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calmodulin; CD11b/c: cluster of differentiation 11b/c, the rat CR3 complement receptor; 
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GAPDH: glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12); GFAP: glial fibrillar 

acidic protein; HLA: human leukocyte antigens; Iba1: ionized calcium binding adaptor 

molecule 1; Ki67: proliferation marker antigen identified by the monoclonal antibody Ki67; 

LPS: bacterial lipopolysaccharide; MHC: major histocompatibility complex; mRNA: 

messenger ribonucleic acid; PBS: phosphate-buffered saline; RT: room temperature; S.D.: 

standard deviation; S.E.M.: standard error of mean; subDIV: subcloned days in vitro; TBS: 

Tris-buffered saline; TFP: trifluoperazine (10-[3-(4-methylpiperazin-1-yl)propyl]-2-

trifluoromethyl-10H-phenothiazine dihydrochloride); TI: transformation index 
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SUMMARY 

Selected morphological, immunocytochemical and functional aspects of various microglial 

cell populations were characterized in mixed neuronal/glial and pure microglial cultures. The 

mixed primary cortical cultures were prepared from the forebrains of embryonic (E18) rats 

and maintained for up to 28 days (DIV1–DIV28) using routine culturing techniques. The pure 

microglial cells were subcloned (subDIV4) from the mixed primary cultures and maintained 

for up to 7 days (DIV7). During culturing, expansion of the microglial cells was observed, as 

evidenced by quantitative assessment of selected monocyte/macrophage/microglial cell-

specific markers (HLA DP, DQ, DR, CD11b/c and Iba1) via immunocyto- and histochemistry 

and Western blot analysis. The Iba1 immunoreactivity in Western blots steadily increased 

about 750-fold, and the number of Iba1-immunoreactive cells rose at least 67-fold between 

DIV1 and DIV28. Morphometric analysis on binary (digital) silhouettes of the microglia 

revealed their evolving morphology during culturing. Microglial cells were mainly ameboid in 

the early stages of in vitro differentiation, while mixed populations of ameboid and ramified 

cell morphologies were characteristic of older cultures as the average transformation index 

(TI) increased from 1.96 (DIV1) to 15.17 (DIV28). Multiple immunofluorescence labeling of 

selected biomarkers revealed different microglial phenotypes during culturing. For example, 

while HLA DP, DQ, DR immunoreactivity was present exclusively in ameboid microglia (TI 

< 3) between DIV1 and DIV10, CD11b/c- and Iba1-positive microglial cells were moderately 

(TI < 13) and progressively (TI < 81) more ramified, respectively, and always present 

throughout culturing. Regardless of the age of the cultures, proliferating microglia were Ki67-

positive and characterized by low TI values (TI < 3). The microglial function was assessed by 

an in vitro phagocytosis assay. Unstimulated microglia with low TI values were significantly 

more active in phagocytosing fluorescent microspheres than the ramified forms. 

The roles of calmodulin (CaM), a multifunctional intracellular calcium receptor protein, 

as concerns selected morphological and functional characteristics of pure microglial cells 

were investigated through use of the CaM antagonists calmidazolium (CALMID) and 

trifluoperazine (TFP). The intracellular localization of the CaM protein relative to phalloidin, 

a bicyclic heptapeptide that binds only to filamentous actin, and the ionized calcium-binding 

adaptor molecule 1 (Iba1), a microglia-specific actin-binding protein, was determined by 

immunocytochemistry, with quantitative analysis by immunoblotting. In unchallenged and 

untreated (control) microglia, high concentrations of CaM protein were found mainly 

perinuclearly in ameboid microglia, while the cell cortex had a smaller CaM content that 

diminished progressively deeper into the branches in the ramified microglia. The amounts and 
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intracellular distributions of both Iba1 and CaM proteins were altered after lipopolysaccharide 

(LPS) challenge in activated microglia. CALMID and TFP exerted different, sometimes 

opposing, effects on many morphological, cytoskeletal and functional characteristics of the 

microglial cells. They affected the CaM and Iba1 protein expressions and their intracellular 

localizations differently, inhibited cell proliferation, viability and fluid-phase phagocytosis to 

different degrees both in unchallenged and in LPS-treated (immunologically challenged) cells, 

and differentially affected the reorganization of the actin cytoskeleton in the microglial cell 

cortex, influencing lamellipodia, filipodia and podosome formation. 

We concluded that in vitro studies on microglial population dynamics combined with 

phenotypic characterization can be of importance when different in vivo pathophysiological 

situations are modeled in vitro. Moreover, the CaM antagonists altered different aspects of 

filamentous actin-based cell morphology and related functions with variable efficacy, which 

could be important in deciphering the roles of CaM in regulating microglial functions in 

health and disease. 
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1. INTRODUCTION 

Microglial cells, the resident immune cells of the central nervous system (CNS), share a 

number of phenotypic characteristics and lineage properties with other bone marrow-derived 

myeloid cell populations, and are regarded as members of the monocyte/macrophage lineage 

(Gehrmann et al., 1995; Geissmann et al., 2003, 2010; Ginhoux et al., 2010; Kreutzberg, 

1996; Prinz and Mildner, 2011; Prinz et al., 2011). Recent in vivo lineage tracing studies 

demonstrated that adult microglial cells originate from primitive myeloid progenitors that 

arise early in embryonic development, and constitute an ontogenetically distinct population in 

the mononuclear phagocyte system (Ginhoux et al., 2010; Saijo and Glass, 2011). Microglia 

are highly plastic and, by virtue of their location and current role in the nervous tissue, are 

able to undergo a variety of morphological and functional changes in response to various 

stimuli. In their non-activated or resting state, they display a ramified morphology 

characterized by numerous, fine-branched processes with relatively small somata and subdued 

macrophage-like functional properties. In response to neural injury, infection and 

inflammatory or other signals, however, microglial cells become activated and undergo a 

series of morphological, molecular and functional changes in proportion to the severity of the 

damage to the neuronal tissue (Kreutzberg, 1996; Ling and Wong, 1993). Shortly after their 

initial activation, microglial cells become progressively less ramified and quickly develop an 

enlarged cell body with several short, thickened processes (activated microglia) that may 

eventually completely retract (phagocytic microglia). This morphological transformation 

parallels microglial proliferation, homing and adhesion to damaged cells (Raivich et al., 1999; 

Streit et al., 1999). The development of the ameboid appearance and phagocytic nature of the 

microglial cells coincides with their antigen presentation ability and cytotoxic and 

inflammation-mediating signalization (Drew and Chavis, 2000; Kreutzberg, 1996; Ling and 

Wong, 1993; Prinz and Miller, 2014; Saijo and Glass, 2011; Streit at al., 1999; Town et al., 

2005; Werry et al., 2011). 

As regards origin, there are two populations of microglial cells in the CNS at any given 

time. The resident microglia comprise a distinct pool of cells that respond to stimuli and 

proliferate accordingly, and regulate their population dynamics in a manner dependent on the 

severity of the tissue damage. They are distributed more or less evenly throughout the nervous 

tissue (Milligan et al., 1991a) and exhibit an extremely slow turnover with the bone marrow 

or the peripheral blood under normal conditions. The resting microglia with ramified 

morphology lack the major histocompatibility complex (MHC) class I/MHC class II proteins, 
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interferon-γ, cytokines, CD45 antigens and many other surface receptors required to serve in 

the antigen-presenting, phagocytic and cytotoxic roles characteristic of the normal 

macrophage functions. Another population of cells, however, among which the perivascular 

microglial cells are prominent in number, is located in the close vicinity of blood vessels, and 

can be replaced regularly by bone marrow-derived precursor cells (Eglitis and Mezey, 1997; 

Hickey and Kimura, 1988) that express MHC class II antigens, indicating their 

monocyte/macrophage origin (Gehrmann et al., 1995; Streit et al., 1989). In cases of extreme 

damage to the CNS, as in infection or stroke, the blood-brain barrier may weaken 

considerably, and hematogenous, bone marrow-derived cells, such as myeloid progenitor cells 

and macrophages, may enter the brain (Priller et al., 2001). Once the damage has abated, the 

peripheral and central systems are disconnected for the recovery and regrowth period 

(Gehrmann, 1996). Although macrophages and microglia may have similar roles, the 

populations of resident microglia and recently migrated hematogenous myeloid 

progenitors/macrophages differ in many important aspects (Geissmann et al., 2003; Ladeby et 

al., 2005; Wirenfeldt et al., 2007). 

Similarly to the extensive studies on the origin and the morphological and functional 

development of the microglial phenotype in vivo (Dalmau et al., 1997, 1998, 2003; 

Geissmann et al., 2010; Ling and Wong, 1993; Ling et al., 1990; Milligan et al., 1991a, b; 

Orłowski et al., 2003; Streit et al., 1999), a large body of information is available on the 

characteristics of the different microglial populations maintained in cell cultures. However, as 

a variety of proinflammatory factors are produced by activated microglial cells on the one 

hand (Kreutzberg, 1996), and activation of microglial cells by a number of agents has been 

demonstrated on the other (Berger et al., 2012; Liu et al., 2000; Werry et al., 2011), 

characterization of the activated microglial cells in response to an in vitro 

stimulation/challenge predominates in the literature. Recent studies have demonstrated, for 

example, that under specific polarization conditions microglial cells, similarly to peripheral 

macrophages, develop into different inflammation-related phenotypes, termed M1 and M2 

(Gordon, 2003; Mosser and Edwards, 2008). 

Microglial functions such as motility and phagocytosis are closely associated with 

dynamic changes in the cytoskeleton and related to intracellular calcium (Ca2+) signaling 

(Greenberg, 1995; Kalla et al., 2003; Mitchison and Cramer, 1996). The ubiquitous Ca2+-

binding proteins participate in Ca2+-elicited intracellular events, either as Ca2+-

sensing/receptor/trigger or as Ca2+-buffering/transport proteins, by binding intracellularly 

stored Ca2+ (Ikura, 1996). They contribute to nearly all aspects of the functioning of the cell, 
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and are important in numerous intracellular signaling processes, from the regulation of 

cellular homeostasis to learning and memory (Berridge et al., 2010; Clapham, 2007). 

Calmodulin (CaM), one of the most important intracellular Ca2+ receptors, exerts its 

biological action through its heterogenous population of target proteins, which are involved in 

a number of cellular regulatory processes (Kennedy, 1989; Palfi et al., 2002). 

The nervous tissue is especially abundant in CaM. While its distribution has been 

characterized in detail for a number of neuronal cell types (Kovacs and Gulya, 2002, 2003; 

Palfi et al., 1999, 2001, 2005), its localization and functions in glial cells are much less known. 

Astrocytes express CaM protein in low quantities (Kortvely et al., 2003), but mRNA 

populations from all three CaM genes could still be localized both perinuclearly and in the 

astrocytic endfeet (Palfi et al., 2005). The expression of CaM in oligodendroglia is similarly 

low and has not been characterized extensively, albeit the regulatory effects of this protein on 

a number of membrane-bound target proteins such as the myelin basic protein (Libich and 

Harauz, 2008) or the 2',3'-cyclic nucleotide 3'-phosphodiesterase (Myllykoski et al., 2012) 

have been established. Of all the glial components, only the microglia seem to have a 

considerable amount of CaM. They express a relatively large amount of CaM when activated 

(Casal ez al., 2001; Solá et al., 1997), and many aspects of their Ca2+ signaling are well 

documented (Färber and Kettelmann, 2006; Wong and Schlichter, 2014). 

CaM immunoreactivity or CaM gene-specific transcripts are often colocalized with 

those of the target enzymes of CaM within the same cytoplasmic compartments (Erondu and 

Kennedy, 1985; Sanabria et al., 2008; Seto-Ohshima et al., 1983; Strack et al., 1996). For 

example, actin is accompanied by CaM in the cell cortex, helping to remodel the actin-based 

cytoskeleton in accordance with the actual (patho)physiological signals (Mitchison and 

Cramer, 1996; Psatha et al., 2004). Ionized calcium-binding adaptor molecule 1 (Iba1) is 

another intracellular Ca2+-binding protein with actin-binding capability that is expressed in 

macrophages and microglia, and is widely used to detect both resting and activated microglial 

phenotypes (Imai et al., 1996). CaM and Iba1 proteins share a number of molecular structural 

variants that are related to either their Ca2+ binding or their target protein recognition 

(Yamada et al., 2006). In contrast with the wide-ranging regulatory roles of CaM, Iba1 plays a 

much more restricted role in microglial functions, e.g. remodeling the actin cytoskeleton 

during migration (Siddiqui et al., 2012; Vincent et al., 2012). 

The modulatory action of Ca2+-bound CaM on multiple target proteins can be regulated 

by a number of compounds. Calmidazolium (CALMID; 1-[bis(4-chlorophenyl)methyl]-3-[2-

(2,4-dichlorophenyl)-2-(2,4-dichlorobenzyloxy)ethyl]-1H-imidazolium chloride) and 
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trifluoperazine (TFP; 10-[3-(4-methylpiperazin-1-yl)propyl]-2-trifluoromethyl-10H-

phenothiazine dihydrochloride) are potent inhibitors of CaM-related cellular activities (Borsa 

et al., 1986; Sunagawa et al., 2000). It is presumed that, apart from binding to the CaM 

protein (Mashushima et al., 2000; Vandonselaar et al., 1994; Vertessy et al., 1998), they can 

also exert their effects on some of the CaM-regulated targets directly (Sunagawa et al., 2000). 

 

2. SPECIFIC AIMS 

Under physiological conditions, the vast majority of the resident microglial cells in the CNS 

are certainly unstimulated and characterized by ramified morphology. Despite the recent in 

vivo experimental approaches that unveiled new aspects of the functional, developmental and 

lineage characteristics of the microglial cell populations (Auffray et al., 2009; Durafourt et al., 

2012; Geissmann et al., 2003, 2010; Ginhoux et al., 2010; Xu et al., 2012), only limited data 

are available on the development of the microglial phenotype in vitro under 

unstimulated/immunologically unchallenged conditions. 

In an attempt to shed more light on the nature of the unstimulated microglia in vitro, we 

set out to characterize selected morphological, immunocytochemical and functional aspects of 

such cells, partially by quantitative techniques, in rat primary cortical cell cultures maintained 

routinely up to DIV28, in order to monitor the “normal” development of their phenotype. We 

analyzed the population dynamics of the microglial cells in terms of their percentage of the 

total number of cells during culturing, quantitatively characterized the different microglial 

populations according to their transformation indices, and differentially localized some of the 

canonical microglial markers to these distinct morphologies. As far as we are aware, a 

similarly detailed study for a period of up to 28 days on the characteristics of the in vitro 

development of unstimulated and unchallenged microglial cells of embryonic origin has not 

been reported previously. 

The actin cytoskeleton is of paramount importance in many microglial functions. Its 

reorganization during cell migration, phagocytosis, or under several pathophysiological 

conditions, is in the forefront of research. One of the main regulators of the actin cytoskeleton 

reorganization is CaM. Relatively little is known, however, as concerns the possible 

involvement of CaM mediation in such important microglial functions as phagocytosis and 

the cellular functions associated with it, e.g. dynamic cytoskeletal reorganization. Thus, in 

view of the importance of CaM-mediated cell functions and the paucity of data on specific 

microglial functions related to and possibly regulated by CaM, we set out to investigate the 

localization and intracellular distribution of CaM in pure microglial cell populations derived 



	  

 

10	  

from rat primary mixed forebrain cultures by using immunocytochemical and Western blot 

techniques. Selected CaM inhibitors such as CALMID and TFP, previously reported to have 

different modes of action (Matsushima et al., 2000; Sunagawa et al., 2000), were 

quantitatively tested for their ability to modify the microglial morphology (cell area, perimeter, 

transformation index), as well as lamellipodia, filipodia and podosome formation. Stimulation 

with LPS was used to evaluate the ability of microglial cells to respond to activation (Fricker 

et al., 2012; Song et al., 2014; Tokes et al., 2011). 

Our specific aims were: 

1) To determine the cellular composition and the rate of microglial proliferation in 

primary mixed cultures (DIV1–DIV28) prepared from rat embryonic forebrain tissues; 

2) To quantitatively characterize the different microglial populations according to 

morphological parameters during culturing (DIV1–DIV28); 

3) To localize some of the canonical microglial markers to these distinct morphologies 

during culturing (DIV1–DIV28); 

4) To quantitatively characterize and localize microglial CaM immunoreactivities in 

relation to their morphologies in pure, secondary microglial cultures (subDIV4); 

5) To characterize the effects of two CaM inhibitors (CALMID and TFP) on the 

morphological, including cytoskeletal, and immunocytochemical characteristics of pure 

microglial cultures (subDIV4). 

 

3. EXPERIMENTAL PROCEDURES 

3.1. Animals 

All animal experiments were carried out in strict compliance with the European Council 

Directive (86/609/EEC) and EC regulations (O.J. of EC No. L 358/1, 18/12/1986) regarding 

the care and use of laboratory animals for experimental procedures, and followed the relevant 

Hungarian and local legislation requirements. The experimental protocols were approved by 

the Institutional Animal Welfare Committee of the University of Szeged (I-74-II/2009/MÁB). 

The pregnant Sprague-Dawley rats (170-200 g; one animal per cage) were kept under 

standard housing conditions and fed ad libitum. 

 

3.2. Antibodies 

The antibodies used in our immunohistochemical, immunocytochemical and Western blot 

studies are listed in Table 1. For a thorough characterization of different microglial 

phenotypes developed in vitro, antibodies against the ionized calcium binding adaptor 
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molecule 1 (Iba1), the human leukocyte antigen (HLA) class II genes HLA DP, DQ, DR and 

the rat CR3 complement receptor (CD11b/c) were used in our immunohistochemical and 

Western blot analyses. 

 

Table 1. Antibodies used in immunocytochemistry and immunohistochemistry 
 

Primary 
antibody, 
abbrev. 
name 

Primary 
antibody, full 
name 

Final 
dilution 

Company Secondary 
antibody with 
fluorochrome, 
full name 

Company Final 
dilution 

Iba1 Rabbit anti-Iba1 
polycl. ab. 

1/300 Wako, 
Osaka, 
Japan 

Alexa Fluor 568 
goat anti-rabbit 

Invitrogen, 
Carlsbad, 
CA, USA 

1/1,000 

CD11b/c 
(OX42) 

Mouse anti-
CD11b/c 
equivalent 
monocl. ab., 
clone OX42 

1/200 Abcam, 
Cambridge, 
England  

Alexa Fluor 488 
goat anti-mouse 
or Alexa Fluor 
568 goat anti-
mouse 

Invitrogen, 
Carlsbad, 
CA, USA 

1/1,000 

HLA DP, 
DQ, DR 

Mouse anti-
HLA-DP, DQ, 
DR, monocl. 
ab., clone 
CR3/43 

1/100 Dako, 
Glostrup, 
Denmark 

Alexa Fluor 488 
goat anti-mouse 

Invitrogen, 
Carlsbad, 
CA, USA 

1/1,000 

HLA DRα Rabbit anti-
HLA-DRα, FL-
254, polycl. ab., 
SC-25614 

1/50 Santa Cruz 
Biotechnol., 
Inc., Santa 
Cruz, CA, 
USA 

Alexa Fluor 488 
goat anti-rabbit 

Invitrogen, 
Carlsbad, 
CA, USA 

1/1,000 

β tubulin 
III 

Mouse anti-
tubulin, β-III, 
monocl. ab., 
clone TU-20 

1/400 Abcam, 
Cambridge, 
England 

Alexa Fluor 488 
goat anti-mouse 

Invitrogen, 
Carlsbad, 
CA, USA 

1/1,000 

Ki67 Rabbit anti-
Ki67, monocl. 
ab., clone SP6 

1/200 Thermo 
Scientific, 
Fremonz, 
CA, USA 

Alexa Fluor 488 
goat anti-rabbit 

Invitrogen, 
Carlsbad, 
CA, USA 

1/1,000 

CaM Mouse anti-
CaM, monocl. 
ab. 

1/100 Millipore Alexa Fluor 488 
goat anti-mouse 

Invitrogen, 
Carlsbad, 
CA, USA 

1/1,000 

CaM Rabbit anti-
CaM, monocl. 
ab., clone 
EP799Y 

1/100 Abcam, 
Cambridge, 
UK 

Alexa Fluor 568 
goat anti-rabbit 

Invitrogen, 
Carlsbad, 
CA, USA 

1/1,000 

 
 

The anti-Iba1 antibody recognizes the Iba1 protein, an intracellular Ca2+-binding protein 

expressed in the CNS specifically in macrophages and microglia (Imai et al., 1996), and has 

been used to detect both resting and activated microglial phenotypes (Ito et al., 1998). The 

HLA class II genes are composed of three closely linked subregions encoding the 
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polymorphic HLA class II molecules HLA DP, DQ, DR. The anti-HLA DP, DQ, DR antibody 

reacts with the α and β-chains of all products of these subregions and recognizes numerous 

antigen-presenting cells that express these molecules, including the reactive and the resting 

microglia, the perivascular microglial cells, many macrophages and most monocytes in the 

CNS (Horejsí et al., 1986; Ulvestad et al., 1994b). The anti-HLA DRα antibody recognizes 

the α subunit of the class II MHC complex antigen HLA DR, a transmembrane glycoprotein 

constitutively expressed by microglia (Ulvestad et al., 1994a). The anti-CD11b/c antibody 

recognizes a common epitope shared between CD11b and CD11c (integrin αM and αX chains), 

reacts with all monocytes and macrophages (Robinson et al., 1986; Wang et al., 1996), and is 

commonly used as a resident microglial marker in the CNS (Imai et al., 1996). The anti-β 

tubulin III (Banerjee et al., 1990) antibody has been used to detect neurons, the anti-glial 

fibrillar acidic protein (GFAP) antibody (Guillemin et al., 1997) to label astrocytes, and the 

anti-2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) antibody (Zhang et al., 2010) to 

detect oligodendrocytes. The anti-CaM monoclonal antibody has been used to detect both 

Ca2+-bound and Ca2+-free forms of the antigen (Sacks et al., 1991), the anti-Ki67 antibody to 

detect proliferating cells. Ki67 is a nuclear protein expressed in all active phases of the cell 

cycle from the late G1 phase through the end of the M phase but is absent in non-proliferating 

and early G1 phase cells (Scott et al., 2004; Starborg et al., 1996). The anti-glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) antibody has been used as an internal control in Western 

blot experiments (Wu et al., 2012). 

Various dilutions of primary and secondary antibodies, incubation times and blocking 

conditions for each antibody used were carefully tested for both immunocytochemistry/-

histochemistry and Western blot analysis. To detect the specificities of the secondary antisera, 

omission control experiments (staining without the primary antibody) were also performed. In 

such cases, no fluorescent or Western blot signals were detected. 

 

3.3. Paraffin embedding and sectioning 

Forebrain samples of embryonic day 18 (E18) rats were carefully removed, fixed by 

immersion overnight at 4 °C in 0.05 M phosphate-buffered saline (PBS) containing 4% 

formaldehyde, and then embedded in low-melting point paraffin. Coronal sections (8 µm 

thick) were cut in a microtome and mounted on slides coated with (3-aminopropyl) 

triethoxysilane (Menzel, Darmstadt, Germany) to prevent detachment. After deparaffinization 

and rehydration, the slides were placed in a jar filled with 0.01 M citrate buffer (pH 6.0) and 
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heated 3 times for 3 min at 800 W in a microwave oven. The sections were then processed for 

immunohistochemistry. 

 
3.4. Cortical cell cultures 

Mixed primary cortical cell cultures were established from E18 wild-type rat embryos by the 

use of general methods described previously (Kortvely et al., 2003). Briefly, 6-8 fetal rats 

under ether anesthesia were surgically decapitated and the frontal lobe of the cerebral cortex 

was removed, minced with scissors, incubated for 10 min at 37 °C in 9 ml of Dulbecco's 

Modified Eagle's Medium (DMEM; Invitrogen, Carlsbad, CA, USA; containing 1 g/l D-

glucose, 110 mg/l Na-pyruvate, 4 mM L-glutamine, 3.7 g/l NaHCO3, 10,000 U/ml penicillin 

G, 10 mg/ml streptomycin sulfate and 25 µg/ml amphotericin B) supplemented with 0.25% 

trypsin (Invitrogen) and then centrifuged at 1,000g for 10 min at room temperature (RT). The 

pellet was resuspended, washed twice in 5 ml of DMEM containing 10% heat-inactivated 

fetal bovine serum (Invitrogen), and centrifuged for 10 min at 1,000g at RT. The final pellet 

was resuspended in 2 ml of the same solution as above, after which the cells were seeded in 

the same medium and cultured at 37 °C in a humidified air atmosphere supplemented with 5% 

CO2 in one or other of the following ways: 1) in poly-L-lysine-coated coverslips (18 x 18 mm; 

2 x 105 cells/coverslip) for immunocytochemistry; 2) in poly-L-lysine-coated Petri dishes (60 

mm x 15 mm; 106 cells/dish) for Western blot analyses; or 3) in a poly-L-lysine-coated 

culture flask (75 cm2 , 12 x 106 cells/flask) for the subsequent generation of pure microglial 

cell cultures. The mixed primary cultures were maintained up to 28 days (DIV1-DIV28; or 

occasionally with cultures aged up to 2 months. data not shown) for immunocytochemistry 

and Western blot analyses, and for 7 days (DIV7) for the generation of pure microglial cells. 

For culturing periods longer than 3 days, the DMEM was changed every 3 days. Apart from 

the microglial markers, several cell surface and cytoplasmic neuronal, astrocytic and 

oligodendrocytic markers were used to characterize the primary cultures. Cell proliferation 

was assessed by the use of the antibody raised against Ki67.  

 

3.5. Preparation of pure microglial cell cultures 

Pure microglial cell cultures were subcloned from mixed primary cultures (DIV7) maintained 

in a poly-L-lysine-coated culture flask (75 cm2 , 12 x 106 cells/flask) by shaking the cultures at 

150 rpm in a platform shaker for 20 min at 37 °C. Microglia from the supernatant were 

collected by centrifugation at 3,000g for 10 min at RT and resuspended in 2 ml of 

DMEM/10% FBS. The cells were seeded at a density of 2 x 105 cells/Petri dish for Western 
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blots and cell viability assays or 105 cells/coverslip/Petri dish for immunocytochemistry, 

proliferation or phagocytosis assays, and cultured in DMEM in a humidified atmosphere 

supplemented with 5% CO2 for 4 days at 37 °C. The medium was changed on the first day 

after seeding (subDIV1). Immunocytochemistry routinely performed on the pure microglial 

cultures 4 days after seeding (subDIV4) consistently detected a >99% incidence of Iba1-

immunopositive microglial cells for the Hoechst 33258 dye-labeled cell nuclei (Fig. 11). 

 

3.6. Treatment of pure microglial cells with LPS and CaM inhibitors 

On the fourth day of subcloning (subDIV4), the DMEM was replaced and the expanded pure 

microglial cells were treated for 24 h with either LPS (100 ng/ml in final concentration, 

dissolved in DMEM; Sigma, St. Louis, MO, USA), CALMID (5 nM or 50 nM in final 

concentration, dissolved in dimethylsulfoxide (DMSO); Sigma) or TFP (10 µM or 20 µM 

final concentration, dissolved in DMSO; Sigma) alone, or with a combination of LPS and one 

of these CaM inhibitors, and the effects were compared in a variety of morphological and 

functional tests. LPS treatment served as an immunochallenge. Unchallenged and untreated 

(control) cultures were maintained under identical conditions, but without these inhibitors, 

and received 2 µl DMSO solution instead. 

 

3.7. In vitro phagocytosis assay 

The fluid-phase phagocytic capacity of the unstimulated microglial cells was determined 

via the uptake of fluorescent microspheres (2 µm diameter; Sigma, St. Louis, MO, USA) 

using the general methods described by Szabo and Gulya (2013). Cortical cells from E18 

rats were plated on coverslips in 35-mm Petri dishes at a density of 200,000 

cells/coverslip in 2 ml of DMEM containing 10% heat-inactivated fetal bovine serum as 

above, and cultured for 14 days. At the end of the culturing period, 1 µl of a 2.5% 

aqueous suspension of fluorescent microspheres per ml was added to the primary culture, 

which was then incubated for 60 min at 37 °C. The cells were next washed 5 times with 

2 ml of PBS to remove dish- or cell surface-bound residual fluorescent microspheres, 

and fixed with 4% formalin in PBS. Negative controls were treated as above with the 

exception that cultures with beads were incubated for 60 min at 4 °C. For measurement 

of the phagocytotic activity, cells labeled with phagocytosed microbead(s) were counted. 

Twenty random fields with a total of 120 bead-labeled cells were counted under a 

fluorescent microscope with a 10x or 20x objective. For the mixed cultures, the number 
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of phagocytosed microbeads (mean ± S.D.) was analyzed as a function of the 

transformation index (TI). Statistically significant differences were determined by the 

Mann-Whitney Rank Sum test. 

 

3.8. Immunohistochemistry and -cytochemistry 

Immunohistochemistry on paraffin-embedded tissue sections was done essentially the same 

way as immunocytochemistry on cultured cells. For immunocytochemistry, primary cortical 

cells (DIV1-DIV28) or pure microglial cells (subDIV4) cultured in vitro on poly-L-lysine-

coated coverslips were used. At different time intervals (DIV1, DIV4, DIV7, DIV10, DIV14, 

DIV21, DIV28), or after different treatments (subDIV4), the cultured cells on the coverslips 

were fixed in 4% formaldehyde in 0.05 M PBS (pH 7.4 at RT) for 5 min, and rinsed in 0.05 M 

PBS for 3 x 5 min. After permeabilization and blocking of the nonspecific sites in 0.05 M 

PBS solution containing 5% normal goat serum (Sigma), 1% heat-inactivated bovine serum 

albumin (Sigma) and 0.05% Triton X-100 for 30 min at 37 °C, the cells on the coverslips 

were incubated overnight at 4 °C with the appropriate primary antibody (Table 1) in the above 

solution. The cultured cells were washed for 4 x 10 min at RT in 0.05 M PBS, and then 

incubated with the appropriate Alexa Fluor fluorochrome-conjugated secondary antibody 

(Table 1) in the above solution, but without Triton X-100, in the dark for 3 h at RT. The cells 

on the coverslip were washed for 4 x 10 min in 0.05 M PBS at RT. At this stage, the cells 

were occasionally stained with rhodamine-phalloidin (5 µl in 200 µl PBS; Molecular Probes, 

Eugene, OR, USA) for 30 min at RT, then washed for 2 x 10 min at RT. Finally, the nuclei 

were stained in 0.05 M PBS solution containing 1 mg/ml polyvinylpyrrolidone and 0.5 µl/ml 

Hoechst 33258 dye (Sigma). The coverslips were rinsed in distilled water for 5 min, air-dried 

and mounted on microscope slides in Vectashield mounting medium (Vector Laboratories, 

Burlingame, CA, USA). Cells were viewed on a Nikon Microphot-FXA epifluorescent 

microscope (Nikon Corp., Tokyo, Japan) and photographed with a Spot RT Color CCD 

camera (SPOT RT/ke, Diagnostic Instruments, Inc., Sterling Heights, MI, USA).  

 

3.9. Western blot analysis 

For Western blotting, the protocols were optimized for each antibody as regards epitope 

accessibility, polyacrylamide gel separation, antibody dilution and chemiluminescence signal 

intensity. Cultured primary cells (DIV1-DIV28) or pure microglial cells (subDIV4) with 

different treatment regimens were collected through use of a rubber policeman, homogenized 
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in 50 mM Tris-HCl (pH 7.5) containing 150 mM NaCl, 0.1% Nonidet P40, 0.1% cholic acid, 

2 µg/ml leupeptin, 1 µg/ml pepstatin, 2 mM phenylmethylsulfonyl fluoride and 2 mM EDTA, 

and centrifuged at 10,000 g for 10 min. The pellet was discarded and the protein concentration 

of the supernatant was determined (Lowry et al., 1951). 

 

Table 2. Antibodies used in Western blot analysis 
 

Primary 
antibody, 
abbrev. 
name 

Primary 
antibody, full 
name 

Final 
dilution 

Company Secondary 
antibody with 
fluorochrome, 
full name 

Company Final 
dilution 

Iba1 Rabbit anti-Iba1 
polycl. ab. 

1/1,000 Wako, 
Osaka, 
Japan 

Anti-rabbit IgG, 
peroxidase 
conjug. 

Sigma, St. 
Louis, MO, 
USA 

1/1,000 
or 
1/2,000 

β tubulin 
III 

Mouse anti-
tubulin, β-III, 
monocl. ab., 
clone TU-20 

1/1,000 Abcam, 
Cambridge
, England 

Anti-mouse IgG, 
peroxidase 
conjug. 

Sigma, St. 
Louis, MO, 
USA 

1/3,000 

GFAP Rabbit anti-
GFAP polycl. 
ab. 

1/5,000 Abcam, 
Cambridge
, England 

Anti-rabbit IgG, 
peroxidase 
conjug. 

Sigma, St. 
Louis, MO, 
USA 

1/2,000 

CNPase Mouse anti-
CNPase, 
monocl. ab., 
clone 11-5B 

1/500 Abcam, 
Cambridge
, England 

Anti-mouse IgG, 
peroxidase 
conjug. 

Sigma, St. 
Louis, MO, 
USA 

1/3,000 

CaM Rabbit anti-
CaM, monocl. 
ab., clone 
EP799Y 

1/2,000 Abcam, 
Cambridge
, UK 

Anti-rabbit IGG, 
peroxidase 
conjug. 

Sigma, St. 
Louis, MO, 
USA 

1/2,000 

GAPDH 
 

Mouse anti-
GAPDH, 
monocl. ab., 
clone GAPDH-
71.1 

1/20,00
0 

Sigma, St. 
Louis, MO, 
USA 

Anti-mouse IGG, 
peroxidase 
conjug. 

Sigma, St. 
Louis, MO, 
USA 

1/3,000 

 

For the Western blot analyses of microglial, neuronal, astrocyte or oligodendrocyte 

immunoreactivities, 5-10 µg of protein was separated on an SDS polyacrylamide gel (4-10% 

stacking gel/resolving gel), transferred onto Hybond-ECL nitrocellulose membrane 

(Amersham Biosciences, Little Chalfont, Buckinghamshire, England). Strips of membranes 

with the transferred bands for CaM and Iba1 (both around 17 kDa) and GAPDH (37 kDa) 

were cut and processed separately for CaM, Iba1 or GAPDH immunodetection. The 

membranes were blocked for 1 h in 5% nonfat dry milk (for GFAP, Iba1 and GAPDH 

Westerns) or 5% bovine serum albumin (for CaM, CNPase and anti-β tubulin III Westerns) in 

Tris-buffered saline (TBS) containing 0.1% Tween 20, and incubated for 1 h with the 
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appropriate primary antibodies. After 5 washes in 0.1% TBS–Tween 20, the membranes were 

incubated for 1 h with the appropriate peroxidase-conjugated secondary antibodies (Table 1), 

and washed 5 times as before. The enhanced chemiluminescence method (ECL Plus Western 

blotting detection reagents; Amersham Biosciences) was used to reveal immunoreactive bands 

according to the manufacturer's protocol. For the determination of CaM immunoreactivities in 

Western studies, the immunoreactive densities of equally loaded lanes were quantified, and all 

samples were normalized to internal GAPDH load controls run on the same gels. 

 

3.10. Digital image processing and image analysis 

Gray-scale digital images of the immunoblots were acquired by scanning the autoradiographic 

films with a desktop scanner (Umax PowerLook III; Umax Data Systems, Inc., Taipei, 

Taiwan, or Epson Perfection V750 PRO; Seiko Epson Corp., Japan). The images were 

scanned and processed at identical settings in order to allow comparison between the Western 

blots from different samples. Digital images were acquired with a Nikon Microphot-FXA 

epifluorescent microscope (Nikon Corp., Tokyo, Japan), using a Spot RT Color CCD camera 

and Spot RT software (Spot RT/ke Diagnostic Instruments, Sterling Heights, MI, USA). Color 

correction and cropping of the digital images were occasionally performed when 

photomicrographs were made for publication (Adobe Photoshop; Adobe Systems, Inc., San 

Jose, CA, USA). 

Microglial cells and cell nuclei in the cultures were counted with the use of the plugins 

developed for the computer program ImageJ (version 1.38 and 1.47; developed by W. 

Rasband at the U.S. National Institutes of Health, and available from the Internet at 

http://rsb.info.nih.gov/ij). Cell nuclei were counted with the use of the “Nucleus Counter” 

plugin (Image Processing and Analysis in Java, a collection of plugins and macros) installed 

under ImageJ (www.macbiophotonics.ca). Briefly, digital images in tagged image file formats 

(.tif) were opened in ImageJ, and Plugins→Particle Analysis→Nucleus Counter menus were 

then selected and customized as follows: the smallest and largest particle sizes were set to 50 

and 10,000, respectively. “Otsu” was selected for automatic thresholding, and “mean 3x3” 

was chosen for the performance of smooth filtering (Sezgin and Sankur, 2004). After 

background subtraction, overlapping objects in the resulting binary images were separated, 

via the menu command “Process/Binary/Watershed” (see Abràmoff et al., 2004, for details, 

and the documentation web pages for ImageJ at http://rsb.info.nih.gov/ij/docs/index.html). For 

the counting of microglial cells expressing immunopositivity for the Iba1 antigen, the “Cell 
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Counter” plugin was used (ImageJ for Microscopy). After the appropriate images (.tif) had 

been opened, Plugins→Particle Analysis→Cell Counter menus were selected, and the output 

was copied to a Microsoft Excel spreadsheet (Microsoft Corp., Redmond, WA, USA) for 

statistical analysis. 

Microglial cell silhouettes were acquired by transforming the raw digital files of Iba1-

immunoreactive cells recorded under fluorescent microscope light to binary files by means of 

the ImageJ software. The color cell images were transformed into their binary replicas 

(silhouettes) by using automatic thresholding procedures. After the values of cell perimeter 

(µm) and cell area (µm2) had been determined in at least 3 separate experiments (at least 2 

coverslips in each experiment for each culturing time investigated; around 20 randomly 

selected cells/coverslip), the TI reflecting the degree of process extension was calculated 

through the expression [perimeter of cell (µm)]2/4π[cell area (µm2)] as previously described 

(Fujita et al., 1996). From the mixed cultures, a total of 398 cell silhouettes were analyzed in 

this study. For the analysis of TI values from the pure cultures, a total of 261 cells were 

quantitatively measured (mean ± S.E.M.). Digital image production was performed with 

Adobe Photoshop CS5.1 software (Adobe Systems, Inc., San Jose, CA, USA). Color 

correction (brightness, contrast) and cropping of the fluorescent images were occasionally 

performed when individual photomicrographs were assembled to figure panels for publication. 

No specific feature within an image was enhanced, obscured, introduced, moved or removed. 

 

3.11. Statistical analysis 

For Western blots, values are presented as means ± S.D. from at least 3 blots for each of the 3 

independent experiments for each time period examined. For the counting of microglial cells 

and cell nuclei, at least 10 randomly sampled microscope fields from 2-3 coverslips for each 

culturing time period from each of the 3 separate cell-culturing experiments were counted. In 

the computation of semiquantitative cell silhouette characteristics (digital binary pictures), 

data on 20 cells per coverslip from at least 3 separate experiments for each culturing time 

were used. Values are presented as means ± S.D. Statistical analyses were carried out with the 

Mann-Whitney Rank Sum test (SigmaStat 3.11; Systat Software Inc., Chicago, IL, USA, or 

SigmaPlot v. 12.3, Systat Software Inc., Chicago, IL, USA). For the CaM inhibition studies, 

results for the phagocytosis and viability assays and the cell silhouette characteristics (TI 

values) were analyzed with Kruskal-Wallis one-way analysis of variance, followed by Dunn's 

method for pairwise multiple comparison procedures for statistically significant differences 
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between the groups. For these studies, values were presented as mean ± S.E.M. from at least 

three independent experiments and p<0.05 was considered significant. For Western blots, 

values were presented as mean ± S.E.M. from at least three blots, each representing 

independent experiments for each time period examined. For the determination of the 

homogeneity of the subcloned microglial cells, Iba1-positive cells and Hoechst 33258 dye-

positive cell nuclei from at least 50 randomly sampled microscope fields from 2-3 coverslips 

for each subcloned culture were counted and the results are presented as mean ± S.E.M. 

 

4. RESULTS 

4.1. Microglial cells collected from the forebrains of E18 rats are mainly ameboid 

The microglial cells were collected from E18 rat forebrains and maintained in mixed primary 

neuronal-glial co-cultures. Light microscopic fluorescent immunohistochemistry revealed (Fig. 

1) that on E18 the Iba1-labeled microglial cells in the forebrain cortical tissue appeared to be 

mainly ameboid (arrowheads), though more differentiated forms were also present in smaller 

numbers. Most of the microglial cells were rounded or slightly ovoid and lacked branching 

processes; however, rod-like (double-arrowhead) or slightly ramified microglial cells (arrrow) 

were occasionally also seen in the embryonic rat forebrain. 

 

 
Fig. 1. Microglia in the E18 embryonic rat forebrain. 
The immunofluorescent detection of microglial cells (red) in 8-µm-thick paraffin-embedded coronal 
sections of E18 rat forebrains was achieved through the use of anti-Iba1 antibody. Most Iba1-labeled 
cells displayed ameboid morphology with ovoid (arrowhead) or slightly rod-shaped forms (double-
arrowhead), but occasionally more ramified microglia could also be seen (arrow). Cell nuclei were 
labeled blue with Hoechst 33258. CxP: cortical plate; CxS: cortical subplate; ICx: intermediate cortical 
layer; S: subiculum. Scale bar: 100 µm. 
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4.2. Microglial cells proliferate during in vitro culturing of primary forebrain cells 

As concerns the cell number and the presence of numerous microglia-specific antigens, 

fluorescent immunocytochemistry (Fig. 2) and Western analysis (Fig. 3) demonstrated a 

massive in vitro expansion of the microglial cells between DIV1 and DIV28. The total 

numbers of cells at the beginning and at the end of the culturing period did not differ 

significantly. While the total number of cells exhibited a minimum on DIV10, the number of 

microglia constantly increased from immediately after seeding throughout the entire culturing 

period. 

 

 
Fig. 2. Development of Iba1 immunoreactivity in primary cortical cultures (DIV1-DIV28). 
(A-G) The number and composition of the cultured cells are tightly controlled. While the total number 
of cells remains constant, the microglia proliferate during culturing. The microglial cells (red) were 
first labeled with the rabbit anti-Iba1 primary (polyclonal) antibody, and then with an appropriate 
Alexa Fluor fluorochrome-conjugated secondary (Alexa Fluor 568 goat anti-rabbit) antibody, while 
the cell nuclei (blue) were labeled with Hoechst 33258. Culturing times are indicated at the upper right 
corners of the pictures. Scale bar in A for A-G: 50 µm. (H-J) Microglial cells in characteristic cellular 
environments. For the detection of microglial cells and neurons, anti-Iba1 (red) and anti-β tubulin III 
(green) antibodies, respectively, were used. The cell nuclei (blue) were labeled with Hoechst 33258. 
(H) On day 1, the Iba1-positive microglial cells (red) were mostly ameboid around the developing β 
tubulin III-positive neurons (green). (I) On day 7, the majority of the microglial cells (red) had become 
ramified around a group of β tubulin III-immunopositive developing neurons (green). (J) On day 21, 
the culture was characterized by a heterogeneous, albeit mostly ramified population of microglia (red), 
located around the occasional β tubulin III-positive neurons (green) and many non-neuronal/non-
microglial cells indicated by the blue nuclei. Scale bar in H for H-J: 50 µm. 
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Fig. 3. Quantitative analysis of the cellular composition, the protein content and the amount of 
selected biomarkers during culturing. 
(A) The numbers of cell nuclei (open bars) and Iba1-positive (microglial) cells (solid bars) and the 
protein content (solid line) were quantitative analyzed in primary cortical cultures (DIV1-DIV28). The 
methods of counting cell nuclei and anti-Iba1-immunolabeled cells are described in the Experimental 
procedures section. Error bars indicate means ± S.D. (B) Representative Western blot pictures of Iba1, 
β tubulin III, GFAP and CNPase immunoreactivities in primary cortical cultures (DIV1-DIV28). (C) 
Quantitative Western blot analysis of Iba1, β tubulin III, GFAP and CNPase immunoreactivities in cell 
cultures between DIV1 and DIV28. Iba1: ionized calcium binding adaptor molecule 1, β tub: β tubulin 
III, GFAP: glial fibrillar acidic protein, CNPase: 2', 3'-cyclic nucleotide 3'-phosphodiesterase. Error 
bars indicate means ± S.D.  
 

The microglia were situated in a scattered manner in younger cultures (before and 

around DIV 14; Fig. 2A-E), but when they increased in abundance as the cultures grew older, 

they became more clumped and grouped together around other cells, as seen between DIV 21 

and DIV28 (Fig. 2F, G). Typical relative distributions of neuronal and microglial cells during 



	  

 

22	  

culturing may be seen in Fig. 2H-J. The microglial cell content originally amounted to less 

than 0.5% of the total cell number at the time of seeding, but steadily rose during culturing. 

On DIV 4 and DIV7, progressively more microglial cells appeared, accounting for 2% and 

8% of the total cell number, respectively (Fig. 3A). On DIV10, the overall morphological 

diversity of the microglial cells in the culture was similar to that on DIV7; at this time, the 

cultures contained barely 50% of the total cell number seen on DIV1, and the microglial cells 

comprised around 18% of the total cell population (see Fig. 2D for comparison). From this 

time onward, most of the gains in the number of total cell counts could be attributed to 

microglial cell proliferation (Fig. 3A). On DIV14, as the majority of the microglia had started 

to differentiate toward the ramified form, approximately 20% of all the cells were microglia. 

The proportion of microglial cells reached 33.7% by DIV28 (Fig. 3A, see Fig. 2G also for 

comparison). This massive, roughly 67-fold multiplication of the microglial cell type was also 

demonstrated by Western blot analysis (Fig. 3B, C). The Iba1 immunoreactivities detected in 

the blots steadily increased some 750-fold between DIV1 and DIV28. The β tubulin III, 

GFAP and CNPase immunoreactivities, quantified by Western blot analyses, demonstrated 

the evolution of other cellular components during culturing (Fig. 3B, C): while the amount of 

the neuronal marker β tubulin III steadily decreased, the immunoreactivity of the 

oligodendrocyte marker CNPase constantly rose between DIV1 and DIV28. A decrease in 

GFAP immunoreactivity at DIV28 was also observed in the cultures (Fig. 3C). 

 

4.3. Mixed microglial populations exist in primary forebrain cultures 

Diverse morphological forms of microglial cells developed and were present throughout the 

culturing (Fig. 4). At one end of the morphological spectrum, on DIV1, the microglial cells 

were virtually exclusively ameboid, frequently with smooth-surfaced spherical cell bodies, 

although ovoid or fusiform cells with a few microspikes could also be seen (Fig. 4A-D). As 

the cultures grew older (DIV7-DIV10), the microglia became more ramified. They acquired 

larger somata bearing typically one or two, but rarely more, large processes (Fig. 4E-H). One 

large, stubby lamellipoda usually formed first, but by DIV10 further processes, or the more 

ramified morphology of a single large lamellipoda could be observed (Fig. 4G-H). After 

DIV10, the microglial cells became more heterogeneous, as a constantly increasing microglia 

population characterized by relatively even cellular processes and enlarging somata 

accompanied the ameboid form (Fig. 4I-K, M). Microglial process formation became 

widespread by DIV14. Incidentally, this was the first time at which the ramified microglia 

(demonstrating morphology similar to that of the resting microglia in the adult rodent CNS) 
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predominated in the cultures (Fig. 4I, J). The Iba1-positive microglial cells were characterized 

morphologically by larger somata with a few long, relatively thin and sparsely ramified 

processes. As the cultures grew older, on both DIV21 and DIV28, the characteristic microglial 

morphology was a ramified form with several axes of symmetry along the processes (Fig. 4K, 

M), albeit ameboid cells were also present (Fig. 4L, N). The typical microglial morphology 

during the later stages of in vitro culturing also included cells with elongated, slightly curved 

somata emanating a few processes of mixed lengths. It must be noted that islands of densely 

grown ameboid microglial cells were persistently present throughout culturing. 

 

 
Fig. 4. Development of the morphology of the microglia in the primary cultures (DIV1-DIV28). 
The microglial cells (red) were first labeled with the anti-Iba1 primary antibody, and then with the 
Alexa Fluor 568 fluorochrome-conjugated goat anti-rabbit secondary antibody, while the cell nuclei 
(blue) were stained with Hoechst 33258. On day 1 (A, B), all the microglial cells had an ameboid 
appearance, with round or slightly ovoid cell forms. Very few, if any, microspikes or lamellipodae 
could be seen (B). On day 4 (C, D), some of the microglial cells had become more asymmetric or rod-
shaped, and some of these cells possessed more pronounced lamellipodae (C). At later stages, from 
day 7 (E, F), the microglia became more ramified. Usually only a few, heavier branches appeared at 
this stage of microglial differentiation (F). From this stage on, the cultures were characterized by two 
distinctly polarized populations, representing the two extremes of the morphological continuum 
displayed by the microglial cells in the cultures, i.e. the ameboid and the ramified microglial cells. 
From day 14 (I, J), the microglia became truly ramified as they usually had 3-4 strongly developed 
branches, but 6-7 equally strong and long branches could sometimes be seen from day 21 (K, M). At 
these times, ameboid forms were also still quite frequent (L, N). Scale bar in A (for A-Y): 10 µm. 
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4.4. Cultured microglia populations can be evaluated by their TI values 

The time course of the morphological changes in the microglia was analyzed on binary 

silhouettes, as depicted in Fig. 5. Quantitative analysis based on the TI value, a dimensionless 

number that is an indicator for identification of the degree of morphological differentiation 

(e.g. the degree of process extension) of a cell, revealed a continuum of the microglial 

phenotype between the ameboid and the extremely ramified morphologies of the microglia. 

Throughout the experiments, microglial cells with TI < 3 were considered ameboid (Fig. 6A-

G; circles). While younger cultures displayed predominantly ameboid cell forms with a 

regular, round outline reflecting the expanding microglia population (Figs. 5 and 6A-D), older 

cultures presented a more heterogeneous morphological repertoire, concurrently involving 

cells with ameboid (proliferating) and ramified (resting) forms, the majority being ramified 

(Figs. 5 and 6E-G). The ramified, resting microglia that developed later during the culturing 

could be characterized by a TI value as high as 81 (Fig. 6H). The ameboid, proliferating 

microglial cells, predominant in the early stages but always present throughout culturing, had 

TI values of less than 3, independently of the age of the culture (Fig. 6H; below dashed line), 

and were always Ki67-positive (Fig. 7). The Ki67 immunoreactivity observed in the ameboid 

microglial nuclei usually exhibited a distinct dotlike pattern representative of the S/G2 phase 

(Fig. 7A-D) unless it was associated with the periphery of the condensed chromosomes of the 

M-phase (Fig. 7E-H). 
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Fig. 5. Morphological heterogeneity of microglial cells after different culturing times. 
The Iba1-positive microglial cells were photographed, digitized and quantitatively analyzed according 
to their morphological characteristics. Area (A), perimeter (P) and transformation index (TI) are 
indicated for each digitized cell. Ten representative cells are shown at each culturing time. While 
younger cultures exhibited predominantly ameboid cell forms with TI < 3, older cultures were 
morphologically heterogeneous, as they developed a continuum of populations with two distinct 
populations of microglial cells at the extrema: the ameboid cell population (TI < 3) and the ramified 
cell population (TI > 3). Younger cultures exhibited predominantly ameboid cell forms, while older 
cultures displayed more ramified forms, but also proliferating ameboid populations (see the few 
ameboid microglia among the mainly heterogeneous microglial cells at DIV28. 
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Fig. 6. Evolution of morphometric parameters of the microglial cells during culturing.  
(A-G) Relationship between the perimeter of the microglial cell and its cell surface area. Cell area and 
perimeter values were measured by using the computer program ImageJ, and TI values were 
calculated as [perimeter of cell (µm)]2/4π[cell area (µm2)]. Each dot represents a digitized microglial 
cell. Some of the dots overlap at this resolution. Dots within the circles almost always indicate a cell 
with TI < 3 and a cell surface area < 500 µm2. The less differentiated microglial cell populations (TI < 
3) are marked with circles. (H) Distribution of TI values as a function of the culturing time. Microglial 
cells with TI < 3 are located below the dashed line. As may be seen here, there are microglial cells 
with extremely high TI values on DIV21 and DIV28.  



	  

 

27	  

 
Fig. 7. Relationship between proliferation, ameboid morphology and Ki67 immunoreactivity. 
Representative immunocyochemical pictures of Ki67-positive ameboid microglial cells in DIV7 
cultures. Fluorescent microphotographs of the cultures were taken through the red (A, E), green (B, F) 
and blue (C, G) channels and displayed in this sequence. CD11b/c-positive microglia (A, E), Ki67-
positive cells (B, F) and Hoechst 33258-labeled cell nuclei (C, G) are depicted. The merged pictures 
of CD11b/c- and Ki67-immunolabeled microglial cells are also shown (D, H). The presence of some 
non-microglial and non-dividing cells is indicated by the Hoechst 33258 stain at the upper right corner 
of the pictures. A group of CD11b/c-positive microglial cells is located at the bottom left corner of the 
pictures. Proliferating CD11b/c-positive microglial cells are located in the middle of the pictures. 
Arrow points to the condensed chromatin in an M phase microglia (G). Scales for all pictures: 50 µm. 
 

4.5. Phagocytosis is predominant in ameboid microglia in culture 

Ameboid and ramified microglial cell populations in culture could be differentiated through 

their ability to phagocytose (Fig. 8). Unstimulated microglia readily phagocytosed fluorescent 

microbeads. On DIV14, when mixed populations of ameboid and ramified microglia were 

present in the cultures in about equal numbers, microbeads were significantly more preferred 

by the ameboid forms (characterized by low TI values; Fig. 8A), while the ramified microglia 

(with higher TI values; Fig. 8B) were less active in phagocytosing microbeads. On average, 

microglia with TI < 3 phagocytosed 11.08 ± 8.6 beads per cell (average ± S.D., n = 39), while 

microglia with TI > 3 engulfed 3.16 ± 3.6 beads per cell (n = 81); the difference was 

statistically significant (p < 0.001; Mann-Whitney Rank Sum test). When the number of 

phagocytosed microbeads per microglia was plotted as a function of TI under 

unstimulated/unchallenged conditions, the physiologically distinct populations of ameboid 

and ramified microglia could be readily demonstrated (Fig. 8C). 
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Fig. 8. Phagocytic activity of unstimulated microglial cells in a primary culture (DIV14). 
(A, B) Representative immunocyochemical pictures showing the unstimulated phagocytic capability of 
microglial cells (red) as a function of the TI value from the same 14-day-old culture. Fluorescent dye-
coated latex microbeads (green; d = 2 µm) were added to the medium and phagocytosed by microglia. 
Microglial cells with TI < 3 (A), i.e. ameboid forms with 11.08 ± 8.6 beads per cell, were about 3.5-
times more likely to phagocytose the microbeads than cells with TI > 3 (B), i.e. ramified forms with 
3.16 ± 3.6 beads per cell. Non-phagocytosed microbeads were very rare in the cultures (a solitary bead 
can be seen in both A and B). Scale bar: 50 µm. (C) Distribution of unstimulated microglial cells with 
phagocytosed microbeads as a function of the TI value. The vertical dashed line separates the 
functionally different microglial populations (TI < 3 as ameboid, phagocytosing and proliferating, and 
TI > 3 as ramified, resting microglia). 
 

4.6. Immunocytochemistry reveals microglial populations displaying changing molecular 

phenotypes during culturing 

Double immunofluorescent microscopy revealed that Iba1-labeled microglial cells 

occasionally also expressed the HLA DP, DQ, DR antigens, exclusively in young cultures 

(Fig. 9A, B). HLA DP, DQ, DR-positive Iba1-expressing microglial cells were always 

ameboid, with TI < 3 (Fig. 9A, B). They were sporadically present from seeding up to DIV10, 

but disappeared completely from the cultures thereafter. Cultures older than DIV10 did not 
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express this antigen, even when they had an ameboid shape and proliferated, indicating that 

the HLA antigen expression can be uncoupled from the ameboid morphology. 

 

 
Fig. 9. Colocalizations of specific microglial markers during culturing. 
Representative fluorescent microphotographs of double-immunopositive microglial cells of the 
cultures were taken through the red, green and blue channels and displayed in this sequence together 
with their merged pictures. Cell nuclei (blue) were stained with Hoechst 33258. Culturing times are 
indicated at the upper right corners for each triad. (A, B) Double-immunopositive microglial cells for 
the coexpression of Iba1 and HLA DP, DQ, DR antigens at DIV1 (A) and DIV4 (B). These antigens 
are colocalized only in microglial cells of young cultures (up to DIV10), but solely in those that are 
truly ameboid or have low TI values. (C-D) Double-immunopositive microglial cells for the 
coexpression of CD11b/c and HLA DRα antigens at DIV4 (C) and DIV10 (D). These antigens are 
colocalized exclusively in the young cultures and only in microglia with typical ameboid morphology. 
The CD11b/c-positive microglia are no longer able to express HLA antigens in older cultures. (E-F) 
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Double-immunopositive microglial cells for the coexpression of CD11b/c and Iba1 antigens at DIV7 
(E) and DIV28 (F). These antigens are colocalized only in ameboid, proliferating cells with low TI 
values in both young and old cultures. Iba1-immunopositive microglial cell were morphologically 
heterogenous as both ameboid and ramified forms were labeled throughout culturing. Scale bar for all 
fluorescent microscopic pictures: 50 µm. (G) Relationship between TI values and microglia-specific 
markers. During culturing, only the less differentiated, ameboid microglia (TI < 3) express HLA 
antigens; these cells will eventually die out or differentiate to more ramified morphologies (TI > 3) 
that do not express HLA antigens. CD11b/c-positive cells can be observed throughout culturing, but 
they never become fully ramified (TI < 13). 
 

Microglial cells with typical ameboid morphology and doubly immunopositive for the 

CD11b/c and HLA DRα antigens were also found in young cultures (Fig. 9C, D). The last day 

on which these markers were colocalized was DIV10. CD11b/c-positive microglia in cultures 

older than DIV10 were no longer able to express any of these HLA antigens. CD11b/c-

positive microglial cells, however, were present throughout culturing (Fig. 9C-F). CD11b/c 

could be colocalized with the Iba1 antigen in both young and old cultures, but only in cells 

with ameboid (i.e. activated, proliferating) or slightly ramified forms with TI < 13 (Fig. 9E). 

The Iba1-immunopositive cells predominated throughout culturing, their morphology ranging 

from ameboid (Fig. 9A, B) to the ramified forms (Fig. 6E). Morphologically, Iba1-positive 

microglia were the most heterogeneous with TI values from the whole spectrum during the 

culturing. 

The relationship between TI values and myeloid/microglial cell-specific markers in 

cultured microglial cells is shown in Fig. 9G. We observed that microglial cells either lose 

some of their macrophage characteristics (e.g. HLA DP, DQ, DR or HLA DRα antigens) 

during culturing or restrict them to their less differentiated forms (e.g. CD11b/c), even though 

they retain this latter phenotype for subsequent generations. During culturing, only the less 

differentiated, ameboid microglial cells (TI < 3) expressed HLA DP, DQ, DR (or HLA DRα) 

antigens; these cells will either die out or differentiate to more ramified morphologies with TI 

> 3. CD11b/c-positive cells can be observed throughout culturing, but they never become 

fully ramified, and their TI values are always < 13. 

 

4.7. CaM is differentially localized in ameboid and ramified microglia both in mixed and 

pure cultures 

The quantity and cell type-specific localization of the CaM protein was first established in 

mixed primary cultures under unstimulated and untreated (control) conditions. Fluorescent 

immunocytochemistry (Fig. 10A-P) and Western blot analysis (Fig. 10Q, R) demonstrated 
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that a high concentration of CaM protein was characteristic of the mixed cultures throughout 

culturing. In young cultures (DIV1-DIV7), when only a few cells double-positive for the Iba1 

(Fig. 10A, E) and CaM (Fig. 10B, F) antigens existed (Fig. 10A-H), most of the CaM 

immunoreactivity was associated with non-microglial, e.g. mainly neuronal, cell forms, as 

demonstrated earlier (Szabo and Gulya, 2013). From DIV14 (up to DIV28), as more Iba1-

positive microglia populated the cultures (Fig. 10I, M), the proportion of CaM 

immunoreactivity associated with the microglia (Fig. 10J, N) also grew steadily. Both 

ameboid (Fig. 10A, E) and ramified microglia (a few cells in Fig. 10I, M) expressed CaM 

immunoreactivity. As the cultures aged, the CaM immunoreactivity localized to microglia 

became predominant (compare Fig. 10I, M with Fig. 10K, O). Similarly, Western blot studies 

confirmed the increase in Iba1 immunoreactivity during culturing (Fig. 10Q), during which 

time the CaM content of the cultures remained unchanged (Fig. 10R). Thus, by DIV14, the 

microglia had become the main CaM-expressing cell type in the mixed primary forebrain 

culture. 

Subsequent experiments were performed on pure microglial cultures (subDIV4; Fig. 11). 

In these microglial cells the Iba1 immunoreactivity was most intense in the lamellipodia of the 

ameboid forms (Fig. 12A, D, G), followed by the perinuclear region (Fig. 12D, G). The 

strongest CaM immunoreactivity was always observed in the ameboid microglia, where the 

cell somata, and especially the perinuclear area, were the most intensely labeled (Fig. 12B, E, 

H). In ameboid microglia, the CaM and Iba1 immunoreactivities were distributed in a 

complementary manner, as the Iba1 protein tending to localize in the cell cortex and 

lamellipodia (Fig. 12A, B, C). The ramified microglia displayed an almost homogenous 

cytoplasmic Iba1 distribution (Fig. 12J) with a considerably lower CaM content typically 

localized around the nucleus; the branches had only traces of CaM immunoreactivity (Fig. 

12K, L). 
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Fig. 10. Development of Iba1 and CaM immunoreactivities in primary cultures (DIV1-DIV28). 
At early culturing times (DIV1 (A-D) and DIV7 (E-H)), all seeded cells displayed CaM 
immunoreactivity (green), but only a few of them were Iba1-positive microglia (red). The cell nuclei 
(blue) were labeled with Hoechst 33258. Since most of the cells present early in the culturing are 
neurons (Szabó and Gulya, 2013), most of the CaM immunoreactivity seen at DIV1-DIV7 is of 
neuronal origin. At DIV14 (I-L), a large number of Iba1-positive cells showed CaM positivity, a 
number of them were ramified. At DIV28 (M-P), the predominant cell type in the culture was the 
CaM-positive microglia. Note the visibly different Iba1 (M) and CaM contents (N) of the ameboid and 
ramified microglia at this culturing time. The merged pictures show cells double-positive for Iba1 and 
CaM (D, H, L, P). The development of Iba1 (Q) and CaM (R) immunoreactivities during culturing 
(DIV1-DIV28) was quantitatively analyzed on Western blots. Protein samples from primary cultures 
were separated by gel electrophoresis, transferred to nitrocellulose membranes and probed with either 
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the Iba1 (Q) or CaM (R) antibody. Gray scale digital images of the immunoblots were acquired by 
scanning the autoradiographic films with a desktop scanner. The images were scanned and processed 
at identical settings to allow comparisons between the Western blots from different samples. Error bars 
indicate integrated optical density values (mean ± S.E.M.). Representative Western blot pictures are 
shown below the graphs. During culturing (DIV1-DIV28), a massive increase in the number of cells 
with microglial phenotype was observed in the mixed primary cultures, while the CaM content of the 
cultures remained constant. Most of the gain in Iba1 content occurred between DIV10 and DIV14. 
Culturing times are indicated at the upper right corners (A, E, I, M). Scale bar in A for all pictures: 50 
µm. 
 

 
Fig. 11. Localization of Iba1 immunoreactivity in pure microglial cell cultures (subDIV4). 
Representative photomicrograph of Iba1 imunoreactive microglial cells in culture. The purity of this 
culture is close to 100%, since every Hoechst 33258-labeled cell nuclei (blue) is surrounded by Iba1 
immunopositive cytoplasm (green). Scale bar: 100 µm. 
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Fig. 12. Distribution of Iba1 and CaM immunoreactivities in pure microglial cells (subDIV4).  
In pure microglial cultures (subDIV4), the majority of the unchallenged cells were ameboid or slightly 
ramified. While the Iba1 immunoreactivity (red) could be localized into two subcellular compartments, 
the perinuclear and the cell cortex domains (A, D, G, J), the CaM immunoreactivity (green) was 
largely confined to the perinuclear region (B, E, H, K), with the cell cortex having a considerably 
smaller CaM content, which progressively diminished deeper into the branches. Merged pictures (C, F, 
I, L) show the cell nuclei (blue) and the overlapping Iba1 and CaM immunoreactivities predominantly 
localized to the perinuclear area. Ameboid microglia have predominantly cortically localized Iba1 
immunoreactivity in the leading edges of large lamellipodia (A, arrows), a cytoplasmic domain largely 
devoid of CaM immunoreactivity (B). Arrowheads (D, G) point to large lamellipodia. Scale bar in A 
for all pictures: 10 µm. 
 
 

4.8. CaM inhibition affects cell morphology and actin cytoskeleton reorganization 

The microglial morphology in the control and experimental groups was analyzed through 

binary silhouettes (Fig. 13). The quantitative analysis was based on the area, perimeter and TI, 

the latter being a dimensionless number that is an indicator for the degree of process extension 

of a cell. 
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Fig. 13. Representative binary silhouettes from pure microglial cultures after different treatment 
regimens. 
Iba1-positive microglial cells from pure microglial cultures (subDIV4) were photographed, digitized 
and quantitatively analyzed according to their morphological characteristics. Five representative 
binary silhouettes are shown at each culturing time. CALMID50, in either control or LPS-challenged 
microglia, increased the number of filipodia, while the complete absence of filipodia was seen both in 
TFP10 and in LPS+TFP10-treated microglia. Area (A) in µm2, perimeter (P) in µm, and TI values 
(calculated as [perimeter of cell (µm)]2/4π[cell area (µm2)]) are indicated for each digitized cell. LPS: 
100 ng/ml; CALMID50: 50 nM CALMID; TFP10: 10 µM TFP. Scale bar for all silhouettes: 50 µm. 
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Throughout the experiments, microglial cells with TI < 3 were considered ameboid. The 

unchallenged, untreated 4-day-old pure microglia culture (subDIV4) consisted mainly of 

ameboid cells (Fig. 13, control row; see also controls in Figs. 15, 16) with an average area of 

412.91 ± 27.2 µm2, perimeter of 100.73 ± 5.4 µm and a TI of 2.02 ± 0.1 (Fig. 14). When 

administered alone, CALMID and TFP affected TI and the microglial cell surface area and 

perimeter differently. For example, both CALMID5 and CALMID50 resulted in increased 

area, perimeter and TI, whereas TFP alone strongly inhibited these characteristics. When 

challenged with LPS, the microglia became enlarged and acquired significantly larger 

perimeter and TI (A = 777.23 ± 40.1 µm2, P = 238.97 ± 8.6 µm, TI = 6.14 ± 0.4), consistent 

with these cells becoming activated (Figs. 13, 14 and Fig. 15D-F). Interestingly, CALMID5 or 

CALMID50 alone was not effective but when used in combination with LPS, they 

significantly increased the cell surface area, perimeter and TI (Fig. 13, Fig. 14A, C, E, Fig. 

15G-I). TFP sigificantly inhibited the expansion of cell surface area and perimeter both in 

unchallenged and LPS-challenged cells (Fig. 14B, D). As an example, the cell surface area 

was decreased substantially after TFP or LPS+TFP treatment, to 46.4 or 44.5% of the 

unchallenged or LPS-challenged control value, respectively. TFP treatment was also very 

effective in decreasing TI, to 25.53% of the LPS-challenged value (Fig. 13, 14). 

CaM inhibition affected the microglial morphology through reorganization of the actin 

cytoskeleton (Fig. 15). In unchallenged and untreated (control) cultures, the Iba1- and 

phalloidin-related fluorescence signals largely overlapped in the cell cortex of the mainly 

ameboid microglia, often in lamellipodia (Fig. 15A-C) as expected, since they both bind to the 

actin cytoskeleton. When treated with LPS, the microglia that became activated and enlarged 

displayed a phalloidin distribution much fuzzier than that in the case of Iba1, probably due to 

the rapid association of fibrous actin, to which phalloidin preferentially binds (Fig. 15D-F). 

However, spot-like concentrations of phalloidin fluorescence resembling podosomes were 

often visible in LPS-treated cells (Fig. 15E, arrow). CaM inhibitors affected the Iba1 and 

phalloidin distributions in different ways. CALMID50 treatment resulted in phalloidin 

fluorescence that was clearly distributed in two distinct concentric rings in the cytoplasm, one 

ring in the cell cortex, and the other as a perinuclearly localized cytoplasmic streaming of 

freshly synthesized fibrous actin (Fig. 15H, K, arrows). Phalloidin-containing filipodia were 

also obvious in these cells. Similar, albeit less dense, Iba1 distribution was observed after 

CALMID50 treatments (Fig. 15G). TFP treatment resulted in an overlapping and almost 

homogenous distribution of both Iba1 immunoreactivity and phalloidin fluorescence 
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(Fig.15M-O) in the surviving cells. While the Iba1 immunoreactivity remained relatively 

intact (Fig. 15M), most of the phalloidin fluorescence intensity was lost in TFP-treated 

microglia (Fig. 15N) indicating that TFP affected actin polymerization. 

 

 
Fig. 14. Effects of CaM inhibitors on selected morphological parameters of pure microglial cells. 
Surface area (A, B) in µm2, perimeter (C, D) in µm, and TI values (E, F) of the microglia for 
CALMID (A, C, E) and TFP (B, D, F) were analyzed in pure unchallenged and LPS-challenged 
microglial cell cultures. All statistical comparisons were made by using SigmaPlot (v. 12.3, Systat 
Software Inc., Chicago, IL, USA) and analyzed with Kruskal-Wallis one-way analysis of variance, 
followed by Dunn's method for pairwise multiple comparison procedures for statistically significant 
differences between the groups. Values (mean ± S.E.M.) were computed from at least three 
independent culturing experiments. *Statistically significant from control (p<0.05); #statistically 
significant from LPS-treated cells. LPS: 100 ng/ml; CALMID5: 5 nM CALMID; CALMID50: 50 nM 
CALMID; TFP10: µM TFP. 
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Fig. 15. Immunocytochemical localization of actin-binding proteins in pure microglial cells. 
Iba1 immunoreactivity (A, D, G, J, M; shown here in green) and phalloidin fluorescence (B, E, H, K, 
N; shown in red) were colocalized in unchallenged and untreated (control) cells and in microglia 
treated with LPS or CaM inhibitors in pure microglial cultures (subDIV4). Merged pictures (C, F, I, L, 
O) show the Hoechst 33258-labeled cell nuclei (blue) and the colocalization of Iba1 immunoreactivity 
and phalloidin fluorescence. Filamentous actin often forms continuous ring-like lamellipodia in 
unchallenged microglia (B). In LPS-challenged microglial cells, lamellipodia were less dominant, but 
the toxin stimulated podocyte formation, as indicated by several puncta delineated by phalloidin 
fluorescence (arrow, E). When CALMID50 was used, strong lamellipodia formation was observed, 
often accompanied by a perinuclear cytoplasmic streaming of filamentous actin (arrows, H, K), giving 
a double-ringed appearance of these cells. TFP treatment abolished the formation of filamentous actin 
bundles as detected by phalloidin fluorescence microscopy (N). LPS: 100 ng/ml; CALMID50: 50 nM 
CALMID; TFP10: 10 µM TFP. Scale bar in panel A for all pictures: 50 µm. 
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4.9. CaM inhibitors differentially alter the intracellular localization of CaM, and affect 

the Iba1 and CaM protein expressions 

CaM inhibitors altered the intracellular localization of CaM protein (Fig. 16). Both 

unchallenged and untreated cells (Fig. 16A-C) and LPS-challenged cells (Fig. 16D-F) 

displayed high CaM content primarily localized in the perinuclear compartment and to a much 

lesser extent with that in the cell cortex (Fig. 16A, B). Some of the cells with larger TI had 

CaM immunoreactivity that progressively diminished toward the cell cortex (Fig. 16C). 

Interestingly, cells treated with CALMID50 alone displayed a more heterogenously 

translocated CaM immunoreactivity often cortically localized in lamellipodia (Fig. 16J-L, 

arrowheads). In TFP10-treated cells, the CaM immunoreactivity was very weak and 

homogenously distributed in the cytoplasm (Fig. 16M-O). 

CaM antagonists inhibited Iba1 and CaM protein expressions with different efficacies 

(Fig. 17). In general, CALMID was less potent than TFP in affecting Iba1 and CaM protein 

expressions. CALMID, either alone or in combination with LPS, was not able to alter the Iba1 

expression significantly (Fig. 17A). TFP was more potent as TFP10 and TFP20 inhibited Iba1 

protein expression in a dose-dependent manner both in unchallenged and LPS-challenged 

cells (Fig. 17C). Similarly to their effects on the Iba1 expression, CALMID and TFP 

antagonized the CaM protein expression with different efficacy (Fig. 17B, D). When 

CALMID was used, the CaM immunoreactivity was observed to decrease somewhat dose-

dependently in the unchallenged microglia as CALMID50 significantly inhibited the CaM 

protein expression to 38.6% of the control level (Fig. 17B). Again, TFP20 had a more 

profound effect on the CaM protein expression (Fig. 17D), as it exhibited a strong inhibition 

both in the unchallenged and in the LPS-activated microglia (20.8% and 23.4% of the control 

value, respectively). 
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Fig. 16. Effects of CaM inhibitors on the intracellular localization of CaM immunoreactivity in 
pure microglial cells. 
Representative immunocytochemical pictures showing the intracellular distribution of CaM 
immunopositivity (red) in pure microglia cells (subDIV4). The merged pictures show the cell nuclei 
(blue) that were stained with Hoechst 33258. The unchallenged and untreated (control) microglia (A-
C) and LPS-challenged cells (D-F) showed mainly perinuclearly localized CaM immunoreactivity. 
LPS-challenged and treated cells (G-I), and more typically CALMID50-treated microglia (J-L) 
displayed CaM distribution often more targeted to the cell cortex and developing lamellipodia 
(arrowheads). TFP treatment resulted in a significant cell death (see Figure 4) and a homogenous 
cytoplasmic distribution of CaM immunoreactivity in the surviving microglia (M-O). LPS: 100 ng/ml; 
CALMID50: 50 nM CALMID; TFP10: 10 µM TFP. Scale bar in panel A for all pictures: 50 µm. 
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Fig. 17. Effects of CaM inhibitors on Iba1 and CaM protein expression in pure microglial cells, 
as detected by Western blot analysis. 
Quantitative Western blot analysis of Iba1 (A, C) and CaM (B, D) immunoreactivities in pure 
microglial cell cultures (subDIV4). Representative Western blot pictures of the respective 
immunoreactivities are shown below the graphs together with the GAPDH immunoreactive bands that 
served as inner standards in the same gel. Protein samples were collected from 3 separate culturings, 
each involving plating on at least 6 Petri dishes, electrophoresed and quantitatively analyzed as 
described in the Materials and methods section. The integrated optical density data (mean ± S.E.M.), 
normalized to GAPDH immunoreactivities, were analyzed with Kruskal-Wallis one-way ANOVA on 
ranks, followed by pairwise multiple comparisons (Dunn’s method). *Statistically significant from 
control (p<0.05); #statistically significant from LPS-treated cells. Iba1: ionized calcium-binding 
adaptor molecule 1; CaM: calmodulin; LPS: 100 ng/ml; CALMID5 and CALMID50: 5 and 50 nM 
CALMID; TFP10 and TFP20: 10 and 20 µM TFP; GAPDH: glyceraldehyde 3-phosphate 
dehydrogenase. 
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5. DISCUSSION 

Ramified microglial cells, the most common form of microglial cells in the normal adult brain, 

are derived from macrophage-like cells of mesodermal origin (Dalmau et al., 1997; Gehrmann 

et al., 1995; Ling and Wong, 1993). Many lines of evidence have recently demonstrated that 

these “true” resident microglial cells can be distinguished from other myeloid monocytic cells 

in the CNS from the aspects of their location, origin, specific cell surface antigens, other 

biochemical markers, their functions and their turnover with the periphery. Adult resting 

microglia with ramified forms reside in the parenchyma of the CNS, their position often being 

juxtavascular (Davalos et al., 2005; Ginhoux et al., 2010). They express a defined set of 

markers differently from other myeloid cell populations of the CNS (including, for example, 

CD11b, F4/80, the chemokine receptor CX3CR1 and Iba1), and function as local immune 

surveyors and scavengers of cell debris; the true, resident microglia population does not 

participate in exchange with the circulation (Prinz et al., 2011). Myeloid cell populations of 

the CNS with specific patroling functions include the perivascular, the meningeal and the 

choroid plexus macrophages, which possess slightly different sets of markers, but always take 

part in extensive exchange with the myeloid cells of the circulation (Bechmann et al., 2001a, 

b; Chinnery et al., 2010; Hawkes and McLaurin, 2009; Kim et al., 2006; Vallières and 

Sawchenko, 2003) and the vessel-patroling resident monocytes and inflammatory monocytes 

that originate from and display a high turnover with the bone marrow (Auffray et al., 2009; 

Geissmann et al., 2003). 

Discrimination between the different myeloid monocytic cell forms with uniquely 

important in vivo functions was beyond the scope of this study when cells were collected for 

the primary culture. Previous studies on the preparation of tissue slices (Hailer et al., 1996, 

1997; Stence et al., 2001) and primary cultures (Floden and Combs, 2006) indicated that 

physical damage to cells during tissue handling and cell harvesting (tissue removal from the 

embryo, sectioning, cell isolation procedure, etc.) can alter the microglial morphology, marker 

expression and function, and the resulting molecular characteristics seen in vitro may not 

necessarily reflect the in vivo phenotype. It is possible, therefore, that the cells we harvested 

from E18 rat forebrains and later identified as Iba1-positive included many of the myeloid 

monocytic cell populations described above, but the prolonged culturing led to the 

development of molecular and functional phenotypes quite different from those seen in vivo, 

and perhaps even sparser, less differentiated myeloid-derived cell populations when cultured. 

Earlier attempts to characterize microglial cells in vitro frequently employed culturing 

times of less than a week (Becher and Antel, 1996; Otani et al., 2011; Tanaka et al., 1998), 
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when changes in microglial population dynamics were not always apparent. Microglia 

cultured from the embryonic or from the adult brain were also found to differ in many 

important ways. Microglia prepared from the adult rat brain became progressively de-

differentiated and acquired a phenotype reminiscent of that of activated microglia in vivo over 

a period of 7 days in culture (Slepko and Levi, 1996). The differences between microglia 

acutely isolated from the CNS and cultured microglia derived from mixed glial cultures were 

most clearly seen in their differential proliferative capacity and cytokine responsiveness (Ford 

et al., 1995; Frei et al., 1994). Unlike microglia from cultures, microglial cells from adults 

were not stimulated by transforming growth factor (Rozovsky et al., 1998), nor did they 

proliferate in response to granulocyte- or macrophage colony-stimulating factor (Ford et al., 

1995). While the concept of M1/M2 macrophage heterogeneity has gained momentum in 

recent years, there is considerable uncertainty as to the extent to which this notion could be 

extrapolated to microglial cells. For example, in a recent study, Durafourt et al. (2012) found 

that M1 and M2 subtypes of macrophages and those of the microglial cells not only 

differentially expressed a number of genes, but phagocytosed myelin quite differently, 

indicating that the expression of similar biomarkers by macrophages and microglia does not 

necessarily mean that they have the same function. 

Our results showed that microglia prepared from embryonic tissue and maintained for 

up to 4 weeks displayed multiple phenotypes with different immunologic, proliferative and 

phagocytic characteristics. While the number of total cells did not vary significantly during 

culturing, their composition exhibited a dramatic change. The number of microglial cells rose 

steadily during culturing, by a factor of 67-fold. The selected microglial antigenic and 

functional (proliferation and phagocytosis) properties in primary mixed cultures of E18 rat 

forebrain tissues revealed a marked morphological and antigenic differentiation during 

culturing.  

Morphometric analysis on binary silhouettes of microglial cells revealed that ameboid 

forms were dominant in the early stages of in vitro differentiation, while older cultures were 

characterized by mixed populations of ameboid and ramified cells, the latter being the 

dominant form. The ameboid microglia, characterized by TI < 3, was the mitotically active, 

Ki67-immunopositive population even in older cultures where it formed a core of 

proliferating cells. The feasibility of a quantitative assessment of different microglial 

populations (resting vs. activated microglia) through morphological features alone was 

recently demonstrated (Kozlowski and Weimer, 2012); the sensitivity of this automated 

method was reported to be comparable to that of immunohistochemical methods. 
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While the morphology of the cultured microglial cells was very similar to that in the 

normal rat brain, their antigenic markers specific for the monocyte/macrophage/microglial 

cell line were distinctly different and exhibited a more restricted immunological phenotypic 

repertoire from those seen in vivo. We found that microglial cell populations in culture, 

without the presence of recruited hematogenous macrophages from the periphery through the 

blood-brain barrier, were more similar to those in the normal adult (or physiologically aging) 

brain (e.g. showing no signs of significant neurodegeneration and therefore almost no 

turnover for the microglial cells with the periphery) than to those in the neuropathologic brain 

(e.g. in Alzheimer’s disease). The large flux of HLA DP, DQ, DR-positive macrophages that 

entered the E18 brain through the blood-brain barrier soon died or differentiated further in the 

culture. As a consequence, cultured microglial cells that were doubly positive for Iba1 and 

HLA DP, DQ, DR antigens were absent from cultures older than DIV10. This is in contrast 

with earlier reports of an upregulation of HLA class II proteins upon phagocytosis (Becher 

and Antel, 1996; Beyer et al., 2000; Smith, 2001), a function displayed by ameboid microglial 

cells throughout the entire culturing, although they were negative for the HLA DP, DQ, DR 

antigens after DIV10. 

The loss of a large number of cells, which peaked on DIV10, concomitantly with the 

formation of neuronal clumps in the culture, could be coupled causatively to microglial 

activation and proliferation in two ways: either the massive neuronal death triggered microglia 

proliferation or, conversely, the proliferating microglial cells adversely influenced and 

eventually killed some other cells in the culture. This neuronal loss, most prominent around 

DIV10, was documented by Western analysis and was accompanied by an increase in the 

phagocytic activity of these cells. Interestingly, microglia proliferation could also be linked to 

the observed increase in CNPase activity during culturing. Similar phenomenon was observed 

in neonatal mouse brain cultures (Amur-Umarjee et al., 1990). Such microglia-

oligodendrocyte interactions could be due to factors secreted by activated microglia that 

promote oligodendrocyte proliferation and differentiation (Deierborg et al., 2010).  

One of the main roles of microglia is phagocytosis, a process that is critical for the 

uptake and degradation of infectious agents and senescent cells, and which contributes to the 

immune response and inflammation (Aderem and Underhill, 1999; Marín-Teva et al., 2004). 

As reviewed by Neumann et al. (2009), the recent evidence suggests that the phagocytic 

clearance by the microglia plays a fundamental role in facilitating the reorganization of 

neuronal circuits and triggering repair mechanisms. For example, there are substantial 

differences in microglial phagocytosis during the restructuring of neuronal connections 
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(Marín-Teva et al., 2004), in acute CNS injury (Cullheim and Thams, 2007), in multiple 

sclerosis (Takahashi et al., 2007), in normal development and ageing (Streit, 2006) or in 

Alzheimer's disease (Meyer-Luehmann et al., 2008), and the insufficient level of clearance 

seen in certain neurodegenerative diseases might be associated with an inadequate 

regenerative response such as that in Alzheimer’s disease. 

We used unstimulated microglial cells to measure phagocytic activity for two reasons: 

1) certain immunomodulatory functions could be reduced in stimulated microglia (Magnus et 

al., 2004), and 2) there could be a differential expression of a number of microglial enzymes 

and markers upon stimulation (Imamura et al., 1991). Both such effects could lead to the 

ameboid microglial phenotype being favored, which could interfere with our statistical 

analysis. The fact that unstimulated ramified microglia do not proliferate (Imamura et al., 

1991) ruled out the possibility that the conversion to the ameboid form would be induced, 

thereby biasing the actual composition of the microglial pool. We found that unstimulated 

microglial phagocytosis was tightly coupled to the ameboid morphology, as cells with low TI 

values exhibited much higher phagocytic activity. The ameboid morphology was also related 

to the proliferation of the microglial cells, as low TI values were always present in the 

cultures. 

As microglial cells participate in both protective and pathogenic mechanisms in the 

healthy and in the diseased CNS, further correlative morphological, molecular and functional 

characterizations of cultured rat microglial cell populations similar to that presented here 

could provide further information concerning the specific roles of the different microglia cells 

in the physiology and the pathophysiology of the CNS. In vitro phenotyping of these cells 

could also be important in providing detailed information on how different signals may 

activate the microglial cell populations, on their relation to each other and their origin, on the 

regulation of their migration, etc. Furthermore, therapeutic approaches through which to 

modify the microglial responses could also benefit from in vitro studies similar to that 

presented here. 

One of the most ubiquitous Ca2+-sensing proteins is CaM. Its distributions in the 

developing and the adult rodent brain have been well documented (Caceres et al., 1983; Seto-

Ohshima et al., 1983). It is encoded by three different genes in mammals (Palfi et al., 2002; 

Toutenhoofd and Strehler, 2000). The expression patterns corresponding to the three CaM 

genes display a broad differential distribution in the developing (Kortvely et al., 2002) and the 

adult rat CNS under both physiological (Kovacs and Gulya, 2002, 2003; Palfi et al., 1999; 

Solá et al., 1996) and pathophysiological conditions (Palfi et al., 2001; Palfi and Gulya, 1999; 
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Vizi et al., 2000). Quantitative analysis of the expression patterns of these genes indicated a 

differential dendritic targeting of the CaM mRNAs (Kortvely et al., 2003; Palfi et al., 1999, 

2005); differential intracellular targeting of selected CaM mRNA populations could serve for 

the local translation of the necessary CaM proteins that regulate the numerous target proteins 

in that particular cytoplasmic compartment (Kortvely and Gulya, 2004). 

CaM expression could be regulated by a number of different physiological and 

pathophysiological cues. Although its gene expression is generally very stable (Kortvely and 

Gulya, 2004; Palfi et al., 2002), we have identified many factors that could differentially 

affect the expressions of the individual CaM genes in neurons with distinct phenotypes from 

different brain regions (Orojan et al., 2006; Palfi et al., 1999, 2002; Bakota et al., 2005), e.g. 

inflammation (Orojan et al., 2008), ischemia (Palfi et al., 2001), dehydration (Palfi and Gulya, 

1999), and chronic ethanol treatment and withdrawal (Vizi et al., 2000). Apart from the 

neurons, the microglia display a considerable amount of CaM. This CaM expression, however, 

is strongly dependent on the phenotype. After a kainic acid challenge, CaM immunoreactivity 

was earlier demonstrated in reactive microglia of the hippocampus (Solá et al., 1997), where 

the thickened and shortened microglial processes accumulated CaM protein. 

In our studies, CaM was localized both in developing microglial cells of primary 

cortical cultures established from E18 wild-type rat embryos maintained for up to 28 days 

(DIV1-28) and in pure microglial cells subcultured from DIV7 cultures for 4 days (subDIV4). 

Moreover, the presence of CaM protein was demonstrated not only in reactive microglia 

(treated with LPS alone or in combination with one of the CaM inhibitors), but also, at a 

lower protein level, in unchallenged proliferating ameboid or even ramified, microglial cells. 

We observed morphologically and functionally different microglial populations within the 

range from weak to strong levels of CaM expression during culturing, as evidenced by their 

quantitative assessment by fluorescent immunocytochemical and Western blotting methods. 

In mixed primary cortical cultures, ameboid microglia, the predominant form in the early 

stages but always present (in much smaller numbers) during culturing (Szabo and Gulya, 

2013), expressed strong CaM immunoreactivity throughout the cytoplasm, while ramified 

microglia, the typical form in the later stages of microglial development, showed a weaker 

and more evenly distributed CaM immunoreactivity. A similar intracellular distribution of 

CaM protein expression was observed in pure microglial cultures. In unchallenged and LPS-

challenged cultures, most of the microglia was ameboid and had strong CaM 

immunoreactivity throughout the cytoplasm. Treatments with CaM inhibitors, both in 



	  

 

47	  

unchallenged and LPS challenged cells, resulted in a weaker and more homogenously 

localized CaM immunoreactivity. 

We found that the intracellular localization of CaM immunoreactivity described above 

was closely related, and typically complementary, to the filamentous actin cytoskeleton, 

comprised mainly of branched F-actin (Rotty et al., 2013). F-actin was visualized in our 

studies by the distributions of an actin-binding protein, Iba1, and phalloidin, a bicyclic 

heptapeptide that recognizes F-actin only, e.g. the form that possesses cellular functionality. 

Iba1 is an intracellular Ca2+-binding protein that plays an important role in regulation of the 

intracellular actin dynamics through the direct binding of actin, enhances membrane ruffling 

and participates in phagocytosis and cell motility (Ohsawa et al., 2000, 2004), functions that 

require large amounts of cortical F-actin. Our immunocytochemical observations showed that 

ramified cells (characterized by larger TI values) that displayed minimal or no ruffling at all 

had only modest quantities of CaM proteins in the cell cortex as compared with ameboid or 

reactive microglia. Coincidentally, the amount of cortical F-actin was likewise less in ramified 

microglia, and the reorganization of the actin cytoskeleton determined the intracellular 

distribution of CaM. Concomitantly increased levels of Iba1 and CaM protein expression, 

however, were evident both in unchallenged ameboid and in LPS- or LPS and CaM inhibitor-

challenged, e.g. activated/reactive microglia. Our observations relating to the intracellularly 

redistributed CaM vs. F-actin are consistent with the findings in mast cells in previous studies. 

For example, Sullivan et al. (2000) demonstrated that CaM promoted the disassembly of 

cortical F-actin, while Psatha et al. (2004) found that the disassembly of the actin cytoskeleton 

eliminated CaM localization. 

LPS activation renders microglia ameboid, induces several pro- and anti-inflammatory 

signaling molecules (Lim et al., 2015; Zhu et al., 2014) and neurotoxic substances through 

binding to the CD14/MD-2/Toll-like receptor 4-complex (Fricker et al., 2012; Tokes et al., 

2011), and gives rise, among others, to cell spreading by interfering with the organization of 

the actin cytoskeleton through the alteration of integrin clustering (Abram and Lowell, 2009). 

Microglia activation was shown to involve the signaling pathways nuclear factor κB and p38 

mitogen-activated protein kinase (Bachstetter et al., 2007; Cao et al., 2014; Kaushal et al., 

2007). It must be noted, however, that the activation of microglial cells by LPS is not 

proliferative (Suzumura et al., 1991).  

In our studies, LPS challenge resulted in significant cell spreading, documented in 

increases in cell surface, perimeter and TI, and in a repositioning of intracellular actin 
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filaments toward podosome and filipodia formation. In spite of this lack of interaction 

between the LPS challenge and CaM protein expression, some of the effects of LPS are 

mediated through CaM-related phenomena in macrophages (Sweet and Hume, 1996). An LPS 

challenge, for example, elevated the intracellular Ca2+ concentration in brain macrophages via 

the activation of phosphatidylinositol (3,4,5)-trisphosphate-sensitive stores that, in turn, 

activated the actin cytoskeleton (Bader et al., 1994). Such an inflammatory response was 

recently identified as one developed through the activation of CaM-dependent kinase kinase 2 

via Toll-like receptors (Racioppi et al., 2012). Thus, the effects of LPS could be attributed, at 

least in part, to CaM-related phenomena regulating the actin cytoskeleton without directly 

affecting the CaM protein expression. In another study, CaM was involved in spontaneous 

microglial ramification and the activation of proliferation from quiescence as it inhibited the 

spontaneous ramification and decreased the proliferation of these cells (Casal et al., 2001). 

The loss of ramification was reported to be induced by the elevation of intracellular Ca2+ via 

direct or indirect routes (Kalla et al., 2003) that eventually resulted in CaM activation and/or 

accumulation in the cell cortex. 

The ability of CaM to activate many target proteins depends on its highly flexible 

conformation, enabling it to interact with a wide variety of proteins (Yamniuk and Vogel, 

2004). We hypothesize that this conformational flexibility is limited to different degrees when 

CaM inhibitors are applied; consequently, many of the CaM-regulated effects will be 

differentially affected by CaM inhibition. Thus, given the number of CaM-interacting target 

proteins and their participation in the various intracellular signaling pathways involved in, for 

example, the remodeling of the actin cytoskeleton during lamellipodia, filipodia or podosome 

formation (Evans et al., 2003; Murphy and Courtneidge, 2011; Sunagawa et al., 2000; Vincent 

et al., 2012), it is difficult at present to give an accurate explanation as to how different CaM 

antagonists might interfere with the outcome of the signaling processes. It seems clear, 

however, that CaM inhibition interferes strongly with both morphological and functional 

aspects of the microglial cells. Future experiments may shed light on whether the effects of 

CaM inhibition seen in selected morphological and functional properties of microglia are 

uniquely characteristic of these cells or may perhaps be typical of other cell types too, and 

may promote an understanding of the cell type-specific roles of CaM. 

 

6. CONCLUSION 

In our studies, selected morphological, immunocytochemical and functional aspects of various 

microglial cell populations were characterized in mixed neuronal/glial and pure microglial 
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cultures. The mixed primary cortical cultures were prepared from the forebrains of embryonic 

(E18) rats and maintained for up to 28 days (DIV1–DIV28) using routine culturing techniques. 

The pure microglial cells were subcloned (subDIV4) from the mixed primary cultures and 

maintained for up to 7 days (DIV7). During culturing, expansion of the microglial cells was 

observed, as evidenced by quantitative assessment of selected monocyte/macro-

phage/microglial cell-specific markers (HLA DP, DQ, DR, CD11b/c and Iba1) via 

immunocyto- and -histochemistry and Western blot analysis. The Iba1 immunoreactivity in 

Western blots steadily increased about 750-fold, and the number of Iba1-immunoreactive cells 

rose at least 67-fold between DIV1 and DIV28. Morphometric analysis on binary (digital) 

silhouettes of the microglia revealed their evolving morphology during culturing. Microglial 

cells were mainly ameboid in the early stages of in vitro differentiation, while mixed 

populations of ameboid and ramified cell morphologies were characteristic of older cultures 

as the average transformation index (TI) increased from 1.96 (DIV1) to 15.17 (DIV28). 

Multiple immunofluorescence labeling of selected biomarkers revealed different microglial 

phenotypes during culturing. For example, while HLA DP, DQ, DR immunoreactivity was 

present exclusively in ameboid microglia (TI < 3) between DIV1 and DIV10, CD11b/c- and 

Iba1-positive microglial cells were moderately (TI < 13) and progressively (TI < 81) more 

ramified, respectively, and always present throughout culturing. Regardless of the age of the 

cultures, proliferating microglia were Ki67-positive and characterized by low TI values (TI < 

3). The microglial function was assessed by an in vitro phagocytosis assay. Unstimulated 

microglia with low TI values were significantly more active in phagocytosing fluorescent 

microspheres than the ramified forms. In vitro studies on microglial population dynamics 

combined with phenotypic characterization can be of importance when different in vivo 

pathophysiological situations are modeled in vitro. 

The roles of CaM, a multifunctional intracellular calcium receptor protein, as concerns 

selected morphological and functional characteristics of pure microglial cells were 

investigated through use of the CaM antagonists calmidazolium (CALMID) and 

trifluoperazine (TFP). The intracellular localization of the CaM protein relative to phalloidin, 

a bicyclic heptapeptide that binds only to filamentous actin, and the Iba1 protein was 

determined by immunocytochemistry, with quantitative analysis by immunoblotting. In 

unchallenged and untreated (control) microglia, high concentrations of CaM protein were 

found mainly perinuclearly in ameboid microglia, while the cell cortex had a smaller CaM 

content that diminished progressively deeper into the branches in the ramified microglia. The 

amounts and intracellular distributions of both Iba1 and CaM proteins were altered after 
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lipopolysaccharide (LPS) challenge in activated microglia. CALMID and TFP exerted 

different, sometimes opposing, effects on many morphological, cytoskeletal and functional 

characteristics of the microglial cells. They influenced the CaM and Iba1 protein expressions 

and their intracellular localizations differently, and differentially affected the reorganization 

of the actin cytoskeleton in the microglial cell cortex, influencing lamellipodia, filipodia and 

podosome formation. 

Acting on many target proteins, CaM is a key factor in the regulation of a number of 

morphological aspects of the microglia through the modulation of the actin cytoskeleton that 

affects the formation and maintenance of lamellipodia, filipodia and podosomes of these cells. 

CALMID and TFP, two prototypical CaM antagonists acting through different molecular 

mechanisms on the CaM protein, have differential effects on these morphological and certain 

fuctional aspects, including Iba1 and CaM protein expression, when tested both in 

unchallenged and LPS-challenged pure microglial cells. In general, TFP was more potent in 

provoking these structural alterations. Deciphering the roles of CaM in microglial functions, 

perhaps through use of different CaM-specific inhibitors, could be important in understanding 

the roles and modes of action of microglia in health and disease. 

In summary, the main findings of our studies are: 

1) In mixed primary cultures, TI values revealed the evolving microglial morphology and 

functions during culturing as microglia with TI < 3 were more active in phagocytosing 

than the ramified forms characterized with TI > 3. 

2) The macrophage/microglia markers labelled different microglial phenotypes in culture: 

HLA DP, DQ, DR-positive microglia were exclusively ameboid, while CD11b/c-

labeled microglia were typically less ramified than the Iba1-labeled cells. 

3) When CaM inhibitors were tested in unchallenged and in LPS-challenged pure 

microglia, they affected many morphological and functional aspects of microglial cells. 

CALMID and TFP differentially affected the intracellular distributions of CaM and Iba1, 

and the actin cytoskeleton reorganization. 
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DEVELOPMENT OF THE MICROGLIAL PHENOTYPE IN CULTURE

M. SZABO AND K. GULYA *

Department of Cell Biology and Molecular Medicine, University of

Szeged, Szeged, Hungary

Abstract—Selected morphological, molecular and func-

tional aspects of various microglial cell populations were

characterized in cell cultures established from the fore-

brains of E18 rat embryos. The mixed primary cortical cul-

tures were maintained for up to 28 days using routine

culturing techniques when the microglial cells in the culture

were not stimulated or immunologically challenged. During

culturing, expansion of the microglial cell populations was

observed, as evidenced by quantitative assessment of

selected monocyte/macrophage/microglial cell-specific

markers (human leukocyte antigen (HLA) DP, DQ, DR,

CD11b/c and Iba1) via immunocyto- and histochemistry

and Western blot analysis. The Iba1 immunoreactivity in

Western blots steadily increased about 750-fold, and the

number of Iba1-immunoreactive cells rose at least 67-fold

between one day in vitro (DIV1) and DIV28. Morphometric

analysis on binary (digital) silhouettes of the microglia

revealed their evolving morphology during culturing.

Microglial cells were mainly ameboid in the early stages of

in vitro differentiation, while mixed populations of ameboid

and ramified cell morphologies were characteristic of older

cultures as the average transformation index (TI) increased

from 1.96 (DIV1) to 15.17 (DIV28). Multiple immunofluores-

cence labeling of selected biomarkers revealed different

microglial phenotypes during culturing. For example, while

HLA DP, DQ, DR immunoreactivity was present exclusively

in ameboid microglia (TI < 3) between DIV1 and DIV10,

CD11b/c- and Iba1-positive microglial cells were moderately

(TI < 13) and progressively (TI < 81) more ramified, respec-

tively, and always present throughout culturing. Regardless

of the age of the cultures, proliferating microglia were Ki67-

positive and characterized by low TI values (TI < 3). The

microglial function was assessed by an in vitro phagocyto-

sis assay. Unstimulated microglia with low TI values were

significantly more active in phagocytosing fluorescent

microspheres than the ramified forms. In vitro studies on

microglial population dynamics combined with phenotypic

characterization can be of importance when different

in vivo pathophysiological situations are modeled in vitro.

� 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: immunocytochemistry, microglia, phagocytosis,

primary culture, transformation index, Western blotting.

INTRODUCTION

Microglial cells, the resident immune cells of the central

nervous system (CNS), share a number of phenotypic

characteristics and lineage properties with other bone

marrow-derived myeloid cell populations, and are

regarded as members of the monocyte/macrophage

lineage (Gehrmann et al., 1995; Kreutzberg, 1996;

Geissmann et al., 2003, 2010; Ginhoux et al., 2010;

Prinz and Mildner, 2011; Prinz et al., 2011). Recent

in vivo lineage-tracing studies demonstrated that adult

microglial cells originate from primitive myeloid

progenitors that arise early in embryonic development,

and constitute an ontogenetically distinct population in

the mononuclear phagocyte system (Ginhoux et al.,

2010). Microglia are highly plastic and, by virtue of their

location and current role in the nervous tissue, are able

to undergo a variety of morphological and functional

changes in response to various stimuli. In their non-

activated or resting state, they display a ramified

morphology characterized by numerous, fine-branched

processes with relatively small somata and subdued

macrophage-like functional properties. In response to

neural injury, infection and inflammatory or other

signals, however, microglial cells become activated and

undergo a series of morphological, molecular and

functional changes in proportion to the severity of the

damage to the neuronal tissue (Ling and Wong, 1993;

Kreutzberg, 1996). Shortly after their initial activation,

microglial cells become progressively less ramified and

quickly develop an enlarged cell body with several short,

thickened processes (activated microglia) that may

eventually completely retract (phagocytic microglia).

This morphological transformation parallels microglial

proliferation, homing and adhesion to damaged cells

(Raivich et al., 1999; Streit et al., 1999). The

development of the ameboid appearance and

phagocytic nature of the microglial cells coincides with

their antigen presentation ability and cytotoxic and

inflammation-mediating signalization (Ling and Wong,

1993; Kreutzberg, 1996; Town et al., 2005; Werry et al.,

2011).

As regards origin, there are two populations of

microglial cells in the CNS at any given time. The
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resident microglia comprise a distinct pool of cells that

respond to stimuli and proliferate accordingly, and

regulate their population dynamics in a manner

dependent on the severity of the tissue damage. They

are distributed more or less evenly throughout the

nervous tissue (Milligan et al., 1991a) and exhibit an

extremely slow turnover with the bone marrow or the

peripheral blood under normal conditions. The resting

microglia with ramified morphology lack the major

histocompatibility complex (MHC) class I/MHC class II

proteins, interferon-c, cytokines, CD45 antigens and

many other surface receptors required to serve in the

antigen-presenting, phagocytic and cytotoxic roles

characteristic of the normal macrophage functions.

Another population of cells, however, among which the

perivascular microglial cells are prominent in number, is

located in the close vicinity of blood vessels, and can be

replaced regularly by bone marrow-derived precursor

cells (Hickey and Kimura, 1988; Eglitis and Mezey,

1997) that express MHC class II antigens, indicating

their monocyte/macrophage origin (Streit et al., 1989;

Gehrmann et al., 1995). In cases of extreme damage to

the CNS, as in infection or stroke, the blood–brain

barrier may weaken considerably, and hematogenous,

bone marrow-derived cells, such as myeloid progenitor

cells and macrophages, may enter the brain (Priller

et al., 2001). Once the damage has abated, the

peripheral and central systems are disconnected for the

recovery and regrowth period (Gehrmann, 1996).

Although macrophages and microglia may have similar

roles, the populations of resident microglia and recently

migrated hematogenous myeloid progenitors/

macrophages differ in many important respects

(Geissmann et al., 2003; Ladeby et al., 2005; Wirenfeldt

et al., 2007).

Similar to the extensive studies on the origin and the

morphological and functional development of the

microglial phenotype in vivo (Ling et al., 1990; Milligan

et al., 1991a,b; Ling and Wong, 1993; Dalmau et al.,

1997, 1998, 2003; Streit et al., 1999; Orłowski et al.,

2003; Geissmann et al., 2010), a large body of

information is available on the characteristics of the

different microglial populations maintained in cell

cultures. However, as a variety of proinflammatory

factors are produced by activated microglial cells on the

one hand (see Kreutzberg, 1996, for references), and

activation of microglial cells by a number of agents has

been demonstrated on the other (Liu et al., 2000; Werry

et al., 2011; Berger et al., 2012), characterization of the

activated microglial cells in response to an in vitro
stimulation/challenge predominates in the literature.

Recent studies have demonstrated, for example, that

under specific polarization conditions microglial cells, in

a similar way to peripheral macrophages, develop into

different inflammation-related phenotypes, termed M1

and M2 (Gordon, 2003; Mosser and Edwards, 2008).

Under physiological conditions, the vast majority of

the resident microglial cells in the CNS are certainly

unstimulated and characterized by ramified morphology.

Despite the recent in vivo experimental approaches that

unveiled new aspects of the functional, developmental

and lineage characteristics of the microglial cell

populations (Geissmann et al., 2003, 2010; Auffray

et al., 2009; Ginhoux et al., 2010; Durafourt et al., 2012;

Xu et al., 2012), only limited data are available on the

development of the microglial phenotype in vitro under

unstimulated/immunologically unchallenged conditions.

In an attempt to shed more light on the nature of the

unstimulated microglia in vitro, we set out to

characterize selected morphological, molecular and

functional aspects of such cells, partially by quantitative

techniques, in rat primary cortical cell cultures

maintained routinely up to DIV28, in order to monitor the

‘‘normal’’ development of their phenotype. We analyzed

the population dynamics of the microglial cells in terms

of their percentage of the total number of cells during

culturing, quantitatively characterized the different

microglial populations according to their transformation

indices, and differentially localized some of the

canonical microglial markers to these distinct

morphologies. As far as we are aware, a similarly

detailed study for a period of up to 28 days on the

characteristics of the in vitro development of

unstimulated and unchallenged microglial cells of

embryonic origin has not been reported previously.

EXPERIMENTAL PROCEDURES

Animals

All animal experiments were carried out in strict compliance with

the European Council Directive (86/609/EEC) and EC regulations

(O.J. of EC No. L 358/1, 18/12/1986) regarding the care and use

of laboratory animals for experimental procedures, and followed

the relevant Hungarian and local legislation requirements. The

experimental protocols were approved by the Institutional

Animal Welfare Committee of the University of Szeged (I-74-II/

2009/MÁB). The pregnant Sprague–Dawley rats (170–190 g;

one animal per cage) were kept under standard housing

conditions and fed ad libitum.

Antibodies

The antibodies used in our immunohistochemical,

immunocytochemical and Western blot studies are listed in

Table 1. For a thorough characterization of different microglial

phenotypes developed in vitro, antibodies against the ionized

calcium-binding adaptor molecule 1 (Iba1), the human

leukocyte antigen (HLA) class II genes HLA DP, DQ, DR and

cluster of differentiation 11b/c, the rat CR3 complement

receptor (CD11b/c) were used in our immunohistochemical and

Western blot analyses. The anti-Iba1 antibody recognizes the

Iba1 protein, an intracellular Ca2+-binding protein expressed in

the CNS specifically in macrophages and microglia (Imai et al.,

1996), and has been used to detect both resting and activated

microglial phenotypes (Ito et al., 1998). The HLA class II genes

are composed of three closely linked subregions encoding the

polymorphic HLA class II molecules HLA DP, DQ, DR. The

anti-HLA DP, DQ, DR antibody reacts with the a and b-chains
of all products of these subregions and recognizes numerous

antigen-presenting cells that express these molecules, including

the reactive and the resting microglia, the perivascular

microglial cells, many macrophages and most monocytes in the

CNS (Horejsı́ et al., 1986; Ulvestad et al., 1994b). The anti-

HLA DRa antibody recognizes the a subunit of the class II

MHC complex antigen HLA DR, a transmembrane glycoprotein
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constitutively expressed by microglia (Ulvestad et al., 1994a).

The anti-CD11b/c antibody recognizes a common epitope

shared between CD11b and CD11c (integrin aM and aX

chains), reacts with all monocytes and macrophages (Robinson

et al., 1986; Wang et al., 1996), and is commonly used as a

resident microglial marker in the CNS (Imai et al., 1996). The

anti-b tubulin III (Banerjee et al., 1990) antibody has been used

to detect neurons, the anti-glial fibrillar acidic protein (GFAP)

antibody (Guillemin et al., 1997) to label astrocytes, and the

anti-20,30-cyclic nucleotide 30-phosphodiesterase (CNPase)

antibody (Zhang et al., 2010) to detect oligodendrocytes. The

anti-Ki67 antibody has been used to detect proliferating cells.

Ki67 is a nuclear protein expressed in all active phases of the

cell cycle from the late G1 phase through the end of the M

phase but is absent in non-proliferating and early G1 phase

cells (Starborg et al., 1996; Scott et al., 2004).

Various dilutions of primary and secondary antibodies,

incubation times and blocking conditions for each antibody

used were carefully tested for both immunohistochemistry/

immunocytochemistry and Western blot analysis. To detect the

specificities of the secondary antisera, omission control

experiments (staining without the primary antibody) were also

performed. In such cases, no fluorescent or Western blot

signals were detected.

Paraffin embedding and sectioning

Forebrain samples of embryonic day 18 (E18) rats were carefully

removed, fixed by immersion overnight at 4 �C in 0.05 M

phosphate-buffered saline (PBS) containing 4% formaldehyde,

and then embedded in low-melting point paraffin. Coronal

sections (8 lm thick) were cut in a microtome and mounted on

slides coated with (3-aminopropyl)triethoxysilane (Menzel,

Darmstadt, Germany) to prevent detachment. After

deparaffinization and rehydration, the slides were placed in a

jar filled with 0.01 M citrate buffer (pH 6.0) and heated three

times for 3 min at 800 W in a microwave oven. The sections

were then processed for immunohistochemistry.

Cortical cell cultures

Mixed primary cortical cell cultures were established from E18

wild-type rat embryos by the use of general methods described

previously (Kortvely et al., 2003). Briefly, 6–8 fetal rats under

ether anesthesia were surgically decapitated and the frontal

lobe of the cerebral cortex was removed, minced with scissors,

incubated for 10 min at 37 �C in 9 ml of Dulbecco’s Modified

Eagle’s Medium (DMEM; Invitrogen, Carlsbad, CA, USA;

containing 1 g/l D-glucose, 110 mg/l Na-pyruvate, 4 mM L-

glutamine, 3.7 g/l NaHCO3, 10,000 U/ml penicillin G, 10 mg/ml

streptomycin sulfate and 25 lg/ml amphotericin B)

supplemented with 0.25% trypsin (Invitrogen) and then

centrifuged at 1000g for 10 min at room temperature (RT). The

pellet was resuspended, washed twice in 5 ml of DMEM

containing 10% heat-inactivated fetal bovine serum (Invitrogen),

and centrifuged for 10 min at 1000g at RT. The final pellet was

resuspended in 2 ml of the same solution as above, after which

the cells were seeded either in poly-L-lysine-coated coverslips

(15 � 15 mm; 200,000 cells/coverslip) or in poly-L-lysine-coated

Petri dishes (60 mm � 15 mm; 1,000,000 cells/dish) and

cultured at 37 �C in a humidified air atmosphere supplemented

with 5% CO2. All experiments were performed with cultures

aged 1–28 days (DIV1–DIV28), or occasionally with cultures

aged up to 2 months (data not shown). For culturing periods

longer than 3 days, the DMEM was changed every 3 days.

Apart from the microglial markers, several cell surface and

cytoplasmic neuronal, astrocytic and oligodendrocytic markers

Table 1. Antibodies used in immunohistochemistry, immunocytochemistry and Western blot analysis

Primary

antibody,

abbrev. name

Primary antibody, full

name

Final

dilution

Company Secondary antibody

with fluorochrome,

full name

Company Final

dilution

Antibodies used in immunohistochemistry and immunocytochemistry

Iba1 Rabbit anti-Iba1 polycl.

ab.

1/300 Wako, Osaka, Japan Alexa Fluor 568 goat

anti-rabbit

Invitrogen, Carlsbad, CA,

USA

1/1000

CD11b/c (OX42) Mouse anti-CD11b/c

equivalent monocl. ab.,

clone OX42

1/200 Abcam, Cambridge,

England

Alexa Fluor 488 goat

anti-mouse or Alexa

Fluor 568 goat anti-

mouse

Invitrogen, Carlsbad, CA,

USA

1/1000

HLA DP, DQ,

DR

Mouse anti-HLA-DP, DQ,

DR, monocl. ab., clone

CR3/43

1/100 Dako, Glostrup,

Denmark

Alexa Fluor 488 goat

anti-mouse

Invitrogen, Carlsbad, CA,

USA

1/1000

HLA DRa Rabbit anti-HLA-DRa,
FL-254, polycl. ab., SC-

25614

1/50 Santa Cruz

Biotechnol., Inc.,

Santa Cruz, CA, USA

Alexa Fluor 488 goat

anti-rabbit

Invitrogen, Carlsbad, CA,

USA

1/1000

b Tubulin III Mouse anti-tubulin, b-III,
monocl. ab., clone TU-20

1/400 Abcam, Cambridge,

England

Alexa Fluor 488 goat

anti-mouse

Invitrogen, Carlsbad, CA,

USA

1/1000

Ki67 Rabbit anti-Ki67, monocl.

ab., clone SP6

1/200 Thermo Scientific,

Fremonz, CA, USA

Alexa Fluor 488 goat

anti-rabbit

Invitrogen, Carlsbad, CA,

USA

1/1000

Antibodies used in Western blot studies

Iba1 Rabbit anti-Iba1 polycl.

ab.

1/1000 Wako, Osaka, Japan Anti-rabbit IgG,

peroxidase conjug.

Sigma, St. Louis, MO,

USA

1/1000

b Tubulin III Mouse anti-tubulin, b-III,
monocl. ab., clone TU-20

1/1000 Abcam, Cambridge,

England

Anti-mouse IgG,

peroxidase conjug.

Sigma, St. Louis, MO,

USA

1/3000

GFAP Rabbit anti-GFAP polycl.

ab.

1/5000 Abcam, Cambridge,

England

Anti-rabbit IgG,

peroxidase conjug.

Sigma, St. Louis, MO,

USA

1/2000

CNPase Mouse anti-CNPase,

monocl. ab., clone 11–5B

1/500 Abcam, Cambridge,

England

Anti-mouse IgG,

peroxidase conjug.

Sigma, St. Louis, MO,

USA

1/3000
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were used to characterize the primary cultures. Cell proliferation

was assessed by the use of the antibody raised against Ki67.

In vitro phagocytosis assay

The fluid-phase phagocytic capacity of the unstimulated

microglial cells was determined via the uptake of fluorescent

microspheres (2 lm diameter; Sigma, St. Louis, MO, USA).

Cortical cells from E18 rats were plated on coverslips in 35-mm

Petri dishes at a density of 200,000 cells/coverslip in 2 ml of

DMEM containing 10% heat-inactivated fetal bovine serum as

above, and cultured for 14 days. At the end of the culturing

period, 1 ll of a 2.5% aqueous suspension of fluorescent

microspheres per ml was added to the primary culture, which

was then incubated for 60 min at 37 �C. The cells were next

washed five times with 2 ml of PBS to remove dish- or cell

surface-bound residual fluorescent microspheres, and fixed

with 4% formalin in PBS. For measurement of the phagocytotic

activity, cells labeled with phagocytosed microbead(s) were

counted. Twenty random fields with a total of 120 bead-labeled

cells were counted under a fluorescent microscope with a 10�
or 20� objective. The number of phagocytosed microbeads

(mean ± SD) was analyzed as a function of the transformation

index (TI). Statistically significant differences were determined

by the Mann–Whitney Rank Sum test.

Immunohistochemistry and -cytochemistry

For immunohistochemistry, primary cortical cells cultured in vitro
on poly-L-lysine-coated coverslips for 1–28 days (DIV1–DIV28)

were used. At different time intervals, the cultured cells on the

coverslips were fixed in 4% formaldehyde in 0.05 M PBS (pH

7.4 at RT) for 5 min, and rinsed in 0.05 M PBS for 3 � 5 min.

After permeabilization and blocking of the nonspecific sites in

0.05 M PBS solution containing 5% normal goat serum

(Sigma), 1% heat-inactivated bovine serum albumin (Sigma)

and 0.05% Triton X-100 for 30 min at 37 �C, the cells on the

coverslips were incubated overnight at 4 �C with the

appropriate primary antibody (Table 1) in the above solution.

The cultured cells were washed for 4 � 10 min at RT in 0.05 M

PBS, and then incubated with the appropriate Alexa Fluor

fluorochrome-conjugated secondary antibody (Table 1) in the

above solution, but without Triton X-100, in the dark for 3 h at

RT. The cells on the coverslip were washed for 4 � 10 min in

0.05 M PBS at RT, and the nuclei were stained in 0.05 M PBS

solution containing 1 mg/ml polyvinylpyrrolidone and 0.5 ll/ml

Hoechst 33258 dye (Sigma). The coverslips were rinsed in

distilled water for 5 min, air-dried and mounted on microscope

slides in a Vectashield mounting medium (Vector Laboratories,

Burlingame, CA, USA). Cells were viewed on a Nikon

Microphot-FXA epifluorescent microscope (Nikon Corp., Tokyo,

Japan) and photographed with a Spot RT Color CCD camera

(SPOT RT/ke, Diagnostic Instruments, Inc., Sterling Heights,

MI, USA).

Western blot analysis

For Western blotting, the protocols were optimized for each

antibody as regards epitope accessibility, polyacrylamide gel

separation, antibody dilution and chemiluminescence signal

intensity. Cultured primary cells (DIV1–DIV28) were collected

through the use of a rubber policeman, homogenized in 50 mM

Tris–HCl (pH 7.5) containing 150 mM NaCl, 0.1% Nonidet P40,

0.1% cholic acid, 2 lg/ml leupeptin, 1 lg/ml pepstatin, 2 mM

phenylmethylsulfonyl fluoride and 2 mM EDTA, and centrifuged

at 10,000g for 10 min. The pellet was discarded and the protein

concentration of the supernatant was determined (Lowry et al.,

1951). For the Western blot analyses of microglial, neuronal,

astrocyte or oligodendrocyte immunoreactivities, 5–10 lg of

protein was separated on a sodium dodecyl sulfate (SDS)–

polyacrylamide gel (4–10% stacking gel/resolving gel),

transferred onto Hybond-ECL nitrocellulose membrane

(Amersham Biosciences, Little Chalfont, Buckinghamshire,

England), blocked for 1 h in 5% nonfat dry milk in Tris-buffered

saline (TBS) containing 0.1% Tween 20, and incubated for 1 h

with the appropriate primary antibodies. After five washes in

0.1% TBS–Tween 20, the membranes were incubated for 1 h

with the appropriate peroxidase-conjugated secondary

antibodies (Table 1), and washed five times as before. The

enhanced chemiluminescence method (ECL Plus Western

blotting detection reagents; Amersham Biosciences) was used

to reveal immunoreactive bands according to the

manufacturer’s protocol.

Digital image processing and image analysis

Gray-scale digital images of the immunoblots were acquired by

scanning the autoradiographic films with a desktop scanner

(Umax PowerLook III; Umax Data Systems, Inc., Taipei,

Taiwan). The images were scanned and processed at identical

settings in order to allow comparison between the Western

blots from different samples. Digital images were acquired with

a Nikon Microphot-FXA epifluorescent microscope (Nikon

Corp., Tokyo, Japan), using a Spot RT Color CCD camera and

Spot RT software (Spot RT/ke Diagnostic Instruments, Sterling

Heights, MI, USA). Color correction and cropping of the digital

images were occasionally performed when photomicrographs

were made for publication (Adobe Photoshop; Adobe Systems,

Inc., San Jose, CA, USA).

Microglial cells and cell nuclei in the cultures were counted

with the use of the plugins developed for the computer program

ImageJ (version 1.38; developed by W. Rasband at the U.S.

National Institutes of Health, and available from the Internet at

http://rsb.info.nih.gov/ij). Cell nuclei were counted with the use

of the ‘‘Nucleus Counter’’ plugin (Image Processing and

Analysis in Java, a collection of plugins and macros) installed

under ImageJ (www.macbiophotonics.ca). Briefly, digital

images in tagged image file formats (.tif) were opened in

ImageJ, and Plugins? Particle Analysis? Nucleus Counter

menus were then selected and customized as follows: the

smallest and largest particle sizes were set to 50 and 10,000,

respectively. ‘‘Otsu’’ was selected for automatic thresholding,

and ‘‘mean 3 � 3’’ was chosen for the performance of smooth

filtering (Sezgin and Sankur, 2004). After background

subtraction, overlapping objects in the resulting binary images

were separated, via the menu command ‘‘Process/Binary/

Watershed’’ (see Abràmoff et al., 2004, for details, and the

documentation web pages for ImageJ at http://rsb.info.nih.gov/

ij/docs/index.html). For the counting of microglial cells

expressing immunopositivity for the Iba1 antigen, the ‘‘Cell

Counter’’ plugin was used (ImageJ for Microscopy). After the

appropriate images (.tif) had been opened, Plugins? Particle

Analysis? Cell Counter menus were selected, and the output

was copied to a Microsoft Excel spreadsheet (Microsoft Corp.,

Redmond, WA, USA) for statistical analysis.

Microglial cell silhouettes were acquired by transforming the

raw digital files of Iba1-immunoreactive cells recorded under

fluorescent microscope light to binary files by means of the

ImageJ software. The color cell images were transformed into

their binary replicas (silhouettes) by using automatic

thresholding procedures. After the values of cell perimeter (lm)

and cell area (lm2) had been determined in at least three

separate experiments (at least two coverslips in each

experiment for each culturing time investigated; around 20

randomly selected cells/coverslip), the TI reflecting the degree

of process extension was calculated through the expression

[perimeter of cell (lm)]2/4p [cell area (lm2)] as previously

described (Fujita et al., 1996). A total of 398 cell silhouettes

were analyzed in this study.
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Statistical analysis

For Western blots, values are presented as means ± SD from at

least three blots for each of the three independent experiments

for each time period examined. For the counting of microglial cells

and cell nuclei, at least 10 randomly sampled microscope fields

from 2 to 3 coverslips for each culturing time period from each of

the three separate cell-culturing experiments were counted. In the

computation of semiquantitative cell silhouette characteristics

(digital binary pictures), data on 20 cells per coverslip from at

least three separate experiments for each culturing time were

used. Values are presented as means ± SD. Statistical analyses

were carried out with the Mann–Whitney Rank Sum test

(SigmaStat 3.11; Systat Software Inc., Chicago, IL, USA).

RESULTS

Microglial cells collected from the forebrains of E18
rats are mainly ameboid

The microglial cells were collected from E18 rat forebrains

and maintained in mixed primary neuronal-glial co-

cultures. Light microscopic fluorescent

immunohistochemistry revealed (Fig. 1) that on E18 the

Iba1-labeled microglial cells in the forebrain cortical

tissue appeared to be mainly ameboid (arrowheads),

though more differentiated forms were also present in

smaller numbers. Most of the microglial cells were

rounded or slightly ovoid and lacked branching

processes; however, rod-like (double-arrowhead) or

slightly ramified microglial cells (arrrow) were

occasionally also seen in the embryonic rat forebrain.

Microglial cells proliferate during in vitro culturing of
primary forebrain cells

As concerns the cell number and the presence of

numerous microglia-specific antigens, fluorescent

immunocytochemistry (Fig. 2) and Western analysis

(Fig. 3) demonstrated a massive in vitro expansion of

the microglial cell type between DIV1 and DIV28. The

total numbers of cells at the beginning and at the end of

the culturing period did not differ significantly. While the

total number of cells exhibited a minimum on DIV10, the

number of microglia constantly increased from

immediately after seeding throughout the entire culturing

period. The microglia were situated in a scattered

manner in younger cultures (before and around DIV14;

Fig. 2A–E), but when they increased in abundance as

the cultures grew older, they became more clumped and

grouped together around other cells, as seen between

DIV21 and DIV28 (Fig. 2F, G). Typical relative

distributions of neuronal and microglial cells during

culturing may be seen in Fig. 2H–J. The microglial cell

content originally amounted to less than 0.5% of the

total cell number at the time of seeding, but steadily

rose during culturing. On DIV4 and DIV7, progressively

more microglial cells appeared, accounting for 2% and

8% of the total cell number, respectively (Fig. 3A). On

DIV10, the overall morphological diversity of the

microglial cells in the culture was similar to that on

DIV7; at this time, the cultures contained barely 50% of

the total cell number seen on DIV1, and the microglial

cells comprised around 18% of the total cell population

(see Fig. 2D for comparison). From this time onward,

most of the gains in the number of total cell counts

could be attributed to microglial cell proliferation

(Fig. 3A). On DIV14, as the majority of the microglia

had started to differentiate toward the ramified form,

approximately 20% of all the cells were microglia. The

proportion of microglial cells reached 33.7% by DIV28

(Fig. 3A, see Fig. 2G also for comparison). This

massive, roughly 67-fold multiplication of the microglial

cell type was also demonstrated by Western blot

analysis (Fig. 3B, C). The Iba1 immunoreactivities

detected in the blots steadily increased some 750-fold

between DIV1 and DIV28. The b tubulin III, GFAP and

CNPase immunoreactivities, quantified by Western blot

analyses, demonstrated the evolution of other cellular

components during culturing (Fig. 3B, C): while the

amount of the neuronal marker b tubulin III steadily

decreased, the immunoreactivity of the oligodendrocyte

marker CNPase constantly rose between DIV1 and

DIV28. A decrease in GFAP immunoreactivity at DIV28

was also observed in the cultures (Fig. 3C).

Mixed microglial populations exist in primary
forebrain cultures

Diverse morphological forms of microglial cells developed

and were present throughout the culturing (Fig. 4). At one

end of the morphological spectrum, on DIV1, the

microglial cells were virtually exclusively ameboid,

frequently with smooth-surfaced spherical cell bodies,

although ovoid or fusiform cells with a few microspikes

could also be seen (Fig. 4A–D). As the cultures grew

older (DIV7–DIV10), the microglia became more

ramified. They acquired larger somata bearing typically

one or two, but rarely more, large processes (Fig. 4E–

H). One large, stubby lamellipoda usually formed first,

Fig. 1. Microglia in the E18 embryonic rat forebrain. The immuno-

fluorescent detection of microglial cells (red) in 8-lm-thick paraffin-

embedded coronal sections of E18 rat forebrains was achieved

through the use of anti-Iba1 antibody. Most Iba1-labeled cells

displayed ameboid morphology with ovoid (arrowhead) or slightly

rod-shaped forms (double-arrowhead), but occasionally more rami-

fied microglia could also be seen (arrow). Cell nuclei were labeled

blue with Hoechst 33258. CxP: cortical plate; CxS: cortical subplate;

ICx: intermediate cortical layer; S: subiculum. Scale bar = 100 lm.

(For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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but by DIV10 further processes, or the more ramified

morphology of a single large lamellipoda could be

observed (Fig. 4G, H). After DIV10, the microglial cells

became more heterogeneous, as a constantly

increasing microglia population characterized by

relatively even cellular processes and enlarging somata

accompanied the ameboid form (Fig. 4I–K, M).

Microglial process formation became widespread by

DIV14. Incidentally, this was the first time at which the

ramified microglia (demonstrating morphology similar to

that of the resting microglia in the adult rodent CNS)

predominated in the cultures (Fig. 4I, J). The Iba1-

positive microglial cells were characterized

morphologically by larger somata with a few long,

relatively thin and sparsely ramified processes. As the

cultures grew older, on both DIV21 and DIV28, the

characteristic microglial morphology was a ramified form

with several axes of symmetry along the processes

(Fig. 4K, M), albeit ameboid cells were also present

(Fig. 4L, N). The typical microglial morphology during

the later stages of in vitro culturing also included cells

with elongated, slightly curved somata emanating a few

processes of mixed lengths. It must be noted that

islands of densely grown ameboid microglial cells were

persistently present throughout culturing.

Cultured microglia populations can be evaluated by
their TI values

The time course of the morphological changes in the

microglia was analyzed on binary silhouettes, as

depicted in Fig. 5. Quantitative analysis based on the TI

value, a dimensionless number that is an indicator for

the identification of the degree of morphological

differentiation (e.g. the degree of process extension) of

a cell, revealed a continuum of the microglial phenotype

between the ameboid and the extremely ramified

morphologies of the microglia. Throughout the

experiments, microglial cells with TI < 3 were

considered ameboid (Fig. 6A–G; circles). While younger

cultures displayed predominantly ameboid cell forms

with a regular, round outline reflecting the expanding

microglia population (Figs. 5 and 6A–D), older cultures

presented a more heterogeneous morphological

repertoire, concurrently involving cells with ameboid

(proliferating) and ramified (resting) forms, the majority

being ramified (Figs. 5 and 6E–G). The ramified, resting

microglia that developed later during the culturing could

be characterized by a TI value as high as 81 (Fig. 6H).

The ameboid, proliferating microglial cells, predominant

in the early stages but always present throughout

Fig. 2. Development of Iba1 immunoreactivity in primary cortical cultures (DIV1–DIV28). (A–G) The number and composition of the cultured cells

are tightly controlled. While the total number of cells remains constant, the microglia proliferate during culturing. The microglial cells (red) were first

labeled with the rabbit anti-Iba1 primary (polyclonal) antibody, and then with an appropriate Alexa Fluor fluorochrome-conjugated secondary (Alexa

Fluor 568 goat anti-rabbit) antibody, while the cell nuclei (blue) were labeled with Hoechst 33258. Culturing times are indicated at the upper right

corners of the pictures. Scale bar in A for A–G= 50 lm. (H–J) Microglial cells in characteristic cellular environments. For the detection of microglial

cells and neurons, anti-Iba1 (red) and anti-b tubulin III (green) antibodies, respectively, were used. The cell nuclei (blue) were labeled with Hoechst

33258. (H) On day 1, the Iba1-positive microglial cells (red) were mostly ameboid around the developing b tubulin III-positive neurons (green). (I) On

day 7, some of the microglial cells (red) had become ramified around a group of b tubulin III-immunopositive developing neurons (green). (J) On day

21, the culture was characterized by a heterogeneous, albeit mostly ramified population of microglia (red), located around the occasional b tubulin

III-positive neurons (green) and many non-neuronal/non-microglial cells indicated by the blue nuclei. Scale bar in H for H–J = 50 lm. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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culturing, had TI values of less than 3, independently of

the age of the culture (Fig. 6H; below dashed line), and

were always Ki67-positive (Fig. 7). The Ki67

immunoreactivity observed in the ameboid microglial

nuclei usually exhibited a distinct dotlike pattern

representative of the S/G2 phase (Fig. 7A–D) unless it

was associated with the periphery of the condensed

chromosomes of the M-phase (Fig. 7E–H).

Phagocytosis is predominant in ameboid microglia in
culture

Ameboid and ramified microglial cell populations in

culture could be differentiated through their ability to

phagocytose (Fig. 8). Unstimulated microglia readily

phagocytosed fluorescent microbeads. On DIV14, when

mixed populations of ameboid and ramified microglia

were present in the cultures in about equal numbers,

microbeads were significantly more preferred by the

ameboid forms (characterized by low TI values;

Fig. 8A), while the ramified microglia (with higher TI

values; Fig. 8B) were less active in phagocytosing

microbeads. On average, microglia with TI < 3

phagocytosed 11.08 ± 8.6 beads per cell

(average ± SD, n= 39), while microglia with TI > 3

engulfed 3.16 ± 3.6 beads per cell (n= 81); the

difference was statistically significant (p< 0.001; Mann–

Whitney Rank Sum test). When the number of

phagocytosed microbeads per microglia was plotted as

a function of TI under unstimulated/unchallenged

conditions, the physiologically distinct populations of

ameboid and ramified microglia could be readily

demonstrated (Fig. 8C).

Immunocytochemistry reveals microglial populations
displaying changing molecular phenotypes during
culturing

Double immunofluorescent microscopy revealed that

Iba1-labeled microglial cells occasionally also expressed

Fig. 3. Quantitative analysis of the cellular composition, the protein content and the amount of selected biomarkers during culturing. (A) The

numbers of cell nuclei (striped bars) and Iba1-positive (microglial) cells (solid bars) and the protein content (solid line) were quantitative analyzed in

primary cortical cultures (DIV1–DIV28). The methods of counting cell nuclei and anti-Iba1-immunolabeled cells are described in the Experimental

procedures section. Error bars indicate means ± SD. (B) Representative Western blot pictures of Iba1, b tubulin III, GFAP and CNPase

immunoreactivities in primary cortical cultures (DIV1–DIV28). (C) Quantitative Western blot analysis of Iba1, b tubulin III, GFAP and CNPase

immunoreactivities in cell cultures between DIV1 and DIV28. Iba1: ionized calcium-binding adaptor molecule 1, b tub: b tubulin III, GFAP: glial

fibrillar acidic protein, CNPase: 20,30-cyclic nucleotide 30-phosphodiesterase. Error bars indicate means ± SD.
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the HLA DP, DQ, DR antigens, exclusively in young

cultures (Fig. 9A, B). HLA DP, DQ, DR-positive Iba1-

expressing microglial cells were always ameboid, with

TI < 3 (Fig. 9A, B). They were sporadically present

from seeding up to DIV10, but disappeared completely

from the cultures thereafter. Cultures older than DIV10

did not express this antigen, even when they had an

ameboid shape and proliferated, indicating that the HLA

antigen expression can be uncoupled from the ameboid

morphology. Microglial cells with typical ameboid

morphology and doubly immunopositive for the CD11b/c

and HLA DRa antigens were also found in young

cultures (Fig. 9C, D). The last day on which these

markers were colocalized was DIV10. CD11b/c-positive

microglia in cultures older than DIV10 were no longer

able to express any of these HLA antigens. CD11b/c-

positive microglial cells, however, were present

throughout culturing (Fig. 9C–F). CD11b/c could be

colocalized with the Iba1 antigen in both young and old

cultures, but only in cells with ameboid (i.e. activated,

proliferating) or slightly ramified forms with TI < 13

(Fig. 9E). The Iba1-immunopositive cells predominated

throughout culturing, their morphology ranging from

ameboid (Fig. 9A, B) to the ramified forms (Fig. 9E).

Morphologically, Iba1-positive microglia were the most

heterogeneous with TI values from the whole spectrum

during the culturing.

The relationship between TI values and myeloid/

microglial cell-specific markers in cultured microglial

cells is shown in Fig. 9G. We observed that microglial

cells either lose some of their macrophage

characteristics (e.g. HLA DP, DQ, DR or HLA DRa
antigens) during culturing or restrict them to their less

differentiated forms (e.g. CD11b/c), even though they

retain this latter phenotype for subsequent generations.

During culturing, only the less differentiated, ameboid

microglial cells (TI < 3) expressed HLA DP, DQ, DR (or

HLA DRa) antigens; these cells will either die out or

differentiate to more ramified morphologies with TI > 3.

CD11b/c-positive cells can be observed throughout

culturing, but they never become fully ramified, and their

TI values are always < 13.

DISCUSSION

Ramified microglial cells, the most common form of

microglial cells in the normal adult brain, are derived

from macrophage-like cells of mesodermal origin (Ling

and Wong, 1993; Gehrmann et al., 1995; Dalmau et al.,

1997). Many lines of evidence have recently

demonstrated that these ‘‘true’’ resident microglial cells

can be distinguished from other myeloid monocytic cells

in the CNS from the aspects of their location, origin,

specific cell surface antigens, other biochemical

markers, their functions and their turnover with the

periphery. Adult resting microglia with ramified forms

reside in the parenchyma of the CNS, their position

often being juxtavascular (Davalos et al., 2005; Ginhoux

Fig. 4. Development of the morphology of the microglial cells in the primary forebrain cultures (DIV1–DIV28). The microglial cells (red) were first

labeled with the anti-Iba1 primary antibody, and then with the Alexa Fluor 568 fluorochrome-conjugated goat anti-rabbit secondary antibody, while

the cell nuclei (blue) were stained with Hoechst 33258. On day 1 (A, B), all the microglial cells had an ameboid appearance, with round or slightly

ovoid cell forms. Very few, if any, microspikes or lamellipodae could be seen (B). On day 4 (C, D), some of the microglial cells had become more

asymmetric or rod-shaped, and some of these cells possessed more pronounced lamellipodae (C). At later stages, from day 7 (E, F), the microglia

became more ramified. Usually only a few, heavier branches appeared at this stage of microglial differentiation (F). From this stage on, the cultures

were characterized by two distinctly polarized populations, representing the two extremes of the morphological continuum displayed by the

microglial cells in the cultures, i.e. the ameboid and the ramified microglial cells. From day 14 (I, J), the microglia became truly ramified as they

usually had 3–4 strongly developed branches, but 6–7 equally strong and long branches could sometimes be seen from day 21 (K, M). At these

times, ameboid cell forms were also still quite frequent (L, N). Scale bar in A (for all pictures) = 10 lm. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Morphological heterogeneity of microglial cells after different culturing times. The Iba1-positive microglial cells were photographed, digitized

and quantitatively analyzed according to their morphological characteristics. Area (A), perimeter (P) and transformation index (TI) are indicated for

each digitized cell. Ten representative cells are shown at each culturing time. While younger cultures exhibited predominantly ameboid cell forms

with TI < 3, older cultures were morphologically heterogeneous, as they developed a continuum of populations with two distinct microglial cell

populations at the extrema: the ameboid cell population (TI < 3) and the ramified cell population (TI > 3). Younger cultures exhibited predominantly

ameboid cell forms, while older cultures displayed more ramified forms, but also proliferating ameboid populations (see the few ameboid microglia

among the mainly heterogeneous microglial cells at DIV28.

3

Fig. 6. Evolution of morphometric parameters of the microglial cells during culturing. (A–G) Relationship between the perimeter of the microglial cell

and its cell surface area. Cell area and perimeter values were measured by using the computer program ImageJ, and TI values were calculated as

[perimeter of cell (lm)]2/4p [cell area (lm2)]. Each dot represents a digitized microglial cell. Some of the dots overlap at this resolution. The less

differentiated microglial cell populations (TI < 3) are marked with circles. Dots within the circles almost always indicate a cell with TI < 3 and a cell

surface area < 500 lm2. (H) Distribution of TI values as a function of the culturing time. Microglial cells with TI < 3 are located below the dashed

line. As may be seen here, there are microglial cells with extremely high TI values on DIV21 and DIV28.
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et al., 2010). They express a defined set of markers

differently from other myeloid cell populations of the

CNS (including, for example, CD11b, F4/80, the

chemokine receptor CX3CR1 and Iba1), and function as

local immune surveyors and scavengers of cell debris;

the true, resident microglia population does not

participate in exchange with the circulation (Prinz et al.,

2011). Myeloid cell populations of the CNS with specific

patroling functions include the perivascular, the

meningeal and the choroid plexus macrophages, which

possess slightly different sets of markers, but always

take part in extensive exchange with the myeloid cells of

the circulation (Bechmann et al., 2001a,b; Vallières and

Sawchenko, 2003; Kim et al., 2006; Hawkes and

McLaurin, 2009; Chinnery et al., 2010) and the vessel-

patroling resident monocytes and inflammatory

monocytes that originate from and display a high

turnover with the bone marrow (Geissmann et al., 2003;

Auffray et al., 2009).

Discrimination between the different myeloid

monocytic cell forms with uniquely important in vivo
functions was beyond the scope of this study when cells

were collected for the primary culture. Previous studies

on the preparation of tissue slices (Hailer et al., 1996,

1997; Stence et al., 2001) and primary cultures (Floden

and Combs, 2006) indicated that physical damage to

cells during tissue handling and cell harvesting (tissue

removal from the embryo, sectioning, cell isolation

procedure, etc.) can alter the microglial morphology,

marker expression and function, and the resulting

molecular characteristics seen in vitro may not

necessarily reflect the in vivo phenotype. It is possible,

therefore, that the cells we harvested from E18 rat

forebrains and later identified as Iba1-positive included

many of the myeloid monocytic cell populations

described above, but the prolonged culturing led to the

development of molecular and functional phenotypes

quite different from those seen in vivo, and perhaps

even sparser, less differentiated myeloid-derived cell

populations when cultured.

Earlier attempts to characterize microglial cells in vitro
frequently employed culturing times of less than a week

(Becher and Antel, 1996; Tanaka et al., 1998; Otani

et al., 2011), when changes in microglial population

dynamics were not always apparent. Microglia cultured

from the embryonic or from the adult brain were also

found to differ in many important ways. Microglia

prepared from the adult rat brain became progressively

de-differentiated and acquired a phenotype reminiscent

of that of activated microglia in vivo over a period of

7 days in culture (Slepko and Levi, 1996). The

differences between microglia acutely isolated from the

CNS and cultured microglia derived from mixed glial

cultures were most clearly seen in their differential

proliferative capacity and cytokine responsiveness (Frei

et al., 1994; Ford et al., 1995). Unlike microglia from

cultures, microglial cells from adults were not stimulated

by transforming growth factor (Rozovsky et al., 1998),

nor did they proliferate in response to granulocyte- or

macrophage colony-stimulating factor (Ford et al.,

1995). While the concept of M1/M2 macrophage

heterogeneity has gained momentum in recent years,

there is considerable uncertainty as to the extent to

which this notion could be extrapolated to microglial

cells. For example, in a recent study, Durafourt et al.

(2012) found that M1 and M2 subtypes of macrophages

and those of the microglial cells not only differentially

expressed a number of genes, but phagocytosed myelin

Fig. 7. Relationship between proliferation, ameboid morphology and Ki67 immunoreactivity. Representative immunocyochemical pictures of Ki67-

positive ameboid microglial cells in DIV7 cultures. Fluorescent microphotographs of the cultures were taken through the red (A, E), green (B, F) and

blue (C, G) channels and displayed in this sequence. CD11b/c-positive microglia (A, E), Ki67-positive cells (B, F) and Hoechst 33258-labeled cell

nuclei (C, G) are depicted. The merged pictures of CD11b/c- and Ki67-immunolabeled microglial cells are also shown (D, H). The presence of some

non-microglial and non-dividing cells is indicated by the Hoechst 33258 stain at the upper right corner of the pictures. A group of CD11b/c-positive

microglial cells is located at the bottom left corner of the pictures. Proliferating CD11b/c-positive microglial cells are located in the middle of the

pictures. Arrow points to the condensed chromatin in an M phase microglia (G). Scales for all pictures: 50 lm. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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quite differently, indicating that the expression of similar

biomarkers by macrophages and microglia does not

necessarily mean that they have the same function.

Our results showed that microglia prepared from

embryonic tissue and maintained for up to 4 weeks

displayed multiple phenotypes with different

immunologic, proliferative and phagocytic

characteristics. While the number of total cells did not

vary significantly during culturing, their composition

exhibited a dramatic change. The number of microglial

cells rose steadily during culturing, by a factor of 67-

fold. The selected microglial antigenic and functional

(proliferation and phagocytosis) properties in primary

mixed cultures of E18 rat forebrain tissues revealed a

marked morphological and antigenic differentiation

during culturing.

Morphometric analysis on binary silhouettes of

microglial cells revealed that ameboid forms were

dominant in the early stages of in vitro differentiation,

while older cultures were characterized by mixed

populations of ameboid and ramified cells, the latter

being the dominant form. The ameboid microglia,

characterized by TI < 3, was the mitotically active,

Ki67-immunopositive population even in older cultures

where it formed a core of proliferating cells. The

feasibility of a quantitative assessment of different

microglial populations (resting vs. activated microglia)

through morphological features alone was recently

demonstrated (Kozlowski and Weimer, 2012); the

sensitivity of this automated method was reported to be

comparable to that of immunohistochemical methods.

While the morphology of the cultured microglial cells

was very similar to that in the normal rat brain, their

antigenic markers specific for the monocyte/

macrophage/microglial cell line were distinctly different

and exhibited a more restricted immunological

phenotypic repertoire from those seen in vivo. We found

that microglial cell populations in culture, without the

Fig. 8. Phagocytic activity of unstimulated microglial cells in a primary culture (DIV14). (A, B) Representative immunocytochemical pictures

showing the unstimulated phagocytic capability of microglial cells (red) as a function of the TI value from the same 14-day-old culture. Fluorescent

dye-coated (green) latex microbeads (d= 2 lm) were added to the medium and phagocytosed by microglia. Microglial cells with TI < 3 (A), i.e.

ameboid forms with 11.08 ± 8.6 beads per cell, were about 3.5-times more likely to phagocytose the microbeads than cells with TI > 3 (B), i.e.

ramified forms with 3.16 ± 3.6 beads per cell. Non-phagocytosed microbeads were very rare in the cultures (a solitary bead can be seen in both A

and B). Scale bar = 50 lm. (C) Distribution of unstimulated microglial cells with phagocytosed microbeads as a function of the TI value. The vertical

dashed line separates the functionally different microglial populations (TI < 3 as ameboid, phagocytosing and proliferating, and TI > 3 as ramified,

resting microglia). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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presence of recruited hematogenous macrophages from

the periphery through the blood–brain barrier, were

more similar to those in the normal adult (or

physiologically aging) brain (e.g. showing no signs of

significant neurodegeneration and therefore almost no

turnover for the microglial cells with the periphery) than

to those in the neuropathologic brain (e.g. in Alzheimer’s

disease). The large flux of HLA DP, DQ, DR-positive

macrophages that entered the E18 brain through the

blood–brain barrier soon died or differentiated further in

the culture. As a consequence, cultured microglial cells

that were doubly positive for Iba1 and HLA DP, DQ, DR

antigens were absent from cultures older than DIV10.

This is in contrast with earlier reports of an upregulation

of HLA class II proteins upon phagocytosis (Becher and

Antel, 1996; Beyer et al., 2000; Smith, 2001), a function

displayed by ameboid microglial cells throughout the

entire culturing, although they were negative for the HLA

DP, DQ, DR antigens after DIV10.

The loss of a large number of cells, which peaked on

DIV10, concomitantly with the formation of neuronal

clumps in the culture, could be coupled causatively to

microglial activation and proliferation in two ways: either

the massive neuronal death triggered microglia

Fig. 9. Colocalizations of specific microglial markers during culturing. Representative fluorescent microphotographs of double-immunopositive

microglial cells of the cultures were taken through the red, green and blue channels. Cell nuclei (blue) were stained with Hoechst 33258. The red and

green channels, together with the Hoechst-stained nuclei are displayed as their merged pictures. Culturing times are indicated at the upper right

corners for each triad. (A, B) Double-immunopositive microglial cells for the coexpression of Iba1 and HLA DP, DQ, DR antigens at DIV1 (A) and

DIV4 (B). These antigens are colocalized only in microglial cells of young cultures (up to DIV10), but solely in those that are truly ameboid or have

low TI values. (C, D) Double-immunopositive microglial cells for the coexpression of CD11b/c and HLA DRa antigens at DIV4 (C) and DIV10 (D).

These antigens are colocalized exclusively in the young cultures and only in microglia with typical ameboid morphology. The CD11b/c-positive

microglia are no longer able to express HLA antigens in older cultures. (E, F) Double-immunopositive microglial cells for the coexpression of CD11b/

c and Iba1 antigens at DIV7 (E) and DIV28 (F). These antigens are colocalized only in ameboid, proliferating cells with low TI values in both young

and old cultures. Iba1-immunopositive microglial cell were morphologically heterogenous as both ameboid and ramified forms were labeled

throughout culturing. Scale bar for all fluorescent microscopic pictures: 50 lm. (G) Relationship between TI values and microglia-specific markers.

During culturing, only the less differentiated, ameboid microglia (TI < 3) express HLA antigens; these cells will eventually die out or differentiate to

more ramified morphologies (TI > 3) that do not express HLA antigens. CD11b/c-positive cells can be observed throughout culturing, but they never

become fully ramified (TI < 13). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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proliferation or, conversely, the proliferating microglial

cells adversely influenced and eventually killed some

other cells in the culture. This neuronal loss, mostly

prominent around DIV10, was documented by Western

analysis and was accompanied by an increase in the

phagocytic activity of these cells. Interestingly, microglia

proliferation could also be linked to the observed

increase in CNPase activity during culturing. Similar

phenomenon was observed in neonatal mouse brain

cultures (Amur-Umarjee et al., 1990). Such microglia–

oligodendrocyte interactions could be due to factors

secreted by activated microglia that promote

oligodendrocyte proliferation and differentiation

(Deierborg et al., 2010).

One of the main roles of microglia is phagocytosis, a

process that is critical for the uptake and degradation of

infectious agents and senescent cells, and which

contributes to the immune response and inflammation

(Aderem and Underhill, 1999; Marı́n-Teva et al., 2004).

As reviewed by Neumann et al. (2009), the recent

evidence suggests that the phagocytic clearance by the

microglia plays a fundamental role in facilitating the

reorganization of neuronal circuits and triggering repair

mechanisms. For example, there are substantial

differences in microglial phagocytosis during the

restructuring of neuronal connections (Marı́n-Teva et al.,

2004), in acute CNS injury (Cullheim and Thams, 2007),

in multiple sclerosis (Takahashi et al., 2007), in normal

development and ageing (Streit, 2006) or in Alzheimer’s

disease (Meyer-Luehmann et al., 2008), and the

insufficient level of clearance seen in certain

neurodegenerative diseases might be associated with

an inadequate regenerative response such as that in

Alzheimer’s disease.

We used unstimulated microglial cells to measure

phagocytic activity for two reasons: (1) certain

immunomodulatory functions could be reduced in

stimulated microglia (Magnus et al., 2004), and (2) there

could be a differential expression of a number of

microglial enzymes and markers upon stimulation

(Imamura et al., 1991). Both such effects could lead to

the ameboid microglial phenotype being favored, which

could interfere with our statistical analysis. The fact that

unstimulated ramified microglia do not proliferate

(Imamura et al., 1991) ruled out the possibility that the

conversion to the ameboid form would be induced,

thereby biasing the actual composition of the microglial

pool. We found that unstimulated microglial

phagocytosis was tightly coupled to the ameboid

morphology, as cells with low TI values exhibited much

higher phagocytic activity. The ameboid morphology

was also related to the proliferation of the microglial

cells, as low TI values were always present in the

cultures.

As microglial cells participate in both protective and

pathogenic mechanisms in the healthy and in the

diseased CNS, further correlative morphological,

molecular and functional characterizations of cultured

rat microglial cell populations similar to that presented

here could provide further information concerning the

specific roles of the different microglia cells in the

physiology and the pathophysiology of the CNS. In vitro

phenotyping of these cells could also be important in

providing detailed information on how different signals

may activate the microglial cell populations, on their

relation to each other and their origin, on the regulation

of their migration, etc. Therapeutic approaches through

which to modify the microglial responses could also

benefit from in vitro studies similar to that presented here.
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a  b  s  t  r  a  c  t

The  roles  of  calmodulin  (CaM),  a multifunctional  intracellular  calcium  receptor  protein,  as  concerns
selected  morphological  and  functional  characteristics  of pure  microglial  cells  derived  from  mixed  primary
cultures  from  embryonal  forebrains  of  rats,  were  investigated  through  use  of  the  CaM  antagonists  calmi-
dazolium  (CALMID)  and  trifluoperazine  (TFP).  The  intracellular  localization  of the  CaM  protein  relative  to
phalloidin,  a bicyclic  heptapeptide  that  binds  only  to filamentous  actin,  and  the  ionized  calcium-binding
adaptor  molecule  1  (Iba1),  a microglia-specific  actin-binding  protein,  was  determined  by immunocy-
tochemistry,  with  quantitative  analysis  by immunoblotting.  In  unchallenged  and  untreated  (control)
microglia,  high  concentrations  of CaM  protein  were  found  mainly  perinuclearly  in  ameboid  microglia,
while  the cell  cortex  had  a smaller  CaM  content  that diminished  progressively  deeper  into  the branches
in  the  ramified  microglia.  The  amounts  and  intracellular  distributions  of both  Iba1  and  CaM  proteins  were
altered  after  lipopolysaccharide  (LPS)  challenge  in activated  microglia.  CALMID  and  TFP  exerted  different,
sometimes  opposing,  effects on  many  morphological,  cytoskeletal  and  functional  characteristics  of the
microglial  cells.  They  affected  the CaM  and Iba1  protein  expressions  and  their  intracellular  localizations
differently,  inhibited  cell  proliferation,  viability  and  fluid-phase  phagocytosis  to different  degrees  both

in  unchallenged  and  in LPS-treated  (immunologically  challenged)  cells,  and  differentially  affected  the
reorganization  of  the  actin  cytoskeleton  in  the  microglial  cell  cortex,  influencing  lamellipodia,  filopodia
and  podosome  formation.  In summary,  these  CaM  antagonists  altered  different  aspects  of  filamentous
actin-based  cell  morphology  and  related  functions  with  variable  efficacy,  which  could  be important  in
deciphering  the  roles  of  CaM  in  regulating  microglial  functions  in  health  and  disease.

© 2015 Elsevier  Inc.  All  rights  reserved.
. Introduction
Microglia originate from bone marrow-derived myeloid precur-
ors as a unique class of the monocyte/macrophage lineage that

Abbreviations: Ca2+, calcium ion; CALMID, calmidazolium,
-[bis(4-chlorophenyl)methyl]-3-[2-(2,4-dichlorophenyl)-2-(2,4-
ichlorobenzyloxy)ethyl]-1H-imidazolium chloride; CaM, calmodulin; CNS,
entral nervous system; DIV, days in vitro; DMEM, Dulbecco’s Modified Eagle’s
edium;  GAPDH, glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12); Iba1,

onized calcium binding adaptor molecule 1; Ki67, proliferation marker antigen
dentified  by the monoclonal antibody Ki67; LPS, bacterial lipopolysaccharide;

RNA,  messenger ribonucleic acid; PBS, phosphate-buffered saline; RT, room
emperature;  S.E.M., standard error of mean; subDIV, subcloned days in vitro;
BS,  tris-buffered saline; TFP, trifluoperazine, 10-[3-(4-methylpiperazin-1-yl)
ropyl]-2-trifluoromethyl-10H-phenothiazine dihydrochloride; TI, transformation

ndex.
∗ Corresponding author at: Department of Cell Biology and Molecular Medicine,
niversity  of Szeged, 4 Somogyi u., Szeged H-6720, Hungary. Fax: +36 62 544 569.

E-mail address: gulyak@bio.u-szeged.hu (K. Gulya).

ttp://dx.doi.org/10.1016/j.brainresbull.2015.11.003
361-9230/© 2015 Elsevier Inc. All rights reserved.
infiltrates the central nervous system (CNS) during its early devel-
opment (Ginhoux et al., 2010; Saijo and Glass, 2011). They respond
rapidly to inflammatory cues and injury by transforming from a
ramified, resting state to an activated, phagocytic ameboid cell type
(Kreutzberg, 1996). In their non-activated or resting state, they
display a ramified morphology and subdued macrophage-like func-
tional properties. In response to injury, infection, inflammatory or
other signals, the microglia become activated and a series of mor-
phological, molecular and functional changes take place that affect
proliferation, homing and adhesion to damaged cells, phagocytosis,
antigen presentation and cytotoxic and inflammation-mediating
signaling (Drew and Chavis, 2000; Prinz and Priller, 2014; Saijo and
Glass, 2011; Streit et al., 1999; Town et al., 2005).

Microglial functions such as motility and phagocytosis are
closely associated with dynamic changes in the cytoskeleton

2+
and related to intracellular calcium (Ca ) signaling (Greenberg,
1995; Kalla et al., 2003; Mitchison and Cramer, 1996). The
ubiquitous Ca2+-binding proteins participate in Ca2+-elicited intra-
cellular events, either as Ca2+-sensing/receptor/trigger or as

dx.doi.org/10.1016/j.brainresbull.2015.11.003
http://www.sciencedirect.com/science/journal/03619230
http://www.elsevier.com/locate/brainresbull
http://crossmark.crossref.org/dialog/?doi=10.1016/j.brainresbull.2015.11.003&domain=pdf
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a2+-buffering/transport proteins, by binding intracellularly stored
a2+ (Ikura, 1996). They contribute to nearly all aspects of the func-
ioning of the cell, and are important in numerous intracellular
ignaling processes, from the regulation of cellular homeostasis
o learning and memory (Berridge et al., 2000; Clapham, 2007).
almodulin (CaM), one of the most important intracellular Ca2+

eceptors, exerts its biological action through its heterogenous pop-
lation of target proteins, which are involved in a number of cellular
egulatory processes (Kennedy, 1989; Palfi et al., 2002).

The  nervous tissue is especially abundant in CaM. While its dis-
ribution has been characterized in detail for a number of neuronal
ell types (Kovacs and Gulya, 2002, 2003; Palfi et al., 1999, 2001,
005), its localization and functions in glial cells are much less
nown. Astrocytes express CaM protein in low quantities (Kortvely
t al., 2003), but mRNA populations from all three CaM genes could
till be localized both perinuclearly and in the astrocytic endfeet
Palfi et al., 2005). The expression of CaM in oligodendroglia is
imilarly low and has not been characterized extensively, albeit
he regulatory effects of this protein on a number of membrane-
ound target proteins such as the myelin basic protein (Libich and
arauz, 2008) or the 2′,3′-cyclic nucleotide 3′-phosphodiesterase

Myllykoski et al., 2012) have been established. Of all the glial com-
onents, only the microglia seem to have a considerable amount
f CaM. They express a relatively large amount of CaM when acti-
ated (Casal et al., 2001; Solá et al., 1997), and many aspects of
heir Ca2+ signaling are well documented (Färber and Kettenmann,
006; Wong and Schlichter, 2014).

CaM immunoreactivity or CaM gene-specific transcripts are
ften colocalized with those of the target enzymes of CaM within
he same cytoplasmic compartments (Erondu and Kennedy, 1985;
anabria et al., 2008; Seto-Ohshima et al., 1983; Strack et al., 1996).
or example, actin is accompanied by CaM in the cell cortex, help-
ng to remodel the actin-based cytoskeleton in accordance with the
ctual (patho) physiological signals (Mitchison and Cramer, 1996;
satha et al., 2004). Ionized calcium-binding adaptor molecule 1
Iba1) is another intracellular Ca2+-binding protein with actin-
inding capability that is expressed in macrophages and microglia,
nd is widely used to detect both resting and activated microglial
henotypes (Imai et al., 1996). CaM and Iba1 proteins share a num-
er of molecular structural variants that are related to either their
a2+ binding or their target protein recognition (Yamada et al.,
006). In contrast with the wide-ranging regulatory roles of CaM,

ba1 plays a much more restricted role in microglial functions, e.g.
emodeling the actin cytoskeleton during migration (Siddiqui et al.,
012; Vincent et al., 2012).

The  modulatory action of Ca2+-bound CaM on
ultiple target proteins can be regulated by a

umber of compounds. Calmidazolium (CALMID;
-[bis(4-chlorophenyl) methyl]-3-[2-(2,4-dichlorophenyl)-2-
2,4-dichlorobenzyloxy)ethyl]-1H-imidazolium chloride) and
rifluoperazine (TFP; 10-[3-(4-methylpiperazin-1-yl)propyl]-2-
rifluoromethyl-10H-phenothiazine dihydrochloride) are potent
nhibitors of CaM-related cellular activities (Borsa et al., 1986;
unagawa et al., 2000). It is presumed that, apart from binding
o the CaM protein (Matsushima et al., 2000; Vandonselaar et al.,
994; Vertessy et al., 1998), they can also exert their effects on
ome of the CaM-regulated targets directly (Sunagawa et al., 2000).

In contrast with the extensive studies on the involvement of
aM in a number of neuronal phenomena, only limited informa-
ion is available on its role in the development and maintenance of
he microglial phenotype and its specific functions. Relatively lit-
le is known, for example, as concerns the possible involvement of

aM mediation in such important microglial functions as phago-
ytosis and the cellular functions associated with it, e.g. dynamic
ytoskeletal reorganization. Thus, in view of the importance of
ulletin 120 (2016) 41–57

CaM-mediated  cell functions and the paucity of data on specific
microglial functions related to and possibly regulated by CaM, we
set out to investigate the localization and intracellular distribution
of CaM in pure microglial cell populations derived from rat pri-
mary mixed forebrain cultures by using immunocytochemical and
Western blot techniques. Selected CaM inhibitors such as CALMID
and TFP, previously reported to have different modes of action
(Matsushima et al., 2000; Sunagawa et al., 2000), were quantita-
tively tested for their ability to modify the microglial morphology,
lamellipodia, filopodia and podosome formation, and specific func-
tions such as cell proliferation and survival, protein expression
and phagocytosis in unchallenged (control) and lipopolysaccharide
(LPS)-challenged cells. Stimulation with LPS was used to evaluate
the ability of microglial cells to respond to activation (Fricker et al.,
2012; Song et al., 2014; Tokes et al., 2011).

2. Material and methods

All  animal experiments were carried out in strict compliance
with the European Council Directive (86/609/EEC) and EC regula-
tions (O.J. of EC No. L 358/1, 18/12/1986) regarding the care and
use of laboratory animals for experimental procedures, and fol-
lowed the relevant Hungarian and local legislation requirements.
The experimental protocols were approved by the Institutional
Animal Welfare Committee of the University of Szeged (I-74-
11/2009/MÁB). The pregnant Sprague-Dawley rats (180–200 g)
were kept under standard housing conditions and fed ad libitum.

2.1.  Antibodies

The antibodies used in the immunocytochemical and Western
blot studies are listed in Table 1. For a thorough characterization
of different microglial phenotypes developed in vitro, an anti-
body against Iba1, an intracellular actin- and Ca2+-binding protein
expressed in the CNS specifically in macrophages and microglia
(Imai et al., 1996; Ahmed et al., 2007), was used in our immuno-
cytochemical and Western blot analyses. An anti-CaM monoclonal
antibody was used to detect both Ca2+-bound and Ca2+-free forms
of the antigen (Sacks et al., 1991). The anti-Ki67 antibody was used
to detect proliferating cells. Ki67 is a nuclear protein expressed in
all active phases of the cell cycle from the late G1 phase through
the end of the M phase but is absent in non-proliferating and
early G1 phase cells (Scott et al., 2004). The anti-glyceraldehyde
3-phosphate dehydrogenase (GAPDH) antibody was used as an
internal control in Western blot experiments (Wu et al., 2012).
Dilutions of primary and secondary antibodies, and also incuba-
tion times and blocking conditions for each antibody used were
carefully tested for both immunocytochemistry and Western blot
analysis. To detect the specificities of the secondary antisera, omis-
sion control experiments (staining without the primary antibody)
were performed. In such cases, no fluorescent or Western blot sig-
nals were detected.

2.2.  Preparation of primary mixed cortical cell cultures

Mixed primary cortical cell cultures were established from
embryonic day 18 (E18) wild-type rat embryos by the use of the
methods described previously (Szabo and Gulya, 2013). Briefly,
6–8 fetal rats under deep ether anesthesia were surgically decap-
itated and the frontal lobe of the cerebral cortex was removed,
minced with scissors, and incubated in 9 ml  Dulbecco’s Modified
Eagle’s Medium (DMEM; Invitrogen, Carlsbad, CA, USA) contain-

ing 1 g/l d-glucose, 110 mg/l Na-pyruvate, 4 mM  l-glutamine, 3.7 g/l
NaHCO3, 10,000 U/ml penicillin G, 10 mg/ml streptomycin sul-
fate and 25 �g/ml amphotericin B, and supplemented with 0.25%
trypsin (Invitrogen) for 10 min  at 37 ◦C, then centrifuged at 1000 × g
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Fig. 1. Development of Iba1 and CaM immunoreactivities in primary mixed cortical cultures (DIV1-DIV28). (For interpretation of the references to colour in this figure legend,
the  reader is referred to the web version of this article.)
At  early culturing times (DIV1 (A–D) and DIV7 (E–H)), all seeded cells displayed CaM immunoreactivity (green), but only a few of them were Iba1-positive microglia (red). The
cell  nuclei (blue) were labeled with Hoechst 33,258. Since most of the cells present early in the culturing are neurons [48], most of the CaM immunoreactivity seen at DIV1-
DIV7  is of neuronal origin. At DIV14 (I–L), a large number of Iba1-positive cells showed CaM positivity, a number of them were ramified. At DIV28 (M–P), the predominant
cell type in the culture was  the CaM-positive microglia. Note the visibly different Iba1 (M)  and CaM contents (N) of the ameboid and ramified microglia at this culturing time.
The  merged pictures show cells double-positive for Iba1 and CaM (D, H, L, P). The development of Iba1 (Q) and CaM (R) immunoreactivities during culturing (DIV1-DIV28)
was  quantitatively analyzed on Western blots. Protein samples from primary cultures were separated by gel electrophoresis, transferred to nitrocellulose membranes and
probed  with either the Iba1 (Q) or CaM (R) antibody. Gray scale digital images of the immunoblots were acquired by scanning the autoradiographic films with a desktop
scanner. The images were scanned and processed at identical settings to allow comparisons between the Western blots from different samples. Error bars indicate integrated
optical density values (mean ± S.E.M.). Representative Western blot pictures are shown below the graphs. During culturing (DIV1-DIV28), a massive increase in the number
of  cells with microglial phenotype was  observed in the mixed primary cultures, while the CaM content of the cultures remained constant. Most of the gain in Iba1 content
occurred between DIV10 and DIV14. Culturing times are indicated at the upper right corners (A, E, I, M).  Scale bar in A for all pictures: 50 �m.
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Table  1
Antibodies used in immunocytochemistry and Western blot analyses.

Antibodies used in immunocytochemistry

Primary
antibody,
abbrev. name

Full name Final dilution Company name Secondary antibody
with  fluorochrome

Final dilution

Iba1 Rabbit anti-Iba1
monocl. ab.

1/300 Wako, Osaka, Japan Alexa Fluor 568 goat
anti-rabbit,
Invitrogen,  Carlsbad,
CA,  USA

1/1,000

Iba1  Rabbit anti-Iba1
monocl. ab.

1/300 Wako, Osaka, Japan Alexa Fluor 488 goat
anti-rabbit,
Invitrogen,  Carlsbad,
CA,  USA

1/1,000

CaM  Mouse anti-CaM,
monocl. ab.

1/100 Millipore Alexa Fluor 488 goat
anti-mouse,
Invitrogen,  Carlsbad,
CA,  USA

1/1,000

CaM  Rabbit anti-CaM,
monocl. ab., clone
EP799Y

1/100 Abcam, Cambridge,
UK

Alexa Fluor 568 goat
anti-rabbit,
Invitrogen,  Carlsbad,
CA,  USA

1/1,000

Ki67  Rabbit anti-Ki67,
monocl. ab., clone
SP6

1/100 Thermo Scientific,
Fremont, CA, USA

Alexa Fluor 488 goat
anti-rabbit,  Invitrogen,
Carlsbad,  CA, USA

1/1,000

Antibodies  used in Western studies
Primary
antibody,
abbrev. name

Full name Final dilution Company name Secondary antibody Final dilution

Iba1  Rabbit anti-Iba1
monocl. ab.

1/1,000 Wako, Osaka, Japan Anti-rabbit IGG,
peroxidase conjug.,
Sigma,  St. Louis, MO,
USA

1/2,000

CaM  Rabbit anti-CaM,
monocl. ab., clone
EP799Y

1/2,000 Abcam, Cambridge,
UK

Anti-rabbit IGG,
peroxidase conjug.,
Sigma,  St. Louis, MO,
USA

1/2,000

GAPDH  Mouse 1/20,000 Sigma, St. Louis,
MO

Anti-mouse IGG, 1/3,000
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anti-GAPDH,
monocl. ab., clone
GAPDH-71.1

or 10 min  at room temperature (RT). The pellet was resuspended
nd washed twice in 5 ml  DMEM containing 10% heat-inactivated
etal bovine serum (FBS; Invitrogen) and centrifuged for 10 min
t 1000 × g at RT. The final pellet was resuspended in 2 ml  of
he same solution as above, after which the cells were seeded
n the same medium and cultured at 37 ◦C in a humidified air
tmosphere supplemented with 5% CO2 in one or other of the fol-
owing ways: (1) in poly-l-lysine-coated coverslips (18 × 18 mm;

 × 105 cells/coverslip) for immunocytochemistry; (2) in poly-l-
ysine-coated Petri dishes (60 mm × 15 mm;  106 cells/dish) for

estern blot analyses; or (3) in a poly-l-lysine-coated culture flask
75 cm2, 12 × 106 cells/flask) for the subsequent generation of pure

icroglial cell cultures. The mixed primary cultures were main-
ained up to 28 days (DIV1-DIV28) for immunocytochemistry and

estern blot analyses, and for 7 days (DIV7) for the generation of
ure microglial cells. For culturing periods longer than 3 days, the
MEM was changed every 3 days.

.3. Preparation of pure microglial cell cultures

Pure microglial cell cultures were subcloned from mixed pri-
ary cultures (DIV7) maintained in a poly-l-lysine-coated culture

ask (75 cm2, 12 × 106 cells/flask) by shaking the cultures at
50 rpm in a platform shaker for 20 min  at 37 ◦C. Microglia from the

upernatant were collected by centrifugation at 3000 × g for 10 min
t RT and resuspended in 2 ml  of DMEM/10% FBS. The cells were
eeded at a density of 2 × 105 cells/Petri dish for Western blots and
ell viability assays or 105 cells/coverslip/Petri dish for immunocy-
,  USA peroxidase  conjug.,
Sigma,  St. Louis, MO,
USA

tochemistry, proliferation or phagocytosis assays, and cultured in
DMEM in a humidified atmosphere supplemented with 5% CO2 for
4 days at 37 ◦C. The medium was  changed on the first day after seed-
ing (subDIV1). Immunocytochemistry routinely performed on the
pure microglial cultures 4 days after seeding (subDIV4) consistently
detected a >99% incidence of Iba1-immunopositive microglial cells
for the Hoechst 33,258 dye-labeled cell nuclei (Fig. 2).

2.4.  Treatment of pure microglial cells with LPS and CaM
inhibitors

On  the fourth day of subcloning (subDIV4), the DMEM was
replaced and the expanded pure microglial cells were treated for
24 h with either LPS (100 ng/ml in final concentration, dissolved
in DMEM;  Sigma, St. Louis, MO,  USA), CALMID (5 nM or 50 nM
in final concentration, dissolved in dimethylsulfoxide (DMSO);
Sigma) or TFP (10 �M or 20 �M final concentration, dissolved in
DMSO; Sigma) alone, or with a combination of LPS and one of
these CaM inhibitors, and the effects were compared in a variety
of morphological and functional tests. LPS treatment served as an
immunochallenge. Unchallenged and untreated (control) cultures
were maintained under identical conditions, but without these
inhibitors, and received 2 �l DMSO solution instead.
2.5.  Immunocytochemistry

For immunocytochemistry, primary cortical cells (DIV1-DIV28)
or pure microglial cells (subDIV4) cultured in vitro on poly-l-lysine-
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oated coverslips were used. At different time intervals (DIV1,
IV4, DIV7, DIV10, DIV14, DIV21, DIV28), or after different treat-
ents (subDIV4), the cultured cells on the coverslips were fixed

n 4% formaldehyde in 0.05 M phosphate-buffered saline (PBS; pH
.4 at RT) for 5 min  and rinsed in 0.05 M PBS for 3 × 5 min. After
ermeabilization and blocking of the nonspecific sites in 0.05 M
BS solution containing 5% normal goat serum (Sigma), 1% heat-

nactivated bovine serum albumin (Sigma) and 0.05% Triton X-100
or 30 min  at 37 ◦C, the cells on the coverslips were incubated with
he appropriate primary antibody (Table 1) in the above solution
vernight at 4 ◦C. The cultured cells were washed for 4 × 10 min
t RT in 0.05 M PBS, then incubated with the appropriate Alexa
luor fluorochrome-conjugated secondary antibody (Table 1) in
he above solution, but without Triton X-100, in the dark for 3 h
t RT. The cells on the coverslip were washed for 4 × 10 min  in
.05 M PBS at RT. At this stage, the cells were occasionally stained
ith rhodamine-phalloidin (5 �l in 200 �l PBS; Molecular Probes,

ugene, OR, USA) for 30 min  at RT, then washed for 2 × 10 min  at
T. Finally, the cell nuclei were stained in a 0.05 M PBS solution
ontaining 1 mg/ml  polyvinylpyrrollidone and 0.5 �l/ml Hoechst
3,258 dye (Sigma). The coverslips were rinsed in distilled water
or 5 min, air-dried and mounted on microscope slides in Vec-
ashield mounting medium (Vector Laboratories, Burlingame, CA,
SA). Cells were viewed on a Nikon Microphot-FXA epifluorescent
icroscope (Nikon Corp., Tokyo, Japan) and photographed with a

pot RT Color CCD camera (SPOT RT/ke, Diagnostic Instruments,
nc., Sterling Heights, MI,  USA).

.6. Western blot analysis

For  Western blots, the protocols were optimized for each
ntibody as regards epitope accessibility, polyacrylamide gel sepa-
ation, antibody dilution and chemiluminescence signal intensity.
ultured primary cells (DIV1–DIV28) or pure microglial cells (sub-
IV4) with different treatment regimens were collected through
se of a rubber policeman, homogenized in 50 mM Tris–HCl (pH
.5) containing 150 mM NaCl, 0.1% Nonidet P40, 0.1% cholic acid,

 �g/ml leupeptin, 1 �g/ml pepstatin, 2 mM phenylmethylsulfonyl
uoride and 2 mM EDTA, and centrifuged at 10,000 × g for 10 min
t 4 ◦C. The pellet was discarded and the protein concentration
f the supernatant was determined (Lowry et al., 1951). For the
estern blot analyses of Iba1, CaM and GAPDH immunoreactivi-

ies, 5–10 �g of heat-denatured protein was separated on an SDS
olyacrylamide gel. The stacking gel/resolving gel ratio was  4–10%

or Iba1 and GAPDH, and 4–16% for CaM immunoreactivities; for
aM Westerns, the stacking gel was complemented with 16% urea
nd 16% glycerol. Separated proteins were then transferred onto
ybond-ECL nitrocellulose membrane (Amersham Biosciences, Lit-

le Chalfont, Buckinghamshire, England). Strips of membranes with
he transferred bands for CaM and Iba1 (both around 17 kDa) and
APDH (37 kDa) were cut and processed separately for CaM, Iba1
r GAPDH immunodetection. The membranes were blocked for 1 h

n  5% nonfat dry milk (for Iba1 and GAPDH Westerns) or 5% bovine
erum albumin (for CaM Westerns) in Tris-buffered saline (TBS)
ontaining 0.1% Tween 20, and incubated for 1 h with the appropri-
te primary antibodies (Table 1). After 5 washes in 0.1% TBS–Tween
0, the membranes were incubated for 1 h with the appropriate
eroxidase-conjugated secondary antibodies (Table 1), and washed

 times as before. The enhanced chemiluminescence method (ECL
lus Western blotting detection reagents; Amersham Biosciences)

as used to reveal immunoreactive bands according to the manu-

acturer’s protocol. The immunoreactive densities of equally loaded
anes were quantified, and all samples were normalized to internal
APDH load controls run on the same gels.
ulletin 120 (2016) 41–57 45

2.7.  Cell proliferation and cell viability assays

For the assessment of CaM inhibition on cell proliferation and
survival, pure microglial cells (subDIV4) were cultured in DMEM
with or without the appropriate test compounds in a humidi-
fied atmosphere supplemented with 5% CO2 at 37 ◦C for 24 h. To
analyze the effects of these treatments on cell proliferation, the
cultures were processed for Ki67 immunocytochemistry. Prolif-
eration index (PI) was defined as the number of Ki67-positive
microglial cell nuclei per 1000 analyzed Iba1-positive cells and usu-
ally expressed as % of the total cells analyzed (Brownhill et al., 2014;
Yamaguchi et al., 2013). A total of 1454 fields of view with 55,565
Iba1-positive and 783 Ki67-positive/Iba1-positive microglia were
analyzed across the groups (mean ± S.E.M.).

To  estimate the surviving microglial cells after treatments, the
cultures were washed twice with 2 ml  of PBS to remove cell debris
and treated with 0.25% trypsin solution for 10 min at 37 ◦C, col-
lected and counted in a Burker cell. The number of viable cells was
presented as mean ± S.E.M.

2.8.  In vitro phagocytosis assay

The fluid-phase phagocytic capacity of the microglial cells was
determined via the uptake of fluorescent microspheres (2 �m in
diameter; Sigma) using the general methods described by Szabo
and Gulya (2013). Unstimulated (control) and LPS-stimulated pure
microglial cell cultures with or without CaM inhibition were tested
for 24 h. At the end of the culturing period (subDIV4), 1 �l of a 2.5%
aqueous suspension of fluorescent microspheres was  added per ml
of the culture, which was  then further incubated for 60 min  at 37 ◦C.
The cells were next washed 5 times with 2 ml of PBS to remove
dish- or cell surface-bound residual fluorescent microspheres, and
fixed with 4% formalin in PBS. For measurement of the phago-
cytic activity, Iba1-expressing microglia labeled with phagocytosed
microbeads were counted. Negative controls were treated as above
with the exception that microglial cultures with beads were incu-
bated for 60 min  at 4 ◦C. At this temperature, the number of beads
associated with cell surface averaged less than 1 bead per 100 Iba1-
labeled cells. For the study of the effects of CaM inhibitors on the
number of phagocytosed beads (mean ± S.E.M.), a total of 873 bead-
labeled cells were counted in three separate culturing procedures
under a Nikon Microphot-FXA epifluorescent microscope with a
10× or 20× objective.

2.9.  Digital image processing and image analysis

Gray scale digital images of the Western blots were acquired by
scanning the autoradiographic films with a desktop scanner (Epson
Perfection V750 PRO; Seiko Epson Corp., Japan). The images were
scanned and processed at identical settings to allow comparisons
of the Western blots from different samples. Digital images were
acquired with a Nikon Microphot-FXA epifluorescent microscope
(Nikon Corp., Tokyo, Japan), using a Spot RT Color CCD camera and
Spot RT software (Spot RT/ke Diagnostic Instruments). Microglial
cell silhouettes were acquired by transforming the raw digital
files of Iba1-immunoreactive cells made under fluorescent micro-
scope light to binary files, using the ImageJ software (version 1.47;
developed at the U.S. National Institutes of Health by W.  Rasband,
and available from the Internet at http://rsb.info.nih.gov/ij). The
color  cell images were transformed into their binary replicas (sil-
houettes) through automatic thresholding procedures (Szabo and
Gulya, 2013). After thresholding, values for cell perimeter (�m) and

cell area (�m2) were determined from at least 3 separate experi-
ments (at least 2 coverslips in each experiment for each culturing
time investigated; about 20 randomly selected cells/coverslip),
and the transformation index (TI) reflecting the degree of pro-

http://rsb.info.nih.gov/ij
http://rsb.info.nih.gov/ij
http://rsb.info.nih.gov/ij
http://rsb.info.nih.gov/ij
http://rsb.info.nih.gov/ij
http://rsb.info.nih.gov/ij
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Fig. 2. Localization of Iba1 immunoreactivity in pure microglial cell cultures (sub-
DIV4). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web  version of this article.)
Representative photomicrograph of Iba1 imunoreactive microglial cells in culture.
6 M. Szabo et al. / Brain Rese

ess extension was calculated via an expression [perimeter of cell
�m)]2/4�[cell area (�m2)] as previously described (Fujita et al.,
996). For the analysis of TI values, a total of 261 cells were
uantitatively measured (mean ± S.E.M.). Digital image produc-
ion was performed with Adobe Photoshop CS5.1 software (Adobe
ystems, Inc., San Jose, CA, USA). Color correction (brightness, con-
rast) and cropping of the fluorescent images were occasionally
erformed when individual photomicrographs were assembled to
gure panels for publication. No specific feature within an image
as enhanced, obscured, introduced, moved or removed.

.10.  Statistical analysis

All  statistical comparisons were made with SigmaPlot (v. 12.3,
ystat Software Inc., Chicago, IL, USA). Results for the phagocytosis
nd viability assays and the cell silhouette characteristics (TI values)
ere analyzed with Kruskal–Wallis one-way analysis of variance,

ollowed by Dunn’s method for pairwise multiple comparison pro-
edures for statistically significant differences between the groups.
or these studies, values were presented as mean ± S.E.M. from
t least three independent experiments and p < 0.05 was  con-
idered significant. For Western blots, values were presented as
ean ± S.E.M. from at least three blots, each representing inde-

endent experiments for each time period examined. For the
etermination of the homogeneity of the subcloned microglial cells,

ba1-positive cells and Hoechst 33,258 dye-positive cell nuclei from
t least 50 randomly sampled microscope fields from 2 to 3 cover-
lips for each subcloned culture were counted and the results are
resented as mean ± S.E.M.

.  Results

.1. CaM is differentially localized in ameboid and ramified
icroglia both in mixed and pure cultures

The quantity and cell type-specific localization of the CaM
rotein was first established in mixed primary cultures under
nstimulated and untreated (control) conditions. Fluorescent

mmunocytochemistry (Fig. 1A–P) and Western blot analysis
Fig. 1Q,R) demonstrated that a high concentration of CaM pro-
ein was characteristic of the mixed cultures throughout culturing.
n young cultures (DIV1–DIV7), when only a few cells double-
ositive for the Iba1 (Fig. 1A,E) and CaM (Fig. 1B,F) antigens existed
Fig. 1A–H), most of the CaM immunoreactivity was associated with
on-microglial, e.g. mainly neuronal, cell forms, as demonstrated
arlier (Szabo and Gulya, 2013). From DIV14 (up to DIV28), as more
ba1-positive microglia populated the cultures (Fig. 1I,M), the pro-
ortion of CaM immunoreactivity associated with the microglia
Fig. 1J,N) also grew steadily. Both ameboid (Fig. 1A,E) and ramified

icroglia (a few cells in Fig. 1I,M) expressed CaM immunoreactiv-
ty. As the cultures aged, the CaM immunoreactivity localized to

icroglia became predominant (compare Fig. 1I,M with Fig. 1K,O).
imilarly, Western blot studies confirmed the increase in Iba1
mmunoreactivity during culturing (Fig. 1Q), during which time the
aM content of the cultures remained unchanged (Fig. 1R). Thus,
y DIV14, the microglia had become the main CaM-expressing cell
ype in the mixed primary forebrain culture.

Subsequent experiments were performed on pure microglial
ultures (subDIV4; Fig. 2). In these microglial cells the Iba1
mmunoreactivity was most intense in the lamellipodia of the
meboid forms (Fig. 3A,D,G), followed by the perinuclear region

Fig. 3D,G). The strongest CaM immunoreactivity was always
bserved in the ameboid microglia, where the cell somata, and
specially the perinuclear area, were the most intensely labeled
Fig. 3B,E,H). In ameboid microglia, the CaM and Iba1 immunore-
The purity of this culture is close to 100%, since every Hoechst 33,258-labeled cell
nuclei (blue) is surrounded by Iba1 immunopositive cytoplasm (green). Scale bar:
100 �m.

activities were distributed in a complementary manner, as the
Iba1 protein tending to localize in the cell cortex and lamellipodia
(Fig. 3A–C). The ramified microglia displayed an almost homoge-
nous cytoplasmic Iba1 distribution (Fig. 3J) with a considerably
lower CaM content typically localized around the nucleus; the
branches had only traces of CaM immunoreactivity (Fig. 3K,L).

3.2.  CALMID and TFP differentially affect microglial proliferation
and  cell survival

When  CaM inhibitors were tested on cell proliferation and cell
viability, CALMID and TFP, either alone or in combination with
LPS, had different effects (Fig. 4A,B). Proliferation was  measured
as a function of Ki67-immunopositivity of the microglial cells
(PI). Unstimulated (control) microglia (subDIV4) had an average PI
value of 2.5% (25.22 ± 8.9 Ki67-positive microglia/1,000 analyzed
microglia in the culture; Fig. 4A). LPS challenge inhibited cell pro-
liferation, albeit without reaching significance (PI = 0.41; 16.2% of
the control value). According to Ki67 immunocytochemistry, TFP10
significantly decreased microglial cell proliferation both in unchal-
lenged and LPS-challenged microglia with PI values of 0.21% and
0.12%, respectively (Fig. 4A). While CALMID50 treatment alone
had no effect on the proliferation of unchallenged microglia, LPS-
challenged cells treated with CALMID50 showed some but not
significant inhibition.

Cell  viability was also investigated in pure microglial cultures
(Fig. 4B). In contrast with the ineffectivity of CALMID50 on cell sur-
vival in unchallenged and in LPS-challenged microglial populations,
TFP10 was highly effective in these cultures. In unchallenged cells,
TFP10 significantly decreased cell viability to 62.47% of the control
value. Similarly, when the microglial cells were challenged by LPS
treatment (100 ng/ml), TFP10 effectively decreased the number of
surviving cells to 71.28% of the control (Fig. 4B).

3.3. CaM inhibition affects cell morphology and actin
cytoskeleton reorganization
The  microglial morphology in the control and experimen-
tal groups was  analyzed through binary silhouettes (Fig. 5). The
quantitative analysis was based on the area, perimeter and TI,
the latter being a dimensionless number that is an indicator
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Fig. 3. Distribution of Iba1 and CaM immunoreactivities in pure microglial cells (subDIV4). (For interpretation of the references to colour in this figure legend, the reader is
referred  to the web  version of this article.)
In pure microglial cultures (subDIV4), the majority of the unchallenged cells were ameboid or slightly ramified. While the Iba1 immunoreactivity (red) could be localized
into two subcellular compartments, the perinuclear and the cell cortex domains (A, D, G, J), the CaM immunoreactivity (green) was  largely confined to the perinuclear region
(B,  E, H, K), with the cell cortex having a considerably smaller CaM content, which progressively diminished deeper into the branches. Merged pictures (C, F, I, L) show the
c ntly l
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ell  nuclei (blue) and the overlapping Iba1 and CaM immunoreactivities predomina
ocalized Iba1 immunoreactivity in the leading edges of large lamellipodia (A, arro
)  point to large lamellipodia. Scale bar in A for all pictures: 10 �m.

or the degree of process extension of a cell. Throughout the
xperiments, microglial cells with TI <3 were considered ame-
oid. The unchallenged, untreated 4-day-old pure microglia culture
subDIV4) consisted mainly of ameboid cells (Fig. 5, control
ow; see also controls in Figs. 7, 8, 10) with an average area
f 412.91 ± 27.2 �m2, perimeter of 100.73 ± 5.4 �m and a TI of
.02 ± 0.1 (Fig. 6 ). When administered alone, CALMID and TFP
ffected TI and the microglial cell surface area and perimeter dif-
erently. For example, both CALMID5 and CALMID50 resulted in
ncreased area, perimeter and TI, whereas TFP alone strongly inhib-

ted these characteristics. When challenged with LPS, the microglia
ecame enlarged and acquired significantly larger perimeter and
I (A = 777.23 ± 40.1 �m2, P = 238.97 ± 8.6 �m,  TI = 6.14 ± 0.4), con-
istent with these cells becoming activated (Figs. 5, 6 and 7D–F).
ocalized to the perinuclear area. Ameboid microglia have predominantly cortically
 cytoplasmic domain largely devoid of CaM immunoreactivity (B). Arrowheads (D,

Interestingly,  CALMID5 or CALMID50 alone was  not effective but
when used in combination with LPS, they significantly increased
the cell surface area, perimeter and TI (Figs. 5, 6A,C,E, 7G–I). TFP
sigificantly inhibited the expansion of cell surface area and perime-
ter both in unchallenged and LPS-challenged cells (Fig. 6B,D). As an
example, the cell surface area was  decreased substantially after TFP
or LPS + TFP treatment, to 46.4 or 44.5% of the unchallenged or LPS-
challenged control value, respectively. TFP treatment was  also very
effective in decreasing TI, to 25.53% of the LPS-challenged value
(Figs. 5, 6).
CaM  inhibition affected the microglial morphology through
reorganization of the actin cytoskeleton (Fig. 7). In unchallenged
and untreated (control) cultures, the Iba1- and phalloidin-related
fluorescence signals largely overlapped in the cell cortex of the
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Fig. 4. Effects of CaM inhibitors on microglia proliferation and viability in pure microglial cell cultures.
The  number of Ki67-positive microglia (A) and the viable cells (B) were quantitatively analyzed in challenged and untreated (control), LPS-challenged and LPS-challenged and
treated  cells. CALMID and TFP were tested at 50 nM and 10 �M,  respectively, either alone or in combination with 100 ng/ml LPS. TFP, either alone or in combination with LPS,
significantly decreased both microglia proliferation (A) and the number of viable cells (B) in the cultures (subDIV4). Interestingly, while the combined treatment of CALMID50
and  LPS led to some (but not significant) inhibition on microglia proliferation, it was  without any effect on cell viability. For proliferation studies, data (mean ± S.E.M.) were
collected from at least 4 independently established cultures, each involving plating on at least 3 Petri dishes. Mean PI values (%) were established as follows: control = 2.52%,
CALMID50 = 2.48%, TFP10 = 0.22%, LPS = 0.41%, LPS+CALMID50 = 0.20%, LPS+TFP10 = 0.12%. For viability studies, data (mean ± S.E.M.) were collected from at least 3 separate
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ulturings, each involving plating on at least 6 Petri dishes. Data were analyzed wit
Dunn’s method). *Statistically significant from control (p < 0.05); #statistically signi
0  �M TFP.

ainly ameboid microglia, often in lamellipodia (Fig. 7A–C) as
xpected, since they both bind to the actin cytoskeleton. When
reated with LPS, the microglia that became activated and enlarged
isplayed a phalloidin distribution much fuzzier than that in the
ase of Iba1, probably due to the rapid association of fibrous actin,
o which phalloidin preferentially binds (Fig. 7D–F). However,
pot-like concentrations of phalloidin fluorescence resembling
odosomes were often visible in LPS-treated cells (Fig. 7E, arrow).
aM inhibitors affected the Iba1 and phalloidin distributions in
ifferent ways. CALMID50 treatment resulted in phalloidin fluores-
ence that was clearly distributed in two distinct concentric rings
n the cytoplasm, one ring in the cell cortex, and the other as a per-
nuclearly localized cytoplasmic streaming of freshly synthesized
brous actin (Fig. 7H,K, arrows). Phalloidin-containing filopodia
ere also obvious in these cells. Similar, albeit less dense, Iba1

istribution was observed after CALMID50 treatments (Fig. 7G).
FP treatment resulted in an overlapping and almost homoge-
ous distribution of both Iba1 immunoreactivity and phalloidin
uorescence (Fig. 7M–O) in the surviving cells. While the Iba1

mmunoreactivity remained relatively intact (Fig. 7M),  most of the
halloidin fluorescence intensity was lost in TFP-treated microglia
Fig. 7N) indicating that TFP affected actin polymerization.

.4. CaM inhibitors differentially alter the intracellular
ocalization of CaM, and affect the Iba1 and CaM protein
xpressions

CaM inhibitors altered the intracellular localization of CaM pro-
ein (Fig. 8). Both unchallenged and untreated cells (Fig. 8A–C) and
PS-challenged cells (Fig. 8D–F) displayed high CaM content pri-
arily localized in the perinuclear compartment and to a much

esser extent with that in the cell cortex (Fig. 8A,B). Some of the
ells with larger TI had CaM immunoreactivity that progressively
iminished toward the cell cortex (Fig. 8C). Interestingly, cells
reated with CALMID50 alone displayed a more heterogenously

ranslocated CaM immunoreactivity often cortically localized in
amellipodia (Fig. 8J–L, arrowheads). In TFP10-treated cells, the
aM immunoreactivity was very weak and homogenously dis-
ributed in the cytoplasm (Fig. 8M–O).
skal–Wallis one-way ANOVA on ranks, followed by pairwise multiple comparisons
from LPS-treated cells (p < 0.05). LPS: 100 ng/ml; CALMID50: 50 nM CALMID; TFP10:

CaM  antagonists inhibited Iba1 and CaM protein expressions
with different efficacies (Fig. 9). In general, CALMID was less potent
than TFP in affecting Iba1 and CAM protein expressions. CALMID,
either alone or in combination with LPS, was not able to alter
the Iba1 expression significantly (Fig. 9A). TFP was more potent
as TFP10 and TFP20 inhibited Iba1 protein expression in a dose-
dependent manner both in unchallenged and LPS-challenged cells
(Fig. 9C). Similarly to their effects on the Iba1 expression, CALMID
and TFP antagonized the CaM protein expression with different
efficacy (Fig. 9B,D). When CALMID was  used, the CaM immunore-
activity was observed to decrease somewhat dose-dependently in
the unchallenged microglia as CALMID50 significantly inhibited the
CaM protein expression to 38.6% of the control level (Fig. 9B). Again,
TFP20 had a more profound effect on the CaM protein expression
(Fig. 9D), as it exhibited a strong inhibition both in the unchallenged
and in the LPS-activated microglia (20.8% and 23.4% of the control
value, respectively).

3.5.  CaM inhibition impairs phagocytosis in activated microglia

Cultured  microglia readily phagocytosed fluorescently labeled
beads (Figs. 10, 11, ). On average, unchallenged and untreated
microglia had 3.13 ± 0.1 phagocytosed microbeads per cell
(Fig. 10A–C and Fig. 11). LPS-challenged microglia displayed a
large (about 2.8-fold) increase in phagocytotic activity (8.78 ± 0.3;
Figs. 10D–F and 11). CaM inhibitors affected phagocytosis similarly
but with different degrees of potency. CALMID dose-dependently
inhibited phagocytosis both in unchallenged and LPS-challenged
microglia (Fig. 10G–I and Fig. 11A). TFP proved to be a very strong
inhibitor of phagocytosis both in unchallenged and LPS-challenged
microglia (Fig. 10M–O  and Fig. 11B) as it reduced the number of
phagocytosed microbeads by almost 90% (to 0.33 ± 0.2; 10.6% of the
control value) in unchallenged, and by 76.5% (to 0.75 ± 0.3; 23.5%
of the control value) in LPS-challenged cells.
4. Discussion

One of the most ubiquitous Ca2+-sensing proteins is CaM. Its
distributions in the developing and the adult rodent brain have
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Fig. 5. Representative binary silhouettes from pure microglial cultures after different treatment regimens.
Iba1-positive microglial cells from pure microglial cultures (subDIV4) were photographed, digitized and quantitatively analyzed according to their morphological character-
istics.  Five representative binary silhouettes are shown at each culturing time. CALMID50, in either control or LPS-challenged microglia, increased the number of filopodia,
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hile the complete absence of filopodia was  seen both in TFP10 and in LPS+TFP1
perimeter of cell (�m)]2/4�[cell area (�m2)]) are indicated for each digitized cell. L
0 �m.

een well documented (Caceres et al., 1983; Seto-Ohshima et al.,
983). It is encoded by three different genes in mammals (Palfi et al.,
002; Toutenhoofd and Strehler, 2000). The expression patterns
orresponding to the three CaM genes display a broad differential
istribution in the developing (Kortvely et al., 2002) and the adult
at CNS under both physiological (Kovacs and Gulya, 2002, 2003;
alfi et al., 1999; Solá et al., 1996) and pathophysiological condi-
ions (Palfi et al., 2001; Palfi and Gulya, 1999; Vizi et al., 2000).
uantitative analysis of the expression patterns of these genes indi-
ated a differential dendritic targeting of the CaM mRNAs (Kortvely
t al., 2003; Palfi et al., 1999, 2005); differential intracellular tar-
eting of selected CaM mRNA populations could serve for the local
ranslation of the necessary CaM proteins that regulate the numer-

us target proteins in that particular cytoplasmic compartment
Kortvely and Gulya, 2004).
ted microglia. Area (A) in �m2, perimeter (P) in �m,  and TI values (calculated as
0 ng/ml; CALMID50: 50 nM CALMID; TFP10: 10 �M TFP. Scale bar for all silhouettes:

CaM expression could be regulated by a number of differ-
ent physiological and pathophysiological cues. Although its gene
expression is generally very stable (Kortvely and Gulya, 2004; Palfi
et al., 2002), we  have identified many factors that could differen-
tially affect the expressions of the individual CaM genes in neurons
with distinct phenotypes from different brain regions (Orojan et al.,
2006; Palfi et al., 1999, 2002; Bakota et al., 2005), e.g. inflammation
(Orojan et al., 2008), ischemia (Palfi et al., 2001), dehydration (Palfi
and Gulya, 1999), and chronic ethanol treatment and withdrawal
(Vizi et al., 2000). Apart from the neurons, the microglia display
a considerable amount of CaM. This CaM expression, however, is
strongly dependent on the phenotype. After a kainic acid chal-
lenge, CaM immunoreactivity was  earlier demonstrated in reactive

microglia of the hippocampus (Solá et al., 1997), where the thick-
ened and shortened microglial processes accumulated CaM protein.
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Fig. 6. Effects of CaM inhibitors on selected morphological parameters of pure microglial cells.
Surface area (A, B) in �m2, perimeter (C, D) in �m,  and TI values (E, F) of the microglia for CALMID (A, C, E) and TFP (B, D, F) were analyzed in pure unchallenged and LPS-
challenged microglial cell cultures. All statistical comparisons were made by using SigmaPlot (v. 12.3, Systat Software Inc., Chicago, IL, USA) and analyzed with Kruskal–Wallis
o mpari
( ents. 
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ne-way analysis of variance, followed by Dunn’s method for pairwise multiple co
mean  ± S.E.M.) were computed from at least three independent culturing experim
reated  cells. LPS: 100 ng/ml; CALMID5: 5 nM CALMID; CALMID50: 50 nM CALMID;

In our studies, CaM was localized both in developing microglial
ells of primary cortical cultures established from E18 wild-type
at embryos maintained for up to 28 days (DIV1-28) and in pure

icroglial cells subcultured from DIV7 cultures for 4 days (sub-
IV4). Moreover, the presence of CaM protein was demonstrated
ot only in reactive microglia (treated with LPS alone or in combi-
ation with one of the CaM inhibitors), but also, at a lower protein

evel, in unchallenged proliferating ameboid or even ramified,
icroglial cells. We  observed morphologically and functionally dif-

erent microglial populations within the range from weak to strong

evels of CaM expression during culturing, as evidenced by their
uantitative assessment by fluorescent immunocytochemical and
estern blotting methods. In mixed primary cortical cultures, ame-
son procedures for statistically significant differences between the groups. Values
*Statistically significant from control (p < 0.05); #statistically significant from LPS-
: 10 �M TFP.

boid microglia, the predominant form in the early stages but always
present (in much smaller numbers) during culturing (Szabo and
Gulya, 2013), expressed strong CaM immunoreactivity through-
out the cytoplasm, while ramified microglia, the typical form in
the later stages of microglial development, showed a weaker and
more evenly distributed CaM immunoreactivity. A similar intra-
cellular distribution of CaM protein expression was  observed in
pure microglial cultures. In unchallenged and LPS-challenged cul-
tures, most of the microglia was ameboid and had strong CaM
immunoreactivity throughout the cytoplasm. Treatments with

CaM inhibitors, both in unchallenged and LPS challenged cells,
resulted in a weaker and more homogenously localized CaM
immunoreactivity.
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Fig. 7. Immunocytochemical localization of actin-binding proteins in pure microglial cells. (For interpretation of the references to colour in this figure legend, the reader is
referred  to the web  version of this article.)
Iba1 immunoreactivity (A, D, G, J, M;  shown here in green) and phalloidin fluorescence (B, E, H, K, N; shown in red) were colocalized in unchallenged and untreated
(control) cells and in microglia treated with LPS or CaM inhibitors in pure microglial cultures (subDIV4). Merged pictures (C, F, I, L, O) show the Hoechst 33,258-labeled cell
nuclei  (blue) and the colocalization of Iba1 immunoreactivity and phalloidin fluorescence. Filamentous actin often forms continuous ring-like lamellipodia in unchallenged
microglia (B). In LPS-challenged microglial cells, lamellipodia were less dominant, but the toxin stimulated podocyte formation, as indicated by several puncta delineated
b dia for
o lls. TF
p ; TFP1

a
c
m
i
I
o
i

y phalloidin fluorescence (arrow, E). When CALMID50 was  used, strong lamellipo
f  filamentous actin (arrows, H, K), giving a double-ringed appearance of these ce
halloidin fluorescence microscopy (N). LPS: 100 ng/ml; CALMID50: 50 nM CALMID

We  found that the intracellular localization of CaM immunore-
ctivity described above was closely related, and typically
omplementary, to the filamentous actin cytoskeleton, comprised
ainly of branched F-actin (Rotty et al., 2013). F-actin was  visual-
zed in our studies by the distributions of an actin-binding protein,
ba1, and phalloidin, a bicyclic heptapeptide that recognizes F-actin
nly, e.g. the form that possesses cellular functionality. Iba1 is an

ntracellular Ca2+-binding protein that plays an important role in
mation was observed, often accompanied by a perinuclear cytoplasmic streaming
P treatment abolished the formation of filamentous actin bundles as detected by
0: 10 �M TFP. Scale bar in panel A for all pictures: 50 �m.

regulation of the intracellular actin dynamics through the direct
binding of actin, enhances membrane ruffling and participates in
phagocytosis and cell motility (Ohsawa et al., 2000, 2004), functions
that require large amounts of cortical F-actin. Our immunocyto-

chemical observations showed that ramified cells (characterized by
larger TI values) that displayed minimal or no ruffling at all had only
modest quantities of CaM proteins in the cell cortex as compared
with ameboid or reactive microglia. Coincidentally, the amount of
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Fig. 8. Effects of CaM inhibitors on the intracellular localization of CaM immunoreactivity in pure microglial cells. (For interpretation of the references to colour in this figure
legend,  the reader is referred to the web version of this article.)
Representative  immunocytochemical pictures showing the intracellular distribution of CaM immunopositivity (red) in pure microglia cells (subDIV4). The merged pictures
show  the cell nuclei (blue) that were stained with Hoechst 33,258. The unchallenged and untreated (control) microglia (A–C) and LPS-challenged cells (D–F) showed mainly
perinuclearly localized CaM immunoreactivity. LPS-challenged and treated cells (G–I), and more typically CALMID50-treated microglia (J–L) displayed CaM distribution often
m eatme
d g/ml; 

5

c
g
d
C
l
e

ore  targeted to the cell cortex and developing lamellipodia (arrowheads). TFP tr
istribution of CaM immunoreactivity in the surviving microglia (M–O). LPS: 100 n
0 �m.

ortical F-actin was likewise less in ramified microglia, and the reor-
anization of the actin cytoskeleton determined the intracellular

istribution of CaM. Concomitantly increased levels of Iba1 and
aM protein expression, however, were evident both in unchal-

enged ameboid and in LPS- or LPS and CaM inhibitor-challenged,
.g. activated/reactive microglia. Our observations relating to the
nt resulted in a significant cell death (see Fig. 4) and a homogenous cytoplasmic
CALMID50: 50 nM CALMID; TFP10: 10 �M TFP. Scale bar in panel A for all pictures:

intracellularly redistributed CaM vs. F-actin are consistent with the
findings in mast cells in previous studies. For example, Sullivan et al.

(2000) demonstrated that CaM promoted the disassembly of corti-
cal F-actin, while Psatha et al. (2004) found that the disassembly of
the actin cytoskeleton eliminated CaM localization.
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Fig. 9. Effects of CaM inhibitors on Iba1 and CaM protein expression in pure microglial cells, as detected by Western blot analysis.
Quantitative Western blot analysis of Iba1 (A, C) and CaM (B, D) immunoreactivities in pure microglial cell cultures (subDIV4). Representative Western blot pictures of
the  respective immunoreactivities are shown below the graphs together with the GAPDH immunoreactive bands that served as inner standards in the same gel. Protein
samples were collected from 3 separate culturings, each involving plating on at least 6 Petri dishes, electrophoresed and quantitatively analyzed as described in the Section
2.  The integrated optical density data (mean ± S.E.M.), normalized to GAPDH immunoreactivities, were analyzed with Kruskal–Wallis one-way ANOVA on ranks, followed
b contro
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y  pairwise multiple comparisons (Dunn’s method). *Statistically significant from 

inding adaptor molecule 1; CaM: calmodulin; LPS: 100 ng/ml; CALMID5 and CALMI
-phosphate dehydrogenase.

LPS activation renders microglia ameboid, induces several pro-
nd anti-inflammatory signaling molecules (Lim et al., 2015; Zhu
t al., 2014) and neurotoxic substances through binding to the
D14/MD-2/Toll-like receptor 4-complex (Fricker et al., 2012;
okes et al., 2011), and gives rise, among others, to cell spread-

ng by interfering with the organization of the actin cytoskeleton

hrough the alteration of integrin clustering (Abram and Lowell,
009). Microglia activation was shown to involve the signaling
athways nuclear factor �B and p38 mitogen-activated protein
inase (Bachstetter et al., 2011; Cao et al., 2014; Kaushal et al.,
l (p < 0.05); #statistically significant from LPS-treated cells. Iba1: ionized calcium-
 and 50 nM CALMID; TFP10 and TFP20: 10 and 20 �M TFP; GAPDH: glyceraldehyde

2007).  It must be noted, however, that the activation of microglial
cells by LPS is not proliferative (Suzumura et al., 1991).

In  our studies, LPS challenge did not display a significant effect
on microglial cell survival or CaM and Iba1 protein expression, but
resulted in significant cell spreading, documented in increases in
cell surface, perimeter and TI, and in a repositioning of intracel-

lular actin filaments toward podosome and filopodia formation.
In spite of this lack of interaction between the LPS challenge and
CaM protein expression, some of the effects of LPS are medi-
ated through CaM-related phenomena in macrophages (Sweet and
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Fig. 10. Effects of CaM inhibitors on the phagocytic activity of microglial cells in pure microglial cultures. (For interpretation of the references to colour in this figure legend,
the  reader is referred to the web  version of this article.)
Distribution of phagocytosed microbeads in pure microglial cultures. Representative pictures showing Iba1-immunopositive microglia demonstrate that the unstimulated
and untreated (control) (A–C), LPS-challenged (D–F), LPS + CALMID50-treated (G–I), CALMID50-treated (J–L) and TFP10-treated (M–O) microglia displayed different degrees
of  phagocytosis, as evidenced by the number of phagocytosed microbeads. Fluorescent dye-coated latex microbeads (d = 2 �m) (green) were added to the media and
p as rin
t clei (b
T

H
l
p
t
i
t

hagocytosed by microglial cells. After exposure to the fluorospheres, the culture w
hen  with Alexa Fluor fluorochrome-conjugated secondary antibody, and the cell nu
FP10:  10 �M TFP. Scale bar in panel A for all pictures: 50 �m.

ume, 1996). An LPS challenge, for example, elevated the intracel-
ular Ca2+ concentration in brain macrophages via the activation of

hosphatidylinositol (3,4,5)-trisphosphate-sensitive stores that, in
urn, activated the actin cytoskeleton (Bader et al., 1994). Such an
nflammatory response was recently identified as one developed
hrough the activation of CaM-dependent kinase kinase 2 via Toll-
sed, the cells were formalin-fixed, labeled first with anti-Iba1 antibody (red), and
lue) were stained with Hoechst 33,258. LPS: 100 ng/ml; CALMID50: 50 nM CALMID;

like  receptors (Racioppi et al., 2012). Thus, the effects of LPS could
be attributed, at least in part, to CaM-related phenomena regulating

the actin cytoskeleton without directly affecting the CaM protein
expression. In another study, CaM was involved in spontaneous
microglial ramification and the activation of proliferation from qui-
escence as it inhibited the spontaneous ramification and decreased
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Fig. 11. Effects of CaM inhibitors on the phagocytic activity of microglial cells in pure microglial cultures.
Quantitative analysis of the number of phagocytosed microbeads after treatment with CALMID (A) or TFP (B) in unchallenged and in LPS-challenged microglial cells. For
t ean ±
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he  study of the effects of CaM inhibitors on the number of phagocytosed beads (m
rocedures. Data were analyzed with Kruskal–Wallis one-way ANOVA on ranks, fol
ontrol  (p < 0.05); #statistically significant from LPS-treated cells. LPS: 100 ng/ml; C

he proliferation of these cells (Casal et al., 2001). The loss of rami-
cation was reported to be induced by the elevation of intracellular
a2+ via direct or indirect routes (Kalla et al., 2003) that eventually
esulted in CaM activation and/or accumulation in the cell cortex.

A  number of studies demonstrated that cell cycle and prolifera-
ion could be regulated by CaM inhibitors (Berchtold and Villalobo,
014; Borsa et al., 1986; Sunagawa et al., 2000). Borsa et al. (1986)
ompared the effects of CALMID and TFP in cycling and non-cycling
ells and demonstrated that they were both preferentially cyto-
oxic for cycling cells. Cell proliferation studies on the osteosarcoma
ell line (Tseng et al., 2004), pancreatic beta-cell line cells (Hügl
nd Merger, 2007) and human lung cancer stem-like cells (Yeh
t al., 2012) demonstrated that CaM inhibitors effectively inhib-
ted cell division. TFP inhibited cancer stem cell tumor formation
nd growth through Wnt/beta-catenin signaling (Yeh et al., 2012)
nd cell migration (Finlayson and Freeman, 2009; Linxweiler et al.,
013), and was shown to induce apoptosis in human lung adeno-
arcinoma cell lines (Chen et al., 2009). In our proliferation studies,
nstimulated microglia (subDIV4) exhibited a low PI value (2.5%)

ndicating the presence of only a few mitotically active cells. This
alue would not be considered a prognostic feature in a number of
uman cancer types (Brownhill et al., 2014; Yamaguchi et al., 2013).
roliferation was strongly inhibited by LPS and TFP as they reduced
he number of Ki67-positive microglia very effectively. CALMID,
owever, had no effect on cell proliferation in unchallenged cul-
ures, albeit it did have some inhibitory effect in LPS-treated cells.
ell viability was also similarly differentially affected as TFP was
ore effective than CALMID in inhibiting the survival of pure
icroglial cells.

Both  CALMID and TFP were previously shown to inhibit CaM
ctivity primarily by binding directly to the protein (Matsushima
t al., 2000; Sunagawa et al., 2000). However, CALMID and TFP prob-
bly exert many of their actions not only via their binding to CaM,
ut also by interfering directly with a number of upstream (Qin
t al., 2009) or downstream targets of CaM signaling (James et al.,
009; Sunagawa et al., 2000). For example, the Rho family GTPases,
.g. Cdc42, Rac and Rho, are known to be intracellular switches that
egulate remodeling of the actin cytoskeleton (Hall, 1998). They
articipate in membrane ruffling, lamellipodia and podosome for-
ation and phagocytosis (Dovas et al., 2009; Kanazawa et al., 2002;
easholtz et al., 2004). As recent studies led to the consculsion
hat CaM can regulate the activation of both Rac1 and Cdc42 in

egakaryocytes and platelets (Elsaraj and Bhullar, 2008; Xu and
hullar, 2011; Xu et al., 2012), a direct involvement of CaM in
 S.E.M.), a total of 873 bead-labeled cells were counted in three separate culturing
 by pairwise multiple comparisons (Dunn’s method). *Statistically significant from
5: 5 nM CALMID; CALMID50: 50 nM CALMID; TFP10: 10 �M TFP.

cytoskeleton  remodeling was established. By acting on a number
of proteins simultaneously, these CaM antagonists could therefore
have more complex effects, which differ from each other and may
involve several signaling pathways, thereby further impairing a
number of cellular functions. Taken together, these features could
explain the differences seen in the efficacies of these CaM inhibitors
as concerns various aspects of microglial morphology and function.

The ability of CaM to activate many target proteins depends on
its highly flexible conformation, enabling it to interact with a wide
variety of proteins (Yamniuk and Vogel, 2004). We  hypothesize
that this conformational flexibility is limited to different degrees
when CaM inhibitors are applied; consequently, many of the CaM-
regulated effects will be differentially affected by CaM inhibition.
Thus, given the number of CaM-interacting target proteins and
their participation in the various intracellular signaling pathways
involved in, for example, the remodeling of the actin cytoskele-
ton during lamellipodia, filopodia or podosome formation (Evans
et al., 2003; Murphy and Courtneidge, 2011; Sunagawa et al., 2000;
Vincent et al., 2012), cell migration or phagocytosis (Sierra et al.,
2013), it is difficult at present to give an accurate explanation as
to how different CaM antagonists might interfere with the out-
come of the signaling processes. It seems clear, however, that CaM
inhibition interferes strongly with both morphological and func-
tional aspects of the microglial cells. Future experiments may  shed
light on whether the effects of CaM inhibition seen in selected
morphological and functional properties of microglia are uniquely
characteristic of these cells or may  perhaps be typical of other cell
types too, and may  promote an understanding of the cell type-
specific roles of CaM.

5.  Conclusion

CaM is a key factor in the regulation of a number of morpholog-
ical aspects of the microglia through the modulation of the actin
cytoskeleton that affects the formation and maintenance of lamel-
lipodia, filopodia and podosomes of these cells. Acting on many
target proteins, among which actin is of paramount importance,
it regulates several cellular functions such as phagocytosis, cell
proliferation and survival. CALMID and TFP, two  prototypical CaM
antagonists acting through different molecular mechanisms on the

CaM protein, have differential effects on these morphological and
fuctional aspects, including Iba1 and CaM protein expression, when
tested both in unchallenged and LPS-challenged pure microglial
cells. In general, TFP was  more potent in provoking these struc-
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