[I]0 +
∫ t
0 τ [SI](a)da, if 0 ≤ t < σ;

∫ t
t−σ τ [SI](a)da, if t ≥ σ.

(5.9)
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for 0 ≤ t < σ,

[SI](t) = [SI]0 +
∫ t

0
τ

n − 1
n

[SS](a)[SI](a)

[S](a)
e−

∫ t

a
τ n−1

n

[SI](u)
[S](u)

+τduda, (5.10)

and for t > σ,

[SI](t) =
∫ t

t−σ
τ

n − 1
n

[SS](a)[SI](a)

[S](a)
e−

∫ t

a
τ n−1

n

[SI](u)
[S](u)

+τduda. (5.11)

It can be seen that [I](t) remains nonnegative if [SI](t) is nonnegative for t ≥ 0. On
the other hand, [SI](t0) cannot be zero for some t0 ≥ 0, because the formulae (5.10)-

(5.11) depends on the [S](t; t ∈ [t − σ, t]) and [SS](t; t ∈ [t − σ, t]), which are positive,

hence [SI](t) > 0.

In the case of the mean-field model (5.3)-(5.4), the positivity of [S](t) is clear. To see

the positivity of [I](t), we substitute (2.7) into (5.9), which gives

[I](t) =




[I]0 +

∫ t
0 τ n

N
[S](a)[I](a)da, if 0 ≤ t < σ;

∫ t
t−σ τ n

N
[S](a)[I](a)da, if t ≥ σ.

(5.12)

Notice that [I](t) remains nonnegative if [S](t) is nonnegative for t ≥ 0.

5.2.3 Epidemic outbreak and reproduction numbers

A disease with a very long exposed period in a population into which a small number of

infectives is introduced, the number of infectives could decrease initially before starting

to grow as exposed individuals become infective. The following definition was proposed

in [14].

Definition 1. In a disease transmission model with no demographic effects, there is no

epidemic if the equilibrium with all members of the population susceptible is (locally)

asymptotically stable, and there is an epidemic if this equilibrium is unstable, in each

case considering only perturbations of the equilibrium with positive infected initial states.

Using this concept, we state the following theorems for the relation between epidemic

outbreak and reproduction numbers.

Theorem 5.2.1. There is an epidemic for the model (5.3)-(5.4) if and only if R0 > 1,

where the basic reproduction number is R0 = τ n
N
[S]0σ.
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Proof. Clearly, (S, I) = ([S]0, 0), 0 ≤ [S]0 ≤ N are equilibria of the mean-field model

(5.3)-(5.4), thus we have infinitely many equilibria. On the other hand, [I](t) is monotone

increasing on time interval [0, σ], but for long-term behaviour we will study (5.4). This

system can be rewritten in the form

˙[S](t) = −τ
n

N
[S](t)[I](t),

[I](t) =
∫ t

t−σ
τ

n

N
[S](a)[I](a)da = τ

n

N

∫ σ

0
[S](t − a)[I](t − a)da.

Formal linearisation at (S, I) = ([S]0, 0) gives

ṡ(t) = −τ
n

N
[S]0i(t),

i(t) = τ
n

N
[S]0

∫ σ

0
i(t − a)da,

thus the characteristic equation is

det

(
−λ −τ n

N
[S]0

0 τ n
N

[S]0
∫ σ
0 e−λada − 1

)
= 0.

There are two real roots of the characteristic equation, namely λ = 0 and the real solution

of equation

G(λ) := τ
n

N
[S]0

∫ σ

0
e−λada = 1.

First, the eigenspace associated to characteristic root λ = 0 contains only the equilibrium

points. Indeed, searching for solution in form

(
[S]∗

[I]∗

)
eλt, we find

λ[S]∗ = −τ
n

N
[S]0[I]∗,

[I]∗ = τ
n

N
[S]0

∫ σ

0
[I]∗e−λada,

thus for λ = 0, we obtain [I]∗ = 0.

Second, G(λ) is monotone decreasing with respect to λ and the real solution of the equa-

tion G(λ) = 1 is positive, if and only if G(0) > 1 or equivalently, G(0) = τ n
N

[S]0
∫ σ
0 da =

τ n
N

[S]0σ = R0 > 1.

Third, let us assume there is a non-real characteristic root µ with positive real part for

R0 < 1. Then we have

1 = τ
n

N
[S]0

∣∣∣∣
∫ σ

0
e−µada

∣∣∣∣ ≤ τ
n

N
[S]0

∫ σ

0

∣∣∣e−µa
∣∣∣ da <

n

N
[S]0

∫ σ

0
da = τ

n

N
[S]0σ = R0,

which is a contradiction. In conclusion, we have an epidemic if and only if R0 > 1.



5. MODELS WITH FIXED RECOVERY TIME 41

Similar procedure can be done for the pairwise model (5.1)-(5.2). In that case, we

study the system in form

˙[S](t) = −τ [SI](t),

[SI](t) =
∫ t

t−σ
τ

n − 1

N
[S]

2
n
0 [S]

n−2
n (a)[SI](a)e−

∫ t

a
τ n−1

n

[SI](u)
[S](u)

+τduda

=
∫ σ

0
τ

n − 1

N
[S]

2
n
0 [S]

n−2
n (t − a)[SI](t − a)e

−
∫ t

t−a
τ n−1

n

[SI](u)
[S](u)

+τdu
da,

and the associated formally linearised system

ṡ(t) = −τsi(t),

si(t) = τ
n − 1

N
[S]0

∫ σ

0
si(t − a)e−τada.

The non-trivial characteristic roots come from the equation

Gp(λ) := τ
n − 1

N
[S]0

∫ σ

0
e−τae−λada = 1,

and obviously,

Gp(0) = τ
n − 1

N
[S]0

∫ σ

0
e−τada = τ

n − 1

N
[S]0

[
e−τa

−τ

]σ

0

=
n − 1

N
[S]0(1 − e−τσ) = Rp

0.

The remarks above can be summarised in the following theorem:

Theorem 5.2.2. There is an epidemic for the model (5.1)-(5.2) if and only if Rp
0 > 1,

where the pairwise reproduction number is R0 = n−1
N

[S]0(1 − e−τσ).

5.2.4 Final size relation

In this part, we derive final size relations that allow us to calculate the total number

of infected nodes during an epidemic outbreak on the network. We use the notation

s∞ = [S]∞
[S]0
, where [S]∞ = limt→∞[S](t) (this limit exists, since [S](t) is positive for

t > 0).

Theorem 5.2.3. The final size relation associated to the mean-field model (5.3)-(5.4) is

ln (s∞) = R0 (s∞ − 1) , (5.13)

where the basic reproduction number is R0 = τ n
N

[S]0σ, see details in Section 3.2.

Notice, that Eq. (5.13) has the same functional form as the classical final size relation.
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Proof. From Eq. (5.4a), we have

[S](t) = [S]σe−τ n
N

∫ t

σ
[I](u)du

for t > σ and

[S]∞ − [S]σ = −τ
n

N

∫ ∞

σ
[S](u)[I](u)du.

On the other hand, for t > σ

[I](t) =
∫ σ

0
τ

n

N
[S](t − w)[I](t − w)dw,

where τ n
N
[S](t − w)[I](t − w) is the new infections at t − w. Hence

ln

(
[S]∞
[S]σ

)
= −τ

n

N

∫ ∞

σ
[I](u)du = −τ

n

N

∫ ∞

σ

∫ σ

0
τ

n

N
[S](u − w)[I](u − w)dwdu

= −
(

τ
n

N

)2 ∫ σ

0

∫ ∞

σ
[S](u − w)[I](u − w)dudw

= −
(

τ
n

N

)2 ∫ σ

0

(∫ ∞

σ
[S](q)[I](q)dq +

∫ σ

σ−w
[S](q)[I](q)dq

)
dw

= −
(

τ
n

N

)2 ∫ σ

0

(∫ ∞

σ
[S](q)[I](q)dq +

∫ σ

σ−w
[S](q)[I]0e

τ n
N

∫ q

0
S(a)dadq

)
dw,

where we used the fact, that [I](t) = [I]0e
τ n

N

∫ t

0
S(u)du from Eq. (5.3b). By neglecting the

small amount of initial infected nodes, on the one hand, we have the approximation

− ln
(
[S]∞
[S]σ

)
=

(
τ

n

N

)2

σ
∫ ∞

σ
[S](q)[I](q)dq = −τ

n

N
σ([S]∞ − [S]σ).

On the other hand, from Eq. (5.3a) we have [S]σ = [S]0e
−τ n

N

∫ σ

0
I(u)du, thus (from small

fraction of initial infected nodes) we obtain the approximation [S]σ ≈ [S]0. Therefore,

ln

(
[S]∞
[S]0

)
= τ

n

N
σ[S]0

(
[S]∞
[S]0

− 1
)

,

which is equivalent to (5.13).

In the following, we derive the final-size relation for the pairwise system (5.1)-(5.2).

Theorem 5.2.4. The final size relation associated to the pairwise model (5.1)-(5.2) is

s
1
n∞ − 1
1

n−1
= Rp

0

(
s

n−1
n∞ − 1

)
, (5.14)

where the pairwise reproduction number Rp
0 =

n−1
N
[S]0(1 − e−τσ), see details in Section

3.2.
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Proof. As we have seen earlier, if we have an equation in the following form

w′(t) = in(t)− out(t)w(t)− in(t − σ)e
−

∫ t

t−σ
out(u)du

,

its solution can be expressed as

w(t) =
∫ t

t−σ
in(u)e−

∫ t

u
out(s)dsdu,

for t > σ. From Eq. (5.6), our setting is

in(t) = τκ[S]
n−2

n (t)[SI](t),

out(t) = τ + τ
n − 1

n

[SI](t)

[S](t)
,

the equation for [SI](t) is

[SI](t) =
∫ t

t−σ
τκ[S]

n−2
n (u)[SI](u)e−

∫ t

u
τ+τ n−1

n

[SI](s)
[S](s)

dsdu.

Applying ˙[S](t) = −τ [SI](t), we obtain

[SI](t) =
∫ t

t−σ
τκ[S]

n−2
n (u)[SI](u)e−

∫ t

u
τ+τ n−1

n

[SI](s)
[S](s)

dsdu

= −
∫ t

t−σ
κ ˙[S](u)[S]

n−2
n (u)e−τ(t−u)e

∫ t

u

n−1
n

˙[S](t)
[S](s)

dsdu

= −
∫ t

t−σ
κ ˙[S](u)[S]

n−2
n (u)e−τ(t−u)e

ln

(
[S]

n−1
n (t)

)
−ln

(
[S]

n−1
n (u)

)

du

= −κ[S]
n−1

n (t)
∫ t

t−σ
[S]−

1
n (u) ˙[S](u)e−τ(t−u)du.

Substituting back to Eq. (5.2a), we get

˙[S](t) = τκ[S]
n−1

n (t)
∫ t

t−σ
[S]−

1
n (u) ˙[S](u)e−τ(t−u)du.

Formally solving this scalar equation as a separable first-order differential equation, we

derive

[S]1− n−1
n (s) = [S]

1− n−1
n

0 + τκ
(

1 − n − 1

n

) ∫ s

0

∫ t

t−σ
[S]−

1
n (u) ˙[S](u)e−τ(t−u)dudt.

For the final size relation, we consider the equation at s = ∞ and obtain

[S]
1
n∞ = [S]

1
n
0 + κ

τ

n

∫ ∞

0
e−τt

∫ t

t−σ
[S]−

1
n (u) ˙[S](u)eτududt. (5.15)
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First, we compute the double integral:
∫ ∞

0
e−τt

∫ t

t−σ
[S]−

1
n (u) ˙[S](u)eτududt

=
∫ ∞

0
[S]−

1
n (u) ˙[S](u)eτu

∫ u+σ

u
e−τtdtdu

=
∫ ∞

0
[S]−

1
n (u) ˙[S](u)eτu

[
e−τt

−τ

]u+σ

u

du

= −1

τ

∫ ∞

0
[S]−

1
n (u) ˙[S](u)eτu

(
e−τ(u+σ) − e−τu

)
du

=
1

τ

(
1 − e−τσ

) ∫ ∞

0
[S]−

1
n (u) ˙[S](u)du

=
1

τ

(
1 − e−τσ

)

 [S]

n−1
n (u)

n−1
n




∞

0

=
1

τ

(
1 − e−τσ

) n

n − 1

(
[S]

n−1
n∞ − [S]

n−1
n

0

)
.

Plugging into (5.15) we obtain

[S]
1
n∞ = [S]

1
n
0 +

κ

n

n

n − 1

(
1 − e−τσ

) (
[S]

n−1
n∞ − [S]

n−1
n

0

)
.

Thus,

[S]
1
n∞ − [S]

1
n
0

1
n

= κ
n

n − 1

(
1 − e−τσ

) (
[S]

n−1
n∞ − [S]

n−1
n

0

)
.

Using (5.7), we have:

[S]
1
n∞ − [S]

1
n
0

1
n

=
n

N
[S]

2
n
0

(
1 − e−τσ

) (
[S]

n−1
n∞ − [S]

n−1
n

0

)
.

Therefore, the relation

[S]
1
n∞ − [S]

1
n
0

1
n

=
n

N

(
1 − e−τσ

)
[S]

n+1
n

0


 [S]

n−1
n∞

[S]
n−1

n
0

− 1


 ,

holds, which can be written as

s
1
n∞ − 1
1

n−1
=

n − 1

N

(
1 − e−τσ

)
[S]0

(
s

n−1
n∞ − 1

)
.
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Note, that taking the limit of n → ∞ in (5.14) gives rise to ln(s∞) = Rp
0(s∞−1), which

is equivalent to the ‘standard’ form of final size relations. Indeed, using L’Hospital’s rule,

it is easy to see, that the limit of the left-hand side as n → ∞ is

lim
n→∞

s
1
n∞ − 1
1

n−1
= lim

n→∞
s

1
n∞ − 1
1
n

n − 1
n

= lim
n→∞

s
1
n∞ − 1
1
n

= lim
m→0

sm
∞ − 1

m
= lim

m→0

sm
∞ ln s∞

1
= ln s∞.

Moreover, the implicit relation between final size andRp
0 is conserved between the Marko-

vian and non-Markovian DDE model (see Eq. (3.7)).

5.3 Numerical simulations

In Fig. 5.1(a,b) homogeneous (or regular random) and Erdős-Rényi random networks are

considered, respectively. Here, the mean of 100 simulations is compared to the solution

of system (5.2). The agreement is excellent for homogeneous networks, even for low de-

grees. Despite the pairwise model not explicitly accounting for degree heterogeneity, the

agreement is surprisingly good for relatively dense Erdős-Rényi networks. The figure also

shows that the fixed infectious period significantly accelerates the growth and turnover

of the epidemic compared to the purely Markovian case.

In Fig. 5.1(c), the differences between simulations, mean-field and pairwise models

for the non-Markovian case are compared. For denser networks, 〈k〉 = 15, both models

perform well with the pairwise yielding a better agreement. However, the difference is

striking for sparser networks, 〈k〉 = 5, where the mean-field approximation performs

poorly, while the pairwise DDE model leads to good agreement with simulation, even in

this case.

In Fig. 5.1(d), analytic final size relations are tested against simulation results for a

range of different infectious period distributions, all sharing the same mean. Surprisingly,

the final epidemic size can vary by as much as 15%, see τ ∼ 0.083, simply due to the

recovery time distributions. The inset in Fig. 1(d) shows that the same value of Rp
0

produces the same attack rate, regardless of the distribution from where it originates

from, in accordance with our formula (5.14).
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Figure 5.1: Simulations of non-Markovian epidemics on networks with N = 1000 nodes:
(a) solid lines show the solution of (5.1)-(5.2) and the circles/squares/diamonds correspond
to simulations for homogeneous (random regular) graphs with 〈k〉 = 5/10/15, respectively;
dotted, 〈k〉 = 5, and dashed, 〈k〉 = 15, lines correspond to purely Markovian epidemics given
by (2.12); (b) the same as before but for Erdős-Rényi random graphs with 〈k〉 = 5/10/15;
(c) the solid and dashed lines show the solution of pairwise (5.1)-(5.2) and mean-field (5.4)-
(5.4) models, respectively and, for regular random graphs with 〈k〉 = 5 and 〈k〉 = 15. For
(a), (b) and (c) the transmission rate is τ = 0.55 and the infectious period is fixed, σ = 1.
Finally, (d) the diamonds/circles/squares correspond to simulations using regular random
graphs with 〈k〉 = 15 and using fixed and two different but gamma distributed infectious
periods (◦ - shape α = 2, scale β = 1

2 , � - shape α = 1
2 , scale β = 2), respectively. The solid

lines correspond to the analytical final size for fixed (5.1)-(5.2) and general (5.14) infectious
periods, with the dashed line denoting the purely Markovian case. The inset shows the
analytical and the simulated final epidemic sizes plotted against the reproduction number.
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Based on Table 3.1, the analytical expressions for Rp
0 are

Rp

0,Γ( 1
2

,2)
=
(n − 1)[S]0

N

(
1− 1√

1 + 2τ

)
, Rp

0,Exp(1) =
(n − 1)[S]0

N

(
τ

τ + 1

)
,

Rp

0,Γ(2, 1
2
)
=
(n − 1)[S]0

N

(
1− 4

(2 + τ)2

)
, Rp

0,Fixed(1) =
(n − 1)[S]0

N

(
1− e−τ

)
,

where Γ(a, b) denotes Gamma-distribution with parameters a and b, and satisfy the

following inequality

Rp

0,Γ( 1
2

,2)
≤ Rp

0,Exp(1) ≤ Rp

0,Γ(2, 1
2
)

≤ Rp
0,Fixed(1). (5.16)

We note that (a) all recovery time distributions have the same mean 1 and (b) the

variances satisfy the converse inequality, with higher variance in recovery time (i.e. 2, 1,

1/2 and 0) giving a smaller Rp
0 value, despite τ being fixed. We have seen more details

about this phenomenon in Ch. 4.

5.4 Conclusions

The proposed model provides a viable framework for a more systematic analysis of non-

Markovian processes on networks with several future research directions. Similarly to

the evolution of the original pairwise model for Markovian dynamics, the proposed model

and new closure can be extended to networks with heterogeneous degree distribution [23],

clustering or to directed and weighted networks. For example, we show how the current

pairwise equations extend naturally to heterogeneous networks. In this case variables,

such as

1. [Si](t) - expected number of susceptible nodes of degree i,

2. [Ii](t) - expected number of infected nodes of degree i,

3. [SiSj](t) - expected number of S − S links, where S and S have degrees i and j,

respectively,

4. [SiIj](t) - expected number of S − I links, where S and I have degrees i and j,

respectively,

need to be considered, where i, j ∈ {kmin, kmin+1, . . . , kmax} represent the various degrees
in the networks.
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The slightly more technical part is replicating derivation of Eq. (5.2d) to degree

dependent [SI] pairs. This can be done as follows. Let x(t) denote the factor by which

[SiIj] links needs to be discounted by. The equation for x(t) is given by

ẋ(t) = −τ
i − 1

i

∑
k[SiIk]

[Si]
x(t) − τx(t), (5.17)

where in fact the factor x only depends on the degree of the susceptible node so it could

be denoted by xi. It is worth noting that
∑

k[SiIk]

i[Si]

gives the probability that a stub emanating from a susceptible node with i links will

connect to an infected node, and (i − 1) stands for the remaining stubs emanating from

an Si node which is already connected to another node, in this case an infected node.

This can be integrated as before and the non-Markovian pairwise system for hetero-

geneous network yields

˙[Si](t) = −τ
∑

j

[SiIj](t),

˙[Ii](t) = τ
∑

j

[SiIj](t) − τ
∑

j

[SiIj](t − σ),

˙[SiSj](t) = −τ
j − 1

j

[SiSj](t)

[Sj](t)

∑

k

[SjIk](t) − τ
i − 1

i

[SiSj](t)

[Si](t)

∑

k

[SiIk](t), (5.18)

˙[SiIj](t) = τ
j − 1

j

[SiSj](t)

[Sj](t)

∑

k

[SjIk](t) − τ
i − 1

i

[SiIj](t)

[Si](t)

∑

k

[IkSi](t) − τ [SiIj](t)

−τ
∑

k

j − 1

j

[SiSj](t − σ)[SjIk](t − σ)

[Sj](t − σ)
e

−
∫ t

t−σ

(
τ i−1

i

∑
k

[SiIk](u)

[Si](u)
+τ

)
du

.

where i, j, k ∈ {kmin, kmin + 1, . . . , kmax}.
Additionally, this framework can be employed to model different dynamics, such as SIS

epidemics or more complex systems, such as adaptive networks.
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General recovery time

In this chapter, we present the generalised mean-field and pairwise models for non-

Markovian epidemics on networks with any kind of recovery time distributions. A lengthy,

but very instructive derivation gives a system of integro-differential equations, which is

analysed both from a mathematical and numerical point of view. After the study of

asymptotic behaviour, as an illustration of the applicability of the general model we

recover known results.

6.1 The model

We want to build mean-field and pairwise models for the SIR type epidemic process with

exponentially distributed transmission and general recovery time distribution. First, let

i(t, a) represent the density of infected nodes with respect to the age of infection a at the

current time t, then [I](t) =
∫ ∞
0 i(t, a)da. Similarly, Si(t, a) and ISi(t, a) describe the

density of S − i links and I − S − i triplets, respectively, where the infected node i has

age a at time t and [SI](t) =
∫ ∞
0 Si(t, a)da, [ISI](t) =

∫ ∞
0 ISi(t, a)da. We assume that

the infection process along S − I links is Markovian with transmission rate τ > 0. The

recovery part is considered to be non-Markovian, with a cumulative distribution function

FI(a) and probability density function fI(a). We use the associated survival function

ξI(a) = 1− FI(a) and hazard function hI(a) = − ξ′

I
(a(a)

ξI(a)
= fI(a)

ξI(a)
.

49
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Using the notations above, we arrive at the following model

˙[S](t) = −τ [SI](t), (6.1a)
(

∂

∂t
+

∂

∂a

)
i(t, a) = −hI(a)i(t, a), (6.1b)

˙[SS](t) = −2τ [SSI](t), (6.1c)
(

∂

∂t
+

∂

∂a

)
Si(t, a) = −τISi(t, a) − (τ + hI(a))Si(t, a), (6.1d)

subject to the boundary conditions

i(t, 0) = τ [SI](t), (6.2a)

Si(t, 0) = τ [SSI](t), (6.2b)

and initial conditions

[S](0) = [S]0, [SS](0) = [SS]0, i(0, a) = ϕ(a), (6.3a)

Si(0, a) = χ(a) ≈ n

N
[S]0i(0, a) =

n

N
[S]0ϕ(a). (6.3b)

We shall use the biologically feasible assumption lima→∞ ϕ(a) = 0. To break the depen-

dence on higher order moments, we apply the closure approximation formula (2.11) for

ISi(t, a) in the form

ISi(t, a) =
n − 1

n

[SI](t)Si(t, a)

[S](t)
. (6.4)

To obtain a self-consistent system for classical network variables [S], [SS], [I] and [SI],

further calculations are needed. Repeating Eq. (6.1a) and applying the moment-closure

formula (2.11) to Eq. (6.1c), we have

˙[S](t) = −τ [SI](t),

˙[SS](t) = −2τ
n − 1

n

[SS](t)[SI](t)

[S](t)
.

Using [I](t) =
∫ ∞
0 i(t, a)da, from Eq. (6.1b) we obtain

˙[I](t) =
∫ ∞

0

∂

∂t
i(t, b)db =

∫ ∞

0

(
−hI(b)i(t, b) − ∂

∂b
i(t, b)

)
db

= −
∫ ∞

0
hI(b)i(t, b)db − (i(t, ∞) − i(t, 0))

= −
∫ ∞

0
hI(b)i(t, b)db − i(t, ∞) + i(t, 0). (6.5)
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Solving the first-order linear PDE (6.1b) along characteristic lines, we obtain

i(t, a) =





i(t − a, 0)e−
∫ a

0
hI(b)db, if t > a;

i(0, a − t)e
−

∫ a

a−t
hI(b)db

, if t ≤ a.

Plugging (6.2a) and (6.3a) into the solution above, we have

i(t, a) =





τ [SI](t − a)e−
∫ a

0
hI(b)db, if t > a;

ϕ(a − t)e
−

∫ a

a−t
hI(b)db

, if t ≤ a.
(6.6)

Applying this formula for [I](t) =
∫ ∞
0 i(t, a)da, we find

[I](t) =
∫ t

0
τ [SI](t − a)e−

∫ a

0
hI(b)dbda+

∫ ∞

t
ϕ(a − t)e

−
∫ a

a−t
hI(b)db

da. (6.7)

Finally, using that along the characteristic lines, i(t, ∞) = i(0, ∞) = ϕ(∞) = 0 from the
assumption, substituting (6.6) and the boundary condition (6.2a) into (6.5), we get

˙[I](t) = τ [SI](t) −
∫ t

0
τ [SI](t − a)hI(a)e−

∫ a

0
hI(b)dbda

−
∫ ∞

t
ϕ(a − t)hI(a)e

−
∫ a

a−t
hI(b)db

da. (6.8)

Using the definition and properties of hazard function, we can deduce the following

formulae:

e−
∫ a

0
hI(b)db =

ξI(a)

ξI(0)
= ξI(a), (6.9a)

e
−

∫ a

a−t
hI(b)db

=
ξI(a)

ξI(a − t)
, (6.9b)

hI(a)e−
∫ a

0
hI(b)db = fI(a), (6.9c)

hI(a)e
−

∫ a

a−t
hI(b)db

=
fI(a)

ξI(a − t)
. (6.9d)

Applying these formulae to Eq.(6.7) and (6.8), we have

[I](t) =
∫ t

0
τ [SI](t − a)ξI(a)da +

∫ ∞

t
ϕ(a − t)

ξI(a)

ξI(a − t)
da, (6.10)

and
˙[I](t) = τ [SI](t) −

∫ t

0
τ [SI](t − a)fI(a)da −

∫ ∞

t
ϕ(a − t)

fI(a)

ξI(a − t)
da.

To compute the equation for [SI](t), we follow the calculation process above. First,

applying (6.4) to Eq. (6.1d), we get
(

∂

∂t
+

∂

∂a

)
Si(t, a) = −τ(n − 1)

n

[SI](t)

[S](t)
Si(t, a) − (τ + hI(a))Si(t, a).

(6.11)
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Using [SI](t) =
∫ ∞
0 Si(t, a)da, from Eq. (6.11) we find

˙[SI](t) =
∫ ∞

0

∂

∂t
Si(t, a)da

=
∫ ∞

0

(
−τ(n − 1)

n

[SI](t)

[S](t)
Si(t, a)

)
da −

∫ ∞

0
(τ + hI(a))Si(t, a)da

−
∫ ∞

0

∂

∂a
Si(t, a)da

= −τ
n − 1

n

[SI](t)

[S](t)
[SI](t) − τ [SI](t) −

∫ ∞

0
hI(a)Si(t, a)da

−Si(t, ∞) + Si(t, 0). (6.12)

We want to express the variable Si(t, a) as a function of classical network variables. To

achieve this, let us consider the following first-order PDE:
(

∂

∂t
+

∂

∂a

)
x(t, a) = −fI(t)x(t, a) − g(a)x(t, a)

with boundary conditions

x(t, 0) = φ(t), x(0, a) = ψ(a).

Solving along the characteristic lines t − a = c, we find that

x(t, a) =





φ(t − a)e
−

∫ t

t−a
fI(s)ds

e−
∫ a

0
g(b)db, if t > a;

ψ(a − t)e−
∫ t

0
fI(s)dse

−
∫ a

a−t
g(b)db

, if t ≤ a.
(6.13)

In our case, x(t, a) = Si(t, a), fI(t) = τ n−1
n

[SI](t)
[S](t)

, g(a) = τ+hI(a), φ(t) = τ n−1
n

[SS](t)[SI](t)
[S](t)

,

(from closure approximation (6.4)) and ψ(a) = n
N

[S]0ϕ(a), hence from Eq. (6.13) we get

Si(t, a) =





τ n−1
n

[SS](t−a)[SI](t−a)
[S](t−a)

e
−

∫ t

t−a
τ n−1

n

[SI](s)
[S](s)

ds
e−

∫ a

0
τ+hI(b)db, if t > a;

n
N
[S]0ϕ(a − t)e−

∫ t

0
τ n−1

n

[SI](s)
[S](s)

dse
−

∫ a

a−t
τ+hI(b)db

, if t ≤ a.
(6.14)

Again, along the characteristic lines we have Si(t, ∞) = Si(0, ∞) = χ(∞) = 0. Putting
(6.14) into [SI](t) =

∫ ∞
0 Si(t, a)da, we obtain

[SI](t)=
∫ t

0
τ

n − 1
n

[SS](t − a)[SI](t − a)

[S](t − a)
e

−
∫ t

t−a
τ n−1

n

[SI](s)
[S](s)

ds
e−

∫ a

0
τ+hI(b)dbda

+
∫ ∞

t

n

N
[S]0ϕ(a − t)e−

∫ t

0
τ n−1

n

[SI](s)
[S](s)

dse
−

∫ a

a−t
τ+hI(b)db

da. (6.15)
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If we substitute (6.14) back to Eq.(6.12), we derive

˙[SI](t) = τ
n − 1

n

[SS](t)[SI](t)

[S](t)
− τ(n − 1)

n

[SI](t)

[S](t)
[SI](t) − τ [SI](t)

−
∫ t

0
τ

n − 1

n

[SS](t − a)[SI](t − a)

[S](t − a)
e

−
∫ t

t−a
τ n−1

n

[SI](s)
[S](s)

ds

× e−
∫ a

0
τ+hI(b)dbhI(a)da

−
∫ ∞

t

n

N
[S]0ϕ(a − t)e−

∫ t

0
τ n−1

n

[SI](s)
[S](s)

dse
−

∫ a

a−t
τ+hI(b)db

hI(a)da.

(6.16)

Applying the formulae (6.9a)-(6.9d) for Eq. (6.15) and (6.16), we have

[SI](t) =
∫ t

0
τ

n − 1

n

[SS](t − a)[SI](t − a)

[S](t − a)
e

−
∫ t

t−a
τ n−1

n

[SI](s)
[S](s)

+τds
ξI(a)da

+
∫ ∞

t

n

N
[S]0ϕ(a − t)e−

∫ t

0
τ n−1

n

[SI](s)
[S](s)

+τds ξI(a)

ξI(a − t)
da, (6.17)

and

˙[SI](t) = τ
n − 1

n

[SS](t)[SI](t)

[S](t)
− τ

n − 1

n

[SI](t)

[S](t)
[SI](t) − τ [SI](t)

−
∫ t

0
τ

n − 1

n

[SS](t − a)[SI](t − a)

[S](t − a)
e

−
∫ t

t−a
τ n−1

n

[SI](s)
[S](s)

+τds
fI(a)da

−
∫ ∞

t

n

N
[S]0ϕ(a − t)e−

∫ t

0
τ n−1

n

[SI](s)
[S](s)

+τds fI(a)

ξI(a − t)
da.

Putting together the results above, the pairwise system is the following integro-differential

equation:

˙[S](t) = −τ [SI](t) (6.18a)

˙[SS](t) = −2τ
n − 1

n

[SS](t)[SI](t)

[S](t)
(6.18b)

˙[I](t) = τ [SI](t) −
∫ t

0
τ [SI](t − a)fI(a)da −

∫ ∞

t
ϕ(a − t)

fI(a)

ξI(a − t)
da (6.18c)

˙[SI](t) = τ
n − 1

n

[SS](t)[SI](t)

[S](t)
− τ

n − 1

n

[SI](t)

[S](t)
[SI](t) − τ [SI](t)

−
∫ t

0
τ

n − 1

n

[SS](t − a)[SI](t − a)

[S](t − a)
e

−
∫ t

t−a
τ n−1

n

[SI](s)
[S](s)

+τds
fI(a)da

−
∫ ∞

t

n

N
[S]0ϕ(a − t)e−

∫ t

0
τ n−1

n

[SI](s)
[S](s)

+τds fI(a)

ξI(a − t)
da. (6.18d)
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From Eq.(6.18), the associated mean-field model can be easily deduced by using the

closure approximation formula (2.7), the node-level system becomes

˙[S](t) = −τ
n

N
[S](t)[I](t) (6.19a)

˙[I](t) = τ
n

N
[S](t)[I](t) −

∫ t

0
τ

n

N
[S](t − a)[I](t − a)fI(a)da

−
∫ ∞

t
ϕ(a − t)

fI(a)

ξI(a − t)
da. (6.19b)

In the following, we investigate these systems from mathematical and numerical point of

view, focussing on the epidemiologically meaningful properties of the models.

6.2 Analytical results

Next, similarly to Section 5.2, we summarize the biologically meaningful properties of

systems (6.18) and (6.19). Note, that Prop. 5.2.1 holds for the pairwise system, thus we

can reduce the model (6.18) to the following two-dimensional system:

˙[S](t) = −τ [SI](t),

˙[SI](t) = τκ[S]
n−2

n (t)[SI](t) − τ [SI](t) − τ
n − 1

n

[SI](t)

[S](t)
[SI](t)

−
∫ t

0
τκ[S]

n−2
n (t − a)[SI](t − a)e

−
∫ t

t−a
τ n−1

n

[SI](s)
[S](s)

+τds
fI(a)da

−
∫ ∞

t

n

N
[S]0ϕ(a − t)e−

∫ t

0
τ n−1

n

[SI](s)
[S](s)

+τds fI(a)

ξI(a − t)
da, (6.20)

where

κ =
n − 1

N
[S]

2
n
0 .

6.2.1 Positivity

The first proposition of this section states, that the solutions remain nonnegative provided

that the initial conditions are nonnegative.

Proposition 6.2.1. If initial conditions [S]0, [SS]0 are nonnegative and ϕ(a) ≥ 0 for

a ≥ 0, then [S](t) ≥ 0, [SS](t) ≥ 0, [I](t) ≥ 0 and [SI](t) ≥ 0 hold for t ≥ 0.

Proof. It is clear, that [SS](t) remains nonnegative, if the initial condition [SS](0) is

nonnegative, because [SS](t) can be expressed in form (5.8) Moreover, if [SS]0 is positive,

then [SS](t) > 0 for all t ≥ 0. From Eq. (5.5) we obtain that [S](t) cannot be zero, if

[SS](t) is positive for all t ≥ 0, which implies (from continuity of solutions) [S](t) > 0 for
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t ≥ 0. It can be seen from (6.10) that [I](t) remains nonnegative if [SI](t) is nonnegative

for t ≥ 0. On the other hand, [SI](t0) cannot be zero for some t0 ≥ 0, because the

right-hand side of (6.17) depends on the [S](t; t < t0), [SS](t; t < t0) and [S](t; t < t0),

which are positive, hence [SI](t) > 0.

6.2.2 Epidemic outbreak and reproduction numbers

As we have seen in Chapter 5, there is a relation between reproduction numbers and

occurrence of epidemic outbreak. We investigated a transformed version of the mean-field

and pairwise models by formal linearisation and proved, that the disease-free equilibrium

is unstable if and only if the associated reproduction number is above one, thus epidemic

occurs. This analysis could be performed, because we could apply the methods of stability

theory of dynamical systems. Unfortunately, the general mean-field (6.19) and pairwise

(6.18) models do not induce a dynamical system directly, thus stability analysis does not

work. However, the relation is preserved for the general case, which will be shown in the

following with some formal and intuitive calculations. First we can rewrite the mean-field

model (6.19) to the form

˙[S](t) = −τ
n

N
[S](t)[I](t),

[I](t) =
∫ t

0
τ

n

N
[S](t − a)[I](t − a)ξI(a)da +

∫ ∞

t
ϕ(a − t)

ξI(a)

ξI(a − t)
da, (6.21)

and pairwise system (6.20) to the form

˙[S](t) = −τ [SI](t),

[SI](t) =
∫ t

0
τ

n − 1

N
[S]

2
n
0 [S]

n−2
n (t − a)[SI](t − a)e

−
∫ t

t−a
τ n−1

n

[SI](s)
[S](s)

+τds
ξI(a)da

+
∫ ∞

t

n

N
[S]0ϕ(a − t)e−

∫ t

0
τ n−1

n

[SI](s)
[S](s)

+τds ξI(a)

ξI(a − t)
da. (6.22)

Following the procedure in [14], we may study the associated limit equations to investigate

the asymptotic behaviour, which is

˙[S](t) = −τ
n

N
[S](t)[I](t),

[I](t) =
∫ ∞

0
τ

n

N
[S](t − a)[I](t − a)ξI(a)da, (6.23)

for (6.21) and

˙[S](t) = −τ [SI](t),

[SI](t) =
∫ ∞

0
τ

n − 1

N
[S]

2
n
0 [S]

n−2
n (t − a)[SI](t − a)e−τaξI(a)da, (6.24)
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for (6.22). Then formal linearisation gives

ṡ(t) = −τ
n

N
[S]0i(t),

i(t) =
∫ ∞

0
τ

n

N
[S]0i(t − a)ξI(a)da, (6.25)

for (6.23) and

ṡ(t) = −τsi(t),

si(t) = τ
n − 1

N
[S]0

∫ ∞

0
si(t − a)e−τaξI(a)da (6.26)

for (6.24). Calculating the characteristic equations, the non-trivial roots are given by the

equation

Gm(λ) := τ
n

N
[S]0

∫ ∞

0
e−λaξI(a)da = 1

for (6.25) and

Gp(λ) := τ
n − 1

N
[S]0

∫ ∞

0
e−τae−λaξI(a)da = 1,

for (6.26). Applying the same argument as in the proof of Theorem 5.2.1, the positive

real root appears, when Gm(0) > 1 and Gp(0) > 1, or equivalently

Gm(0) = τ
n

N
[S]0

∫ ∞

0
ξI(a)da = τ

n

N
[S]0

∫ ∞

0

∫ ∞

a
fI(v)dvda

= τ
n

N
[S]0

∫ ∞

0

∫ v

0
fI(v)dadv

= τ
n

N
[S]0

∫ ∞

0
vfI(v)dv = τ

n

N
[S]0E(I) = R0 > 1,

for the mean-field approach and

Gp(0) = τ
n − 1

N
[S]0

∫ ∞

0
e−τaξI(a)da = τ

n − 1
N

[S]0

∫ ∞

0
e−τa

∫ ∞

a
fI(v)dvda

= τ
n − 1

N
[S]0

∫ ∞

0
fI(v)

(∫ v

0
e−τada

)
dv

= τ
n − 1

N
[S]0

∫ ∞

0
fI(v)

[
e−τa

−τ

]v

0

dv

= τ
n − 1

N
[S]0

∫ ∞

0
fI(v)

(
−1

τ
e−τv +

1

τ

)
dv

=
n − 1

N
[S]0

(∫ ∞

0
fI(v)dv −

∫ ∞

0
fI(v)e

−τvdv
)

=
n − 1

N
[S]0 (1− L(fI)[τ ]) = Rp

0 > 1.

for the pairwise approximation.
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6.2.3 Final size relation

In this section, we prove, that the functional forms (5.13) and (5.14) hold for arbitrary

recovery time distribution.

Theorem 6.2.1. The final size relation associated to the mean-field model (6.19) is

ln (s∞) = R0 (s∞ − 1) , (6.27)

where the basic reproduction number R0 =
n
N

τ [S]0E(I), see details in Section 3.2.

Proof. Similarly to proof for fixed recovery time, from (6.19a), we obtain

[S]∞ − [S]0 = −τ
n

N

∫ ∞

0
[S](u)[I](u)du (6.28)

and

ln

(
[S]∞
[S]0

)
= −τ

n

N

∫ ∞

0
[I](u)du. (6.29)

Substituting (6.19b) into (6.29), we get

ln

(
[S]∞
[S]0

)
= −τ

n

N

∫ ∞

0

∫ u

0
τ

n

N
[S](u − a)[I](u − a)ξI(a)dadu

−τ
n

N

∫ ∞

0

∫ ∞

u
ϕ(a − u)

ξI(a)

ξI(a − u)
dadu.

Neglecting the small initial amount of infected nodes (ϕ(a) ≈ 0), we obtain

ln

(
[S]∞
[S]0

)
= −

(
τ

n

N

)2 ∫ ∞

0

∫ u

0
[S](u − a)[I](u − a)ξI(a)dadu. (6.30)

After some algebraic manipulation, we obtain

ln

(
[S](∞)
[S](0)

)
= −

(
τ

n

N

)2 ∫ ∞

0

∫ u

0
[S](u − a)[I](u − a)ξI(a)dadu

= −
(

τ
n

N

)2 ∫ ∞

0

∫ u

0
[S](v)[I](v)ξI(u − v)dvdu

= −
(

τ
n

N

)2 ∫ ∞

0

∫ ∞

v
[S](v)[I](v)ξI(u − v)dudv

= −
(

τ
n

N

)2 ∫ ∞

0
[S](v)[I](v)

[∫ ∞

v
ξI(u − v)du

]
dv

= −
(

τ
n

N

)2 ∫ ∞

0
[S](v)[I](v)

[∫ ∞

0
ξI(p)dp

]
dv
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= τ
n

N

[∫ ∞

0
ξI(p)dp

]
([S](∞)− [S](0))

= τ
n

N

[∫ ∞

0

∫ ∞

p
fI(q)dqdp

]
([S](∞)− [S](0))

= τ
n

N

[∫ ∞

0

∫ q

0
fI(q)dpdq

]
([S](∞)− [S](0))

= τ
n

N

[∫ ∞

0
qfI(q)dq

]
([S](∞)− [S](0))

= τ
n

N
E(I) ([S](∞)− [S](0)) .

where I denotes the infectious period of an infected node. Therefore, we found

ln (s∞) = R0 (s∞ − 1) ,

where R0 = τ n
N
E(I)[S]0.

In the following, we derive the final-size relation for the pairwise system (6.18).

Theorem 6.2.2. The final size relation associated to the pairwise model (6.18) is

s
1
n∞ − 1
1

n−1
= Rp

0

(
s

n−1
n∞ − 1

)
,

where the pairwise reproduction number is Rp
0 =

n−1
N
(1− L[fI ](τ)) [S]0, see details Sec-

tion 3.2.

Proof. The second equation of the two-dimensional system (6.20) has the general form

x′(t) = a(t)− b(t)x(t),

where

a(c) = τκ[S]
n−2

n (c)[SI](c)

−
∫ c

0
τκ[S]

n−2
n (c − a)[SI](c − a)fI(a)e

−
∫ c

c−a
τ n−1

n

[SI](s)
[S](s)

+τds
da

−
∫ ∞

c

n

N
[S]0ϕ(a − c)

fI(a)

ξI(a − c)
e−

∫ c

0
τ n−1

n

[SI](s)
[S](s)

+τdsda,

b(w) = τ + τ
n − 1

n

[SI](w)

[S](w)
,

x(t) = [SI](t),

and has the solution

x(u) = e−
∫ u

0
b(w)dwx(0) +

∫ u

0
e−

∫ u

c
b(w)dwa(c)dc. (6.31)
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Using (6.1a), simple calculations give the relations

e−
∫ u

0
τ+τ n−1

n

[SI](s)
[S](s)

ds = e−τu [S]
n−1

n (u)

[S]
n−1

n (0)
,

e−
∫ u

c
τ+τ n−1

n

[SI](s)
[S](s)

ds = e−τ(u−c) [S]
n−1

n (u)

[S]
n−1

n (c)
.

Using these relations, from (6.31) we get

[SI](u) =
[SI](0)

[S]
n−1

n (0)
e−τu[S]

n−1
n (u)

+
∫ u

0
τκ[S]−

1
n (c)[SI](c)eτce−τu[S]

n−1
n (u)dc

−
∫ u

0

∫ c

0
τκ[S]−

1
n (c − a)[SI](c − a)fI(a)× e−τaeτce−τu[S]

n−1
n (u) da dc

−
∫ u

0

∫ ∞

c

n

N
[S]

1
n
0 ϕ(a − c)

fI(a)

ξI(a − c)
e−τu[S]

n−1
n (u) da dc.

Then, substituting this formula into the first equation of (6.20), we find an equation in

general form

[S]′(t) = −τA(t)[S]
n−1

n (t),

where

A(u) =
[SI](0)

[S]
n−1

n (0)
e−τu +

∫ u

0
τκ[S]−

1
n (c)[SI](c)eτce−τu dc

−
∫ u

0

∫ c

0
τκ[S]−

1
n (c − a)[SI](c − a)fI(a)e

−τaeτce−τu da dc

−
∫ u

0

∫ ∞

c

n

N
[S]

1
n
0 ϕ(a − c)

fI(a)

ξI(a − c)
e−τu da dc.

Solving this scalar equation, we have

[S]
1
n (t) = [S]

1
n
0 − τ

n

∫ t

0
A(u)du.

For the final size relation, we consider the following equation

[S]
1
n∞ = [S]

1
n
0 − τ

n

∫ ∞

0
A(u)du.

Using the linearity of integration, we have to calculate the four integrals on the right-hand

side. For the first integral, we have

I1 =
∫ ∞

0

[SI](0)

[S]
n−1

n (0)
e−τudu =

[SI](0)

[S]
n−1

n (0)

[
e−τu

−τ

]∞

0

=
[SI](0)

[S]
n−1

n (0)

1

τ
.
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After some algebraic manipulation, we obtain the following expression for the second

integral I2:

I2 =
∫ ∞

0

∫ u

0
τκ[S]−

1
n (c)[SI](c)eτce−τudc du

=
∫ ∞

0

∫ ∞

c
τκ[S]−

1
n (c)[SI](c)eτce−τudu ddc

=
∫ ∞

0
τκ[S]−

1
n (c)[SI](c)eτc

[
e−τu

−τ

]∞

c

dc

=
∫ ∞

0
τκ[S]−

1
n (c)[SI](c)eτc e−τc

τ
dc

= −1
τ

κ
∫ ∞

0
[S]−

1
n (c) ˙[S](c)dc = −1

τ
κ

n

n − 1

(
[S]

n−1
n∞ − [S]

n−1
n

0

)
.

The most challenging one is the third integral I3:

I3 =
∫ ∞

0

∫ u

0

∫ c

0
τκ[S]−

1
n (c − a)[SI](c − a)fI(a)e−τaeτce−τuda dc du

=
∫ ∞

0

∫ ∞

c

∫ c

0
τκ[S]−

1
n (c − a)[SI](c − a)fI(a)e−τaeτce−τuda du dc

=
∫ ∞

0

∫ c

0

∫ ∞

c
τκ[S]−

1
n (c − a)[SI](c − a)fI(a)e−τaeτce−τudu da dc

=
∫ ∞

0

∫ c

0
τκ[S]−

1
n (c − a)[SI](c − a)fI(a)e−τaeτc

[
e−τu

−τ

]∞

c

da dc

=
1

τ

∫ ∞

0

∫ c

0
τκ[S]−

1
n (c − a)[SI](c − a)fI(a)e−τada dc

= −1

τ
κ

∫ ∞

0
fI(a)e−τa


 [S]

n−1
n (c − a)

n−1
n




∞

a

da

= −1

τ
κ

n

n − 1

(
[S]

n−1
n∞ − [S]

n−1
n

0

) ∫ ∞

0
fI(a)e−τada.

For the fourth integral, we compute

I4 =
∫ ∞

0

∫ u

0

∫ ∞

c

n

N
[S]

1
n
0 ϕ(a − c)

fI(a)

ξI(a − c)
e−τuda dc du

=
∫ ∞

0

∫ ∞

c

∫ ∞

c

n

N
[S]

1
n
0 ϕ(a − c)

fI(a)

ξI(a − c)
e−τuda du dc

=
∫ ∞

0

∫ ∞

c

∫ ∞

c

n

N
[S]

1
n
0 ϕ(a − c)

fI(a)

ξI(a − c)
e−τudu da dc

=
∫ ∞

0

∫ ∞

c

n

N
[S]

1
n
0 ϕ(a − c)

fI(a)

ξI(a − c)

[
e−τu

−τ

]∞

c

da dc

=
1

τ

∫ ∞

0

∫ ∞

c

n

N
[S]

1
n
0 ϕ(a − c)

fI(a)

ξI(a − c)
e−τcda dc.
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Having a small amount of initial infecteds (i.e. [I](0) =
∫ ∞
0 ϕ(a)da << 1), the integrals

I1 and I4 are approximately zero. We arrived to the relation

[S]
1
n∞ = [S]

1
n
0 + κ

1

n − 1
(
1−

∫ ∞

0
fI(a)e

−τada
) (
[S]

n−1
n∞ − [S]

n−1
n

0

)
.

After some algebraic manipulation and substituting back the formula of κ, we have

s
1
n∞ − 1
1

n−1
=

n − 1
N

(1− L[f ](τ)) [S]0
(

s
n−1

n∞ − 1
)

,

where L[fI ](τ) denotes the Laplace transform of fI , the PDF of recovery time at τ .

6.3 Numerical methods

For the numerical solution of integro-differential equations (6.18) and (6.19), we developed

a numerical scheme based on collocation method. The numerical methods in [15] were

adapted to the mean-field model and the reduced, but highly nonlinear pairwise system.

The development of this scheme for more general integral equations is an active research

topic nowadays ([1], [52], [88]).

Since we want to compare the result of stochastic simulation and the numerical so-

lutions of deterministic models, we assume, that the initial infecteds are ’newborn’, i.e.

the initial distribution of infected nodes ϕ(a) = [I]0δ(a), where δ(a) is the Dirac delta

function. Then, ∫ ∞

t
ϕ(a − t)

fI(a)

ξI(a − t)
da = [I]0fI(t) (6.32)

and
∫ ∞

t

n

N
[S]0ϕ(a − t)e−

∫ t

0
τ n−1

n

[SI](s)
[S](s)

+τds fI(a)

ξI(a − t)
da

=
n

N
[S]0[I]0e

−
∫ t

0
τ n−1

n

[SI](s)
[S](s)

+τdsfI(t). (6.33)

A collocation solution uh to a functional equation on an interval I is an element from

some finite-dimensional function space (the collocation space) which satisfies the equation

on an appropriate finite subset of points in I (the set of collocation points), whose cardi-

nality essentially matches the dimension of the collocation space. For integro-differential

equations the collocation equations are not yet in a form amenable to numerical com-

putation, due to the presence of the memory term given by the integral operator, thus

another discretisation step, based on appropriate quadrature approximations, is neces-

sary to obtain the fully discretised collocation scheme. In the following, we derive the

numerical algorithm for solving the general systems. First, we introduce the following

notations:
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• I = [0, T ], ∆ = {tk ∈ I : 0 = t1 < t2 < t3 < · · · < tN = T};

• hk = tk+1 − tk, Ik = [tk, tk+1], (k = 1, ..., N − 1);

• 0 ≤ c1 < c2 ≤ 1 are the collocation parameters;

• P2: space of real polynomials of degree not exceeding 2.

The systems (6.19) and (6.20) are two-dimensional, thus the coordinates of uh(t) are

elements of S
(0)
1 (I), where

S
(0)
2 (I) =

{
p ∈ C(I,R) : p

∣∣∣
Ik

∈ P2, 0 ≤ n ≤ N − 1
}

.

Let uh(t) = (xh(t), yh(t)). The quintessence of the collocation method is the local Lagrane

representation for xh(t) and yh(t):

y′
h(tk + vhk) = L1(v)Yk,1 + L2(v)Yk,2 (6.34)

where 0 ≤ v ≤ 1 and

Yk,1 = y′
h(tk + c1hk),

Yk,2 = y′
h(tk + c2hk),

L1(v) =
c2 − v

c2 − c1
,

L2(v) =
v − c1
c2 − c1

(6.35)

thus we obtain

yh(tk + vhk) = yh(tk) + hkYk,1β1(v) + hkYk,2β2(v), (6.36)

where

β1(v) =
∫ v

0
L1(v)dv =

v(2c2 − v)

2(c2 − c1)
,

β2(v) =
∫ v

0
L2(v)dv =

v(v − 2c1)
2(c2 − c1)

. (6.37)

We consider (6.19) in the general form

x′(t) = M1(x(t), y(t)),

y′(t) = M2(t, x(t), y(t))−
∫ t

0
M(t − a, x(a), y(a))da, (6.38)
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where

M1(x, y) = −τ
n

N
xy,

M2(x, y) = τ
n

N
xy − [I]0fI(t),

M(t, x, y) = τ
n

N
fI(t)xy. (6.39)

For pairwise model (6.20), we consider

x′(t) = P1(x(t), y(t)),

y′(t) = P2(x(t), y(t))−
∫ t

0
P1(t − a, x(a), y(a))e−

∫ t

a
P2(x(s),y(s))dsda

−P3

(
t,

∫ t

0
P2(x(s), y(s))ds

)
, (6.40)

where

P1(x, y) = −τy,

P2(x, y) = τ
n − 1

N
[S]

2
n
0 x

n−2
n y − τy − τ

n − 1
n

y2

x
,

P1(t, x, y) = fI(t)τ
n − 1

N
x

2
n
0 x

n−2
n y,

P2(x, y) = τ
n − 1

n

y

x
+ τ,

P3(t, z) =
n

N
[S]0[I]0e

−zfI(t). (6.41)

Considering the mean-field case, formally we have the following equations:

x′
h(tk + c1hk) = M1(xh(tk + c1hk), yh(tk + c1hk)),

x′
h(tk + c2hk) = M1(xh(tk + c2hk), yh(tk + c2hk)),

y′
h(tk + c1hk) = M2(tk + c1hk, xh(tk + c1hk), yh(tk + c1hk))

−
∫ tk+c1hk

0
M(tk + c1hk − a, xh(a), yh(a))da

y′
h(tk + c2hk) = M2(tk + c2hk, xh(tk + c2hk), yh(tk + c2hk))

−
∫ tk+c2hk

0
M(tk + c2hk − a, xh(a), yh(a))da.
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Using the Lagrange representation, we obtain

Xk,1 = M1(xh(tk) + hkXk,1β1(c1) + hkXk,2β2(c1),

yh(tk) + hkYk,1β1(c1) + hkYk,2β2(c1)),

Xk,2 = M1(xh(tk) + hkXk,1β1(c2) + hkXk,2β2(c2),

yh(tk) + hkYk,1β1(c2) + hkYk,2β2(c2)),

Yk,1 = M2(tk + c1hk, xh(tk) + hkXk,1β1(c1) + hkXk,2β2(c1),

yh(tk) + hkYk,1β1(c1) + hkYk,2β2(c1))

−
∫ tk+c1hk

0
M(tk + c1hk − a, xh(a), yh(a))da,

Yk,2 = M2(tk + c2hk, xh(tk) + hkXk,1β1(c2) + hkXk,2β2(c2),

yh(tk) + hkYk,1β1(c2) + hkYk,2β2(c2))

−
∫ tk+c2hk

0
M(tk + c2hk − a, xh(a), yh(a))da.

Let us focus on the integral term; first, we can exploit the linearity of integral, thus we

get for α ∈ {1, 2}
k−1∑

i=1

∫ ti+1

ti

M(tk + cαhk − a, xh(a), yh(a))da

+
∫ tk+cαhk

tk

M(tk + cαhk − a, xh(a), yh(a))da.

Applying substitutions a = ti + hib and a = tk + hkbcα, we have

k−1∑

i=0

hi

∫ 1

0
M(tk + cαhk − (ti + hib), xh(ti + hib), yh(ti + hib))db

+cαhk

∫ 1

0
M(tk + cαhk − (tk + bcαhk), xh(tk + bcαhk), yh(tk + bcαhk))db.

For integrals we apply the interpolatory quadrature formula using the abscissas based on

the collocation parameters, i.e.
∫ 1

0
M(tk + vhk)dv ≈ M(tk + c1hk)β1(1) +M(tk + c2hk)β2(1) (6.42)

Notice, that
∫ 1

0
M(tk + vcαhk)dv ≈ M(tk + c1cαhk)β1(1) +M(tk + c2cαhk)β2(1)dv. (6.43)
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Considering the pairwise case, we have the following equations:

x′
h(tk + c1hk) = P1(xh(tk + c1hk), yh(tk + c1hk)),

x′
h(tk + c2hk) = P1(xh(tk + c2hk), yh(tk + c2hk)),

y′
h(tk + c1hk) = P2(xh(tk + c1hk), yh(tk + c1hk))

−
∫ tk+c1hk

0
P1(tk + c1hk − a, xh(a), yh(a))e

−
∫ tk+c1hk

a
P2(xh(s),yh(s))dsda

−P3

(
tk + c1hk,

∫ tk+c1hk

0
P2(x(s), y(s))ds

)
,

y′
h(tk + c2hk) = P2(xh(tk + c2hk), yh(tk + c2hk))

−
∫ tk+c2hk

0
P1(tk + c2hk − a, xh(a), yh(a))e

−
∫ tk+c2hk

a
P2(xh(s),yh(s))dsda

−P3

(
tk + c2hk,

∫ tk+c2hk

0
P2(x(s), y(s))ds

)
.

Using the Lagrange representation, we obtain

Xk,1 = P1(xh(tk) + hkXk,1β1(c1) + hkXk,2β2(c1),

yh(tk) + hkYk,1β1(c1) + hkYk,2β2(c1)),

Xk,2 = P1(xh(tk) + hkXk,1β1(c2) + hkXk,2β2(c2),

yh(tk) + hkYk,1β1(c2) + hkYk,2β2(c2)),

and

Yk,1 = P2(tk + c1hk, xh(tk) + hkXk,1β1(c1) + hkXk,2β2(c1),

yh(tk) + hkYk,1β1(c1) + hkYk,2β2(c1))

−
∫ tk+c1hk

0
P1(tk + c1hk − a, xh(a), yh(a))e

−
∫ tk+c1hk

a
P2(xh(s),yh(s))dsda

− P3

(
tk + c1hk,

∫ tk+c1hk

0
P2(x(s), y(s))ds

)
,

Yk,2 = P2(tk + c2hk, xh(tk) + hkXk,1β1(c2) + hkXk,2β2(c2),

yh(tk) + hkYk,1β1(c2) + hkYk,2β2(c2))

−
∫ tk+c2hk

0
P1(tk + c2hk − a, xh(a), yh(a))e

−
∫ tk+c2hk

a
P2(xh(s),yh(s))dsda

− P3

(
tk + c2hk,

∫ tk+c2hk

0
P2(x(s), y(s))ds

)
.
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Again, for the integral term we obtain
k−1∑

i=1

∫ ti+1

ti

P1(tk + cαhk − a, xh(a), yh(a))e
−

∫ tk+cαhk

a
P2(xh(s),yh(s))dsda

+
∫ tk+cαhk

tk

P1(tk + cαhk − a, xh(a), yh(a))e
−

∫ tk+cαhk

a
P2(xh(s),yh(s))dsda.

Applying substitutions a = ti + hib and a = tk + hkbcα, we have
k−1∑

i=0

hi

∫ 1

0
P1(tk + cαhk − (ti + hib), xh(ti + hib), yh(ti + hib))

×e
−

∫ tk+cαhk

ti+hib
P2(xh(s),yh(s))ds

db

+cαhk

∫ 1

0
P1(tk + cαhk − (tk + bcαhk), xh(tk + bcαhk), yh(tk + bcαhk))

×e
−

∫ tk+cαhk

tk+bcαhk
P2(xh(s),yh(s))ds

db.

By using the substitution s = tk + whk, the exponent of the last term gets
∫ tk+cαhk

tk+bcαhk

P2(xh(s), yh(s))ds = hk

∫ cα

cαb
P2(xh(tk + whk), yh(tk + whk))dw.

For k ≥ 3 and i < k − 1, we can expand the exponents of the summands as follows:
∫ tk+cαhk

ti+hib
P2(xh(s), yh(s))ds =

∫ ti+1

ti+hib
P2(xh(s), yh(s))ds

+
k−1∑

j=i+1

∫ tj+1

tj

P2(xh(s), yh(s))ds

+
∫ tk+cαhk

tk

P2(xh(s), yh(s))ds.

Applying the recenty used substitutions, we find
∫ tk+cαhk

ti+hib
P2(xh(s), yh(s))ds = hi

∫ 1

b
P2(xh(ti + hiw), yh(ti + hiw))dw

+
k−1∑

j=i+1

hj

∫ 1

0
P2(xh(tj + hjw), yh(tj + hjw))dw

+cαhk

∫ 1

0
P2(xh(tk + cαhkw), yh(tk + cαhkw))dw.

On the other hand, we can obtain

P3

(
tk + cαhk,

∫ tk+cαhk

0
P2(xh(s), yh(s))ds

)

= P3

(
tk + cαhk,

k−1∑

i=1

∫ ti+1

ti

P2(xh(s), yh(s))ds +
∫ tk+cαhk

tk

P2(xh(s), yh(s))ds

)

= P3

(
tk + cαhk,

k−1∑

i=1

hi

∫ 1

0
P2(x

(i)(w), y(i)(w))dw +cαhk

∫ 1

0
P2(x

(k)(cαw), y(k)(cαw)ds
)

,
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where

x(i)(w) = xh(ti + hiw) = xh(ti) + hiXi,1β1(w) + hiXi,2β2(w)

y(i)(w) = yh(ti + hiw) = yh(ti) + hiYi,1β1(w) + hiYi,2β2(w).

Similarly to the interpolatory formulae (6.42)-(6.43), we can derive

∫ 1

0
P1(tk + vhk)dv ≈ P1(tk + c1hk)β1(1) + P1(tk + c2hk)β2(1)

and ∫ 1

0
P1(tk + vcαhk)dv ≈ P1(tk + c1cαhk)β1(1) + P1(tk + c2cαhk)β2(1)dv.

We implemented this recursive algorithm and solved the Eqs. (6.19) and (6.18) with

it. In Fig. 6.1, homogeneous (or regular random) networks were considered and the

average of 100 simulations is compared to the numerical solutions of mean-field (6.19)

and pairwise (6.18) models. Several observations can be made: (a) the agreement of the

simulation results with the numerical solution of pairwise model is excellent, and (b) the

mean-field model, which largely ignores the network structure, performs poorly. This

gives us great confidence that the generalised pairwise model can and will be used in

different contexts as dictated by empirical or other theoretical studies.

Figure 6.1: Stochastic and numerical experiments for non-Markovian epidemic with various
recovery time distributions on homogeneous networks with N = 1000 nodes and infection
rate τ = 0.35. Squares, circles, diamonds show the mean of 100 simulations on random
regular graphs with average degree 〈k〉 = 15 for exponential distribution with parameter λ =
2
3 (mean = 3

2 ,variance = 9
4 ), gamma distribution with shape α = 3 and rate β = 2 (mean =

3
2 ,variance = 3

4 ), uniform distribution on interval [a, b] = [1, 2] (mean = 3
2 ,variance = 1

12 ),
respectively. Dashed and solid lines correspond to the numerical solution of the mean-field
(6.19) and parwise (6.18) models, respectively.
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6.4 Special cases

In this section, we investigate some common choices for the recovery time. As we expect,

if I ∼ Exp(γ) (i.e. the infectious period I is exponentially distributed), we get back
the classical Markovian models (2.8) and (2.12). In the case of fixed recovery time, the

models reduce to the systems (5.3)-(5.4) and (5.1)-(5.2). We can also recover the multi-

stage infection model of [75] with gamma distributed recovery time. Finally, we consider

I ∼ Uniform(A, B) and write down the associated equations in a compact form. In

this section we assume, that the initial infecteds are ’newborn’, thus we use formulae

(6.32)-(6.33).

6.4.1 Markovian recovery time: exponential distribution with
parameter γ

The most widely used distribution in disease modelling is the exponential distribution.

Both the stochastic and deterministic approaches exploit the memorylessness property

to build tractable models. The resulting deterministic systems are ordinary differential

equations with the advantage of relatively simple structure and numerical solvability. In

the exponential case, ξI(t) = e−γt and fI(t) = γe−γt. Using the assumption ϕ(a) =

[I]0δ(a), (6.10) and fI(t) = γ ξI(t), from (6.18c) we obtain

˙[I](t) = τ [SI](t) − γ[I](t),

which gives the classical Markovian type pairwise equation for [I](t). With similar argu-

ments, from (6.18d) we obtain

˙[SI](t) = τ
n − 1

n

[SS](t)[SI](t)

[S](t)
− τ

n − 1

n

[SI](t)

[S](t)
[SI](t) − τ [SI](t)

−γ[SI](t).

For the mean-field model (6.19), the same calculation gives the classical Markovian mean-

field equation for İ(t):

˙[I](t) = τ [S](t)[I](t) − γ[I](t).

6.4.2 Fixed recovery time σ

In several models, it is a reasonable assumption for the infectious period to have a fixed,

constant duration, e.g. for measles [6]. In the case of fixed recovery time σ, we have

ξI(t) =





1 if 0 ≤ t < σ,

0 if t ≥ σ,
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and

fI(t) = δ(t − σ),

where δ(t) denotes the Dirac-delta function. Applying the fundamental property of δ(t),

from (6.18c) and ϕ(a) = [I]0δ(a) we have

˙[I](t) = τ [SI](t) −




0 if 0 ≤ t < σ,

τ [SI](t − σ) if t ≥ σ,

and from (6.18d), if 0 ≤ t < σ, we obtain

˙[SI](t) = τ
n − 1

n

[SS](t)[SI](t)

[S](t)
− τ

n − 1

n

[SI](t)

[S](t)
[SI](t) − τ [SI](t).

If t > σ, we get

˙[SI](t) = τ
n − 1

n

[SS](t)[SI](t)

[S](t)
− τ

n − 1

n

[SI](t)

[S](t)
[SI](t) − τ [SI](t)

−τ
n − 1

n

[SS](t − σ)[SI](t − σ)

[S](t − σ)
e

−
∫ t

t−σ
τ n−1

n

[SI](s)
[S](s)

+τds
.

which is exactly the same system, that was studied in detail in Ch. 5. The mean-field

model (5.3)-(5.4) can also be derived from (6.19b) using the same arguments.

6.4.3 Gamma distribution with shape K ∈ Z
+ and rate Kγ

The case of gamma distributed recovery time was studied in [75]. Using pairwise ap-

proximation with a standard closure, the authors have been able to analytically derive a

number of important characteristics of disease dynamics. These included the final size of

an epidemic and the epidemic threshold. Their results have shown that a higher number

of disease stages, but with the same average duration of the infectious period, results

in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the

epidemic. The pairwise model in [75] has the following equations for nodes:

˙[S] = −τ
K∑

i=1

[SIi],

˙[I1] = τ
K∑

i=1

[SIi] − Kγ[I1]

˙[Ij] = Kγ[Ij−1] − Kγ[Ij], j = 2, 3, . . . K, (6.44)

where Ii, i = 1, 2, . . . , K are the infectious stages, where nodes spend an exponentially

distributed time with parameter Kγ. The distribution of the total infectious period is
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the sum of K exponential distributions with parameter Kγ, which gives the gamma

distribution with shape K and rate Kγ (thus the expected infectious period is K ×
1/Kγ = 1/γ). Clearly, [I](t) =

∑K
j=1[Ii](t) and [SI](t) =

∑K
i=1[SIi](t) and the sum of

equations for infectious stages gives

˙[I](t) = τ [SI](t) − Kγ[IK ](t).

On the other hand, using (6.32), the PDF and survival function of Gamma distribution

fI(a) =
(Kγ)K

(K − 1)!
aK−1e−Kγa,

ξI(a) = e−Kγa
K−1∑

k=0

(Kγ)k

k!
ak,

and inserting into (6.18c) and (6.10), we have

˙[I](t) = τ [SI](t) − Kγ
∫ t

0
τ [SI](t − a)

(Kγ)K−1

(K − 1)!
aK−1e−Kγada

−Kγ[I]0
(Kγ)K−1

(K − 1)!
tK−1e−Kγt

(6.45)

and

[I](t) =
K−1∑

k=0

(∫ t

0
τ [SI](t − a)

(Kγ)k

k!
ake−Kγada − [I]0

(Kγ)k

k!
tke−Kγt

)
. (6.46)

These equations suggest the relations

[Ij](t) =
∫ t

0
τ [SI](t − a)

(Kγ)j−1

(j − 1)!
aj−1e−Kγada + [I]0

(Kγ)j−1

(j − 1)!
tj−1e−Kγt,

j = 1, 2, . . . , K. (6.47)

To show this, we consider the equations for infectious stages in (6.44) as a first-order,

linear differential equations with variation of constants formulae

[I1](t) = [I1](0)e−Kγt +
∫ t

0
e−Kγ(t−s)τ [SI](s)ds (6.48)

and

[Ij](t) = [Ij](0)e−Kγt +
∫ t

0
e−Kγ(t−s)Kγ[Ij−1](s)ds, (6.49)

j = 2, 3, . . . , K.
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If all infecteds are newborn, we have [I1](0) = [I]0 and [I2](0) = [I3](0) = · · · = [IK ](0) =

0. Proceeding by induction yields that (6.47) satisfies (6.48) for j = 1 and (6.49) for

j = 2, 3, . . . , K. Indeed, letting j = 1 in (6.47), we have

[I1](t) =
∫ t

0
τ [SI](t − a)e−Kγada+ [I]0e

−Kγt,

which comes directly from (6.48). Assuming that (6.47) holds for 1 < j, we prove that

it holds for j + 1. Indeed, we can do the following elaboration:

[Ij+1](t) = [Ij+1](0)e
−Kγt +

∫ t

0
e−Kγ(t−s)Kγ[Ij](s)ds

=
∫ t

0
e−Kγ(t−s)Kγ

∫ s

0
τ [SI](s − a)

(Kγ)j−1

(j − 1)! a
j−1e−Kγadads

+
∫ t

0
e−Kγ(t−s)Kγ[I]0

(Kγ)j−1

(j − 1)! s
j−1e−Kγsds

=
∫ t

0

(Kγ)j

(j − 1)!e
−Kγ(t−s)

(∫ s

0
τ [SI](s − a)aj−1e−Kγada

)
ds

+[I]0
(Kγ)j

(j − 1)!e
−Kγt

∫ t

0
sj−1ds

=
∫ t

0

(Kγ)j

(j − 1)!e
−Kγ(t−s)

(∫ s

0
τ [SI](u)(s − u)j−1e−Kγ(s−u)du

)
ds

+[I]0
(Kγ)j

j!
tje−Kγt

=
∫ t

0

(Kγ)j

(j − 1)!e
−Kγ(t−u)τ [SI](u)

(∫ t

u
(s − u)j−1ds

)
du

+[I]0
(Kγ)j

j!
tje−Kγt

=
∫ t

0
τ [SI](u)

(Kγ)j

j!
(t − u)je−Kγ(t−u)du+ [I]0

(Kγ)j

j!
tje−Kγt

=
∫ t

0
τ [SI](t − a)

(Kγ)j

j!
aje−Kγada+ [I]0

(Kγ)j

j!
tje−Kγt.

It is analogous to derive the equations for [SIj](t).

6.4.4 Uniform distribution on interval [A, B]

The uniform distribution is one of the most natural probability distributions and preferred

in agent-based modeling [51], and was applied also for avian influenza [87]. Let the

recovery time be distributed uniformly on interval [A, B] (we assume 0 < A < B), i.e.,

fI(t) =





1
B−A

if t ∈ (A, B),

0 otherwise,
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and

ξI(t) =





1 if t ≤ A,
B−t
B−A

if t ∈ (A, B),

0 if t ≥ B.

We have to study the three cases t < A, A < t < B and t > B. Writing the equation for
˙[I](t), we have (after changing the variable):

˙[I](t = τ [SI](t) −





0 if t < A,
∫ t−A
0

τ [SI](u)
B−A

du+ [I]0
B−A

if t ∈ [A, B],
∫ t−A

t−B
τ [SI](u)

B−A
du if t > B.

With a more compact notation,

˙[I](t) = τ [SI](t) −
∫ max(0,t−A)

max(0,t−B)

τ [SI](u)

B − A
du − [I]0

B − A
ι[A,B](t),

where ι[A,B](t) is the indicator function of interval [A, B]. The same argument gives

˙[SI](t) = τ
n − 1

n

[SS](t)[SI](t)

[S](t)
− τ

n − 1

n

[SI](t)

[S](t)
[SI](t) − τ [SI](t)

−
∫ max(0,t−A)

max(0,t−B)

τ

B − A

n − 1

n

[SS](u)[SI](u)

[S](u)
e−

∫ t

u
τ n−1

n

[SI](s)
[S](s)

+τdsdu

− n

N
[S]0e

−
∫ t

0
τ n−1

n

[SI](s)
[S](s)

+τds [I]0
B − A

ι[A,B](t).

For t > B the model becomes a system of differential equations with distributed delays.

6.5 Conclusions

The generalised pairwise model provides a description of a possible deterministic ap-

proximation of non-Markovian epidemic processes on networks. The integro-differential

system, which describes the dynamics at the level of nodes and links, is a powerful tool for

investigating the classical quantities of an SIR-type epidemic, such as the reproduction

number and final epidemic size. The generalised model is more challenging to analyse

due to its complexity but it largely relies on tools from the theory of integro-differential

equations. Further extensions of the model could focus on relaxing the assumption of

homogeneous networks and extend the model to networks with heterogeneous degree

distribution, see for example [76, 78], or to consider modelling the situation where both

the infectious and recovery processes are non-Markovian. With the model proposed we

wanted to emphasise opportunities to frame problems and models of network epidemics

in more rigorous mathematical terms and use existing mathematical theory to enhance
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our understanding of stochastic processes on networks and their average behaviour as

captured by mean-field models.
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Summary

Networks (or graphs) offer a flexible framework to explicitly incorporate various hetero-

geneities in how individuals within a population interact. This framework has led to a

number of models where the strong assumptions of random mixing of the classical com-

partmental models can be relaxed. Because of the flexibility of the network approach,

nodes can represent not only single individuals but also groups of individuals or loca-

tions. Similarly, links can represent contacts between individuals along which diseases can

spread, or interactions between groups such as flight routes between different locations.

Most SIR (susceptible-infected-recovered) models on networks assume that both the

disease transmission and recovery process are Markovian. The assumption of Marko-

vianity is a strong simplifying assumption, as especially in the context of epidemiol-

ogy, the period of infectiousness has paramount importance, and often this is approxi-

mated from the empirical distribution of observed infectious periods of various diseases

by non-exponential distributions. Recently, however there is renewed interest in mod-

elling non-Markovian processes, such as epidemics on networks. A possible modelling

approach involves mean-field approximations, which are based on the classical compart-

mental principles and pairwise models, which have been very successful in capturing the

average behaviour of a stochastic epidemics on networks.

This thesis aims to extend the pairwise model from Markovian to non-Markovian

epidemic dynamics where the infection process remains Markovian but the infectious

period is taken from an arbitrary distribution. In addition, we want to perform the

full mathematical analysis of the resulting systems, with focus on the positivity of so-

lutions, associated reproduction numbers and the implicit relation concerning the final

epidemic size and implement explicit stochastic simulations and numerical solvers to test

the validity of these models.

In Chapter 3, we introduce the new concept of reproduction numbers for mean-field

74
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and pairwise models. In this systematic approach, we give analytical formulae for the

basic reproduction number R0 of mean-field type systems and the pairwise reproduction

number Rp
0 of link-level models. As an illustration, we calculate these key parameters for

Markovian and fixed recovery times. In the last part, we summarise the general forms of

implicitly given final size equations for both type of models.

It can be easily seen, while in general R0 depends on the expected value only, the

pairwise reproduction number Rp
0 uses the complete density function, thus the average

length of infectious period does not determine exactly the reproduction number. We

study how the distribution of infectious periods influences the dynamics of epidemics on

networks in Chapter 4. From studying typical families of distributions, we obtain the

following results:

• For gamma and uniformly distributed recovery times it is shown, that higher vari-
ance in the recovery times generates lower reproduction numbers and different

epidemic curves within each distribution family.

• The same phenomenon is numerically evidenced for lognormal distribution.

• We prove, that lower variance produces higher reproduction number in the general

case.

• By comparing epidemics generated by different types of the recovery time distri-

butions, we illustrate that estimating the expected value and the variance of the

recovery time is not sufficient to give a realistic description of the epidemics.

The first generalisation of mean-field and pairwise models is presented in Chapter 5.

For the case of infectious periods of fixed length, the resulting pairwise model is a system

of delay differential equations, which shows excellent agreement with results based on

stochastic simulations. The proposed framework includes the following results:

• The derivation of the pairwise model from first principles is illustrated. The term

associated to the recovery is determined by an evolution equation and results in a

differential equation with discrete and distributed delays.

• Investigating the basic properties of the systems, an invariant can be found and

positivity of the solutions can be shown.

• An important relation between reproduction numbers and epidemic outbreaks can

be explored by linearisation and study of the characteristic roots. The condition

for an epidemic is exactly the same as in the Markovian case.
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• The final size relations can be derived for both mean-field and pairwise models via
lengthy calculations. The results are consistent with the classical functional form

of final size relation.

• Stochastic simulations for the epidemic process are performed and compared with
the numerical solution of the deterministic models and very good agreement is

found.

• A possible extension for more heterogeneous networks is proposed.

The generalised mean-field and pairwise models for non-Markovian epidemics on net-

works with arbitrary recovery time distributions are presented in Chapter 6. The main

section of this dissertation involves a wide spectrum of analytical and numerical results

proposing a systematic framework to investigate non-Markovian SIR models on net-

works. We have the following results:

• Considering a first-order partial differential equation, where the population of infec-

tive nodes and links are structured by age since infection, the model is transformed

into a system of integro-differential equations.

• Positivity of the solutions and condition for a disease outbreak is obtained. An

intuitive picture is given about the role of the reproduction number in stability

analysis of equilibria of linearised equations.

• Complete mathematical analysis is performed to obtain the general functional form

of final size relations. The relation between final size and reproduction number is

exactly described.

• A numerical scheme based on collocation method of Volterra integro-differential

equations is developed and implemented to solve the mean-field and pairwise sys-

tems.

• As an illustration of the applicability of the general model we recover known results

for the fixed, exponentially and gamma distributed recovery times and obtain new

pairwise models with uniformly distributed infectious period.

The general framework that we proposed shows a more complete picture of the impact

of non-Markovian recovery on network epidemics. With the model proposed we wanted

to emphasise opportunities to frame problems and models of network epidemics in more

rigorous mathematical terms and use existing and new mathematical theories to enhance

our understanding of stochastic processes on networks.
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Összefoglalás

A hálózatok (vagy gráfok) olyan struktúrák, amelyek lehetőséget nyújtanak a populáció

tagjai közötti kapcsolatok heterogenitásának feltárására, modellekbe történő beépítésére.

Számos modell, amely korábban feltételezte a klasszikus rekeszrendszeres megközelítéshez

tartozó egyenletes (homogén) keveredést, a hálózatok alkalmazásával fejlődött tovább.

A struktúra rugalmasságát fémjelzi, hogy a csúcsok az egyedek mellett csoportokat és

területeket is reprezentálhatnak. Hasonlóan, az összeköttetések (élek) az egyedek közötti

kapcsolatokon túl, csoportok közötti interakciót és földrajzi helyek közötti útvonalakat

is jelenthetnek.

A legtöbb SIR (fogékony (susceptible)-fertőzött (infected)-felgyógyult (recovered) tí-

pusú hálózatos járványterjedési modell a fertőzési és felgyógyulási folyamatot egyaránt

Markovinak (memória nélkülinek) feltételezi. Ez a feltétel túlságosan erősnek bizonyul,

például az epidemiológia esetében, ahol kimagasló jelentőséggel bír a fertőzési periódus

eloszlása és számtalan esetben a mérési adatokból nyert empirikus eloszlásokat nem-

exponenciális eloszlással közelítik. Napjainkban újra előtérbe került a nem-Markovi

folyamatok vizsgálata, különösen járványterjedés hálózaton történő modellezésénél. Egy

lehetséges megközelítés az átlag-tér (mean-field) és páronkénti (pairwise) modellek alka-

lmazása: míg előbbi a rekeszrendszerek elvén alapul, utóbbival eredményesen közelíthetők

a hálózatos sztochasztikus járványterjedési folyamatok.

A disszertáció célkitűzése a páronkénti modellek kidolgozása nem-Markovi járványter-

jedési dinamikára, ahol a fertőzés Markovi marad, de a felgyógyulási folyamatban a

fertőzéstől a felgyógyulásig eltelt idő tetszőleges eloszlású lehet. A kapott rendszerek

teljes analízise esetén a megoldások pozitivitására, a modellekhez tartozó reproduk-

ciós számokra és a végállapot-egyenletekre összpontosítunk. A modellek érvényességét

egyrészt explicit sztochasztikus szimulációk, másrészt numerikus megoldó algoritmusok

implementálásával vizsgáljuk.
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A 3. fejezetben bevezetjük az átlag-tér és páronkénti modellekhez tartozó repro-

dukciós számok fogalmát. A szisztematikus felépítés lehetőséget ad analitikus formulák

levezetésére az átlag-tér típusú modellek R0 alap reprodukciós száma és a kapcsolat

szintű modellek Rp
0 páronkénti reprodukciós száma esetén. Példaként levezetjük az expo-

nenciális eloszlású és konstans felgyógyulási időtartamhoz tartozó formulákat. A fejezet

utolsó részében összegezzük az implicit módon felírt végállapot egyenletek funkcionális

alakjára vonatkozó eredményeket mindkét modell esetében.

Ezekből a kifejezésekből könnyen látható, hogy míg R0 csak a fertőzési periódus

hosszának várható értéktől függ, addig az Rp
0 páronkénti reprodukciós szám kiszámításához

a teljes sűrűségfüggvényre szükség van, így az átlagos periódusidő nem határozza meg

egyértelműen Rp
0 értékét. A 4. fejezetben azt vizsgáljuk, hogy a fertőzési időtartam

hosszának eloszlása hogyan befolyásolja a páronkénti reprodukciós számot. A jellegzetes

eloszláscsaládokat vizsgálva a következő eredményeket kapjuk:

• Gamma és egyenletes eloszlású felgyógyulási időtartamokra belátjuk, hogy a nagy-

obb varianciájú periódushoz alacsonyabb reprodukciós szám és más járványgörbe

tartozik.

• Ezt a jelenséget numerikusan vizsgáljuk a lognormális eloszlás esetére.

• Bebizonyítjuk az általános esetben is, hogy az azonos várható értékkel rendelkező

eloszlások esetén kisebb variancia nagyobb reprodukciós számot generál.

• Az azonos várható értékkel és varianciával rendelkező eloszlásokra generált járványgör-

bék összehasonlításával illusztráljuk, hogy a várható érték és a variancia ismerete

önmagában még nem elégséges a járvány teljeskörű leírására.

Az átlag-tér és páronkénti modellek első általánosítását a 5. fejezetben tárgyaljuk.

A rögzített fertőzési periódus esetén a modellek késleltetett differenciálegyenletekből

álló rendszereket eredményeznek, amelyek megoldásai kiváló egyezést mutatnak a sz-

tochasztikus szimulációkból kapott eredményekkel. A fejezet a következő eredményeket

tartalmazza:

• Levezetjük a párokénti modellt, amelyben a felgyógyulást leíró tagot egy populá-

ció egyedszámának változását leíró differenciálegyenletből kapjuk. A felírt modell

konstans és eloszlásbeli (distributed) késleltetéseket tartalmaz.

• A modell alapvető tulajdonságait vizsgálva felírható egy első integrál és megmu-

tatható a megoldások pozitivitása.
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• A járvány kitörése és a reprodukciós számok közötti fontos kapcsolatot egy tétel-
ben mondjuk ki, amelyben a rendszerek linearizáltjának karakterisztikus gyökeit

vizsgáljuk. A felírt feltétel megegyezik a Markovi esetben levezethetővel.

• A végállapot-egyenletet mind az átlag-tér, mind a páronkénti modellre levezetjük.

Az eredmények konzisztensek a végállapot egyenletek klasszikus funkcionális alakjára

vonatkozó eredményekkel.

• A járványterjedési folyamatra lefuttatott szimulációkat összehasonlítjuk a deter-

minisztikus modellek numerikus megoldásával és kiváló egyezést tapasztalunk.

• Végül felírjuk a modell erősen heterogén hálózatok egy családjára vonatkozó ál-

talánosítását.

Az átlag-tér és páronkénti modellek tetszőleges felgyógyulási időtartamra történő ál-

talánosítását a 6. fejezetben tárgyaljuk. A disszertáció legfontosabb fejezete az analitikus

és numerikus eredmények széles spektrumát tartalmazza, szisztematikusan vizsgáljuk a

nem-Markovi SIR modellekkel kapcsolatos következő, fontos eredményeket:

• A kiindulásként tekintett parciális differenciálegyenletet, ahol a fertőzött csúcsok és

összeköttetések a fertőződéstől eltelt idő szerint is struktúrálva vannak, egy integro-

differenciálegyenletté transzformáljuk.

• Bizonyítjuk a megoldások pozitivitását és feltételt adunk a járvány kitörésének

bekövetkezésére. Egy intuitív levezetésseé kapcsolatot teremtünk a reprodukciós

számok és a linearizált egyenletek egyensúlyi helyzetének stabilitása között.

• A végállapot-egyenletek levezetése lehetőséget ad a reprodukciós számok és a végál-

lapot közötti kapcsolat felírására.

• A Volterra típusú integro-differenciálegyenletekhez kidolgozott kollokációs módsz-

eren (collocation method) alapuló numerikus sémát fejlesztünk az átlag-tér és a

párokénti modellek numerikus megoldására.

• Néhány speciális esetet vizsgálva az általános rendszerekből levezetjük a már létező

modelleket (Markovi, exponenciális és gamma), illetve egy új modellt írunk fel

egyenletes eloszlású felgyógyulási időtartam esetén.

A leírt módszerek teljesebb képet adnak a nem-Markovi típusú felgyógyulás hálózaton

történő járványterjedésre gyakorolt hatásáról. A modellek a hálózati járványterjedéssel
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kapcsolatos problémák matematikailag is precízebb tárgyalására adnak lehetőséget és

segítik a hálózaton vett sztochasztikus folyamatok megértését.

A disszertáció az alábbi három, Röst Gergellyel és Kiss Istvánnal közös publikációra

épül:

• Kiss, I.Z., Röst, G. and Vizi, Z., 2015. Generalization of pairwise models to

non-Markovian epidemics on networks. Physical review letters, 115(7), p.078701.

http://dx.doi.org/10.1103/PhysRevLett.115.078701

• Röst, G., Vizi, Z. and Kiss, I.Z., 2015. Impact of non-Markovian recovery on

network epidemics. In Biomat 2015: Proceedings of the International Symposium

on Mathematical and Computational Biology

• Röst, G., Vizi, Z. and Kiss, I.Z., 2016. Pairwise approximation for SIR type network

epidemics with non-Markovian recovery. arXiv preprint arXiv:1605.02933.

A szerző további publikációi:

• Röst, G. and Vizi, Z., 2014. Backward bifurcation for pulse vaccination. Nonlinear

Analysis: Hybrid Systems, 14, pp.99-113.

• Barbarossa, M.V., Dénes, A., Kiss, G., Nakata, Y., Röst, G. and Vizi, Z., 2015.

Transmission dynamics and final epidemic size of Ebola virus disease outbreaks

with varying interventions. PloS one, 10(7), p.e0131398.
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Appendix 

Sample run

 � Description 

A code of sample run to  simulate the non-Markovian stochastic process  on networks.
We consider Weibull distributed recovery time with parameters a and b, homogeneous
random network  with  uniform degree  distribution  �k� � 15  and  N � 1000  nodes.  The
loop in simulation stores the actual state of the system in a list to export the output at
the end of the epidemic.

 � Initialisation

Nn � 1000;

network �

RandomGraph�DegreeGraphDistribution �

Table �15, �i , 1, Nn����;

tau � 0.3;

a � 1.0;

b � 1.0;

t � 0;

timelist � �t �;

counter � 1;

S � 999;

II � Nn � S;

R� 0;

config � ��S, II , R��;

tstop � 1000;

��edge list of the network �	

links �

N�Table ��EdgeRules �network ���k, 1 ��,

EdgeRules �network ���k, 2 ���,

�k, 1, EdgeCount �network ����;

��labelling the nodes by a state: S � �1;

I � positive number 
time to recovery; R � � �	

label � Join �Table ��1., �i , 1, S��,

Table �0., �i , S � 1, S � II ���;

��list of S �I links �	

inflinks �

Select �links ,

��label ��
��1���� � �1. && label ��
��2���� � 0	 ��

�label ��
��2���� � �1. && label ��
��1���� � 0		 &�;
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� ��
�� ���� � � ��
�� ���� � 		 �

SIlinks �

Table �If �label ��inflinks ��n, 1 ���� � �1.,

�inflinks ��n, 1 ��, inflinks ��n, 2 ���,

�inflinks ��n, 2 ��, inflinks ��n, 1 ����,

�n, 1, Length �inflinks ���;

��sampling exponentially distributed waiting time

for all S �I links �	

timetoinf � Table �

RandomVariate �ExponentialDistribution �tau ��,

�k, 1, Length �SIlinks ���;

��list of infected nodes �	

infectednodes � Table �i , �i , S � 1, S � II ��;

��sampling time to recovery for infected nodes �	

timetorec � Table �

RandomVariate �WeibullDistribution �a, b��,

�k, 1, Length �infectednodes ���;

��lists for export �	

labels � �label �;

infectednodeslist � �infectednodes �;

timetoinflist � �timetoinf �;

SIlinkslist � �SIlinks �;

timetoreclist � �timetorec �;

��variables for minimum of list 'timetorec' and '

timetoinf' �	

minforinf � 0;

minforrec � 0;

 � Simulating the epidemics

While ��t � tstop && minforrec � � && minforinf � � &&II � 0	,

��time to the next infection and recovery,

respectively �	

minforrec � Min �timetorec �;

minforinf � Min �timetoinf �;

��finding the infecting link and recovering �	

eventSIlink � If �minforinf � �,

SIlinks ��Flatten �Position �timetoinf , minforinf ����,

���;

eventInode � If �minforrec � �,

infectednodes ��

Flatten �Position �timetorec , minforrec ����, ���;

��executing infection or recovery �	

simulation � process �tau , a, b, t , label , links , S,

II , R, minforrec , eventInode , infectednodes ,

timetorec , minforinf , eventSIlink , SIlinks , timetoinf �;

��updating lists and variables for next step and

�	
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��

export �	

t � simulation ��1, 1 ��;

label � simulation ��2��;

currentconfig � simulation ��3��;

S � currentconfig ��1��;

II � currentconfig ��2��;

R� currentconfig ��3��;

SIlinks � simulation ��4��;

timetoinf � simulation ��5��;

infectednodes � simulation ��6��;

timetorec � simulation ��7��;

labels � Join �labels , �label ��;

timelist � Join �timelist , �t ��;

SIlinkslist � Join �SIlinkslist , �SIlinks ��;

config � Join �config , �currentconfig ��;

timetoinflist � Join �timetoinflist , �timetoinf ��;

counter ��

�;

Module �inf�: the infecting process

 � Description 

This  module  executes  the  infection  subprocess.  First,  it  updates  the  labels  of  nodes,
which  are  infected  in  this  step.  Next,  we  modify  the  lists  associated  to  S-I  links.
Finally,  we  change  the  lists  associated  to  infected  nodes  and  calculate  the  returning
values of the module.

 � Parameters:

tau_: transmission parameter

a_: shape parameter of Gamma distribution

b_: scale parameter of Gamma distribution

t_: time of system

label_List: list of nodes� labels

links_List: links of the network

S_: number of susceptible nodes at time t

II_: number of infected nodes at time t

R_: number of recovered nodes at time t

minforrec_: time to the next recovery

eventInode_List: list of recovering nodes

infectednodes_List: list of infected nodes

timetorec_List: list of time to recovery for all infected nodes

minforinf_: time to the next infection
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eventSIlink_List: list of S-I links, where infection goes along

SIlinks_List: list of S-I links

timetoinf_List: list of time to infection for all S-I links

��Module executing the infecting process �	

inf �tau�, a�, b�, t�, label�List, links�List, S�, II�,

R�, minforrec�, eventInode�List, infectednodes�List,

timetorec�List, minforinf�, eventSIlink�List,

SIlinks�List, timetoinf�List� : �

Module ��noofchanges , outputSIlinks , remSI , newSI ,

updatedlabels , suscnod , updremSIw , newSIw,

outputSIlinkswaiting , remSIw , updIw , outputInodes ,

outputInodewaiting , remrp �,

��updating labels of all nodes �	

noofchanges � Length �eventSIlink�;

updatedlabels �

Table �If ��MemberQ�eventSIlink��All, 1 ��, N �n��	,

N�0�, If ��label��n�� � � &&label��n�� � 0	,

label��n�� � minforinf , label��n����,

�n, 1, Length �label���;

��updating list of S �I links �	

suscnod � N�Flatten �Position �updatedlabels , �1. ���;

remSI � Select �SIlinks,

� MemberQ�eventSIlink��All, 1 ��, 
��1��� &�;

newSI �

Select �

N�

Flatten �

Table �

If �

�MemberQ�links , �eventSIlink��l , 1 ��,

suscnod ��k���� ��

MemberQ�links , �suscnod ��k��,

eventSIlink��l , 1 ����	,

�suscnod ��k��, eventSIlink��l , 1 ���, �0, 0 ��,

�l , 1, noofchanges �, �k, 1, Length �suscnod ���, 1 ��,


��1�� � 0 &�;

outputSIlinks � Join �remSI , newSI �;

��updating waiting times of S �I links �	

remrp �

Flatten �

Table �If �MemberQ�eventSIlink��All, 1 ��,

SIlinks��i , 1 ���, ��, �i ��,

�i , 1, Length �SIlinks����;

remSIw � timetoinf��remrp ��;

A-4



� �� ��

updremSIw � remSIw � minforinf ;

newSIw �

Table �RandomVariate �ExponentialDistribution �tau��,

�i , 1, Length �newSI ���;

outputSIlinkswaiting � Join �updremSIw , newSIw�;

��updating list of infected nodes �	

outputInodes � Join �infectednodes,

eventSIlink��All, 1 ���;

��updating waiting times of infected nodes �	

updIw � Table �timetorec��i �� � minforinf ,

�i , 1, Length �timetorec���;

outputInodewaiting �

Join �updIw ,

Table �RandomVariate �WeibullDistribution �a, b��,

�i , 1, noofchanges ���;

��returning values �	

��t � minforinf�, updatedlabels ,

�S � noofchanges , II � noofchanges , R�, outputSIlinks ,

outputSIlinkswaiting , outputInodes , outputInodewaiting �

�;

Module �rec�: the infecting process

 � Description 

This  module  executes  the  recovery  subprocess.  First,  it  updates  the  labels  of  nodes,
which  are  recovered  in  this  step.  Next,  we  modify  the  lists  associated  to  S-I  links.
Finally,  we  change  the  lists  associated  to  infected  nodes  and  calculate  the  returning
values of the module.

 � Parameters

See Section �Parameters� of module �inf�.

��Module executing the recovery process �	

rec �tau�, a�, b�, t�, label�List, links�List, S�, II�,

R�, minforrec�, eventInode�List, infectednodes�List,

timetorec�List, minforinf�, eventSIlink�List,

SIlinks�List, timetoinf�List� : �

Module ��outputSIlinks , outputSIlinkswaiting , updremSIw ,

newSIw, remSI , newSI , updatedlabels , noofchanges ,

remSIw , outputInodes , remI , remIw , outputInodewaiting ,

remrp �,

��updating labels �	

noofchanges � Length �eventInode�;

updatedlabels �
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Table �If �MemberQ�eventInode, N �n��, �,

If ��label��n�� � 0 &&label��n�� � �	,

label��n�� � minforrec, label��n����,

�n, 1, Length �label���;

��updating list of S �I links �	

remrp �

Flatten �

Table �If �MemberQ�eventInode 

 N, N�SIlinks��i , 2 ����,

��, �i ��, �i , 1, Length �SIlinks����;

outputSIlinks � SIlinks��remrp ��;

��updating waiting times of S �I links �	

remSIw � timetoinf��remrp ��;

outputSIlinkswaiting �

Table �remSIw ��i �� � minforrec, �i , 1, Length �remSIw ���;

��updating list of infected nodes �	

remI �

Flatten �

Table �If �MemberQ�eventInode, infectednodes��i ���,

��, �i ��, �i , 1, Length �infectednodes����;

outputInodes � infectednodes��remI ��;

��updating waiting times of infected nodes �	

remIw � timetorec��remI ��;

outputInodewaiting �

Table �remIw ��i �� � minforrec, �i , 1, Length �remIw ���;

��t � minforrec�, updatedlabels ,

�S, II � noofchanges , R � noofchanges �, outputSIlinks ,

outputSIlinkswaiting , outputInodes , outputInodewaiting �

�;

Module �process�: executing the next subprocess

 � Description 

This module makes the decision, which subprocess is executed in this step.

 � Parameters:

See Section �Parameters� of module �inf�.

��Main function for choosing and executing the event

according to the minimum of 'minforinf' and 'minforrec' �	

process �tau�, a�, b�, t�, label�List, links�List, S�,

II�, R�, minforrec�, eventInode�List, infectednodes�List,

timetorec�List, minforinf�, eventSIlink�List,

SIlinks�List, timetoinf�List� : �

If �minforrec � minforinf ,
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� �

rec �tau, a, b, t, label, links, S, II, R, minforrec,

eventInode, infectednodes, timetorec, minforinf ,

eventSIlink, SIlinks, timetoinf�,

inf �tau, a, b, t, label, links, S, II, R, minforrec,

eventInode, infectednodes, timetorec, minforinf ,

eventSIlink, SIlinks, timetoinf�

�;
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