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1 Introduction

The theory of contractions, which was developed by Béla Sz.-Nagy and Ciprian
Foias from the dilation theorem of Sz.-Nagy, is one of the main methods of
examining non-normal operators. Our basic reference in connection with this
theory is [NFBK]. The dissertation contains two different topics concerning
absolutely continuous contractions on a complex, separable Hilbert space. In
the first part we study the stability of contractions, while in the bigger second
part we investigate quasianalytic contractions.

The dissertation is based on the following three papers of the author.

• L. Kérchy and A. Szalai, Characterization of stability of contrac-
tions, Acta Sci. Math. (Szeged), 79 (2013), 325–332.

• L. Kérchy and A. Szalai, Asymptotically cyclic quasianalytic con-
tractions, Studia Math., 223 (2014), 53–75.

• L. Kérchy and A. Szalai, Spectral behaviour of quasianalytic con-
tractions, Proc. Amer. Math. Soc., accepted.

In this outline we use the same numbering, labeling, and notations as in
the thesis.

The investigations included in this dissertation were mainly motivated
by the most challenging open problems in the theory of Hilbert spaces and
bounded linear operators on them, namely, the well-known invariant and
hyperinvariant subspace problems. In what follows let L(H) stand for the
C∗-algebra of all bounded linear operators acting on the complex, separable
Hilbert space H. The Invariant Subspace Problem (ISP) asks the existence of
a non-trivial invariant subspaceM ⊂ H of an arbitrary operator T ∈ L(H),
while the Hyperinvariant Subspace Problem (HSP) asks whether there ex-
ists a non-trivial hyperinvariant subspace N ⊂ H of an arbitrary non-scalar
T ∈ L(H) \CI, i.e., an operator which is not a scalar multiple of the identity
operator. The subspace (closed linear manifold) M ⊂ H is invariant for T
if TM = {Tx : x ∈M} ⊂ M holds, and it is non-trivial if M 6= {0} and
M 6= H. The subspace N ⊂ H is hyperinvariant for T if it is invariant for
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every operator commuting with T . Considering these problems we can sup-
pose that the operator T in question is an absolutely continuous contraction
(see [NFBK, Theorem II.2.3] and [Dou60, Corollary 5.1 and Theorem 3])).
We recall that an operator T ∈ L(H) is called a contraction if ‖T‖ ≤ 1, and
that any contraction can be uniquely decomposed into the orthogonal sum
T = T1 ⊕Ua ⊕Us of a completely non-unitary (c.n.u.) contraction T1, an ab-
solutely continuous (a.c.) unitary operator Ua, and a singular unitary operator
Us (see [NFBK], Theorem I.3.2 and [Hal51]) . We recall that a contraction is
c.n.u. if it is not unitary on any of its non-zero reducing subspaces, and that
a unitary operator is a.c. or singular if its spectral measure is a.c. or singular
with respect to Lebesgue measure on the unit circle. T is absolutely contin-
uous if its singular unitary part is zero. For such contractions, by the aid of
the usual functional calculus (operating with the bounded measurable func-
tions on the unit circle T) for the minimal unitary dilation U of T , we can
introduce the so-called Sz.-Nagy–Foias functional calculus ΦT for T , which
plays a crucial role in the theory of contractions:

ΦT : H∞ → L(H), f 7→ f(T ) := PHf(U)|H,

where H∞ denotes the Hardy space of all bounded analytic functions on the
open unit disc D (what can be identified with the space of bounded measurable
functions on the unit circle T with zero Fourier coefficients of negative indices).
This ΦT is a contractive, unital algebra-homomorphism, which is continuous
in the weak-* topologies and satisfies the condition T = ΦT (χ) = χ(T ), where
χ(z) = z denotes the identical function.

Another important tool in the study of a contraction T is its unitary
asymptote. The pair (X,V ) is a unitary asymptote of T if V is a unitary
operator acting on a Hilbert space K andX : H → K is a linear transformation
satisfying the conditions ∨∞n=1V

−nXH = K, ‖Xh‖ = limn→∞ ‖Tnh‖ for every
h ∈ H, and XT = V X. For further properties of unitary asymptotes we refer
to [Kér13] and [NFBK, Chapter IX]. It is easy to see that the nullspace of X
is hyperinvariant for T , it is the so-called stable subspace of T :

H0(T ) =
{
h ∈ H : lim

n→∞
‖Tnh‖ = 0

}
.
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Considering the asymptotic behaviour of contractions Sz.-Nagy and Foias in-
troduced the following classes:

• T ∈ C0· if H0(T ) = H, that is, when Tn → 0 in the strong operator
topology (SOT). In this case T is called stable, while a non-stable T is
usually called asymptotically non-vanishing.

• T ∈ C1· if H0(T ) = {0}. Contractions of this type are called asymptot-
ically strongly non-vanishing.

• T ∈ C·0 if T ∗ ∈ C0·;

• T ∈ C·1 if T ∗ ∈ C1·;

• Cij = Ci· ∩ C·j (i, j = 0, 1).

In Chapter 2 we characterize the stability of contractions, while in Chapter
3-5 we examine asymptotically non-vanishing contractions.

2 Stability results

In Chapter 2 we study some stability properties of contractions and poly-
nomially bounded operators. In Section 2.1 we characterize those sequences
{hn}∞n=1 of bounded analytic functions, which can serve to test the stability
of an a.c. contraction. This answers a question of M. Dritschel.

Definition 2.4. A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞

is a test sequence of stability for a.c. contractions if for every a.c. contraction
T the condition Tn → 0 (SOT) holds exactly when hn(T )→ 0 (SOT).

The main result of this chapter is the following statement.

Theorem 2.5. A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ is
a test sequence of stability for a.c. contractions if and only if it converges to
zero exclusively on D., i.e., if

(i) limn→∞ hn(z) = 0 for all z ∈ D,

(ii) sup {||hn||∞ : n ∈ N} <∞,
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(iii) lim supn→∞ ||χαhn||2 > 0 for every Borel set α ⊂ T of positive measure,
where χα is the characteristic function of α.

For the proof of necessity we deal with the unilateral shift operator S ∈
L
(
H2
)
, Sf = χf and with some other multiplication operators. At the

sufficiency part we use Rota’s universal model for contractions, the triangular
matrix form of a non-stable contraction, and the concept of unitary asymptote.
A part of the proof yields the following proposition.

Proposition 2.6. Let {hn}∞n=1 ⊂ H∞. Then hn(T ) → 0 (SOT) for every
stable contraction T if and only if {hn}∞n=1 satisfies the conditions (i) and (ii).

A well-known property of the Sz.-Nagy–Foias functional calculus is that
hn(T ) → 0 (SOT) for every a.c. contraction T, whenever {hn}∞n=1 bound-
edly converges to zero a.e. on T (see [NFBK, Chapter III]). Our following
proposition shows that the necessary and sufficient condition is weaker.

Proposition 2.7. Let {hn}∞n=1 ⊂ H∞. Then hn(T ) → 0 (SOT) for every
a.c. contraction T exactly when {hn}∞n=1 is a bounded sequence in H∞ and
limn→∞ ||hn||2 = 0.

In Section 2.2 we examine analogous questions for polynomially bounded
operators. Let us denote by P(T) the set of analytic polynomials on T, and by
A = A(T) the disc algebra, i.e., the closure of P(T) in the Banach space C(T)

of continuous functions on T. An operator T ∈ L(H) is called polynomi-
ally bounded if there exists a real number KT such that ‖p(T )‖ ≤ KT ‖p‖
for all p ∈ P(T), where ‖p‖ = max{|p(ζ)| : ζ ∈ T}. For a polynomi-
ally bounded operator T , the mapping ΦT,0 : P(T) → L(H), p 7→ p(T ) is
a bounded algebra-homomorphism which extends continuously to the disc al-
gebra: ΦT,1 : A → L(H), f 7→ f(T ). Polynomially bounded operators were
studied by W. Mlak in a series of papers using ‘elementary measures’. He
defined absolute continuity and singularity of polynomially bounded oper-
ators, and it turned out that T admits an H∞-functional calculus, i.e., a
weak-* continuous, unital algebra-homomorphism ΦT : H∞ → L(H) such that
ΦT (χ) = T , exactly when T is an a.c. polynomially bounded operator (see p.
68 in [Mla74a]). Thus the following definition makes sense.

4



Definition 2.9. A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ is
a test sequence of stability for a.c. polynomially bounded operators if for every
a.c. polynomially bounded operator T ∈ L(H) the condition Tn → 0 (SOT)
holds exactly when hn(T )→ 0 (SOT).

Note that, in principle, a test sequence for a.c. contractions is not neces-
sarily a test sequence for a.c. polynomially bounded operators. Nevertheless,
we can prove the following theorem.

Theorem 2.10. A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ is
a test sequence of stability for a.c. polynomially bounded operators if and only
if {hn}∞n=1 converges to zero exclusively on D.

We conclude this chapter by formulating a statement about the stability
of singular polynomially bounded operators.

Proposition 2.11. Let {hn}∞n=1 ⊂ A be a bounded sequence in the disc
algebra. Then hn(T ) → 0 (SOT) for every singular polynomially bounded
operator T if and only if limn→∞ hn(ζ) = 0 for every ζ ∈ T. In that case
hn(T )→ 0 (SOT) for every polynomially bounded operator T .

3 Hyperinvariant subspaces of quasianalytic

contractions

Let T ∈ L(H) be an a.c. contraction and let (X,V ) be a unitary asymptote
of T . It is known that V ∈ L(K) is an a.c. unitary operator. The residual set
ω(T ) of T is the measurable support of the spectral measure E of V , which
means that E(α) = 0 if and only if m(α∩ω(T )) = 0. For any x, y ∈ H, wx,y ∈
L1(T) is the asymptotic density function of T at x and y: EXx,Xy = wx,y dm.
The measurable ω(T, x) = {ζ ∈ T : wx,x(ζ) > 0} is the local residual set of T
at x.

We recall the notion of another spectral invariant, defined by the Sz.-
Nagy–Foias functional calculus ΦT for T . This calculus is monotone in the
sense that ‖f(T )x‖ ≤ ‖g(T )x‖ for every x ∈ H (in notation: f(T )

a
≺ g(T ))

whenever |f(z)| ≤ |g(z)| for every z in the unit disc D (in notation: f
a
≺ g).
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Given a decreasing sequence F = {fn}∞n=1 in H∞ (fn+1

a
≺ fn for every n), let

us consider the limit function ϕF on T, defined by ϕF (ζ) = limn→∞ |fn(ζ)|
for a.e. ζ ∈ T, and the measurable set NF = {ζ ∈ T : ϕF (ζ) > 0}. Then
the sequence F (T ) = {fn(T )}∞n=1 of operators is also decreasing (fn+1(T )

a
≺

fn(T ) for every n) and the set

H0(T, F ) =
{
x ∈ H : lim

n→∞
‖fn(T )x‖ = 0

}
of stable vectors for F (T ) is a hyperinvariant subspace of T . For measurable
subsets α and β of T, we write α = β, α 6= β and α ⊂ β if m(α4β) = 0,
m(α4β) > 0 and m(α \ β) = 0 respectively, that is when χα = χβ , χα 6= χβ

and χα ≤ χβ hold for the corresponding characteristic functions as elements
of the Banach space L1(T). We say that T is quasianalytic on a measurable
subset α of T at a vector x ∈ H if x /∈ H0(T, F ) whenever F is non-vanishing
on α, that is NF ∩ α 6= ∅. Let A(T, x) be the system of sets α with this
property. The local quasianalytic spectral set of T at x is the largest element
π(T, x) of A(T, x). (Note that π(T, x) is uniquely determined up to sets of
measure 0.) We recall from [Kér11] that T is quasianalytic on α if H0(T, F ) =

{0} whenever NF ∩ α 6= ∅; the (global) quasianalytic spectral set π(T ) is the
largest element of A(T ), the system of sets where T is quasianalytic.

The next lemma claims that local stability is determined by the asymptotic
density function.

Lemma 3.2. Let F = {fn}∞n=1 be a decreasing sequence in H∞ and x ∈ H.

(a) If limn→∞ ‖fn(T )x‖ = 0 then ϕFwx,x = 0.

(b) If ϕFwx,x = 0 then there exists an increasing mapping τ : N → N such
that limn→∞ ‖T τ(n)fn(T )x‖ = 0.

The following theorem establishes connection among the local and global
spectral invariants introduced before.

Theorem 3.3. For every non-zero x ∈ H we have

π(T ) ⊂ π(T, x) = ω(T, x) ⊂ ω(T ).
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As a consequence we obtain conditions for the existence of a non-trivial
hyperinvariant subspace. (Statement (b) below appears already in [Kér01].)

Corollary 3.4.

(a) If ω(T, x) 6= ω(T ) for some non-zero x ∈ H and F = {fn}∞n=1 is a
decreasing sequence with NF = ω(T ) \ ω(T, x), then there exists an
increasing mapping τ : N → N, such that G =

{
χτ(n)fn

}∞
n=1

is also
a decreasing sequence with ϕG = ϕF , x ∈ H0(T,G), and H0(T,G) ∩
Hω(T ) = ∅. Therefore H0(T,G) is a non-trivial hyperinvariant subspace
of T .

(b) If π(T ) 6= ω(T ) then HlatT is non-trivial.

The a.c. contraction T ∈ L(H) is quasianalytic if π(T ) = ω(T ) 6= ∅. In
view of Corollary 3.4, in the setting of asymptotically non-vanishing contrac-
tions (HSP) can be reduced to the case when T is quasianalytic.

In Theorem 3.8 we show that quasianalycity determines the asymptotic
behaviour, namely, if T is a quasianalytic contraction, then T ∈ C10.

We say that an a.c. contraction T is asymptotically cyclic, if its unitary
asymptote V ∈ L(K) is cyclic, that is ∨∞n=0V

ny = K holds for some y ∈
K. The set of asymptotically cyclic, quasianalytic contractions acting on the
Hilbert space H is denoted by L0(H). If T is cyclic then so is V (but not
conversely), hence (ISP) in the setting of quasianalytic contractions can be
reduced to the class L0(H). We have a lot of information on the structure
of a contraction if its residual set covers the unit circle. Hence it is worth
considering the special class L1(H) = {T ∈ L0(H) : π(T ) = T}. For such
contractions ∨Lats T = H, where Lats T stands for the set of those invariant
subspacesM, where the restriction T |M is similar to S, the simple unilateral
shift.

Examples of operators in L1(H) are provided by the following proposition.
First we fix some notation. The operator A ∈ L(H) is a quasiaffine transform
of the operator B ∈ L(K), in notation: A ≺ B, if there exists a quasiaffinity
(i.e. an injective transformation with dense range) Q ∈ L(H,K) such that
QA = BQ.
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Proposition 3.13. If T ∈ L(H) is a contraction such that T ≺ S, then
T ∈ L1(H) and H∞(T ) = {T}′.

By Theorem 1 in [KT12], (HSP) in L0(H) can be reduced to L1(H). If
{T}′ = H∞(T ), then HlatT = LatT is non-trivial. However, if {T}′ 6=
H∞(T ) then the shift-type invariant subspaces are not hyperinvariant.

Proposition 3.16. Let T ∈ L1(H) be such that {T}′ 6= H∞(T ). Then, for
every C ∈ {T}′ \H∞(T ), we have LatC ∩ Lats T = ∅.

However, we proved that if non-trivial hyperinvariant subspaces exist, then
such subspaces can be derived from shift-type invariant subspaces.

Theorem 3.18. Let T ∈ L1(H) be such that {T}′ 6= H∞(T ). Then the
following statements are equivalent:

(i) HlatT is non-trivial;

(ii) there existsM∈ Lats T such that ∨{CM : C ∈ {T}′} 6= H;

(iii) there exists S ⊂ Lats T such that H 6= ∨S ∈ HlatT .

For T ∈ L1(H), by Proposition 3.19, T is the quasiaffine transform of S
if and only if T is not quasiunitary, hence in this class (HSP) can be reduced
to the quasiunitary case. If T ∈ L1(H) is quasiunitary, then there exist
M1,M2 ∈ Lats T such thatM1 ∩M2 = {0} (see Proposition 3.20).

Let T ∈ L(H) be an asymptotically cyclic a.c. contraction, and assume
that T ∈ C1· and ω(T ) = T. The universal property of the unitary asymptote
(X,V ) implies that for every C ∈ {T}′ there is a unique D ∈ {V }′ such
that XC = DX, and the mapping γ : {T}′ → {V }′, C 7→ D is a contractive,
unital algebra-homomorphism, which is injective because of T ∈ C1·. The
functional calculus Φ: L∞(T)→ {V }′, f 7→ f(V ) is an isomorphism between
the corresponding Banach algebras. The composition γ̂T = Φ−1 ◦ γ : {T}′ →
L∞(T) is also an injective, contractive, unital algebra-homomorphism. It can
be easily checked that γ̂T is independent of the special choice of (X,V ).

The uniquely determined γ̂T is called the functional mapping of T , and its
range F(T ) is called the functional commutant of T . Since γ̂T (f(T )) = f holds
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for every f ∈ H∞, we obtain that F(T ) is a subalgebra of L∞(T) containing
H∞. It is natural to ask the following questions. Which function algebras
H∞ ⊂ A ⊂ L∞(T) are attainable as a functional commutant: A = F(T ),
and what kind of information can be derived from the properties of γ̂T and
F(T ) on the behaviour of T? We recall that the function algebra A is called
quasianalytic, if f(ζ) 6= 0 for a.e. ζ ∈ T whenever f is a non-zero element
of A. Proposition 4.2 in [Kér11] shows that if T ∈ L1(H), then F(T ) is
quasianalytic.

It is clear that F(T ) = H∞ exactly when {T}′ = H∞(T ), and this happens
in particular if T ≺ S. (For a more complete characterization of this case see
Theorem 5.2 in [Kér11].)

If T ∈ L1(H) and F(T ) 6= H∞, then the closure F(T )− contains H∞ +

C(T) (see Theorems IX.1.4 and IX.2.2 in [Gar07]); thus F(T )− is not quasi-
analytic, and so F(T ) is not closed, or equivalently, γ̂T is not bounded from
below.

We recall that η ∈ H∞ is an inner function, if |η(ζ)| = 1 holds for a.e. ζ ∈
T. LetH∞i stand for the multiplicative semigroup of all inner functions. Given
a subsemigroup B ofH∞i , the algebra B·H∞ generated by B (set of conjugates
of functions in B) and H∞ is clearly quasianalytic. The closure

(
B ·H∞

)−
is

called the Douglas algebra induced by B. By the celebrated Chang–Marshall
theorem every closed subalgebra A of L∞(T), containing H∞, is a Douglas
algebra (see Theorem IX.3.1 in [Gar07]). Therefore, F(T )− =

(
B ·H∞

)−
holds with B = {η ∈ F(T )− ∩ H∞i : η ∈ F(T )−}. The question which pre-
Douglas algebras B · H∞ arise as functional commutants of contractions of
class L1(H) was posed in [Kér11]. Our next theorem settles this problem.

Theorem 3.22. The only attainable pre-Douglas algebra is H∞.

Special case of the following property of the functional commutant has
been exploited in the proof of the previous theorem.

Proposition 3.23. If f ∈ F(T ), r > ‖γ̂−1T (f)‖ and ϕ is analytic on rD, then
ϕ ◦ f ∈ F(T ).

We show that the functional commutant is a similarity invariant. Actually,
the following theorem contains a more general statement.
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Theorem 3.25. For j = 1, 2, let Tj ∈ L1(Hj) be given with unitary asymp-
tote (Xj , Vj). Let us assume that there exist Y ∈ I(T1, T2) and Z ∈ I(T2, T1)

such that ZY 6= 0. Then

(a) Y and Z are injective;

(b) 0 6= γ̂T1
(ZY ) = γ̂T2

(Y Z) =: g belongs to F(T1) ∩ F(T2) and gF(T1) ⊂
F(T2), gF(T2) ⊂ F(T1);

(c) in particular, if ZY = I, that is when T1 ≈ T2, then g = 1 and F(T1) =

F(T2).

We concluded Chapter 3 by providing representation of the functional
mapping in the functional model. Here we omit the details.

4 Quasianalytic contractions in special classes

Chapter 4 was devoted to special classes of operators, where quasianalytic
contractions naturally arise. Namely, we studied analytic contractions and
bilateral weighted shifts.

In [ARS07], on a general Hilbert space Ha of analytic functions defined on
the unit disc D, the analytic multiplication operatorMa ∈ L(Ha), Maf = χf

has been studied. The boundary behaviour of functions in Ha is governed by
the set

∆(Ha) = {ζ ∈ T : nt- lim
λ→ζ

(
1− |λ|2

)−1 ‖kλ‖−2 > 0},

where kλ ∈ Ha is the unique reproducing kernel with the property f(λ) =

〈f, kλ〉 for every f ∈ Ha. We proved in Section 4.1 that the measurable
set ∆(Ha) is always contained in the quasianalytic spectral set of Ma (see
Proposition 4.1). Therefore, the conditions for the equality ∆(Ha) = ω(Ma)

given in [ARS07] ensures the quasianalycity of Ma. It is not transparent how
to identify the unitary asymptote of a general analytic multiplication operator
Ma. We carry out this identification in the special case when Ha is induced
by a measure satisfying particular conditions considered in [ARS09].

In Section 4.2 we deal with bilateral weighted shifts, which are C10 contrac-
tions, mainly applying the ideas of [Shi74], but working with actual functions
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instead of formal series. Without restricting the generality, we can suppose
that the bilateral weighted shift in consideration is asymptotically cyclic and
quasiunitary. We realize a bilateral weighted shift Tβ as multiplication by the
identical function on a function space L2(β). Up to our knowledge, (HSP) for
bilateral weighted shifts, which are C10 contractions, is open in the case when

0 < δβ ≤ rβ < Rβ = 1 and
∞∑
n=1

log β(−n)

n2
=∞.

Here δβ > 0 means that Tβ is invertible, rβ denotes the inner spectral radius
of Tβ , while the growth condition on β(−n) ensures the quasianalycity of
the function algebra L2(β). Under these conditions we relate the functional
commutant to bounded analytic functions defined on an annulus.

5 Spectral behaviour of quasianalytic

contractions

Though (ISP) and (HSP) are open for asymptotically non-vanishing (a.n.v.)
contractions, Corollary 3.4 shows that these questions are settled in the non-
quasianalytic case. By this fact it becomes crucial to determine the spectral
behaviour of quasianalytic contractions. Namely, if an a.n.v. contraction T

does not meet this behaviour, then T is not quasianalytic, and so HlatT is
non-trivial.

If the contraction T is quasianalytic, then it is of class C10; see The-
orem 3.8. Under this asymptotic behaviour there is a connection between
the spectrum σ(T ) of T and the spectrum σ(V ) of its unitary asymptote V .
First we note that σ(V ) is the essential support of ω(T ): σ(V ) = es(ω(T )),
which is the complement of the largest open subset O of T with the property
m(O ∩ ω(T )) = 0. It can be easily proved that σ(V ) is neatly contained in
σ(T ), that is σ(V ) ⊂ σ(T ) and m(σ(V ) ∩ σ′) > 0 holds for every non-empty
closed subset σ′ of σ(T ) with the property that σ(T ) \ σ′ is also closed. More
importantly, this is the only constraint on the spectrum of a C10-contraction,
even in the cyclic case; see Chapter IX in [NFBK]. In Chapter 5 we posed
the question whether there are any other constraints if T is quasianalytic.
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Question 1. Given a measurable set ω0 ⊂ T of positive measure and a com-
pact subset σ of the closed unit disc D− such that es(ω0) is neatly contained
in σ, does a quasianalytic contraction T exist with the properties σ(T ) = σ

and ω(T ) = ω0?

In the C10 class the construction starts by producing a C10-contraction T
satisfying the conditions ω(T ) = ω0 and σ(T ) = es(ω0), as a restriction of
a bilateral weighted shift W to an appropriately chosen invariant subspace.
The contraction T , obtained this way, cannot be quasianalytic, therefore, we
have to find another approach to provide a quasianalytic contraction T , if it
exists at all, such that its spectrum σ(T ) is a proper subset of T. First of all
the following simpler question should be answered.

Question 2. Do we have for every closed arc J of positive measure on T
and for every c > 0 a quasianalytic contraction T satisfying the conditions
σ(T ) = π(T ) = J and ‖T−1‖ > c?

We know that the a.c. contraction T has shift-type invariant subspaces
if ω(T ) = T. Moreover, H = ∨Lats T in this case. Any quasianalytic con-
traction can be related to such a contraction having a rich invariant subspace
lattice.

Theorem 5.1. For every quasianalytic contraction T1, there exists a quasi-
analytic contraction T2 with π(T2) = T such that {T2}′ ⊃ {T1}′ and so
HlatT2 ⊂ HlatT1.

Therefore, the (HSP) for a.n.v. contractions can be reduced to the case,
when T is quasianalytic and π(T ) = T. Clearly, T is neatly contained in σ(T )

exactly when σ(T ) is connected. Thus, in this particular class Question 1 has
the following modified form.

Question 3. Given a connected, compact subset σ of D−, containing T, does
there exist a quasianalytic contraction T satisfying the conditions σ(T ) = σ

and π(T ) = T?

Our next result shows that the preceding two questions are related. Let
D+ := {z ∈ D : Im z > 0}, T+ := {ζ ∈ T : Im ζ ≥ 0}, and for any K ⊂ C let
K2 := {z2 : z ∈ K}.
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Theorem 5.2. A positive answer for Question 2 implies an affirmative an-
swer for Question 3 in the special case, when σ = K2 for some connected,
compact set K such that T+ ⊂ K ⊂ D−+.

We prove it applying the technique used in Section IX.2 of [NFBK] to
obtain a quasianalytic contraction T̃ satisfying the conditions σ(T̃ ) = K and
π(T̃ ) = T+. In Remark 5.3 we show that unfortunately not every connected,
compact set T ⊂ σ ⊂ D− can be represented as σ = K2 with a connected,
compact set T+ ⊂ K ⊂ D−+.

Clearly, the (ISP) can be reduced to the case when T is asymptotically
cyclic. Therefore, it is important to know the spectral behaviour in this setting
too. In the class L0(H) of asymptotically cyclic quasianalytic contractions and
L1(H) = {T ∈ L0(H) : π(T ) = T} the same commutants arise and (HSP) can
be reduced to L1(H) by Theorem 1 in [KT12]. This fact makes it especially
important to answer the following question.

Question 4. What are the possible spectra of the contractions belonging to
L1(H)?

We know that for every 0 ≤ δ < 1 there is a contraction Tδ ∈ L1(H) such
that σ(Tδ) = {z ∈ C : δ ≤ |z| ≤ 1}; see Example 3.24. Our next theorem
shows that the spectrum can be the unit circle T too, and it also gives a
positive answer for Question 2 in the special case, when the arc J is the whole
circle T.

Theorem 5.4. For every c > 1, there is a contraction T ∈ L1(H) such that
σ(T ) = T and ‖T−1‖ ≥ c.

The proof is a presentation of a bilateral weighted shift for every c > 1

with the prescribed properties.
Relying on this statement we can provide contractions in L1(H) with more

sophisticated spectra. Tδ given in Example 5.5.(a) has spectrum σ(Tδ) = T∪
δT∪ [δ, 1]. Observe that D\σ(Tδ) is not connected. Example 5.5.(b) provides
a contraction T̃ ∈ L1(H) such that σ(T̃ ) = T ∪ {rζ : ζ ∈ H, ρ(ζ) ≤ r < 1} for
some ρ : H → (0, 1) and dense subset H of T .
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