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1. INTRODUCTION 

With the continuous development of biopharmacy and technology, the possibility arose to 

make controlled-release release oral systems and with this the potential to control the rate, 

place or duration of drug release. Accordingly, modified (sustained, retarded, pulsatile) drug 

release can be achieved; and the one possible way to realize this is to use a properly formed 

coat (pH-dependent dissolution, diffusion film, etc.). These solutions require film coats to 

meet higher expectations [1]. 

There are several methods to achieve modified drug release (MR). One of the most common 

way to prepare this dosage form, is film coating [2, 3]. Another method is, to formulate a 

multiparticulate drug delivery system [4]. 

Multiparticulates involve multiple-unit small systems. They have more advantages compared 

to single unit systems owing to their small size. They are better distributed in the 

gastrointestinal transit, therefore cause less side effect.  

 

2. AIMS 

The two main parts of this work were to investigate the widely used ethylcellulose (EC) 

polymer as a film forming agent and as a matrix former agent.  

In the first section, two ethylcellulose film forming polymers with different chain lengths and 

different molecular weight (Ethocel Standard Premium 10
®
, Ethocel Standard Premium 45

®
, 

Colorcon Ltd.) were studied. The investigation of free films is an essential part of the 

preformulation studies because it is necessary to know weather the given formulation is 

suitable to coat the corpus or not.  

The aim of our research was to investigate the effect of the length of the polymer chain and 

the effect of the concentration of triethyl citrate (TEC), which was used as a plasticizer, on the 

thermal stability of the film and as well as on the structure of the ethylcellulose films (EC10 

and EC45) used for preparing MR dosage forms. As preformulation, the relationship between 

surface properties and the structure of EC free film containing different amounts of plasticizer 

and the relationship between the mechanical properties and the distribution of the plasticizer 

were studied. The knowledge of these properties is indispensable for preformulation studies. 

The influence of storage time was studied by monitoring the changes in the thermoanalytical 

parameters and by performing Termogravimetric Analysis coupled with Mass Spectrometry 

(TG-MS) examinations. The structure analysis and the incorporation of the plasticizer were 

performed with the use of Fourier Transform Infrared Spectroscopy (FT-IR). There are 
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several methods for the prediction of the polymer-plasticizer interactions [5], but the real 

microstructure and the incorporated amount of the plasticizer could be studied with the use of 

FT-IR spectroscopy [6-11]. The distribution of the plasticizer between the chains of the 

polymer ethylcellulose was determined in order to explain the mechanical properties. The 

distribution was investigated with positron annihilation lifetime spectroscopy (PALS), and the 

mechanical properties with breaking hardness tests. The best film former with plasticizer was 

chosen with the optimal concentration. Selection of the optimum type and concentration of 

the plasticizer is essential in the formulation of pellets and coated dosage forms. 

In the second section, ethylcellulose polymer was used as matrix former excipient. Besides 

the generally used microcrystalline cellulose (MCC), EC was used as matrix former to 

achieve modified drug release ensured by diffusion. Innovative, matrix pellets containing 

capsule dosage forms was developed with combined Active Pharmaceutical Ingredients 

(API). 

The matrix pellets were made by extrusion-spheronization using a twin-screw extruder. Two 

different APIs with different Biopharmaceutics Classification System (BCS), solubility and 

particle were used in the course of formulation of monolithical matrix pellets. Some pellet 

properties (aspect ratio /AR/ 10% interval fraction, hardness, deformation process) were 

determined. The aim of our study was to investigate how the two different APIs with different 

solubility and particle size influence the process. 

 

3. LITERATURE SURVEY 

3.1. Film coating 

Film coating is a method widely used for the development of solid dosage forms. In the 

process of film coating, a thin stable polymer film coat is created on the surface of a solid 

dosage form, such as tablets, capsules, pellets or crystals. The great number of polymers 

available for coating ensure different dissolution profiles. With the optimal choice of film 

forming materials, we provide the possibility that the coating would solve in the optimal part 

of the gastrointestinal tract, therefore the rate and the place of the drug release can be 

influenced. Coatings are divided into 3 type: 

1. gastrosolvent coating 

2. enteric coating  

3. permeable coating 
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Methylcellulose (MC), hydroxyethylcellulose (HEC) and some polymethacrylate products 

(e.g. Eudragit
®
 E) are polymers that dissolve in the gastric juice [12]. Cellulose esters, 

cellulose acetatephthalate (CAP) and hydroxypropylmethylcellulose phthalate (HPMCP) are 

enteric polymers used to form colonic drug delivery systems [13]. Acryl-Eze
®
, an aqueous 

system, which contains a 1:1 copolymer of methacrylic acid and methyl methacrylate, is often 

used for the enteric coating of dosage forms, it means that the drug release happens in the 

intestines, it is resistant for gastric juice [14-16]. Enteric coating can protect the stomach from 

the drug, the drug from the stomach, or provides the drug release after stomach. 

This way we can not only develop dissolving coatings, but coatings that are insoluble in the 

gastrointestinal tract, that is to say permeable coatings; such products make the effect 

sustained by diffusion. Ethylcellulose polymer is able to prepare permeable coating.  

 

3.2. Modified drug release 

Pharmacists, during their everyday work, meet with abbreviations indicating the modified 

release properties of that specific medication, which may appear in the brand name or in the 

descriptive name of the medication. 

Tablets and capsules which are designed to provide modified release often have the letter 

combinations XL, SR, MR, CR, XR, or LA in their names e.g. (in Hungary) Cardura XL
®
, 

Xanax SR
®
, Alfetim Uno

®
, Preductal MR

®
, Tegretol CR

®
, Merckformin XR

®
, Ritalin LA

®
. 

The goal of the drug is presaged by these abbreviations.  

Modified-release (MR) products include extended-release (XR), prolonged-release, 

controlled-release (CR), slow-release (SR) and sustained-release (SR). These preparations, by 

definition, have a reduced rate of release of active substance. In general, these terms are 

interchangeable. This kind of release offers advantages and disadvantages [17]. 

This has a great significance in the therapy, where patient compliance could be considerably 

improved with the use of preparations administered once/twice daily [18]. The improvements 

of the effectiveness of the therapy and enhanced patient compliance have had an increasing 

importance in the last decades. This necessitates controlling the rate, place or duration of drug 

release. One of the many possibilities is the use of coated dosage forms, however, to achieve 

the required effect (pH-dependent dissolution, diffusion film, etc.) it is necessary to use a 

properly formed coat. Besides better compliance there is another advantage, which is the 

sustained blood level and therefore the attenuation of adverse effects. The disadvantage of the 
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modified release product is that they must not be crushed or chewed, since the slow-release 

characteristics will be lost and this administration method may result in toxicity. 

 

3.3. Film forming mechanism 

In general the coating liquid is sprayed to the core surface from solution or aqueous 

dispersion, but the film formation is different from these systems. 

From solutions it is relatively easy to create a film coating. However, the atomized droplets 

should cover the surface totally to create a liquid film. During the atomization the evaporation 

of the solvent must not increase the viscosity of the droplets. The spreading of droplets is 

determined by the surface tension between the liquid and the core surface. The contact angle 

provides valuable and useful information, which is the angle between the surface and the 

liquid drop. The drops may remain at a certain angle, or sprawled across the surface. In this 

case the angle is zero. The smaller the angle, the better the droplets spread out on the surface, 

and as a result the coating is more evenly distributed on the corpus. 

After a short time the corpus is covered with a thin polymer film, and then it is important that 

the film surface must bet wet enough to properly merge the droplets. During drying, the 

solvent evaporates from the solution, in which the polymer was initially located as separate 

chains. 

The colloidal solutions of polymers have become more concentrated. When the solvent is 

slowly evaporated, the polymer chains will be closer together and upon reaching a certain 

concentration an overlap will be formed in between. This is the reciprocal of intrinsic 

viscosity: therefore µ expresses the hydrodynamic interactions between polymer and solvent 

and reflects the ability of the solvent to swell the polymer. This results gel formation, which is 

converted into a film in the drying progresses [19]. 

 

Figure 1.: The mechanism of film formation [20] 
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Polymer dispersions can only form a film, when the polymer particles crushed and deformed 

and permanently unite by beating the repulsive forces between them. As it is apparent from 

the foregoing, film formation is a prerequisite for certain stickiness and deformability of 

polymer particles, which in the case of polymers is correlated with temperature. Therefore it 

includes a Minimum Film forming Temperature (MFT) to all polymer dispersion. MFT means 

the lowest temperature where a polymer emulsion forms a continuous film. This is not a 

definite value because it depends on the thickness, the drying speed, the intake capacity of the 

surface and also on the air movement. Of course the pigments, the filler materials and other 

additives may change the MFT. Another important factor in the film formation process is the 

driving force that causes coalescence of the polymers by means of water evaporation and 

capillary forces. Since the coalescence happens above a certain temperature (MFT) the 

temperature and the evaporation of the water are the most important factors that affect the 

film forming properties of the coating materials. When the polymer dispersion has dried 

below the level of the MFT, after heat treatment we get a transparent film, but it requires 

higher temperatures than MFT. Thus water plays a significant role in the film forming [21, 

22]. 

Aqueous dispersions are water-dispersible polymers. Several methods are known for their 

production, which determine excipients contained therein. Film forming polymer dispersions 

create film coatings with a special mechanism. When the dispersion medium - the water - 

evaporates the latex particles take up the closest spherical arrangement first. During further 

drying they can stick together if the polymer material is quite soft. This process is called 

coalescence. In this state, the remaining water is removed, thus obtaining water-insoluble, 

homogeneous film [23]. Adhesion occurs between the coating and the core, assuring the 

’sticking’ of the film to the core. The cohesion among the polymers determines the inside 

structure and the film properties such as porosity, permeability, flexibility and mechanical 

strength. The occurring forces can be altered with additives, which influence the physical 

properties of the coating layer [24]. 

 

3.4. Ethylcellulose 

Ethocel (Ethylcellulose polymers) has been widely used in the pharmaceutical industry for 

over 50 years [25]. Ethylcellulose has been used for choice in pharmaceutical formulations for 

various purposes, such as taste-masking of bitter actives [26], moisture protection [27], 

stabilizer [28], extended release multiparticulate coating [29], micro-encapsulation of actives 
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[30], extended release binder in inert matrix systems [31], solvent [32] and extrusion 

granulation [33-35]. The application of EC in wet extrusion processes is limited, since the 

polymer has considerable elastic properties, but can be successfully used as matrix former in 

combination with some plasticizing agents [34, 35]. Mallipeddi et al. used the potential of 

coarse ethylcellulose (CPEC) and fine particle ethylcellulose (FPEC) as diluent with high 

molecular weight polyethylene oxide (PEO), which was used as an extrusion aid and a binder. 

Their results have shown that water is sufficient to prepare a wet granulation product when 

using FPEC. MCC was included in their formulations to contribute its plasticity to the wetted 

mass during extrusion and to the extrudate during spheronization. 

Ethylcellulose is a water insoluble cellulose ether, which is prepared from cellulose, it is a 

partly O-ethylated cellulose, its ethoxy content (-OC2H5) is between 44-51 %.  

 

Figure 2.: The atomic formula of ethylcellulose polymer 

Ethylcellulose is an ideal polymer for the formation of products allowing modified drug 

release. It is insoluble at any pH that occurs in organism, but in the presence of the gastric 

juice it undergoes swelling. It is then permeable for water and permits extended modified drug 

release [36-39]. This makes it suitable for improved patient compliance. A small number of 

ethylcellulose polymers have been approved for general pharmaceutical application and are 

used in extended release solid dosage formulations. Several types of such ethylcellulose exist, 

e.g. Ethocel 4, Ethocel 10 and Ethocel 45, which differ in the length of the polymer chains, 

the rate of dissolution, and the viscosity of their solution. Ethylcellulose is suitable to prepare 

MR coatings. 

 

3.5. Preformulation studies of free films 

Before film coating, preformulation studies are necessary in order to study the 

physicochemical and thermal properties of free films, e.g. the glass-transition temperature, the 
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Minimum Film forming Temperature (MFT), the surface properties, the breaking strength, 

deformability and the structure of the film former polymer. 

The polymer film has to form a uniform and continuous coat on the surface of the core to be 

coated; which is based on the properties of the polymer. However, the special requirements, 

or the achievement of the best performance or the need to decrease the costs often necessitates 

the modification of the basic properties of films. 

Most of the properties such as the MFT, the surface characteristics and the mechanical 

properties can be modified with the use of different plasticizers [40-43]. These molecules are 

built in amongst the polymer chains, thereby preventing their interaction. Therefore, the 

polymer chains may shift along each other and elasticity will increase, which will reduce the 

rigidity of the film. Moreover, the functional groups of the plasticizer and the interactions 

between the materials will affect the surface characteristics and adhesive properties of the 

films [43, 44]. There are several methods for the prediction of the polymer-plasticizer 

interactions [5], but the real microstructure and the incorporated amount of the plasticizer 

could be studied with the use of FT-IR spectroscopy [6-10]. 

The mechanical properties of the resulting film depend on the distribution of the plasticizer. It 

is necessary to know its breaking strength, because the film is exposed to intense mechanical 

stress during the technological process. 

In the present work, the distribution of the plasticizer and the supramolecular structure of free 

films were studied by means of Positron Annihilation Lifetime Spectroscopy (PALS), which 

furnishes direct information about the dimensions and contents of free-volume holes in 

amorphous materials. The magnitude of the free volume can be measured with the aid of 

PALS as electron density changes in the lifetime of the ortho-positron depend on the free 

volume of the polymer [45-47]. This method is most commonly applied to study polymers. 

Investigation of cellulose-based polymers by PALS have revealed that substitution on 

cellulose has little effect on the lifetime, but a major effect on the probability of formation of 

the ortho-positron (o-Ps) [48, 49]. 

 

3.6. Extrusion / spheronization pelletization process 

In the pharmaceutical industry, pellets can be defined as small, free-flowing, spherical 

particulates with a diameter between 500 and 1500 µm, manufactured by the agglomeration of 

fine powders or granules of drug substances and excipients using appropriate processing 

equipment [50]. There are several techniques to produce pellets, e.g.: layering in fluid bed 
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equipment or direct pelletisation in high shear mixers and rotary processors. The extrusion-

spheronization is an established technique to produce pellets of a high density and narrow size 

distribution. 

The process of extrusion/spheronization is applied in the pharmaceutical industry to 

manufacture many types of dosage forms. During the preparation of pellets [34, 35, 51], 

granules [52], implants [53, 54], films [55], and nanocomposite films [56] extruders are used. 

There are many type of extruders: screw extruders, radial screen and roll extruders, and ram 

extruders [57]. Ram extruder is the simpliest type ones, but owing to its construction, it is not 

able to prepare continuous production [58]. Radial screen extruders and roll extruders are 

suitable for continuous extrusion of pregranulated powders, but the disadvantage of this 

extruder is that dry powders cannot be used, due to the lack of mixing, which should take 

place inside the extruder [59, 60, 61]. With the development of technology, screw extruders 

became more popular. There are two types of screw extruders: the single-screw and twin-

screw extruders. Single screw extruders are usually equipped with an axial discharge. The 

twin screw extruders are available with both axial and radial discharge of the extrudate. Screw 

extruders are able to continuous extrusion and they also work with prewetted masses. During 

extrusion, first a uniform mixture of components is made - owing to the liquid binder that 

prepares the wetted mass - which has the appropriate cohesive properties, thus it can be 

extruded. The wetted mass is pressed by the screws of the extruder through one or more dies; 

this way the material gets shaped and the strands of extrudates are formed. 

In case of co-rotating screws the mixing, wettening and extruding of the powder initial 

material can be managed in that one single device. This is allowed by the modular design of 

the screws, because different processes may be implemented in different parts of the extruder. 

The starting materials are fed by the input part of the extruder, and during the extrusion 

process the specific combination of the thickening, mixing or kneading screw elements mix, 

dilute, cut, and at the end extrudes the mass [62, 63]. 

 

Figure 3.: Type of twin-screw 
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The extrusion is followed by spheronization. The result and strands of extrudates must not 

adhere to each other, and must exhibit plasticity such that the shape imposed by the die is 

maintained. In case of spheronization, under ideal circumstances, almost sphere-shaped 

particles are obtained. Special rheological properties of the paste are required for a successful 

spheronization process. The most important requirements for spheronization of extrudate, are 

as follows: 

(a) the extrudate needs to have enough mechanical strength when wet, but in order to brake 

down into short lengths in the spheronizer it still needs to be brittle enough, but no so 

fragile to disintegrate completely 

(b) the extrudate needs to have enough plasticity to be rolled into spheres from the 

cylindrical rods, by the friction plate in the spheronizer 

(c) the extrudates must not adhere to each other, in order to enable the particles not to 

aggregate during spheronization [64-66]. 

Spheronization is followed by drying. MCC may be regarded as the standard and the most 

commonly used matrix former material in pellet preparation with extrusion. It has plastic 

properties, thus it provides the cohesiveness of the wetted mass, which was suitable for 

extrusion andspheronization. MCC has a large surface area and high internal porosity, 

therefore introduces the liquid into the matrix to provide a faster liberation of the API [67, 

68]. Moreover, in consequence of its large surface area and high internal porosity, it is able to 

absorb and retain a large quantity of water thereby facilitating extrusion, improving the wetted 

mass plasticity and enhancing spheronization [33, 69]. Moreover, control of the movement of 

water through the plastic mass prevents phase separation during extrusion andspheronization. 

In order to decrease the amount of the used MCC, other pharmaceutical excipients are added 

and can achieve modified drug release, e.g. hydroxypropyl methylcellulose (HPMC) and 

hydroxyethyl cellulose (HEC) [70] or karragenan [67] or ethylcellulose (EC) [34-36]. 

The film formation in the solid polymer matrix significantly influences the texture of the 

dosage form and hences the liberation of the active agent. 
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4. SECTION I. 

4.1. Materials and methods 

4.1.1. Materials 

Two different products of Colorcon Ltd. were used for the experiments, namely ethylcellulose 

labelled Ethocel Standard Premium 10
® 

(EC10), and Ethocel Standard Premium 45
®
(EC45) 

(Colorcon Ltd., Dartford, England), which differ in the viscosity of their solutions and also in 

the length of the polymer chains. Polymers are best characterized by the viscosity of their 

solutions, the viscosity of Ethocel Standard Premium 10
®
 and Ethocel Standard Premium 45

®
 

is 9-11 cP and 41-49 cP, respectively. Viscosities were given for 5% solutions measured at 

25°C in an Ubbelohde viscosimeter, the solvent was 80% toluene and 20% alcohol 71. As 

polymers do not dissolve in water, only in organic solvents; we used 96 % alcohol as solvent. 

Plasticizers have the ability to alter the physical properties of a polymer film. 

During our experiments we used triethyl citrate (Ph. Eur.) (TEC) as plasticizer, which is the 

ethyl ester of citric acid, it belongs in the group of organic esters. 

 

4.1.2. Methods 

4.1.2.1. Preparation of solutions 

For the experiments alcoholic solutions with 10% polymer content were prepared without 

plasticizer and with 1-3-5% triethyl citrate concentration. An MFT bar apparatus (Rhopoint 

Instrumentation Ltd.) was applied to determine the MFT and the film forming time of a 

75m-thick layer of solution at different temperatures. The method for determining film 

formation was worked in our institute earlier [72. We performed six parallel measurements. 

 

4.1.2.2. Preparation of free films 

The solutions were sprayed on teflon surfaces placed in a rotating vessel; the conditions of 

spraying are presented in Table 1. The temperature of the drying air was set according to the 

MFT values presented in Table 2. During spraying, we continuously checked the temperature 

of the drying air, which was controlled with a laser temperature controller. The properties of 

the prepared free films were determined after preparation (fresh) and also after 1, 2 and 4 

weeks of storage (40°C/50RH%) in order to monitor changes. 
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Table 1: Parameters of the preparation of free films 

PARAMETERS VALUES 

Rotation rate of vessel 22/min 

Rate of liquid feeding 5 ml/min 

Pressure of spraying air 1.5 bar 

Diameter of nozzle 0.8 mm 

Temperature of drying air according to MFT 

 

Table 2: MFT values of EC10 and EC45 films 

  CONCENTRATION OF PLASTICIZERS 

  0% 1% 3% 5% 

EC10 films MFT (°C ) 26.1 20.7 20.3 17.7 

EC45 films MFT (°C ) 24.4 13.1 16.8 18.8 

 

4.1.2.3. Thermoanalytical measurements 

The thermoanalytical examinations of the materials were carried out with a Mettler-Toledo 

DSC 821
e
 and TG/DSC1 instrument. During the Differencial Scanning Calorimetry (DSC) 

measurements the start temperature was −40°C, the end temperature was 300°C and the 

applied heating rate was 10°C min
-1

. Argon atmosphere was used and nitrogen was used as 

drying gas. 10±1 mg sample was measured into aluminium pans (40 µl). The data were 

calculated from the average of three parallel measurements and were evaluated with STAR
e
 

Software. 

For the Termogravimetry (TG) measurements the start temperature was +25°C, the end 

temperature was 300°C, the applied heating rate was 10°C min
-1

. Nitrogen atmosphere was 

used. 10±1 mg sample was measured into aluminium pans (100 µl). The data were calculated 

from the average of three parallel measurements and were evaluated with STAR
e
 Software. 

 

4.1.2.4. Mass spectrometric examinations 

The stability examination of the films was supplemented with gas analysis. The TG 

instrument was coupled to a Thermo Star (Pfeiffer) quadruple mass spectrometer (maximum 

300 amu) for gas analysis. The measurements were carried out in nitrogen atmosphere. Ions 

with various mass numbers were determined with the Secondary Electron Multiplier - 
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Multiple Ion Detection (SEM-MID) measurement module of the Quadera software. The 

obtained results were exported and then plotted in one coordinate system with the TG curves 

by using the Mettler Toledo Star software. 

 

4.1.2.5. Measurement of the contact wetting angle 

Contact wetting angle was examined with Dataphysics OCA-20 equipment, it was determined 

by means of drop contour analysis. The SCA-20 software belonging to the equipment can be 

used for calculating the surface/interfacial tension (γ) and the surface free energy of solid 

materials according to Wu’s theory, which gives the dispersion and polar components of 

surface free energy, too. Contact wetting angle was determined in fresh films and in films 

after storage with sessile drop method. The liquids used for contact-angle measurements were 

water and diiodomethane/methylene iodide.  

 

4.1.2.6. Fourier transform infrared spectroscopy (FT-IR) 

A Bio-Rad Digilab Division FTS65A/896 FT-IR Spectrometer with a Harrick's Meridian™ 

SplitPea Single Reflection Diamond ATR Accessory was used to record the spectra. The 

measurements were performed in the range of 4000-400 cm
-1

 at 4 cm
-1

 optical resolution and 

256 scans were taken to achieve good signal to noise ratio. Three spectra were averaged for 

each composition, measured at three different places of the same film. 

 

4.1.2.7. Positron annihilation lifetime spectroscopy (PALS) 

PALS measures the time for which a positron can exist in a material. This lifetime depending 

on the properties of the particular material. The method is based on the fact that electrons and 

positrons annihilate each other to form photons. The properties of the resulting radiation 

correspond exactly to the relevant properties of the electron and the positron preceding the 

annihilation. PALS is an important method in the structural characterization of polymers, and 

its role is currently increasing in pharmaceutical technology [72-74]. Together with other 

properties, this method measures the size distribution of free-volume holes in polymers.  

The use of positrons in polymers is based on the formation of the positronium, a bound state 

of an electron and a positron, in which the role of the positron resembles that of the proton in 

a hydrogen atom. The lifetime of the positronium before its annihilation is determined by the 

properties of the material in which it is formed. The exact dependence can be approximated 
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by means of a simple model. The free-volume model regards the free volume in polymers as 

formed of uniform spherical voids [75. Although the model is simple, it provides a 

possibility to derive a connection between the measured lifetime and the size distribution of 

the free-volume holes: 
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   (Eq. 1.) 

where τ is the lifetime of the ortho-positronium in nanoseconds, R is the radius of the voids in 

Angströms, and ΔR is a constant. This formula indicates that τ increases with R. On a 

molecular scale, the R values correspond well with the BET and neutron scattering results. 

The positron source applied for the measurements was made of carrier-free 
22

NaCl with an 

activity of 10
5 

Bq, sealed between two very thin kapton foils. The source was placed between 

two pieces of polymeric mixture previously treated identically. Positron lifetime spectra were 

recorded by a conventional fast-fast coincidence system based on BaF2/XP2020Q detectors 

and Ortec electronics. Spectra were recorded in 4096 channels of a computer-based 

multichannel analyser card (Nucleus). The time resolution of the spectrometer was ~220 ps. 

Each spectrum related to 1.5x10
6
 annihilation events. Samples were measured repeatedly and 

the data given below are averages of the repeated measurements. 

 

4.1.2.8. Mechanical properties of free films 

The breaking strength of the films was tested with an indentation hardness tester. This device 

and the software were developed in our institute. The tester contains a special specimen 

holder and a jowl. The loading indicates stress in the sample and it can deform. These devices 

are connected with a computer through an interface. Thus, not only can the ultimate 

deformation force be measured, but the process (force-time and force-displacement curves) 

can be followed. The specimen, and hence the free film is located horizontally in the holder 

and the jowl moves vertically. The range of measurement: 0-200 N, rate of displacement: 20 

mm/min, the sampling rate was 50 Hz, the output was 0–5 V, and the sensitivity was ±0.1 

digit. The sensor was a Unicell force-measuring instrument, calibrated with the C9B 20 kN 

cell. 
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4.2. RESULTS 

4.2.1. Thermoanalysis 

Before the preparation of free films, the Minimum Film forming Temperature (MFT) of EC 

films of various compositions were determined (Table 2.), so that the temperature of the 

drying air during spraying could be set accordingly. After the evaluation of the data shown in 

the Table 2., it was found that the use of plasticizer decreased the value of MFT in each case. 

The increase of triethyl citrate concentration decreased the MFT value proportionally to 

concentration in the case of EC10 films and according to the minimum curve in the case of 

EC45 films. 

The condition of the formation of a proper film structure is to know the glass transition 

temperature of the film forming polymer, which was determined with a DSC instrument. Both 

the structure and the glass transition temperature of the film are influenced greatly by the 

properties and concentration of the plasticizers used, therefore their role was studied. 

The DSC curves of EC10 fresh films containing various quantities of triethyl citrate are 

shown in Figure 4. The glass transitions are indicated on the curve and it is clear that the Tg 

value decreases with the increase of the plasticizer concentration. 

The numerical data of glass transition are summarized in Table 3. The data clearly reveal that 

the Tg value in fresh films is not yet decreased by 1% of plasticizer but is definitely decreased 

by 3% and 5% of plasticizer. 

Table 3: Changes in the Tg values of EC10 fresh films as a function of plasticizer concentration 

 Triethyl citrate concentration 

 0% 1% 3% 5% 

Glass transition temperature (Tg)/°C 

SD 

126.4 

(2.22) 

126.9 

(2.74) 

118.6 

(7.89) 

105.1 

(8.95) 

 

Figure 5. shows the DSC curves of EC45 fresh films containing various quantities of triethyl 

citrate. The numerical data of glass transition are summarized in Table 4. It is clear from the 

data that the Tg value in fresh films is increased by 3% plasticizer, but is decreased by 5% of 

plasticizer in the case of EC45 films, which is again due to structural changes. 

The comparison of the glass transition temperature values of the two film forming polymers 

shows that the glass transition temperature of films prepared from the shorter-chain EC10 

polymer is slightly lower than for longer-chain EC45 films. 
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Figure 4.: DSC curves of EC10 fresh films 

 

Figure 5.: DSC curves of EC45 fresh films 

 

Table 4: Changes in the Tg values of EC45 fresh films as a function of plasticizer concentration 

 Triethyl citrate concentration 

 0% 1% 3% 5% 

Glass transition temperature (Tg)/°C 

(SD) 

133.4 

( 0.56) 

135.9 

( 0.23) 

141.5 

( 0.43) 

128.7 

( 0.91) 
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The reason of this is that in the “looser” structure transition can take place at a lower 

temperature than in the “more compact” structure formed by longer-chain polymers. The 

numerical data also show that in fresh films containing plasticizer the Tg value could be 

decreased by 3% plasticizer in the case of “looser” EC10 films prepared from shorter-chain 

polymers; while 5% plasticizer was needed for “stronger” EC45 films made from longer-

chain polymers. 

We also investigated whether the glass transition temperature, which is the most typical 

feature of the film structure, changed as a function of storage time for the free films we 

prepared. 

The time course of the glass transition values is presented for the films without plasticizer and 

with the highest concentration in the case of both film forming polymers (Table 5.). The data 

show that EC10 films underwent greater change during storage, they were less stable than 

EC45 films, so EC10 films are less suitable for forming MR dosage forms. 

Table 5: Changes in the Tg values of EC10 and EC45 films as a function of storage time 

  Tg/°C 

 Triethyl citrate 

concentration 

Storage time 

fresh 2 weeks 4 weeks 

 

EC10 films 

0% 

(SD) 

121.9 

( 6.4) 

126.9 

( 1.58) 

107.1 

( 2.08) 

5% 

(SD) 

108.3 

( 7.11) 

104.2 

( 6.16) 

101.1 

( 11.1) 

 

EC45 films 

0% 

(SD) 

131.9 

( 1.16) 

135.7 

( 4.85) 

132.7 

( 1.47) 

5% 

(SD) 

127.5 

( 0.74) 

127.9 

( 2.16) 

128.5 

( 0.16) 

The thermal stability values of the fresh films were examined and the results are summarized 

in Table 6. 

The analysis of the TG curves (Fig. 3.) revealed that the two different film forming polymers 

are thermally stable, a mass decrease of only 0.5% and 1.2% could be detected until 100 °C 

and 300 °C, respectively. The decomposition process starts only later and a mass loss of about 

10-20-30% can be detected, depending on the concentration of the plasticizer. There is 
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practically no difference between the thermal stabilities of the two polymers, so mass change 

depends only on the plasticizer concentration.  

Table 6: Mass change of EC10 and EC45 films as a function of plasticizer concentration 

  Triethyl citrate concentration 

  0% 1% 3% 5% 

Mass decrease/% 
EC10 films 1.12 8.94 21.23 30.16 

EC45 films 1.22 10.56 20.48 31.70 

The thermal behaviour of triethyl citrate and of films containing 5% plasticizer is shown in 

Figure 6. The TG curves show that the decomposition of triethyl citrate starts as early as over 

120 °C and becomes more intensive over 200 °C, and the material is fully decomposed before 

reaching 300 °C. The shape of the curves is a proof for triethyl citrate probably being built in 

the structure of the ethylcellulose film, because its decomposition from the film starts only 

later, at about 180-200 °C. 

Similarly, the results of the MS examinations are shown in Figure 6., based on the analysis of 

the gases which evolve from the EC10 film. Carbon dioxide gas (CO2) (m/z=44) starts to 

evolve at 200 °C and reaches its highest concentration at 260-270 °C. 

The films were also examined after 4 weeks of storage (see Table 7.) and the results were 

practically the same as those for the fresh film. The only exception was the EC10 film 

containing 1% plasticizer, which is probably due to the inhomogeneity of the sample. 

 

Figure 6.: TG curves of EC10 and EC45 films containing 5% triethyl citrate and their MS evaluations 
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Table 7: Mass change of EC10 and EC45 films as a function of plasticizer concentration after 4 weeks 

of storage 

  Triethyl citrate concentration 

  0% 1% 3% 5% 

Mass decrease/% 

EC10 films 2.59 1.16 21.00 27.03 

EC45 films 0.53 11.51 20.25 28.14 

 

As a summary of the thermal investigations it can be stated that the decomposition of the 

plasticizer from the arising film structure is retarded, and the polymer molecule itself stays 

stable until 300 °C. A more homogeneous sample, therefore a better film can be prepared 

from EC45, but mass change depends basically on the material quality of the plasticizer. Mass 

spectrography performed as a coupled technique also proved that the films stayed stable until 

approximately 200 °C. 

 

4.2.2. Physico-chemical properties of films 

The results show that there are considerable differences in the behaviour according to the 

chain length of the applied polymers. For example, the film integrity and the mechanical 

properties significantly improve with increasing chain length.  

 

Table 8.: Surface properties of EC films 

  (mN/m) Polarity (%) 

Plasticizer EC10 EC45 EC10 EC45 

0% 
56.17  

(±0.60) 

49.54  

(± 0.96) 

28.45  

(± 0.90) 

22.22  

(± 1.68) 

1% 
53.42  

(± 0.55) 

49.36  

(± 1.68) 

26.13 

(± 0.68) 

18.13  

(± 2.38) 

3% 
53.92  

(± 1.09) 

54.71  

(± 1.03) 

29.95  

(± 0.98) 

30.31  

(± 1.21) 

5% 
53.59  

(± 0.89) 

53.48  

(± 1.00) 

28.66  

(± 0.98) 

27.54  

(± 1.06) 
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However, longer chains resulted in higher lipophilicity, probably due to the relatively 

increased proportion of the ethyl ether groups. The incorporation of triethyl citrate into the 

structure will affect not only the mechanical and thermal properties but also the surface 

characteristics of films (Table 8.). The results of the surface energy measurements suggest 

that the kinetics, and probably the mechanism, of incorporation of the plasticizer differ 

depending on the chain length of the polymer. A significant change can be observed in the 

surface properties of films after the addition of 1% of plasticizer. However, its effect is 

stabilized after this amount in the case of EC10 films, while in the case of EC45 the 

stabilization is visible only after 3%. The properties of the fully plasticized films are 

statistically the same (p > 0.05), which suggests that the plasticizer binds differently to the 

different types of ECs. 

To clarify this phenomenon, the structure of the films was investigated by FT-IR 

spectrometer. Better mechanical properties of the EC45 films provided better quality for the 

spectra, so the results are explained according to these data. The spectra of the blank and 

plasticized films have generally the same shape (Fig. 7.), no significant shift of peaks can be 

observed, only a small widening of the symmetric and asymmetric valence vibration of the 

ether bonds are present in the 1000-1200 cm
-1

 wavenumber range. This suggests that the 

incorporation of the plasticizer is based on secondary bindings. The presence of the plasticizer 

can be clearly identified based on the bands of the ester groups. The most intensive peaks at 

1750 cm
-1

 belong to the C=O valence vibrations. 

 

Figure 7.: FT-IR spectra of the EC45 films 
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They are clearly present in the original FT-IR spectra. The signs of ternary OH groups at 1200 

cm
-1

 and the COC vibrations of the ether groups are overlapped with the other ether vibration 

signals, thus they can be identified only in the subtracted spectra (Fig. 8.)  

 

Figure 8.: Subtracted spectra of the plasticized EC45 films 

 

The peaks in the subtracted spectra of EC45 films are significantly increased with increasing 

the amount of plasticizer from 1 to 3%, but after that a slight decrease can be observed, which 

is in good agreement with the surface energy measurements and also with the change of the 

minimal film forming temperature of the samples. This suggests that some of the main 

characteristics of the films are determined by the bounded fraction of the plasticizer. The 

slight decrease of the bounded fraction with increasing triethyl citrate amount can probably be 

due to the mass effect, which means that the increasing amount of the material will change the 

preferences of the intermolecular bindings, and will hinder the incorporation of the plasticizer 

into the structure of the polymer film. Meanwhile, there was no sign of inhomogenity inside 

the film, the unbounded fraction of the plasticzer is probably evaporated from the system with 

the small droplets of the solvent. These particles could be presented on the surface of the 

coating pan, but no measurements were performed for the detection of the plasticizer in the 

pollution. 
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The PALS results revealed that there was no significant difference between the two types of 

ethylcellulose samples (Fig. 9.), which were influenced very similarly by the plasticizer. A 

significant difference was observed only at the highest concentration of the plasticizer. 

 

Figure 9.: Positron lifetime plotted against concentration 

The positron lifetime initially decreased slightly at the lowest plasticizer concentration. This is 

a consequence of the distribution of the plasticizer molecules between the polymer chains, 

filling the free-volume holes, occupying sites formerly available for the positronium atoms, 

providing a higher electron density. The lifetime of the positronium atoms therefore 

decreases. The structure of the film was changed as a result of the admixture of the plasticizer. 

At higher concentrations, the plasticizer initiated a large-scale rearrangement of the polymer 

chains, leading to the formation of larger free-volume holes, as indicated by the longer 

lifetimes. 

It should be emphasized that the PALS data did not indicate any major structural change up to 

a plasticizer concentration of 1%. The large-scale rearrangement of the polymer chains 

necessitated a higher concentration. 

The pellet deformation process was evaluated by determining the breaking hardness and 

studying the deformation curve. The breaking strength results are presented in Table 9. and 

10. The addition of 1% plasticizer to Ethocel 10 resulted in a 2-fold higher breaking strength 

of the film. The addition of larger amounts of the plasticizer resulted in a decrease in the 

breaking hardness. The reason for this is the influence of the moisture content of the 

plasticizer on the elasticity of the film. 
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Table 9.: Breaking strength of Ethocel 10 free films 

 
Plasticizer concentration 

0% 1% 3% 5% 

Storage 

conditions 
Breaking strength (N) 

Fresh films 
5.66 

(±1.55) 

9.62 

(±2.58) 

4.68 

(±1.00) 

4.3 

(±1.31) 

After 1 week 
5.68 

(±1.83) 

9.46 

(±2.56) 

4.38 

(±1.15) 

4.18 

(±0.83) 

After 2 weeks 
5.28 

(±1.99) 

9.41 

(±2.63) 

4.82 

(±1.66) 

4.81 

(±1.43) 

After 4 weeks 
5.02 

(±1.52) 

9.12 

(±2.47) 

4.9 

(±1.6) 

4.45 

(±0.69) 

 

The addition of 1% plasticizer to Ethocel 45 resulted in a 3-fold higher breaking strength of 

the film. 

Table 10. Breaking strength of Ethocel 45 free films 

 
Plasticizer concentration 

0% 1% 3% 5% 

Storage 

conditions 
Breaking strength (N) 

Fresh films 
10.47 

(± 1.94) 

31.06 

(± 1.32) 

12.73 

(± 2.14) 

8.46 

(± 1.5) 

After 1 week 
11.04 

(± 2.58) 

34.34 

(± 3.49) 

13.63 

(± 3.06) 

8.74 

(± 1.82) 

After 2 weeks 
10.89 

(± 2.96) 

32.99 

(± 3.09) 

12.1 

(± 1.82) 

8.63 

(± 1.64) 

After 4 weeks 
10.37 

(± 2.47) 

30.13 

(± 3.31) 

12.59 

(± 2.11) 

8.51 

(± 0.71) 
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The breaking strengths of the two kinds of ethylcellulose films are compared in Figure 10. It 

can be seen that the breaking strengths of the films prepared from the shorter-chain Ethocel 10 

polymer with its looser structure were lower than those for the longer-chain, more compact 

Ethocel 45 films. Ethocel 45 formed a significantly stronger structure. 

 

Figure 10.: Breaking strength of EC10 and EC45 free films 

The addition of 3% plasticizer resulted in the small increase of the breaking strength, whereas 

higher concentrations of the plasticizer caused decreases in the breaking strength. The 

changes in the breaking strength as a function of time are shown in Tables 9. and 10. In the 

case of the Ethocel 45 film the breaking strength was highest after 1 week at all plasticizer 

levels. In contrast, in the case of Ethocel 10 film, similar effect was found only at 1% 

plasticizer. The reason for this is the loss of the moisture content from the system. The rate of 

evaporation of moisture depends on the film structure. The breaking strength of the Ethocel 

45 film after 1 week varied linearly with time with a very good correlation, except in the case 

of the 3% plasticizer (Table 11.). Figure 10. illustrates the above effects for the Ethocel 45 

film containing 1% plasticizer, with R
2
=0.9998. Ethocel 10. films exhibited similar linear 

property only at a low concentration of the plasticizer. The reason of this is that the breaking 

strength depends on the moisture content of the system and the length of the polymer chains. 
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Table 11.: Fitted results of change in breaking strength in time with the following model:  

           

Plasticizer 

concentration 
F0 a R

2 

0% 11.300 -0.2286 0.9860 

1% 35.77 -1.41 0.9998 

5% 8.80 -0.0743 0.9730 

 

Figure 11.: Fitted hardness curve of EC45 films with 1% plasticizer 

 

Study of the deformation curve with the aid of our software revealed that the loading did not 

cause the deformation of the film (Fig. 12., section a). After a very short viscoelastic 

deformation, when the breaking strength did not change significantly, the breaking curve 

displayed an elastic tendency (section b). This was followed by a further elastic section 

(section c), at the end of which breaking occurred. 
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Figure 12.: Deformation curve of the free films 

4.3. DISCUSSION 

It was found that the glass transition temperature of films prepared from the shorter-chain 

EC10 polymer with a “looser” structure is slightly lower than for longer-chain, more 

“compact” EC45 films. In fresh films containing plasticizer the Tg value could be decreased 

by 3% plasticizer in the case of “looser” EC10 films prepared from shorter-chain polymers, 

while 5% plasticizer was needed for “stronger” EC45 films made from longer-chain 

polymers. EC45 films were more stable during storage. The thermal stabilities of the two 

polymers are approximately the same. 

The thermal investigations revealed that the decomposition of the plasticizer from the arising 

film structure is retarded. A more homogeneous sample, therefore a film of better quality 

(pore-free, properly elastic) can be prepared from EC45. Mass spectrography performed as a 

coupled technique also proved that the films stayed stable until approximately 200 °C. 

The structure of films and the incorporation of plasticizer can be followed with the use of FT-

IR. The results support that only a limited amount of plasticizer can be incorporated with 



26 
 

physico-chemical bindings into the structure of polymer films and this proportion will 

basically determine some of the main properties of the preparations. The analysis of the film 

structure can explain some unexpected disturbances in the film properties and can help in the 

development of suitable preparations. 

The mechanical properties of ethylcellulose polymers and the effects of the incorporation of a 

plasticizer agreed with our expectations and former results. PALS studies demonstrated that 

up to a concentration of ~1 % the incorporated plasticizer is integrated between the polymer 

chains. At higher concentrations, the large-scale rearrangement of the polymer chains begins, 

resulting in larger free-volume holes and lower breaking strengths. The mechanical properties 

were clearly revealed to depend on the concentration of the plasticizer. These results allow the 

choice of the better film former polymer: Ethocel 45 with its longer chains. The moisture 

content of the 1% plasticizer proved suitable for these ethylcellulose films. After a storage 

time of 1 week, the breaking strength decreased linearly, the film losing its moisture content 

continuously. 

The ideal concentration of the plasticizer in these film formers was 1%. This concentration 

resulted in strong, mechanically resistant, stable films. This composition can be used for 

diffusion coating to obtain a product with modified release.  
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5. SECTION II. 

 

5.1. Materials and methods 

5.1.1. Materials 

Enalapril maleate (EM) is an ACE (angiotensin converting enzyme) inhibitor agent used in 

the treatment of hypertension. It reduces RAS (renin-angiotensin system) activity in the body, 

and has cardioprotective and renal-protective effects [76]. It is also used to treat congestive 

heart failure in adults. This API belongs to Class III of the Biopharmaceutics Classification 

System (BCS), so it has low permeability and high solubility. The absorption is limited by the 

permeation rate but the drug dissolves fast. The side effects of the API include allergic 

reactions, high potassium blood level (hyperkalaemia), dizziness, abdominal pain. To reduce 

these side effects, enalapril maleate is often combined with diuretics, which reduces the 

potassium level in blood. 

Hydrochlorothiazide (HCT) is a thiazide diuretic medication often used to treat high blood 

pressure. This API belongs to BCS Class IV, it has low permeability and low solubility. 

Those compounds have poor bioavailability. Usually they are not well absorbed over the 

intestinal mucosa and a high variability is expected. 

The appropriate preparation can be prepared with the encapsulation of the two API containing 

pellets. Enalapril maleate and hydrochlorothiazide combination is used to treat high blood 

pressure. Hydrochlorothiazide reduces the hyperkalaemia caused by enalapril maleate. 

Ethocel Standard 10 FP Premium (Colorcon Ltd. Dartford. England) was used as matrix 

former and MCC type 101 (Avicel 101, FMC Corporation, Philadelphia, USA) as 

pelletisation aid and deionised water with ethanol and TEC as solvent.  

 

5.1.2. Methods 

5.1.2.1. Experimental plan 

The study dealt with the effect of 3 process parameters – spheronization time (x1), the liquid 

feed rate (x2), and the speed of the friction plate (x3) – on the pellet properties (shape, tensile 

strength, breaking force). Mixed 2 and 3 level
 
factorial design was applied to optimize the 

process parameters and the best composition for the experiments. We examined the liquid 

feed rate (x2) and the speed of the friction plate (x3) on 3 levels, while the effect of 
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spheronization time on 2 levels. These dependent variables influenced the properties of the 

pellets. Statistica for Windows 11 AGA (Statsoft. Inc. Tulsa. USA) software was applied to 

determine the effects of the factors. The effect of the factors was evaluated with the use of 

Statistica for Windows 11 (AGA software). 

 

5.1.2.2. Preparation of pellets 

1500 grams of powder mixture was prepared from 20% of API (enalapril maleate or 

hydrochlorothiazide), 30% of ethylcellulose and 50% of microcrystalline cellulose. 

The powders were combined in a laboratory-scale blender (LM40, Bohle, Ennigerloh, 

Germany) for 10 min at 25 rpm and then transferred into the gravimetric powder feeder (B: 

KT 20, K-Tron Soder, Lenzhard, Switzerland) of the extruder. The co-rotating twin-screw 

extruder (Mikro 27GL-28D, Leistritz, Nuremberg, Germany) was equipped with an axial 

screen with 23 dies of 1 mm diameter and 5 mm length. The extrusion took place at a constant 

screw speed of 100 rpm, a powder feed rate of 33 g/min and a liquid feed rate according to the 

experimental plan. Deionised water, 96% ethanol and 1% TEC were used as granulation 

liquid supplied by a membrane pump (C. Cerex EP-31, Bran and Luebbe, Norderstedt, 

Germany) Batches of 40 g resultant strands of extrudates were collected and spheronized in a 

spheronizer (Caleva 120, Sturminster Newton, UK) according to the design of experiments. 

The particles were dried in a fluid bed apparatus (GPCG 1.1., Glatt, Dresden, Germany) for 

20 min with an inlet air temperature of 60°C. 

 

5.1.2.3. Image Analyser 

The shape of the pellets was studied with image analysis using a system consisting of a stereo 

microscope (Leica MZ 75, Cambridge, UK), a ringlight with cold light source (Leica KL 

1500, Cambridge, UK), a digital camera (Leica CS 300 F, Cambridge, UK), and an image 

analysing software (Qwin, Leica, Cambridge, UK). In case of APIs the particle size were 

analysed with the use of SEM images by ImageJ software. 

The images of at least 500 pellets of each sample at a suitable magnification were translated 

into binary images. Contacting pellets were separated by a software algorithm. For each 

pellet, 36 Feret diameters were determined and also used to calculate the mean Feret diameter. 

The ratio of the maximum Feret diameter and the Feret diameter perpendicular to the 

maximum Feret diameter is used as the aspect ratio (AR). The pellet size and shape were 

characterized by the mean Feret diameter, aspect ratio and 10 % interval, respectively (Eq.2.). 
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   (Eq.2.) 

with the dimensionless diameter (d), mean Feret diameter (dF) and median of all mean Feret 

diameters (dF50). The distribution of the particle size is characterized by the fraction of the 

particles in the interval 0.9 < d < 1.1. The size distribution is characterized as good if the 

fraction of the 10 % interval exceeds 50% and as excellent if it exceeds 75%. 

 

5.1.2.4. Scanning Electron Microscope (SEM) 

The surfaces and the structures were tested with a Scanning Electron Microscope (SEM) 

(Hitachi S4700, Hitachi Scientific Instruments Ltd., Tokyo, Japan). A sputter coating unit 

(Polaron E5100, VG Microtech, UK) was used to charge the surfaces for the SEM 

measurements. The air pressure during the analyses was 1.3-13 mPa. 

 

5.1.2.5. Mechanical properties of pellets 

The breaking strength of 40 pellets was tested. The general technical parameters are in chapter 

4.1.2.8. By changing the pressure jowl and the sample holder, the equipment is appropriate for 

the measurement of the crushing force (F) of pellets. The breaking strength (hardness) value is 

given by the maximal force corresponding to the peak of the force-time plot. 

 

5.1.2.6. Dissolution study 

Pellets containing 100 mg of enalapril maleate and 25 mg of hydrochlorothiazide were filled 

into size 2 HPMC capsules. The dissolution was tested with USP 1 method, using an 

automated Erweka DT700 dissolution apparatus. Samples were taken after 5, 15, 35, 60, 90, 

120, 150 and 180 min. After 2 hours the dissolution media was changed from pH=1.2 artficial 

gastric juice to pH=4.5 acetate buffer. The concentrations were measured with a Merck-

Hitachi LaChrome D-7000 line HPLC apparatus. The eluent was freshly prepared with the 

mixing of Acetonitril, Methanol and pH 2.5 o-phosphoric acid buffer 50:25:25 v/v%, 

respectively. The flow rate was 0.6 ml/min and the detection of drugs in the eluates was 

carried out at 225 nm. 
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5.2. RESULTS 

5.2.1. Characterization of APIs 

Both APIs have tabular crystal habit (Fig. 13.), and heterodisperse size distribution (Table 

12.). The most considerable difference between the APIs is particle size. EM crystals are 

tenfold bigger than HCT particles. 

 

Figure 13.: SEM picture of EM (a), and HCT in magnification 200x (b) 500x (aggregate) (c), 500 x 

(individual crystals) (d), 1000x (e) and 2000x (f) 
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A further difference is that whilst EM crystals are well-developed and sometimes covered by 

tiny, irregularly-shaped crystal grains (Fig. 13a), the edges and corners of the HCT crystals 

are rounded (Fig. 13d, e, f). The sticking of smaller particles on the surface of larger crystals, 

- which suggests a strong cohesion between them is also characteristic for HCT. That is why a 

number of irregular looking crystals are visible at small magnifications (Fig. 13b), with the 

presence of some big crystal agglomerates. It is well visible at higher magnifications (Fig. 

13d, e, f), that the smaller particles are irregular aggregates of few tabular crystals, while 

bigger agglomerates are formed from undeveloped particles (Fig. 13c) and behave as 

individual units in the product. 

Table 12.: Properties of APIs 

 Enalapril maleate Hydrochlorothiazide 

Aspect ratio 1.866 1.829 

Roundness 0.595 0.63 

Mean Feret diameter (µm) 67.4 (±43.84) 5.57 (±3.96) 

Aqueous solubility 

(mg/ml) 
25 0.722 

 

As it can be seen, except for the solubility and particle size, the general physical properties of 

the APIs are similar, and their mechanical behaviour during the extrusion-spheronization 

process is expected to be similar too. 

 

5.2.2. Characterization of pellets 

We can define pellets as spherical, free flowing granules with a narrow size distribution, that 

typically varies between 0.50 and 1.50 mm. All experimental settings resulted in pellets for 

both formulations with a mean average Feret diameter from 1.0 to 1.5 mm (Table 13.). The 

shorter spheronization time results in larger size particles. The reason for this phenomenon is 

that the particles do not have enough time to get a rounded shape, and thus “bone” shaped 

particles are formed during spheronization, the particle size of which is larger as well. 

The 10% interval is used to characterise the particle size distribution., which describes the 

fraction of pellets within the interval 0.9-1.1 of the dimensionless diameter. If the fraction in 

the 10% interval exceeds 50% the size distribution is rated as good and if the fraction exceeds 

75% the size distribution is rated as excellent [67]. 
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Table 13.: Properties of pellets 

 

Samples 

X1 

Spher. 

time 

(min) 

X2 

Liquid 

feed rate 

(g/min) 
(EM/HCT) 

X3 

Spher. 

Speed 

(rpm) 

Mean Feret  

diameter (mm) 

10% interval 

(%) 
Aspect ratio  

Hardness 

(N) 

EM HCT EM HCT EM HCT EM HCT 

1. 2.5 25/26.3 1000 
1.31 

(± 0.06) 
1.27 

(± 0.12) 
52.8 52.2 1.60 1.58 17.3 12.0 

2. 2.5 25/26.3 1250 
1.21 

(± 0.08) 

1.46 

(± 0.17) 
62.4 70 1.40 1.52 12.6 13.0 

3. 2.5 25/26.3 1500 
1.13 

(± 0,09) 

1.15 

(± 0.09) 
49.5 56.2 1.25 1.33 14.7 12.7 

4. 2.5 27/28.5 1000 
1.25 

(± 0.11) 

1.28 

(± 0.11) 
50.8 59.6 1.57 1.55 16.2 11.3 

5. 2.5 27/28.5 1250 
1.20 

(± 0.08) 

1.22 

(± 0.11) 
73.8 60.6 1.50 1.41 13.7 13.5 

6. 2.5 27/28.5 1500 
1.23 

(± 0.10) 

1.16 

(± 0.07) 
76.8 62.2 1.36 1.32 15.4 13.9 

7. 2.5 29/30.3 1000 
1.22 

(± 0.02) 

1.22 

(± 0.08) 
82.6 66.4 1.24 1.44 10.4 9.1 

8. 2.5 29/30.3 1250 
1.25 

(± 0.11) 

1.17 

(± 0.13) 
79.6 77.6 1.10 1.27 11.2 10.4 

9. 2.5 29/30.3 1500 
1.12 

(± 0.14) 

1.16 

(± 0.14) 
85.0 73.4 1.10 1.16 12.3 15.4 

10. 10 25/26.3 1000 
1.22 

(± 0.07) 

1.22 

(± 0.10) 
78.2 63.4 1.49 1.54 16.3 15.4 

11. 10 25/26.3 1250 
1.17 

(± 0.07) 

1.14 

(± 0.08) 
93.6 82.6 1.30 1.36 19.3 19.5 

12. 10 25/26.3 1500 
1.10 

(± 0.11) 

1.01 

(± 0.07) 
91.4 82.6 1.15 1.24 19.5 19.5 

13. 10 27/28.5 1000 
1.23 

(± 0.08) 

1.16 

(± 0.11) 
87.2 85.2 1.54 1.3 15.2 15.6 

14. 10 27/28.5 1250 
1.17 

(± 0.14) 

1.13 

(± 0.10) 
92.6 86.4 1.31 1.25 18.1 14.2 

15. 10 27/28.5 1500 
1.11 

(± 0.12) 

1.03 

(± 0.09) 
93.0 75.4 1.15 1.11 18.0 20.9 

16. 10 29/30.3 1000 
1.21 

(± 0.09) 

1.19 

(± 0.13) 
90.4 97 1.07 1.08 15.1 14.3 

17. 10 29/30.3 1250 
1.18 

(± 0.08) 

1.10 

(± 0.12) 
84.0 96.8 1.06 1.05 19.1 14.0 

18. 10 29/30.3 1500 
1.18 

(± 0.07) 

1.09 

(± 0.10) 
82.0 95.6 1.07 1.06 15.1 14.0 
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The fraction in the 10% interval was in the 50-94% range in case of pellets with enalapril 

maleate and in the 52-97% range in case of hydrochlorothiazide pellets. Thus all size 

distributions can be regarded as good. 

The most common parameter to describe the shape of pellets is the aspect ratio. Pellets of a 

mean aspect ratio was close to 1.2 were regarded insufficient [51]. 

The results show that the aspect ratio and the other shape parameters are the worst if the 

process parameters are at minimum level (Fig. 14a), but spherical-shaped pellets may be 

gained with some optimization. The aspect ratio was near 1 in the case of Samples 16-18 for 

both APIs where the liquid feed rate and the spheronization time is on a higher level (Fig. 

14b). 

 

 

Figure 14.: SEM pictures of insufficient (a) and well (b) shaped pellets 

 

5.2.3. Factorial design 

The effect of the different process parameters as factors was studied on the basis of a mixed (2 

and 3) level full factorial design. The different experimental settings and the corresponding 

physical properties are displayed in Table 13. 

The response surfaces of the various optimization parameters may be described with the 

following general equation: 

y = b0 + b1x1 + b2x2 +b22x2
2 
+ b3x3 +b33x3

2
+ b12x1x2 + b13x1x3+b23x2x3  (Eq. 3.) 

(where x1:spheronization time, x2:liquid feed rate, x3: spheronization speed) 
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The regression coefficients and statistical results are displayed in Table 14., significant factors 

are highlighted with red colour. 

Table 14.: Effects of factors on the Aspect ratio (AR) and breaking hardness 

 AR Hardness 

 EM HCT EM HCT 

R
2
 0.9215 0.9525 0.7070 0.7996 

MS Residual 0.0047 0.0023 4.1575 3.6379 

b0 1.283 1.285 15.515 14.370 

b1 -0.047 -0.080 1.764 2.002 

b2 -0.129 -0.117 -1.373 -1.237 

b22 0.071 0.007 0.434 0.413 

b3 -0.107 -0.099 0.381 1.561 

b33 -0.004 0.005 0.104 -0.204 

b1b2 0.008 -0.031 0.398 -0.782 

b1b3 -0.014 0.014 0.623 -0.039 

b2b3 0.069 0.030 0.154 0.153 

It can be seen from the statistical results that the aspect ratio is significantly influenced by all 

three factors, within standard 95% CI (p<0.05) and the liquid feed rate (x2) has the most 

considerable effect, while spheronization time (x1) has the smallest, for both APIs. 

The higher factor values resulted in smaller aspect ratio values and also in the formation of 

sphere-shaped pellets in both cases. Nevertheless, the considerable difference between the two 

APIs is that the aspect ratio of HCT pellets decreases linearly with the increment of the liquid 

addition rate, while EM exhibits a nonlinear dependence on this factor (Fig. 15a, b). The 

explanation of this difference may be the different solubility of the APIs, which exerts 

considerable effect on the pellet texture through the influencing of the distribution of the 

water inside the wet mass. 
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Figure 15.: Response surface on the aspect ratio of EM (a) and HCT (b), and hardness of EM (c) and 

HCT (d) pellets 

The structural differences are well visible on the cross-sectional scanning electron 

micrographs (Fig. 16.). Although the low magnification images show compact spongiform 

texture for all investigated samples, the pellets with higher aspect ratio exhibit slightly higher 

apparent porosity. The increasing magnification reveals the differences of the sponge-like 

texture of the EC-MCC matrices. Besides the smooth surface of the embedded EM crystals 

surrounded with fibriform, filamentous, crumpled MCC grains, numerous rounded EC 

particles connected to them can be clearly identified in EM 1 pellets (Fig. 16c). Despite the 

different embedding mechanism of the API crystals, where the rounded particles are 

distributed more uniformly in the matrix, the general matrix texture of HCT 1 pellets is 

similar and the round EC grains may be identified (Fig. 16d). The different embedding can be 

due to the fact that smaller crystals are bound to the surface with a smaller force than to the 

matrix formers. The breaking surface of the pellets is generally splintered, which indicates 
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strong cohesion between the particles, but numerous fibrous ruptures may be identified, which 

can be due to the elastic deformation of the EC grains during the breaking process (Fig. 16g, 

h). 

Consequently, intact, rounded EC grains cannot be identified in EM 18 and HCT 18 pellets. 

This indicates that the high liquid feed rate induced structural changes in the EC grains, and 

the better deformation of these samples may be due to the plasticizing effect of the water.  

Probably, if the better soluble EM bonds more water, that could be the reason for the 

nonlinear relation between the aspect ratio and liquid addition rate in these pellets.  

The differences of the two APIs are also visible if we take into consideration the interactions 

between the factors. In the case of EM pellets, the interaction of the spheronization speed and 

the liquid feed rate is significant, and the other interactions have negligible effect. In contrast, 

the interaction of the liquid feed rate with the two spheronization parameters has equal weight 

for HCT pellets. In general, the spheronization speed has almost no effect on the shape of the 

particles at low liquid feed rates, which also supports the negative effect of the unplasticized 

EC grains on this parameter. The different texture and embedding mechanism of the API 

crystals have also significant effect on the the mechanical properties (hardness) of pellets. 
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Figure 16.: Scanning electron micrographs of the cross sections of various pellets (EM 1 100x (a), 

HCT 1 100x (b), EM 1 1000x (c), HCT 1 1000x (d), EM 18 100x (e), HCT 18 100x (f), EM 18 1000x 

(g), HCT 18 1000x (h)) 
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5.2.4. Mechanical properties of pellets 

The general breaking process of the pellets is displayed in Figure 17. Each section of the 

process is marked by a coloured line. 

The deformation of a pellet starts with a short period of elastic deformation. The green cursor 

shows the maximum value of this period. In the second stage, a short period of viscoelastic 

deformation occurs, which can be due to the presence and elastic properties of EC (from 

green cursor to black). The third stage involves the first cracks in the pellet (from black cursor 

to purple), influencing only the microstructure without any sign of macroscopic changes. In 

the fourth stage, as pressure increases, a structure change develops in the pellet (from purple 

cursor to red). Every solid body-bridge within the pellet will crack in this stage. In the end 

(from the red cursor), the final deformation of the pellet occurs. 

 

 

Figure 17.: General deformation process of the studied pellets 

 

Various authors adopted different approaches to assume the correspondence between a given 

peak of such complicated deformation procedure and the real crushing strength value. In some 
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cases the last one was chosen, whereas in other cases the highest one and yet in other works 

the first peak giving a preset drop of force was taken into account [77]. 

In present case the breaking hardness value is given by the force corresponding to the last 

peak of the force-time plot, since this was the starting point of the macroscopic deformation 

of the pellets. The maximal breaking strength of HCT pellets is lower in comparison with the 

corresponding EM ones (Table 13.) possibly due to the different embedding and distribution 

of API particles within the EC-MCC matrix. Furthermore, the statistical analysis revealed that 

although the pellet hardness is influenced most significantly by spheronization time, within 

95% CI (p<0.05) for both APIs, but amongst the other factors the liquid feed rate is 

significant for the EM and the spheronization speed for the HCT pellets (Table 14.). This 

indicates different behaviour of the various textures, which may be related to the different 

number and arrangement of solid bridges inside the matrix. The greater hardness of EM 

pellets is possibly related to the greater amount of dissolved particles due to the better 

solubility of the API, which results in more intense solid bridge formation after the drying and 

recrystallization of these particles. 

 

5.2.5. Dissolution 

The dissolution of the pellets containing hydrochlorothiazide lasts longer than that of pellets 

containing enalapril maleate (Fig. 18.). 

 

Figure 18.: The disssolution of the pellets 
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In the case of pellets containing enalapril maleate, the dissolution of the active ingredient is 

the fastest when all three factors are on the lowest level, and the slowest when the factors are 

on the highest level. Shorter spheronization time results in faster dissolution. There are 

various release kinetics models that are used to describe the API release profiles in 

pharmaceutical studies [78]. The Noyes-Whitney model was found to be the most suitable for 

the fitting of the API dissolution curves in the case of enalapril maleate with a very good 

correlation (R
2
=0.9836 – 0.9948). This model was offered by Noyes and Whitney as the 

following equation: 

  

  
            (Eq. 4.) 

where 

 
  

  
 is the dissolution rate  

M is the dissolved material,  

t is the time, 

k is the dissolution rate constant,  

Cs is the concentration of the API in the stagnant layer, 

Cb is the concentration of the API in the bulk of the solution at time t respectively. 

This is first order ordinary differential equation. The solution of this equation is: 

                 (Eq. 5.) 

where  

M(t) is the dissolved mass of API at the time t,  

M0 is the full mass of API in the pellet, 

k is the dissolution rate constant respectively.  

In the case of hydrochlorothiazide the semiempirical Korsmeyer – Peppas model and the 

Chapman-Richards were found to be the best model for the fitting the API dissolution curves 

(R
2
=0.9900 - 0.9984 In the Korsymeyer-Peppas model the fractional release of API is 

exponentially related to the release time: 

  

  
      (Eq. 6.) 

where  

  

  
 is a fraction of API released at time t,  

k is the release rate constant 

n is a release exponent. 

For more details of Korsmeyer-Peppas model see [78, 79]. 
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The Chapman-Richards method based on Bernoulli differential equation which is used to 

describes the growth of an arbitrary quantity as the difference between its constructive growth 

and the destructive growth [80]. 

MM
dt

dM
    (Eq. 7.) 

where  

M is the amount of quantity, 

M is constructive part 

M is the destructive part. 

The general solution of this differential equation is the 3-parameter Chapman-Richards 

function: 

)1()( kteMtM 

   (Eq. 8.) 

where  

M , k,   are the regression parameters to be estimated.  

In our case:  

M(t) is the dissolved API as a function of time, 

M is the total amount of the API, 

k  is the dissolution rate 

  describes the shape of the curve, which is refers to the lag time of the dissolution. 

Like RRSBW model, for β = 1, implies the first order kinetics.  

 

On the basis of dissolution examinations we can prove that the water solubility of the active 

ingredients significantly influences the dissolution. EC matrix does not inhibit the dissolution 

of the active ingredient, in case of EM with good dissolution properties (BCSIII). 

Approximately after 30 minutes, 80% of the acitve ingredient has already dissoluted from the 

pellets; in this case we cannot talk about sustained/modified release, this could only be 

reached by adding more EC to the system. In such case the adding of more EC would be 

necessary. 

In the case of HCT (BSC IV) with poor dissolution properties, the active ingredient could not 

dissolute quickly from the matrix, but this was not our goal anyway.  
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We can see it from the results that by keeping the formulation parameters on a low level, 

dissolution only begins after a delay period, lag time. 

 

Figure 19.: Scanning electron micrographs of the cross sections of HCT pellets:HCT 1 2000x (a) HCT 

18 2000x (b) 

 

In this case, owing to the smaller mechanical effect (slower spheronozation speed), a much 

looser structure develops; the interior part of the pellets is filled with pores (Fig. 19.). 

Consequently, an inner structure that is based on the protective effect of the EC film can 

develop, and makes dissolution modified. 

By keeping the parameters on a higher level a more compact structure, with less pores 

develops in the inner part of the pellets (Fig. 19a). Owing to the faster liquid feed rate, EC 

cannot spread properly in the mass during extrudation, furthermore due to the bigger 

mechanical impact (spheronization speed), the film gets fractured, since elastic recovery also 

succeeds heres. Nude crystal surfaces can be seen, which meet with the dissolution medium 

earlier (Fig. 19b      ).  So, the protective effect of the EC cannot prevail so much, contrary 

to those pellets, where the spheronization speed was smaller, thus we experience faster 

dissolution in this case. 

crystals 
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In the other two cases, we can see the influencing effect of spheronization time. If the 

spheronization time is shorter, a looser structure develops, and the dissolution of the active 

ingredient starts earlier. Where the spheronization time is longer, the dissolution starts more 

difficulty, but this does not influence the structure to an extent that we should count with a lag 

time. 

We can determine that spheronization time has a decisive influence on the commencement 

and degree of the dissolution.The other important parameter is not other than spheronization 

speed. Spheronization parameters do have a greater influnece in general on dissolution, than 

the parameters playing role in the formation of the wet mass that is to say liquid feed rate 

during extrusion. 

The results draw our attention to the fact that during the preformulation examinations, in the 

case of poor water solubility active ingredients, designing has specific importance. 

 

 

 

5.3. Discussion 

It was confirmed, that the assurance of required pellet shape is problematic due to the elastic 

properties of EC. The use of EC-MCC mixture provides better process yield in comparison 

with the EC-MCC-PEO mixture applied by Mallipeddi et. al, [34, 35] since there is no 

hydrogel formation.  

The amount of the granulation liquid play a key role in the pellet shaping. A high liquid 

addition rate is preferred because of the high water absorption capacity of MCC decreases the 

plasticizing effect of the granulation liquid on the EC particles.  

The solubility of the applied API also has a considerable effect on the pellet properties. 

However, in contrast with the expectations, the amount of the granulation liquid could not be 

decreased in the case of well soluble material. Furthermore, this API affected the liquid 

distribution in the wetted mass negatively at low liquid addition rates, which resulted in a 

nonlinear relationship between the liquid feed rate and aspect ratio. 

Spheronization parameters has a greater influence on dissolution than liquid feed rate. 
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6. FINAL CONCLUSIONS, NOVELTY, PRACTICAL USEFULNESS 

As previously described in Section: Aims, our goal was to study the application of the widely 

used ethylcellulose polymer as film forming- and matrix former agent, and with the use of 

them develop innovative dosage forms with and for combined APIs. 

The important novelty and practical usefulness of this work may be summarized as follows: 

 Different properties of film forming effects were observed among the used film 

forming agents and we have come to the conclusion that EC45 has better 

properties, furthermore we have determined the optimal concentration of 

plasticizer (triethyl citrate).  

 Films with better quality can be prepared from EC45, the prepared films stayed 

stable until approximately 200°C. 

 The results of the FT-IR method supported all the examination data that were 

gained by other examination methods, such as thermostability and the 

incorporation of the plasticizer. 

 PALS studies showed that 1% plasticizer is integrated between the polymer 

chains and has greater breaking strength, more concentration of the plasticizer 

results in larger free volume holes and lower breaking strength. 

 Based on the above results, the composition prepared from EC45 polymer with 

1% triethyl citrate as plasticizer is recommended for making MR coats. This 

composition can be used for diffusion coating to obtain a product with modified 

release.  

 With the use of EC and MCC as matrix former, a monolithical matrix system was 

developed, containing enalapril maleate and hydrochlorothiazide as APIs. We 

could prepare pellets with optimal physico-chemical properties in both cases. If 

we want to produce an extended release system, it is essential to know the correct 

ratio of MCC/EC to achieve monolithic matrix pellets.  

 The results of our experiments show that the parameter values and factors 

influencing extrusion and spheronization depend first of all on the properties of 

the active ingredient with poor aquos solubility, thus preformulation and detailed 
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planning is essential in the case of poor aquos solubility active ingredients; and 

furthermore the use of factorial design is essential for their determination. In the 

case of HCT-pellets, we managed to achive an extended drug release, opposite to 

EM; but in case of EM-pellets, the addition of more EC may achieve the modified 

release. 

 Capsule dosage forms can be formed with the filling of pellets containing EM and 

HCT. (In Hungary there are only tablets with these API combination.) The 

formulation of capsules can be an alternative opportunity for patients with 

dysphagia, who can gulp capsules easier than tablets. 

 The results and observations of the present study provide useful information for 

industrial technologists. 
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Abstract The aim of our research was to investigate the

effect of the length of the polymer chain and the concen-

tration of triethyl citrate used as a plasticizer on the thermal

stability of the film structure in the case of two ethyl cel-

lulose films (EC 10 and EC 45) used for preparing MR

dosage forms. The influence of storage time was studied by

monitoring the changes in the thermoanalytical parameters

and by performing TG–MS examinations. It was found that

the decomposition of the plasticizer from the arising film

structure is retarded and a more homogeneous sample,

therefore a better film can be prepared from EC 45. Mass

spectrography performed as a coupled technique also

proved that the films stayed stable until approximately

200 �C. Based on the above results, the composition pre-

pared from EC 45 polymer with 5% triethyl citrate as

plasticizer is recommended for making MR dosage forms.

Keywords Ethyl cellulose � Triethyl citrate � Free films �
Physical–chemical investigations � MFT �
Glass transition temperature � DSC � TG–MS

Introduction

With the continuous development of biopharmacy and

technology, the possibility arose to make controlled-release

oral-modified release systems and thus to control the rate,

place, or duration of drug release. Accordingly, modified,

sustained, retarded, and periodic drug release can be

achieved, and one possible way to realize this is to use a

properly formed coat (pH-dependent dissolution, diffusion

film, etc.). These solutions require film coats to meet higher

expectations [1].

For this reason, it is indispensable to study the physico-

chemical and thermal behaviour of free films as part of the

preformulation studies for developing a film coat compo-

sition, which is particularly important for the investigation

of the stability of the preparations. Thermoanalysis is a

very well used method in the preformulation tests of solid

dosage forms [2–7].

There are some publications in literature on the ther-

moanalytical examination of free films or film-coated

preparations, e.g. on the study of Eudragit containing

polymethacrylate films [8–11], chitosan films [12], gelatin

and poly(vinyl alcohol) containing films [13], biodegrad-

able films [14–16] or cellulose-based films [9, 10, 17–19].

From amongst cellulose derivatives, EC is an ideal

polymer for coating modified release (MR) preparations,

yet few authors have studied its thermal properties in spite

of the fact that more up-to-date preparations to be admin-

istered once/twice a day are of outstanding importance in

choosing the therapy for reasons of patient compliance.

The aim of our experiments was to perform the prefor-

mulation tests of two EC film forming polymers with dif-

ferent chain lengths and different molecular weights

(Ethocel Standard Premium 10�, Ethocel Standard Pre-

mium 45�, Colorcon Ltd.), and to study the thermal

properties of the free films made from them. As polymer

does not dissolve in water only in an organic solvent, 96%

alcohol was used as a solvent. Polymers are best charac-

terized by the viscosity of their solutions, the viscosity of

Ethocel Standard Premium 10� and Ethocel Standard

Premium 45� is 9–11 and 41–49 cP, respectively.
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Department of Pharmaceutical Technology,
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Viscosities are for 5% solutions measured at 25 �C in an

Ubbelohde viscosimeter, and the solvent is 80% toluene

and 20% alcohol [20]. We studied the effect of the length

of the polymer molecule and the plasticizer used on

important thermal properties such as, e.g. glass transition

temperature, mass loss due to decomposition or thermal

stability.

The polymer film has to form a uniform and continuous

coat on the surface of the core to be coated; therefore, it has

to have proper elasticity. In most of the cases films pre-

pared only from a film forming polymer are rigid and break

easily, so the use of plasticizers is indispensable to increase

the elasticity of the coat. The quantity and quality of

plasticizers can be checked with various physical–chemical

investigations.

It is especially important to know the effect of the

concentration of the plasticizer on the properties of the film

structure, e.g. minimal film forming temperature (MFT),

Tg [21] and the influence of storage time on the physical–

chemical properties so that the polymer film can form an

intact, properly elastic and uniform coat on the surface of

the core. Plasticizers have to be used to ensure the proper

elasticity of the coating. Plasticizers reduce the rigidity of

the film. The molecules of the plasticizer are built in

amongst the polymer chains, thereby preventing their

interaction. Therefore, the polymer chains may shift along

each other and the elasticity of the polymer film will

increase.

With the examination of free films, we aimed to inves-

tigate the effect exerted not only by the chain length of the

film forming polymer used and by the viscosity of its

solution but also by the concentration of the plasticizer

used on the thermal properties of the arising film structure

to find the composition necessary for making films with

optimal physical–chemical properties.

Materials

Ethyl cellulose is a water insoluble cellulose ether which is

prepared from cellulose, it is a partly O-ethylated cellulose,

its ethoxy content (–OC2H5) is between 44 and 51%. Two

different products of Colorcon Ltd. were used for the

experiments, namely, EC labelled Ethocel Standard Pre-

mium 10� and Ethocel Standard Premium 45� (Colorcon

Ltd, Dartford, England), which differed in the viscosity of

their solutions and also in the length of the polymer chains.

As polymer does not dissolve in water only in an organic

solvent, 96% alcohol was used as a solvent.

Plasticizers have the capacity to alter the physical

properties of a polymer film. Triethyl citrate, which was

used as a plasticizer (Ph. Eur.), is the ethyl ester of citric

acid, and it belongs in the group of organic esters.

Methods

Investigation of solutions

For the experiments, alcoholic solutions with 10% polymer

content were prepared without plasticizer and with 1–3–5%

triethyl citrate concentration. An MFT bar apparatus

(Rhopoint Instrumentation Ltd.) was applied to determine

the MFT and the film forming time of a 75-lm thick layer

of solution at different temperatures. We had already

worked out a method for determining film formation time

earlier [19]. Six parallel measurements were performed.

Preparation of free films

The solutions were sprayed on glass and Teflon surfaces

placed in a rotating vessel, the conditions of spraying are

presented in Table 1. The temperature of the drying air was

set according to the MFT values presented in Table 2.

During spraying, we continuously checked the temperature

of the drying air, which was controlled with a laser tem-

perature controller. The properties of the prepared free

films were determined after preparation (fresh) and also

after 2 and 4 weeks of storage (40 �C/50RH%) to monitor

changes.

Thermoanalytical measurements

The thermoanalytical examinations of the materials were

carried out with a Mettler Toledo DSC 821e and TG/DSC1

instrument. During the DSC measurements, the start tem-

perature was -40 �C, the end temperature was 300 �C and

the applied heating rate was 10 �C min-1. Argon atmo-

sphere was used, and nitrogen was used as drying gas.

10 ± 1 mg of sample was measured into aluminium pans

(40 ll). The data were calculated from the average of three

parallel measurements and were evaluated with STARe

Software.

For the TG measurements, the start temperature was

?25 �C, the end temperature was 400 �C, and the applied

heating rate was 10 �C min-1. Nitrogen atmosphere was

used. 10 ± 1 mg of sample was measured into aluminium

pans (100 ll). The data were calculated from the average

Table 1 Parameters of the preparation of free films

Parameter Value

Rotation rate of vessel 22/min

Rate of liquid feeding 5 ml/min

Pressure of spraying air 1.5 bar

Diameter of nozzle 0.8 mm

Temperature of drying air According to MFT
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of three parallel measurements and were evaluated with

STARe Software.

Mass spectrometric examinations

The stability examination of the films was supplemented

with gas analysis. The TG instrument was coupled to a

Thermo Star (Pfeiffer) quadruple mass spectrometer

(maximum 500 amu) for gas analysis. The measurements

were carried out in nitrogen atmosphere. Ions with various

mass numbers were determined with the SEM MID mea-

surement module of the Quadera software. The obtained

results were exported and then plotted in one coordinate

system with the TG curves using the Mettler Toledo Star

software.

Results and discussion

Before the preparation of free films, the minimum film

forming temperature of EC films of various compositions

were determined (see Table 2), so that the temperature of

the drying air during spraying could be set accordingly.

After the evaluation of the data shown in the table, it was

found that the use of plasticizer decreased the value of the

MFT in each case. The increase of triethyl citrate con-

centration decreased the MFT value proportionally to

concentration in the case of EC 10 films and according

to the minimum curve in the case of EC 45 films. The

possible physical–chemical structural changes in the

background of this phenomenon were already reported in

another article [22].

The condition of the formation of a proper film struc-

ture is to know the glass transition temperature of the

film forming polymer, which was determined with a DSC

instrument. Both the structure and the glass transition tem-

perature of the film are influenced greatly by the properties

and concentration of the plasticizers used, therefore their

role was studied.

The DSC curves of EC 10 fresh films containing various

quantities of triethyl citrate are shown in Fig. 1. The glass

transitions are indicated on the curve, and it is clear that the

Tg value decreases with the increase of the plasticizer

concentration.

The numerical data of glass transition are summarized in

Table 3. The data clearly reveal that the Tg value in fresh

films is not yet decreased by 1% of plasticizer but is def-

initely decreased by 3 and 5% of plasticizer.

Table 2 MFT values of EC 10 and EC 45 films

Concentration of plasticizers

0% 1% 3% 5%

EC 10 films MFT (�C) 26.1 20.7 20.3 17.7

EC 45 films MFT (�C) 24.4 13.1 16.8 18.8
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2
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Temperature/°C

Fig. 1 DSC curves of EC 10

fresh films

Table 3 Changes in the Tg values of EC 10 fresh films as a function

of plasticizer concentration

Triethyl citrate concentration

0% 1% 3% 5%

Glass transition temperature

(Tg)/�C (SD)

126.4

(±2.22)

126.9

(±2.74)

118.6

(±7.89)

105.1

(±8.95)
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Figure 2 shows the DSC curves of EC 45 fresh films

containing various quantities of triethyl citrate. The

numerical data of glass transition are summarized in

Table 4. It is clear from the data that the Tg value in fresh

films is increased by 3% plasticizer, but is decreased by 5%

of plasticizer in the case of EC 45 films, which is again due

to structural changes.

The comparison of the glass transition temperature

values of the two film forming polymers shows that the

glass transition temperature of films prepared from the

shorter-chain EC 10 polymer is slightly lower than for

longer-chain EC 45 films. The reason for this is that in the

‘‘looser’’ structure transition can take place at a lower

temperature than in the ‘‘more compact’’ structure formed

by longer-chain polymers. The numerical data also show

that in fresh films containing plasticizer the Tg value could

be decreased by 3% plasticizer in the case of ‘‘looser’’ EC

10 films prepared from shorter-chain polymers, whilst 5%

plasticizer was needed for ‘‘stronger’’ EC 45 films made

from longer-chain polymers.

We also investigated whether the glass transition tem-

perature, which is the most typical feature of the film

structure, changed as a function of storage time for the free

films we prepared.
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Temperature/°C

Fig. 2 DSC curves of EC 45

fresh films

Table 4 Changes in the Tg values of EC 45 fresh films as a function

of plasticizer concentration

Triethyl citrate concentration

0% 1% 3% 5%

Glass transition

temperature (Tg)/�C

(SD)

133.4

(±0.56)

135.9

(±0.23)

141.5

(±0.43)

128.7

(±0.91)

Table 5 Changes in the Tg values of EC 10 and EC 45 films as a function of storage time

Triethyl citrate

concentration

Tg/�C

Storage time

Fresh 2 weeks 4 weeks

EC 10 films 0% (SD) 121.9 (±6.4) 126.9 (±1.58) 107.1 (±2.08)

5% (SD) 108.3 (±7.11) 104.2 (±6.16) 101.1 (±11.1)

EC 45 films 0% (SD) 131.9 (±1.16) 135.7 (±4.85) 132.7 (±1.47)

5% (SD) 127.5 (±0.74) 127.9 (±2.16) 128.5 (±0.16)

Table 6 Mass change of EC 10 and EC 45 films as a function of

plasticizer concentration

Triethyl citrate concentration

0% 1% 3% 5%

Mass decrease/% EC 10 films 1.12 8.94 21.23 30.16

EC 45 films 1.22 10.56 20.48 31.70

Table 7 Mass change of EC 10 and EC 45 films as a function of

plasticizer concentration after 4 weeks of storage

Triethyl citrate concentration

0% 1% 3% 5%

Mass decrease/% EC 10 films 2.59 1.16 21.00 27.03

EC 45 films 0.53 11.51 20.25 28.14
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The time course of the glass transition values is pre-

sented for the films without plasticizer and with the highest

concentration in the case of both film forming polymers

(see Table 5). The data show that EC 10 films underwent

greater change during storage and they were less stable

than EC 45 films, so EC 10 films are less suitable for

forming MR dosage forms.

The thermal stability values of the fresh films were

examined, and the results are summarized in Table 6. The

analysis of the TG curves (Fig. 3) revealed that the two

different film forming polymers are thermally stable, a

mass decrease of only 0.5 and 1.2% could be detected until

100 and 300 �C, respectively. The decomposition process

starts only later and a mass loss of about 10–20–30% can

be detected, depending on the concentration of the plasti-

cizer. There is practically no difference between the ther-

mal stabilities of the two polymers, so mass change

depends only on the plasticizer concentration.

The thermal behaviour of triethyl citrate and of films

containing 5% plasticizer is shown in Fig. 3. The TG

curves show that the decomposition of triethyl citrate starts

as early as over 120 �C and becomes more intensive over

200 �C, and the material is fully decomposed before

reaching 300 �C. The shape of the curves is a proof for

triethyl citrate probably being built in the structure of the

EC film, because its decomposition from the film starts

only later, at about 180–200 �C.

Similarly, the results of the MS examinations are shown

in Fig. 3, based on the analysis of the gases which evolve

from the EC 10 film. Carbon dioxide gas (m/z = 44) starts

to evolve at 200 �C and reaches its highest concentration at

260–270 �C.

The films were also examined after 4 weeks of storage

(see Table 7), and the results were practically the same as

those for the fresh film. The only exception was the EC 10

film containing 1% plasticizer, which is probably due to the

inhomogeneity of the sample.

As a summary of the thermal investigations, it can be

stated that the decomposition of the plasticizer from the

arising film structure is retarded, and the polymer molecule

itself stays stable until 300 �C. A more homogeneous

sample, therefore a better film can be prepared from EC 45,

but mass change depends basically on the material quality

of the plasticizer. Mass spectrography performed as a

coupled technique also proved that the films stayed stable

until approximately 200 �C.

Conclusions

It was found that the glass transition temperature of films

prepared from the shorter-chain EC 10 polymer with a

‘‘looser’’ structure is slightly lower than for longer-chain,

more ‘‘compact’’ EC 45 films. In fresh films containing

plasticizer, the Tg value could be decreased by 3% plasti-

cizer in the case of ‘‘looser’’ EC 10 films prepared from

shorter-chain polymers, while 5% plasticizer was needed

for ‘‘stronger’’ EC 45 films made from longer-chain poly-

mers. EC 45 films were more stable during storage. The

thermal stabilities of the two polymers are approximately

the same.

The thermal investigations revealed that the decompo-

sition of the plasticizer from the arising film structure is

retarded. A more homogeneous sample, therefore a film of

better quality (pore-free, properly elastic) can be prepared

from EC 45. Mass spectrography performed as a coupled

technique also proved that the films stayed stable until

approximately 200 �C. Based on the above results, the

composition prepared from EC 45 polymer with 5% tri-

ethyl citrate as plasticizer is recommended for making MR

coats.
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K. The effect of the solvent on the film-forming parameters of

hydroxypropyl-cellulose. Int J Pharm. 2005;301:192–8.

20. Ethocel Standard Premium� Application Data, Colorcon Ltd.

Dartford, England.

21. Bley O, Siepmann J, Bodmeier R. Importance of glassy-to-rub-

bery state transitions in moisture-protective polymer coatings.

Eur J Pharm Biopharm. 2009;73:146–53.
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The investigation of free films is an essential part of the preformulation studies, because it is necessary to
know, weather the given formulation is suitable to coat the corpus or not. As preformulation, the relation-
ships between surface properties, and the structure of ethylcellulose free films containing different amount
of plasticizer were studied. The structure analysis, and the incorporation of the plasticizer was performed
with the use of FT-IR analysis. The results showed that the films are suitable to produce diffusion coatings.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ethylcellulose is suitable to prepare modified release (MR) coat-
ings. It has a great significance in the therapy, where the patient
compliance could be considerably improved with the use of prepara-
tions administered once/twice daily [1]. The improvements of the
effectiveness of the therapy and the increasing of patient compliance
have an increasing importance in the last decades. This necessitates
to control the rate, place, or duration of drug release. One of the
many possibilities is the use of coated dosage forms, however to
achieve the required effect (pH-dependent dissolution, diffusion
film, etc.) is necessary to use a properly formed coat. These solutions
require film coats to meet higher expectations.

The polymer film has to form a uniform and continuous coat on the
surface of the core to be coated; which is properly based on the proper-
ties of the polymer. However, the special requirements, or the achieve-
ment of the best performance or the need to decrease the costs often
necessitates the modification of the basic properties of films. Most
of the properties such as the minimal film forming temperature, the
surface characteristics and the mechanical properties can be modified
with the use of different plasticizers [2–5]. These molecules are built
in amongst the polymer chains, thereby preventing their interaction.
Therefore, the polymer chains may shift along each other and the

elasticity will increase which will reduce the rigidity of the film.
Moreover, the functional groups of the plasticizer and the interac-
tions between the materials will affect the surface characteristics
and adhesive properties of the films [5,6]. So it is essential to know
the effect of the concentration of the plasticizer on the properties of
the film structure, which is particularly important for the investigation
of the composition and process parameters of the preparations, in
particular, because of the difference of the plasticizer uptake in dif-
ferent systems [7,8]. There are several methods for the prediction
of the polymer–plasticizer interactions [9], but the real microstruc-
ture and the incorporated amount of the plasticizer could be studied
with the use of Fourier transform infrared (FT-IR) spectroscopy [10–16].

The aim of our research was to investigate the effect of the length
of the polymer chain and the concentration of triethyl citrate used as
a plasticizer on the thermal stability of the film structure in the case of
two ethylcellulosefilms (EC10 and EC45) used for preparingMR dosage
forms.

2. Materials and methods

2.1. Materials

Two grades of ethylcellulose (Ethocel standard premium 10 and
Ethocel standard premium 45, Colorcon, UK) were used. The poly-
mers were dissolved in 96% ethanol (Merck, Hungary). The films
were plasticized with triethyl citrate (Ph. Eur.).
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2.2. Preparation

10% alcoholic solution of the ethylcellulose polymers were mixed
with magnetic stirrer for 1 h without plasticizer and after the addition
of 1, 3 or 5% of triethyl citrate, respectively. The solutions were sprayed
onto Teflon and glass surfaces in a conventional coating pan. The
temperature of the drying air was set in accordance to the minimal
film forming temperature (MFT) of the films (Table 1). The process
parameters of the spraying are given in Table 2.

2.3. Minimal film forming temperature

For the experiments alcoholic solutions with 10% polymer content
were prepared without plasticizer and with 1–3–5% triethyl citrate con-
centration. An MFT bar apparatus (Rhopoint Instrumentation Ltd.) was
applied to determine theMFT and the film forming time of a 75 μm-thick
layer of solution at different temperatures. The results were calculated
as an average of six parallel measurements.

2.4. Measurement of the contact wetting angle

Contact wetting angle was examined with a Dataphysics OCA-20
equipment, it was determined by means of drop contour analysis. The
SCA-20 software belonging to the equipment can be used for calculating
the surface/interfacial tension (γ) and the surface free energy of solid
materials according to Wu's theory, which gives the dispersion and
polar components of surface free energy, too. Contact wetting angle
was determined in fresh films and in films after storage with sessile
drop method. The liquids used for contact-angle measurements were
water and diiodomethane/methylene iodide.

2.5. Measurement with FT-IR spectroscopy

A Bio-Rad Digilab Division FTS65A/896 FT-IR Spectrometer with a
Harrick's Meridian™ SplitPea Single Reflection Diamond ATR Accessory
was used to record the spectra. The measurements were performed in
the range of 4000–400 cm−1 at 4 cm−1 optical resolution and 256
scans were taken to achieve good signal to noise ratio. Three spectra
were averaged for each composition, measured at three different places
of the same film.

3. Results and discussion

The results showed that there are considerable differences in the
behaviour according to the chain length of the applied polymers. For
example the film integrity and the mechanical properties significantly
improve with the increasing chain length. However, longer chains
resulted in higher lipophilicity, probably due to the relatively increased
proportion of the ethyl ether groups. The incorporation of triethyl
citrate into the structurewill affect not only themechanical and thermal
properties but also the surface characteristics of films (Table 3).

The results of the surface energy measurements suggest that the
kinetics and probably the mechanism, of incorporation of the plasticizer
differ depending on the chain length of the polymer. A significant change
can be observed in the surface properties of films after the addition of
1% of plasticizer. However its effect is stabilized after this amount in the

case of EC10 films, while in the case of EC45 the stabilization is visible
only after 3%. The properties of the fully plasticized films are statistically
the same (p>0.05), which suggest that the plasticizer binds differently
to the different types of EC-s. To clarify this phenomenon the structure
of the films was investigated by FT-IR spectrometer. Better mechanical
properties of the EC45 films provided better quality for the spectra, so
the results are explained according to these data. The spectra of the
blank and plasticized films have generally the same shape (Fig. 1), no
significant shift of peaks can be observed, only a small widening of the
symmetric and asymmetric valence vibration of the ether bonds are
present in the 1000–1200 cm−1 wavenumber range. This suggests that
the incorporation of plasticizer is based on secondary bindings.

The presence of the plasticizer can be clearly identified based on the
bands of the ester groups. The most intensive peaks at 1750 cm−1,
belong to the C_O valence vibrations. They are clearly present in the
original FT-IR spectra. The signs of ternary OH groups at 1200 cm−1

and the COC vibration of the ester groups are overlapped with the
other ether vibration signals are only can be identified in the subtracted
spectra (Fig 2.).

The peaks in the subtracted spectra of EC45 films are significantly in-
creased with increasing of the amount of plasticizer from 1 to 3%, but
after than a slight decrease can be observed,which is in good agreement
with the surface energy measurements and also with the change of the
minimal film forming temperature of the samples. This suggests that
some of the main characteristics of the films are determined by the
bounded fraction of the plasticizer. The slight decrease of the bounded
fraction with increasing triethyl citrate amount probably can be due to
themass effect, whichmeans that the increasing amount of thematerial
will change the preferences of the intermolecular bindings, and will
hinder the incorporation of the plasticizer into the structure of the poly-
mer film. Meanwhile, there was no sign of inhomogeneity inside the
film, the unbounded fraction of the plasticizer is probably evaporated/
flew out from the system with the small droplets of the solvent. These
particles could be presented on the surface of the coating pan, but no
measurements were performed to the detection of the plasticizer in
the pollution.

4. Conclusions

The structure of films and the incorporation of plasticizer can be
followed with the use of FT-IR. The results support that only a limited
amount of plasticizer can be incorporated with physico-chemical
bindings into the structure of polymer films and this proportion will
basically determine some of the main properties of the preparations.

Table 1
Minimal film forming temperature of the samples.

Plasticizer Minimal film forming temperature (°C)

EC10 EC45

0% 26.1 24.4
1% 20.7 13.1
3% 20.3 16.8
5% 17.7 18.8

Table 2
Parameters of the preparation of free films.

Parameter Value

Rotation rate of vessel 22/min
Rate of liquid feeding 5 ml/min
Pressure of spraying air 1.5 bar
Diameter of nozzle 0.8 mm

Table 3
Surface properties of EC films.

Plasticizer γ (mN/m) Polarity (%)

EC10 EC45 EC10 EC45

0% 56.17
(±0.60)

49.54
(±0.96)

28.45
(±0.90)

22.22
(±1.68)

1% 53.42
(±0.55)

49.36
(±1.68)

26.13
(±0.68)

18.13
(±2.38)

3% 53.92
(±1.09)

54.71
(±1.03)

29.95
(±0.98)

30.31
(±1.21)

5% 53.59
(±0.89)

53.48
(±1.00)

28.66
(±0.98)

27.54
(±1.06)
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The analysis of the film structure can explain some unexpected dis-
turbances in the film properties and can help in the development of
suitable preparations.
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The distribution of the plasticizer triethyl citrate between the chains of the polymer ethylcellulose was deter-
mined in order to explain the mechanical properties. A knowledge of these properties is indispensable for
preformulation studies. As preformulation, the relationship between themechanical properties and the distribu-
tion of the plasticizerwas studied. The distributionwas investigatedwith positron annihilation lifetime spectros-
copy, and the mechanical properties with breaking hardness tests. Two kinds of ethylcellulose were used. The
best film-former with plasticizer was chosen with the optimal concentration. Selection of the optimum type
and concentration of the plasticizer is essential in the formulation of pellets and coated dosage forms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Film coating is a method widely used for the development of solid
dosage forms. In the process of film coating, a thin stable polymer film
coat is created on the surface of a solid dosage form, such as tablets, cap-
sules, pellets or crystals.

The numerous polymers available for coating ensure different disso-
lution profiles. Cellulose esters, cellulose acetatephthalate and hydro-
xypropylmethylcellulose phthalate are enteric polymers used to form
colonic drug delivery systems [1]. Methylcellulose, hydroxyethyl-
cellulose and some polymethacrylate products (e.g. Eudragit® E) are
polymers that dissolve in the gastric juice [2]. We earlier studied
Eudragit® L 30D-55, an aqueous dispersion of anionic polymers with
methacrylic acid functional groups [3].

Acryl-Eze, an aqueous system, which contains a 1:1 copolymer of
methacrylic acid and methyl methacrylate, is often used for the enteric
coating of dosage forms [4–6].

In the present study, ethylcellulose was used as film former.
Ethylcellulose is an ideal polymer for the formation of products allowing
modified drug release. It is insoluble at any pH that occurs in organism,
but in the presence of the gastric juice it undergoes swelling. It is then
permeable for water and permits extended modified drug release

[7–10]. This makes it suitable for improved patient compliance. Only a
small number of ethylcellulose polymers have been approved for gener-
al pharmaceutical application and are used in extended release solid
dosage formulations. Several types of such ethylcellulose exist, e.g.
Ethocel 4, Ethocel 10 and Ethocel 45, which differ in the length of the
polymer chains, the rate of dissolution, and the viscosity of their
solution.

The purpose of the polymer film is to form a uniform and continuous
coat on the surface of the core, and it must therefore have appropriate
elasticity. In most cases, films prepared from a film-forming polymer
alone are rigid and break easily, and the use of a plasticizer is therefore
indispensable to increase the elasticity of the coat. The quantity and
quality of plasticizers can be determined by means of various physical–
chemical investigations [11].

Before thefilm coating, preformulation studies are necessary in order
to study the physicochemical and thermal properties of the free films,
e.g. the glass-transition temperature, the minimum film-forming tem-
perature, the surface properties, the breaking strength and deformability
and the structure of the film-former polymer. The thermal behaviour of
ethylcellulose free filmswas studied earlier [12]. Ethocel 45 films proved
to be more stable than Ethocel 10 films during storage. In our previous
work [13], we made use of FT-IR spectroscopy, to study the structure
of free films containing ethylcellulose, and the effects of the plasticizer
on the structure and surface characteristics of the films. The results indi-
cated that only a limited amount of plasticizer can be incorporated into
the structure of the polymer film through physical–chemical binding,

Microchemical Journal 115 (2014) 47–50

⁎ Corresponding author. Tel.: +36 62545576; fax: +36 62545571.
E-mail address: geza.regdon@pharm.u-szeged.hu (G. Regdon).

http://dx.doi.org/10.1016/j.microc.2014.02.007
0026-265X/© 2014 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Microchemical Journal

j ourna l homepage: www.e lsev ie r .com/ locate /mic roc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.microc.2014.02.007&domain=pdf
http://dx.doi.org/10.1016/j.microc.2014.02.007
mailto:geza.regdon@pharm.u-szeged.hu
http://dx.doi.org/10.1016/j.microc.2014.02.007
http://www.sciencedirect.com/science/journal/0026265X


the proportion basically determining some of the main properties of the
product. The mechanical properties of the resulting film depend on the
distribution of the plasticizer. It is necessary to know its breaking
strength, because thefilm is exposed to intensemechanical stress during
the technological process.

In the presentwork, the distribution of the plasticizer and the supra-
molecular structure of free films were studied bymeans of positron an-
nihilation lifetime spectroscopy (PALS), which furnishes direct
information about the dimensions and contents of free-volume holes
in amorphousmaterials. Themagnitude of the free volume can bemea-
sured with the aid of PALS as electron density changes in the lifetime of
the ortho-positron depend on the free volume of the polymer [14–16].
Thismethod ismost commonly applied to studypolymers. Investigation
of cellulose-based polymers by PALS has revealed that substitution on
cellulose has little effect on the lifetime, but a major effect on the prob-
ability of formation of the ortho-positron (o-Ps) [17,18].

2. Experimental

Two different forms of ethylcellulose were used in the experiments:
Ethocel Standard Premium 10 and Ethocel Standard Premium 45
(Colorcon Ltd, Dartford, England). Triethyl citrate was used as a plasti-
cizer (Ph. Eur.).

2.1. Preparation of free films

The free films were prepared by spraying, as described previously
[13]. The temperature of the drying air was set at the minimum film-
forming temperature. The process parameters of the spraying are
given in Table 1.

2.2. Positron lifetime measurements

PALS measures the time for which a positron can exist in a material.
This lifetime depends on the properties of the particular material. The
method is based on the fact that electrons and positrons annihilate
each other to form photons. The properties of the resulting radiation
correspond exactly to the relevant properties of the electron and the
positron preceding the annihilation. PALS is an important method in
the structural characterization of polymers, and its role is currently in-
creasing in pharmaceutical technology [19–21]. Together with other
properties, this method measures the size distribution of free-volume
holes in polymers.

The use of positrons in polymers is based on the formation of the
positronium, a bound state of an electron and a positron, in which the
role of the positron resembles that of the proton in a hydrogen atom.
The lifetime of the positronium before its annihilation is determined
by the properties of thematerial in which it is formed. The exact depen-
dence can be approximated by means of a simple model. The free-
volume model regards the free volume in polymers as formed of
uniform spherical voids [21]. Although the model is simple, it provides
a possibility to derive a connection between the measured lifetime
and the size distribution of the free-volume holes:

τ ¼ 1
2

1− R
Rþ ΔR

þ 1
2π

sin
2πR

Rþ ΔR

� �� �−1

where τ is the lifetime of the ortho-positronium in nanoseconds, R is the
radius of the voids in Angströms, and ΔR is a constant. This formula in-
dicates that τ increases with R. On a molecular scale, the R values corre-
spond well with the BET and neutron scattering results.

The positron source applied for the measurements was made of
carrier-free 22NaCl with an activity of 105 Bq, sealed between two very
thin Kapton foils. The source was placed between two pieces of poly-
meric mixture previously treated identically. Positron lifetime spectra
were recorded by a conventional fast–fast coincidence system based
on BaF2/XP2020Q detectors and Ortec electronics.

Spectra were recorded in 4096 channels of a computer-basedmulti-
channel analyser card (Nucleus). The time resolution of the spectrome-
ter was ~220 ps. Each spectrum related to 1.5 × 106 annihilation events.
Samples were measured repeatedly and the data given below are aver-
ages of the repeated measurements.

2.3. Mechanical properties of free films

The breaking strength of the films was tested with an indentation
hardness tester. This device and the software were developed in our in-
stitute. The tester contains a special specimen holder and a jowl. The
loading indicates stress in the sample and it can deform. These devices
are connected with a computer through an interface. Thus, not only
can the ultimate deformation force be measured, but also the process
(force–time and force–displacement curves) can be followed. The spec-
imen, and hence the free film is located horizontally in the holder and
the jowl moves vertically. The measuring range was 0–200 N, the
speed of the stamp was 20 mm/min, the sampling rate was 50 Hz, the
output was 0–5 V, and the sensitivity was ±0.1 digit. The sensor was
a Unicell force-measuring instrument, calibrated with the C9B 20 kN
cell.

3. Results

3.1. Positron lifetime measurement

ThePALS results revealed that therewas no significant difference be-
tween the two types of ethylcellulose samples (Fig. 1), which were in-
fluenced very similarly by the plasticizer. A significant difference was
observed only at the highest concentration of the plasticizer.

The positron lifetime initially decreased slightly at the lowest plasti-
cizer concentration. This is a consequence of the distribution of the plas-
ticizer molecules between the polymer chains, filling the free-volume
holes, occupying sites formerly available for the positronium atoms,
providing a higher electron density. The lifetime of the positronium

Table 1
Process parameters for preparation of free films.

Parameter Value

Rotation rate of vessel (rpm) 22
Rate of liquid feeding (ml/min) 5
Pressure of spraying air (bar) 1.5
Diameter of nozzle (mm) 0.8

Fig. 1. Positron lifetime plotted against concentration.
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atoms therefore decreases. The structure of the film was changed as a
result of the admixture of the plasticizer. At higher concentrations, the
plasticizer initiated a large-scale rearrangement of the polymer chains,
leading to the formation of larger free-volume holes, as indicated by
the longer lifetimes.

It should be emphasised that the PALS data did not indicate any
major structural change up to a plasticizer concentration of 1%. The
large-scale rearrangement of the polymer chains necessitated a higher
concentration.

3.2. Mechanical properties

The pellet deformation process was evaluated by determining the
breaking hardness and studying the deformation curve. The breaking
strength results are presented in Tables 2 and 3. The addition of 1% plas-
ticizer to Ethocel 10 resulted in a 2-fold higher breaking strength of the

film. The addition of larger amounts of the plasticizer resulted in a de-
crease in the breaking hardness. The reason for this is the influence of
the moisture content of the plasticizer on the elasticity of the film.

The addition of 1% plasticizer to Ethocel 45 resulted in a 3-fold higher
breaking strength of the film.

The breaking strengths of the two kinds of ethylcellulose films are
compared in Fig. 2. It may be seen that the breaking strengths of the
films prepared from the shorter-chain Ethocel 10 polymer with its loos-
er structure were lower than those for the longer-chain, more compact
Ethocel 45 films. Ethocel 45 formed a significantly stronger structure.

The addition of 3% plasticizer resulted in a small increase in the
breaking strength, whereas higher concentrations of the plasticizer
caused decreases in the breaking strength.

The changes in the breaking strength as a function of time are shown
in Tables 2 and 3. In the case of the Ethocel 45film the breaking strength
was highest after 1 week at all plasticizer levels. In contrast, the case of
Ethocel 10film, a similar effectwas found only at 1% plasticizer. The rea-
son for this is the loss of themoisture content from the system. The rate
of evaporation of moisture depends on the film structure.

The breaking strength of the Ethocel 45 film after 1 week varied lin-
earlywith timewith a very good correlation, except in the case of the 3%
plasticizer (Table 4).

Fig. 3 illustrates the above effects for the Ethocel 45 film containing
1% plasticizer, with R2 = 0.9998.

The Ethocel 10 films exhibited a similar linear property only at a low
concentration of the plasticizer. The reason for this is that the breaking
strength depends on themoisture content of the system and the length
of the polymer chains.

Study of the deformation curvewith the aid of our software revealed
that the loading did not cause deformation of the film (Fig. 4, section a).
After a very short viscoelastic deformation, when the breaking strength
did not change significantly, the breaking curve displayed an elastic ten-
dency (section b). This was followed by a further elastic section (section
c), at the end of which breaking occurred.

Table 2
Breaking strength of Ethocel 10 free films.

Plasticizer concentration

0% 1% 3% 5%

Storage conditions Breaking strength (N)
Fresh films 5.66

(±1.55)
9.62
(±2.58)

4.68
(±1.00)

4.3
(±1.31)

After 1 week 5.68
(±1.83)

9.46
(±2.56)

4.38
(±1.15)

4.18
(±0.83)

After 2 weeks 5.28
(±1.99)

9.41
(±2.63)

4.82
(±1.66)

4.81
(±1.43)

After 4 weeks 5.02
(±1.52)

9.12
(±2.47)

4.9
(±1.6)

4.45
(±0.69)

Table 3
Breaking strength of Ethocel 45 free films.

Plasticizer concentration

0% 1% 3% 5%

Storage conditions Breaking strength (N)
Fresh films 10.47

(±1.94)
31.06
(±1.32)

12.73
(±2.14)

8.46
(±1.5)

After 1 week 11.04
(±2.58)

34.34
(±3.49)

13.63
(±3.06)

8.74
(±1.82)

After 2 weeks 10.89
(±2.96)

32.99
(±3.09)

12.1
(±1.82)

8.63
(±1.64)

After 4 weeks 10.37
(±2.47)

30.13
(±3.31)

12.59
(±2.11)

8.51
(±0.71)

Fig. 2. Breaking strength of Ethocel 10 and Ethocel 45 free films.

Table 4
Fitted results of change in breaking strength in time with the following model: F(t) =
F0 + at.

Plasticizer concentration F0 a R2

0% 11.300 −0.2286 0.9860
1% 35.77 −1.41 0.9998
5% 8.80 −0.0743 0.9730

Fig. 3. Fitted hardness curve of Ethocel 45 films with 1% plasticizer.
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4. Conclusions

Themechanical properties of ethylcellulose polymers and the effects
of the incorporation of a plasticizer agreed with our expectations and
former results. PALS studies demonstrated that up to a concentration
of ~1% the incorporated plasticizer is integrated between the polymer
chains. At higher concentrations, the large-scale rearrangement of the
polymer chains begins, resulting in larger free-volume holes and
lower breaking strengths. The mechanical properties were clearly re-
vealed to depend on the concentration of the plasticizer. These results
allow the choice of the better film-former polymer: Ethocel 45 with its
longer chains. Themoisture content of the 1%plasticizer proved suitable
for these ethylcellulose films. After a storage time of 1 week, the break-
ing strength decreased linearly, the film losing its moisture content
continuously.

The ideal concentration of the plasticizer in these film-formers was
1%. This concentration resulted in strong, mechanically resistant, stable
films. This composition can be used for diffusion coating to obtain a
product with modified release.
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