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I. INTRODUCTION 

 

I. 1. Hearing through bone conduction and its application in assistive 

hearing devices – historical review [1] 

 

The great pioneering anatomical and physiological studies by Andreas Vesalius (1515 

– 1564), Gabriele Falloipio (1523 – 1562), and Bartolomeo Eustachi (1500 or 1514 – 1574) 

might be considered the start of the functional diagnosis of hearing disorders, included the 

phenomenon of bone conduction as well. 

During the Renaissance an Italian physician, philosopher and mathematician, 

Girolama Cardano (1501 – 1576) mentioned his peculiar phenomenon how sound may be 

perceived by means of a rod or the shaft of a spear held between one’s teeth through bone 

conduction. He noted his observation in De Subtilitate (1551). Other authors (Ingrassia, 

Fabricius, and Plater) mentioned the bone-conduction phenomenon only with theoretical 

interest. 

Hieronymus Capivaccius (died 1589) an Italian physician interpreted the diagnostic 

value of Cardano’s observations, and employed it in the differential diagnosis of the 

“disorders of the tympanic membrane”. 

In the coming century an English physician, John 

Bulwer (1644 – 1662), who is known for developing a method 

for communicating with the deaf and dumb, also illustrated in 

his impressive work, Philocophus a remarkable case of a man 

who is listening to music through bone conduction by his teeth 

(Figure 1). 

Falling into oblivion for a time perceiving sounds 

through the vibration of the skull bones mediated by the teeth 

was re-unfolded by Joannes Jorrison in 1757, and 

subsequently by Jean Marie Gaspard Itard (1773 – 1838) a 

French military surgeon, who invented a “teeth-to-teeth” bone 

conduction stimulator (Figure 2). 

Figure 1. Illustration from the 

work “Philocophus”. A kneeling 

man who is listening to music by his 

teeth, through bone conduction. 

Figure 2.  “Teeth-to-teeth stimulator”. A wooden rod 

shaped into “bone conduction hearing device” acting through 

“teeth-to-teeth” vibration energy transmission. 
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His book, the Traite des Maladies de l’oreille et de L’audition presented several 

illustrations of different hearing devices. 

 

In 1920 Joseph Prenn patented a mechanical bone 

conductor. 

The first electric bone vibrator was invented by 

Augustus G. Pohlmann and Frederick W. Kranz in the 

1920’s, for use in some audiometers and a few table model 

hearing aids (Figure 3) [2]. 

 

In 1929, the Sonotone Company was established by 

Hugo Lieber (born in 1868 in Germany, died 1936), as an 

outgrowth of Siemens hearing aids. He invented the 

revolutionary bone conduction receiver in 1932. In 1934 it 

was advertised as the Leiber Oscillator. 

An improved bone vibrator was patented by E. H. 

Greibach and Sonotone became the licensor for this in 

1934 (Figure 4) [3]. 

 

 Hearing aids mounted into eyeglasses were 

commercialized first in 1954 and until the last decades were 

the first rehabilitative option in those conductive hearing 

losses that could not be managed with reconstructive ear 

surgeries. Nevertheless the frequent problems with this 

concept (loss of vibration energy in the soft tissues, feed-

back phenomenon, uncomfortable wearing, frequent 

problems with the adaptation to the individual shape of the 

head, etc) promoted the idea to put the vibrator directly into 

the temporal bone. 

 

The first system pioneering of this new therapeutic concept, based on the histological 

observation of direct titanium-to-bone integration (i.e. osseointegration) was introduced in 

1977, called Bone Anchored Hearing Aid (BAHA). 

I.2. The physiology of bone conduction 

Figure 3. Kranz’s patent for 

“Vibration Instrument for Bone 

Audition” June 9 of 1925. 

Figure 4. E.H. Greibach’s patent for 

“Bone conduction hearing device” 

March 14 of 1939. 
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I.2.1. Fundamental observations on bone conducted sound perception 

 

Perceiving a sound through “bone conduction” is when the vibration energy 

propagates through the skull bones, cartilages, skin and soft tissues, acting on the basilar 

membrane of the organ of Corti, generating travelling waves, resulting in the excitation of the 

sensory hair cells in the cochleae. Although many studies have been carried out since the 

beginning of the 20
th

 century, the mechanisms of bone conduction are still not fully clarified. 

The first question was whether bone conduction stimulates the same cochlear sensory 

apparatus or acts on a different sensory end organ. Békésy was the first to study the function 

of the auditory organ experimentally, replacing theoretical considerations by empirical 

evidence [4]. In his famous cancellation experiment, that air conduction pure tone can be 

cancelled by bone conduction tone concluded that being the stimulated sensory apparatus 

identical one. He succeeded in subjective cancellation of an air conducted tone with a bone 

conducted tone at 400 Hz [5, 6]. 

Observations gained on the analysis of finite element models of the human middle ear 

and cochlea confirmed that basilar membrane vibration characteristics are essentially 

invariant regardless of whether the excitation is via bone conduction, independent of 

excitation direction, or via air conduction [7-9], as the basilar membrane is effectively driven 

by the anti-symmetric component of the oval and round window volume velocities resulting 

in differential slow wave component (i.e. anti-symmetric) of the fluid pressure [10]. 

The best frequency map indicates the frequency corresponding to the peak basilar 

membrane vibration as a function of location along the basilar membrane. The best frequency 

map doesn’t change significantly due to differences in the method of cochlear excitation [10].

 Distortion product otoacoustic emission (DPOAE) could be elicited by air and one 

bone conduction tones either. Properties unique to bone conduction, such as simultaneous 

bilateral stimulation and reduction of stimulus magnitude in the ear canal, may make bone 

conduction attractive for clinical measurement of DPOAEs [11]. Emissions of similar 

magnitude are obtained with stimuli that are of similar magnitude at the place of generation, 

the bone conduction IOgram may be aligned with the one obtained using air conduction [12]. 
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I.2.2. Bone conduction pathways 

 

 Experimental researches aimed to identify different ways of vibration energy 

transmission in the skull bones that inherently involve multiple pathways with different 

importance. The terminal stimulation of the basilar membrane of the organ of Corti is 

contributed by the summation of these hardly distinguishable vectors of sound vibrations, 

travelling through different media (i.e. air, soft-tissue, and bone or fluid). 

Narrowing the possible pathways for propagation of bone conduction summarized by 

Tonndorf in 1966 [13], Stenfelt and Goode in 2005 described five components declared to be 

the most significant ones contributing to sound perception through bone conduction in human 

[14]: 

1) Sound pressure in the ear-canal and the occlusion effect – osseo-tympanic stimulation 

2) Inertia of the middle-ear ossicles 

3) Inertia of cochlear fluids and fluid pressure transmission 

4) Alteration (compression and expansion) of the cochlear space 

5) Pressure transmission from the cerebrospinal fluid 

 

1) The external ear mechanisms – osseo-tympanic stimulation 

 

Due to the concomitant deformation of the walls of the external auditory canal, bone 

vibrations transform into airborne radiated sounds that propagate similar to conventional air 

conduction signals. Low-frequency signals transmitted efficiently through soft tissue 

conduction, also called non-osseus bone conduction (e.g. skin, cartilage), while high 

frequency sound vibrations are susceptibly transmitted through the bony walls of the ear-canal 

[15-17]. 

If the ear-canal opening is occluded (i.e. “occlusion effect”) this pathway of bone 

conduction sound transmission could become significant, depending on the physical 

characteristics of the occluding mass and on its position in the ear-canal (i.e. ear-mould or 

shell). With the ear canal occluded the level of ear canal sound pressure is 15 to 20 dB higher 

at frequencies below 1 kHz due to the major contribution of vibrations of the cartilage and the 

soft tissues in the ear canal. Decreasing the occluded volume, the less important the occlusion 

effect is that contributes to the effectiveness of insert phone measurements [18]. The 

occlusion effect can be also reduced or eliminated by a vent in the ear-mould or shell. This 
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additional bore connects the residual ear canal volume with the air outside the ear. The origin 

of the occlusion effect at the high frequency range is a change in the resonance properties of 

the ear canal (2.7 to 5.5 kHz, with opened and occluded ear canal respectively) [19, 20], while 

at the lower frequencies the eliminated high-pass filter effect might explain the occlusion 

effect [13]. 

 

2) The middle ear inertial mechanism 

 

It is dominant around the middle-ear ossicles’ resonance frequency (approx. 1-3 kHz), but 

is still not considered to be significant as the removal of the ossicles has only minimal effect 

on bone conduction. In the lower frequency range the ossicles vibrate in phase with the skull 

bones, while at higher frequencies, when the ossicular mass overcomes the stiffness of the 

suspending ligaments and tendons, they decouple from the phase of the surrounding bone 

vibrations, resulting in a relative motion between the stapes footplate and the otic capsule 

[14]. Bárány studied first this effect contributing to bone conduction hearing [21], by 

manipulating the inertia of the tympanic membrane and the ossicular chain, and by changing 

the static air pressure in the external auditory canal.  

 

3) Inertia of cochlear fluids and fluid pressure transmission 

 

This factor might be the most significant component of bone conduction in normal and 

pathological ear as well. Fluid itself regarded as incompressible since the wavelength of the 

fluid acoustic wave is much larger than the size of the cochlea. The cochlear fluid vibrates in 

response to the translational vibratory movement of the surrounding bone. When the temporal 

bone vibrates the secondary fluid displacement is possible due to the existence of the 

membranes of the oval and round window and the pressure gradient between them that 

promotes fluid flow between the scala vestibuli and scala tympani, resulting in the travelling 

waves of the organ of Corti [14]. The oval and round windows are comparatively large in area 

and short in length, thereby minimizing the impedance of bulk fluid motion between these 

windows and promoting sound transmission [10]. 

There are other relatively thin and long normal “windows” between the inner ear fluids 

and the cranial cavity, contributing to compliant pathways on both sides of the basilar 

membrane. 
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The complex compliant structure of “third window”, collectively referred to as a normal 

third-window, includes the: 

 

- cochlear aqueduct (openings: 1. the posterior cranial fossa; 2. the scala tympani of 

the cochlea adjacent to the round window membrane) 

- vestibular aqueduct (openings: 1. the posterior cranial fossa; 2. the medial wall of 

the bony vestibule) 

- as well as micro channels parallel to blood vessels and nerves while entering or 

leaving the cochlea [22-26]. 

These smaller diameter and longer channels are functionally closed to sound flow due to 

their high impedance, therefore considered to have negligible auditory impact in physiological 

hearing [27].  

 

On the contrary pathologic third-windows may direct the air-conducted sound energy 

away from the cochlea, while improving thresholds for bone-conducted sounds of leaving 

them unchanged, appearing in a picture of conductive hearing loss on the audiogram. 

Anatomical discrete lesions may be classified by their location, possessing variable 

inertial effects on cochlear fluids: 

 

- semicircular canals (superior, lateral or posterior canal dehiscence), 

- bony vestibule (large vestibular aqueduct syndrome, or other inner ear 

malformations), 

- cochlea (carotid-cochlear dehiscence, DNF-3 or X-linked deafness with stapes 

gusher, Apert-syndrome, etc.). 

 

Developmental disorders of the inner ear according to Jackler et al can be considered 

as a result of prematurely arrested embryogenesis [28]: 

 

- With an absent or malformed cochlea: 

 Complete labyrinthine aplasia (Michel deformity) 

 Common cavity 

 Cochlear aplasia 

 Cochlear hypoplasia 

 Incomplete partition (Mondini deformity) 
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- With a normal cochlea: 

 Vestibule-lateral semicircular canal dysplasia 

 Enlarged vestibular aqueduct 

 

Those malformations that are not able to be explained by this system are potentially 

being the result of an aberrant embryogenesis or the combination of the two possibilities. 

Such a malformation has been observed and published as a newly described one in the 

International Journal of Pediatric Otorhinolaryngology co-authored by the author of this 

present thesis [29]. 

 

In Paget disease of the temporal bone the excessive breakdown and formation of bone, 

followed by disorganized bone remodeling may lead to a diffuse anatomical lesion of the 

bony labyrinth, resulting in “diffuse” third window effect. Third window lesions should be 

considered in the differential diagnosis of patients with conductive hearing loss. 

 

Consideration should always be given that conductive hearing loss, defined as an air-

bone gap (ABG) on the audiogram may due to disorders of the inner ear as well, with 

pathologic third windows in the background. Clues to suspect such a lesion include a low-

frequency ABG with supranormal thresholds for bone conduction, the presence of acoustic 

reflexes, vestibular myogenic responses or otoacoustic emissions. Imaging techniques are also 

essential for detailed differential diagnostics [23]. 

 

4) Compression and expansion of the cochlear space 

 

The cochlear fluid spaces would change due to the compression and expansion of the otic 

capsule secondary to vibrations produced by a bone conduction stimulus. The underlying 

physical background is the discrepancy in compliance between the round and oval windows 

(the round window approx. 20 times more compliant), and the volume disequilibrium, where 

the scala vestibuli contains more fluid (with a volume ratio of 5:3) [13]. The effect of 

compression might have a role at frequencies above 4 kHz, but may not be a major factor on 

the lower frequency range. 
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5) Pressure transmission from the cerebrospinal fluid 

 

Static pressure in the cerebrospinal fluid is transmitted through a narrow fluid channel to 

the cochlear fluids, primarily through the cochlear aqueduct. However anatomical studies 

suggest that this channel is occasionally blocked with tissues in healthy ears. Experimental 

studies confirmed that the affect of intracranial sound pressure changes on bone vibrations 

measured on the promontory are only negligible [30].  

 

I.2.3. Physical aspects of bone conduction 

 

 The frequency-to-place conversion occurs within the cochlea, responding similarly 

when is fed via air or bone conduction either [6], although central mechanisms believed to be 

involved in pitch perception. The overall shapes of the basilar membrane velocity magnitude 

distributions are similar among different excitation cases [7-9]. 

Different vectors of bone conduction excite the inner ear through the above mentioned 

pathways [14], characterized by several modes of skull vibrations. 

Longitudinal/compressional, transversal/shear waves and their combination, as well as 

bending/flexural waves all can propagate within the skull bones linearly, at least for 

frequencies between 0.1-10 kHz and up to 77 dBHL [14, 31]. 

 At low frequencies the skull vibrates as a rigid body. Increasing the forced vibration 

frequency up to around 800 Hz a bi-nodal line pattern appears in opposite phases. At around 

1600 Hz the skull starts to vibrate in quadrants. Newer techniques showed complex 

vibrations, made up of rotational and translational components, without any dominating one 

[14]. 

 Transcranial attenuation of a bone-conducted sound is defined as the difference in 

sensitivity between an ipsilaterally transmitted and a contralaterally transmitted sound 

positioned at identical points at the two sides of the head [32]. In the frequency range of 0.25 

to 4 kHz transcranial attenuation is approximately 0 to 15 dB, highly depending on the 

stimulation position and the frequency. Stenfelt reported 2 to 3 dB lower median transcranial 

attenuation at the position of an implanted bone conduction hearing aid, compared to that 

gained from the stimulation in the mastoid region, with large intersubject variability (up to 

40dB) [33]. 
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I.3 Epidemiology of hearing impairment 

 

Hearing loss is the leading cause of disability worldwide. Approximately 15 % of the 

world’s population has hearing loss to some degree, and 5.3 % out of them, around 360 

million people, has hearing loss greater than 40 dB in the better hearing ear in adults, and 30 

dB in children. The current production of hearing aids covers the 10 % of the global need 

[34-36]. 

 

I.4. Implantable bone conduction solutions 

Based on the route of the vibration energy transmission, implantable bone-conduction 

hearing solutions can be divided into three groups, direct drive, skin drive and in the mouth 

systems [37]. Those that directly vibrate the bone are referred to as direct drive implant 

systems (i.e. without a skin barrier), whereas those systems that transmit vibration energy to 

the bone through intact skin are referred as skin drive devices (this includes devices held to 

the head via soft band devices or eyeglasses and magnet connection implants). Finally, in the 

mouth systems generate vibrations of the skull bone through placement at the upper back 

teeth (Table 1.). 

 

The scope of this thesis focuses on the clinical and experimental based assessment of 

the Baha
®
 Connect and Baha

®
 Attract systems. 

 

 

 

 

BONE CONDUCTION DEVICES 

DIRECT-DRIVE IN-THE-MOUTH SKIN-DRIVE 

PERCUTANEOUS 

BAHA 

ACTIVE TRANSCUTANEOUS 

(IMPLANTED TRANSDUCER) 

 
CONVENTIONAL 

HEADBAND OR 

EYEGLASSES 

PASSIVE TRANSCUTANEOUS 

(IMPLANTED MAGNET 

CONNECTION) 

BAHA
®

 

CONNECT 
PONTO BCI BONEBRIDGE

TM SOUNDBITE
TM  SOPHONO

® 
BAHA

®
 

ATTRACT 

Table 1. Classification of Bone conduction solutions. The focus of the thesis is marked with red. 



14 
 

I.4.1. Percutaneous direct-drive BAHA (the Baha Connect system) 

Since the introduction in 1977, osseointegrated, direct-drive systems have used 

different kinds of modified percutaneous abutment connections through snap coupling to 

maintain the connection between the implanted component and the sound processor (SP) [38]. 

 These systems have provided hearing rehabilitation with good clinical outcome for 

over 150.000 patients in the last forty years with conductive or mixed hearing loss and single-

sided sensorineural deafness.  

The classic, well-established surgical techniques of implantation, which rely on 

different skin flap creation and soft tissue reduction (STR), have been successfully used in the 

last decades [38-40]. The primary aim of the STR was to achieve a stable epidermal covered 

bone surface around the implant (Figure 5). 

 

 

 

 

 

 

Later experiences, gained on large series of patients in independent studies have 

shown a range of incidence from rare to more frequent for variably severe peri-implant skin 

complications. Short-term complications arise in 0.7–1.3 % of the cases [40, 41]. Long-term 

follow-up reveals an incidence of 3.3 % of skin reactions classified as Holgers grade 2 or 

higher, which may often require revision surgeries [42-44]. Long-term follow-up identified an 

increasing risk of complications over time (Figure 6) [45]. 

 

Figure 5. Intraoperative (A) and postoperative (B) photos: of our first Baha-patient supplied with percutaneous direct-

drive Baha Connect system applying the classic surgery with STR from 2009 [Jarabin et al, 70] 

Figure 6. Postoperative skin-flap necrosis: Holgers grade 4. complication and its reconstruction with flap rotation 

(patient from the Baha Connect group, classic surgical technique with dermatome) 
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The risk of adverse skin reactions has been addressed by new developments that 

incorporated microsurface technology for the implant component (e.g., titanium-dioxide 

surface), aimed at reducing the loading time, coupled with advanced redesign of the physical 

attributes of the abutment (new concave shape), which lowered the tendency for peri-implant 

pocket formation and adverse skin reactions. 

Other studies showed that patients receiving the 8.5 mm abutment during initial 

implantation are significantly less likely to require in-office procedural intervention or 

revision surgery postoperatively as compared to those receiving the shorter, 6 mm implant at 

initial surgery, furthermore applying linear incision with no or minimal soft tissue removal, 

with the longer (8.5 mm) abutment provided comparable or better complication rates than the 

previously accepted surgical techniques [46-49]. The percutaneous osseointegrated 

implantation technique without skin thinning proved to be also beneficial for children [50]. 

However while titanium is ideal for integrating with bone, it does not bond with soft 

tissues (skin and the underlying layers). With the application of hydroxyapatite coating on the 

abutment the overall soft tissue tolerance has improved through the reduced tendency for 

epidermal down-growth and “pocket formation”. Animal experiments have proven the 

excellent soft tissue adherence to the implant surface and faster wound healing around the 

abutment, which are key factors in the effectiveness of this therapeutic concept [51]. 

Due to these characteristics of the abutment during the “FAST surgical” method of 

implantation the reduction of any soft tissues became unnecessary (Figure 7). According to 

the individual’s soft tissue thickness (preoperatively measured) the abutment’s length can 

vary form 6-12 mm. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Steps of the “FAST” surgery of the minimal invasive linear incision technique (also known as DermaLockTM 

surgical procedure). A: soft tissue  mobilization following incision; B: drilling of the implant’s site; C: implantation; D: 

perforation of soft tissues and relocation of the mobilized layers; E: healing cap placement; F: following postoreative wound  

healing. [Jarabin et al, 72] 
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However, this method might have other substantial advantages compared to the classic 

surgical procedures. 

Further explanation may be derived through observations of surgical outcomes for 

treatment of other diseases, where deteriorated peripheral blood circulation leads to similar 

skin reactions, such as complications of diabetes mellitus, including ulcerations and infections 

in the most severe cases. In view of these similarities, it was hypothesized that a major 

causative factor for the peri-implant skin reactions is diminished vascular capacity, which 

could be reduced by soft tissue preservation (STP) methods. As such the skin’s macro-, and 

microcirculatory reservoirs are maintained through minimal traumatization of the soft tissues. 

Microvascular assessments with Laser-Doppler Flowmetry (LDF) have recently grown 

in importance in the diagnosis and treatment of hypoxia and ischemia-related tissue disorders, 

providing valuable information about the management of peripheral vascular disease, or 

diabetes treatment, or in plastic surgery, the evaluation of flaps, etc [52-55]. These studies 

conclude that the better blood supply, the better skin conditions. LDF of the peri-implant 

areas, by assessing the preservation of macro-, and microvascular capacity patterns, thus 

might give important information about the expectable improvement in soft tissue 

complications compared to the earlier methods. 

Nevertheless, irrespectively the surgical approach or the applied abutment type, the 

well-known complications associated with the direct-drive, percutaneous abutment connection 

systems are still related to adverse skin reactions (Figure 8/ A,B). 

 

 

 

 

 

 

 

 

 

 

Figure 8. Postoperative complications from the Baha Connect STP group. Both subjects had undergone minimal 

invasive linear incision technique surgery, without any soft tissue reduction. 

A: peri-implant skin overgrowth.  B: peri-implant granulation. 
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I.4.2. Transcutaneous skin-drive BAHA (the Baha Attract system) 

As change in paradigm, skin drive transcutaneous magnet connection (i.e. without 

skin-penetrating abutment) implants have the potential to mitigate soft tissue complications 

and the associated drawbacks. 

The first system pioneering this concept was introduced in 1986 (Audiant
®

 Bone 

Conductor, Xomed-Treace Inc., USA) [56, 57] which has since become obsolete for several 

reasons. Due to the relatively low output, The Audiant system was limited to application in 

patients with near normal bone conduction hearing levels and who refused to accept a direct 

drive abutment connection. Researchers concluded that whenever feasible the preferred 

treatment choice was conventional air conduction amplification [58, 59]. 

In recent years the Sophono
®

 system (Medtronic, USA) uses two magnets implanted in 

the temporal bone and is fixed with five titanium implant screws. As a consequence the 

distribution of the static force is provided over a relatively large (more than 2.5 cm2) contact 

area [60-62]. 

The current skin drive magnet connection system is the Baha
®

 Attract which is 

anchored on the same BI300 implant component that has been used for the Baha
®

 direct-drive 

abutment connection system (Figure 9). However, instead of an abutment a magnetic plate 

(D=27.0 mm) is fixed on the top of the implant under the skin. This plate serves as a single 

focused and centralized vibration transmission pathway. The connection between the SP 

through the intact skin is maintained with an outer magnet (D=29.5mm), which is available in 

variable strengths. To equalize the pressure distribution on the surface of the skin, a special 

soft pad is applied. The Baha Attract system has been available in the EU and US markets 

since the end of 2013. 

  

 

 

 

 

 

 

Figure 9. The Baha Attract system. The upper-left side shows the implantable components and the SP, while on 

the right side their in situ position is presented. The lower part of this figure illustrates how the applied Softpad 

distributes the pressure over the contacted area of the skin (i.e. w/wo Softpad). 
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I.4.3. The development of the sound processors 

Parallel, the ongoing development of the SPs in use has significantly contributed to the 

treatment success of the concept of osseointegrated hearing implant solutions. Initial SPs such 

as the HC 200 [63] and Classic 300 SPs were superseded by the Baha
®

 Compact device, 

marketed in 2000, which was followed by the first digital sound processor Divino, in 2005, 

offering much greater fine tuning flexibility. In 2009, the Baha
®

 3 sound processor (also 

known as BP 100) was introduced [64]. A series of higher output power systems to meet the 

needs of individuals requiring more gain includes the Baha Cordelle II, Baha
®

 Intenso, and 

later the BP 110 [65]. The most up to date, fully digital Baha
® 4 SP is now equipped with 

enhanced noise reduction and wireless features. 

A recent study has reported a 10 to 15 dB higher output with the Baha system over 

that of the Sophono system. Furthermore, outcomes for sound field thresholds, speech 

recognition thresholds (SRT) and speech comprehension scores at 65 dB were better for Baha 

Attract users [66]. 

While reduced incidence of adverse skin reactions can be achieved with the skin drive 

magnet connection implants, the transmission pathway through the intact skin is anticipated to 

yield lower output compared to the classic direct drive abutment connection systems. This is 

due to the attenuating effect of the soft tissues, which are more apparent for the higher 

frequencies from 1 kHz and above [37]. 

However, recent studies have shown only small differences in aided speech 

comprehension scores between the two types of transmission pathways, which may be 

attributed to adequate fitting of the advanced SPs currently available [67]. As an active 

collaborator during the controlled market release of the Baha Attract commencing in October 

2013, our ENT department introduced the concept of skin drive magnet connection systems 

into routine clinical practice. 

Since then, more than 35 of our patients have supplied with the Baha Attract solution. 

 

I.5. The history of Baha in Hungary 

 Following by nearly three decades the international introduction in 1977, Baha became 

a unique rehabilitation approach for conductive hearing loss in children population in 

Hungary as well. In 2003 Baha was introduced by Professor Gábor Katona as an organized 

program at the Department of Otorhinolaryngology of the Pál Heim Children’s Hospital of 
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Budapest with the Cochlear Baha devices. The indication field at that time was limited to 

those special cases of congenital bilateral stenosis and atresia of the external auditory canal in 

Treacher Collins syndrome, also known as mandibulofacial dysostosis. Experiences gained on 

3 years long follow up period were published in the Otorhinolaryngologia Hungarica [68]. 

 The work was followed six years later, in 2009 by the foundation of the Baha 

Implantation Centre for adults at the Department of Otorhinolaryngology and Head-Neck 

Surgery of the University of Szeged. Since then the chairman of the Department, Professor 

László Rovó performed with only a few exceptions (those related to the previous chairman, 

Professor József Jóri) more than 50 successful surgeries in adults.  

The program started with the implementation of the classic surgical method of skin 

flap creation with dermatome and the application of a permanently penetrating, percutaneous 

titanium abutment [69, 70]. In 2013 the surgical method was converted into a minimal 

invasive, linear incision technique integrating a newly designed hydroxyapatite coated 

abutment [71, 72]. 

 As the well-known complications associated with direct drive systems are still 

related to adverse peri-implant skin reactions, developments aimed to eliminate the 

percutaneous abutment connection to a non-penetrating, skin drive magnet connection. The 

current representative of this method is the Baha Attract (Figure 10). 

Now Baha implantation is a routinely used integral part of the therapeutic pool of 

conductive or mixed type hearing loss and of the special indication of single sided deafness in 

five centers of the country. 

 

↓ 

Figure 10. Annual distribution of Baha implantations at the Dpt. of Otorhinolaryngology and Head-Neck Surgery of 

Szeged from 2009 to 2015 (n=54). CONNECT_DT=Connect DermaTome; CONNECT_DL=Connect DermaLock; 

ATTRACT=Attract. 

Black Arrow = National Health Insurance acceptance 

N [db] 

ÉV 
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II. OBJECTIVES 

 

The aims of the thesis were: 

 

1. to compare the rehabilitative efficiency of the conventional bone conduction 

hearing aids versus the preoperative acute-trial results collated from Baha-softband 

sound field warble tone and speech reception threshold examinations; 

 
2. to compare patient satisfaction with conventional bone conduction hearing aids 

and implantable bone anchored hearing aid solutions; 

 
3. to study the impact of hydroxyapatite coating of newly designed osseointegrated 

fixtures’ abutments and the minimally invasive linear incision technique on the 

postoperative complication rates using precise experimental evaluation of the 

dynamic microcirculation patterns of the peri-implant soft tissues by Laser-

Doppler Flowmetry; 

 

4. to assess the audiological performance of study cohorts of patients recruited based 

on different surgical approaches and abutment solutions for percutaneuos implants; 

 
5. to compare the audiological and psychophysical benefits of patients using 

osseointegrated hearing implants with either an abutment connection or magnet 

connection for the Baha
 
systems; 

 

6. to offer well established, individualized solutions for patients with conductive or 

mixed type hearing loss or single sided deafness. 
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III. SUBJECTS AND METHODS 

 

III.1. The comparison of audiological benefits of conventional 

bone conduction hearing aids versus the preoperative Baha-

softband examinations. Patient satisfaction survey. 

 

III.1.1.  Patients 

 Eighteen subjects were recruited into our preoperative prospective case series study. 

All the subjects met the standard indication criteria for implantation with an osseointegrated 

hearing implant. Ages ranged from 29 to 85 years, with a mean age of 66.4 years (±16.27SD). 

The ratio of genders was 1:3, M:F. Seventeen of them have bilateral mixed type hearing loss 

due to chronic otitis media in their case histories, and one subject had ossicular chain fixation. 

All subjects were experienced hearing aid users with a minimum duration of 14 years wearing 

bone conducted spectacles (Viennatone AN90; Viennatone Hörgeräte Gm, Austria). 

  

III.1.2.  Examination protocol 

All subjects were assessed preoperatively with sound field warble tone measurements 

and with speech recognition tests in aided conditions with the initially fitted bone conducted 

spectacles (Viennatone AN 90) and the Baha sound processor fitted onto a Softband as an 

acute trial, with particular attention on the rehabilitative effects of them in noise. 

The noise level was sustained at a constant 65 dBHL the speech level was increased 

by 1 dBHL steps (i.e. change the signal-to-noise ratio, SNR) up to the minimum intensity at 

which the subject recognized 50% of the speech material. 

Furthermore, aided with the Baha Softband test equipment the influence of changing 

the localization of the noise source on speech recognition was analyzed while the signal 

source of speech was constantly held at the front. The effect of different characteristic patterns 

(i.e. directional or omnidirectional) of the microphone’s directionality on speech recognition 

was investigated as well, to identify the optimal circumstances of operation for the Baha 

sound processor. 

As control we collated speech recognition results at constant 50 and 70 dBHL speech 

intensity without noise but aided with conventional and implantable solutions either. 
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Audiological tests were performed with a GSI61 clinical audiometer (Grason-Stadler 

Company, USA).  

Air-conduction hearing thresholds for 0.125 – 8 kHz and bone conduction hearing 

thresholds at 0.5, 1, 2 and 4 kHz were measured using TDH-50P (Telephonics Company, 

USA) and B-71 bone vibrator (Radioear Corporation, USA), respectively. The audiometer 

was calibrated according to International Organization for Standardization standards. 

 Patient satisfaction survey was performed to compare the rehabilitative efficiency of 

the conventional bone conduction spectacles versus the implantable bone conduction hearing 

aid solutions. The questionnaire covered the assistive hearing devices’ specific and general 

functional skills in different situations, and esthetics as well.  

 

III.1.3.  Statistics 

The Sigmaplot 10.0 and SPSS Statistics 16.0 statistical packages for personal 

computers were used for the statistical analysis. The results were expressed as mean ± SD. 

Student’s t-test was used to evaluate significance. A level of p ≤ 0.05 was considered 

statistically significant. 

 

 

III.2. Microvascular pattern analysis through Laser-Doppler 

Flowmetry. 

 

III.2.1.  Control and implant patients 

Prospective assessments were performed in three groups of subjects. A naive control 

group (n=7) without implant, as an inter-subject control group, and two subgroups of 

osseointegrated fixtures, implanted with either STR or STP surgical techniques, assessed 

bilaterally in implanted and non-implanted contralateral retroauricular areas acting as intra-

subject and inter-subject controls. The naive control group was made up of seven patients, 4 

women, 3 men, ages ranged from: 29 to 42 years; average: 36.2 years with 13 non-operated 

retroauricular areas examined, to represent the increasing of blood flux following LHT on 

healthy subjects. Seventeen consecutive implantees, 8 women, 9 men were recruited. Ages 

ranged from 18 to 77 years, average 45.8 years. All 17 patients met the standard indication 

criteria for osseointegrated bone conductor implantation. Skin perfusion related diseases (e.g. 

diabetes mellitus) were excluded in all cases. All implanted patients had undergone previous 
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ear surgeries for treatment of ear diseased. In the first seven implanted patients (STR group) 

the classic STR surgery with U-shaped dermatome flap was performed, with BI300 implants. 

The latter ten patients (STP group) underwent the linear incision surgical procedure with STP 

according to the official guidelines, using the hydroxyapatite coated BA400 implant. Both 

implant types were the products of the same manufacturer (Cochlear). 

 

III.2.2.  Laser-Doppler Flowmetry 

Measurement of microcirculatory variables of skin flaps using LDF alone, or coupled 

with various provocation tests routinely used has been demonstrated in different wound 

healing studies to estimate skin microcirculatory function non-invasively. 

The method is based on the evaluation of the Doppler shifting of laser light on moving 

objects: the coherent, monochromatic laser beam penetrates into the tissues and partially 

scattered on static cells (non-shifted light fraction). Another fraction of photons is reflected 

back from red blood cells, moving within the microvascular bed, while the frequency of the 

light is shifted. From the above parameters, red blood cell flux could be calculated, which is 

linearly correlated with skin blood flow and expressed in perfusion unit (PU). The measuring 

depth depends on tissue properties, such as density of the capillary beds, or pigmentation, as 

well as from the wavelength of the laser light. Standard wave length changes between 633 and 

810 nm, which are capable of transluminating 1 mm2 9 1–1.5 mm tissue volume. The laser 

light reaches the tissue via fiber-optic cable which also conducts reflected, frequency shifted 

light to a photo detector, converts input voltage to PU (1 mV = 10 PU). To evaluate reserve 

compensatory capacity of the peri-implant skin area, local hyperaemia test (LHT) was 

applied. Increase of the local temperature as a powerful vasodilator stimulus was used to 

characterize microvascular dysfunction in patients with diabetes mellitus and systemic 

sclerosis. The percentage of perfusion changing is suggested and accepted as a representative 

parameter, than the largely variable absolute PU values. 

 

III.2.3.  Examination protocol 

All of the measurements were performed between 2 and 4 months following 

osseointegrated bone conductor implantation, with wound healing completed to create 

postoperative time-matched study groups. Each patient was assessed on implanted and non-

implanted sides of the head acting as intra-subject controls. The study participants were 

acclimatized for 10 min before the evaluation in a comfortable sitting position. Throughout 

the entire observation period, the room temperature (20 ± 2 ˚C) and the axillary temperature 
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of the patient (36 ± 0.5 ˚C) were maintained constant. The pulse and blood pressure (HR, 

BPsys, and BPdias respectively) were measured at the beginning of the procedure. The blood 

flow in the skin flap was recorded with a Laser-Doppler Flowmetric device (supplied by a 780 

nm laser diode; PeriFlux System 5000, Perimed, Järfälla, Sweden) with a sterilized fiber-optic 

probe (#457, “thermostatic probe”; fiber separation: 0.25 mm, penetration depth ~1 mm). The 

flow probe was fixed perpendicularly to the skin, in the proximity of the abutment by means 

of an adhesive strip which restricted the angular movements of the probe. Characteristic flow 

curves were reproducibly detected in the s = 0.03 s mode, showing that pressure artifacts were 

avoided. After the required signal quality had been reached, baseline flow value recordings 

were made during a 10 min long period and then, the skin was warmed up to 44 ˚C for 5 min. 

Measurements (baseline and with heat provocation) were repeated on the non-implanted 

contralateral (identical surface area) of the patient, for intrasubject control. Change in tissue 

perfusion was expressed as percentage of blood flow increase (%). Data were collected and 

stored on a computer and subsequently analyzed with the computer software supplied together 

with the LDF device. 

 

III.2.4. Statistics 

The Sigmaplot 10.0 and SPSS Statistics 16.0 statistical packages for personal 

computers were used for the statistical analysis. The results are expressed as mean ± SE. The 

variances are different, thus the one-way ANOVA for unequal variances (Welch) was used, 

with multiple comparisons according to Tamhane. A level of p≤0.05 was considered 

statistically significant. 
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III.3.  The comparison of audiological and psychophysical benefits 

gained with either an abutment or magnet connection for 

different Baha
 
systems. 

 

III.3.1.  Patients and study groups 

Forty-two consecutive implantees, 25 women and 17 men, were recruited into this 

prospective case series study. Ages at implant ranged from 11 to 77 years, with a mean age of 

46.27 years (±18.37SD). All the subjects met the standard indication criteria for implantation 

with an osseointegrated hearing implant. 

Patients were divided into two major groups based on the applied vibration energy 

transmission pathway. Users of direct drive, abutment connection, were called the Connect 

group and users of the skin drive, magnet connection, were called the Attract group. The 

Connect group was represented by 17 subjects, 9 women and 8 men; with an average age of 

48.34 years (±18.37SD). In five patients the classic surgical method of skin-flap creation with 

dermatome was applied, while in 12 patients the linear incision technique was performed 

without soft tissue reduction. Twenty-five subjects were in the Attract group, 16 women and 9 

men; with an average age of 44.86 years (±18.61SD). All subjects were operated with a 

modified surgical technique where the orientation and length of the incision line were adapted 

to the anatomical situation of the individually assessed macro- and microcirculation patterns 

(based on unpublished data). 

 

The Attract group was divided further into three subgroups based on the audiological 

indication: 

I. bilateral conductive or mixed type hearing loss 

(n=13; gender ratio: 6 M, 7 F) 

 

II.  unilateral conductive or mixed hearing loss, with contralateral age-related 

normal hearing 

(n=6; gender ratio: 2 M, 4 F) 

 

III.  single-sided deafness (SSD) 

(n=6; gender ratio: 1 M, 5 F) 
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III.3.2. Audiological Evaluation 

Measurements included preoperative pure tone thresholds and pre- and postoperative 

sound field warble tone thresholds and speech reception thresholds in aided and unaided 

listening conditions. All subjects were assessed preoperatively in aided conditions using a SP 

fitted onto a Baha Softband as an acute trial. During the preoperative sound field 

measurements (unaided and aided), the contralateral ear was plugged with an ear plug and 

further masked by a hearing protector headphone (Peltor Optime II., Areo Ltd, UK). All 

postoperative audiometric tests were carried out with well adapted fitting parameters for the 

sound processor. Audiological tests were performed with a GSI61 clinical audiometer 

(Grason-Stadler Company, USA). Air-conduction hearing thresholds for 0.125 – 8 kHz and 

bone conduction hearing thresholds at 0.5, 1, 2 and 4 kHz were measured using TDH-50P 

(Telephonics Company, USA) and B-71 bone vibrator (Radioear Corporation, USA), 

respectively. The audiometer was calibrated according to International Organization for 

Standardization standards. 

 

III.3.3.  Speech processor fitting 

The initial programming of the SP for patients wearing the Baha Connect system was 

carried out using the Cochlear™ Baha® Fitting Software, versions 2.0 and later 4.0. For cases 

wearing the Baha Attract system, versions 4.0 and later 4.1 of the official software were used. 

We applied the standard fitting protocols; i.e. feedback analysis (in cases with BP110 and 

Baha 4 SPs) and direct bone conduction threshold measurements (BC Direct). The automatic 

algorithms for noise reduction and automatic directionality were switched off. During the 

tests, the patient’s everyday program was used with omnidirectional microphone 

characteristics and default feedback manager settings. Postoperatively, the initial implant 

loading occurred during the 3rd to 4th week for the Connect group, and during the 4th to 6th 

week for the Attract group. Following the initial fitting, two or three fine-tuning sessions were 

performed. 

 

III.3.4. Statistics 

The Sigmaplot 10.0 and SPSS Statistics 16.0 statistical packages for personal 

computers were used for the statistical analysis. The results were expressed as mean ± SD. 

Student’s t-test was used to evaluate significance. A level of p ≤ 0.05 was considered 

statistically significant. 
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IV. RESULTS 

 

IV.1.  The comparison of audiological benefits of conventional 

bone conduction hearing aids versus the preoperative Baha-

softband examinations. Patient satisfaction survey. 

Audiometric results collated form sound filed warble tone measurements of patients 

(n=18) fitted with conventional bone conduction spectacles and Baha Softband test instrument 

were analyzed. At all measured frequencies (500, 1000, 2000, 4000 Hz) significant 

improvement could be achieved in warble tone hearing thresholds when fitted with Baha 

Softband over the conventional bone conduction assisting hearing device (i.e. Viennatone 

AN90) (Figure 11/A). 

IV.1.1. Aided speech recognition measurements without noise exposure 

Speech recognition was measured at constant levels of speech intensity of 50 and 70 

dBHL in aided condition with conventional and implantable solutions either without exposure 

to noise, where significantly better outcome values were gained with the Baha Softband. 

Superior results were more apparent at the lower, 50 dBHL intensity of speech level that give 

significant benefit in the daily interpersonal routine (Figure 11/B). 

Figure 11. A: Mean warble tone sound field thresholds in aided conditions. B: Mean sound field speech 

recognition at constant levels of speech at 50 and 70 dBHL, without noise. (n=18); *= p≤0.05 

[Jarabin J et al,  69] 

* * * * 

* * 
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IV.1.2. Singal-to-noise ratio in variable situations 

The effects of different investigative situations on speech recognition were studied in 

noisy circumstances, where the source of the noise and the directionality of the microphone 

characteristic were changed. While sustaining the noise level at a constant 65 dBHL the 

speech level was increased by 1 dB steps up to the minimum intensity at which the subject 

recognized 50% of the speech material correctly. The source of the speech signal was 

continuously held at the front speaker, while the noise-source was variably routed to the front 

or to the back. The SNR expressed in dBHL that characterized the investigated situation was 

derived from the difference between the speech and the noise intensity (Figure 12/A, B). 

Significantly better SNR values were achieved when subjects were fitted with the 

Baha Softband as a consequence of the highly impressive capability to understand speech is 

noisy environment. By switching the microphone’s characteristics form omni-, to directional 

one the SNR and thus the speech recognition could be enhanced further. In other words, to 

achieve the same performance the amplification need remains below with the Baha compared 

to the conventional assistive solutions, which is more comfortable for a hearing aid wearer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 12. A: Mean SNR with 65dBHL noise level sourced from the back speaker. B: Mean SNR with 

65dBHL noise level sourced from the front speaker. (n=18); *= p≤0.05 

[Jarabin J et al, 69] 
 

* * 
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IV.1.3. Patient satisfaction survey (n=18) 

 According to the subjects’ responses all of them were dissatisfied with the 

conventional bone conduction spectacles due to the ongoing need for repair and the 

unfavorable prevailing feedback phenomenon. Furthermore, speech recognition in noisy 

circumstances was the most challenging for the respondents. Due to the relatively low 

maximum sensitivity level the system was further limited to application in patients with near 

normal bone conduction hearing levels. Loudness sensation and sound quality were 

weaknesses of this rehabilitative concept too. 

In contrast reports from the Baha revealed an outstanding capability of speech 

recognition accompanied with comfortable loudness sensation and sound quality. One should 

note that during the tests the Baha SP were fitted onto a Softband, thus the postoperative 

expectations, through the optimization of the vibration energy transmission, could be even 

superior on these aspects. Balanced opinions were collated only with regard to esthetics 

(Table 2). 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Table 2. Patient satisfaction survey (n=18). 
Legends: 

 >> or <<: significantly worse or better 

   > or < : slightly worse or better 

      = : equally skilled 

Blue colored columns represent the superiority of the Baha system over the conventional assistive devices. 

[Jarabin J et al, 69] 
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IV.2.  Microvascular pattern analysis through Laser-Doppler 

Flowmetry. 

 

Characteristic flow curves demonstrated consistent significant increases in blood flow 

from baseline levels to post-heat provocation levels in all three subgroups (Figure 13) on 

average and for all individual patients (Figures 14, 15). LDF coupled with local LHT was 

used to estimate skin microcirculation post-provocation reserve capacity function per patient, 

which is graphically demonstrated in Figure 15. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Representative records of two patients with different surgical methods. The curves demonstrate the skin 

microvascular reserve level differences at baseline and following heat provocation at the surgical area for the two patients 

with classic STR (A) and the STP (B) technique, for implanted and contralateral sides. Blue double arrow for patient A, 

indicates a notably reduced baseline microcirculation intra-subject in the implanted ear relative to the contralateral control 

ear. [Jarabin J et al, 55] 

Figure 13. Postoperative photos of two patients representing the different surgical methods. On the left side a 59-

year-old male patient (STR) is seen, underwent the classic STR surgery with U-shaped dermatome flap, TiO2 surface 

abutment (A). On the right side a 44-year-old woman (STP) is seen, underwent the official surgical procedure with STP 

hydroxyapatite surface abutment (B) [Jarabin J et al, 55] 
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It is clearly seen, that in isotherm conditions the baseline blood flow remained stable 

in all implanted groups (means varied from 63 to 65 PU) (Figure 15). Figure 16 shows, that 

the control naive patients demonstrated a significant average increase for the group of 13 ears 

of more than 700% of blood flux in the intact healthy skin area. On average, the contralateral 

ears for the implanted subgroups of patients, often previously stressed through surgical 

procedures, demonstrated slightly, but not significantly (p=0.09) lower, blood flux indexes 

(average 500%) compared to the healthy naive inter-subject control group. The STR side of 

the implantees, however, showed a significantly lower (average 217%) post-heat provoked 

blood flux index compared to the naive controls and to the non-implanted contralateral sides 

of these patient groups (p<0.001). The STP sides of patient subgroup demonstrated a slightly 

lower, but not significant reduction in the blood flux index increase post-heat provocation 

(average 316%) compared to the contralateral side control groups (p=0.53). STP sides 

demonstrated a significantly better blood flow improvement post-heat provocation compared 

to the STR sides (p=0.02). Looking at individual case values, the lowest pair of PU values (at 

baseline and post-heat provocation) for the STP side was noted for a young female with 

Goldenhaar syndrome (Patient 4th of STP group) who had undergone complex reconstructive 

esthetic surgical procedure, which largely involved the retro-auricular area (Figure 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Dot-diagram of the individual’s skin blood flow changing following LHT (A). The connected dots 

represent the pre-and post-heating perfusion units in all subjects. Connection lines show corresponding pairs. The dotted 

lines represent the average result following LHT in the four ear conditions across the three patient groups. The average 

group PU gradients shown in figure B clearly demonstrate a significantly reduced reaction for the STR subgroup 

compared to other groups (asterisk). Table 3 Mean baseline and post-heat provocation blood flow values in the different 

groups. Data are represented in mean ± SE. There is no significant difference between baseline values in the different 

groups. P values are detailed in the text. [Jarabin J et al, 55] 
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In our cohort of patients no differences in audiological outcomes have been observed 

between the two treatment groups, with different osseointegrated fixtures. Similarly no 

differences were observed in the early postimplant period up to 4 months in the incidence of 

skin complications between the two treatment groups. One patient had a Holgers Grade 2 skin 

reaction in the STR group, and one patient had a Holgers Grade 1 skin reaction from the STP 

group, both cases managed successfully with conservative treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16. Box diagram of percentage increase of blood flow to local heating test with different 

surgical methods compared to naive and within subject controls. Peak flow reduction was found in 

STR and STP on the implant side. Flow reduction is significantly pronounced in STR compared to 

the contralateral side (asterisk) and STP (triangle). There is no significant difference between 

percentage flow increase to local heating in between the STP and the contralateral side. 

[Jarabin J et al, 55] 
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IV.3.  The comparison of audiological and psychophysical benefits 

gained with either an abutment or magnet connection for 

different Baha
 
systems. 

 

IV.3.1. Baha Connect group 

As shown in Figure 17, the mean preoperative pure tone air conduction hearing 

threshold (four frequency average for 0.5, 1, 2 and 4 kHz, PTA4) for the five patients operated 

with the classic technique was 75.75 dBHL (±14.01) in unaided conditions, while the 

postoperative warble tone bone-conduction threshold in the sound field was 23.50±9.49 

dBHL for the aided condition. 

 

 

 

 

 

The postoperative mean sound field SRT was 73.00 dBHL (±8.37) in unaided and 25 

dBHL (±10.00) in aided conditions. The Student’s t-test showed speech data to be 

Figure 17 Connect group (N=17): 

Unaided preoperative average air conduction threshold (black filled dots) vs aided postoperative average sound 

field threshold with Baha (grey empty dots). Standard deviations (SD) are marked at each frequency, with exact 

values. 

  

The air bone gap gain (ABG) values were derived from the difference of the preoperative unaided air conduction 

levels and the postoperative Baha-aided bone conduction levels. 
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significantly better in aided over unaided conditions (p<0.001), with an average gain of 48 

dBHL in the SRT. 

The mean preoperative pure tone air conduction hearing threshold (i.e. four frequency 

average for 0.5, 1, 2 and 4 kHz) for the 12 patients operated with the linear incision technique 

was 77.40 dBHL (±13.27) in unaided conditions, while the postoperative mean bone 

conduction threshold in the sound field was 31.15 dBHL (±10.13) in the aided condition.
 

The mean sound field SRT was 76.25 dBHL (±8.82) in unaided and 30.83 dBHL (±9) 

in aided conditions. The Student’s t-test showed speech reception thresholds to be 

significantly better in aided over unaided conditions (p<0.001), with an average gain of 45.42 

dBHL. 

Statistically the two subgroups fitted with the Baha Connect system achieved 

equivalent therapeutic efficiency in terms of sound field warble tone and SRT values either, 

thus the application of these competing alternatives mainly depends on surgical aspects and 

not audiological ones. 

Hereinafter we analyzed them as one Connect group for comparison to the Attract 

group. 

 

IV.3.2. Baha
 
Attract group 

The audiometric data is presented for individually for the 3 subgroups of the Attract 

group. Figure 18 illustrates the results for the Attract subgroup I: bilateral conductive or 

mixed HL. Their mean preoperative PTA4 was 67.41 dBHL (±18.02SD) in the unaided 

Figure 18 Attract I. subgroup (N=13): 

Unaided preoperative average air conduction 

threshold (black filled dots) vs aided 

postoperative average sound field threshold 

with Baha (grey empty dots). Standard 

deviations (SD) are marked at each 

frequency, with exact values. 

  

The air bone gap gain (ABG) values were 

derived from the difference of the 

preoperative unaided air conduction levels 

and the postoperative Baha-aided bone 

conduction levels. 
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Figure 19 Attract II. subgroup (N=6): 

Unaided preoperative average air conduction threshold (black filled dots) vs aided postoperative average sound field 

threshold with Baha (grey empty dots). Standard deviation range and values (SD) are marked at each frequency. 

 

The air bone gap gain (ABG) values were derived from the difference of the preoperative unaided air conduction levels 

and the postoperative Baha-aided bone conduction levels. 

condition, while the postoperative mean bone conduction threshold in the sound field was 

24.72 dBHL (±16.18) in the aided condition. The mean sound field SRT was 57.31 dBHL 

(±21.08) in unaided and 23.46 dBHL (±10.68) in aided conditions. The average gain for the 

SRT was 36.07 dBHL. 

Figure 19 shows the results for the Attract subgroup II: unilateral conductive or mixed 

HL with contralateral age-related normal hearing. The mean preoperative PTA4 was 71.75 

dBHL (±25.99SD) in unaided conditions, while the postoperative mean bone conduction 

threshold in sound field was 14.25 dBHL (±9.90SD) in aided conditions. 

The mean sound field SRT was 16.00 dBHL (±10.84) in unaided and 9 dBHL (±6.52) 

in aided conditions. The average gain of the SRT was 7 dBHL. 
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Figure 20 Attract III. subgroup (N=6): 

Unaided preoperative average bone conduction threshold (black ’X’s) vs aided postoperative average sound 

field threshold with Baha (grey empty dots).  

The Baha-side average air conduction was immeasurable. Standard deviations range and exact values (SD) are 

marked at each frequency. 

Figure 20 displays the results for the Attract subgroup III: single sided deafness. By 

definition, there was no response in SSD ears. The mean preoperative PTA4 for the intact 

good ear was 5.83 dBHL (±8SD). No air bone gap was indicated in the audiograms. The 

postoperative mean bone conduction threshold in the sound field was 7.92 dBHL (±6.54) in 

the aided condition. 

The mean sound field SRTs were the same at 10 dBHL in unaided and aided 

conditions, thus yielding no added gain for the SRT. It is noted that no ear protection was 

used over the intact ear for the unaided condition.  

As there is only one viable cochlea in the SSD subgroup, results in the Baha
 
aided 

condition compared to a functional anacusis on the same side, could lead to misinterpretation 

of the overall individual benefit, thus using the intact ear’s bone conduction threshold may 

provide more realistic data.  

 

 

 

 

The Student’s t-test showed SRT to be significantly better in aided over unaided 

conditions (p<0.001) in subgroups I and II, while as expected the difference was insignificant 

for subgroup III. 
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IV.3.3. Sound processor fitting: psychophysical findings 

The most frequent challenges experienced during postoperative sound processor fitting 

were experienced by the Connect group. Excessive resonance occurred in a total of 41%: 

23.5% (4/17) experienced it as sound reflection from the surface of the skull bone and 17.6% 

(3/17) experienced it from the surrounding wall surfaces. Problems were alleviated by 

utilizing the Feedback Analyzer software option (BP110, Baha 4 SPs) or by manipulating the 

middle to high or high frequency range during fine tuning. The resonance effect resulting in 

feedback was not reported in the Attract group, although one patient experienced resonance 

that could be easily eliminated by minimally decreasing the gain in the high frequency range.  

An echo effect appeared in 3/17 (18%) cases in the Connect group. In the Attract 

group only 2/25 patients (8%) presented with this complaint; the issue was resolved for both 

patients following the first fitting procedure.  

Problems in noisy and windy environments were reported in 9/17 (52%) Connect 

users. In the Attract group, 2/25 (8%) complained of having such difficulties in some 

background noise. 

Specific to the Attract group are considerations of magnet strength (values range from 

1, the weakest, to 6, the strongest). One of the 25 cases (4%) required an even stronger 

magnet than normally provided due to a very active lifestyle. During the first fitting, the 

average magnet strength was 3.84±0.98SD. Following the complete remodeling of the soft 

tissue during postoperative wound healing, it was possible to decrease the magnet strength in 

14 cases (56%) down to 2.92±0.87SD. 

 

IV.3.4. Comparison of outcomes 

 Comparing the ABG gain, derived from results in the preoperative unaided and the 

postoperative aided conditions, for the Connect group versus the Attract subgroup I, no 

significant difference was observed. Hence the audiological findings for these groups were 

combined. Figure 5 shows the pre-, and postoperative individual SRT values in the Baha 

Connect and Attract I groups respectively as well as the achieved gain. 

Viewing the speech reception threshold improvements for the Attract subgroup I and 

the Connect group, significantly higher gains were observed for the Connect group (p=0.01). 

However following  exclusion of a single outlier value with higher amplification needs using 

the BP110 SP in the Connect group, the group performance difference was no longer 

significant (p=0.18) (see Figures 21 and 22). 
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Figure 22. Comparing the individuals’ speech reception threshold improvement, achieved in the Attract 

I. group (‘B’ columns; n=13) to the unselected Connect group (‘A’ columns; n=17), where results with 

both the BP100 (black columns) and the BP110 (black-grey striped columns) SPs were collated; 

significantly better gain value was presented in the latter one. By excluding only one outlier value (the 8 th 

subject from the Connect group) with high amplification need, the difference found again to be 

insignificant (p=0.18) between the two subject cohorts. 

Figure 21 A1 and B1 shows the preoperative and postoperative individual speech reception thresholds 

(SRT) in the Baha Connect and Baha Attract groups respectively. A2 and B2 graphs present the 

individually achieved SRT gain values. The difference found to be significant (p=0.01) between the two 

subject cohorts. 

 

subjects 

subjects 



39 
 

V. DISCUSSION 

 

Prior to any decision making thorough preoperative audiological tests should be 

performed to achieve well-grounded indication including an unimpeachable cornerstone in the 

diagnostic pool, the soft-band test. This non-invasive, easy to perform sound field 

measurement ensures the implant candidate and the audiologist as well to gain experience on 

the achievable postoperative rehabilitative effect of the implant fitted with the proper sound 

processor. One should note that applying the baseline audiogram the psychophysicist can 

accurately and individually fit the sound processor that is an inevitable need. Our comparative 

preop-audiological tests clearly proved its significance [69, 73-74]. 

 

 

V.1. Baha Connect system 

V.1.1. Consideration of surgical aspects of implantation 

Historically, for surgeries employing direct-drive percutaneous osseointegrated 

implant solutions, the preparation of a skin flap with a dermatome employing soft tissue 

reduction is the most well-established technique for optimal functional outcome [38-40]. 

However, the reduction of the inner skin layers, requiring cross section of the nutritive 

circulation pathways has a deteriorating effect on the physiology of the remaining upper skin 

layers that are potentially further stressed by the penetrating abutment. 

The risk of adverse skin reactions has been addressed by new developments that 

incorporated microsurface technology for the implant component (e.g., titanium-dioxide 

surface), aimed at reducing the loading time, coupled with advanced redesign of the physical 

attributes of the abutment. The new concave shape through achieving a 14% more (2.1 to 2.4 

mm) soft tissue contact surface and decreasing the angle between the soft tissues and the 

abutment’s contour from 73° to 50° lowered the tendency for peri-implant pocket formation 

and adverse skin reactions. 

However while titanium is ideal for integrating with bone, it does not bond with soft 

tissues (skin and the underlying layers). On the other hand, as the Baha Connect system was 

such an effective method for vibrational energy transfer between the SP and the implant, a 

new microsurface technology was developed. The application of an approximately 80 µm 

thick hydroxyapatie coating (Ca5(PO4)3(OH); ISO 13779-2) on the abutment has superiorly 

improved the overall soft tissue integration [51], without the need for soft tissue or hair 
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reduction, thus leaving the peri-implant area outstandingly intact. This resulted in a more 

cosmetically attractive implant site as well. 

At the same time our results demonstrate the potential to preserve vascularization 

through soft tissue preservation over previous surgical techniques with soft tissue reduction. 

The integumentary system comprises the skin and the skin-associated structures, the 

appendages, including sebaceous glands, sweat glands, hair, etc. This organ system forms an 

effective barrier between the organism and the environment, preventing invasion of pathogens 

and fending off chemical and physical assaults, as well as the unregulated loss of water and 

solutes [75]. This multiple skin function highly depends on its vascular system integrity. 

Macrovascular supply of the retroauricular region originates from the branches of the 

external carotid artery (i.e. posterior auricular artery, occipital artery) forming anastomosing 

nets behind the auricles. The microcirculation of the skin is organized as two plexuses situated 

parallel with the surface, embedded into the multiple layers of ectodermal tissue. The 

superficial and the profound layers are interconnected with paired ascending arterioles and 

descending venules (AV-shunts), representing the thermoregulation component (~85 %). 

From the upper layer arterial capillaries rise to form the dermal papillary loops, representing 

the nutritive component (~15 %) [76]. Endosurface layers of microvascular segments (e.g. 

precapillary arterioles, capillaries, postcapillary venules), which are closely linked, take part 

in the haemostasis and in the regulation of inflammatory cascades and vascular resistance. 

This is controlled by exogenous environmental impacts (e.g. temperature, pressure), through 

the nociceptive system. The afferent neuronal reflex pathways are built up from non-

myelinated C-fibers of the skin nerves. The damage made on this sophisticated system 

obviously diminishes the protective reserve of the skin against environmental (thermal, 

mechanical, inflammatory) assaults. 

Diseases which have influence on blood microcirculation and thus on vascular reserve 

capacity may cause severe alterations in skin functions [77, 78]. Various reactivity tests, 

coupled with techniques measuring skin blood flux, are used to non-invasively explore both 

endothelial and microvascular functioning in humans [79]. 

LDF alone, or coupled with LHT is routinely used in different wound healing studies 

[80-83]. LDF demonstrates well the microcirculation of the upper 1–1.5 mm of the skin. 

However, the absolute blood flow is widely variable in different locations, the change of flux 

is generally accepted parameter in determining the quality of microcircular function. 

Accepting that the human body is symmetric, the contralateral identical areas were used to 
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provide a statistically appropriate study, which was strengthened by the results of healthy 

control retroauricular areas assessed at the same location. 

In the history of osseointegrated bone conductor surgeries the split-thickness skin flap 

(STSF) creation with STR has become a well-established technique [38, 39]. The dermatome 

creates a STSF 25 mm in width with a thickness of 0.6 mm, which composed of the top layers 

of skin (the epidermis and part of the dermis), comprising the superficial dermal papillary 

vascular loops. The graft is initially nourished by a process called plasmatic imbibition, then 

new blood vessels begin growing from the adjacent soft tissues and the periosteum of the 

recipient area into the transplanted skin within 36 h in a process called capillary inosculation. 

This emphasizes the necessity of the intact periosteum beneath the flap. 

As our results show, these regeneration processes provide even an appropriate baseline 

blood flow, but only a reduced vascular reserve, which might be insufficient especially in 

extreme environmental conditions. Thus the reduction of the inner layers of skin by 

transecting the nutritive circulation pathways has a deteriorating effect on the physiology of 

the remaining upper skin layers. This might be in the background of the well-known potential 

complications, beside the generally suspected peri-implant “pocket formation” [51]. These 

adverse events generally can be decreased by careful patient selection either in terms of social 

and medical issues, which on one hand more or less limits the indication field. The increasing 

incidence of complications over time might influence the patient compliance as well [41, 45]. 

In contrast the preservation of all the layers of the skin and thus the microcirculation network, 

as in STP technique, might further decrease the complication rate in short and potentially also 

in the long term. The vertical skin incision has practically no effect on the horizontally 

structured microcirculation. Our study unambiguously proves the early acceptable recovery of 

the microcirculation reserve. Generally the soft tissue regeneration after the STP technique is 

complete within days, which allows a relative shorter loading time for the speech processor, 

compared to the STR technique. Our study however, revealed a tendency of a diminished 

blood flow flux on the implanted sides compared to the normal skin in naive controls and to 

the contralateral side controls. Moreover, on those surgical sides, which were previously 

stressed with multiple scarring skin incisions, the values were also well below the normal skin 

values. These findings may indicate the role of macro circulation and neurovascular 

regulation in the background of an intact microcirculation, thus the importance of the 

preservation of the larger blood vessels and the skin nerves. In our patient series we did not 

find significant difference in complication rates between the different surgical groups. 
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Consequently the preferable application of the minimally invasive technique 

employing the newly modified abutment is well-grounded clinically and experimentally 

either, while kept our focus on the simplicity of the surgical technique or the course of the 

improved postoperative peri-implant wound-healing, resulting in decreased complication 

rates. 

 

V.1.2. Consideration of audiological aspects 

On the contrary the functional audiological rehabilitative performance was still an area 

of interest. Our comparative audiometric tests following surgery definitely proved that there is 

no significant difference in sound field warble tone or either speech recognition thresholds 

between subgroups operated with the classic surgery with STR or the advanced minimal 

invasive linear incision technique with STP of the percutaneous direct-drive systems (i.e. 

Baha Connect group), thus being the decision surgical or audiological based, one should 

indicate the minimal invasive technique. 

Nevertheless, the most common complications associated with direct drive abutment 

connection systems, even in case of the minimal invasive linear incision technique employing 

hydroxyapatite coated abutment, are still related to adverse skin reactions immediately around 

the abutment. 

 

V.2. Baha Attract system 

V.2.1. Consideration of surgical aspects of implantation 

As a paradigm changing in the transmission pathway of the vibrational energy, skin 

drive magnet connection systems can mitigate the drawbacks of soft tissue complications 

associated with direct drive systems (see Chapter I.4.2. on page 13
th

). 

Based on our clinical observations during the postoperative follow-up period of a 

minimum of six months, only minor irritations occurred in two cases of the Attract group 

(n=2/25, 8%). A temporary suspension of wearing the SP and the application of a reduced 

magnet strength relieved the tenderness around the implanted area relatively quickly. In 

contrast, we have seen three (n=3/17, 18%) skin overgrowths, one peri-implant granulation 

(n=1/17, 6%), and one (n=1/17, 6%) skin flap necrosis from the 17 subjects with abutment 

connection systems. Two subjects needed revision surgery, while the other three improved 

following conservative treatment. The overall complication rate in the Connect group is close 

to 30%. According to studies carried out on a large series of patients (n=602) by Hobson et al. 
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the overall complication rate was 23.9%, while the rate of revision surgery was 12.1% for 

direct drive system users [84]. 

 

V.2.2. Consideration of audiological aspects 

Our focus during audiological tests was the detection of the potential attenuating effect 

of the soft tissue layers [37]. Our observations were consistent with studies that showed only 

small differences between the aided speech reception thresholds observed users of direct drive 

and skin drive systems, and that the differences may be reduced with optimizing the fitting via 

advanced SPs [37, 67]. As such osseointegrated hearing solutions are applicable in a 

substantial number of cases with a mild moderate sensorineural conductive hearing loss 

component, however only for a minority of cases with a more significant hearing loss where 

higher amplification needs cannot be met. 

In our study, all subjects with the Attract system were supplied with the technically 

advanced Baha 4 SP. 

It should be noted that, during aided postoperative audiometric testing for a given 

individual with two functioning cochlea, both are simultaneously stimulated. This needs to be 

taken into consideration when interpreting the results gathered from the Baha Attract 

subgroups I and II where the non-Baha ear had hearing close to or at normal levels. In these 

subgroups, regardless of whether the SRTs were significantly changed or not is less relevant 

than the importance of the subjective positive feedback of the restored hearing from both 

sides of the head physically. It is important to emphasize during the patient counseling that 

there may be potential for improved perception of sound quality and sound awareness within 

the environment rather than just the absolute hearing threshold changes to help mould the 

appropriate expectations. 

The observations suggest that effective fitting of osseointegrated hearing implants 

plays a major role in the ultimate outcome and user satisfaction. The source of feedback is not 

solely related to leakage from the transducer back to the system microphone and may relate to 

origins from a mechanical source, such as skull vibration, soft tissue interference, or other 

variables that are known to play a part in the feedback pathway for Baha
®
 Sound Processors 

[85]. The resonance/feedback problems encountered in the study patients could be resolved in 

most cases following evaluation using the Feedback Analyzer software available in the sound 

processor (i.e. BP 110 and Baha 4). Additionally, it was possible to manipulate the gains 

specific for mid to high or high frequency ranges, although the latter methods are known to 

decrease speech perception. 
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Although infrequent in our sample, the echo effect, where a person’s own voice is first 

heard through unaided means and then immediately heard (as an echo) through the Baha
 

system, was seen in three Connect and two Attract users. Although it was challenging to 

resolve the problem, it was possible by decreasing the gain in the mid to low and low 

frequency ranges. As mentioned earlier, such adjustments may lead to decreased speech 

understanding. For those affected in the Attract group resolve was reached readily during the 

first fitting session. 

For noisy and windy environments, there are several options available. These 

environmental factors cause significant complaints for all types of implanted systems, but 

predominantly affect those who wear older SPs (i.e., BP 100 and BP 110). Fine tuning and the 

proper choice of the suitable program (such as noise or music) may provide improvements, to 

some extent, and provide enough support to encourage patients to face these challenges. 

Through the Baha 4 SP changes in the environment are automatically recognized and 

effective noise-reduction algorithms are applied. Both of these features improve hearing and 

speech recognition within noisy and windy conditions. 

In our study cohort, all Baha Attract system users were fitted with a Baha 4 SP, and 

minimal reports of feedback, resonance or echo effect were observed. Briggs et al. presented 

similar good hearing performance outcomes and additionally wearer comfort and minimal 

tissue complications [86]. In a recent multicenter study reported by Iseri et al. superior 

audiological performance outcomes were observed for users of the direct drive abutment 

connection system, however as it involved more than one center there may have been some 

inherent heterogeneity in the psychophysical programming approaches used [87]. Although 

the Attract system provides lower gain above 1 kHz compared to the Connect system, our 

findings indicate that with an appropriately fitted Baha 4 SP no significant difference in 

audiological performance was observed. 
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V. SUMMARY 

VI.1.   

As an integral part of the preoperative audiological assessments acute trials with carefully 

programmed SPs fitted onto a Softband are essential and validated diagnostic approaches. 

Results gained through these tests are in good correlation with the postoperative outcomes 

with outstanding predictive value for patients and audiologists as well [I]. 

Based on our audiometric results the rehabilitative efficiency of the direct-drive 

percutaneous and the skin-drive transcutaneous osseointegrated hearing assisting solutions 

were significantly superior over the conventional bone conduction hearing aids irrespectively 

the type of surgery and the employed interface (i.e. abutment or magnet connection) between 

the implant and the SP [I, II, III, IV, ]. 

VI.2.  

Through evaluation of patient satisfaction surveys osseointegrated bone anchored hearing aids 

are well established parts of the therapeutic pool of conductive and mixed hearing losses or 

single sided deafness. Reports from the Baha revealed an outstanding capability of speech 

recognition accompanied with comfortable loudness sensation and sound quality resulting in 

advanced wearing comfort over achieved with the conventional bone conduction spectacles 

[II]. 

VI.3.  

Our result shows that following the STR technique, the normal vascular reserve of the skin 

could not be re-established, that should be considered as a limitation in patient selection, and 

during patient counseling, because of the need for proper after care. In contrast after the STP 

technique, more viable regeneration processes were observed in the peripheral implant area, 

where the normal skin’s vascular capacity levels could be approximately achieved. The 

potential for both faster wound healing and lower complication rate post implant may support 

to widen the inclusion criteria for treatment with osseointegrated fixtures and may 

subsequently lead to greater outcome success including improved quality-of-life [V]. 
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VI.4. 

Our postoperative comparative audiometric test results definitely proved that the functional 

rehabilitative performances gained with the classic surgery with STR and the minimal 

invasive linear incision technique with STP are statistically indistinguishable, that allows the 

surgical based preferences to overcome. As STP techniques inherently leave the peri-implant 

are outstandingly intact, thus decreasing the complication rates even further, such approaches 

should be indicated against the classic methods with skin-flap creation [III, IV]. 

 

VI.5. 

Employing the passive transcutaneous skin-drive magnet connection, the postoperative 

complication rates could be eliminated compared to even when the minimally invasive linear 

incision technique is used. 

Our results demonstrate that the vibrational energy transmission pathways of the direct 

drive abutment connection and the skin drive magnet connection systems provide significant 

improvements in hearing and speech recognition thresholds over the unaided condition. 

Comparative audiological analysis revealed that only with few exceptions the 

distortion and the lower sensitivity caused by the presence of the intact barrier of soft tissues 

could be well compensated for with accurate fitting of the latest technology sound processors. 

Few patients with high amplification needs, near the upper limit of the fitting range may 

require direct-drive systems fitted with power SPs. 

 

VI.6. 

Wound healing processes are more rapid and the postoperative overall complication rates are 

significantly reduced or nearly eliminated with the current skin-drive system (i.e Baha 

Attract) compared to that described in published reports for cases where the classic surgical 

techniques of direct-drive systems (i.e. Baha Connect) have been used. 

The surgical approach is as simple as the minimal invasive linear incision technique, 

with duration of approximately 30 minutes in topical anaesthesia in experienced hands. 

With only a few exceptions of patients with high amplification needs near the upper 

limit of the fitting range at the high frequency range (above 1 kHz) almost all of our patients 

could have been superiorly supplied with the Attract system. The inherently presenting lower 

sensitivity of the skin-drive system in most of our cases could have been successfully 

compensated by a carefully fitted advanced SP. 
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As a consequence, our findings suggest possible opportunities to broaden the current 

inclusion criteria for treatment with osseointegrated skin drive, magnet connection systems. 

Use of magnet connection systems may lead to greater success for overall outcomes including 

improved esthetics, quality of life, substantially reduced needs for postoperative care, while 

preserving the substantial audiological rehabilitative effects of the predecessor systems. 

The rehabilitative treatment success highly depends on the thorough preoperative 

diagnosis. Consideration should always be given that conductive hearing loss, defined as an 

ABG on the audiogram may due to disorders of the inner ear as well, resulting in pathologic 

third windows. Clues to suspect such a lesion include a low-frequency ABG with supranormal 

thresholds for bone conduction, the presence of acoustic reflexes, vestibular myogenic 

responses or otoacoustic emissions. Imaging techniques are essential for detailed differential 

diagnostics [I, II, III, IV, V, VI]. 
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