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Notation and Abbreviation

p,q, ...
Nu(p)
Al
w(A)

Binary matrices with a;;, bij, ..., fij, Gij, ... ele-
ments

Points of Z* with coordinates (ip, j,), (ig; Jq); - - -
The set of 4-adjacent points to p

The number of 1-s in the binary matrix A

The width (the number of columns) of the binary
matrix A

The binary matrix A is a subset of the binary ma-
trix B with equal size, i.e., ViVj(a;; =1 — b;; = 1)
The horizontal projection of A, containing the
number of 1-s in each row of A

The vertical projection of A, containing the num-
ber of 1-s in each column of A

Morphological dilation; morphological erosion; it-
erative morphological dilation with iteration num-
ber k

The morphological skeleton of the binary image F’
with the structuring element Y; the k-th skeletal
subset

The skeletal label of point p

Euclidean norm of a vector

The floor function

Minimum Flip Augmentation Problem

Simulated Annealing
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Introduction

The main task of tomography is to reconstruct images representing two-dimensional
cross-sections of three-dimensional objects from their projections. Undoubtedly,
the main applications of tomography arise from the field of medicine, but it is
a very useful imaging tool also in physics, chemistry, biology, and industry. An
important subfield is binary tomography [48], which aims to reconstruct binary
images. In the most common applications of this field, e.g., electron tomography [1,
12] and non-destructive testing [13|, usually just few projections of the object
can be measured, since the acquisition of the projection data can be expensive or
damage the object. Moreover, the physical limitations of the imaging devices make
it sometimes impossible to take projections from numerous angles. Owing to the
small number of projections the binary reconstruction can be extremely ambiguous.

The presence of certain binary patterns in the image can violate the unique
reconstruction of the image, especially from small number of projections. Therefore,
analysis of binary patterns plays a vital role in binary tomography. If uniqueness is
guaranteed, then the binary image can be stored in a (lossless) compressed form by
its projections. Nevertheless, even if the image contains specific patterns causing
the projections not being able to determine the image in a unique way, there is still
a chance to reconstruct the original image uniquely, if properly chosen elements of
that are stored as well |25].

Besides, a common way to reduce the number of solutions of the reconstruction
task is to assume that the image to be reconstructed satisfies certain geometrical
properties. In many applications of binary tomography the image itself is naturally
unknown in advance. However, when one thinks of encoding binary images by
their projections for data security or image compression reasons, it is clear that the
original image is available. Then, in the decoding phase it becomes important to
know whether the image, possibly with some additional prior information, can be
uniquely revealed from the projection data [51].

Assuming different prior information about the original image, several theoret-
ical results are known, regarding the efficient reconstruction of binary images and
the number of solutions, using just the horizontal and vertical projections. In [9, 21|,

the authors use certain structured images for lossless data compression, which again
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shows the usefulness of binary reconstruction in the field of image encoding. The
reconstruction complexity and the number of solutions are well-studied in numerous
classes of images when two projections are available [10, 27, 30]. Furthermore, in
the reconstruction process the prior knowledge is often incorporated into an energy
function, thus the reconstruction task becomes equivalent to a function minimiza-
tion problem. There are various methods to solve that kind of problems [35, 63, 66|.

This thesis is a summary of the Author’s research in the field of binary tomog-
raphy. The central focus of this work is to examine additional prior information
for the reconstruction task from at most two projections, expand the theoretical
background of complexity, determine the number of solutions for certain classes of
binary images, and develop new algorithms for binary tomography.

The structure of the dissertation is the following. First, Chapter 1 gives the
necessary preliminaries. This chapter does not contain any new contribution (with
the exception of Lemma 1.4.1). We summarize previous results of the field, and
provide the mathematical backgrounds for understanding the results of the thesis.
Then, Chapters 2, 3, and 4 give a detailed description of our results.

Chapter 2 deals with binary patterns which can ensure uniqueness of the re-
construction. In binary images, the reconstrucion can be unique if these patterns
are fixed in a preprocessing step. However, finding the minimal number of patterns
to fix is generally hard, thus the existence of a deterministic, polynomial-time al-
gorithm for finding the global optimum in general case is questionable. In this
chapter, we show how to reduce the searching space drastically, without losing the
global optimum, and give deterministic, polyominal-time heuristics based on our
theoretical results. We compare those algorithms to another well-known methods
in the literature, on a wide set of random binary matrices, and also a real-life
dataset of presence-absence matrices. We conclude that our algorithms perform
better than the previous ones, both in the number of pattern alteration and run-
ning time, especially on sparse matrices.

The reconstruction of specific binary structures from few projections is an ex-
tensively studied problem in discrete tomography. Several algorithms exist to solve
this task from two projections. For testing the efficiency of those (and of more
general reconstruction) algorithms in the average case, enumeration and random
generation of these images according to several parameters is an important issue.
In Chapter 3, we study the reconstrucion only from the horizontal projection, and
provide fast algorithms to reconstruct special binary images with a prescribed hor-
izontal projection. With certain modifications we also can generate such images
from a uniform distribution. Furthermore, formulas for the number of solutions

with minimal and with any given number of columns are provided as well.

In Chapter 4 we investigate a new kind of prior information to aim the recon-
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struction, the so-called morphological skeleton — a region-based shape descriptor
— which represents the general form of binary objects [38]. We prove that the
reconstrucion is generally still hard in the term of complexity, however, a rough
reconstruction is always possible in a short time and a small number of iterations.
We propose some variants of a method based on a stochastic function minimizer
algorithm to reconstruct binary images from their horizontal and vertical projec-
tions and the given prior information. With additional restrictions the result will
be smoother, however, the convergency of the method becomes slower. A related
issue is the uniqueness of the reconstruction. Regardless of the complexity of the
reconstruction, the possible number of the solutions can be exponential in the size
of the image 30, 65]. We study the uniqueness of the reconstruction of certain type
of images, using two projections and the shape descriptor prior.

Finally, in Chapter 5 we give a conclusion of the thesis. For each chapter we

summarize our results, and discuss possible further extensions.






Chapter 1

Preliminaries

1.1 The Binary Reconstruction Problem

In binary tomography the task is to reconstruct a two-dimensional binary image
from a set of projections. The image can be represented by a binary matrix!
A = (a;;), or can be defined as a finite subset of Z? (definition is up to translation),
where the size of the image is defined by the size of its minimal bounding discrete
rectangle. If a point p = (4,, j,) of Z? is in the given subset, then it is called an object
point, and indicated by a;; = 1 in the binary matrix representation. Otherwise, it
is called a background point, and then a;; = 0 in the corresponding position of the
binary matrix. Figure 1.1 shows three different representations of the same binary
image.

Generally, in the continuous setting the binary reconstruction task is to recover

an unknown binary function f(z,y) : R?* — {0,1} (the image) from a bunch of its

'In the literature, a binary matrix is often denoted by A, B, etc., while a binary image is
usually denoted by F, G, etc. In this thesis those definitons are equivalent, and we use both
notations.

11000

01111

00110

01010

10110
a) b) c)

Figure 1.1: Different representations of the same binary image: (a) a set of pixels
using two colors; (b) a representation of a subset of Z?; (c) a binary matrix.
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line integrals, the so-called projections given by the Radon-transform
[Rf](s,0) = / f(scosf —usinf, ssin @ + ucos 0)du (1.1)

for certain fixed 0 angles. Here s and u denote the variables of the coordinate system
rotated by the angle 6 and [Rf](s, 6) is called the f-angle parallel projection of f (see
Fig. 1.2 for example). In some applications of this field usually just few projections
of the object can be measured, since the acquisition of the projection data can be
expensive or damage the object. Moreover, the physical limitations of the imaging
devices make it sometimes impossible to take projections from numerous angles. In
binary tomography we assume the image to be reconstructed is homogeneous, and
for the reconstruction usually only a few number of projections are given. In case
of only two projections, the horizontal and wvertical projection of a binary image is
defined as the vector of the row and column sums, respectively, of the image matrix.
Formally, given a binary image A of size of m x n, the horizontal and vertical
projection is defined by the vector H(A) = (hy,..., hy) and V(A) = (v, ..., v,),

respectively, where
n

hi=Y ay, i=1...m, (1.2)

j=1

and
m

szzaij, j:].,,n (13)
i=1

The task is to reconstruct the binary image A from its horizontal and vertical
projections. The basic question about the general reconstruction problem is the

following;:

Problem. BINARY RECONSTRUCTION FROM TWO PROJECTIONS

Instance. H and V finite vectors of non-negative integers, possible additional
prior information.

Question. Is there a binary image A such that H(A) = H, V(A) =V, and A

matches with the given prior information?

However, one can consider the following problems related to binary reconstruc-

tion as well.

e How many solutions are there?

e [s there a way to give the n-th solution with an acceptable amount of com-

putation (hence, without listing the first n — 1 solution)?

e How hard is to find a single solution? Is there a polynomial-time algorithm
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[Rf1(s,0) N 5

N 6 X
f(xp) '(z

Figure 1.2: The continuous setting of the binary reconstruction task.

for the given task?
e What kind of heruristics can speed up the search for a solution?

e What is considered as a solution? Can it be an image satisfying just approx-

imately the projection vectors, and/or the additional prior information?

Similar questions can be asked in case of more than two projections. In this the-
sis we only focus on the above questions if only two projections are known, at most.
Generally, if only the horizontal and vertical projections are given, the number of
solutions can be exponential [27]. A common way to reduce the number of solutions
of the reconstruction task is to assume that the image to be reconstructed satisfies
certain geometrical properties (e.g., convexity and/or connectedness, as in [23]).

The first method to answer the question of the binary reconstruction problem
from two projections was published in [65]. In the same work it was also showed
that the solution is not always uniquely determined. Furthermore, in practical
applications noisy projection data also complicates the reconstruction. To overcome
those problems one can transform the original task to a function minimization

problem (assuming the size of the image is m x n)
f(x)=||[Ax —b||3 +a-g(x) — min, (1.4)

where x is an (mn) x 1 binary vector representing the unknown image in a vector

form using row-by-row traversal; b = (H(F), V(F))T is an (m+n) x 1 vector con-
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a) b) c)

Figure 1.3: Three matrices with rearranged columns and rows to form a triangluar
(nested) shape as close as possible. a) a fully nested (switching component free)
matrix; b) a nearly fully nested matrix with low number of flips; ¢) a uniform
random matrix.

taining the projections, and A is an (m +n) x (mn) binary matrix, with a;; = 1
if and only if the pixel x; is hit by the j-th projection ray, 0 otherwise. The func-
tion g(x) handles additional information of the image, such as shape, connectivity,
perimeter, etc. (as in [23]). The lower value it takes the closer the reconstructed
image is to the expected one. g(x) is multiplied by the weighting parameter o > 0.
In this thesis, especially in Chapter 4 we use the function g(x) to add prior infor-

mation about the image to the minimization task.

1.2 The Minimum Flip Augmentation Problem

In the field of biogeography and ecology, nestedness is an important measurment of
presence-absence binary matrices, where rows can represent species, while columns
can represent certain locations. The nestedness of the matrix describes the connec-
tion and dependency between species in different location. Similarly, data mining
and intelligent data analysis can use nestedness — or nestedness-like measurements
— to show the connection between the data represented by rows and columns of a
binary matrix [58]. A binary matrix is called fully nested, if and only if its rows
form a chain of subsets; that is, any two rows are ordered by the subset relation,
where we view each row as a subset of the columns indicated by the 1-entries. If
a matrix is fully nested, it is possible to permute the rows and columns in a way
that the resulted binary image forms a triangular shape, as Fig. 1.3a shows.
Nestedness is strongly connected to the concept of switching components. A
switching component is a 2 X 2 submatrix of a given binary matrix such that the
diagonal of the submatrix contains 1-s, and the anti-diagonal contains 0-s, or vice
versa. Formally, the indices 1, ji, 72, jo form a switching component in the binary
matrix A = (a;;), if either a;,;, = a;,;, = 1 and a;,;, = a5, = 0, or a;,j, = aipj, =0

and a;,;, = a;,;, = 1. A binary matrix is switching component free, if it does not
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a) b)

Figure 1.4: Examples of switching components and a switching component free
matrix: a) a binary image with two examples of switching components marked
with gray squares and disks; b) a switching component free binary image.

contain any switching components. For examples, see Fig. 1.4.

A matrix is fully nested if and only if it is switching component free [58]. If the
matrix contains switching components, no permutation on the rows and columns
could lead to a triangular shaped image. See Fig. 1.3b and Fig. 1.3c for examples.

Let us define 0-1 flips as an operation that changes a 0 element of a given binary
matrix to 1. The Minimum Flip Augmentation Problem (MFA) plays an important

role in determining the nestedness of a binary matrix.

Problem. MINIMUM FLIP AUGMENTATION (MFA)
Instance. A binary matrix A.
Question. Constructing a switching component free binary matrix A* from A

using 0-1 flips, what is the minimum number of flips?

Unfortunately, as it was proven in [58], determining the minimal number of
0-1 flips, thus to achieve uniqueness of the reconstruction from two projections is
generally an NP-hard problem. The goal of Chapter 2 is to give heuristics for this

problem.

1.3 Chang’s Algorithm

Chang’s algorithm [25] is a polyominal-time binary image reconstruction algorithm
for unique matrices. A binary matrix is unique if and only if there is exactly
one solution for the reconstruction task that satisfies the given horizontal and
vertical projections. The algorithm requires the absence of switching components
in the matrix, which is the necessary and sufficient condition of non-uniqueness |65].
However, the algorithm can deal with a set of so-called forbidden positions, i.e.,
positions which has a fixed value in the matrix. Algorithm 1 shows the pseudo-code
of Chang’s Algorithm.

In Chapter 2 we show how to compress (not necessarily unique) binary images
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Algorithm 1 Chang’s Algorithm
Require: Vector of column and rows sums C' and R, respectively; set of forbidden
positions @)
Ensure: Binary matrix A satisfying C', R, and @)
Let A be a matrix full of free elements
Fix every position of () in A; update C' and R by substracting the fixed 1-s
while there are free elements in A do
Find a row (column) where all the free elements must be either 0 or 1 to fulfil
the corresponding row sum (column sum)
if there is no such a row (column) then
The solution does not exist or is non-unique
return ()
else
Fix the free elements in the found row or column to 0-s (or 1-s) in A, and
update C' and R
end if
end while
return A

in a lossless way using Chang’s algorithm as the decoding algorithm.

1.4 The Morphological Skeleton

The skeleton is a region-based shape descriptor which represents the general form of
binary objects |17]. One way of defining the skeleton of a 2-dimensional continuous
object is as the set of the centers of all maximal inscribed (open) disks [36]. A disk
is maximal inscribed if it is included in an object, but it is not contained by any
other inscribed disk. Discrete skeletons are analogues of the continuous skeleton,
but they can be calculated only approximately. There are three frequently used
techniques for extracting skeletons from discrete binary images: thinning, Voronoi-
based, and distance-based methods [69].

Special skeletons of discrete binary images can be expressed via morphological
operations [38], where the continuous disks are approximated by successive dilations
of the selected structuring element that is to represent the unit disk. We know
that those dilated structuring elements cannot provide “good” approximations of
Euclidean disks [67]. Consequently, the heuristic morphological skeletons do not
yield “reasonable” skeletons. Despite of this drawback, the original binary image
can be exactly reconstructed from the skeletal subsets of arbitrary morphological

skeletons.

The morphological dilation of a binary image F with the structuring element
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a) b) ¢)

Figure 1.5: An example of the basic morphological operations: (a) original image;
(b) the result of morphological dilation; (c¢) the result of morphological erosion.
The structuring element is the origin and its 4-neighbors. Dark gray pixels indicate
unaltered object points, light gray pixels indicate altered points.

Y C Z? is defined by
F@Y:{pez2|(Fm(Y)p)gF}, (1.5)

where Y denotes the reflection of ¥ through the origin and (X), denotes X trans-
lated to the point p.

The definition of the morphological erosion is analogous,
FoY={peZ|(Y),CF}. (1.6)

Figure 1.5 shows an example of morphological dilation and erosion.

The iterative morphological dilation is a morphological dilation applied k times
(I{Z S NQ), i.e.,
F if k=0,

1.7
(Fo, Y)oY  ifk>0. .7

FEBkY:{

The definition of the iterative morpological erosion F' & Y is similar to (1.7).
The morphological skeleton |38, 67| S(F,Y’) of a binary image F' determined by a
structuring element Y C Z? is defined by

S(FY)=|]J8(FY), (1.8)

where
SiEY)=(ForY)\ [(FomY)aY], (1.9)

and K is the radius of the largest inscribed disk. In other words,

K=max{ k| Fe,Y #0}. (1.10)
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Figure 1.6: An example of the morphological skeleton S(F,Y’) of a binary image
F (dark and light gray pixels). Light gray pixels indicate the skeletal points with
their corresponding labels.

a) b)

Figure 1.7: An example of the morphological skeleton: (a) original image F’; (b) the
morphological skeleton S(F,Y"), which represents the shape of the original image.

A point p € F is called a skeletal point if p € S(F,Y) for a fixed structuring
element Y.
An important property of the morphological skeleton is that the image F' can

be exactly reconstructed from the skeletal subsets and the structuring element:

K

F=J[SsEV)oY]= | (ponY). (1.11)

k=0 peS(FY)

where k), denotes the skeletal label of p such that p € S, (F,Y). Since the skeletal
subsets are disjoint, the labels are unique and well-defined.
From now we assume that the structuring element Y corresponds to the 4-

neighbors of the origin and the origin itself:
Y ={(-1,0), (0,-1), (0,0), (0,1), (1,0) } . (1.12)

Figure 1.6 shows an example of the morphological skeleton and the skeletal labels.
Figure 1.7 shows another example of the morphological skeleton, while Fig. 1.8
shows how to create the morphological skeleton step by step.

The following lemma provides an important property of the labels.
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N
F=F&yY (FerY)aY So(F,Y)
Fo, Y (Fey Y)Y S1(F)Y)
= =
FoY (FesY)aY S:(F)Y)
S(FY)

Figure 1.8: Generating the morphological subsets Sp(F,Y) (k =0, 1,2) according
to (1.9). The top left image equals the original image F'. In each row, the image in
the third column is the difference of the previous two images. Note that S(F,Y) =
() for k > 3, thus the final morphological skeleton is S(F,Y) = Sy(F,Y)US:(F,Y)U
Sy(F,Y).
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Figure 1.9: An example of the assumption in Lemma 1.4.1. Gray pixels indicate P
dark gray pixels indicate Q, where Q C P. Here, di(p,q) = 3, k, =5 and K, = 2.

Note that (¢’ ®x,+1Y) C P, enclosed with thick lines.

Lemma 1.4.1 Let p € S, (F\Y) and q € S, (F.Y) be two distinct skeletal points
of a binary image F and the structuring element Y defined by (1.12). The Man-
hattan distance of the skeletal points is greater than the difference on their labels,
1.€.,

a1 (p.q) > 1Ky — R (1.13)
Proof
Assume to the contrary that p and g are skeletal points of F' with d;(p, ¢) < |kp—£,]-
Without loss of generality, let x, > k,, therefore our assumption is

di(p,q) + kg < Kyp . (1.14)

Let P = (p®s,Y) and Q= (¢®s,Y). From (1.11) we know that P,Q C F. Also
because of the attributes of Y defined by (1.12) and the morphological dilatation,

uwe P < di(p,u) < Kp (1.15)
veQ — di(q,v) < Ky (1.16)

for any u,v € Z2.
Therefore, for every point v € @, using (1.14) and (1.16),

di(p,v) < di(p,q) + di(q,v) < di(p,q) + kg < Ky . (1.17)

Overall with (1.15), (v € Q) — (v € P), and since p # ¢, it follows that
Q - Pp. Hence, there exists a point ¢’ such that ¢ and ¢’ are 4-neighbors and
(¢ ®r,n Y) C P CF,soq € (F kg1 Y) (see Fig. 1.9 for an example).
Consequently, ¢ € [(F ©,,41Y) @ Y], which means ¢ ¢ S, (F,Y) by (1.9), which
is a contradiction. a

The morphological skeleton plays a great role in Chapter 4, where it is used as
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additional information for the binary reconstruction task.

1.5 Simulated Annealing

Simulated Annealing (SA) was intruduced in [61], and later independently de-
scribed in [53] and [24]. SA is a generic probabilistic method for global optimiza-
tion problems, i.e., finding the global minimum of functions whose characteristics
are usually unknown and/or extremely complex. It only assumes that evaluation
of the function is possible at arbitrary points. Unlike gradient descent methods,
with SA the probability of finding global optimal solution tends to 1.

SA, as its name suggests, simulates the physical phenomenon of annealing,
where the goal is to find the state with the minimal internal energy of a system
through controlled cooling, regardless the initial state. During the cooling process,
the energy of the state might increase due to the thermal noise, hence can avoid
local optimum. Overall, if the cooling process is approached carefully, the process
terminates in a state having (nearly) minimal energy. In terms of SA, the system is
the function to be minimized, and the states are simply the values of the function.
See Algorithm 2 for the pseudo-code for SA.

Algorithm 2 Simulated Annealing
Require: f function, x initial solution, 7" initial temperature
Ensure: z* solution for minimizing f
repeat
' + x, modify 2’ randomly
if f(2') < f(z) then
x < 2
else
x < x' with a probability of e
end if
Decrease T'
until the termination criterion is satisfied
return ¥ <z

fa')—f(x)
T

SA is simple to implement, robust, and flexible in the sense of controlling its
parameters. However, one serious drawback of the method is that one has to
fine-tune many parameters to achieve an acceptable approximation of the global
minimum of f, including random modification of the actual solution, the annealing
schedule, and the selection of the starting parameters. Furthermore, in many
practical applications it is not trivial to describe the optimization problem as a
function minimization problem, which can bring more parameters into the process.

In the literature there are many studies where SA have been applied to solve an

image reconstruction problem. In [52], the authors found that SA ensured slightly
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better reconstruction quality than the iterative method for single photon emission
computed tomography (SPECT). In [60] a variation of SA was proposed to solve
the electrical impedance tomography (EIT) reconstruction problem. In [57], the
authors used SA for reconstructing discrete images on a triangular grid from six
projections. The authors of [56] studied the performance of various implementa-
tions of the SA algorithm when applied to binary functions, especially in binary
reconstruction.

We use SA in Chapter 4 for solving the reconstruction problem, where one or two

of the projections are given, as well as the morphological skeleton (see Section 1.4).



Chapter 2

Eliminating Switching Components

in Binary Matrices

2.1 Introduction

Studying the structure of binary matrices plays a vital role in numerous applica-
tions of computer science. Binary matrices can describe the connection between
the data represented in rows and the data represented in columns; they can contain
binary patterns in a natural way; or can represent a whole digital image. There-
fore, analyzing binary matrices is an important task of intelligent data analysis [15],
data mining [71], low-level image processing |38|, and machine learning [62], among
others. One commonly performed task is to localize and enumerate special sub-
patterns in the binary matrix. Such a basic and essential subpattern of a binary
matrix is the so-called switching component, which is a 2 x 2 submatrix with ex-
actly two 1-s in the diagonal and two 0-s in the antidiagonal, or vice versa (for a
formal definition, see Section 1.2). The importance of searching switching compo-
nents — if they exist — in a binary matrix comes from the fact that the absence
of these patterns is a necessary and sufficient condition for the unique reconstruc-
tion of the matrix from the vectors of its row and column sums [65]. Therefore, if
uniqueness is guaranteed then the binary image represented by the binary matrix
can be stored in a (lossless) compressed form by those two vectors. The presence of
even one switching component makes the solution non-unique when no additional
prior information is available about the binary matrix to be reconstructed. Nev-
ertheless, even if the matrix contains switching components, then there is still a
chance to reconstruct the matrix uniquely [25], if properly chosen elements of the
original matrix are stored as well, using them as prior information. One can store,
e.g., the positions of 0-s which need to be inverted to 1-s (by so-called 0-1 flips)

in order to make the matrix switching component free. The aim is then to find

17
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the minimal number of 0-1 flips needed to achieve uniqueness. Apart from image
reconstruction, the number and the position of switching components also play an
important role in the field of biogeography and ecology. There, binary matrices
can represent the presence or absence of certain species (rows) on certain locations
(columns), which is also strongly connected to the theory of 0-1 flips (see [58], and
the references given there). Then, the so-called nestedness is a relevant measure
of the matrix, which describes how strongly the species depend on each other and
their locations. Similarly, data mining and intelligent data analysis can also use
nestedness — or nestedness-like measurements — to show the connection between

the data represented by a binary matrix (see again references in [58]).

Unfortunately, as it was proven in [58], determining the minimal number of
0-1 flips to achieve uniqueness is generally an NP-hard problem. Besides, one can
consider 1-0 flips instead of 0-1 flips. In that case, the minimal number of flips can
differ for a certain matrix, but the problem is still generally NP-hard due to the
symmetrical roles of 1-s and 0-s. Moreover, if both 0-1 and 1-0 flips are allowed,
finding the minimal number of flips is considered to be NP-hard, although it has not
been proven yet. In this chapter, we focus only on the 0-1 flips. We show that the
minimal number of 0-1 flips can be found by determining the proper ordering of the
columns of the matrix according to a certain filling function, instead of searching
through matrix elements and switching components. Based on theoretical results,
we develop two deterministic, polynomial-time heuristics to find the minimal num-
ber of 0-1 flips. We compare those methods to another well-known methods in the
literature, on a wide set of random binary matrices, and also a real-life dataset of
presence-absence matrices. We conclude that the algorithms searching for proper
column permutations perform better, regarding both the number of 0-1 flips and
running time, especially on sparse matrices. Moreover, we show how to use these
algorithms in a simple way for general binary image compression with Chang’s

algorithm, previously described in Section 1.3.

2.2 Problem Setting and Theoretical Results

Our goal is to answer the MINIMUM FLIP AUGMENTATION problem, described in
Section 1.2. The aim is to determine the minimal number of 0-s needed to change
into 1-s of a binary matrix in order to make the matrix switching component free.
Changing each 0 to 1 in a given A binary matrix would yield a binary matrix with
no switching component, therefore such a switching component free binary matrix
A* always exists. On the other hand, in [58] the following lemma is proven.

Lemma 2.2.1 MFA is NP-complete.
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a) b)

Figure 2.1: An example of the canonical expansion function: a) a binary image,
some of the switching components are marked with squares and disks, (b) the same
image after applying the canonical expansion function. Dark gray pixels indicate
the 0-1 flips.

A naive approach to find a (not necessary optimal) solution may include a searching
through the switching components of A, and eliminate them by changing 0 values
into 1-s, in a sequential order. There can be O(m?n?) switching components, and a
certain 0 can belong to O(mn) switching components. For example, in the identity
matrix any 0 element under the main diagonal forms a switching component with
any 0 element above the main diagonal with the corresponding 1-s. The aim is to
identify a minimal sized sequence of those 0-s, thus an exhaustive search for the op-
timal solution may require O((mn)!) steps. We show how to speed up the searching
process through special operations in order to gain much faster approximate solu-
tions. In that case, the exhaustive search will require at most O((min{m,n})!-mn)
steps. Before describing the heuristics, we provide some theoretical results. First,
we give the definition of the canonical expansion function.

The canonical expansion of the binary matrix A is a binary matrix ¥ A of the

same size as A, with elements defined by

0 if a;; = 0 for every j' > j,
Ya; = .
1 otherwise.

Figure 2.1 shows an example of a canonical expansion. Since 1 performs only 0-1
flips in A, thus A C v A. If YA = A for a binary matrix A, then A is called a
canonical matriz'. Note that YA = 1A, therefore the canonical expansion of any
binary matrix is a canonical matrix.

Besides, given the binary matrix A of size m x n and a permutation 7 of order
n, let 1A denote the binary matrix which consists of the columns of A according

to m. The following lemmas show important properties of canonical matrices.

Lemma 2.2.2 Any canonical matriz is switching component free.

!Not to be confused with canonical hv-convex images described in Chapter 3.
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Proof

The presence of a switching component requires a row in the binary matrix contain-
ing a 0 followed by a 1 somewhere in the same row (not necessarily on an adjacent
position). Since 1)A = A for a canonical matrix A, A clearly has no such rows. O

Lemma 2.2.3 Let A be a switching component free binary matriz with non-incre-
asing column sums. Then A is a canonical matrix.

Proof

Assume to the contrary that A is a switching component free binary matrix with
non-increasing column sums, and A is not a canonical matrix. Since A is not a
canonical matrix, there exists a row ¢ such that a;; = 0 and a;; = 1 for some j < j’
columns. But the j-th column contains at least as much 1-s as the j’-th column,
and therefore there must be a row ¢’ such that a;; = 1 and ay;y = 0. Then, a;;,
a;jr, ay; and ayy form a switching component, which is a contradiction. O

The next lemma describes a property of the canonical expansion.

Lemma 2.2.4 Let A and B be two binary matrices of the same size m x n. If
A C B then v A CYB.

Proof
Leti € {1,...,m} be an arbitrary row index. Moreover, let ji4) denote the position
of the last 1 in the i-th row of A, i.e., a;;, ,, = 1 and a;; = 0 for j > jj(a). Similarly,

let j;p) denote the position of the last 1 in the ¢-th row of B, hence b =1 and

(B
bij = 0 for j > jyp). From A C B it follows that j;4) < jim). .

By the definition of the canonical expansion, 1a; = 1 if and only if 1 < j < jj(4).
Similarly, 1b; = 1 if and only if 1 < j < jypy. Since jja) < jyp), it follows that
b, = 1 whenever 1a, = 1for k =1,...,n. The row index i was chosen arbitrarily,
thus we get YA C ¢B. O

Finally, the following theorem reveals the connection between canonical expan-

sions and the solutions of the MFA problem.

Theorem 2.1 Let A be a binary matriz of size m xn, and let A* denote a solution
of MFA(A). Then there is a column permutation 7 of order n such that 71T A =
A*.

Proof

Let 7 be a (not necessarily unique) permutation such that mA* is a binary matrix
with non-increasing column sums. Trivially, A C A* and by the definition of the
column permutation and the subset relation, 7A C 7A*. A column permutation
has no effect on the existence of switching components, hence mA* is still switching
component free. But then, by Lemma, 2.2.3, wA* is canonical and therefore ¢y A* =
mA*. Since 1A C wA*, by Lemma 2.2.4 we get vmA C ¢YwA* = wA*. Therefore,
iy A C A*,
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On the other hand, by the definition of canonical expansion, 7A C ¥ A, and
therefore, A C m~'4mA. Moreover, on the basis of Lemma 2.2.2, ¢7 A is switching
component free, thus 7= )7 A is also switching component free. Furthermore, from
the arguments of the previous paragraph it follows that |[7~ly7A| < |A*], and
therefore (|m~'ymA| — |A]) < (JA*] — |A]). Since A* is a solution of the MFA(A)
problem, the right hand side of above inequality is minimal. Therefore the left
hand side must be also minimal, thus 7~ *mA must be a solution of the MFA(A)
problem. We have that |7 1w A| = |A*| which together with 7~1ym A C A* yields
nlYrA = A* O

Figure 2.2 illustrates Theorem 2.1. Unfortunately, the proof of the theorem de-
fines 7 as a function of the solution A*, and due to Lemma 2.2.1 finding the proper
column permutation is generally NP-complete. Nevertheless, the number of possi-
ble column permutations is much smaller than the number of possible sequences of

switching components, in general.

Corollary 2.1 To find a solution of the MFA(A) problem, it is sufficient to search
for the corresponding column permutation w. The number of such permutations is
O(n!), or considering the transposed matriz, O((min{m,n})!).

Constructing the canonical expansion of a matrix can be done in O(mn)
time, and thus an exhaustive search for the optimal column permutation requires

O((min{m,n})! - mn) time, in the worst case.

2.3 Heuristics

We now describe four different heuristics for the MFA problem, which try to min-
imize the number of 0-s needed to be flipped to 1-s in order to make the matrix
switching component free. All of them are deterministic methods and have a poly-
nomial running time. We note that the algorithms work for 1-0 flips as well, if one
inverts the elements of the input matrix, runs the algorithm, and inverts again the
elements of the resulted matrix. Unfortunately, the difference between the number
of necessary 0-1 flips and 1-0 flips can be arbitrary large. For example, consider
the binary matrix I of size n x n with 1-s in the main diagonal and 0-s elsewhere.
It is easy to see that any column permutation 7 leads to an optimal solution, since
7 Mpml results the same number of 0-1 flips, which is n(n — 1)/2. On the other
hand, considering 1-0 flips the optimal solution is to change I into an empty matrix,
which has only n number of 1-0 flips. Since the number of necessary 0-1 and 1-0
flips can differ, using the ones (or even a mixture of them) which provide smaller
number of flips is considerable; although for the tests we only considered 0-1 flips.

Algorithms SwITCH (Algorithm 3) and COLUMNS (Algorithm 4) are taken

from [58] for comparison. SWITCH is a switching component searching algorithm,
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Optlmay 1. 2. 3. 4. 5. 6. 7. \T

A

1. 2. 3. 4 5 6. 7. 5. 6. 2. 4 1. 3. T.

1. 2. 3. 4. 5. 6. 7.

A* = lyr A

Figure 2.2: Illustration of Theorem 2.1. One of the optimal solutions (A*) found by
exhaustive search (left image of the second row), 7 defined as a column permutation
in a way that mA* has non-increasing column sums (third row). Numbers indicate
the original column indices.
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while COLUMNS works with column permutations. Although [58] does not use
the concept of canonical expansions, for technical convenience, we give the pseudo
code of COLUMNS to our terms. Our own methods COLPERM1 (Algorithm 5)
and COLPERM2 (Algorithm 6) are based on Theorem 2.1 and Corollary 2.1. All
algorithms require a binary matrix A with the size of m x n as input, and provide
a binary matrix A’ such that A C A’ and A’ is switching component free. The
worst-case time complexity of SWITCH is O(m?n?log(mn)) according to [58]. Ex-
amining the pseudo-codes, it is easy to see that the time complexity for COLUMNS
is O(nlogn+m), for COLPERM1 is O(mn?), and for COLPERM?2 is O(mn?). Note

that m and n are interchangeable considering the transpose of the matrices.

Algorithm 3 SwITCH

C < zero matrix with a size of m x n

A+ A

for each row index 7 and column index j do
Let ¢;; be the number of switching components including a;; = 0

end for

while A’ is not switching component free do
(i,7) < argmax{c;; }
ai; <1
Update C'

end while

return A’

Algorithm 4 COLUMNS
Let m be a column permutation such that mA contains the columns of A in a
non-increasing order by the sum of their elements
return A « 7 lYrA

Algorithm 5 CoLPERMI1

Let m be the identical permutation

for each column index 7 do
Let j > i be the column index for which the column permutation m;; yields
the biggest decrease in the number of 0-1 flips when applying the operator 1
Swap columns ¢ and j by m;;
T &= T - Ty

end for

return A <« 7 )7 A

Since MFA is NP-complete by Lemma 2.2.1, a polyominal-time algorithm cannot
necessary find the optimal solution in all cases (unless P = NP). Figure 2.3 shows
small counter-examples demonstrating that the given algorithms can fail in finding

the real optimal solution.
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Algorithm 6 COLPERM2
while true do
Let 7 and j be column indices for which the column permutation 7;; yields the
biggest decrease in the number of 0-1 flips when applying the operator
if there are such ¢ and j indices then
Swap columns ¢ and j by m;;
T 4= T - Ty
else
Break loop
end if
end while
return A + 7 lyYmA

Optimal

o s I

SWITCH COLUMNS COLPERM1 COLPERM?2

Figure 2.3: Example images to show the non-optimality of the heuristics. Dark gray
pixels indicate the 1-s in the original matrix, while light gray pixels indicate 0-1
flips. The resulted image is always switching component free, but not necessarily
minimal in the number of 0-1 flips.

2.4 Numerical Results

We studied the performance of the algorithms described in Section 2.3 on random
binary matrices and on an existing database containing real-life data. We imple-
mented the algorithms in MATLAB 7.13.0.564. The test was performed under
Windows 7 on one core of an Intel Core i5-2410M of 2.3 GHz PC with 4GB of
RAM.

2.4.1 Artificial Dataset

Our test set contained matrices of size 20 x 20, 40 x 40, 60 x 60, 80 x 80, and
100 x 100 and with exactly 10%, 20%, ..., 90% number of 1-s related to the total

number of the matrix entries, thus, providing matrices with different densities.
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Table 2.1: Average number of 0-1 flips calculated by the algorithms SwiTch (SWI),
CoLumNs (COL), CoLPERML (CP1), and COLPERM2 (CP2).

20 x 20 40 x 40 60 x 60

SWI | COL CP1 CP2 SWI COL CP1 Ccp2 SWI COL CP1 CcP2

121.8 | 133.5 | 120.7 | 114.2 831.9 851.3 | 768.3 | 729.4 2341.5 | 2325.7 | 2088.0 | 2024.9
172.1 | 191.7 | 170.9 | 163.7 986.2 | 1008.6 | 928.1 | 900.3 2481.4 | 2475.8 | 2316.7 | 2269.9
175.4 | 200.6 | 180.0 | 173.2 929.5 965.3 | 900.8 | 879.8 2297.6 | 2283.2 | 2181.7 | 2139.2
161.6 | 183.5 | 168.4 162.0 823.4 854.7 | 811.1 | 797.1 2003.8 | 2012.5 | 1940.0 | 1915.2
145.7 | 162.6 | 151.3 147.8 695.0 729.1 | 698.9 | 687.8 1684.4 | 1702.1 | 1652.4 | 1634.3
121.8 | 136.0 | 127.2 125.0 563.0 592.8 | 570.8 564.0 1343.2 | 1372.8 | 1338.3 | 1327.5
91.3 | 102.3 95.7 93.9 423.0 447.7 | 4334 427.8 1000.6 | 1036.2 | 1011.4 1005.4
62.6 69.3 66.1 64.1 283.5 298.6 | 290.9 287.3 668.4 691.7 678.2 673.7
30.5 33.4 32.0 31.4 141.9 149.3 | 145.1 143.9 334.5 345.7 339.6 337.3

80 x 80 100 x 100

SWI COL CP1 CP2 SWI COL CP1 CP2
4596.0 | 4554.4 | 4139.5 | 4039.0 7587.4 | 7460.6 | 6892.0 | 6764.5
4636.3 | 4585.2 | 4352.7 | 4282.3 7459.6 | 7358.1 | 7055.4 | 6951.2
4210.8 | 4183.2 | 4024.6 | 3970.5 6706.9 | 6631.8 | 6441.8 | 6377.5
3675.5 | 3653.4 | 3550.4 | 3517.1 5819.4 | 5766.7 | 5632.9 | 5592.6
3069.4 | 3071.0 | 3000.4 | 2977.6 4874.9 | 4846.1 | 4752.6 | 4724.3
2456.0 | 2473.6 | 2425.1 | 2410.6 3899.1 | 3895.1 | 3834.3 | 3815.0
1828.2 | 1864.4 | 1832.3 | 1822.1 2915.3 | 2932.5 | 2890.5 | 2879.8
1215.2 | 1244.6 | 1224.6 1220.5 1922.9 | 1957.6 | 1934.5 1926.4
607.1 622.2 613.1 611.1 960.0 978.5 968.1 965.1

With each size and density we generated 50 binary matrices from uniform random
distribution. Thus, our test set contained a total of 2250 matrices.

Table 2.1 shows the results for the number of 0-1 flips provided by each algo-
rithm. From top to bottom the rows represent the density of the 1-s in the matrices,
from 10% to 90%. The numerical entries are the averaged result on the 50 matrices
for the given size and density. The smallest numbers are typeset in bold. In a sim-
ilar way, Table 2.2 shows the average running time of the algorithms SWITCH and
CoOLPERM2 which provided the best values from the viewpoint of optimality. We
did not provide the exact running time values for COLUMNS and COLPERM1 due
to their high speed: COLUMNS processed the result in less than 0.002 seconds for
all matrices, while COLPERM1 had a running time of 0.344 seconds in the slowest
case.

From the tables we deduce that searching through column permutations yields
a result much sooner than searching through switching components, as SWITCH
does. Furthermore, COLPERM2 gives better results for the number of 0-1 flips,
especially when the matrix is big and sparse. We deduce that SWITCH performs
better if the number of switching components is small, which occurs if the matrix

is small and/or dense.

2.4.2 Real Dataset

As we described in Section 1.2, nestedness is an important measurement of pres-

ence-absence binary matrices in the field of biogeography and ecology. Here, we
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Table 2.2: Average running time of the algorithms SwiTcH (SWI) and COLPERM2
(CP2) in seconds.

20 x 20 40 x 40 60 x 60 80 x 80 100 x 100
SWI | CP2 SWI | CP2 SWI | CP2 SWI | CP2 SWI CP2
0.094 | 0.084 || 2.361 | 0.516 || 15.111 | 2.921 || 52.522 | 9.383 || 132.550 | 24.700
0.145 | 0.045 || 3.082 | 0.483 || 17.112 | 2.445 || 55.919 | 7.850 || 139.931 | 20.639
0.156 | 0.041 || 3.194 | 0.460 || 17.103 | 2.188 || 55.075 | 7.305 || 139.507 | 17.371
0.149 | 0.038 || 3.080 | 0.369 || 16.010 | 1.877 || 51.955 | 5.951 || 128.205 | 15.130
0.159 | 0.033 || 2.776 | 0.332 || 15.147 | 1.623 || 46.227 | 4.882 || 114.348 | 12.227
0.136 | 0.027 || 2.389 | 0.257 || 12.329 | 1.267 || 39.843 | 3.812 98.638 | 10.162
0.116 | 0.026 || 1.832 | 0.227 9.817 | 0.998 || 31.580 | 3.212 79.335 | 7.664
0.080 | 0.018 || 1.324 | 0.169 6.994 | 0.710 || 22.027 | 2.203 53.989 | 5.330
0.041 | 0.015 || 0.684 | 0.098 3.778 | 0.438 || 11.550 | 1.288 28.745 | 3.053

tested our algorithms on a real-life dataset containing information about the re-
lation between two datasets. The majority of the dataset were assembled for a
meta-analysis of nested subset distribution patterns and the metrics used to eval-
uate them?. The dataset contains binary matrices describing 150 archipelagos, to
identify poorly represented taxa (many invertebrate groups), life-zones (especially
aquatic and marine systems), or geographic locations (e.g., tropical systems). The
database contains 289 matrices overall. One representative example of the dataset
is seen in Fig. 2.4. Furthermore, Figures 2.5 and 2.6 show two examples on the
performance of the heuristics.

We classified the matrices into 9 groups according to their densities. Figures 2.7
and 2.8 show two examples of the result in the number of flips. The other groups
showed similar results.

We compared the algorithms by the number of flips, and counted how many
times they provided the best or the worst result out of four. Table 2.3 shows these
results. The first coulmn indicates the densities of the matrices, the second column
indicates the number of matrices with the given density in the database. The
number of wins (respectively, losses) show how many times the given algorithm
provided the best (repectively, worst) result, including ties. Table 2.4 shows the
same results, but excluding ties (the given algorithm was strictly the best / worst).
Best results are shown in bold.

The results of the real dataset are highy correlated to the results of the artifi-
cial dataset, namely, COLPERM2 provided usually the best results (most wins and
least losses), while SWITCH gave usually good results, especially on dense matri-
ces. COLPERM2 was moderate in the number of flips, and COLUMNS was usually
the worst, however, the last two heuristics were much faster than the first two.

COLPERM2 and SWITCH took several seconds on large matrices, while COLPERM

http://aics-research.com /nestedness/tempcalc.html available in February 2015, also used
in [58].
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Figure 2.4: The FULLGLAS matrix of the real dataset. a) the original matrix con-
tains the presence of goldenrods, milkweeds, and legumes in 102 prairie fragments
in Towa and Minnesota; b) the fully nested matrix provided by COLPERM2; c)
the original matrix with rearranged rows and columns according to the row sums
and coulmn sums of the second matrix. Black pixels indicate 1-s (presence), white
pixels indicate 0-s (absence).
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Figure 2.5: The ARTIHERB matrix: Understory herbs in planted stands of trees in
the Alexandria Moraine, Minnesota (isolates). The rows and columns are permuted
according to the heuristics: SWITCH, COLUMNS, COLPERM1, COLPERM2 (left to
right, respectively).
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Figure 2.6: The TANGANYO matrix: Ostracods in Lake Tanganyika, Africa; areas
not isolated from each other. The rows and columns are permuted according to the
heuristics: SWITCH, COLUMNS, COLPERM1, COLPERM2 (left to respectively).
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Figure 2.7: Numerical results for the group with density between 0% and 10% (5
matrices). Vertical axis indicates the number of 0-1 flips.
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Figure 2.8: Numerical results for the group with density between 50% and 60% (35
matrices). Vertical axis indicates the number of 0-1 flips.

Table 2.3: The number of wins and losses on the real dataset inluding ties.

Density (%) Num.. of Num. of wins Num. of losses

matrices || SWI | COL | CP1 | CP2 || SWI | COL | CP1 | CP2
0-10 5 2 0 0 3 0 5 0 0
10 — 20 26 7 1 2 26 4 16 7 0
20 — 30 66 36 15 25 58 25 44 16 9
30 — 40 76 42 23 36 69 28 42 33 11
40 — 50 50 40 16 34 46 18 40 22 15
50 — 60 35 30 15 20 33 15 27 17 11
60 — 70 20 18 12 15 18 12 19 12 12
70 — 80 7 7 4 4 6 2 5 5 2
80 — 90 4 4 3 4 4 3 4 3 3

Table 2.4: The number of wins and losses on the real dataset excluding ties.

Density (%) Num. of Num. of wins Num. of losses

matrices || SWI | COL | CP1 | CP2 || SWI | COL | CP1 | CP2
0-10 5 2 0 0 3 0 5 0 0
10 - 20 26 0 0 0 18 4 15 6 0
20 — 30 66 8 0 0 20 15 36 6 0
30 — 40 76 6 1 0 17 14 28 19 0
40 — 50 50 1 0 1 6 3 25 7 0
50 — 60 35 2 0 0 3 4 14 4 0
60 — 70 20 2 0 0 1 1 7 0 0
70 — 80 7 1 0 0 0 0 2 2 0
80 — 90 4 0 0 0 0 0 1 0 0




30 Eliminating Switching Components in Binary Matrices

5 5
9 9
9 9
9 9
10 10
7 7
5 5
7 7
10 10
11 11
11 11
9 9
5 5
4 6 810101210111111 9 5§ 4 6 81010121011 1111 9 5§
a) b) c)

Figure 2.9: An example of image compression. a) original image; b) the stored
data of the projections and the forbidden positions (0-1 flips); ¢) Chang’s algorithm
found the unique solution of the reconstruction.

and COLUMNS always gave their output within a fraction of a second.

2.5 Data Compression

Chang’s algorithm (see the pseudo code in Section 1.3) is a polyominal-time algo-
rithm for reconstructing unique matices from the horizontal and vertical projec-
tions, i.e., when the number of solutions is exactly one. The algorithm requires the
absence of switching components, which is the necessary and sufficient condition
of non-uniqueness [65]. However, the algorithm can deal with a set of so-called
forbidden positions, i.e., positions which have fixed values (0 or 1) in the matrix.

As a consequence, any binary matrix can be reconstructed from their projections
uniquely if the forbidden positions are the positions of the 0-1 flips, which make the
matrix switching component free. Consequently, an arbitrary matrix can be stored
— and reconstructed — through its projections with the additional information of
the positions of the 0-1 flips. The less number of 0-1 flips is needed in order to
make the matrix switching component free, the less data should be stored for a
unique reconstruction. Thus, finding fast heuristics providing low number of 0-1
flips is essential for this type of data compression. Figure 2.9 shows an example of
such a reconstruction.

For an image with the size of n x n, one has to store the bits of the two
projections plus the bits of the forbidden positions. Thus the overall number of

bits to be stored is at most

2nflogn] +[Q| - 2[logn] = (2|Q] + 2n) - [logn],

where |@Q| is the number of forbidden positions (the number of 0-1 flips). The
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overall data compression ratio is

’fl2

(21Q[+2n) - [logn] -

As a comparison, one can determine the morphological skeleton of the image (see
Section 1.4 for definition). The image is uniquely reconstructable in polyominal-
time if the positions of the morphological skeletal points and their labels are given,

hence the number of bits to be stored is at most
S| - 2n[logn]| + [S] - [logn] = 3|S] - [logn],

where |S] is the number of skeletal points. In this case the data compression ratio

is
n2

3|5] - [logn] -

2.6 Summary

Switching components are special patterns in binary matrices that play an essential
role in many image processing and pattern analysis tasks. The minimal number
of 0-1 flips needed to make the binary matrix switching component free is an
important measurement on the binary matrix. However, determining the minimal
number of 0-1 flips is generally NP-complete. In this chapter we studied this
problem, and proved that the task is equivalent to finding a proper permutation of
the columns. Based on that result, we designed heuristic algorithms, and compared
them with previously published algorithms both on an artificial and a real dataset.
We found that the column based heuristics performed significantly faster and gave
better results in the average case than switching component based heuristics. We
showed how to use Chang’s algorithm with the provided heuristics for binary image
compression.

The findings of this research have been published in a conference proceeding [42]

and are accepted for publication in a journal [41].






Chapter 3

Reconstruction and Random
Generation of hv-Convex Images

from the Horizontal Projection

3.1 Introduction

Projections of binary images, as described in Section 1.1, are fundamental shape
descriptors widely used in tasks of pattern recognition, image processing, binary
tomography, etc. In binary tomography [48, 49| they are used to reconstruct binary
images from them. In the last 20 years, many of the subclasses of binary images
had been studied, where the image to be reconstructed has to meet some special
properties. One of the most frequently studied classes of binary images is that of
hv-convex 4-connected binary images (with other term, hv-convex polyominoes).
Another deeply studied type of binary images is the class of canonical hv-convex
images® and its subclass of hv-convex 8-connected but not 4-connected images [6].
In [9, 21|, the authors use hv-convex polyominoes for lossless data compression.
The authors of [14] use hv-convexity in deciding when a form of local consistency
called path consistency is suffcient to guarantee that a network is both minimal
and globally consistent. In [31] it had been showed that hv-convex polyominoes are
closed under composition, intersection, and transposition; establishing that path
consistency over these constraints produces a minimal and decomposable network.

Many studies have been made about the reconstruction complexity and the
number of solutions in the class of hv-convex images when the horizontal and
vertical projections are available [10, 27, 30]. In [8] a detailed complexity analysis of

the methods for reconstructing hv-convex polyominoes from horizontal and vertical

INot to be confused with canonical matrices described in Chapter 2. The definitions are
different, both used by the literature. We kept the terminology, since the two definitions should
not interfere.

33
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projections is given, both for the worst and for the average cases. Average time
complexity is often measured empirically by generating inputs for an algorithm from
a uniform random distribution. However, for that purpose, a uniform generator of
the studied class of binary images is needed, which is usually not easy to develop.
For hv-convex polyominoes such generator algorithms were described in [22] and
in [50]. In [28] and [29] a general method has been also presented for the recursive
enumeration and generation of several types of polyominoes.

Although the reconstruction of hv-convex polyominoes from the horizontal and
vertical projections along with the identification of the number of possible solutions
have been extensively studied [8, 10, 23, 26, 27, 30|, those problems have been
surprisingly not yet investigated if just one projection is given. Moreover, even if
the exact number of solutions are known for reconstructing certain type of images, it
is not necessarily true that an enumeration of the solutions — and thus, the uniform
random generation — would be a trivial task. In this chapter, we fill this gap by
describing a linear-time reconstruction algorithm and providing formulas for the
number of solutions with minimal and with any given number of columns. Later on,
we extend the above results by giving an elementary enumeration algorithm which
provides a method for generating hwv-convex polyominoes with given horizontal
projection from a uniform random distribution, in quadratic time.

Despite the fact that the reconstruction from two projections is NP-hard in the
general class of binary images [70], various polynomial-time algorithms are known
for reconstructing canonical and 8-connected but not 4-connected images |7, 8,
11, 23, 26, 54|. In the end of this chapter, we complement the previous results
by showing that reconstructing an hv-convex canonical image with minimal width
from the horizontal projection is possible in linear in time of size of the horizontal
projection. We propose an algorithm which not just reconstructs such an image
but results always in an 8-connected image. Furthermore, the algorithm can be
easily extended to reconstruct general hv-convex images with arbitrary width in
the same running time. Thus, we deduce that reconstructing a 4-connected, an
8-connected, or even a general hv-convex binary image from one projection are
similarly easy problems, from the viewpoint of computational complexity. This
is in contrast to the case of two projections, where reconstructing a 4-connected
or 8-connected hv-convex binary image is possible in polyominal time, while the

reconstruction of general hv-convex binary images is NP-complete.

3.2 Definitions

Two positions p = (i, j,) and ¢ = (44, Jj,) in a binary image are said to be 4-

adjacent if |i, — i, + |7, — jo| = 1. p and ¢ is S-adjacent if they are 4-adjacent
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a) b) C) d)

Figure 3.1: Binary images of size 5 x 5 with different properties: (a) a general
polyomino with holes; (b) an h-convex but not v-convex polyomino; (c¢) an hov-
convex polyomino; (d) an hv-convex 8-connected but not 4-connected binary image.
Note that the last one is not a polyomino.

or |i, — i = |jp — js| = 1. The positions p and ¢q are 4-connected if there is a
sequence of distinct black pixels pg = p,...,pr = ¢ in the binary image such that
py is 4-adjacent to p;_q, respectively, for each [ = 1,... k. A binary image F is 4-
connected if any two different object points in F' are 4-connected. The 4-connected
binary images are also called polyominoes [37]. The definition of 8-connectedness
can be given analogously with 8-connected object points. The binary image F
is horizontally and vertically converx, or shortly hv-convex if the black pixels are
consecutive in each row and column of the image. See Fig. 3.1 for examples of
binary images with different properties.

For the definition of canonical images, we have to define 4-components. A max-
imal 4-connected set of black pixels of a binary image F' is called a 4-component
(shortly, component) of F. Every binary image F' can be partitioned into com-
ponents Fy, Fy, ..., Fy (k > 1) in a uniquely determined way. Let us denote
by [i1,4;] % [ji,7;] the minimal bounding rectangle of the [-th component of F
(I=1,...,k). An hv-convex image is called canonical 2, if it consists of a single
4-connected component or the smallest containing rectangles of the 4-connected
components are 8-connected to each other with their bottom-right and upper left
corners. Figure 3.2 shows an example of a canonical hv-convex image. In case of
a canonical hv-convex image F' with k£ components, we can assume for the com-
ponents — without loss of generality — that iy = 1,4, =4_; +1 (Il =2,...,k), and
i, = m, where m is the number of rows in F.

Upper stack polyominoes are special hv-convex polyominoes which contain the
two bottom corners of their minimal bounding rectangles. Similarly, lower stack
polyominoes are hv-convex polyominoes that contain the two top corners of their
minimal bounding rectangles. Finally, parallelogram polyominoes are hv-convex
polyominoes that contain both their top left and bottom right, or both their top

right and bottom left corners of their minimal bounding rectangles. Any hv-convex

2 Again, not to be confused with canonical matrices described in Chapter 2.
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Figure 3.2: A canonical hv-convex image F' with horizontal projection
(2,4,1,3,3,4,3,3,5,4,1), containing three 4-connected components Fj, F», and
F3. Thick lines indicate the smallest containing rectangles of the components. The
width of the image is w(F) = 17.

polyomino can be constructed (not necessarily uniquely) from an upper stack, a
parallelogram, and a lower stack polyomino [50]. Figure 3.3 shows examples of the
special types of polyominoes, and such a construction.

In the followings, we call the consecutive 1-s in the i-th row of an hwv-convex
polyomino as the i-th strip. Through the chapter, we assume that hv-convex binary

images are encoded with the starting positions of their strips.

3.3 Reconstructing hv-Convex Polyominoes

Let H = (hy,...,hy) € N™ be a vector of size m. We give an algorithm called
G'reedyRec which constructs an F' hv-convex polyomino with m rows and the mini-
mal possible number of columns. Algorithm 7 gives the pseudo code. For position-
ing the i-th strip, see Fig. 3.4 for examples. Finally, Fig. 3.5a shows an example
result of the algorithm.

Theorem 3.1 GreedyRec constructs an hv-convexr polyomino satisfying the hori-
zontal projection with minimal number of columns, in O(m) time.

Proof
It is clear that the resulted image is an hwv-convex polyomino with the required
horizontal projection. We prove by induction that no solution exists with less
number of columns.

Let n$” be the number of columns in a minimal-column solution of the problem
(i.e., an hv-convex polyomino satisfying the projections with minimal number of
columns), considering only the first & components of the input (hyq,. .., hg), where
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Figure 3.3: An hv-convex polyomino 7' composed of an upper stack S, a parallel-
ogram P, and a lower stack S polyomino.

Algorithm 7 GreedyRec
Require: Projection values hy < --- < h,,
Ensure: Strip positions sq,..., S,
s <1
fori=2—mdo
if hz = hi—l then
Let the i-th strip s; be aligned just below the (i — 1)-st strip
end if
if h; < hi—l then
Let the i-th strip s; be aligned to the right of the (i — 1)-st strip
end if
if h; > h;_; then
Let the i-th strip s; be aligned to the left of the (i — 1)-st strip
end if
end for
return si,..., S,

a) b) c)

Figure 3.4: Steps of GreedyRec with the (i — 1)-st and the i-th rows. Cases: (a)
hi = hi—l; (b) hl < h’i—l; (C) hl > hi_q.
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Figure 3.5: Example results of a reconstruction. (a) the minimum-size output of
GreedyRec for H = (2,3,5,3,3,7,5,1) with 9 columns; (b) another solution with
13 columns.

= S N

Figure 3.6: Examples of k-simple columns. Here, hy = 4 and hs; = 6. Thick
lines indicate 5-simple columns. The maximal number of 5-simple columns are

hs — hy = 2.

k < m. Similarly, let nék) be the number of columns in the result of GreedyRec for
the first £ components of the input.
For k =1, nél) = ngl) = h1, so GreedyRec is optimal. For k > 1 assume that
(k—1) (k—1)
ng = TNo .

If hy, < hy_1, then n{? = n{~Y (Cases 2(a) and 2(b) of GreedyRec), therefore
the number of columns does not change. Since nik) > ngk_l), therefore nék) = ngk),
and GreedyRec is still optimal.

If hy, > hj_1, then nék) = nék_l) + hy, — hi—1 (Case 2(c¢) of GreedyRec). Assume
to the contrary that an arbitrary optimal algorithm provides a better result, hence
n$ <D 4 hy — .

For a further analysis, let us call a column k-simple if its (k — 1)-st element
is 0 and its k-th element is 1 (see Fig. 3.6). The number of k-simple columns is
at least hyp — hi_1, and due to vertical convexity, in a k-simple column there is no
1-s above the k-th row. Therefore, the first £ — 1 number of strips must fit into
ngk) — (hx — hgx—1) number of non-k-simple columns at most. Due to h-convexity and
connectivity, non-k-simple-columns must be successive. Therefore, the first £ — 1
number of strips fit into a matrix with a column number of i (he — hg—1) <
ndF=b +he—hg_1—(hx—hg_1) = n(k_l), which is a contradiction to the minimality
of Y. Hence, GreedyRec is still optimal.

The complexity of the algorithm is straightforward, if the polyomino is repre-

sented by the first positions of its strips. O
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One can easily modify the output of GreedyRec to expand it to have a predefined
number of columns (if possible) by moving the k-th, (k + 1)-st, ..., m-th strips
further to the right, if the previous strip allows it (i.e., when the image remains
hv-convex and 4-connected). The smallest possible number of columns, provided

by GreedyRec, is Npyin = N,,, where

hy ifi=1,
Ni = Ni—l if hz S hi—l , (31)
N1+ h; —h;—q ifhy > h;_q1.

This formula can be easily derived from the steps of the algorithm. The largest

possible number of columns is
NmaX:Zhi—m+1, (3.2)

where every strip is connected to the previous and the next strips through only
one element. The modified GreedyRec can construct any solution between N,
and Ny in linear time. An example result of the modified algorithm is given in
Fig. 3.5b.

3.4 Enumerating hv-Convex Polyominoes

Enumeration of polyominoes according to several parameters (area, perimeter, size
of the bounding rectangle, etc.) is an extensively studied field of combinatorial
geometry. Regarding the number of hv-convex polyominoes satisfying two projec-
tions, several results have been published. The authors of [30] determined an upper
and lower bound to the maximum number of convex polyominoes having the same
orthogonal projections, and also proved that under some conditions, the ambiguity
of the solution can be exponential. A method was given in [28] for the enumera-
tion of hv-convex polyominoes from two projections. The authors also determined
the generating function of convex polyominoes. In [34] a method was proposed
to determine the number of hv-convex polyominoes that fit into a discrete rect-
angle of given size. In this section, we provide formulas to enumerate hv-convex

polyominoes satisfying the given horizontal projection.

3.4.1 Arbitrary Number of Columns

We first give a formula to calculate the number of hv-convex polyominoes with
a given horizontal projection H = (hy,..., hy,), if there is no restriction on the

number of colums of the resulted image.
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k

Figure 3.7: An hv-convex polyomino with H = (1,2,4,6,6,2,5,4,4,3,2), where
K =5, and L = 7. The smallest left anchor position is k = 3, the greatest right
anchor position is [ = 9. The (k — 1)-st strip can be placed on the top of the k-th
strip in 2 different ways, and cannot occupy the position marked by x, since the
k-th strip must be the leftmost strip.

Given an hv-convex polyomino F', the smallest integer k for which fy; = 1 is
called the smallest left anchor position. Similarly, the greatest right anchor position
is the greatest integer [ for which f;,, = 1. Furthermore, let K denote the greatest
integer for which hy < hy < --- < hg. Similarly, let L be the smallest integer for
which hy > hpyq1 > -+ > hy,. Figure 3.7 illustrates these definitions.

First, assume that K < L. Then, K < k,[ < L cannot hold, due to v-convexity.
Also note that for every k < [ solution, a vertically mirrored image is also a solution
with [ < k, and vice versa. For this reason, we only count the cases with k < [
(i.e., 1 <k < K and L <1 <m), and multiply the result by 2.

Let Si(H) denote the number of upper stack polyominoes having the hori-
zontal projection (hy,...,hx). Similarly, let S;(H) denote the number of lower
stack polyominoes having the horizontal projection (hy, ..., h,,). Furthermore, let
Py (H) denote the number of parallelogram polyominoes with the horizontal pro-
jection (hg, ..., h;), having the smallest left anchor position k and the greatest right

anchor position [.

Lemma 3.4.1 S,(H) =1, and Si(H) = [[*_,(hi —hi1+1) (k>2). S, (H) =1,
and Sy(H) = TI7, (hi — higa +1) (1 < m).

Proof

The formula S;(H) = 1 is trivial. If & > 2, then the (k — 1)-st strip can be placed
on the top of the k-th strip in hy — hy_1 + 1 different ways. Similarly, the (k—2)-nd
strip can be placed on the top of the (k — 1)-st strip, in hx_1 — hg_o + 1 different
ways. And so on. Finally, the first strip can be placed in hy — hy + 1 ways on the
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top of the second strip. The formula for the lower stack polyominoes can be proven
analogously. O

Lemma 3.4.2 Py, (H) = H o min{h;, b1}

Proof

The k-th strip is fixed (it is in the leftmost position), and we can place the (k+ 1)-
st strip under the k-th strip in min{hg, hy1} ways. The (k + 2)-nd strip can be
placed under the (k + 1)-st strip in min{hyy1, hgro} ways. And so on. Finally the
[-th strip can be placed under the (I — 1)-st strip in min{h;_1, h;} ways. 0

In the sequel we use the convention that empty (non-defined) factors of a prod-

uct are always equal to 1.

Theorem 3.2 Let H € N™. If K < L then the number of hv-convex polyominoes
with the horizontal projection H 1is

Pr<p(H) = 2'2 Z <Sk: 1(H)-(ht—hg-1)- Pk,l(H)‘(hl_hl+1>'§l+1(H)) - (3.3)

k=1 I=L

If K > L, then the number of solutions is

P> (H) = Pr<r(H) = Sp(H) - S (H) . (3.4)

Proof
We observe that an hv-convex polyomino with the smallest left anchor position
k and the greatest right anchor position [ can be uniquely decomposed into a
(possibly empty) upper stack polyomino consisting of the first k—1 rows, a (possibly
empty) lower stack polyomino of consisting of the last rows from [ + 1 to m, and
a parallelogram polyomino consisiting of the k-th, (k + 1)-st, ..., I-th rows. If k is
the smallest left anchor position, then the (k — 1)-st strip (the bottom strip of the
upper stack polyomino) cannot reach the leftmost position (see the position marked
by x in Fig. 3.7), therefore the upper stack can be connected to the parallelogram
in (hy — hg—1) ways. With a similar argument, the lower stack can be connected
to the bottom row of the parallelogram in (h; — hyy1) ways. Thus, using lemmas
3.4.1 and 3.4.2, for fixed k and [ the number of possible solutions is Sy_1(H) - (hy —
hi—1) - Pry(H) - (hi — hig1) - S (H). Including also the mirrored cases we get (3.3).
If K > L, then the same formula as in (3.3) can be applied. However, in
this case, it counts some of the solutions twice through symmetry (where the par-
allelogram poliominoes are rectangular). Note that the longest strips in H are
hy = hpy1 = -+ = hg, and (3.3) counts all the cases twice when these strips are
right under each other. Regarding that the L-th strip is the bottom of the upper
stack polyomino, and the K-th strip is the uppermost row of the lower stack poly-
omino, the number of cases counted twice is S;,(H) - Sy (H), using Lemma 3.4.1.0
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3.4.2 Fixed Number of Columns

Now, we give a recursive formula to calculate the number P,(H) of hv-convex
polyominoes having the horizontal projection H = (hy,...,h,), when the num-
ber of columns is fixed to n. First, assume again that K < L. Let r > 1 and
P(p1,...,pr,n) denote the number of parallelogram polyominoes with n columns,
having the horizontal projection (pi,...,p.).

Lemma 3.4.3 P(p;,n) =1 if pr = n. P(p1,n) = 0 if py # n. Furthermore, for
r > 1 we have the following recursion

pl P(p%"'?p’r?n_i_'_l) Z.fplgan
P(p1,...,prn) =
2 P(pay...,prsn— (p1 —p2) —i+1) ifp1>ps.

Proof

If r = 1, then either the strip itself of length p; occupies n number of columns (and
should be counted as a solution) or not. If » > 1 and p; < py, then we count recur-
sively every possible solution where the second strip is shifted to the right under
the first strip, and the number of remaining columns decreases proportionately. If
r > 1 and p; > po, then additionally, we have to substract the difference from the
number of required columns, since the second strip must be shifted with at least
p1 — p2 positions to the right, relatively to the first position of the first strip. DO

Therefore, including the possible stack polyominoes and the mirrored cases, the

number of solutions for a fixed n is

- 2-2 Z (Sk 1(H)-(hiy—hg—1)- P(hk,---7hlan)'(hl_hl+1)'§l+1(H>) ;

k=1 [=L

where P(hy,...,h,n)=0if k > [.

If K > L then we have to substract some of the solutions in the same way as in
(3.4). Note that this concerns only Py_. (H) (where n is minimal), since for every

other case a mirrored solution is truly a different solution.

P, (H) also provides a different formula for calculating the number of solutions,

if the size of the polyomino can be arbitrary, namely

Nn=Nmin

where Ny, and Ny is given by (3.1) and (3.2), respectively.
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3.5 Random Generation of hv-Convex Polyominoes

The authors of [5] collected several statistics on hv-convex binary images, including
the number of solutions of the reconstruction from given horizontal and vertical pro-
jections. In [8] three algorithms had been compared for reconstructing hv-convex
polyominoes and hv-convex 8-connected binary images from two projections. In
the study the algorithms listed all the possible solutions for the given problem.
In [4], the author described a method to generate some special hv-convex binary
images from a uniform random distribution.

In this section we provide an elementary enumeration algorithm based on how
we counted the number of possible solutions in Section 3.4. The algorithm ensures
a method for generating hv-convex polyominoes with given horizontal projection
from a uniform random distribution. We prove that the algorithm has a quadratic

running time in the length of the horizontal projection.

3.5.1 Arbitrary Number of Columns

In this subsection we provide an algorithm for generating hv-convex polyominoes
with arbitrary number of columns. For a given H = (hy,...,h,) and a non-
negative integer b (0 < b < P — 1) the algorithm constructs the b-th hv-convex
polyomino with horizontal projection H with respect to a certain ordering, where
P is the number of solutions (see (3.3) and (3.4)). Note that there is always at
least one hv-convex polyomino satisfying the given horizontal projection.

Let us encode the hv-convex polyomino F' with (si,...,S,) where s; denotes
the starting position of the i-th strip (1 <i < m). Then, for a fixed row number i,
fij=1ifand only if j € {s;,s;, +1,...,s; + h; — 1}, and f;; = 0 otherwise. First,
we give generating algorithms for special polyominoes. The generation of upper
stack polyominoes is given by Algorithm 8. In the pseudo-code, b mod d is the
remainder of the integer division b/d. Figure 3.8 shows an example of generating

upper stack polyominoes.

Algorithm 8 GenUpperStack
Require: Projection values h; < --- < h, and ordinal number b
Ensure: Strip positions sq,...,s,
sp—1, s+1
fori=r—1—1do
d <+ hi+1 — hz +1
8; <= s+ (b mod d)
S 4 8
b+« [b/d]
end for
return s;,...,S,
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Figure 3.8: Example of generating upper stack polyominoes with the horizontal
projection H = (1,2,4) for b=0,1,...,5, respectively.

Lemma 3.5.1 For a given vector H = (hy,...,h.) (hy < --- < h,) GenUpper-
Stack generates different upper stack polyominoes for different values 0 < b <
S,(H) — 1, where S,(H) is the number of possible upper stack polyominoes with
horizontal projection H.

Proof

The condition hy < --- < h, is necessary for an upper stack polyomino. The
last strip must be in the first position, i.e., s, = 1. The position of the i-th
strip (¢ = r — 1,7 — 2,...,1) depends on the current ordinal number b and the
previous relative position s, where s = 1 in the beginning. The i-th strip can be
placed on the top of the (i + 1)-st strip in d = h;,; — h; + 1 different ways, i.e.,
si€{s,s+1,...,s+d—1}. The algorithm chooses one of these cases depending
on the remainder of the integer division b/d, which can be 0,1,...,d — 1. Namely,
let s; = s+ (b mod d). Then the algorithm modifies s for the next strip, i.e.,
s = s;, and also divides b by d for further positioning. Finally, the algorithm
returns with the strip positions. Since these positions are calculated by a sequence

of integer divisions, the algorithm generates different solutions for different values
of b (0<b< S, (H)—1). O

In a smiliar way, one can provide GenLowerStack for generating lower stack
polyominoes. The next algorithm generates parallelogram polyominoes with re-
spect to the ordinal number b, where the first strip is a left anchor, and the last
strtip is a right anchor (see Algorithm 9). Note that if » = 1, then the condition
of the for-loop of the algorithm cannot be satisfied, and therefore the operations
of the cycle are never performed. Figure 3.9 shows an example of generating par-

allelogram polyominoes.

Lemma 3.5.2 For a given vector H = (hq,...,h,) GenPara generates different
parallelogram polyominoes (with left anchor position 1 and right anchor position
r) for different values 0 < b < P,,(H) — 1, where P,,(H) is the number of such
polyominoes with horizontal projection H.
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Algorithm 9 GenPara
Require: Projection values hq, ..., h, and ordinal number b
Ensure: Strip positions sq,...,s,
s1+ 1, s<+1
fort:=2—rdo
if hz < hi—l then
S < s+ hi—l — hl
end if
d <+ min{hi_l, hl}
s; < s+ (b mod d)
S < S;
b« [b/d]
end for
return s;,...,S,

Figure 3.9: Example of generating parallelogram polyominoes with the horizontal
projection H = (2,3,4) for b=0,1,...,5, respectively.

Proof

The first strip is in the first position (s; = 1), and the i-th strip can be put under
the (i — 1)-st strip in min{h;_1, h;} different ways (i = 2,...,r). If h; < h;_1, then
we have to increase the possible first position s with h;_; — h; due to v-convexity
and the right anchor property of the last strip. The rest of the algorithm is similar
to GenUpperStack. O

The following lemma describes an important property of Algorithm GenPara.

Lemma 3.5.3 GenPara provides a parallelogram polyomino with minimal number
of columns if and only if b = 0.

Proof

If b = 0, then GenPara is equivalent to GreedyRec, that provides a solution with
minimal number of columns (see again Algorithm 7 of Section 3.3, and Theo-
rem 3.1). If b > 0, then a position ¢ (1 <t < r) exists, such that the ¢-th strip is
shifted further to the right, relative to the solution provided by GreedyRec. Hence
all the t-th, (t + 1)-st, ..., r-th strips are shifted to the right, and the number of
columns cannot be minimal. O
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Algorithm GenAnchor (see Algorithm 10) generates hv-convex polyominoes

with fixed left and right anchor positions.

Algorithm 10 GenAnchor

Require: Projection values hq, ..., Ay, first left anchor position k, last right an-
chor position [ (k <), and ordinal number b
Ensure: Strip positions sq,..., s,
if £ > 2 then
l_) <+ b mod gk—l(H)y b« Lb/gk—1<H)J
(51,...,56-1) + GenUpperStack(hy, ..., hy_1,D)
C_i — hi — hi_1
R+ (b mod d) +1, b+ |b/d]
81 < 81 +§, ceey Skp—1 & Sk—1 +§
end if
if ] <m —1 then
b« b mod S, (H), b4 [b/S,1(H)]
(141, - -+ 8m) < GenLowerStack(hy 1, ..., hp,b)
d < hy— i
R <+ (b mod d) — 1, b« [b/d]
end if

(Sky--.,81) < GenPara(hg, ..., h,b)
if ] <m —1 then

R+ R+s

Sl+l<_$l+1+E7 BRI Sm<_8m+E
end if
return si,..., S,

Lemma 3.5.4 For a given vector H = (hy, ..., h,) GenAnchor generates different
hv-convex polyominoes with fized smallest left anchor position k, and fized greatest
right anchor position | (k < ) for different values 0 < b < P - 1, where P =
Se1(H) - (hg — hg—1) - Pog(H) - (hy — hysr) - S141(H) is the number of possible such
polyominoes with horizontal projection H.

Proof

The algorithm generates the upper stack, the lower stack, and the parallelogram
polyominoes separately. Since k is the position of the smallest left anchor, the
upper stack polyomino is determined by the first k£ — 1 strips (if £ = 1, there is
no upper stack polyomino). GenUpperStack provides the b-th solution from the
possible upper stack polyominoes, where 0 < b < Sj_;(H) is a valid input of the
algorithm. The ordinal number b is divided by the number of existing solutions for
the further parts of the construction.

The (k —1)-st strip (the last strip of the upper stack polyomino) can only be in
the 2nd, 3rd, ..., (hy — hgx_1 + 1)-st position. Therefore, the algorithm has to shift
the first & — 1 strip further to the right with R € {1,2,...,hy — hx_1}. The choice
of R depends on the current ordinal number, which is decreased further after the
choice of R.
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The generation of the lower stack polyomino is similar. The algorithm also has
to shift the positions at least to the position of the [-th strip. Note that the size
of the shift (see R) can be calculated after the parallelogram stack polyomino is
generated by GenPara due to the relative positions to s;. We have to decrease b
first, so GenPara will be the last part of our algorithm but we have to call GenPara
first, because we need s; in order to calculate the relative shifting R of the lower
stack polyomino. That is the reason why the final R is calculated in two parts,
unlike R.

It is easy to see that GenAnchor provides different solutions for different ordinal
numbers, if 0 < b < P—1. O

Algorithm GenAnchor has an ordering described in the following lemma.

Lemma 3.5.5 In GenAnchor the ordinal number of any solution with minimal
number of columns s less than the ordinal number of any solution with non-minimal
number of columns. In other words, GenAnchor orders the solutions by starting
with all the smallest sized solutions.

Proof

Using our defnition of decomposition of an hwv-convex polyomino into an upper
stack, a lower stack, and a parallelogram polyomino, the width of the hv-convex
polyomino is equal to the width of its parallelogram part (see again Fig. 3.3, for
example). GenAnchor builds the stack polyominoes and their relative shifts first
and the parallelogram polyomino last. Therefore, in the algorithm the function
GenPara(hy, . .., h;,0) is called if and only if the non-negative ordinal number b is
less than P - P, where P (respectively, P) denotes the number of different ways
the upper (respectively, lower) stack polyominoes can be composed with the par-
allelogram polyominoes. Both P and P are independent from the choice of b. As a
consequence of Lemma 3.5.3, the resulted hv-convex polyomino is minimal in the
number of columns if and only if 0 < b < P - P. O

Before describing the next algorithm, we recall a definition from [26]. An ho-
convex polyomino is called a centered polyomino if it has a left anchor position that
is also a right anchor position (see Fig. 3.10, for example). The following properties

are important for the rest of the chapter:
e if F'is a centered polyomino, then K > L, and hy = hp,1 = -+ = hg,

e if F'is a centered polyomino, then s, = sp11 = -+ = sg = 1 (which also
yields that F' can be decomposed such that its parallelogram polyomino part

is a single rectangle),

e the set of centered polyominoes with the same horizontal projection is closed

with respect to vertical mirroring,
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Figure 3.10: Examples of centered and non-centered polyominoes. (a) a centered
polyomino; (b) a non-centered polyomino with the same horizontal projection. Note
that 4 = K > L = 3, and the first image is minimal in the number of columns,
while the second one is not.

e if K > L and F'is an hv-convex polyomino with minimal number of columns

then F'is a centered polyomino.

Also note that for a non-centered polyomino if & < [ (where &k and [ is the first
left anchor and the last right anchor positions, respectively), a vertically mirrored
non-centered hv-convex polyomino exists with the same horizontal projection and
with k > [.

The following algorithm called GenCentered generates centered polyominoes
(see Algorithm 11). Figure 3.11 shows an example of generating centered polyomi-

noes.

Algorithm 11 GenCentered
Require: Projection values hq, ..., h,, with K > L, and ordinal number b
Ensure: Strip positions sq,..., s,

(s1,...,81) < GenUpperStack(hy, ..., hr,b)

(Sky- -+, Sm) < GenLowerStack(hg, ..., hpy,b)

SL+1<—1, SN Sg_1 <1

return s{,...,S,

Lemma 3.5.6 For a given vector H = (hy, ..., h,) GenCentered generates dif-
ferent centered polyominoes for different values 0 < b < S (H) Sy (H) — 1, where
SL(H)- Sy (H) is the number of possible centered polyominoes with horizontal pro-
jection H.

Proof
The proof is trivial due to the properties of the centered polyominoes. O

Finally, we describe GenAll to generate the b-th solution out of all the possible
hv-convex polyominoes with the given horizontal projection (see Algorithm 12). In

the algorithm,
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Figure 3.11: Example of generating centered polyominoes from the horizontal pro-
jection H = (1,3,3,2,1). The values of b are going from 0 to 11, respectively. Note
that £ = 2 and & = 3 are both left and right anchors. Also note that vertical
mirroring does not bring any new solutions.

e the number of centered solutions is 0 if K < L (see the properties of centered

polyominoes), and Sy, (H) - Sy (H) otherwise,

e the number of non-centered solutions for fixed k < [ is Sy_1(H) - (hy — hx_1) -
PkJ(H) . (hl — hl+1) '§l+1(H) it K < L, and gk—l(H) . (hk — hk—l) . (P]@7l(H) —
1) - (hy = huy1) - Sppq (H) otherwise,

e the number of centered solutions for fixed k < [is 0 if K < L (again, see the
properties of centered polyominoes), and Sy_1(H) - (hy — hx—1) - (hy — hyy1) -
S;41(H) otherwise,

o FlipMatrix flips the positions as a vertical matrix flip, i.e., s, =n—s; —h; +2

for i = 1,...,m, where n is the number of columns, n = max{s; + h; — 1}.
1

Theorem 3.3 For a given vector H = (hy, ..., hy,) GenAll generates different hv-
convex polyominoes for different values 0 < b < P — 1, where P 1is the number of
possible hv-convex polyominoes with horizontal projection H. The algorithm runs
in O(m?) time.

Proof
The algorithm GenAll first enumerates all the centered polyominoes (if there is
any), then enumerates all the non-centered polyominoes with k& < [ and vertically
mirrors the solution if necessary, depending on the parity of the ordinal number
b. The separation of centered and non-centered cases is necessary since the set of
centered polyominoes is closed with respect to vertical mirroring.

The number of centered polyominoes is either S;(H) - S, (H) or 0 (depending
on the relation of K and L). If the ordinal number b is less than the number of
centered polyominoes then the algorithm returns with the b-th centered polyomino.
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Algorithm 12 GenAll
Require: Projection values hq, ..., h,, and ordinal number b
Ensure: Strip positions sq,..., s,
if b < #centered soultions then
(S1y. .., 8m) < GenCentered(hy, ..., hy,b)

return si,...,Ss,
else
b <— b — #centered soultions
end if
isflipped < b (mod 2), b+« [b/2]

for k=1— K do
for | =L — mdo
if b < #non-centered solutions for fixed k£ and [ then
b <+ b+ #centered solutions for fixed k£ and [
(81,.-+,8m) < GenAnchor(hy, ... hy, k,1,b)
if isflipped = 1 then
(81, .-y 8m) < FlipMatriz(sy, ..., Sm)
end if
return si,..., S,
else
b < b — #non-centered solutions for fixed k and [
end if
end for
end for

Otherwise (if b is equal or greater than that value) the algorithm decreases b with
the number of centered polyominoes.

The rest of the algorithm deals with non-centered polyominoes with £ < [,
therefore it divides the (already decreased) ordinal number b by 2, and it will verti-
cally mirror the solution depending of the remainder of this division (it correspods
to the case k > [).

For every k and [, the algorithm checks if the ordinal number b is less than
the number of non-centered cases with those k£ and [. If b is less than that value,
then the algorithm found the anchor positions k and [, and EnumAnchor generates
the b-th solution. Otherwise, b is decreased and the iteration goes on. Note that
according to Lemma 3.5.5 and the properties of the centered polyominoes, the
solutions of EnumAnchor for small ordinal numbers are centered polyominoes (if
there is any). Therefore, the ordinal number has to be increased by the number of
centered poliominoes in order to skip them. Finally, the algorithm vertically flips
the solution if necessary (see the argument above).

It is easy to see that the runtime of GenUpperStack, GenLowerStack, GenPara,
GenAnchor, and GenCentered is O(m). The number of centered and non-centered
solutions for all k and [ can be calculated in advance in O(m?) time. The proce-
dure GenAnchor (possibly together with Flipmatriz) is only called once during the
process (as the last step of the generation). This means that the worst case time
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Figure 3.12: Examples of the distribution of the solutions. Horizontal axis shows
the width of the solutions (number of columns), vertical axis shows the number of
solutions. The projections are (2,4,2,9,1,10,4,1,4,8) with 512 solutions in total,
and (7,3,3,7,6,5,7,8,6,6) with 2 154 600 solutions in total, respectively.

complexity of GenAllis O(m?). O

3.5.2 Fixed Number of Columns

The Algorithm GenAll can be easily modified to generate polyominoes with fixed
number of columns. The width of an hwv-convex polyomino is determined by its
parallelogram polyomino, since for fixed anchors the change of the upper and lower
stack polyominoes has no effect on the number of columns. Such a modified al-
gorithm could use a different version of GenPara in GenAnchor for generating
parallelogram polyomines with fixed number of columns. Lemma 3.4.3 gives a
recursive formula to calculate the number P(p,...,p,,n) of parallelogram poly-
ominoes with n columns, and having the horizontal projection (py,...,p.). Using
that recurrence one can provide a dynamic programming algorithm for enumerat-
ing all the solutions in a similar way as seen in GenPara and GenAll. Note that
due to the minimality property of centered polyominoes and the fixed number of

columns, Lemma 3.5.3 is not needed in the modifed version of GenPara.

We also studied how the number of possible hv-convex polyominoes varies de-
pending on the number of the prescribed columns. Figure 3.12 shows just two
examples of our general observation that the histogram of the number of solutions
follows generally a normal-like distribution. This information could also be ex-
ploited in the future, to design more sophisticated reconstruction algorithms for

the class of hv-convex polyominoes.
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3.6 Reconstructing Canonical hv-Convex Images

The reconstruction of hv-convex 8-connected but not 4-connected images, as well
as canonical hv-convex images from two projections was previously deeply stud-
ied. In |11], the authors examined the problem of reconstructing a discrete binary
image satisfying some convexity conditions from its two orthogonal projections.
They also showed that determining the existence of an h-convex (v-convex) poly-
omino or arbitrary binary image with connected rows (columns) having assigned
orthogonal projections is an NP-complete problem. The authors of [26] showed that
reconstructing a special class of centered hv-convex polyominoes, which contains
a row whose length equals the total width of the object, can be solved in linear
time, if the horizontal and vertical projections are given. In [54] the reconstruc-
tion algorithms and complexity results are summarized in the case of hv-convex
images, hwv-convex polyominoes, hv-convex 8-connected images, and directed h-
convex images. Moreover, it is shown that certain h-convex images are uniquely
reconstructible with respect to the row and column sum vectors. In [8], the au-
thors compared three reconstruction algorithms used for reconstructing hv-convex
8-connected binary images from two projections. The authors of [23] proposed an
algorithm for reconstructing a binary image satisfying some convexity conditions
from two projections, with a worst case complexity of O (mnlog(mn)min{m? n?})
for an image with size of m x n. In some special cases they gave an upper bound for
the complexity of the algorithm as O(mnlog(mn)). The authors of [7] introduced
an algorithm for reconstructing 8-connected but not 4-connected hv-convex binary
images with worst case complexity of O(mnmin{m,n}).

In this section, we show that reconstructing an hv-convex canonical image with
minimal width from the horizontal projection is possible in O(m) time, where m
is the size of the horizontal projection vector. First, we propose an algorithm
that reconstructs such an image, and show that the resulted image is always 8-
connected. This algorithm can be easily extended to reconstruct general hv-convex

images with arbitrary width in the same running time.

3.6.1 Properties of the Reconstruction
We set the following reconstruction problem:

RECONSTRUCTION-CAN-HV(H k)
Instance: A vector H = (hq,..., hy,) € N, and an integer k (1 < k <m).

Task: Construct a canonical hv-convexr image F with exactly k number of j-

connected components such that H(F) = H, and w(F) is minimal.
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Figure 3.13: (a) A minimal width canonical hv-convex image F' with the same
projection and component number as of Fig. 3.2; (b) replacing each of the
components by the result of a GreedyRec reconstruction, results in F*. Here,
w(F) = w(F*) = 11. Note that F* is 8-connected.

Figure 3.13a shows an example of such a reconstructed image.

It is easy to see that if H contains only positive integers, then a solution of
the above problem, and thus one with a minimal width also exists. We will show
that finding a solution can be done in O(m) time, and that the solution is always
8-connected and unique.

First, the following lemma provides an important property of the components

of a canonical hv-convex image.

Lemma 3.6.1 Let F be a solution of the RECONSTRUCTION-CAN-HV (H k) prob-
lem with the components Fy, ..., Fy. Let G; be the result of the GreedyRec algo-
rithm (see again Algorithm 7 in Section 3.3) from the input vector H(F;), where
1 < i < k. Then w(F;) = w(G;), and replacing F; with G; in F for some i
yields also a (not necessarily different) solution F* of the RECONSTRUCTION-CAN-
HV(H k) problem.

Proof

Clearly, the number of rows of F; equals the number of rows of GG;, and both images
are hv-convex polyominoes. Due to Theorem 3.1, w(G;) < w(F;). Replacing F;
with G; in F yields an hv-convex image F* with k 4-connected components, too.
Since F' is of minimal width, w(F;) < w(G;) (there are no zero-columns in F).
Hence, F™* is also of a minimal width canonical hv-convex image with & components
and with the same horizontal projection, thus it is a solution of the RECONSTRUC-
TION-CAN-HV(H k) problem. Figure 3.13 shows an example of such an exchange.O

As a consequence, it is enough to search for a solution F* of the RECONSTRUC-
TION-CAN-HV(H k) problem, where each of the components F} is provided by the
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GreedyRec algorithm from the corresponding part of H. The next lemma shows
that F™* is 8-connected.

Lemma 3.6.2 A binary image G obtained by GreedyRec has a black pizel both in
its top left and bottom right corners, i.e., if the size of G is m X n, then g1 =1
and Gpmpn = 1.

Proof

The black color of the pixel in the top left corner is a consequence of Step 1 of
GreedyRec. The black color of the pixel in the bottom right corner is a consequence
of Step 2 of the algorithm (see previous Fig. 3.4). O

As a direct consequence, the solution F* of the RECONSTRUCTION-CAN-
HV(H k) problem (where each component is provided by GreedyRec) is 8-connected

(again, see Fig. 3.13b for example).
Before the following lemma, we introduce the concept of breaking.

Definition 3.1 Let G be a binary image with the horizontal projection H = (hy,
.yhm), and let .G denote the binary image that is derived from G by shifting the
(c+1)-st, (c+2)-nd, ..., m-th strip to the right with min{h., hey1} positions (where
1 <c¢<m). In that case we say that we got .G by breaking G at the breakpoint
c. We say that the ¢ is minimal if ¢ = arg min {min{hj, hjt1} }
1<j<m

Note that the minimal breakpoint is not necessarily unique. Figure 3.14 shows an
example of breaking.

Generally breaking a binary image does not necessarily modify the number of
the 4-connected components. The following lemma describes a property of breaking

special hv-convex binary images.

Lemma 3.6.3 Let [ be an (8-connected) canonical hv-convex image with hor-
izontal projection H, and with exactly two components G1 and G, where both
components are obtained by the GreedyRec algorithm from the corresponding part
of H. Let r denote the number of rows of G1. Then F* = .G, where G is the result
of the GreedyRec algorithm from H, and w(F*) = w(,G) = w(G) +min{h,, hy41}.

Proof

Let G be the result of the GreedyRec algorithm from H. Then .G can be decom-
posed into two sub-images, one consisting of the pixels of .G (and their smallest
containing rectangle) of the first r rows, and another one consisting of the pixels
of the last m — r rows (and their smallest containing rectangle), where m is the
number of elements in H. Since in GreedyRec the position of the i-th strip only
depends on the position of the (i — 1)-st strip (and the corresponding values of H),
it follows that both sub-images are the result of the GreedyRec algorithm from the
corresponding part of H. By the definition of breaking, the second sub-image is
shifted to the right with min{h,, h, 1} positions. We show that the sub-images are
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Figure 3.14: Examples of breaking: (a) an obtained image G of GreedyRec; (b) G
is broken at the breakpoint ¢ = 2; (c¢) G is broken at the minimal breakpoint ¢ = 3;
(d) G is broken at another minimal breakpoint ¢ = 4.

actually 4-connected components, which are 8-connected but not 4-connected to
each other.

If b, < h,y1, then the position of the (r+ 1)-st strip is the same as the position
of the r-th strip in G (as described in GreedyRec). In .G, the (r + 1)-st strip is
shifted to the right with A, positions. Therefore, the r-th and the (r + 1)-st strips
are 8-connected but not 4-connected.

If h. > hyy1, then the (r + 1)-st strip is shifted to the right relative to the r-th
strip with h, — h,1 positions in G. In .G, it is shifted further with h,; positions.
The overall amount of shifting is h,., and again, the r-th and the (r + 1)-st strips
are 8-connected but not 4-connected.

As a consequence, ,.GG is an 8-connected canonical hv-convex image with two
components, furthermore, F* = .G, and due to the shifting, w(,G) = w(G) +
min{h,, b1} O

The following consequence of Lemma 3.6.3 plays an important role in our pro-

posed algorithm.

Corollary 3.1 For each canonical hv-convexr F* image with k component, there
exists a series of k — 1 number of breakpoints in G, such that the obtained image
is equivalent to F*, where G is the result of the GreedyRec algorithm from H(F™).



56 Reconstruction and Random Generation of hv-Convex Images

3.6.2 Algorithm for Reconstructing Canonical hv-Convex

Images

We are now ready to provide an algorithm, CanonicalRec which gives an 8-connect-
ed solution of the RECONSTRUCTION-CAN-HV(H k) problem in O(m) time (see
Algorithm 13). Note that the algorithm always provides a solution if H contains
only positive integers, and 1 < k < m. Furthermore, if £k = 1 then the whole image
is a single 4-connected component, while for & = m, each of the strips itself is a

4-connected component.

Algorithm 13 CanonicalRec

Require: A vector of projection values H = (hy,...,h,) and a number k of
components (1 <k < m)

Ensure: A minimal-width 8-connected canonical hv-convex image F* with k com-
ponents
1) Find ¢,69,...,¢01 (1 < ¢ < m, and ¢ # ¢; if i@ # j) such that
> e, min{he,, he, 11} is minimal
2) Create image G with GreedyRec from H
3) Create image F™* by using the series of ¢; as breakpoints in G
return F*

Theorem 3.4 CanonicalRec is correct and has a running time of O(m).

Proof

If £ = 1, then CanonicalRec is equivalent to GreedyRec, which constructs an hv-
convex image containing one 4-connected component with minimal width, therefore
CanonicalRec is correct. For the rest of the proof assume k£ > 1, thus the series of ¢;
breakpoints in Step 1 is non-empty. Without loss of generality, we can suppose that
the ¢; breakpoints in Step 1 are ordered in a way that the series of min{h,, he, 1}
values is non-decreasing.

According to Lemma 3.6.3, the obtained F™ is a canonical hv-convex image
with & number of components and with the horizontal projection H(F*) = H.
Furthermore, F* is 8-connected according to the consequence of Lemma 3.6.2. We
only have to prove that F* is of minimal width.

Assume to the contrary that there exist an F” solution such that w(F") < w(F*).
Note that according to Corollary 3.1, such an F’ can also be given with a series of
breakpoints ¢}, ¢, ..., ¢, in G. Again, let the series of min{h., he 11} values be
ordered in a non-decreasing way.

Since F” cannot be a result of the CanonicalRec algorithm, ), min{he, he 1o}
is not minimal. Since both the min{h.,, i, 1} and the min{h,/, hc;-lu} series are or-
dered by magnitude, there exists a smallest ;5 index for which
min{he, hey1} > mindhe,, he, 11}

Let F be the image which is constructed from F” such that the (cj+1)-st, (c;+2)-
nd, ..., m-th strip is shifted to the left with min{hcg, hc3.+1} positions. According
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to Lemma 3.6.3, F s canonical, hv-convex with £ — 1 components, and w(ﬁ) =
w(F") — min{hc;, hc;.+1}~ Now, using ¢; as a breakpoint in ﬁ, the obtained F image
is canonical, hv-convex with k& components, and w(F) = w(F) + min{he;, he; 41} =
w(F") —min{hcg, hC;_H}—i—min{hcj, he;41}. Since min{hcg_, h/c;.+1} > min{he;, A1},
it follows that w(F) < w(F"), therefore F is a solution of the RECONSTRUCTION-
CAN-HV(H k) problem with less number of columns, which is a contradiction to
the width-minimality of F’. Therefore, the result of CanonicalRec is correct.

As of Step 1, finding the breakpoints ci,cs,...,cx_1 is equivalent to select-
ing the £ — 1 smallest elements from the series min{hy, ho}, min{ho, h3}, ...,
min{A,,_1, Ay} in any order. The (kK — 1)-st smallest element can be found with
the Median of medians algorithm in O(m) time [18], and after that the first £ — 1
smallest elements can be identified simply by scanning at most two times the series
of possible breakpoints. Overall, finding the breakpoints has a run-time of O(m).
Step 2 and Step 3 can be done with O(m) moves according to Theorem 3.1. The
overall run-time of the CanonicalRec algorithm is O(m). O

3.6.3 Reconstructing General hv-Convex Images

Similarly to the modified version of GreedyRec described in the end of Section 3.3,
one can modify the CanonicalRec algorithm in a way that the obtained image has
n number of columns, where n can be any value between the minimal value pro-
vided by CanonicalRec and the maximal value of (Zfll hi> —m + k. Moreover,
the horizontal relative order of the 4-connected components of the result can be
arbitrarily changed, still providing hv-convex binary images with the same hori-
zontal projection. Hence, if there are at least two 4-connected components, it is
possible to give also a solution which is hv-convex but not connected (see Fig. 3.15

for example).

3.7 Summary

The reconstruction of hv-convex polyominoes from few projections is an extensively
studied problem in discrete tomography. Several algorithms exist to solve this task
from two projections. From the viewpoint of testing the efficacy of those (and
of more general reconstruction) algorithms in the average case, the reconstruction,
enumeration and random generation of hv-convex polyominoes according to several
parameters is an important issue.

In this chapter, we showed how to reconstruct hv-convex polyominoes from a
given horizontal projection with minimal number of columns in linear time. This
algorithm can easily be extended to give a solution with any required number of

columns, if such a solution exists. We also gave formulas for counting all possi-
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Figure 3.15: (a) The reconstruction result of the CanonicalRec algorithm with
k = 3, where w(F;) = 11; (b) the modified result with w(Fy) = 14; (c-d) modified
results which are not 8-connected.

ble solutions, one for any number of columns, and another one for fixed number
of columns. Furthermore, we provided an algorithm that generates an hv-convex
polyomino with a prescribed horizontal projection from a uniform distribution. In
the end of this chapter we provided a fast polynomial-time algorithm that can
reconstruct canonical hv-convex images with certain number of 4-connected com-
ponents and with minimal number of columns from a given horizontal projection in
O(m) time. We also showed that the results of the proposed algorithm are always
8-connected. Furthermore, the algorithm can be extended in a straightforward
way to give a solution with any required number of columns, if such a solution
exists. Even more important is that a further extension of the algorithm yields
a polynomial-time reconstruction algorithm for the general class of hv-convex bi-
nary images, when only one projection is given. When both the horizontal and the
vertical projections are given the problem is known to be NP-complete.

The findings of this research have been published in two conference proceed-

ings [39, 44], and one journal paper [43].



Chapter 4

Morphological Skeleton as
Additional Information for the

Reconstruction

4.1 Introduction

In binary tomography, as described in Section 1.1, due to the small number of
available projections the reconstruction is usually very underdetermined. There-
fore, additional information is needed to reduce the number of possible solutions.
However, in certain cases the reconstruction can be NP-hard. Determining the
computational complexity of different variants of the main problem is essential,
however, the complexity highly depends on the additional requirements the image
to be reconstructed must satisfy.

In the most simple case only two projections are availble!. Without further
restrictions, reconstruction from those projections can be performed in O(mn +
nlogn) time for an image with size of m x n, although the number of solutions
can be extremely high [64]. Using additional information such as h-convexity or v-
complexity (or even both) can cause the reconstruction problem to be NP-complete
in general [70]. 4-connectedness alone also yields NP-completeness [70], even with
h- or v-complexity together [11]. However, in [11| and [26], it is shown that there
is a polynomial-time reconstruction algorithm if the image to be reconstructed
satisfies both hv-convexity and 4-connectedness. On the other hand, using more
than two projections can, again, make the problem NP-complete in general [32].
Chapter 3 gives additional references about the previous results in field.

In this chapter we study the reconstruction from an additional shape descriptor,

the so-called morphological skeleton. The skeleton is a region-based shape descrip-

!In extreme cases, as we have shown in Chapter 3, only one.

59
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Figure 4.1: Examples of two kinds of reconstruction problems: (a) the image F
to be reconstruced; (b) if the skeletal label is known for each p € S(F\Y), F is
uniquely reconstructable by (1.11) of Section 1.4; (¢) the considered problem is to
reconstruct F' from S(F,Y’) and the two projections.

tor which represents the general form of binary objects. We provide a detailed
explanation of the morphological skeleton in Section 1.4. In this chapter, we deal
with the reconstruction problem in which the entire morphological skeleton (in-
stead of the individual skeletal subsets) and one or two projections of the original
image are known. Figure 4.1 gives an example of the reconstruction problem. A
practical application of morphological skeleton and image reconstruction can be

used in the field of data compressing, in a similar way of [59].

First, we show that the reconstruction of 4-connected images (polyominoes)
from the horizontal and vertical projections is still NP-complete, even if the mor-
phological skeleton is given. Moreover, we show that the solution is not necessarily
unique. Despite the theoretical drawback, under some circumstances an acceptable
image quality can be achieved. In the reconstruction process a priori knowledge is
often incorporated into an energy function, thus the reconstruction task becomes
equivalent to a function minimization problem. There are various methods to solve
that kind of problems [35, 63, 66]. In this chapter we show how to use Simulated
Annealing (SA) for the binary reconstruction problem using morphological skeleton
and two projections in one case, and only one projection in the other. We propose
three variants of a method to solve the above problem, based on parametric SA

reconstruction.

A related issue, as mentioned in Chapter 3, is the uniqueness of the reconstruc-
tion. In the end of this chapter we study the uniqueness of the reconstruction
of certain type of 4-connected hv-convex images, using two projections and the
morphological skeleton. We show that the unique reconstructability of a certain
parametric subclass of hv-convex binary images is strongly connected to its param-

eters.
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Figure 4.2: Two different images F; and F; having the same projections and mor-
phological skeleton, where S(F1,Y) = S(F,,Y) = {p,q,r, s}.

4.2 Reconstructing Polyominoes is NP-complete

In this section we prove the NP-completeness of the problem where the horizontal
and the vertical projections and the morphological skeleton of the polyomino to be
reconstructed are given. Recalling the definitions from Chapter 3, two positions
p = (ip, jp) and ¢ = (4,4, j,) in a binary image are said to be 4-adjacent if |i, — i,| +
|7p— 74 = 1. The positions p and ¢ are 4-connected if there is a sequence of distinct
black pixels po = p,...,pr = ¢ in the binary image such that p; is 4-adjacent to
pi_1, respectively, for each [ = 1,... k. A binary image F' is 4-connected and is
called a polyomino if any two different object points in F' are 4-connected. Note
that in our definition holes are allowed inside a polyomino.

Now we can give the formal definition of our problem.

Problem. SKEL REC PoLy

Instance. H € N™, V € N” vectors and S C Z? binary image.

Question. Does there exist a polyomino F' of size m X n such that H = H(F),
V =V(F)and S = S(F,Y), where Y is given by (1.12)?

Figure 4.2 shows that there can be more than one solution. Furthermore, we
prove that finding even one solution, if exists, is generally NP-complete. Our
proof is based on |70|, where the reconstruction of polyominoes from vertical and
horizontal projections was examined. Our reduction is done from the following
version of the NP-complete problem published in [33]. The following problem is

known to be NP-complete.

Problem. THREE PARTITION

Instance. Positive integers ag, ..., as; that are encoded in unary and that fulfil



62 Morphological Skeleton as Additional Information

the condition® S>% a; = k(2B + 1) for some integer B.
Question. Does there exists a partitioning of aq,...,as; into k triples such that
the elements of every triple add up to exactly 2B + 17

For example, if B = 6, k = 3 and the positive a integers are 2, 3, 4, 4, 4, 5, 5,
6, 6, the answer is yes, since the partition Z = {{1,6,8},{2,3,9},{4,5,7}} gives
us a solution 2+5+6=3+44+6=4+4+5=(2B+1) = 13.

We will give the transformation from a THREE PARTITION instance to a SKEL
REC PoLy instance and declare all the necessery lemmas for the proof. Frow now,
k and B are fixed integers for a particular THREE PARTITION instance aq, . .., ag.

The main idea behind the transformation is to describe a THREE PARTITION
instance as a 4-connected image, parts of which resemble a permutation matrix
with ¢ number of columns. Each column in the permutation matrix corresponds
to a; number of contiguous elements of the image, whose positions describe which
partition contains that particular a; in the THREE PARTITION problem. If the
THREE PARTITION instance has a solution, then a valid permutaton matrix, thus
a polyomino satisfying the morphological skeleton and the projections can be easily
constructed. On the other hand, if there is a polyomino with the given morpholog-
ical skeleton and the projections — hence, SKEL REC POLY has a solution — then
that image must encode a valid permutation matrix, which provides a solution to
the original THREE PARTITION instance. Figure 4.3 shows the core idea of the
transformation. For a more detailed example, see Fig. 4.5 and 4.6. We explain the
construction and the function of those images later.

For two arbitrary vectors @ € N” and b € N™ let “o” denote the concatenation:
Gob=(ay,....an,bi, ... bn) . (4.1)

For any s € N let the exponentiation of a vector denote the iterative concatenation:

a = a if s =1,

4.2
@ = @ lod  ifs> 1 (4.2)
Let u be a fixed vector of size 1 x 36k:
3k
7= ((0)11 o (1)) = (0,0,0,0,0,0,0,0,0,0,0,1)% . (4.3)

Let CV, C%, C%, C1° and C' be fixed binary images of size 5 x 12 as shown in
Fig. 4.4. CV is called a skeletal cell, the others are called object cells. Let R =
{1,...,2B+1}x{1,...,3k}x{1,...,k}. Finally, let o : R — {CV,C%, ¢ C C'}

’In the original version of THREE PARTITION, each a; satisfies 281 < q; < 2B+1 This
version is more general and thus is still NP-hard.
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Figure 4.3: The core idea of the transformation for k£ = 2. Black pixels indicate the
elements corresponding to the a; numbers. Gray pixels indicate the parts respon-
sible for the 4-connectedness, while dark gray pixels denote the borders between
the partitions. Here, the first partition in the solution of the THREE PARTITION
instance contains (a4, as, as), the second one is (ag, a1, as3).

i

) f)

Figure 4.4: Different type of cells: (a) a skeletal cell CV; (b) object cell C%; (c)
object cell C%; (d) object cell C'Y; (e) and object cell C (e).



64

Morphological Skeleton as Additional Information

and let G, be the following binary matrix of size (k(5(2B+1)+1)+1) x (36k+1):

)
U
1,1, 1)p (1,2, 1) (1,3k,1)¢
2,1,1)p (2,2,1)p (2,3k,1)¢

(2B+1,1,1)¢ (2B+1,2,1)¢

(2B+1,3k,1)¢

U

(1,1,2)¢ (1,2,2)¢
(2,1,2)¢ (2,2,2)¢

(2B+1,1,2)¢ (2B+1,2,2)¢

(1,3k,2)¢
(2,3k,2)p

(2B+1,3k,2)¢

U
L1, k)p (1,2,k)p (1,3k, k)
2,1,k)p (2,2, k)p (2,3k,k)p

(2B+1,1,k)¢ (2B+1,2, k)¢

(2B+1, 3k, k)p

(4.4)

where (r,4,j)p is called a cell of G,. We say that (r,¢,7)p and (r',7', )¢ are in
the same cell block if j = 7', in the same cell column if i = i’ and in the same cell
row if r = 7', and also j = j'. (r,i,7)¢ is in the j-th cell block, in the i-th cell
column and in the r-th cell row of the j-th cell block.

Now we give the transformation from a THREE PARTITION instance to a SKEL
REC PoOLY instance.

Let m = k(5(2B+1)+1)+1, n=36k+1 and H € N be the following vector:

H=(n)o ((3k+ 1)0H10H23_10H10HZB_10H1)k, (4.5)
where
Hy = (1) +H(C™) + Bk —1) - H(C™) (4.6)
and
Hy = (1) + H(C") + 3k — 1) - H(C™) (4.7)

Moreover, let V' € N" be the following vector:

V=(m)oVioVoo- - -oVs, (4.8)
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Figure 4.5: The skeletal set S and the required projections given by the transfor-
mation if £ = 2 and B = 5. Black pixels denote object points. Gray pixels indicate
the background points of vectors «. Broken lines indicate the border of the cells.
The size of S is 113 x 73.

where

Vi= () + k- ((0)"o(1) ) +V(C") + (a; = 1) - V(C?) +
+ (k(2B+1) —a;) - V(C™) (4.9)

fori=1,... 3k
Finally, let the skeletal set S = G of size m x n, where ¢’ : R — {C"},
(r,i,7)p" = CV for every (r,i,7) in R. Figure 4.5 shows an example of S and the

required projections if k =2 and B = 5.

Lemma 4.2.1 If the THREE PARTITION instance has a solution, then there exists
a polyomino F of size m x n with horizontal projection H, vertical projection V,
and skeletal set S.

Proof
Let a;,, a;, and aj, be the elements in the j-th triple in the solution of the THREE
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PARTITION instance. Let F' = G, where ¢ : R — {C',C°,C"}, and the j-th
cell block has the following object cells in the j;-th cell column:

clt ifr=1,
(r,j1,9)¢ = co ifre{2,...,a5}, (4.10)
co0 otherwise,

in the jo-th cell column:

ct iftr=B+1,

(rjo, i) =4 €7 ifrefa; +1,. a5 +app\{B+1}, (4.11)

cw0 otherwise,

and finally in the j3-th cell column:

' ifr—2B+1,
(T’, j3,j>§0l — Clo ifr e {aj1 + a;, + 1, sy Gy + aj, + Ajy — 1} , (412)

coo otherwise.

Figure 4.6 shows an example, where the instance of the THREE PARTITION problem
isay=3,a0=3,a3=3, a4=4,a5=4,a6=5 (k=2,B=5).

It is easy to verify that S(C,Y) = CY for any object cell C. Moreover, due
to the construction of G, and since (p @ Y) NS = @ for any p € Z?, it follows
that S(G,,Y) = 8(S,Y) = S for any ¢ : R — {CV,C%,C%,C¥° C'"}. Therefore,
S(FY)=S.

Note that the number of C'° cells in the i-th cell column is a; — 1, the number of
C! cells is one and every other cell is C%. With the first row and the first column
and with the @ vectors, it is easy to verify that V = V(F) according to (4.8).

Similarly, each cell row contains exactly one C1° or C!' — depending on the
corresponding horizontal projections —, and every other cell is C%, therefore with
the additional elements in F' we have H = H(F') according to (4.5).

The 4-connectedness of G is a consequence of the attributes of G, and the
object cells: every object point in a C'° cell is 4-connected to the object points of a
C! cell (possibly through other C1° cells in the same cell column), and every object
point in a C! cell is 4-connected to the first row of I through the @ vectors and
other C!! cells. The object points in the C% cells are 4-connected to the first and
last columns of other cells or the first column of F'. Finally, the first column of F'
is trivially 4-connected to the first row of F'. Again, see Fig. 4.6 for example. O

Lemma 4.2.2 [f there exists a polyomino F' of size mxn with horizontal projection
H, vertical projection V', and skeletal set S, then a ¢ : R — {C%,C%, C1° '}
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Figure 4.6: An instance of SKEL REC PoLy transformed from an instance of
THREE PARTITION, with a1 = 3, as = 3, ag = 3, ay = 4, a5 = 4, ag = 5. Black
pixels denote the object points in cells C', dark gray pixels denote the object
points in cells C'°. Light gray pixels indicate the remaining object points (C% cells,
@ vectors, the first row and the first column of F'). Broken lines indicate the @
vectors. It is clearly visible that the first triple of the solution is (a4, as, as), the
second one is (ag, a1, az), and the sum of the triples is 11.
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Figure 4.7: The notation of the skeletal points in C, enclosed with thick black lines.
Every skeletal point other than ps3, pss, ps3og, and pgio has a skeletal label 0 due
to the 4-connectedness. Broken lines indicate parts of neighbor cells.

exists such that I = G,

Proof

According to (1.11), in order to determine F', we only have to find the labels of the
skeletal points in S. Since S = G v, S is built up from cells. Let C be an arbitrary
submatrix in F' corresponding to a skeletal cell in S. Let p; ; be the point in the
i-th row and the j-th column in C (i=1,...,5,j=1,...12).

A special case of Lemma 1.4.1 is k, = kg, if p and ¢ are 4-neighbors. Note that
there are lots of 4-connected skeletal points in S, see previous example of Fig. 4.5,
therefore their labels are all the same. Due to the projections, it is easy to verify
that those labels must be 0.

The skeletal points with the unknown labels are py 3, p3s5, pso, and py 10, since
those points are not 4-connected to the rest of the skeletal points (see Fig. 4.7).
We can establish an upper bound for each label using LLemma 1.4.1. For example,
2 = di(p2,3,P2,1) > |Kpsy — Kps, |, then, since k,, | = 0, it follows that r,,, < 1. The
determination of the other bounds is similar. To summarize:

Kppy < 1 because of py ;1 ,
K < 3 because of
pas = P23 (4.13)
Kpsg < 1 because of p; g ,
Kpiww < 1 because of py 12 .

Let us now investigate the vertical projection value of F' in the 11-th column of
C. According to (4.9), it is equal to

1+k-04+24(a;—1)-2+ (k2B+1)—a;)-2=2k(2B+1)+1  (4.14)

for any ¢ = 1,...,3k. There is one object point in the first row of F' and in all
the p; 11 points of the k(2B + 1) number of C submatrices in the same column.
Therefore, there has to be other k(2B + 1) object points in this column in order
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Table 4.1: Possible labels for the non-trivial skeletal points in submatrix C within
their bounds. “*” denotes an arbitrary non-negative integer.

Kpa 3 <1 Kps s <3 Kps.9 <1 Rpa 1o <1 Note
* * * 0 Contradicts the projection value
of the 11-th column

0 {0,1} * * Contradicts the 4-connectedness

0 2 0 1 Equals to C10

0 2 1 1 Equals to C!!

0 3 * * Contradicts Lemma 1.4.1

1 0 * * Contradicts the 4-connectedness

1 1 0 1 Equals to C%

1 1 1 1 Equals to CO

1 {2,3} * * Contradicts the projection value
of the 1-st row

to fulfil the vertical projections. Those object points cannot belong to any of the
u vectors (since the corresponding horizontal projections are already satisfied).

Assume that rp, , = 0 for some submatrix C. Thus, there can be no other
object points in the 11-th column of this particluar submatrix. Overall, there has
to be k(2B + 1) object points in the 11-th column of k(2B + 1) — 1 submatrices,
which is a contridaction, due to the upper bounds of the skeletal labels. Therefore,
Kpiao = 1 for every submatrix C.

Let us take a look at py3 and p3s. If kp,, = 0, then x,,, > 2, otherwise F
cannot be 4-connected, due to the upper bound of the remaining skeletal labels.
Also, if Kp,, = 0, then k,,, < 3 because of Lemma 1.4.1. Therefore, if x,,, = 0,
then k,, , = 2.

Finally, if x,,, = 1, then k,,, > 1 because of the 4-connectedness of F. Ac-
cording to (4.6) and (4.7), the horizontal projection value of F' corresponding to
the 1-st row of submatrix C is

1454 (3k—1)-5=15k+1 (4.15)

in both of the rows H; and Hy. There is one object point in the first column of F
and p19, P110, P1,11 and py 12 points in the first row of 3k number of C submatrices
in the same row. Therefore, there is 3k further object points in 3k submatrices, in
order to fulfil the horizontal projections. Similarly to the previous case, if k), , = 1,
the only solution satisfying the requirements is r,, ; = 1.

Table 4.1 shows all the possible cases for the labels of an arbitrary submatrix
C. It is easy to verify that using valid labels yields the submatrix C to be equal to
one of the object cells, hence F' can be described as G, with some ¢. O

Lemma 4.2.3 If there exists a polyomino F' of size mxn with horizontal projection
H, wvertical projection V', and skeletal set S, then the number of C*! cells is one,
the number of C'° cells is a; — 1, and the number of C% cells is k(2B + 1) — a; in
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Table 4.2: The number of the cells in the i-th cell column.

H #COO ‘ #COl ‘ #Clﬂ ‘ #Cll
Case 1 k(2B +1) —a; 0 a; — 1 1
Case 2 k2B+1 )—a; —1 1 0

a;

the i-th cell column of F = G,. Moreover, F does not contain any C™ cells with a
certain o : R — {C%,C, CY CM1}.

Proof

From Lemma 4.2.2 we know that F' can be described with a G, matrix, hence F'is
built up from cells. According to (4.8), the vertical projection value corresponding
to the 8-th column of the i-th cell column is equal to

1+k-0+1+4(a;—1)-04+ (k2B+1)—a;)-0=2. (4.16)

Since one object point is in the first row of £, and only C°* and C!' contain object
points in the 8-th column, the sum of the number of C% and C!! cells are one for
all 7.

The vertical projection value corresponding to the 7-th column of the i-th cell
column is equal to

1+k-0+1+(a;—1)-14+(E2B+1) —a;)-0=a; + 1. (4.17)

Again, one object point is in the first row of F', and only C'° and C!! contain object
points in the 7-th column, therefore the sum of the number of those cells is a; for
all 7.

Similarly, the vertical projection value corresponding to the 2-nd column of the
t-th cell column is equal to

1+k-0+0+(a;—1)- 04+ (k(2B+1)—a;)-1=k(2B+1)—a; +1. (4.18)

Only C% and C% contain object points in the 2-nd column, therefore the sum of
the number of those cells is k(2B + 1) — a; for all i.

Overall, we have 3 equations for 4 non-negative integer variables (for the number
of cells in the i-th cell column), and since the sum of two of those variebles is one,
it is easy to verify that we have only two solutions, as Table 4.2 shows. Both cases
satisfy the requirements of the vertical projections of F'.

Note that in an arbitrary C'° cell the (p35 @2 Y) component is not necessary
4-connected to a skeletal point labelled trivially by 0, but it can be 4-connected
to other components of C' or C™ cells in the same cell column (through skeletal
points p; 5 and ps 5, again, see Fig. 4.6 for example). If there is no C* cell in a
cell column, then there is at least one C' in that cell column, and its (p35 B2 Y)
component cannot be 4-connected to the other parts of F'. Therefore, the second
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case in Table 4.2 is not possible. O

Lemma 4.2.4 If there exists a polyomino F' of size mxn with horizontal projection
H, vertical projection V', and skeletal set S, then the number of C'* cells is one in
the cell row corresponding to Hy in (4.5), the number of C'° cells is one in the cell
row corresponding to Hy in (4.5), the number of C% cells is 3k — 1 in any cell row,
and F has no C% cells.

Proof
The horizontal projection value of F' corresponding to the 5-th row of any cell row

is equal to
1434+ Bk—1)-2=06k+2, (4.19)

according to (4.6) and (4.7). There is one object point in the first column of F
and at least two object points in every cell in a cell row (skeletal points ps 19 and
ps.12). There are 3k number of cells in a cell row, which yields 6k + 1 object points
overall. Only cell C° and cell C'! contain additional object points in the 5-th row,
and there is no C°! in F' according to Lemma 4.2.3. Therefore the number of cells
C% is 3k — 1. Similarly, due to the 2-nd row of any cell row, it is easy to verify that
the number of cells C'! is one in the cell row corresponding to H; in (4.5), and 0
otherwise. Moreover, the number of cells C'° is one in the cell row corresponding
to Hy in (4.5), and 0 otherwise. O

Lemma 4.2.5 If there exists a polyomino F' of size mxn with horizontal projection
H, vertical projection V', and skeletal set S, then the THREE PARTITION instance
has a solution.

Proof

According to Lemma 4.2.3, the number of C* cells is a; in the i-th cell column in
F, where x € {10,11}. Those cells have to form a contiguous interval of cells in a
cell column due to the 4-connectedness of F', previously mentioned in Lemma 4.2.3
(there is exactly one C'! cell in every cell column). Moreover, owing to the @
vectors, they all have to be in one cell block.

Let P be a partitioning of the numbers a; into k£ parts: Number a; belongs to
partition 7 if and only if the a; number of C* cells in ¢-th cell column are in the
j-th cell block.

According to Lemma 4.2.4 and (4.5), the number of C!* cells in a cell block is 3,
therefore exactly 3 contiguous intervals of C* belong to a cell block, which means 3
of the a; numbers belong to the same partition in P. Since the number of the C*°
cells is 2B — 2, the sum of the C” cells in a cell block is 2B + 1, which means that
the sum of the corresponding a; numbers in a partition of P is 2B + 1. Therefore,
P is a solution to the THREE PARTITION instance. O

We now have all the facts needed to prove our main theorem.

Theorem 4.1 SKEL REC PoLy is NP-complete.
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e) f)

Figure 4.8: Different type of cells in the proof of the NP-competeness if the image
has to be a simple connected polyomino: (a) the skeletal cell CV; (b) object cell
C%; (c) object cell C%; (d) object cell C1%; (e) object cell C.

Proof
To prove that SKEL REC PoLy is in NP, we need to validate in polynomial time
whenever a binary image F' of size m X n satisfies the requirements of SKEL REC
Pory. As for the horizontal and vertical projections, the validation can be done
in O(nm). To generate the skeletal set S(F,Y), O(nm - max{n,m}) time is suf-
ficient [59]. Finally, the 4-connectedness can be checked in polynomial time with,
e.g., connected-component labeling algorithms [68].

The transformation from a THREE PARTITION instance to a SKEL REC PoLy
instance is polynomial. The NP-hardness of SKEL REC POLY is a direct conse-
quence of Lemma 4.2.1, Lemma 4.2.5 and the NP-hardness of THREE PARTITION.O

Although our definition of the polyominoes allows holes, the NP-completeness
still holds for simply connected binary images. If we replace the skeletal cell and
the object cells in Fig. 4.4 with the images shown in Fig. 4.8, and modify the
required skeletal set S, and the vectors H and V according to the new cells, then
the proof works similarly as that of Theorem 4.1. Note that in that case, in (4.13)
Kpso < 1 owing to p3 1.

In the next section we show that without even requiring 4-connectedness on the

image the problem is still generally NP-complete.

4.3 Reconstructing Binary Images is NP-complete

In this section in a similar way of Section 4.2 we prove that the reconstruction is NP-
complete even if there is no connectivity constraints on the image to reconstruct.
First, we define our introduced problem as a decision problem and name it as SKEL
REC. The idea behind the reduction is similar to the one in [70].

Problem. SKEL REC
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~ N

Figure 4.9: The (3,4)-widget W 4.

Instance. H € N™, V € N” vectors and S C Z? binary image.

Question. Does there exist a binary image F' of size m x n such that H = H(F),
V =V(F)and S = S(F,Y), where Y is given by (1.12)?

In order to prove the NP-completeness, first we prove that SKEL REC is NP-
hard through reduction. Once again, we use the THREE PARTITION problem de-
scribed in the previous section, where an instance contains the non-negaive integers
ai,...,asg, and the question is, if there exists a partitioning of aq, ..., as into k
triples such that the elements of every triple add up to exactly 2B 4+ 1. We give a
(logspace) reduction from THREE PARTITION to SKEL REC, showing NP-hardness
of the latter. To achieve this, we define a widget, that is, a parametrized skeleton
image equipped with horizontal projection values: given k, a > 0, let the (k,a)-
widget Wy, be a skeleton image of height a + 2, width 3k with (¢, j) being the
skeletal pixel if and only if j = 2 (mod 3) and 1 <i < a+ 2 (i.e., starting with the
second column, every third column is all-one except for the first and the last rows),
equipped with the following horizontal projection vector: 1,k+2,k+2,... . k+2,1,
where k + 2 is repeated a times. See Fig. 4.9 for an example.

Note that if a widget occurs as a subpattern in a SKEL REC instance, then the
skeletal label of each skeletal point in the widget must be either 0 or 1. Indeed, the
skeletal points belonging to the same vertical lines are 4-connected, thus they have
to have the same label according to Theorem 1.4.1 (this common label will also be
called the label of the line). Should this label be at least 2, the horizontal projection
in each non-border row would exceed k + 2, even if all the other vertical lines have
label 0: the others would contribute £ — 1 object points and the one having at least
label 2 would contribute at least 5 object points, yielding a horizontal projection
of at least k + 4.

By an analogous argument one can see that at most one vertical line can have a
label of 1, and all the others 0, since a line with label 1 contribute 3 object points,
two of them would contribute 6, and along with the other &k — 2 lines a horizontal
projection of at least k + 4 would appear. Observe that the six object pixels could
not overlap in this case, that is the point of the two-column gap between the lines.

Now we are ready to define the reduction. Given an instance B and non-negative
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integers aq, ..., as, of THREE PARTITION, we construct the following instance of
SKEL REC:

o the skeletal image equipped with horizontal projections is Wy, 4, ¢ Wy g, © - -+
¢ Wi as,, Where ¢ stands for the vertical composition of skeletal images and

horizontal projections,

e the vector of the vertical projections is (2B +1, k(2B+1)+6, 2B+ 1)

repeated £ times.

The result of the reduction applied to the input of the previous example is

shown in Fig. 4.10.

Lemma 4.3.1 If the instance of the THREE PARTITION problem has a solution,
then the instance of the SKEL REC resulted by the reduction also has a solution.

Proof
Suppose Z = {I3,...,I;} is a solution of the THREE PARTITION instance, i.e.,
k
;| =3 and Y a; = 2B+ 1 foreach 1 < j <k, and | JI; = {1,...,3k}. Then
icl, j=1

for each 1 < i < 3k, if 7 € I}, then let the label of the j-th vertical line be 1
in Wy ,, corresponding to the i-th widget; let the label of the other lines 0. A
straightforward calculation shows that all the horizontal and vertical projections
are satisfied, and that the original skeleton image is indeed the skeleton of this
image. Thus, the SKEL REC instance is consistent. ]

Lemma 4.3.2 If the instance of the SKEL REC resulted by the reduction has a
solution, then the instance of the original THREE PARTITION problem also has a
solution.

Proof

Let P a solution image of the SKEL REC problem. Since the labels of the skeletal
points — thus, the labels of the lines in the skeletal image — define P uniquely, we
will talk about labels of lines with respect to P. The horizontal projections require
that in each Wy, widget there is exactly one vertical line with label 1 and all
others have label 0. We claim that the partition Z = {I; : 1 < j < k} with ¢ € I; if
and only if the j-th vertical skeletal line (which is in column 3j — 1) of the widget
Wi.q, has label 1, is a solution to the THREE PARTITION instance.

From the previous argument we have that Z is indeed a partition of {1,...,
3k}. For any 1 < j <k, we have to show that [I;| =3 and }_,; a; = 2B+ 1. The
vertical projection constraint on column 35 — 1 is k(2B + 1) + 6. If each vertical
skeletal line in that column would have label 0, then by construction the projection
would be exactly k(2B + 1). When we decide to increase the label of a line to 1,
the projection value increases by two (again, see Fig. 4.10 for example). Observe
that these freshly added object points cannot overlap, since there are two empty
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rows between the vertical skeletal lines. Thus, there are exactly three indices ¢ such
that the j-th line in the i-th widget has label 1, hence |[;| = 3.

For the sum, consider the constraint on column 37, which is 2B + 1. If each
vertical skeletal line in column 35 — 1 would have label 0, the projection of column
37 would be 0 (note that since the maximal label is 1 for every line by the horizontal
constraints, no label of any other line can affect the projection of column 3j). If
we set the label of the j-th line in the i-th widget to 1, we increase the projection
by a;. Hence, Eielj a; = 2B+ 1.

Overall, Z is a solution to the THREE PARTITION instance. O

Theorem 4.2 The decision problem SKEL REC s NP-complete.

Proof
The reduction from THREE PARTITION to SKEL REC is clearly logspace. From
Lemma 4.3.1 and Lemma 4.3.2, we know that SKEL REC is at least as hard as
THREE PARTITION. The NP-hardness of the latter proves the NP-hardness of the
former.

It is also easy to prove that SKEL REC is in NP. Considering a possible solution
F with size of mxn to the problem, we need to validate its correctness in polynomial
time. The validation of the projections can be done in O(mn). The morphological
set S(F,Y) can be constructed in O(mn - max{m,n}) [59], and comparing S(F,Y)
to S'is also polynomial. Thus, SKEL REC is in NP, and overall it is NP-complete.O

If only the horizontal projection and the morphological skeleton is given, the
problem is still NP-complete, considering the structuring element Y of (1.12). This
can be proven similarly to Theorem 4.2. Figure 4.11 shows an example of the

reduction.

4.4 Reconstruction as Optimization Problem

Although the reconstruction from two projections and morphological skeleton is
generally NP-hard, under some circumstances an acceptable image quality can be
achieved. We transform the problem into an energy minimization (or function
minimization) task, where finding a minimum of the given function is equivalent
to finding an optimal solution to the reconstruction problem. Moreover, a solu-
tion to the reconstruction is acceptable if the value of the corresponding energy
function is close to its minimum. There are various methods to solve that kind of
problems. In [35], the authors used a memetic algorithm for reconstructing binary
images from horizontal, vertical, diagonal and anti-diagonal projections. In [63] a
fan-beam projection model is implemented and used in systematic experiments in
order to determine the optimal parameter values for reconstruction with Simulated

Annealing. The authors of [66] presented a method that uses DC programming,
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Figure 4.10: An example of the reduction, where 2B + 1 = 16, £k = 3 and the
non-negative integers are 2, 3, 4, 4, 4, 5, 5, 6, 6. Left: the SKEL REC instance
after the reduction. Right: a reconstruction corresponding to the solution Z =

{{1,6,8},{2,3,9},{4,5,7}}.
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Figure 4.11: An example of the reduction if only the horizontal projection and the
morphological skeleton is known. The image is cut in half for the better visibility.
The THREE PARTITION instance has non-negative integers 1, 2, 2, 2, 3, 4, 5, 6, 8
(with k = 3 and B = 5), with the solution Z = {{1,3,9},{2,6,7},{4,5,8} }. Light
gray pixels indicate the skeleton.

a non-convex optimization technique, to solve the reconstruction of binary objects
from few projection directions.

We choose Simulated Annealing (SA) as the optimization method for our prob-
lem owing to its simplicity, robustness, and flexibility in the control parameters.
Section 1.5 gives a detailed description of the general method. Perhaps the most
important advantage of SA over the competitive methods is that it can guarantee
a near optimal solution in a reasonable time. SA also provides a natural way to
encode the requirements of the projections, as well as the morphological skeleton,
into an energy function. We propose three variants of a method to solve the recon-
struction problem for two projections, and also for only the horizontal projection,
based on parametric SA reconstruction.

First, we need to define our reconstruction problem as an energy function. Let
H € Nj and V € Nj be two vectors, and S C Z? be a finite set of points. Our
task is to reconstruct an image F' for which S(F,Y) = S, and which (at least
approximately) satisfies H(F) = H and V(F) = V (see again Fig. 4.1c for an
example).

As (1.11) of Section 1.4 states, at each point p € S(F,Y’) there is a unique
skeletal label &, value with p € S, (F,Y). Thus, the image F' can be uniquely
represented by a vector K(S(F,Y)) = (Kp,, Kpy, - € ZISEY . Using

the notions of (1.4) of Section 1.1 and given a set of points S, our goal is to find

s Bpysey)

a K*(S) = (k5 Ky, ,/1;5') which corresponds to the image F* generated by
(1.11), such that f(x*) = |[|[Ax* — b||3 is minimal. Here, x* is the column vector

representing . Figure 4.12 shows an example. Note that even if there is no F'
such that S = S(F,Y) and the function value of f is zero (e.g. in case of noisy

projection data), it can be still possible to give a solution, whose projections are
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Figure 4.12: An example of the studied reconstruction problem: (a) the skeleton S
and the projections H and V; (b) a reconstruction attempt F with H(F) and V(F)
given by some K (S); (¢) the optimal solution F* with H(F*) = H and V(F*) =V
given by K*(S) (c). Projection elements that differ from the required ones are
shown underlined.

close to the required ones.
The following lemma gives an upper bound for each element of K(S(F,Y)) of

an arbitrary binary image F'.

Lemma 4.4.1 Let F be a binary image of size n x n and K(S(F,Y)) = (kp,,
Fpas -+ s Bpsryy) € ZISEDN Then k,, < |2 for each i = 1,...,|S(F,Y)],
where | .| stands for the floor function.

Proof

From (1.10) of Section 1.4 we know that the maximum value of K(S(F,Y)) is
max{k | F &, Y # (0}. Since the size of the structuring element Y is 3 x 3, it
follows that the size of F'&;,1 Y is smaller by two in each dimension than the size
of FF&,Y for some non-negative integer ¢ (see the definition of the morphological
erosion in (1.6) of Section 1.4). As a consequence, F O np] Y = (). Thus, the

possible maximum value in K(S(F,Y)) is less than | 25| O

Since the size of the image is known, the searching space is bounded by

Lemma 4.4.1. The following lemma provides a sharper upper bound.

Lemma 4.4.2 For any skeletal set S of points and any (i,j) € S it holds that

hi — 1 1
K’(’L’,j)gmin{i_l?j_lan_ivn_j7 \‘ 2 J? \!UJQ J}a

where k(; 5 € K(S) is the corresponding skeletal label in K, h; and v; is the corre-

sponding horizontal and vertical projection value, respectively.

Lemma 4.4.2 is trivial due to the size of the image and the fact that F' =
UPGS(F,Y) (p Dr, Y). The lemma simply states that the skeletal labels must be
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small enough, otherwise the corresponding projection values would be bigger. Fur-
thermore, together with Lemma 4.4.1, they define a unique maximum value for
each r, € K(S(F,Y)).

Note that in some variations of the parametric SA we will integrate Lemma 1.4.1

into the energy function as a restriction on the skeletal labels.

4.5 Solving the Reconstruction Problem with Para-

metric SA

We focus on the reconstruction of general binary images from at most two projec-
tions and the morphological skeleton. Since the decision problem is NP-complete, a
straightforward consequence is that there is no polynomial-time algorithm for find-
ing an exact solution to the problem described in the first paragraph in Section 4.4
with a 0 valued minimum of (1.4) of Section 1.1 (if the morphological skeleton is
involved), unless P=NP.

Nevertheless, we still have the chance to solve (1.4) approximately with SA. An
adjusted version of SA is described in Algorithm 14.

Algorithm 14 Simulated Annealing on the Introduced Problem
Require: Projections H and V, set of skeletal points S, and starting position
Ko(S)
Ensure: K(S)
K(S) + Ko(9)
t<0
repeat
K'(S) + MODIFY(K(S))
Calculate x’' and x from K’(S) and K(5), respectively
if f(x) < f(x) or RAND < exp(£5/c%) then
K(S) « K'(S)
end if
t+—t+1
until the termination criterion is satisfied
return K (S) and the corresponding image

The basic energy function f we use is simply f(x) = ||Ax — b||3, where x is
defined by the actual solution F. The goal is to find K*(S) which describes an
image x* where f(x*) is minimal, i.e., it has the lowest energy. We know that if
f(x1) < f(x2), then the image F is better than F; in the sense that its projections
are closer to the required ones, therefore function f(x) is a proper energy function.
T'(t) is the temperature function or the cooling schedule, such that 7'(0) is positive,

and T'(t) - 0 as t — oc.
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We choose the following exponential function

T\ M
Tt) =Ty | = :
1) =1, (T)

where ¢t denotes time, so the temperature will decrease over time, M is the maximal
number of allowed iterations, Tj is the chosen value for the starting temperature
and T} is a parameter controlling the shape of the cooling schedule. We empirically
established the starting temperature Ty = 10 and the parameter T, = 0.001. In
each iteration the time ¢ is increased by 1. The process terminates when the
iteration number ¢ reaches M, or the energy of the current solution is 0.

RAND is a floating point number taken in each iteration from a uniform random
distribution (0 < RAND < 1). With the function MODIFY we alter a state to
another one simply by choosing a k, € K(S) randomly, and updating its value
between the corresponding bounds defined by Lemmas 4.4.1 and 4.4.2. For the
initial solution we choose the k,-s such that the initial image satisfies Lemma 1.4.1
(see Section 1.4) for every 8-adjacent skeletal points —i.e., their Manhattan-distance
is not greater than 2 — and its projections are close to the required ones. We choose
to consider only 8-adjacency, because its validity is easy to compute locally. We

developed three different strategies for the reconstruction:

1. No Skeletal Constraint (NSC): In the SA modification step, we choose a &,

randomly, and change it randomly between its bounds, omitting Lemma 1.4.1.

2. Dynamic Skeletal Constraint (DSC¢): We apply Lemma 1.4.1 in the following
way: in each step, we modify a randomly chosen &, by defining its new value
such that |k, — k.| < C holds for each ¢ 8-adjacent to p. If C = 1, we
allow only those differences that mentioned in Lemma 1.4.1 for 8-adjacent
skeletal points. Because it also means slow convergence during iterations, we
allow higher C' values in the beginning of the reconstruction, and decrease C'

through time. For that we use a function C(t), which is similar to the cooling

Cs t/M
CYO : (?0) y

where [.] denotes the ceil function, Cy is the starting parameter, so C'(0) =
Cy, Cs is a parameter established to 0.15 explicitly. Note that C(t) — 1 as

t — M, so we force SA to search a solution that satisfies Lemma 1.4.1 (for

schedule:

O(t) =

8-adjacency) as much as possible.

3. Combined Energy Function (CEF,): We incorporate the constraints of
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Lemma 1.4.1 by using an extended energy function:
f(x) = af]Ax = b|[3 + (1 — a)g(x),
where « is a weighting parameter (0 < a < 1),

g(X): Z h(’%lﬂﬁq) (pvqesv Kp?’%qu(S))a

0<d1(p,q)<2

and

0 if [k, — k| <1
h(lip, qu) — 1 |’%P ' Rfl‘ =
|kp — Kql/2  otherwise.

Note that if a solution F satisfies Lemma 1.4.1 for 8-adjacent skeletal points,
then g(x) = 0. In case of a = 1, this method is equivalent to the No Skeletal
Constraint method (i.e. CEF; = NSC).

4.6 Numerical Results

4.6.1 Implementation Details

For testing our proposed algorithm we developed a general reconstruction frame-
work. For initialization, one has to specify the initial temperature T, the parameter
T, the maximal number of allowed iterations and the initialization strategy. Some
of the variants of the presented SA method have also additional parameters, such
as a or (. Certain parameters were fixed, such as C or the structuring element
Y. We also fixed the cooling schedule. These parameters were chosen empirically,
since we found that the reconstruction is robust for those settings. The framework
was implemented in C+—+ language using Dev-C++ environment, and the test was
performed under Windows 7 on one core of an Intel Core 2 Duo T2520 of 1.5 GHz
PC with 2GB of RAM.

4.6.2 Experimental Results for Two Projections

We tested our algorithm on 50 artificial images. Here we show 8 samples of them,
which we found the best representatives of our results. Six of our test samples have
one point thin morphological skeleton consisting of few 8-connected components.
However, we also show two other images which have more complex skeletons. All
of the test images have size of 256 x 256.

Since SA is a randomized algorithm, we performed each test 10 times and

measured the mean CPU time and errors of the reconstruction. For the numerical
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a) b) c)

Figure 4.13: A test image and a reconstruction attempt: (a) the original image;
(b) its morphological skeleton; (c) one of the reconstructed images with CEFy 5.

evaluation of the quality of the reconstructed images, we calculated
E=|b-bl},

where b and b’ is the projection vector of the original and the reconstructed image,
respectively. We also calculated the relative mean error (RME) to measure the
distance between the original and the reconstructed image,

n2 o
RME: Zi:ll];z pl’
21:1 Di

- 100,
where p; and p} is the i-th pixel value of the original and the reconstructed image,
respectively. Note that E and RME do not necessarily correlate (although RME
= 0 implies £ = 0). For all tests, we set To = 10, Ty = 0.001, and M = 50 000.

First, we tested the images containing just one convex object (see the upper
two images of Table 4.3). An example of the reconstruction is shown in Fig. 4.13.
We found that 50000 iterations were more than enough to converge to such a
reconstructed image in most cases. All three variants of the SA method provided
results with low projection error and RMFE, and DSC turned out to be the best
choice in term of RME. In one case, setting the parameter C' = 1 of DSC we
could even perfectly reconstruct the original image in all 10 runs, using only 21 220
iterations on average.

In the second turn, we studied images of convex objects arranged in a 2 x 2 and
a 3 x 3 array (bottom two images of Table 4.3). We observed that the initial state
misleaded the DSC algorithm in some cases. The main reason was that the initial
image was very dissimilar to the original one, and DSC converged very slowly,

meaning that it would have needed much more than 50 000 iterations.

The third group of test data contained images consisting of convex objects

forming random groups (upper two images of Table 4.4). For the first image,
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Figure 4.14: An example of the convergence of DSCyy: (a) original image; (b)
the morphological skeleton; (c) the initial reconstruction; (d) result after 5 000
iterations; (e) after 25 000 iterations; (f) final result after 50 000 iterations with
E =325 and RMFE = 2.08.

a)

Figure 4.15: A test image with coarse boundaries: (a) the test image; (b) its
morphological skeleton that contains numerous isolated pixels; (c¢) one of the re-
constructed images with NSC.
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Table 4.3: Reconstruction results from two projections. CPU values are in millisec-
onds and E values are rounded to integers. Results with lowest errors are typeset
in boldface.

Image Method | CPU E RME
NSC 3842 1060 | 0.64
DSCqp 4030 98 | 0.16
DSCs 4116 97 | 0.15
‘ DSC; | 4563 18 | 0.04

CEFg3 | 4358 2468 | 1.18
CEFq5 | 4415 1675 | 0.86
CEFq; | 4435 1305 | 0.72

NSC 7276 1285 | 0.90
DSCyy 7900 174 | 0.28

DSCs 8127 146 | 0.13
DSC, | 4473 0 0
CEFg3 | 7626 2578 | 1.09

CEF,5 | 7665 1849 | 0.82
CEF,, | 7691 1505 | 0.79
NSC 3784 3405 | 7.27
DSC,, | 3038 1291 | 3.09
DSCs5 3164 4288 | 4.26
DSC, 3566 5307 | 5.74
CEF,5 | 5412 5665 | 4.20
CEF,s | 5387 4829 | 3.62
CEF,, | 5328 3212 | 3.62
NSC | 4346 | 6136 | 4.43
DSCyo | 4733 | 1066145 | 48.48
DSCs; | 4609 | 1722350 | 52.87
DSC, 4926 | 3302481 | 59.77
CEFy5 | 7308 | 14371 | 5.94
CEF,s | 7243 8896 | 5.30
CEF,, | 7222 7402 | 4.67

*®

the results are similar to the first group’s results (see the upper two images of
Table 4.3), even if there are more skeletal points now yielding a bigger searching
space. Figure 4.14 shows an example of the convergence of the DSC;y, method.
However, for the second image NSC produced the best results.

Finally, we examined images that have many skeletal points with few connec-
tions (bottom two images of Table 4.4). An example reconstruction result can be
seen in Fig. 4.15. One of the reasons of the poor results could be the skeleton,
which contains many isolated pixels. It makes the method slow and ambiguous
due to the large searching space. Here, NSC proved to be the best choice, since
it did not use the constraints of Lemma 1.4.1, yielding the most robust approach
of all. Although even this method could reach just a rough approximation of the

original object, the RMFE of the results is suprisingly low regarding that just two
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Table 4.4: Reconstruction results of more complex images from two projections.
CPU values are in milliseconds and E values are rounded to integers. Results with
lowest errors are typeset in boldface.

Image Method | CPU E RME
NSC 1666 | 1341 | 4.34

DSCy, | 1215 | 292 | 2.01

®n DSC; 1234 | 314 | 2.06
.. ’. DSC, | 1302 | 294 | 2.03
@ ¢ |CEFos | 2904 | 2534 | 656
CEFos | 2827 | 1950 | 5.59

CEF,, | 2851 | 1732 | 5.61

NSC | 2165 | 2709 | 3.14

DSCy, | 1713 | 6042 | 5.00

v .. DSCs 1724 | 7962 | 13.06
e DSC,4 1910 | 6360 | 6.28
.‘ ® | CEF,; | 4123 | 5688 | 4.55
CEF,s | 4131 | 4178 | 3.69

CEF,, | 4114 | 3346 | 3.24

NSC | 3537 | 2530 | 7.49

DSCy, | 2852 | 9154 | 15.73

N o DSCs 2981 | 13138 | 18.79
DSC, 3226 | 67493 | 27.37

00 CEF,; | 6380 | 5183 | 8.90
CEF,5 | 6367 | 4102 | 8.69

CEF,, | 6343 | 3029 | 8.65

NSC | 2757 | 4034 | 21.75

DSCyo | 2304 | 4523 | 27.98

DSCs 2467 | 7472 | 28.91

DSC, 2430 | 13096 | 38.14

CEF,; | 8884 | 6663 | 25.24

CEF,s | 8856 | 5012 | 24.13

CEF,, | 8959 | 4407 | 25.16

projections were used.

Beside our previous database we tested the NVC algorithm — which resulted

generally low RMFE — on hv-convex 4-connected images, a well-defined class of

images where uniform random generation is possible [50]. We selected 50 images
from the benchmark of [3] with the size of 150 x 150, and ran the algorithm 10

times with the same parameters. Some of the images can be seen in Fig. 4.16,

while the reconstruction results for an image are shown in Fig. 4.17. The mean of

the energies for the reconstructed images were I/ = 723 with standard deviation of
o = 184.86, the mean of the RMFEs were 8.40 with ¢ = 3.76, while the mean of the
CPU times were 1715 miliseconds with o = 629.83.
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Figure 4.16: Samples from the hv-convex 4-connected set.

b) c)

£ 8) b

k) ) m)
Figure 4.17: Reconstruction results for an hv-convex 4-connected image: (a) origi-
nal image; (b) morphological skeleton; (c¢) the combined gray-value image that we

get by superimposing the reconstruction results (d-m) on each other, and calculat-
ing the average value on each pixel. Numbers indicate the RME values.
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Table 4.5: Reconstruction results from the horizontal projection. CPU values are
in milliseconds and F values are rounded to integers. Results with lowest errors

are typeset in boldface.
Image Method | CPU E RMFE

NSC 09524 995 1.52
DSCy 6020 106 | 0.29
DSCs 6012 422 1.01

‘ DSC,y 6675 318 1.11

CEFy 3 5618 2332 2.80
CEFg 5 2689 1499 2.01
CEFo7 D737 1177 1.89
NSC 10401 1353 0.94

DSCyy 11871 124 0.18

DSCs 12327 153 0.19
DSC, 14006 8 ~0
CEFy 3 10302 2600 1.40

CEF,s | 10470 1901 | 1.05
CEF,. | 10441 1546 |  0.93

NSC 4707 2381 | 11.48
DSCy 4135 1310 | 10.41
DSCs 4265 1511 | 10.54
DSC, 4913 0189 | 12.82

CEF, 5796 4501 | 11.25
CEFy 5 5784 3482 | 11.42
CEF,. | 5713 2892 | 10.74
NSC 5527 | 4118 | 8.00
DSChq 6940 | 600270 | 60.82
DSCs 8131 | 967214 | 57.92
DSC, 10943 | 1823806 | 63.09
CEF, 7470 7037 | 9.83
CEFy 5 7503 5072 | 8.39
CEF,. | 7326 4436 | 8.44

(1 1,
499
obm

4.6.3 Experimental Results for One Projection

Since the results show that the morphological skeleton carries so much information
about the shape of the original image, and can greatly improve the quality of
the reconstruction, we decided to run the tests considering only the horizontal
projection of the image besides its morphological skeleton. The parameters were
identical to the ones before, except the lack of the second projection. Table 4.5
and Table 4.6 show the results.

The results are fairly similar to the reconstruction results of two projections,
however, the RMFE values are significantly higher, due to the lesser amount of in-
formation. Since the algorithms try to minimize F, which holds now only the

horizontal projection, there is also a significant difference between the correspond-
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Table 4.6: Reconstruction results of more complex images from the horizontal
projection. CPU values are in milliseconds and E values are rounded to integers.

Results with lowest errors are typeset in boldface.
Image Method | CPU | F RMFE

NSC 1999 | 1583 | 13.14
DSCyo | 1445 | 1445 | 17.48
®n DSCs 1560 | 1363 | 12.66

.. ‘. DSC, | 1706 | 2328 | 14.86
® ¢ |CEFos | 2502| 2427 | 17.95
CEF,s | 2590 | 2216 | 14.51
CEF,. | 2598 | 1360 | 9.23
NSC 2475 | 3927 | 29.88
DSCyo | 2202 | 4086 | 32.17

v .. DSCs | 2303 | 3970 | 34.16
e | DSC, 9558 | 5004 | 35.67
.. ® | CEF,; | 3623 | 5472 | 28.44
CEF,s | 3642 | 4229 | 28.42

CEF,. | 3641 | 3375 | 21.96
NSC 4984 | 2563 | 15.63
DSCy, | 4407 | 3789 | 20.63
Bl ® . | 602 6711 | 2550
DSC, 5070 | 34355 | 30.81

.0 CEF,; | 6738 | 2395 | 13.37
CEF,s | 6736 | 3043 | 16.31
CEF,, | 6712 | 3152 | 15.40
NSC | 3342 | 1896 | 43.85
DSCyo | 3025 | 1638 | 46.89
DSCs | 3108 | 2152 | 43.37
DSC, | 3155 | 3524 | 39.52
CEFos | 7949 | 3474 | 45.32
CEF,s | 7897 | 2920 | 44.73
CEF,, | 7903 | 2431 | 44.32

ing £ and RMFE errors. A good example is the last image of Table 4.6, where NSC
managed to minimize F better, but DSC; achieved better RMFE, thus a more similar
result to the original one. However, the reconstruction results of those images are
quite poor, similarly to Table 4.4. On the other hand, some of the reconstruction
results are surprisingly good. For example, for the second image of Table 4.5, the
reconstructed image differed from the original one in just a few pixels, yielding a
nearly O error in both E and RME. This indicates that the morphological skeleton

carries really much information about the original image.

Fig. 4.18 shows some of the reconstruction results for an hv-convex 4-connected
image. The mean of the energies for the reconstructed images were £ = 266 with
standard deviation of ¢ = 27.85, the mean of the RMFEs were 11.86 with o = 2.93,
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Do k)

Figure 4.18: Reconstruction results from the horizontal projection for an hv-convex
4-connected image: (a) original image; (b) morphological skeleton; (c) the combined
gray-value image that we get by superimposing the reconstruction results (d-m) on
each other, and calculating the average value on each pixel. Numbers indicate the
RME values.

while the mean of the CPU times were 1697 miliseconds with o = 640.77.

4.7 A Uniqueness Result for Reconstructing huv-

Convex Polyominoes

As mentioned before, uniqueness of certain type of binary images is a related issue
to the reconstruction. In [30], the authors determined an upper and lower bound to
the maximum number of hv-convex polyominoes having the same orthogonal pro-
jections, and proved that under some conditions, the ambiguity can be exponential.
In [55], the authors gave a formula for enumerating certain type of parallelogram
polyominoes according to their symmetry types and their perimeter or area. In this
section, we study the uniqueness of the reconstruction of certain type of 4-connected
hv-convex images, using two projections and the morphological skeleton. We show
that the uniqueness of a certain parametric subclass of hv-convex binary images is
strongly connected to its parameters.

First, we introduce some definitions. Given a finite set F' C Z? and a point
p € Z2, we say that ¢ € F is a closest point of F to p, if there is no r € F such
that di(p,r) < dy(p, q).
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Let pg denote the sequence p = (ip, jp), (ip + 1,5, + 1), ..., (i, + 1, Jp + 1) = q.
We use the same notion for the line segment between p and ¢ if ¢ € { (ip + 1, jp —
n), (ip —n,jp+n), (i, —n,j, —n) }.

Let Ny(p) denote the set of 4-adjacent points to p. A point p € F is called a
border point if p has a 4-adjacent background point.

For the definition of 4-connectedness and polyominoes, see the first paragraph
of Section 4.2. Furthermore, a binary image is diagonally convex (antidiagonally
conver), if the object points are consecutive in each diagonal (antidiagonal).

We can define now a special class of polyominoes, described by two parame-
ters. Later we will show that the uniqueness of the reconstruction of these images
depends only on their parameters.

For given k,l € Ny, let G}; be the binary image
Gri=@PerY)U@o&Y)U([reY)U(sorY), (4.20)

where p = (4,7), ¢ = (i, j+k+I+1),r = (i+k+I+1, j), s = (i+k+I+1, j+k+1+1),
and Y is the structuring element given by (1.12) of Section 1.4. Furthermore, let
Hj.; C Z? be constructed from G = Gy, by

Hp, = {(u,v) | F(ug, ug) uy <u<us,
(ur,v) € G, (ug,v) € G, (u,v) ¢ G}

U {(wv) | 3(v,02) vi<v<oy,
(u,v1) € G, (u,v9) € G, (u,v) ¢ G}.

Finally, let By, = Gy, U Hy,, where U denotes the disjoint union. Figure 4.19
shows examples with k =4, =2, and k=5, = 1.

In the sequel, let p, ¢, r, and s denote the points in (4.20) for an arbitrary By,
with fixed k£ and [. The following attributes are easy to verify for By :

e the size of the image is n x n, where n = 3 - max{k, [} + min{k, [} + 2,

By, ; is 4-connected, hv-convex, diagonally and antidiagonally convex,

By has rotational symmetry of order 2,

By = Ty(Bix) = T,(Bi ), where T, and T, denotes the reflection transfor-

mation across the horizontal and vertical axis, respectively,
[ 'H(BkJ) = 'H(Tx(BkJ)) and V(BkJ) = V<Ty(Bk;,l))~

The images with & = [ are trivial cases; in the reconstruction from two projec-

tions can be performed uniquely in polynomial time [11, 26, 65|, and — in a final step
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a) b)

Figure 4.19: Example images of By;: (a) the B,o image; (b) the B;; image.
Grey and black pixels indicate the corresponding subset G and H, respectively.
From the horizontal and vertical projections and the morphological skeleton the
reconstruction of By is non-unique, Bs; is uniquely reconstructable.

— we only need to check whether the morphological skeleton of the reconstructed
image is the set S. Furthermore, since By; = T,(Bx), it is sufficient to focus on
the case k > [. We will prove that there is a connection between the uniqueness
of the reconstruction and the value of k£ and [. Namely, the reconstruction of By

(k > 1) is non-unique if and only if

4] <o am

4.7.1 Some Properties of the Morphological Skeleton and
the B;; Images

First, we show some general properties of the morphological skeleton with the
structuring element Y in (1.12) of Section 1.4. The following lemma gives another

definition of the morphological skeleton with Y.

Lemma 4.7.1 Let p € F be an object point of a binary image F', and let' Y be the
structuring element in (1.12) of Section 1.4. Then

(per Y) C F,
PESUEY) = & (peraY) ¢ F, (4.22)
Vg€ Ny(p) (q&rnY) ¢ F.
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Proof
For the proof we use the equivalency

peE(ForY) < (pdrY)CF. (4.23)

Assume p € Sp(F)Y). Thenp € (ForY)\[(ForY)aY] C (FerY)\
(F ©k11Y), according to the definition of the skeletal subset in (1.9). Therefore,
(p@rY) C Fand (p B Y) ¢ F, using (4.23). Assume to the contrary that
there exists a ¢ € Ny(p) such that (¢ @1 Y) C F. According to (4.23), ¢ €
(F ©k41Y). But then p € [(F &, Y) @ Y], since di(p,q) = 1, which contradicts
to the definition of the skeletal subset.

For the other direction, let p € F' a particular point. From (p @, Y) C F), it
follows that p € (F ©,Y), and from (p @1 Y) € F we get p ¢ (F Sp11 Y),
using (4.23). Since there is no point g € Ny(p) with ¢ € (F Sg11Y), we get
p & [(F ©k1Y) @ Y]. Therefore, according to (1.9), p € Si(F,Y). O

We describe a property of the points in By, with its border points.

Lemma 4.7.2 Let B = By, for fized k and . Moreover, let w = (iy,j,) € B
an arbitrary object point of B and t € Ny such a value that (u ®; Y) C B and
(ud 1Y) & B. Then, there exists a border point v = (iy, j,) such that di(u,v) =t
and either i, = 1, 01 ju = Jo.

Proof

Since (u®oY) = u € B and B is finite, the unique existence of ¢ is clear. Assume to
the contrary that none of the v; = (i, — t, ju), vo = (iu, ju+1), v3 = (iy +1,7,) and
vy = (iy, Ju — t) points are border points (as Fig. 4.20 shows). Thus, every point
4-adjacent to them is in B, including the o; points shown in Fig. 4.20 (i = 1,...,4).
Since B is both diagonally and antidiagonally convex, every point in 0;0;171 is in B
(1=1,...,4, o5 = Oy), too. Therefore, (u@®;;1Y) C B, which is a contradiction.O

Now, we give three lemmas to decide whether a certain point of Bj; is an
element of the morphological skeleton of the image. First, we identify which object

points cannot be skeletal points.

Lemma 4.7.3 Let B = By for arbitrary fized k and 1, and let u = (iy,v,) € B
an arbitrary object point of B. If u ¢ (ps UTq) then u ¢ S(B,Y).

Proof
Assume that u ¢ (psUTq) and let t € Ny be a value such that (u @, Y) C B and
(u @1 Y) ¢ B. Without loss of generality, let us assume that a closest point to
u from the set {p, q,r, s} is p (the proof of the other cases are similar). Let ¢ be a
closest border point to u in a way that either ¢ = (i, — ¢, j,) or ¢ = (i, Ju — t). We
know from Lemma 4.7.2 that at least one of the cases holds.

The rest of the proof can be followed in Fig. 4.21. If ¢ = (i, — t, j,), then let
w = (iyw, jw) be the closest point to u such that w € ps and j, = j, (in the other
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Figure 4.20: Assumption for Lemma 4.7.2, where o; € B (i = 1,...,4) are denoted
by black pixels. Dark grey pixels indicate the set (u @; Y). Since B is both
diagonally and antidiagonally convex, every element indicated by light grey pixels
are in B. Therefore, (u ®;11Y) C B, which is a contradiction.

case, if ¢ = (iy, ju — t), then i,, = i,). Since c is also the closest border point to
w and di(c,w) = di(u,w) +t, we get (W Dy, ()¢ Y) C B (in a similar way as in
Lemma 4.7.2). As a consequence, (4 ®; Y) C (W @, (uu)+¢ Y) (note that v # w),

therefore there is a v point such that V € Ny(u) and (v @11 Y) C B. According
to Lemma 4.7.1, u ¢ S;(F,Y) for any t € Ny, therefore, u ¢ S(F,Y). O

The next lemma describes which object points must be skeletal points.
Lemma 4.7.4 Let B = By for arbitrary fized k > 1. Then ps C S(B,Y).

Proof

Let u € ps and let t € Ny be a value such that (v @, Y) C B and (u®1 Y) ¢ B.
According to Lemma 4.7.1, we only have to prove that (v ®41 Y) ¢ B for any
v € Ny(u) point. Without loss of generality, we only have to check two of the
4-adjacent points, since B has rotational symmetry of order 2. Let u = (i,7),
vy = (i —1,7), and v = (i,j + 1) (see Fig. 4.22). Through the symmetries, either
cp = (i—t,7) or ca = (i,j +t) is a closest border point to wu.

Assume the first case holds. Then, (i —t —1,j) ¢ B. Since B is hv-convex and
k>l w=(i—t—1,j+1) ¢ B. Note that dy(w,v) = dy(w,vy) = t+ 1. Therefore
(v1 @1 Y) ¢ B and (vy @11 Y) ¢ B, which yield that u € S(B,Y), indeed. The
proof is similar if ¢y is the closest border point to wu. O

Finally, we give a necessary and sufficient condition for the remaining points of
Bk,l-

Lemma 4.7.5 Let B = By, for arbitrary fized k > 1. Then 7q C S(B,Y) if and

only if .
{%J < 2l. (4.24)
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Figure 4.21: Illustration for the proof of Lemma 4.7.3. Grey pixels indicate B, 3.
Here, t = 3, di(u,w) = 3. Note that, since (u ®3Y) C (w @ Y) C B (dark grey

and black pixels), it holds that (v @, Y) C B, therefore u cannot be a skeletal
point.

V;

V,

Figure 4.22: Tllustration for the proof of Lemma 4.7.4, assuming c¢; is a closest
border point to u. Note that di(u,c;) =t, di(v1,w) =t + 1 and dy(ve,w) =t + 1.
Since w ¢ B (due to the hv-convexity of B) and k > [, it follows that (v; &1 Y) &
B and (vg @141 Y) ¢ B. Therefore, u is a skeletal point.

Proof
Let us denote the points of 7q with r = rg = (i,7), 1 = (i — 1,7+ 1), ro =
(1—2,j4+2), ..., ry, where n = |(k+ 1+ 1)/2]. Note that dy(r,r;) < di(q, 1)

for 0 < t < n, while the remaining points of 7q are always closer to ¢ than to
r. Furthermore, let ¢ = (i +1,j), s = (i +1L,7+1), co = (i +1,j+2), ...,
car1 = (1 +1,5+ 20+ 1), which are all border points of B below the r; points (see
Fig. 4.23). Note, that a similar set can also be defined to the left of the r; points.

If n < 2l, then ¢ is a closest border point to 7, having dy(cs,7) = [ + t.
Therefore (r; @4 Y) C B and (1, @411 Y) ¢ B. Since ¢; and ¢, are both border
points, for all the 4-adjacent v € Ny(r;) points it is true that (v @1 Y) ¢ B.
According to Lemma 4.7.1, 7, € S(B,Y). As a consequence, 7q C S(B,Y).

If n > 20 and k + [ is odd, then r, € ps, therefore r, € S(B,Y) according
to Lemma 4.7.4. If n = 2[ + 1, then 7¢ C S(B,Y’) still holds. However, if n >
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c,C

2i+1

Figure 4.23: Tllustration for the proof of Lemma 4.7.5. Dark grey pixels indicate
the Gy, sub-image in By;. Light grey pixels indicate the r; elements (t = 0,...,n),
where r = g = (4, 7). Here, only the first 2/ + 1 of them are shown. Black pixels
indicate cg, c1, ..., co41. Note that one of the closest border points to r, is c,.

20 + 1, then r, ¢ S(B,Y) for 21 + 1 < t < n, since there exist a v € Ny(r;) that
(v @441 Y) C B. Therefore, 7q C S(B,Y) if and only if n = [®| <2041, or
equivalently, L%J < 2l.

Finally, if n > 2] and k+1 is even, then r,, ¢ ps. If n > 2[+1, then r, ¢ S(B,Y’)
for every 2] + 1 <t < n, similarly to the previous case. Therefore, 7q¢ C S(B,Y)
if and only if n = L%J <2, i.e., L%HJ < 21. O

4.7.2 Proof of the Uniqueness Result

Now we establish the relation between k, [ and the uniqueness of the reconstruction

of the image By .

Theorem 4.3 Let B = By, for arbitrary fized k > |. Then the reconstruction of
B is non-unique if and only if

{%J < 2. (4.25)

Proof
Note that if & = [, the reconstruction is unique (see the last paragraph of Sec-
tion 4.7). From now we assume that k£ > [.

First, let assume that (4.25) holds for B = By, with arbitrary fixed & > [.
According to Lemma 4.7.4, ps C S(B,Y). As Lemma 4.7.5 states, 7¢ C S(B,Y).
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Figure 4.24: Illustration for the proof of Theorem 4.3: The assumption that there
is a v skeletal point closer to p than u. If (u @®,, V) reaches the first row (light
grey pixels), then (v @,, Y') must reach the first row (dark grey pixels), according
to Lemma 1.4.1, which is a contradiction to h] = 1. Black pixels denote ps.

There is no other skeletal point, according to Lemma 4.7.3, therefore S(B,Y) =
ps UTq (note that the skeleton has a reflection symmetry to both horizontal and
vertical axis). As a consequence, S(By;,Y) = S(By,Y). Since H(By,;) = H(Bix)
and V(By;) = V(By) (although By, # B, }), the reconstruction is non-unique.

For the other direction of the proof, we assume to the contrary that there is
an F' # B image (which is not necessarily an hv-convex polyomino) with H* =
H(B) =H(F), V* =V(B) = V(F) and S* = S8(B,Y) = S(F,Y), but | 5] > 21,
We use the notation of p, g, r and s in S* as in definition (4.20). Let n = 3k 4142
denote the width (and height) of the image B. Since k > [, there is only 1 object
point in the first and last row of B, and in the first and last column of B. Therefore
hy =1, h; =1, vf =1, vl = 1. According to (1.11), we have to find the skeletal
labels of S* in order to reconstruct F. Let u € S* be the skeletal point such that
the projection value hj came from (u @, Y). Then v and p (or ¢) must coincide
with k, = k, otherwise, there exists a v skeletal point such that d;(u,v) = 2
and v is closer to p (or ¢). Since K, > K, — 1, according to Lemma 1.4.1 (i.e.,
2 =dy(u,v) > |ky — Ko| ), (v By, Y) reaches the first row. Therefore, hi > 2, which
is a contradiction (see Fig. 4.24). In a similar way, we get either x, = ks = k or
Kqg = Ky = k.

If K, =Ky =k, thenlet F/ = S*U(p®rY)U (s Y) C F. Let H = H(F").
We observe that hi = h),... hi_, = hj_, (see Fig. 4.25), and also the difference
hicisn = Mo =20+ 1.

Let ¢; denote the i-th skeletal point in ¢gr in a way that ¢qo9 = ¢ and ¢; =
¢i—1+(1,-1) (i =0,...,20). It follows that x,, < [+ i, because h;_, is already
fulfilled, and k,, > [ + 4. Otherwise hj_, ; cannot be fulfilled, since none of the g;
points are in the same column. Therefore, k;,, = [ +i. The same holds for the r;
series defined similarly. Note that k, = k, = L.

Now, let F"" = F' U (q; &1 Y) U (r; & Y) with ¢ =0,...,20. If F” fulfils the
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Figure 4.25: An example of k, = k; = k in the proof of Theorem 4.3. Dark grey
pixels indicate (p @ Y). Note that every horizontal projection value hf,... hj_,
fulfils the corresponding horizontal projection values in H*, due to (p®;Y'). There-
fore, for every i, (¢; s, Y) must reach the thick line in order to fulfil the value
hji_i1q- Here, kg, = 2 (light grey pixels).

projections, then ' = F”. Otherwise, we have to add additional points to F” in
order to fulfil the projections. We have to fill the pgrs rectangle in order to get
F' (since the rest of the projection values are already fulfilled). In this way we get
F = B, which is a contradiction to our assumption F' # B.

The reconstruction is similar if x, = k, = k. In this case, B = T,(F'). However,
ps C S*, but 7q ¢ S* according to Lemmas 4.7.4 and 4.7.5. Therefore, S(F,Y) #
T.(S(F)Y)) = S(T.(F),Y) = S(B,Y) = S*. F cannot be a solution to the
reconstruction problem (see Fig. 4.26).

Since there cannot be any other image F with H(F) = H*, V(F) = V* and

S(F,Y) = S*, our assumption that | & | > 21 was false. O

4.8 Summary

Determining the computational complexity of the reconstruction problems is im-
portant to analyze the efficiency of the reconstrucion algorithms. We showed that
even though additional information, such as the morphological skeleton — with or
without considering 4-connectedness — of the image with a particular structuring
element may reduce the ambiguity of the reconstruction, the problem still remains
NP-complete. Thus, we redefined the problem as an optimization task, and pro-
posed three variants of a method based on Simulated Annealing to solve the task.
Without assuming 8-connected morphological skeletons, a rough reconstruction is
always possible in a short time and a small number of iterations. With additional
restrictions the result will be smoother, although the convergency of the method

becomes slower. The No Skeletal Constraint variant provides overall satisfactory



98 Morphological Skeleton as Additional Information

W~

12
11
10
10
10
10
11
12

DIOIODUNULWUNNN LWL WIS

N W

LI IIIITIISITISITISZISISTCS

c) d)

Figure 4.26: A reconstruction attempt, where k =5 and [ = 1. Here, the assump-
tion is K, = K, = k. The steps are (a) the skeleton S*, (b) - (¢) intermediate steps
(light grey pixels indicate the newly added object points), (d) the final image F'
and its skeleton (black pixels). Numbers show the difference of the actual and the
required horizontal projections. Note that S(F,Y) # S*, hence F cannot be a
solution: our assumption was false.
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results. The Dynamic Skeletal Constraint creates smoother results in most cases,
but needs more iterations to converge. The Combined Energy Function variant is
just slightly worse than the NSC, but much slower. Beside that, in all the three
considered variants we found that the result is much more dependent on the number
of the skeletal points, rather than on the size of the image.

Furthermore, the number of hv-convex polyominoes satisfying the given hori-
zontal and vertical projections can be exponential, although there exists a poly-
nomial time algorithm for finding one of those solutions. We showed that the
reconstruction of hv-convex polyominoes is non-unique even if the morphological
skeleton of the image is additionally given. However, for a certain parametric type
of those images the question of the uniqueness can be answered by the parameter
values.

The findings of this research have been published in two conference proceed-
ings [40, 46], and two journal papers [47, 45]. Up to date, there have been four
independent citations [16, 19, 20, 72] to the results of this chapter.






Chapter 5
Conclusion

This dissertation gives a summary of the Author’s research in the field of binary
matrices and binary tomography.

First, we investigated switching components that play an essential role in binary
reconstruction and data analysis. Searching for switching components in a binary
matrix is a relevant task in discrete image reconstruction, as well as in biogeography
and ecology. Although finding the minimal number of 0-1 flips in order to make a
binary image switching component free is generally NP-hard, we managed to give
two heuristics that outperform the previous methods in the number of 0-1 flips to
make a binary image switching component free. For that aim we have shown how
to reduce the size of the search space radically while keeping the optimal solutions
in the search space. Moreover, we explained how to use those heuristics for binary
image compression using Chang’s binary reconstruction algorithm. The results
could lead to design more efficient lossless and lossy image compression methods
based on storing projections, 0-1 and 1-0 flips; not just for binary images, but for
grayscale and color images as well.

Furthermore, we proposed a method to reconstruct hv-convex polyominoes from
a given horizontal projection with minimal number of columns in linear time. The
method can be extended in numerous ways, including searching for solutions with
arbitrary number of columns, or reconstructing 8-connected binary images with
given number of 4-connected components. We also provided formulas for counting
the possible solutions, and gave a method to generate uniform random hwv-convex
binary images satisfying the given horizontal projection in polyominal time. We be-
lieve that an efficient heuristic could be to solve two instances of the one-projection
reconstruction problem (one for the horizontal and one for the vertical projection),
and then to combine the results of both of them. By combining the results of
the one-projection reconstructions we could also develop a novel method to re-
construct hv-convex polyominoes from two projections, by which we could gain a

deeper understanding of the problem.
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Finally, we introduced a novel problem where the task is to reconstruct certain
type of binary images from the given projections and the morhological skeleton. We
proved that for polyominoes and general binary images the problem is generally NP-
complete. Nevertheless, we showed that a rough reconstruction is always possible
in a short time and a small number of iterations using optimization methods. We
also investigated the uniqueness of certain sub-classes of polyominoes.

Reconstruction from the projections and morphological skeleton brings many
open questions. What is the complexity of reconstructing hv-convex polyominoes
with given morphological skeleton from two projections? Do three or more pro-
jections make the reconstruction easier? Does the NP-completeness result of this
dissertation hold for other structuring elements, too? What is the number of the so-
lutions if the reconstruction is not unique? Moreover, what algorithms are efficient
to give an acceptable solution in a reasonable time for an NP-hard reconstruction?
Since SA is rather sensitive to the initial state, in a further work, one could try
to apply further strategies for choosing a starting image, e.g., by using Ryser’s
algorithm to obtain an initial solution. Apart from SA, tabu search and genetic al-
gorithms [2] can also be used as function minimizers, altough the latter could have
significantly higher running time and require more memory to handle each instance

in a generation. These open questions are worth to investigate in the future.



Appendix A

Summary in English

Analysis of patterns in binary matrices plays a vital role in numerous applications
of computer science. One such important application is binary tomography, where
the task is to reconstruct binary images representing two-dimensional cross-sections
of three-dimensional homogeneous objects from their projections. Very often, just
few projections of the object can be measured, since the acquisition of the projec-
tion data can be expensive or damage the object. The presence of certain binary
patterns in the image can violate the uniqueness of the reconstruction of the image,
especially from small number of projections. Moreover, the physical limitations of
the imaging devices make it sometimes impossible to take projections from numer-
ous angles. Owing to the small number of projections the binary reconstruction can
be extremely ambiguous. A common way to reduce the number of solutions of the
reconstruction task is to assume that certain geometrical properties are satisfied.
Such property can be the horizontal or vertical convexity, 4- or 8-connectedness,
etc. We can also reduce the number of solutions if the morphological skeleton of

the image is given.

Another fundamental question is the complexity of the reconstruction. Al-
though many variants of the original reconstruction problem can be NP-hard, the
prior knowledge can be often incorporated into an energy function, thus the recon-
struction task is equivalent to a function minimization problem. A further question
is whether a lower or upper bound, or even an exact formula can be given for the

number of solutions.

This thesis is a summary of the Author’s research in the field of binary tomog-
raphy. The main focus of this work was to examine additional prior information
for the reconstruction task from at most two projections, examine the theoretical
background for complexity, give formulas for the number of solutions for certain

classes of binary images, and develop new algorithms for binary tomography.
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Key points of the thesis

The findings of the research can be divided into three thesis groups. Table A.1

gives the connection between the results and the publications of the Author.

In the first thesis group, I examined the methods for eliminating switching
components in binary matrices with possibly low number of 0-1 flips. The results
were published in a conference proceeding [42] and accepted for publication in a

journal [41].

I/1. T provided a proof to reduce the search space drastically while the optimal
solutions still can be found in the reduced search space. I managed to give
two heuristics that outperform the previous methods in the number of 0-1

flips to make a binary image switching component free.

In the second thesis group I examined the binary reconstruction of hv-convex
polyominoes and hv-convex canonical images where only the horizontal projection
is given. The results were published in two conference proceedings [39, 44|, and

one journal paper [43].

IT/1. T managed to give an algorithm to reconstruct hv-convex polyominoes with
running time linear in the size of the horizontal projection. I proved that the
algorithm always gives a result with minimal number of columns. Moreover,
the algorithm can be easily modified to provide an image with a given size.
Furthermore, I provided a formula for the exact number of solutions with
arbitrary number of columns according to a given horizontal projection, and

a recursive formula with fixed number of columns.

IT/2. T provided an algorithm for the uniform random generation of hv-convex
polyominoes, according to a given horizontal projection. The worst case
running time of the algorithm is O(m?), where m is the size of the projection.
The algorithm can be modified to generate polyominoes with fixed number

of columns.

I1/3. 1showed how to reconstruct hv-convex canonical images from one projection.
I provided an algorithm which always gives an 8-connected result minimal in

size.

In the third thesis group, I examined the reconstruction problem of binary
images if the morphological skeleton with a certain structuring element is also
provided. The results were published in two conference proceedings [40, 46], and

two journal papers [47, 45].
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[T1/1. T proved that the reconstruction of polyominoes from two projections and
the morphological skeleton (considering a certain structuring element) is NP-
complete. Furthermore, without the restriction of the 4-connectedness the
problem is still NP-complete. If only the horizontal projection is given with

the morphological skeleton, finding a solution is, again, NP-complete.

[11/2. T redefined the problem as an energy minimization problem, and used Simu-
lated Annealing to solve the reconstruction of general binary images. I studied
three variants of a parametric SA, and showed that a rough reconstruction is

usually possible in a short time and a small number of iterations.

[11/3. 1 defined a certain parametric subclass of hv-convex polyominoes, and showed
that the uniqueness of the reconstruction from two projections and the mor-

phological skeleton is determined by the parameters.

1391 140] | [41]142] | [43][44) |45} }46] | 7]
I/1. ° °
I1/1. °
I1/2. °
I1/3. ] e
II1/1. °
I11/2. °
I11/3. °

Table A.1: The connection between the thesis points and the Author’s publications.
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Appendix B

Summary in Hungarian

A binaris méatrixok elemzése fontos szerepet jatszik a szamitastudoméany tobb te-
rilletén is. Egy ilyen teriilet a binaris tomografia, ahol a cél egy haromdimenzids
homogén objektum kétdimenzids szeleteit dbrazolo képeinek elGallitdsa a vetiile-
tek ismeretében. Mivel a vetiiletképzés koltséges, illetve roncsolhatja a vizsgalt
objektumot, legtobbszor csak kevés vetiilet all rendelkezésre. Ennek kdvetkezmé-
nyeként az elGallitand6 kép a rendelkezésre allo6 adatok alapjan nem egyértelmten
meghatarozott, bizonytalan lehet. Eppen ezért fontos, hogy binaris tomografia
esetén a binaris maéatrixok tulajdonsigait alaposan megvizsgaljuk. A lehetséges
megoldasok szamanak csokkentése érdekében gyakran feltételeznek a rekonstrua-
land6 képrdl bizonyos geometriai tulajdonsagokat. Ilyen tulajdonsigok lehetnek a
horizontalis illetve vertikilis konvexitas, 4- illetve 8-OsszefiiggGség, és igy tovabb.
Szintén segithet a megoldasok szaménak csokkentésében, ha ismertnek tekintjiik a

kép morfologiai vazat.

A rekonstrukecié egy maésik alapvet6 kérdése a probléma bonyolultsdga. Habar
az eredeti rekonstrukciés probléma sok valtozata ismerten NP-nehéz, a rekonstru-
alando képre tett megszoritasok gyakran megfogalmazhatok energiafiiggvényként.
Ily modon a probléma ekvivalens egy fliggvény minimumanak megkeresésével. Az
efféle optimalizaciés probléma kozelité megoldasara sokféle matematikai modszer
ismert. A rekonstrukcioé egy maésik lényeges kérdése, hogy milyen moédon adhato
also illetve felsG becslés egy adott rekonstrukcios feladat megoldésainak szamaéara,

esetenként megadhato-e akar pontosan ez az érték.

Jelen értekezés a Szerz6 binéris tomografidban, illetve az azzal kapcsolatos bi-
naris matrixok elemzésében végzett kutatasait foglalja Ossze. A kutatas f6 célja
a két vetiiletbdl torténs binaris rekonstrukciéra tett megszoritasok, a probléma-
hoz kapcsolodd bonyolultsagelmélet, valamint a lehetséges megoldasok szamanak

vizsgalata.
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Az eredmények tézisszerii osszefoglalasa

A kutatas eredményei harom csoportba oszthatok. Az eredmények és a hozzajuk

kapcsolodo publikaciok viszonyat a B.1 tablazat tartalmazza.

Az els6 téziscsoportban azt vizsgaltam, hogyan lehet a lehets legkevesebb 0-1
valtassal kapcsoldo komponens mentessé tenni binaris matrixokat. Az eredmények
egy konferencia kiadvanyban [42| jelentek meg, illetve egy folyoiratban [41] keriiltek

elfogadasra.

[/1. Megmutattam, hogy hogyan lehetet a keresési teret drasztikusan csokkenteni
gy, hogy kézben optiméalis megoldast ne veszitsiink el. Ez alapjan megad-
tam két olyan heurisztikidt, amik az eddig publikalt médszereknél a legtébb

esetben jobbnak bizonyultak a 0-1 valtasok szdméanak minimalizaldsaban.

A masodik tézispontban hv-konvex poliominok és hv-konvex kanonikus méatri-
xok rekonstrukciojat vizsgaltam egy vetiiletbdl. Az eredmények két konferenciaki-

advanyban [39, 44|, és egy folyoiratcikkben [43] keriiltek publikalasra.

IT/1. Megadtam egy olyan algoritmust, amely a horizontélis vetiilet méretével line-
aris idében megad egy, a vetiiletet kielégité hv-konvex poliomindt. Bebizonyi-
tottam, hogy az eljaras mindig minimalis méretd matrixot allit els, tovabba
megmutattam, hogy az eljaras konnyen modosithato tetszéleges szélességii
matrix elGallitasdhoz. Fzen feliill megadtam egy zart képletet a megoldasok
szamanak pontos meghatirozasihoz tetszdleges matrixméret esetén, illetve

egy rekurziv formulit rogzitett matrixmeéret esetén.

IT1/2. Megadtam egy eljarast olyan hv-konvex poliominok véletlen generalasahoz,
amelyek egy adott horizontalis vetiiletet kielégitenek. Az eljaras legrosszabb
futasideje O(m?), ahol m a vetiilet méretét jeloli. Az eljaras modosithato

rogzitett méretd matrixok véletlen generalasidhoz.

IT1/3. Megmutattam, hogyan lehet hv-konvex kanonikus méatrixokat eléallitani egy
vetiiletb6l. Az eljaras bizonyitottan mindig minimalis szélességti, 8-Gsszefiig-

g6 képpel tér vissza.

A harmadik téziscsoportban a rekonstrukcidé azon valtozatat vizsgaltam, ahol
két vetiilet mellett a rogzitett szerkesztGelemmel elGallitott morfologiai vaz is is-
mert. A téziscsoport eredményei két konferenciakiadvanyban [40, 46| és két folyo-
iratcikkben [47, 45] jelentek meg.
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I11/1.

11 /2.

111 /3.

Bebizonyitottam, hogy poliomindk rekonstrukcidja két vetiilet illetve a mor-
fologiai vaz ismeretében NP-teljes. Ezenfeliil, ha eltekintiink a 4-Gsszefiiggs-
ségtdl, a probléma tovabbra is NP-teljes. Akkor is NP-teljes a probléma, ha a
morfologiai vaz mellett csak egy vetiiletnek kell megfelelnie a rekonstrukcios

eredménynek.

Megadtam egy modszert a rekonstrukcié fliggvényminimalizaciés probléma-
ként torténd lefrasara. A rekonstrukciohoz a szimulalt hiités hdrom valtozatat
hasznaltam, és megmutattam, hogy egy elfogadhaté mingségi rekonstrukeciod
méar rovid idén beliil, kevés iteracioval is elgallithato, a probléma nehézsége

ellenére.

Megadtam a hv-konvex poliominok egy specidlis, parametrikus alosztalyat,
és bebizonyitottam, hogy a két vetiiletbsl és morfologiai vazbol torténd re-

konstrukcié egyértelmiisége csak a paraméterektol fiigg.

[39] | [40] | [41]] [42] | [43] | [44] | [45] | [46] | [47]
I/1. o | o
I1/1. °
I1/2. °
I1/3.] e
I11/1. °
I11/2. °
I11/3. °

B.1. tablazat. A tézispontok és a Szerzd publikiciéinak kapcsolata.
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0-1 flips, 9
4-adjacency, 35, 61
4-component, 35

8-adjacency, 35
anchor position, 40

binary matrix, 5
4-connected, 35, 61
8-connected, 35
antidiagonally convex, 90
canonical, 19
canonical hv-convex, 35
diagonally convex, 90
fully nested, 8, 25
hv-convex, 35
unique, 9

binary reconstruction, 6

canonical expansion, 19
cell
object, 62
skeletal, 62
Chang’s algorithm, 9, 30
convexity
horizontally, 35
vertically, 35

Minimum Flip Augmentation (MFA), 9,

18
morphological operations, 10
dilation, 10
erosion, 11
skeleton, 11

point

background, 5
border, 90
closest, 89
object, 5
skeletal, 12
polyomino, 35, 61
centered, 47
lower stack, 35
parallelogram, 35
upper stack, 35
projection, 6
horizontal, 6

vertical, 6

Simulated Annealing (SA), 15, 77
skeletal label, 12, 77

strip, 36

structuring element, 10

switching component, 8

Three Partition, 61
tomography, 5
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