University of Szeged

Doctoral School of Pharmaceutical Sciences

Educational Program:	Pharmaceutical Chemistry and Drug Research	
Programme director:	Prof. Dr. Ferenc Fülöp	
Institute:	Institute of Pharmaceutical Chemistry	
Supervisors:	Prof. Dr. Ferenc Fülöp	
	Dr. István Szatmári	

Judit Sas

Selective *N*-alkylation/ α -arylation of *N*-heterocycles

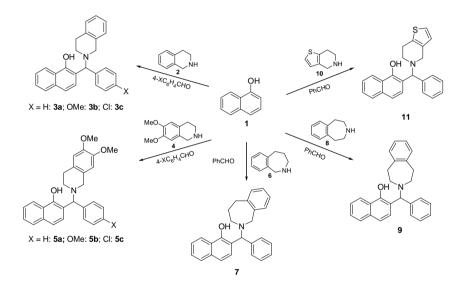
Final examination committee:

Head:	Dr. László Lázár
Members:	Prof. Dr. György Dombi
	Dr. Pál Szabó

Reviewer committee:

Head:	Prof. Dr. Judit Hohmann
Reviewers:	Prof. Dr. Antal Csámpai
	Dr. Éva Frank
Members:	Dr. Dezső Csupor
	Dr. Attila Hunyadi

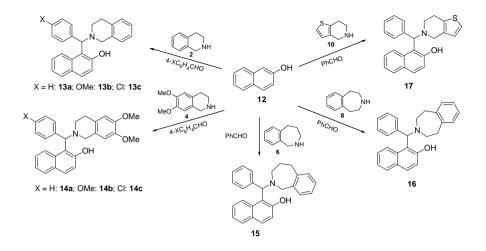
A. INTRODUCTION AND AIMS


The Mannich reaction is an important reaction involving C–C bond formation that is widely used in the syntheses of secondary and tertiary amine derivatives and as a key step in the syntheses of many bioactive molecules and complex natural products. More than one hundred years ago, Mario Betti reported a straightforward synthesis of 1-(α -aminobenzyl)-2-naphthol (the Betti base). The procedure can be interpreted as a modified Mannich reaction (mMR) and the importance of the aminonaphthols prepared via mMRs has recently increased because they have proved to be excellent model compounds for study of the α -arylation/*N*-alkylation of cyclic amines.

The primary aim of my PhD work was to investigate the application of 1,2,3,4tetrahydroisoquinoline and analogous secondary amines such as 2,3,4,5-tetrahydro-1*H*-benz[*c*]azepine, 4,5,6,7-tetrahydrothieno[3,2-*c*]pyridine and 2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole in mMRs. Since recent investigations reflected that by starting from simple cyclic amines both α -arylated and *N*-alkylated products can be formed, a further aim was a systematic study of the mMR starting from tetrahydroisoquinoline, tetrahydrobenzazepine, tetrahydrothieno[3,2-*c*]pyridine or 2,3,4,9-tetrahydropyrido[3,4-*b*]indole by using 1- or 2-naphthol as nucleophile in the presence of benzaldehyde.

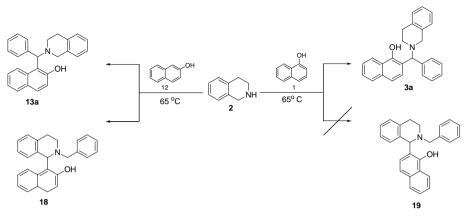
The reactions between electron-rich aromatic compounds such as 1- or 2-naphthol and quinolinol or isoquinolinol with 3,4-dihydroisoquinoline, first described by our group, can be interpreted as the aza-Friedel–Crafts alkylation of electron-rich aromatic compounds with cyclic amines containing a polarized double bond (C=N). The synthesis is mostly restricted to the use of 3,4-dihydroisoquinoline as cyclic imine, and the aim of my PhD work was therefore to investigate the possibility of application of other partially saturated cyclic amines such as 4,6-dihydro-3*H*benz[*c*]azepine, 6,7-dihydrothieno[2,3-*c*]pyridine and 4,9-dihydro-3*H*- β -carboline. Another goal was to test the scope and limitations of this aza-Friedel–Crafts reaction, starting from the above-mentioned cyclic imines and indole and its

B. RESULTS AND DISCUSSION


Selective *N*-alkylations of tetrahydroisoquinolines, tetrahydrobenz[*d*]azepine, tetrahydrobenz[*c*]azepine and tetrahydrothieno[3,2-*c*]pyridine were achieved by using 1-naphthol and aromatic aldehydes under neat conditions to obtain tertiary aminonaphthols 3a-c, 5a-c, 7, 9 and 11 (Scheme 1).

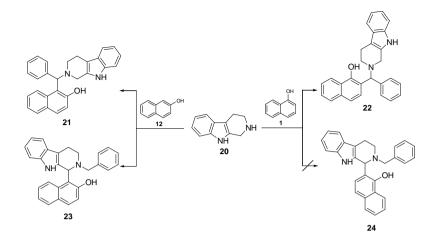
Scheme 1

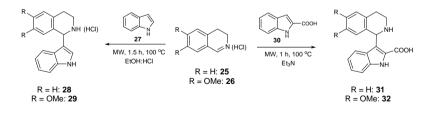
The reactions were extended to the synthesis of 1-aminoalkylated 2-naphthol derivatives (**13a-c**, **14a-c**, **15-17**) by mixing 2-naphthol, aromatic aldehydes and the corresponding cyclic amines **2**, **4**, **6**, **8** and **10** according to Scheme 2.


The yields were found to be good with the exception of 13a, where it was only 46%.

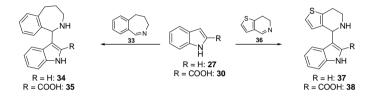
Scheme 2

We conceived that the moderate yield for **13a** can be explained by parallel *N*-alkylation and redox α -arylation, and to prove this a systematic investigation was performed with the reaction of 2-naphthol with 1,2,3,4-tetrahydroisoquinoline in the presence of benzaldehyde at 65 °C. The reaction was followed by comparing the characteristic singlets from the ¹H NMR, and it was found that the ratio of **13a:18** is 4:1 during the reaction time (10 h) is 4:1. In contrast, the reaction of 1-naphthol with 1,2,3,4-tetrahydroisoquinoline led to the formation of the *N*-alkylated compound (**3a**) as a single product (Scheme 3).


Starting from 2,3,4,5-tetrahydro-1*H*-benz[c]azepine, benzaldehyde and 2- or 1-naphthol at 65 °C, formation of the *N*-alkylated product was assumed in each case.


The reaction of 2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole as secondary cyclic amine with 2- or 1-naphthol as nucleophile in the presence of benzaldehyde led to the formation of 1-((3,4-dihydro-1*H*-pyrido[3,4-*b*]indol-2(9*H*)-yl)(phenyl)methyl)naphthalen-2-ol (21) and 2-((3,4-dihydro-1*H*-pyrido[3,4-*b*]indol-2(9*H*)-yl)(phenyl)methyl)naphthalen-1-ol (22) (Scheme 4).

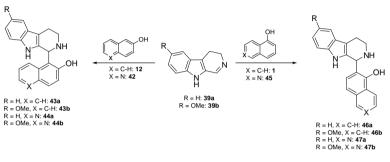
The reaction of 2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole with 1-naphthol as nucleophile in the presence of benzaldehyde proved to be regioselective for the formation of the *N*alkylated derivative **22** as a single product. With 2-naphthol as nucleophile, both of the possible *N*-alkylated and α -arylated products **21** and **23** were detected; the ratio was found to depend on the temperature and the heating technique (Scheme 4).


Scheme 4

3. A simple synthesis of 3-(1,2,3,4-tetrahydroisoquinolin-1-yl)indole (28) and 3-(6,7dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)indole (29) has been developed, involving the reaction of 3,4-dihydroisoquinoline or 6,7-dimethoxy-3,4-dihydroisoquinoline and indole. The reaction was tested by starting from the latter cyclic imines and indole-2carboxylic acid. The new γ -amino acids (31, 32) prepared in this way were obtained in good yields (Scheme 5).


Scheme 5

4. The synthetic applicability of this aza-Friedel–Crafts reaction was extended to the preparation of 3-(2,3,4,5-tetrahydro-1*H*-benz[*c*]azepin-1-yl)indole (34), 3-(4,5,6,7-tetrahydrothieno[3,2-*c*]pyridin-4-yl)indole (37), 3-(2,3,4,5-tetrahydro-1*H*-benz[*c*]azepin-1-yl)indole-2-carboxylic acid (35) and 3-(4,5,6,7-tetrahydrothieno[3,2-*c*]pyridin-4-yl)indole-2-carboxylic acid (38) from cyclic imines such as 4,6-dihydro-3*H*-benz[*c*]azepine and 6,7-dihydrothieno[2,3-*c*]pyridine. All the reactions could be accelerated dramatically by using microwave irradiation (Scheme 6).


Scheme 6

4,9-Dihydro-3*H*-β-carboline and 6-methoxy-4,9-dihydro-3*H*-β-carboline were subjected to catalyst-free one-pot α-arylation with indole or indole-2-carboxylic acid to prepare 1-(1*H*-indol-3-yl)-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole (40a), 1-(1*H*-indol-3-yl)-6-methoxy-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole (40b), 3-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)-1*H*-indole-2-carboxylic acid (41a) and 3-(6-methoxy-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)-1*H*-indole-2-carboxylic acid (41b) in good yields. The reactions were performed under neat conditions, using microwave agitation (Scheme 7).

Scheme 7

6. A simple synthesis of 1-hydroxynaphthyl-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indoles (43a, 43b, 46a and 46b) has been developed, involving the reaction of 39a, 39b and 2- or 1-naphthol. The synthetic pathway was extended to the preparation of 5-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)quinolin-6-ol and 6-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)quinolin-6-ol and 6-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)guinolin-6-ol and 6-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl]isoquinolin-5-ol derivatives (44a, 44b, 47a and 47b) from *N*-containing naphthol analogues (6-quinolinol or 5-isoquinolinol). The yields of the reactions were improved by the use of microwave irradiation, and the reactions were accelerated (Scheme 8).

Scheme 8

C. PUBLICATIONS

- I. István Szatmári, Judit Sas, Ferenc Fülöp Catalyst-free coupling of indole derivatives with 3,4-dihydroisoquinoline and related compounds *Tetrahedron Lett.*, 2013, 54, 5069-5071. IF: 2.391
- II. Judit Sas, István Szatmári, Ferenc Fülöp Selective N-alkylation of isoquinolines, benzazepines and thienopyridines with aromatic aldehydes and naphthols *Tetrahedron*, 2015, 71, 7216-7221. IF: 2.641
- III. Judit Sas, István Szatmári, Ferenc Fülöp One-pot α-arylation of β-carboline with indole and naphthol derivatives *Curr. Org. Synth.*, in press
 IF: 2.117
- IV. István Szatmári, Judit Sas, Ferenc Fülöp C-3 functionalization of indole derivatives with isoquinolines *Curr. Org. Chem.*, submitted

D. CONFERENCE LECTURES

V. Sas Judit

Új indolilizokinolin- és indolilbenzazepin-származékok szintézise XXXV. Kémiai Előadói Napok Szeged, 2012. október 29-31. Absztr.: 205.

VI. Sas Judit, Szatmári István, Ferenc Fülöp

Új indolilizokinolin-, indolilbenzazepin- és indoliltienopiridin-származékok szintézise MTA Heterociklusos és Elemorganikus Kémiai Munkabizottság ülése

MTA Heterociklusos és Elemorganikus Kémiai Munkabizottság ülése Balatonszemes, 2013. június 5-7.

- VII. Judit Sas, István Szatmári and Ferenc Fülöp Catalyst-free coupling of indole derivatives with 3,4-dihydroisoquinoline and related compounds
 15th Blue Danube Symposium on Heterocyclic Chemistry
 1-5th September, 2013 Olomouc, Czech Republic, Abstr.: PO-1
- VIII. Judit Sas, István Szatmári and Ferenc Fülöp Catalyst-free coupling of partially unsaturated β-carboline with indole and naphthol derivatives
 15th Tetrahedron Symposium, Challenges in Bioorganic and Organic Medicinal Chemistry
 24-27th June, 2014 London, UK, Abstr.: P2.35