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Chapter 1
Introduction

The aim of this thesis is to continue the study of contractions, initiated by B. Sz.-
Nagy and C. Foias and carried on by many researchers, with the hope that our
results help to understand the behaviour of bounded linear operators on Hilbert
spaces, and to get closer to the solution of the famous invariant and hyperinvari-
ant subspace problems. The dissertation contains two different topics concerning
absolutely continuous contractions.

In the first part we study the stability of contractions, we characterize those
sequences of bounded analytic functions, which have the property that an absolutely
continuous contraction T is stable (that is the powers T™ converge to zero in the
strong operator topology) if and only if the operators h,, (1) converge to zero in the
strong operator topology. Our result is extended to polynomially bounded operators
too.

In the bigger second part asymptotically non-vanishing contractions are consid-
ered, the study of quasianalytic contractions, initiated by L. Kérchy, are continued.
These investigations are motivated by the invariant and hyperinvariant subspace
problems. Special emphasis is put on the case when the contraction is asymptot-
ically cyclic. New properties of the functional commutant are explored. Analytic
contractions and bilateral weighted shifts are discussed as illuminating examples.
Last, but not least, we pose, and answer partially, questions in connection with the

spectral behaviour of quasianalytic contractions.
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1.1 Motivation and background

The investigations included in this dissertation were mainly motivated by the most
challenging open problems in the theory of Hilbert spaces and bounded linear op-
erators on them, namely, the well-known invariant and hyperinvariant subspace
problems. These are clearly the most fundamental questions concerning the struc-
ture of Hilbert space operators, hence it is quite confusing that these problems are
still unsolved. In what follows let £(H) stand for the C*-algebra of all bounded
linear operators acting on the (complex) Hilbert space H. The Invariant Subspace
Problem (ISP) asks the existence of a non-trivial invariant subspace M C H of an
arbitrary operator T' € L(H), while the Hyperinvariant Subspace Problem (HSP)
asks whether there exists a non-trivial hyperinvariant subspace N’ C H of an arbi-
trary non-scalar 7' € L(#H)\ CI, i.e., an operator which is not a scalar multiple of the
identity operator. The subspace (closed linear manifold) M C H is invariant for T
if TM ={Tx:x € M} C M holds, and it is non-trivial if M # {0} and M # H.
The subspace N' C H is hyperinvariant for T if it is invariant for every operator
commuting with 7: CN C N whenever CT = T'C for an operator C' € L(H). The
C = T case shows that every hyperinvariant subspace for T is invariant for that,
and thus, of course, a positive answer for (HSP) would imply a positive answer for
(ISP), while a solution of (ISP) into the negative, would be a solution of (HSP) into
the negative, too. It is easy to see that the eigenspace corresponding to an eigen-
value of T is always hyperinvariant for 7', and it is non-trivial if 7" is non-scalar.
Thus, for example, if ‘H has finite dimension at least two, then (HSP) is solved in
the affirmative. On the other hand, if H is non-separable, then the cyclic subspace,
spanned by the orbit {x, Tz, Tz, ...} of any non-zero vector x € H, is a non-trivial
invariant subspace for T'.

From now on, throughout the whole thesis, we will assume that H is a complex,
separable, infinite dimensional Hilbert space. In spite of (ISP) and (HSP) are still
open in this case, for several classes of operators existence of invariant and hyperin-
variant subspaces have been proven. For example, the well-known Spectral Theorem
implies that every non-scalar normal operator has a hyperinvariant subspace. We
do not have such a nice structure theorem for compact operators, but in the middle
of the twentieth century N. Aronszajn and K. T. Smith were able to prove that any
compact operator has a non-trivial invariant subspace (see [AS54]). Moreover, in

1973, Lomonosov gave a short proof using the Schauder fixed point theorem that a
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non-scalar operator commuting with a non-zero compact operator has a non-trivial
hyperinvariant subspace (see [Lom73]).

One of the most powerful tools, used for examining non-normal operators, is
the theory of contractions. A linear operator T, acting on a Hilbert space H, is a
contraction if ||T'|| < 1 holds. This theory was mainly developed by B. Sz.-Nagy
and C. Foias, based on the dilation theorem of Sz.-Nagy, which assigns a unitary

operator to the contraction 7', namely the minimal unitary dilation of 7.

Theorem 1.1 (Sz.-Nagy’s dilation theorem, [Nagy53|). For every contraction T €
L(H), there exists a unitary operator U acting on a Hilbert space K containing H
as a subspace, such that

T = PyU"H

holds for every n € N, where Py € L(K) denotes the orthogonal projection onto
H. A unitary operator U satisfying this condition is called a unitary dilation of T.

Moreover, U can be chosen to be minimal in the sense that

U=k
neZ
is fulfilled. Such a minimal dilation is unique up to isomorphism, and thus can be

called “the minimal unitary dilation” of T'.

Considering (ISP) and (HSP) it is sufficient to investigate only contractions,
since the invariant and hyperinvariant subspace lattices of an operator T € L(H)
are the same as of ¢TI for any non-zero complex number ¢. Moreover, it is well-known
that any contraction can be uniquely decomposed into the orthogonal sum 7" = T7 &
U,®Us of a completely non-unitary (c.n.u.) contraction 77, an absolutely continuous
(a.c.) unitary operator U,, and a singular unitary operator Uy (see [NFBK]|, Theorem
1.3.2 and [Hal51]) . We recall that a contraction is c.n.u. if it is not unitary on any
of its non-zero reducing subspaces, and that a unitary operator is a.c. or singular
if its spectral measure is a.c. or singular with respect to Lebesgue measure on the
unit circle. Applying the Lifting Theorem of Sz.-Nagy and Foias it can be easily
verified that the hyperinvariant subspace lattice of T splits into the direct sum
Hlat T' = Hlat (T1®U,)®Hlat U, (see [NFBK, Theorem 11.2.3| and [Dou60, Corollary
5.1 and Theorem 3|). Thus, if the singular unitary component Us is non-zero (and
T is non-scalar), then 7" has a non-trivial hyperinvariant subspace. In the sequel,

mostly, we will assume that the contraction 7' is absolutely continuous, i.e., its
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singular unitary part is zero. For such contractions, by the aid of the usual functional
calculus (operating with the bounded measurable functions on the unit circle T) for
the minimal unitary dilation U of T, we can introduce the so-called Sz.-Nagy-Foias

functional calculus ®7 for T
Or: H* = L(H), [ f(T) = Puf(U)IH,

where H*> denotes the Hardy space of all bounded analytic functions on the open
unit disc D (what can be identified with the space of bounded measurable functions
on the unit circle T with zero Fourier coefficients of negative indices). This @
is a contractive, unital algebra-homomorphism, which is continuous in the weak-*
topologies and satisfies the condition 7' = ®7(x) = x(T), where x(z) = z denotes
the identical function.

Another important tool in the study of a contraction 7' is its unitary asymptote.
The pair (X, V) is a unitary asymptote of T if V' is a unitary operator acting on a
Hilbert space K and X : H — K is a linear transformation satisfying the conditions
VX LVTXH = K, || Xh| = lim, o ||T"h|| for every h € H, and XT = VX. For
further properties of unitary asymptotes we refer to [Kérl3| and [NFBK, Chapter
IX]. Tt is easy to see that the nullspace of X is hyperinvariant for 7', it is the so-called
stable subspace of T

Ho(T) = {h €M : lim |T7h] = o} .

Considering the asymptotic behaviour of contractions Sz.-Nagy and Foias introduced

the following classes:

o T'c Cy if Ho(T) = H, that is, when T™ — 0 in the strong operator topology
(SOT). In this case T is called stable, while a non-stable T" is usually called

asymptotically non-vanishing.

T € Cy. if Ho(T) = {0}. Contractions of this type are called asymptotically

strongly non-vanishing.

TeCyif T € Cy;

TecC,if T" e,y

Cij = Cz N C.j (Z,] = O, 1)
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Obviously, if T ¢ Coo U Coy U Cyp U Cyq, then T has a non-trivial hyperinvariant
subspace, namely Ho(T') or Ho(T*)*. Moreover, Sz.-Nagy and Foias showed that
Hlat T is non-trivial in the case of a non-scalar operator T' € C11, too (see [NFBK,
Theorem I1.5.4]). On the other hand, (ISP) and (HSP) are still open in the classes
Coo, Co, and Cpy. Actually, considering T'/(2||T||), it can be seen that these prob-
lems in Cyy are equivalent to the general questions. The remaining classes Cy and
Cp1 are the adjoints of each other, hence it is enough to study the class Cyg, in
which class (ISP) and (HSP) can be reduced to special classes of quasianalytic con-
tractions. In Chapter 3-5 we will examine these kind of contractions. Our basic

reference in connection with the theory of contractions is [NFBK].

1.2 Thesis outline

In Chapter 2 we study stability properties of contractions and polynomially bounded
operators. In Section 2.1 we characterize those sequences {h,}>°, of bounded ana-
lytic functions, which can serve to test the stability of an a.c. contraction, namely,
satisfying the condition that h, (7)) — 0 (SOT) if and only if 7" € Cy.. This answers
a question of M. Dritschel. We prove some connected results too. In Section 2.2
analogous questions for polynomially bounded operators are examined.

In the remaining chapters we investigate special types of asymptotically non-
vanishing contractions, namely, quasianalytic contractions. In the beginning of
Chapter 3, namely, in Section 3.1 we introduce local version of the quasianalytic
spectral set and exhibit its connection with the residual set. In Section 3.2 the fun-
damental properties of quasianalytic contractions are summarized including their
asymptotic behaviour. Asymptotically cyclic quasianalytic contractions are studied
in Section 3.3, where equivalent conditions are given for the existence of a non-trivial
hyperinvariant subspace. For such a contraction 7" the commutant {7’} can be iden-
tified with a function algebra F(T'), the so-called functional commutant. Answering
a question posed in [Kérll] we show in Section 3.4 that F(T") can be a pre-Douglas
algebra only in the case when F(T) = H*>. We prove also similarity invariance of
F(T') and detect its representation in the functional model.

Chapter 4 is devoted to special classes of operators, where quasianalytic con-
tractions naturally arise. Namely, we study analytic contractions in Section 4.1 and
bilateral weighted shifts in Section 4.2.

At last, Chapter 5 contains some questions, and partial answers in connection
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with the spectral behaviour of quasianalytic contractions.
The main results and their proofs given here are essentially the same as in the

following three papers, which provide the material of this dissertation:

e L. KERCHY and A. SzALAI, Characterization of stability of contractions, Acta
Sci. Math. (Szeged), 79 (2013), 325-332.

e L. KERCHY and A. SZALAI, Asymptotically cyclic quasianalytic contractions,
Studia Math., 223 (2014), 53-75.

e L. KERCHY and A. SZALAI, Spectral behaviour of quasianalytic contractions,

Proc. Amer. Math. Soc., accepted.



Chapter 2

Stability results

In this chapter we study some stability properties of contractions and polynomi-
ally bounded operators. In Section 2.1 we characterize those sequences {h,}>°; of
bounded analytic functions, which can serve to test the stability of an a.c. contrac-
tion, namely, satisfying the condition that h, (7)) — 0 (SOT) if and only if T" € Cj,..
This answers a question of M. Dritschel. We prove some connected results too. In

Section 2.2 analogous questions for polynomially bounded operators are examined.

2.1 Contractions

Let H* denote the Hardy space of bounded analytic functions defined on the open
unit disc . We recall that for any h € H* the radial limit lim, _,;_ h(r() exists for
almost every ¢ € T; the limit function will also be denoted by h. In connection with

the basic properties of H*, we refer to [Hof88| and Chapter III of [NFBK]|. The

following property plays crucial role in the characterization of stability.

Definition 2.1. A sequence of bounded analytic functions {h,}, ., C H* converges

to zero exclusively on D, if
(i) lim, o0 hp(2) =0 for all z € D,
(ii) sup{||hn||e : 7 € N} < 00,

(iii) limsup,,_, ||Xahn|l2 > 0 for every Borel set o C T of positive measure, where

Xa 18 the characteristic function of a.

Remark 2.2. (a) The conditions (i) and (ii) together mean that {h,} -, con-

verges to zero in the weak-* topology.



2.1. Contractions 10
(b) Because of (ii), condition (iii) can be replaced by

(iii*) limsup,_,.c m({¢ € a:|h,(C)] >¢}) > 0 for every a C T of positive
measure with some € > 0 (depending on «).

(That is {h,} -, does not converge to zero in measure on «.)

(c) If liminf, o |h,(C)| > 0 for almost every ¢ € T then (iii) holds, and (iii) with
(ii) imply that limsup,,_, |h.({)] > 0 for a.e. ¢ € T. In particular, if we
suppose that the limit lim,, ,, |h,({)] exists for a.e. ( € T, then condition (iii)
can be replaced by the property, that lim,,_, |h,(¢)| > 0 for a.e. { € T.

Example 2.3. (a) According to the last remark, any uniformly bounded sequence
h, C H*, converging to zero in the open unit disc and to non-zero almost everywhere
on the unit circle, converges to zero exclusively on D.

(b) For example, we get a sequence of this type, if we set a non-constant inner

function v and consider the sequence h, = u".

n+1 n

(c) Another special example is h,, = x" ' — x™.

Definition 2.4. A sequence of bounded analytic functions {h,} -, C H> is a test

sequence of stability for a.c. contractions if for every a.c. contraction 1" the condition

T" — 0 (SOT) holds exactly when h,(7") — 0 (SOT).
The main result of this chapter is the following statement.

Theorem 2.5. A sequence of bounded analytic functions {h,} -, C H* is a test

sequence of stability for a.c. contractions if and only if it converges to zero exclusively
on D.

Proof. For the proof of necessity let us assume that {h,} - is a test sequence of
stability for a.c. contractions. Let S € L(H?), Sf = xf be the unilateral shift
of multiplicity one (x(z) = z and H? is the analytic subspace of L?(T)). Then
S*™ — 0 (SOT) and hence h, (S*) — 0 (SOT). It is known that f(\) = (f, k) for
every f € H? and A € D, where ky(z) = (1 — A\z)~! is the Cauchy kernel. Since
S*ky = 53200 XN"X"™ = My, it follows that h,(S*)kx = h,(N)ky and so h,(X) —= 0
for all A € D, that is (i) holds.
It can be easily seen that ||h(S*)|| = ||h||e for all h € H*. Indeed,

[1A(S™)kAll2

[1Allee = [[R(S)II =
[1Fxll2

=[h(N)] (A eD).
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The Banach-Steinhaus Theorem shows that sup,, ||hn||ec = sup,, ||hn(S*)|| < oo,
and so (ii) holds.

Let o« C T be a Borel set with m(a) > 0, and let us consider the Hilbert space
L*(a)) = xoL?(T). The multiplication operator M, € L (L*(a)), M,g = xg is an
a.c. unitary operator, and h(M,)g = hg for every h € H* and g € L*(«). Since
M 4 0 (SOT) hence h,(M,) # 0 (SOT). Assume that ||xahn|l2 = |[[hn(Ma)1]||2 —
0. Then ||h,(Ma)ell2 = ||@(Ma)hn,(My)1||s — 0 for all ¢ € L*(«), and thus, by
(ii), we infer that h,(M,) — 0 (SOT) which is a contradiction. Consequently (iii)
holds.

Now we turn to the sufficiency part; so let us assume that {h,} -, converges to
zero exclusively on . Setting any stable contraction T, there exists an invariant
subspace M € Lat S% such that T is unitarily equivalent to S* | M. (Here S¥ =
S*@® S*@ ... see [Foi63].) Property (i) implies that ||h,(S*)k,|| — 0 for all A € D,
and it is known that V{k, : A € D} = H% But {h,(S*)}>, is bounded by (ii) and
so h,(S*) — 0 (SOT), whence h,(S%) — 0 and h,(7") — 0 (SOT) follow.

It is left to prove that h,(7) 4 0 (SOT), whenever T is not stable. If T is a

non-stable a.c. contraction, then it can be written in the form

T() %
0 Ty

T= €LH =HodH),

where TO S Co., T1 € Cl. and 7‘[1 7£ {O} Then

h(Ty) *

"= 0 A(Th)

for any h € H*>®. Now let us assume that h,(7) — 0 (SOT). This implies that
hn(Ty) — 0 (SOT). Let (X3, Vi) be a unitary asymptote of 77, where Vi is an a.c.
unitary operator and X; is an injective transformation intertwining 77 with V;:
X Ty = V1 Xy; see Section IX.1 in [NFBK]. Then h,(V1)X; = X1h,(T1) — 0 (SOT)
and so ||h,(V1)y|| — 0 for all y € X1H;. Since ||~ (V)|] < [|halloo < supg [[hklloo <
oo, it follows that ||h,(Vi)y|| — 0 for all y € (X;H;)". Since V; is the minimal
unitary extension of the isometry Vi|(X1V})~, we can easily infer that h, (V1) — 0
(SOT). Then || xahn|l2 = 0 holds for the Borel set « given so that x,dm is equivalent
to the spectral measure of Vj. This contradicts (iii), thus h,(7") /4 0 (SOT).

[

A part of the proof above yields the following proposition.
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Proposition 2.6. Let {h,} ~, C H*®. Then h,(T) — 0 (SOT) for every stable

contraction T if and only if {h,},_, satisfies the conditions (i) and (ii).

A well-known property of the Sz.-Nagy—Foias functional calculus is that h, (7)) —
0 (SOT) for every a.c. contraction T, whenever {h,}, -, boundedly converges to zero
a.e. on T (see [INFBK, Chapter III]). The next proposition shows that the necessary

and sufficient condition is weaker.

Proposition 2.7. Let {h,} -, C H>®. Then h,(T) — 0 (SOT) for every a.c. con-
traction T ezactly when {h,},_, is a bounded sequence in H* and lim,_, ||h,||2 =

0.

Proof. First let us suppose that lim,_, ||,]]2 = 0 holds for the bounded sequence
{hn} 2, and let us consider an a.c. contraction 7. Let U be the minimal unitary

dilation of T" with spectral measure E. Then for any x € H we have
1n(T)|[* < |7 (U)||* = /T || i A,

where 0 < f, = dE,,/dm € L'(T). Let ¢ > 0 be fixed. Choosing N large
enough, we have [, f.dm < e/(2M?), where Sy = {¢ € T : f,(() > N} and
M = sup{||hn|| : » € N}. Hence

/!hn|2fxdm§M2 fodm+ N [ hPdm < S 4 Nijho|2 < <,
T B T\Bx 2

if n is large enough. Therefore h, (7)) — 0 (SOT).

Now let us suppose that h,(T) — 0 (SOT) for every a.c. contraction T. In
the proof of Theorem 2.5 we have already seen that if h,(S*) — 0 (SOT) then
{hn}.2, is a bounded sequence. On the other hand, if we consider the bilateral shift
M € L(L*(T)), Mg = xg and the constant function 1 € L?*(T), then we obtain
that

[ 1ol dm = (03] 0.
T

O

Remark 2.8. We may consider nets instead of sequences, and we can define exclu-
sive convergence and testing property in a similar way than in the case of sequences.
The proof given before shows that if a net converges exclusively to zero on D than
it is a test net for a.c. contractions. However, considering the reverse implication
we get in the obstacle that convergent nets are not necessarily bounded, and so the

Banach-Steinhaus Theorem cannot be applied.
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2.2 Polynomially bounded operators

Let us denote by P(T) the set of analytic polynomials on T, and by A = A(T)
the disc algebra, i.e., the closure of P(T) in the Banach space C(T) of contin-
uous functions on T. An operator 7' € L(H) is called polynomially bounded if
there exists a real number K7 such that ||p(T)| < Kz||p|| for all p € P(T), where
Ipll = max{|p(¢)| : ¢ € T}. For a polynomially bounded operator T', the map-
ping ®ro: P(T) — L(H), p — p(T) is a bounded algebra-homomorphism which
extends continuously to the disc algebra: ®r,: A — L(H), f — f(T). Polyno-
mially bounded operators were studied by W. Mlak in a series of papers using
‘elementary measures’. Here we recall some basic facts from his works. For any
x,y € H let us consider the continuous linear functional ¢, ,: £(H) — C defined
by ¢z4(C) = (Cz,y). By the Hahn-Banach Theorem ¢, , o ®7,: A — C can be
extended to a bounded linear functional ¥, ,: C(T) — C. By the Riesz Represen-
tation Theorem there exists a unique regular complex Borel measure f,, on T such
that W, ,(f) = [ fdus, for all f € C(T), in particular for all f € A. Let us de-
note by M (T, z,y) the set of such representing measures. If pu,v € M(T,x,y) then
p—v L A hence i —v = hdm for some h € H} by the F & M. Riesz theorem; thus
M(T,z,y) = {ptxy + hdm : h € Hg}. (If T is a contraction then u, , can be chosen
to be the localization of the spectral measure of the unitary dilation of 7".) The poly-
nomially bounded operator T' is called absolutely continuous if for every x,y € H
there exists a measure u € M(T,z,y) which is absolutely continuous with respect
to the Lebesgue measure. T is singular if for any pair x,y € H there is a measure
p € M(T,z,y) which is singular to m. Every polynomially bounded operator T’
can be uniquely decomposed into the direct sum T = T, + T, of an a.c. polyno-
mially bounded operator T, and a singular polynomially bounded operator T (see
[Mla73|). We say that an operator T' € L(H) admits an H>-functional calculus if
there is a weak-* continuous, unital algebra-homomorphism ®r: H>* — L(#) such
that ®r(x) = T If there exists such a @7, then it is bounded and unique. It turns
out that 7" admits an H*-functional calculus exactly when 7T is a.c. polynomially
bounded operator (see p. 68 in [Mla74a]). In this case ®p|A = Op ;.
We proceed with testing the stability of a.c. polynomially bounded operators.

Definition 2.9. A sequence of bounded analytic functions {h,} -, C H™ is a
test sequence of stability for a.c. polynomially bounded operators if for every a.c.
polynomially bounded operator 7' € L(#H) the condition 7" — 0 (SOT) holds
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exactly when h, (7)) — 0 (SOT).

Note that, in principle, a test sequence for a.c. contractions is not necessarily a
test sequence for a.c. polynomially bounded operators. Nevertheless, we can prove

the following theorem.

Theorem 2.10. A sequence of bounded analytic functions {h,} -, C H™ is a test
sequence of stability for a.c. polynomially bounded operators if and only if {h,}

converges to zero exclusively on D.

Proof. The necessity part follows from Theorem 2.5 since a test sequence of stabil-
ity for a.c. polynomially bounded operators is a test sequence of stability for a.c.
contractions too. For the proof of sufficiency let us suppose that {h,} -, converges
to zero exclusively on D, and let T € £(H) be an a.c. polynomially bounded oper-
ator such that 7" — 0 (SOT). In view of (i) and (ii) the Vitali-Montel Theorem
yields that h,, — 0 locally uniformly on D, and so, for every k£ € N, AP 0 lo-
cally uniformly on D by the Weierstrass Theorem. Let us consider the expansion

B = oo o CniX” where ¢, = h%k)(O) /k! are the Taylor coefficients. We have

N-1 0o
k=0 k=N

By the Maximum PrinCiple ||gn,N||oo < ||hn||oo + ||fn,NHoo < M + ||fn,NHoo: and it

is clear that lim, o || fan|lec = 0 for any N € N. Let € H and € > 0 be fixed.
Then

1 (T)l| < || fau (T2 + | gnn (T) T ]|
< 1@zl fan ool 2]l + DTl gn v lloo 1T 2]

We can choose N so that |TVz|| < e. Fixing N in this way, there exists v € N such
that || fo ]| < € for every n > v. Therefore, ||h,(T)x|| < || Prlle||z||+||Pr||(M+-<)e
holds for all n > v, and so lim,,_,« ||h.(T)z|| = 0.

Now suppose that 7" 4 0 (SOT). Then there exist an a.c. (non-zero) isometry V'
and a bounded linear transformation X with dense range, such that X' =V X; see

[Kér89]. If h,(T) — 0 (SOT), then h, (V) — 0 (SOT) and this contradicts (iii). O

We conclude this chapter by formulating a statement about the stability of sin-

gular polynomially bounded operators.
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Proposition 2.11. Let {h,} ~, C A be a bounded sequence in the disc algebra.
Then h,(T) — 0 (SOT) for every singular polynomially bounded operator T if and
only if lim, o h,(C) = 0 for every ¢ € T. In that case h,(T) — 0 (SOT) for every
polynomially bounded operator T

Proof. Tt is known that any singular polynomially bounded operator T is similar to
a singular unitary operator U, that is T'= XU X with some boundedly invertible
operator X (see [Mla74b]). Suppose that lim, . h,(¢) = 0 for a.e. ( € T. Then,

for every y € ‘H, we have

@l = [ By, —0
by Lebesgue’s Dominated Convergence Theorem. The inequality

[1hn(T)][* = || (XU X)z|[* = || X A (U) X
< IX P a (U)X 2] |*

shows that h,(T) — 0 (SOT).

If T is an arbitrary polynomially bounded operator, then we decompose it to the
direct sum T' = T, + T, of an a.c. and a singular polynomially bounded operator. For
the singular component we apply the previous result, while for the a.c. component
we can apply the proof of Theorem 2.10, since our conditions imply that h, — 0
locally uniformly on D. Hence h,(T') = h,(T) + h,(Ts) — 0 (SOT).

Now let us suppose that h,(T) — 0 (SOT) for every singular polynomially
bounded operator T'. If we consider the operator AI (A € T) then we obtain that
| (V) 2||2][? = [|hn(AD)z||> — 0. The proof is complete. O



Chapter 3

Hyperinvariant subspaces of

quasianalytic contractions

In this chapter we investigate special types of asymptotically non-vanishing contrac-
tions, namely, quasianalytic contractions. In the beginning, namely, in Section 3.1
we introduce local version of the quasianalytic spectral set and exhibit its connec-
tion with the residual set. In Section 3.2 the fundamental properties of quasianalytic
contractions are summarized including their asymptotic behaviour. Asymptotically
cyclic quasianalytic contractions are studied in Section 3.3, where equivalent con-
ditions are given for the existence of a non-trivial hyperinvariant subspace. For
such a contraction T' the commutant {7}’ can be identified with a function algebra
F(T), the so-called functional commutant. Answering a question posed in [Keérll]
we show in Section 3.4 that F(T') can be a pre-Douglas algebra only in the case
when F(T') = H*. We prove also similarity invariance of F(7") and detect its

representation in the functional model.

3.1 Local quasianalytic spectral set

Let T € L(H) be an a.c. contraction and let (X, V') be a unitary asymptote of 7. It
is known that V' € £(K) is an a.c. unitary operator, that is the spectral measure E
of V' is a.c. with respect to the normalized Lebesgue measure m on the unit circle
T. The residual set w(T') of T is the measurable support of E, which means that
E(a) = 0 if and only if m(a Nw(T)) = 0. For any =,y € H, w,, € L*(T) is the
asymptotic density function of T" at x and y: Ex, xy = Wy, dm. The measurable
w(T,z) ={¢ € T : w,,(¢) > 0} is the local residual set of T" at x. (It is easy to
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check that w,, and w(T,x) are independent of the special choice of (X,V).) It is
worth mentioning that H,(T) = {v € H : w(T,z) = w(T)} is a dense Gs-set in H
(see Lemma IX.2.15 in [NFBK]).

We recall the notion of another spectral invariant, defined by the Sz.Nagy—Foias
functional calculus @ for 7. This calculus is monotone in the sense that || f(T)z|| <
lg(T)z|| for every x € H (in notation: f(T) < g(T)) whenever |f(2)] < |g(2)| for
every z in the unit disc D (in notation: f < g). Given a decreasing sequence
F=A{f.}02, in H® (fos1 2 fn for every n), let us consider the limit function pp
on T, defined by ¢r(() = lim, . |fn(¢)| for a.e. € T, and the measurable set
Np ={C €T:pp(¢) > 0}. Then the sequence F(T') = {f.(T)}, of operators is
also decreasing (f,,41(T) % fn(T) for every n) and the set

Ho(T,F) = {z € H: Jim |I£,(T)a] = 0

of stable vectors for F(T") is a hyperinvariant subspace of 7. For measurable subsets
a and  of T, we write « = 3, a #  and a C S if m(aAB) =0, m(aAB) > 0 and
m(a \ B) = 0 respectively, that is when x, = x5, Xa # Xp and x, < xs hold for
the corresponding characteristic functions as elements of the Banach space L'(T).
We say that T is quasianalytic on a measurable subset o of T at a vector x € H if
x & Ho(T, F) whenever F is non-vanishing on «, that is NpNa # 0. Let A(T, x) be
the system of sets a with this property and set a(T,xz) = sup{m(«) : « € A(T,x)}.
Taking a sequence {a,, }22, in A(T, x) so that lim,_,. m(a,) = a(T, x), it is easy to
see that 7(T, x) = U, v, will be the largest element of A(T,x). The set n(T, z) is
called the local quasianalytic spectral set of T at x. (Note that 7(T,x) is uniquely
determined up to sets of measure 0.) We recall from [Kérll| that T is quasianalytic
on « if Ho(T, F) = {0} whenever Nr N« # 0; the (global) quasianalytic spectral
set m(T') is the largest element of A(T'), the system of sets where T is quasianalytic.

The following statement follows immediately from the definitions.

Proposition 3.1. The set w(T') is the largest measurable set such that n(T) C

7(T,x) holds for every non-zero x € H.

The next lemma claims that local stability is determined by the asymptotic

density function.
Lemma 3.2. Let F = {f,}>°, be a decreasing sequence in H* and x € H.

(a> [f 1imn—>oo ||fn(T)$|| =0 then PrWy o = 0.
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(b) If prw,, = 0 then there exists an increasing mapping 7: N — N such that
limy, o0 [| 77 £ (T)z|| = 0.

Proof. Part (a) readily follows from the equations
. 2 7 2
Jim [|XF, (T)z || = lim [ £ (V) X

— lim [ [P, dm = / P2, , dm.
T

n—oo T

Since there exists an increasing 7: N — N satisfying the condition
lim | X f(T)zl| = lim |77 f,(T)z]),
n—o0 n— oo

the same equations yield (b) too.

Note that G = { ™ fn}zo:l is also a decreasing sequence with ¢g = @p. O]

The following theorem establishes connection among the local and global spectral

invariants introduced before.

Theorem 3.3. For every non-zero x € H we have
m(T) Cn(T,z) = w(T,z) Cw(T).

Proof. Let F = {f,}°°2, be a decreasing sequence with Np Nw(T,z) # 0. Then
Yrwy, # 0 implies lim, o || fn(T)z|| > 0 by Lemma 3.2. Thus T is quasianalytic
on w(T,z) at x, and so w(T,x) C (T, z).

Setting o = T \ w(T, z), let ¥ € H> be such that [J| = xa + 3X1\a, and form
the decreasing sequence F' = {0"}°°, with or = x,. By Lemma 3.2, ppw,, =0
yields the existence of an increasing 7: N — N such that lim,,_,« |77 f,(T)z|| = 0.
Then G = {XT(”W”}:; is a decreasing sequence with Ng = a and = € Ho(T, G).
Therefore n(T,x) C w(T,x) must hold. O

As a consequence we obtain conditions for the existence of a non-trivial hyper-

invariant subspace. (Statement (b) below appears already in [Kér01].)
Corollary 3.4.

(a) If w(T,x) # w(T) for some non-zero x € H and F' = {f,}>2, is a decreasing
sequence with Np = w(T) \ w(T, ), then there exists an increasing mapping
7: N — N, such that G = {XT(”)fn}zozl
ve = r, © € Ho(T,Q), and Ho(T,G) N H,(T) = 0. Therefore Ho(T,G) is a

non-trivial hyperinvariant subspace of T'.

1 also a decreasing sequence with
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(b) If m(T) # w(T) then Hlat T is non-trivial.

Remark 3.5. We know that w(T,z) = w(T") for every x € H,,(T'), which is a dense
Gs-set in H. On the other hand, it may happen that 7(T,z) # =n(T) for every
non-zero r € H. Indeed, let oy and as be sets of positive measure on T such that
a1 # a # oy holds for v = a1Naw. For j = 1,2, let T; € L(H;) be an a.c. contraction
satisfying the condition 7(7};) = w(7}) = «;. (Existence of such 7} follows from the
results in Section 3.2.) Form the orthogonal sum T'=T, & Ty € L(H = Hi ® Hs).
For a non-zero x = x1 @ x5 € H the local residual set w(T, ) is «aq if z9 = 0, g if
r1 =0, and oy U g if &1 # 0 # 25. On the other hand 7 (7) = «a.

It is known that the local asymptotic density function, and so the local quasi-
analytic spectral set as well, can be expressed in terms of the resolvent as a non-
tangential limit. (See Lemma 2.2 in [ARS07].)

Proposition 3.6. Given any x € ‘H we have
nt-lim (1 — [2%) [|(/ = 2T)"'z|* = w,.(¢) for a.e. ( € T.
z—(

Proof. For the sake of completeness we sketch the proof, which is based on the
representation of the unitary asymptote in the dilation space.

Let Ups 4+ € L(K. +) be the minimal isometric dilation of 7*. Then U, = (Up- 4)*
is minimal coisometric extension of 7". Taking the Wold decomposition Up« ; =
Sn @ R; € LK.+ =S, ® R.), where S, is a unilateral shift of some multiplicity n
and R, is unitary, we obtain the decomposition U, = S @ R.. The pair (X, R,) is
H.

a unitary asymptote of T', where X, = Px,

Given = € ‘H we have

nt- hm (1—121*) |( = ZR.) ' X,z ?

z—(

2
= nt- hm/ = LZ!PQUI,I(S) dm(s) = w, -(() forae. (€T.

Notice that the Poisson kernel appears in the integral. Using tools from harmonic

analysis it can be shown that, for every y € S,
nt-lim (1 — |2°) [|[(I —2S;)'y[|> =0 for ae. ( €T.
z—(
Now the statement follows from the decomposition

(I-z0)'e =T -z0) o =(1-2S)"'"Ps,oa® (I —zR,) ' X.x.
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3.2 (Quasianalytic contractions

The a.c. contraction T' € L(H) is quasianalytic if 7(T) = w(T) # 0. In view of
Corollary 3.4, in the setting of asymptotically non-vanishing contractions (HSP)
can be reduced to the case when T is quasianalytic.

For the sake of convenience and easy reference we collect some fundamental
statements on quasianalytic contractions in the following theorem. For their proofs
we refer to [Kér01] and [Keérll].

First we recall some definitions. The simple unilateral shift S € L(H?) is defined
by Sf = xf. The operator A € L(H) is a quasiaffine transform of the operator
B € L(K), in notation: A < B, if there exists a quasiaffinity (i.e. an injective
transformation with dense range) @ € L(H,K) such that QA = BQ. The operators
A and B are quasisimilar, in notation: A ~ B, if A < B and B < A. The function
f € H™ is partially inner if |f(0)] < 1 = ||f||o and the set Q(f) = {¢ € T :
|f(¢)| = 1} is of positive measure. The partially inner function f is regular, if
a C Q(f),m(a) = 0 imply m(f(a)) = 0; or equivalently, if f(a) is measurable

whenever o C (f) is measurable.

Theorem 3.7. The operators T, T and Ty below are all a.c. contractions.
(a) The unilateral shift S € L(H?) is quasianalytic with m(S) = T.
(b) If T < S, then T is quasianalytic with =(T) = T.

IfT i janalytic, then its inflation T™ = T @ ...®T i janalyti
(c) If T is quasianalytic, then its inflation S¥ © 1 s quastanalytic

n terms
with © (T™) = m(T) (n € N).
(d) If T is quasianalytic and M is a non-zero invariant subspace of T, then T|M
is quasianalytic with 7(T|M) = =(T).

(e) If T is quasianalytic and f is a regular partially inner function satisfying
the condition Q(f) N w(T) # 0, then f(T) is quasianalytic with w(f(T)) =
FQUf) N (T)).

(f) If Ty ~ Ty and Ty is quasianalytic, then Ty is also quasianalytic with w(Ty) =
7T(T1).

On the basis of these statements a lot of examples of quasianalytic contractions
can be constructed.

We show that quasianalycity determines asymptotic behaviour of the contraction.
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Theorem 3.8. If T is a quasianalytic contraction, then T € Chy.

Proof. Since w(T) # () and F = {x"}52, is a decreasing sequence with Np = T, we
infer that T € (..

Let us suppose that T ¢ C,o. Then H; = Ho(T*)* is a non-zero invariant
subspace of T and Ty} = T|H; € C1;. Hence T is quasisimilar to an a.c. unitary
operator Vi. By (d) and (f) of Theorem 3.7 it follows that V] is quasianalytic, what
is impossible since 7(V1) = 0 # w(V4). Therefore T' € C. O

3.3 Asymptotically cyclic contractions

Let T € L(H) be an a.c. contraction, and let (X, V) be a unitary asymptote of
T. We say that T is asymptotically cyclic, if the a.c. unitary operator V € L(K)
is cyclic, that is Vo2 ;V"y = K holds for some y € K. It is known that V' is cyclic
exactly when its commutant {V}' = {D € L(K) : DV = V D} is abelian. The
universal property of the unitary asymptote implies that for every C' € {T'} there is
a unique D € {V}’ such that XC' = DX, and the mapping v: {T'}/ — {V}/,C — D
is a contractive, unital algebra-homomorphism (see [NFBK, Lemma [X.1.4]). Hence
{T'} is abelian if so is {V'}' and ~ is injective, which is evidently true if T" € C}..
(Injectivity of v was studied in [GK11].)

We give sufficient condition for the contraction 7' to be asymptotically cyclic.
First we fix some notation. Given A € L(€) and B € L(F), Z(A,B) = {Q €
L(E,F) : QA = BQ} is the set of transformations intertwining A with B. The
operators A and B are unitarily equivalent, in notation: A = B, if Z(A, B) contains
a unitary transformation. Moreover, A and B are similar, in notation: A ~ B, if
Z(A, B) contains an affinity (invertible transformation). Finally A can be injected
into B, in notation: A 2 B, if Z(A, B) contains an injection. The minimal unitary
extension of the simple unilateral shift S € £(H?) is the simple bilateral shift S €
L(L2(T)), defined by Sf = xf.

Proposition 3.9. If T € L(H) is a contraction and T' < S, then T is asymptotically
cyclic and V|(XH)” =2 S.

Proof. The relation T" < S immediately implies that 7' € Cg; in particular, T is
a.c. and the unitary asymptote V' acts on a non-zero space K. Suppose that V is
not cyclic. Then S, = S® S < T by Theorem 1 in [Kér07] (see also Theorem 1X.3.2
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in [NFBK]). Thus Sy Ls , what is impossible by Theorem 5 in [NF74|. Therefore
V' is cyclic, that is T' is asymptotically cyclic.

Let Q € Z(T, S) be a quasiaffinity, and let Q € Z(T, S) be defined by Qh = Qh
(h € H). There exists unique Y € Z(V, S) such that Q = Y X. It is known that
ker Y is reducing for V, (YK)~ is reducing for S, and V|(ker Y)* = S|(YK)~. Since
(YK)™ D (QH)~ = H?, it follows that (YK)~ = L*(T), and so V|(ker Y )+ =
S. Taking into account that V is cyclic, we infer that kerY = {0}, thus Y is
a quasiaffinity. The relations Y(XH)~ C (YXH)™ = (QH)~ = H? imply that
(X#H)~ is a non-trivial invariant subspace of V. Since V2 V" XH)™ = K, we
conclude that V|(XH)™ = S. O

We note that Sy < S , and so T' < S does not imply that 7" is asymptotically
cyclic. Indeed, @ € I(SQ,g), defined by Q(f & g) = 9f + g, is a quasiaffinity,
provided ¥ € L*>(T) is a.e. non-zero and [;log[J|dm = —oo.

The set of asymptotically cyclic, quasianalytic contractions acting on the Hilbert
space H is denoted by Lo(H). If T is cyclic then so is V' (but not conversely), hence

(ISP) in the setting of quasianalytic contractions can be reduced to the class Lo(H).
Proposition 3.10. If T € Lo(H) then

(i) {TY} is abelian, and

(i) every non-zero C' € {T'} is injective.

Proof. I T € Lo(H) then T' € Cjg by Theorem 3.8, and so + is injective. Since {V'}’
is abelian it follows that {T'}’ is abelian too. For the proof of (ii) see Proposition 23
in [Kér01]. O

Proposition 3.11. [f Tl, T2 S Lo(H) and T1T2 = T2T17 then {Tl}/ = {TQ}/.

Proof. Fix any C € {T1}. Since Ty € {11}, the commutativity of {7} yields
CTQ = TQC, that iS, C c {TQ}/. ]

We have a lot of information on the structure of a contraction if its residual set
covers the unit circle. Hence it is worth considering the special class £,(H) = {T €
Lo(H) : 7(T) = T}. In the next theorem we summarize important properties of an
operator T' € L1 (H); for the proof we refer to Section IX.3 in [NFBK]. We recall that
Lats T" stands for the set of those invariant subspaces M, where the restriction 7'| M

is similar to S. The range of the functional calculus ®r is denoted by H*(T'), and
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the algebra W(T') is the closure of H*(T') in the weak operator topology. Finally
T is called reflexive if C' € W(T') whenever Lat C' D Lat 7.

Theorem 3.12. If T € Li(H) then
(i) vLats T =H,
(ii) @1 is an isometry,
(iii) H®(T) =W(T), and
(iv) T is reflexive.
Examples of operators in £;(H) are provided by the following propositions.

Proposition 3.13. If T € L(H) is a contraction such that T < S, then T € L1(H)
and H*(T) ={TY} .

Proof. By Theorem 3.7.(b) and Proposition 3.9 it follows that T € £4(H). For the
proof of H*(T') = {T'} see Proposition 5.3 in [Kérll]. O

Proposition 3.14. If T € Li(H), then TIM € L,(M) holds for every non-zero

wmvariant subspace M of T.

Proof. The restriction T|M is quasianalytic with (7| M) = n(T) = T by Theo-
rem 3.7.(d). Since T is asymptotically cyclic, so is T'| M, since its unitary asymptote

is a direct summand of V. O]

There is a strong connection between the classes Lo(H) and £1(H). The following

statement appears in [KT12] as Theorem 1.

Theorem 3.15. For every Ty € Lo(H) we can find Ty € L1(H) so that TyT) = ThTo;
hence {Ty} = {11} and so Hlat T, = Hlat 7.

Therefore, (HSP) in Ly(H) can be reduced to £1(H), where Theorem 3.12 pro-
vides a lot of information on the operator. If {T'} = H*(T'), then HlatT = LatT
is non-trivial. However, if {T'} # H*(T') then the shift-type invariant subspaces

are not hyperinvariant.

Proposition 3.16. Let T' € L1(H) be such that {T} # H>®(T). Then, for every
C e{T} \ H*(T), we have Lat C NLatsT = 0.
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Proof. Let C' € {T'} be such that CM C M holds for some M € LatsT. Since
{T|\M} = H*(T|M) by Proposition 3.13 and C|M € {T| MY, there exists f € H>
such that C|M = f(T|IM) = f(T)|M. In view of Proposition 3.10.(ii), the relations
C— f(T)e{T} and (C — f(T))|M = 0 yield that C = f(T). O

Corollary 3.17. For any T € L1(H), {T} = H*>(T) holds if and only if Hlat T =
LatT.

The following theorem states that if non-trivial hyperinvariant subspaces exist,

then such subspaces can be derived from shift-type invariant subspaces.

Theorem 3.18. Let T' € L1(H) be such that {T} # H>(T). Then the following

statements are equivalent:

(i) Hlat T is non-trivial;

(i) there ezists M € LatsT such that V{CM :C € {T}} # H;
(iii) there exists S C LatsT such that H # VS € Hlat T

Proof. Let us assume that A is a non-trivial hyperinvariant subspace of T'. Since
TIN € Ly(N), there exists a subspace M € Lats (T'|N) C Lats T included in N
(see Theorem 3.12 and Proposition 3.14). It is clear that No = V{CM : C € {T}'}
is a hyperinvariant subspace satisfying the conditions M C Ny C N, in particular
N, is non-trivial.

For any C' € {T'}' and X € C, we have (C — A[)M VvV M = CM VvV M. Hence
No = V{CM : C € {TV invertible}. However, if C € {T} is invertible, then
TICM~T|M =~ S and so CM € Lat, (T). O

It is known that the unilateral shift S is cellular-indecomposable, that is the in-
tersection of any two non-zero invariant subspaces of S is non-zero. The contraction
T € L1(H) is called quasiunitary, if X has dense range and so it is a quasiaffinity,
where (X, V) is a unitary asymptote of T'. (See Section 5 in [Kér01].)

Proposition 3.19. If T € L,(H), then the following conditions are equivalent:
(i) T is not quasiunitary,
(i) T < S,

(iii) 7T is cellular-indecomposable.
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Proof. Let (X,V) be a unitary asymptote of T'; we know that £L(K) 5 V = S. The
subspace (X#H)~ is invariant for V and Vo2, V™" (XH)~ = K. Hence, if (XH)™ #K
then V|(XH)~ = S, and so (i) implies (ii). The converse implication follows from
Proposition 3.9, thus (i) and (ii) are equivalent.

If T is not quasiunitary, then the relation S < S implies 7' < S. Hence T < S
always holds. Therefore, (ii) and (iii) are equivalent by the result of [Tak90]. O

If T is not quasiunitary, then Hlat 7" = LatT" is a rich lattice containing Latg T
and (ker (7% — Xl'))l (A € D) because of S* < T*. (See Propositions 3.13, 3.19 and
Theorem 3.12.) Hence (HSP) in £,(H) can be reduced to the quasiunitary case.
Propositions 3.14, 3.19 and Theorem 3.12 yield:

Proposition 3.20. If T € Li(H) is quasiunitary, then there exist My, My € Laty T
such that My N My = {0}.

3.4 Functional commutant

Let T' € L(H) be an asymptotically cyclic a.c. contraction, and assume that 7' €
Cy. and w(T) = T. Let (X,V) be a unitary asymptote of T, and let us consider
the contractive algebra-homomorphism ~: {T}) — {V},C — D, where XC =
DX, which is injective because of T" € C}.. The functional calculus ®: L>*(T) —
{V},f — f(V) is an isomorphism between the corresponding Banach algebras.
The composition Jp = &' oy: {T} — L°°(T) is also an injective, contractive,
unital algebra-homomorphism. It can be easily checked that 77 is independent of
the special choice of (X, V). Indeed, for j = 1,2 let (X, V;) be a unitary asymptote
of T', and let v;, ®; be defined as before. There exist unitary transformations Y; €
Z(Vi, V) and Yy € Z(Va, Vi) such that X; = V1X1, X; = Y2 Xy and Y, = Yi 1. Given
any C € {T'}' we have X;C = D;X; = f;(V;)X;. Hence

L(V)Xi =Y f2(V2)Y1.Xh = Yo fo(V2) Xz = Y2 XoC = X1C = fi(V1)Xa,

and so fo(V1) = f1(V1), whence fo = f; follows.

The uniquely determined 77 is called the functional mapping of T', and its range
F(T) is called the functional commutant of T. Since Fr(f(7)) = f holds for every
f € H™, we obtain that F(T') is a subalgebra of L>°(T) containing H*. It is
natural to ask the following questions. Which function algebras H>* C A C L>(T)

are attainable as a functional commutant: A = F(T'), and what kind of information
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can be derived from the properties of 7 and F(T") on the behaviour of 77 We
recall that the function algebra A is called quasianalytic, if f(¢) # 0 for a.e. ( € T
whenever f is a non-zero element of A. The following statement was proved in
[Kérl1] (see Proposition 4.2 there).

Proposition 3.21. If T € L1(H), then F(T) is quasianalytic.

It is clear that F(T) = H™ exactly when {T'} = H*(T'), and this happens in
particular if 7" < S. (For a more complete characterization of this case see Theorem
5.2 in [Kérl1].)

If T € £,(H) and F(T) # H, then the closure F(T')~ contains H>* + C(T)
(see Theorems IX.1.4 and IX.2.2 in [Gar(07]); thus F(7")~ is not quasianalytic, and
so F(T) is not closed, or equivalently, 77 is not bounded from below.

We recall that n € H*™ is an inner function, if |n(¢)| = 1 holds for a.e. ¢ € T.
Let H stand for the multiplicative semigroup of all inner functions. Given a
subsemigroup B of H>®, the algebra B - H® generated by B (set of conjugates of
functions in B) and H* is clearly quasianalytic. The closure (B -H °°) ~ is called the
Douglas algebra induced by B. By the celebrated Chang—Marshall theorem every
closed subalgebra A of L*°(T), containing H*, is a Douglas algebra (see Theorem
IX.3.1 in [Gar07]). Therefore, F(T)~ = (B-H*) holds with B = {n € F(T)~ N
H .1 € F(T)"}. We note that B can be replaced by a semigroup generated
by interpolating Blaschke products (see Theorems I1X.3.2 and IX.3.4 in [Gar07]).
The question which pre-Douglas algebras B - H* arise as functional commutants
of contractions of class £,(#) was posed in [Kérll]. The next theorem settles this

problem.
Theorem 3.22. The only attainable pre-Douglas algebra is H*.

Proof. Set T € L1(H), and let us assume that F(7') # H>. If the spectrum o (7))
of T' covers the closed unit disc D™, then 77 ¢ F(T') for every non-constant n € H>
(see Proposition 4.4 in [Kérl1]), hence F(7T') can’t be a pre-Douglas algebra. Let us
assume now that o(7") # D~. Select a point a € D\ o(T"), and consider the operator
A= (T —al)™! € {T} and the function g = J7(A) = (x —a)™' € F(T). Since

Ai=expA =73 (n)7TA" € {T}, it follows that § :=Jp(A) = Y ((n!) " =
exp g belongs to F(T'). The function g, defined on T, has an analytic extension
G(z) = exp(1/(z —a)) defined for z € C\ {a}. It is clear that a is an essential

isolated singularity of G. Let us assume that we can find functions h € H*> and
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k € H® so that § = hk = h/k. Let H and K be analytic extensions of h and k,

respectively, onto D. Then H/K is a meromorphic function on D, and

_H(z) _ h(Q)
nt-l{}}m RO 9(¢) = G(Q)

holds for every ¢ € wp, where m(T \ wg) = 0. Let 2 be a domain in I bounded
by an open arc a; on T and a closed segment o, such that a ¢ Q7. Let ¢ be a
conformal mapping of D onto €2, and let us consider the bounded analytic function
F=(Hoy)—(Gov)(K o) onD. By Carathéodory’s theorem 1 can be extended
to a homeomorphism of D~ onto €2~. Since the Jordan curve 0f) is rectifiable, the
set wy = ¥ Hwo Nay) C T is of positive measure. For every ¢ € wy, an 7 € (0,1)
can be given so that I = {ri)(¢) : 7 <r < 1} C Q. Then the arc Cc = ¢~ (1) C D
terminates in ¢, and F'(z) converges to 0 when z tends to ¢ along C;. We conclude
that nt-lim, . F'(2) = 0 by Lindel6f’s theorem (see Theorem 2.3 in [CL66]). Hence
the theorem of F. and M. Riesz implies that F' is identically zero (see Theorem 2.5
in [CL66]). Therefore, we obtain that G = H/K, what is impossible since H/K is

meromorphic on D and a € D is an essential singularity. O]

Special case of the following property of the functional commutant has been

exploited in the previous proof.

Proposition 3.23. If f € F(T), r > |3:'(f)| and ¢ is analytic on rD, then
po feF(T).

Proof. Consider the Taylor expansion ¢(z) = > ¢,2" (z € rD), where, of course,
limy, oo /Jn] < 1/r. Setting C = 3;1(f) € {TY, we know that C' = ¢(C) =
Yo gcnC™ € {T'} (convergence in norm), and so

o0

o(f) = caf” =7r(C) € F(T).

n=0

O

We recall that H>* C A C L™ is a generalized Douglas algebra, if for every
f € Aand A € C, |A] > [|f|lo implies (f — X\)™! € A. These algebras were
introduced and studied in [Tol92], where among others Gelfand’s theory of maximal
ideals and the theory of Douglas algebras were carried over to such algebras. We
know that F(7T') is a generalized Douglas algebra if and only if 57 preserves the
spectral radius, and in that case o(T) = T (see Theorems 5.5 and 5.6 in [Kérll]).
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It remains open which generalized Douglas algebras, other than H*°, (if there are
any) arise as a functional commutant F(7T') of a contraction T' € L1(H). Are there
any quasianalytic generalized Douglas algebras, other than H*°, at all?

We provide an example of an operator T € L4(H) such that F(T') # H> and
F(T)N H® = T1. (Here 1 denotes the constant 1 function.)

Example 3.24. We consider extended version of Example 5.8 in [Kérll]. Given
0<d<1,set Gy = {re* : V6 <r <1, 0<t<x} Letns denote the conformal
mapping of D onto the domain Gy, satisfying the condition 1s(¢) = ¢ for { = 1,4, —1.
Forming the regular partially inner function J5 = 52, let us consider the analytic
Toeplitz operator Ty € L(H?) defined by Tsf = Usf. It can be easily verified (see
[Kerll]) that Ts € £1(H?), o(T5) ={z € C:§ < |2| <1} and

F(T5) ={g9 € L>(T) : go U5+ = h|T4 for some h € H*},

where T, = {2z € C: |z] =1,Imz > 0} and V5 = 95| T,.

Let gs € L>(T) be the inverse of ¥; 4, that is gs(¥5(¢)) = ¢ for every ¢ € T..
Since ¢s(T \ {1}) = T, it follows that gs ¢ H*. (Indeed, assuming gs € H> let us
choose a fractional linear function ¢ transforming T onto (0, 1). Then Im(togs) =0
a.e. on T; taking the Poisson transform we obtain that Im(v o gs) is zero on D.
The Cauchy—Riemann equations yield that 1 o g5 is constant. Thus g5 is constant,
what is impossible because of gs(T \ {1}) = T,.) On the other hand, the equation
gsoUs+ = x|T4 implies that gs € F(T5). Therefore F(Ts) # H> for every ¢ € [0,1).
In particular, if 6 = 0 then o(7y) = D, whence, by Proposition 4.4.(b) in [Keérll],
F(Ty) N H* = T1 follows.

Though F(T5) # H®, there is a connection between these algebras. Namely,
for any 0 € [0,1), the commuting relation T35S = ST yields that {75} = {S} (see
Proposition 3.11). It is known that {S} = H>°(S) and 7 is an isometry. Thus the

composition Jp o /7\5_1 is a contractive algebra-isomorphism from H* onto F(T).

We show that the functional commutant is a similarity invariant. Actually, the

following theorem contains a more general statement.

Theorem 3.25. For j = 1,2, let T; € L1(H;) be given with unitary asymptote
(X;,V;). Let us assume that there exist Y € I(11,Ts) and Z € Z(T>,T1) such that
ZY #0. Then

(a) Y and Z are injective;
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(b) 0 #A1, (Z2Y) =3, (Y Z) =: g belongs to F(T1) N F(1Tz) and gF(T1) C F(Tz),
9F(1z) C F(T1);

(¢) in particular, if ZY = I, that is when Ty = Ty, then g = 1 and F(T1) = F(13).

Proof. By the universality property of the unitary asymptotes there exist A €
Z(V1,Va) and B € Z(V,,V;) such that AX; = X3V and BX, = X;Z. Since
X1(ZY) = BXyY = (BA)X1, ZY € {T1} and BA € {V}}/, we infer that 7, (ZY) =
g where g(V}) = BA. Similarly, AB = h(V3) with h = 35,(YZ). The assumption
ZY # 0 yields that 0 # g € F(T). Since the function algebra F(77) is quasian-
alytic, we obtain that g(V}) is a quasiaffinity, and so B has dense range. Now the
equations g(V1)B = BAB = Bh(V3) = h(V1)B imply that g(V;) = h(V}), whence
g = h follows. Thus YZ € {75} is also non-zero, and we conclude by Proposi-
tion 3.10.(ii) that ZY and Y Z are injective, hence Y and Z are injective too.

Given an arbitrary f; € F(T1), let us consider Cy = (37,) " (f1) € {1}, Cy =
YC,Z € {Ty} and A7, (C2) = fo. Then the equalities

fo(Vo)Xo = XoCy = XoYCOL Z = AXChZ = Afy(V1) XaZ
= AfiVi)BXy = f1(Va)ABX, = f1(V2)g(Va) X

yield that fo = f1g. Therefore gF(T7) C F(T3), and in a similar way we obtain that
gF (T>) C F(Th).

Since Z is injective, the equation ZY = [ is equivalent to the invertibility of Z
with Y = Z~1. In that case g =97, (ZY) = 1, and so F(T}) = F(T3). O

We conclude this section by providing representation of the functional mapping
in the functional model.

Let &£, &, be Hilbert spaces, and let ©: D — L(&£,&,) be a purely contrac-
tive, analytic, inner and x-outer function. Then H(0) = H?*(E,) © OH*(E) is the
corresponding model space, and the model operator S(©) € L(H(O)) is defined
by S(©)u = Pye)(xu), where Pye) € L(H?*(E,)) denotes the orthogonal projec-
tion onto H(©). We know that S(©) € Cjp, and every contraction of class Cig
is unitarily equivalent to a model operator of this kind. Let us consider the mea-
surable, projection-valued function A,(¢) = I — ©(()O(¢)* defined for a.e. ( € T,
the subspace R, = A,L*(&,) in L*(&,), and the a.c. unitary operator R, € L(R.)
defined by R,v = xv. The pair (X,, R,) is a unitary asymptote of S(©), where
X, € L(H(O),R,) is defined by X,u = A,u. (For the characteristic properties of
A, see [Kérl3).)
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The spectral-multiplicity function of R, is 0.(¢) = rank A,(¢). Hence S(©) is
asymptotically cyclic exactly when 0, < 1. The asymptotic density function of S(©)
at u,v € H(O) is wyu(¢) = (Ax(Q)u(C),v(¢)). Thus the local residual set of S(O)
at u is w(S(O),u) = {¢ € T : A (Q)u(¢) # 0}, while the global residual set is
w(S(O)) ={C € T: A # 0}. In view of Proposition 3.1 and Theorem 3.3 we

obtain the following characterization.

Proposition 3.26. We have S(©) € L1(H(O)) if and only if
(i) 0.(¢) =1 fora.e. (€T, and
(i) A(Qu(C) #0 for a.e. ( € T, whenever 0# u € H(O).

By the Lifting Theorem C' € {S(©)}’ if and only if there exists a bounded, an-
alytic function ¥: D — L(&,) such that YOH?*(E) C OH?*(E) and Cu = Pye)Tu
for every u € H(©). We note that ¥ can be chosen so that |¥]. = ||C||. Fur-
thermore, the condition WOH?(£) C OH?*(E) is equivalent to the existence of a
bounded, analytic function ¥o: D — £(E€) such that VO = OV,. Let H*(0©) stand
for the set of all bounded, analytic functions U: D — L(&,) satisfying the condition
VOH?(E) C ©H*(E), and for any ¥ € H>*(O) let C'y be the corresponding operator
in {S(0©)} defined by Cyu = Pye)Vu (v € H(O)). Moreover, let I'g(V) denote the
function ¢ € L>(T) defined by A, WA, = ¢A,. (Notice that dim A,(¢)E, = 1 for
a.e. (€ T.)

Theorem 3.27. If S(©) € L1(H(O)), then for every ¥ € H*(O) we have:
(i) AU(I —A,) =0, and
(ii) Ys)(Cw) = Lo (V).

Proof. Set U € H®(O), and let ¢ = ['g(¥). For any u € H*(£) and n € N, we
have A, ¥O(x "u) = x "A,¥Ou = 0, since ¥Ou € OH?*(E) and A,© = 0. Thus
A,V¥Ov = 0 holds for every v € L?(£), and so A, ¥O = 0. Since O(() is an isometry
from &£ onto &, © A,(Q)&, for a.e. ¢ € T, it follows that AW (I — A,) =0.

For every u € H(O), we have

X.Cyu = A PyeyPu=AVu = ATV (Au+ (I —A)u)
= A VA u = YpAu = (R, X, u.

Therefore, Yg0)(Cw) = 9. O



Chapter 4

Quasianalytic contractions in special

classes

This chapter is devoted to special classes of operators, where quasianalytic contrac-
tions naturally arise. Namely, we study analytic contractions in Section 4.1 and

bilateral weighted shifts in Section 4.2.

4.1 Analytic contractions

In [ARSO7] the multiplication operator on a general Hilbert space of analytic func-
tions has been studied. Namely, let H, be a Hilbert space of analytic functions
defined on D, with the usual vector space operations, satisfying the following con-

ditions:
(i) for every f € H,, we have xf € H, and x| < | fll (x(2) = 2);

(ii) for every A € D, the evaluation Ky: H, — C, f +— f(A) is a bounded linear

functional, and so there is a unique reproducing kernel ky € H, with the

property f(A) = (f,kx) (f € Ha);
(iii) 1 € H,.

The operator M, € L(H,), M,f = xf is called an analytic multiplication operator.
Since M*ky = Mk (A € D) and V{ky : A € D} = H,, it follows that M, is a
Co-contraction. The condition (iii), which yields H> C H,, is not always assumed

in [ARSO7]; we suppose it here for simplicity. The boundary behaviour of functions
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in ‘H, is governed by the set
A(Ha) ={¢ € T ut-lim (1 A2) 7 [kl 2 > 0.
A—=C

Namely, it has been shown in [ARS07]| that
(a) for every f € H,, nt-lim,,. f(2) exists for a.e. ( € A(H,);

(b) a function f € H, can be found so that nt-lim, . f(z) does not exist for a.e.

¢ e T\ A(Ha).
The measurable set A(H,) can be related to the quasianalytic spectral set of M,.

Proposition 4.1. The inclusion A(H,) C w(M,) holds. Therefore M, is quasian-
alytic, whenever A(H,) = w(M,) # 0.

Proof. Setting a non-zero f € H,, the inequality

[f (V7
(1= [AP) IRAl1?

< (L= PPN =XM) Il (A e D)

yields by Proposition 3.6 that

—  [f)]?
nt-lim
A=¢ (1= |A2) [|RAl?

<wy(¢) forae (e€T.

By Proposition 3.3 of [ARS07]| we know that

: NP
nt-lim
aoc (1= [AP) [|EAl?

Thus w(M,, f) D A(H,), and so A(H,) C 7(M,); see Proposition 3.1 and Theorem
3.3. O]

>0 forae € A(H,).

Conditions for the equality A(H,) = w(M,) are given in [ARS07].

It is easy to verify that the mapping A — k) is coanalytic, which means that
the function @(A) = (f,kx) (A € D) is analytic for every f € H,. Hence M, is an
analytic operator in the sense of [CEP89]. We say that 7" € L(H) is an analytic
contraction if ||T|| < 1 and there exists a coanalytic function n: D — H satisfying

the conditions:
(i) T*n(\) = Ap()) for every A € D,

(i) Vin(\): A €D} = H.
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(We note that such contractions are called fully analytic in [CEP89].) The function

1 has an expansion n(\) = 0% X"y, (A € D), where

m ||ynH% < 17 \/{yn ;L.o:o = H, T*yn = Yn-1 for n € N, and T*yO = 0.
n—oo

We say that T is a purely analytic contraction, if n can be chosen so that y, ¢
V{yn}5o . It can be easily verified that these are exactly those contractions, which
are unitarily equivalent to an analytic multiplication operator. We note also that
T* belongs to the Cowen—Douglas class By (D) introduced in [CD78] if and only if
T is an analytic contraction with approximate point spectrum o,,(7") = T and with
Fredholm index ind 7" = —1. Surprisingly, rather general spectral conditions ensure
the existence of purely analytic invariant subspaces, i.e. invariant subspaces where
the restriction is a purely analytic contraction. Namely, let " € L(H) be an a.c.
contraction with an isometric functional calculus ®7, and let us assume that the

extended right spectrum
o (T)=D\{AeD: (T —A)H="H and 0 < dimker(7T — \]) < oo}

is dominating in D, that is a.e. ( € T is a non-tangential cluster point of ,.(7T).
Then there is a dense set Hg in H such that V{T"xz}>  is a purely analytic invariant
subspace of T', for every x € Ho; see [CEP89).

It is not transparent how to identify the unitary asymptote of a general analytic
multiplication operator M,. This identification can be carried out in the special
case when H, is induced by a measure satisfying particular conditions considered
in [ARS09]. Let p be a finite positive Borel measure, supported on D™, with the
property p(T) > 0. Let P stand for the algebra of complex polynomials, and let
P?(1) denote the closure of P in L?(). We consider the cyclic subnormal operator
S, € L(P*(u)), defined by S, f = xf. The following assumptions are made:

(i) P?(p) is irreducible, i.e. P?(1) does not contain non-trivial characteristic func-

tion;

(ii) for every A € D, the evaluation K,: P — C, p — p(A) is a bounded linear

functional; its continuous extension to P?(u) is represented by ky € P?(u), i.e.
p(A) = (p.kx) (p€P).

By the results of [ARS09] (see also Chapter VIII in [Con91|), we know that for

every f € P?*(u), the function f(\) = (f, ky) is analytic on D, f(\) = f(\) for



4.2. Bilateral weighted shifts 34

p-a.e. A € D, and for pp-a.e. ¢ € T we have nt-limy_,. f(A) = f(¢). Here p denotes
the restriction of p to the Borel subsets of T, which is a.c. with respect to m.
Therefore, S, can be considered as an analytic multiplication operator. Furthermore,
for h = dpuo/dm we have h(¢) = nt-limy ¢ (1 — IA2) " ||kal 2 for ae. ¢ € T, and
A(P* () = {¢C € T : h(¢) > 0}. Tt is clear that (X,V) is a unitary asymptote
of S,, where V- € L(L* (o)), Vf = xf and X € L(P?*(u), L*(po)) is defined by
X f = f|T. Thus S, is asymptotically cyclic. Since w(S,) = A(P?(u)), it follows by
Proposition 4.1 that S, is quasianalytic.

Proposition 4.2. If h(¢) > 0 for a.e. ¢ € T, then S, € L1(P*(n)) and F(S,) =
X(P*(p) N L ().

Proof. The equation for F(S,,) follows from Yoshino’s theorem; see Theorem I1.5.4
in [Con91]. O

4.2 Bilateral weighted shifts

Weighted shifts always serve as a source of examples. Here we consider those bilateral
weighted shifts, which are Cjo-contractions. As earlier, S € £(L3(T)), Sf = xf is
the simple bilateral shift. The Fourier transformation F: L2(T) — 1%(Z), f + [,

~

where f(n) = (f,x") (n € Z), is a Hilbert space isomorphism. Let us assume that

the sequence §: Z — (0, 00) satisfies the conditions:
(i) B(n) > B(n+ 1) for every n € Z,
(ii) lim, 00 f(—n) = 00,

(iii)o lim, oo B(n) > 0.

It is clear that

*(8) = {51 Z—C:Elf= ) Em)PBn)* < 00}

n=—oo

is a dense linear manifold in [*(Z), which is a Hilbert space with the norm |¢]|s.
Hence

12(8) = {f € LX(T) : € 2(8) }
is a dense linear manifold in L?(T), which forms a Hilbert space with the norm
Iflls == Hf”g It can be easily verified that T3 € L(L*(8)), defined by Tsf =
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xf, is a Cjp-contraction; see Section IX.2 in [NFBK]|. Furthermore, we obtain all
bilateral weighted shifts, which are C}y-contractions, in this way. Since T is unitarily
equivalent to T.5 (¢ > 0), we may assume that lim,_,,, f(n) = 1. Moreover, in that
case Tp is similar to T, where B(=n) = B(—n) for n > 0 and B(n) = 1 for n > 0.
Therefore, without restricting generality, condition (iii)o can be replaced by the

condition

(iii) B(n) =1 for every non-negative integer n € Z, .

Obviously, the pair (Xj3,S) is a unitary asymptote of Tj, where Xz: L*(8) —
L*(T), f + f is a quasiaffinity. Thus T} is asymptotically cyclic and quasiuni-
tary, with residual set w(7p) = T.

The special form of Xj yields that, for any ¢ € F(Tj), the operator My sz =
@TB)_I (¢) € {Tp} acts as a multiplication: Mysf = ¢f (f € L*(B)). Clearly,
F(Tz) € L*=(T) N L*(B). The following characterization follows from the Closed
Graph Theorem.

Proposition 4.3. The functional commutant F(T) consists of the measurable func-
tions ¢: T — C satisfying the condition ¢L*(3) C L*(B).

The previous discussion shows that Tj belongs to the class £,(L?*()) exactly
when the function space L?() is quasianalytic, that is when f({) # 0 for a.e.
¢ € T whenever f is a non-zero element of L?*(3). This happens if 3(—n) increases

sufficiently fast as n tends to infinity.

Proposition 4.4. The function space L?(B) is quasianalytic if and only if
Z n~?log f(—n) = oco.
n=1

Proof. Suppose that Y7 n~%log 8(—n) = oo, and let us consider a non-zero func-

tion f € L*(3). For any n € N, we have

= o] < S Fmpse] < 1l
F, = —k < L L < |
;m >|] < 5o [;m )*8( >] 5
whence . N .
log F, 1 B
SR < ogfln Y -3 B -

follows. We infer by Corollary I11.4.2 in [Beu77]| that f(¢) # 0 for a.e. ¢ € T.
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Let us assume now that S°°° n~2log B(—n) < oo, and set W(n) = B (—|n|)*
(n € Z). Since Y2 (logW(n)) /(n*+1) < oo, W(n) > 1 for every n € Z, and
limj,| 00 W(n) = 00, we obtain by the Corollary in [Koo98] that there exists a non-

identically zero sequence {a, },ez of complex numbers such that >~ > a,|W(n) <

o0

> . apX" satisfies the condition f (e”) =0

oo and the continuous function f =
whenever h < |[t| < 7. Here h € (0,7) is an arbitrarily prescribed number. Notice

o~

that, because of uniform convergence, f(n) = a,, for every n € Z, and so f is non-
zero. On the other hand, the relations >~ 1f(n)|B(n)? < Yo JlanWi(n) < 0o

~ ~

and lim, oo f(n) = 0 imply that >°>° _[f(n)[*A(n)? < oo, and so f € L*(5). O

The invertibility of T is controlled by the number
dg =inf{f(n+1)/B(n):neZ} e Ry.

Namely, T} is invertible if and only if dg > 0. The non-invertible case is well

understood.

Proposition 4.5. If 63 = 0, then F(T3) = H™ and so Hlat Ty = Lat Tj is non-

trivial.

Proof. For reader’s convenience we sketch the short proof. Given ¢ € F (1), for any
n € N and k € Z we have (Mg sx*, x" )5 = d(—n)B(k — n)?, whence |¢p(—n)| <
M, 5]|8(k)/B(k — n) follows. Since §5 = 0, we infer that ¢(—n) = 0. O

Remark 4.6. (a) If 8(—n) = exp(n?) (n € N), then T € £y (L*(3)), {Ts} =
H>(Ts), but Ts is not a quasiaffine transform of S, since T} is injective. This
example can be contrasted with Proposition 3.13.

(b) The sequence 8 can be chosen so that dg = 0 and Y >, log 8(—n)/n* < .
In that case the functional commutant F(7p) is a quasianalytic algebra, while the

Cio-contraction T is not quasianalytic.

Now let us turn to the case when 3 > 0, and so dg = HTﬁ_lH_l. Let 75 :=
(r(T5'))~" be the inner spectral radius of Tjs. It is easy to verify that

S|=

B —1
0<édsg<rz< (E ﬁ(—n)%> 1§ (h_m B(—n) ) =: Rg < 1.

n—oo n—oo

It is known that the operators of the form ij:_ n Ty are dense in {Ts}’ in the
strong operator topology, see Corollary (b) in Section 8 of [Shi74|. Thus Hlat T =
Lat T N Lat T;', and the hyperinvariant subspaces of T may be called biinvariant.
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The case rg = 1 has been settled by Esterle, by providing a subspace M satisfying
condition (ii) of Theorem 3.18. Namely, Theorem 5.7 of [Est97| can be stated in the

following way.

Theorem 4.7 (Esterle). If rg = 1, then there exists M € Lats Ty such that M =
V{CM : C e {Tz}} # L*(B), and so M s a non-trivial hyperinvariant subspace

Of Tﬁ .

For any R € (0,1), let A(R) := {2z € C: R < |z < 1}. It is known that the
point spectrum of the adjoint satisfies the condition A(Rgz) C 0,(T5) C A(Rs)™;
see Theorem 9 of Section 5 in [Shi74]. Thus the (HSP) for bilateral weighted shifts,
which are Cjp-contractions, is open (up to our knowledge) in the case when

o0 1 o
0<55§7“5<R5:1 and m:oo.

n2
n=1

Under these conditions the functional commutant can be related to bounded analytic
functions defined on an annulus. For R € (0, 1), let H*(A(R)) stand for the Banach
algebra of bounded analytic functions on A(R). We note that F(7p) is an abelian
Banach algebra with the norm ||¢||,c := ||Mygl|. In the next statement we consider
this norm on F(7T}p).

Proposition 4.8. If 0 < dg < rg < 1, then the mapping

o

Ag: F(T3) - H*(A(rg)), ¢ — @, where &(z) = Z d(n)2",

n=—oo

18 an injective, contractive algebra-homomorphism, while the mapping
Kg: H*(A(63)) = F(I3), © — ¢, where ¢(C) = nt—ii_)rré O(2) for a.e. (€T,
18 a bounded algebra-homomorphism; moreover
Asky: H¥(A(65)) = H¥(A(r5)), © s O[A(ry).
In particular, if 0 < 0g = rg < 1 then Ag is an algebra-isomorphism.

Proof. For the sake of completeness we sketch the proof, which is an adaptation of
the proof of Theorem 10’ in Section 6 of [Shi74] to our situation, avoiding formal

series.
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Setting ¢ € F (1), the inequality occurring in the proof of Proposition 4.5 shows
that

|6(=n)| < (| Mgl inf{B()/B(k —n) : k € Z} = | Mysll - | T "I (n € N),

whence lim,, 4 |($(—n)]1/” < rg follows. Hence, the Laurent series >~ ngﬁ(n)z"
converges to an analytic function ® on A(rg). Let us fix z € A(rg). Since the linear
functional E,: F(T3) — C, ¢ — ®(z) is multiplicative and F(T}3) is an abelian
Banach algebra, we infer that ||E,|| < 1, and so |®(2)| < [|#]/g.c- Thus Ag is a
contractive algebra-isomorphism.

Given any ® € H*(A(d3)), let us consider the Laurent expansion ®(z) =
> 2™ The function &4 (z) = 7 ¢,2" is analytic on I, while the function
d_(2)=>>" ¢,z "is analytic on C\ (§5D)~. For any r € (d5,1), ®_ is bounded
on A(r), hence &, = & — &_ is bounded on A(r), and so ¥, is bounded on D.
By Fatou’s theorem ¢(¢) = nt-lim, ¢ ®(z) = (nt-lim,,¢ P4 (2)) + ®_(¢) exists for
a.e. ( € T. Setting ¢.(¢) = ®(r¢) (r € (03,1), ¢ € T), Lebesgue’s dominating
convergence theorem yields that (E(n) = lim,_,; ggr(n) = ¢,r" = ¢, for every n € Z.
(This argument shows that ¢ can be recovered from Ag¢, and so Az is injective.)

N

For any N € N, set oy = > _ < — %) cpX". By a von Neumann-type

inequality for annulus we know that

lon(Tp)ll < Cgsup {lon(2)] - 2 € A(dp)},

where C depends only on dgz; see Proposition 23 in Section 6 of [Shi74|. Since
lon(rQ)] < ||pr]loe < [|®]|le for 7 € (d5,1) and ¢ € T, it follows that the se-
quence {M,, 3 = on(Ts)}5_, of operators is bounded. Taking into account that
(onx*,x") s = on(l — k)B(1)? converges to ¢;_x[(1)* as N — oo (k,l € Z), we con-
clude that M,, s € {Ts}' converges in the weak operator topology to an operator
My with ¢ € F(T), as N — oo. Since 9l — k)B(1)? = limy_oolonx®, X)s =
a_iB()? (k,l € Z), we obtain that ¢¥(n) = ¢, = ¢(n) (n € Z), and so ¢ = @ €
F(T3). Clearly, ||¢|lg00 < Csl/®|| which means that Kﬁ is a bounded algebra-

homomorphism. The relation (Aﬁ o Kﬁ)fb = ®|A(rs) readily follows from the previ-

ous discussions. O



Chapter 5

Spectral behaviour of quasianalytic

contractions

Though (ISP) and (HSP) are open for asymptotically non-vanishing (a.n.v.) contrac-
tions, Corollary 3.4 shows that these questions are settled in the non-quasianalytic
case. By this fact it becomes crucial to determine the spectral behaviour of quasian-
alytic contractions. Namely, if an a.n.v. contraction 1" does not meet this behaviour,
then T is not quasianalytic, and so Hlat T is non-trivial.

If the contraction 7' is quasianalytic, then it is of class C'g; see Theorem 3.8.
Under this asymptotic behaviour there is a connection between the spectrum o (7") of
T and the spectrum o (V') of its unitary asymptote V. First we note that (V') is the
essential support of w(T): o(V) = es(w(T)), which is the complement of the largest
open subset @ of T with the property m(O Nw(T)) = 0. It can be easily proved
that o(V') is neatly contained in o(7'), that is o(V) C o(T) and m(a(V)No’) >0
holds for every non-empty closed subset ¢’ of o(T") with the property that o(T) \ ¢’
is also closed. More importantly, this is the only constraint on the spectrum of a
Co-contraction, even in the cyclic case, that is when V;° /' T™h = H holds with some
vector h € H; see Chapter IX in [NFBK]. Are there any other constraints if 7" is

quasianalytic? More precisely, we pose the following problem.

Question 1. Given a measurable set wy C T of positive measure and a compact
subset ¢ of the closed unit disc D~ such that es(wp) is neatly contained in o, does

a quasianalytic contraction T exist with the properties o(T) = o and w(T') = wy?

In the Cyy class the construction starts by producing a Cg-contraction 7' sat-

isfying the conditions w(7T) = wy and o(T) = es(wp), as a restriction of a bilat-
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eral weighted shift W to an appropriately chosen invariant subspace. However, if
m(T\wp) > 0 then W is necessarily non-quasianalytic; otherwise 7(7T) = 7(W) =T
would happen. Furthermore, the coincidence o(T) = es(w(T)) is ensured by the
condition Y 2 n?||T7"|| < co with some integer p. However, this relation implies
the existence of an operator C' € {T'}' and a non-zero continuous function f on T
such that XC' = f(V)X and the set {¢ € w(T") : f(¢) = 0} has positive measure,
less than m(w(T)); see Lemma IX.2.11 and its proof in [NFBK|. Hence we can
present a non-zero vector h € H such that Xh is not cyclic for the commutant {V'}',
which is impossible if 7" is quasianalytic; see Theorem 16 in [Kér01]. Therefore, we
have to find another approach to provide a quasianalytic contraction 7', if it exists
at all, such that its spectrum o(7') is a proper subset of T. First of all the following

simpler question should be answered.

Question 2. Do we have for every closed arc J of positive measure on T and for

every ¢ > 0 a quasianalytic contraction T satisfying the conditions o(T) = n(T) = J
and [|[T7Y| > ¢?

We know that the a.c. contraction 7" has shift-type invariant subspaces if w(7) =
T. Namely, H = V LatsT, where Laty; T consists of those invariant subspaces M
where T| M is similar to the simple unilateral shift S € L(H?), Sf = xf (x(¢) = {);
see Theorem 1X.3.6 in [NFBK]. Any quasianalytic contraction can be related to such

a contraction having a rich invariant subspace lattice.

Theorem 5.1. For every quasianalytic contraction T, there exists a quasianalytic
contraction Ty with w(T5) =T such that {12} D {11}’ and so Hlat T C Hlat T;.

Proof. By Theorem 3 of [KT12| there exist a compact set K C 7(7}) and a continu-
ous function f on D~ such that f is analytic (even univalent) on D, f~!(T) = K and
m(f(«)) = 0 for every Borel subset a of K of zero measure. Then 7(73) = T holds
for the a.c. contraction T = f(7}) by Corollary 2.5 of [Kérl1] (see also Lemma 5 in
[KT12]). It is obvious that {T5} D {11} . O

Therefore, the (HSP) for a.n.v. contractions can be reduced to the case, when
T is quasianalytic and (7)) = T. Clearly, T is neatly contained in o(T") exactly
when o(T") is connected. Thus, in this particular class Question 1 has the following

modified form.
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Question 3. Given a connected, compact subset o of D™, containing T, does there
exist a quasianalytic contraction 7" satisfying the conditions o(7T) = ¢ and n(T') =
T?

The preceding two questions are related. Let D, := {z € D : Imz > 0},
T, :={CeT:Im{ >0}, and for any K C Clet K* :={2?:z € K}.

Theorem 5.2. A positive answer for Question 2 implies an affirmative answer for
Question 3 in the special case, when o = K? for some connected, compact set K

such that Ty C K C D.

Proof. Let K be a connected, compact set such that T, € K C DT and K* = 0.
We apply the technique used in Section IX.2 of [NFBK] to obtain a quasianalytic
contraction T satisfying the conditions o(T) = K and 7(T) = T,.

Let {A\,}>°, be a dense sequence in K. For every n € N, let us consider the
connected, open set 2, = {z € C : dist(z, K) < 1/n}, and select a point A\, € DN,
so that [\, — A, | < 1/(2n). Let T, C (2,ND)U{—1,1} be a simple rectifiable curve,
with endpoints —1 and 1, such that the simply connected domain G,, bounded by
T, UT', is contained in §2,, and Xn € (G,,. There exists a conformal mapping f,,: D —
G, having continuous extension onto D~, such that f,(0) = A, . Let us consider the
closed arc J,, = f,71(T, ). By our assumption there exists a quasianalytic contraction
T, € L(H,) such that o(T},) = 7(T},) = J,, and ||TY|| > n. Then T,, = f,(T},) is also
a quasianalytic contraction with the properties a(fn) = W(Tn) = T ; see Proposition
IX.2.4 in [NFBK] and Corollary 2.5 in [Kérll].

Setting T' = Yo @ T, we may verify that o(T) = K and (T) = T... Indeed,
for every n € N, there exists a unit vector e, € H, such that ||T,e,|| < 1/n.
Since fo(2) — X, = zgn(2), where ||gnllec < 2, it follows that |[Then — Aoen|| =
|gn(Tn) Then]| < 2/n. Taking into account that each A € K is a cluster point of
the sequence {\ }°° . we infer that K C o(T). On the other hand, if A ¢ K then
8o = dist(\, Gy ) > 0 for some ng € N. Thus, ||(T, =A™ < 11/ (fa=Nleo < 1/d0
holds whenever n > ng. Since A ¢ o(T},) for all n, it follows that A ¢ o(T).
Therefore, o(T) = K. Finally, 7(T) = N> ,7(T,) = T, is obvious. Now, T = T2
is a quasianalytic contraction satisfying the conditions ¢(T) = K% = ¢ and 7(T) =
T2 = T. O

Remark 5.3. Not every connected, compact set T C o C D™ can be represented as

o = K? with a connected, compact set Ty C K C D7. Indeed, let p: [0,1) — [0, 00)
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and ¢: [0,1) — [0,00) be strictly increasing, continuous functions satisfying the
conditions p(0) = ¢(0) = 0, limy_,;_ p(t) = 1, limy_,;_ p(f) = oo, and take the
connected compact set o = T U {p(t)e’*® : ¢ € [0,1)}.

Clearly, the (ISP) can be reduced to the case when T is asymptotically cyclic.
Therefore, it is important to know the spectral behaviour in this setting too. In the
class Lo(H) of asymptotically cyclic quasianalytic contractions and £1(H) = {T €
Lo(H) : m(T) = T} the same commutants arise and (HSP) can be reduced to £;(H)
by Theorem 3.15. This fact makes it especially important to answer the following

question.
Question 4. What are the possible spectra of the contractions belonging to £1(H)?

We know that for every 0 < § < 1 there is a contraction Ty € £1(H) such that
o(Ts) = {z € C: 9§ <|z| < 1}; see Example 3.24. Now we show that the spectrum
can be the unit circle T too. The following theorem gives positive answer also for

Question 2 in the special case, when the arc J is the whole circle T.

Theorem 5.4. For every ¢ > 1, there is a contraction T € L1(H) such that o(T) =
T and | T~ > c.

Proof. We present a bilateral weighted shift with the prescribed properties. Let
B: 7 — [1,00) be a sequence such that 8(n) = 1 for all n > 0 and 3(—n) = ¥
for n € N, where the increasing sequence ¢: N — [1,00) with lim,_,., ¢(n) = oo
is specified later. Let  >° f(n)x" stand for the Fourier series of the function
f € L*T), where x(¢) = ¢ (¢ € T). We consider the Hilbert space L*(f) =
{f € LAT) : |fI3 == X0t o 1F(n)]28(n)? < oo} and the asymptotically cyclic
Cho-contraction Ty € L(L*(B3)), defined by Tsf = x f.

Now we specify the sequence ¢ so that Tz be quasianalytic with o(73) = T.
Select a strictly decreasing sequence {g;}7, of real numbers in (0,1) such that
limg 00 ¢ = 0, and then select a strictly increasing sequence {p;}32, of positive
integers satisfying the conditions p; = 1 and fl’j;k +1% > 1/qx for every k € N.

Setting ¢ > 1, let (1) := ¢, and for any k € N and pp < n < pryq let o(n) ==
©(pr) + (n — pr)qr. Clearly, ¢ is increasing. It can be verified by induction that
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©(pr) > prqx holds for every k € N. Thus p(n) > ngy if pr < n < pry1, whence

SlogB(—n) =) = s e(n)
P D D el D DI Dl
n=1 n=1 k=1 n=pr+1
[ee] Pk+1 1 e o]
DD HEED RIS
k=1 n=pr+1 k=1

follows. We conclude that T} is quasianalytic, and so Tz € £1(L?*(j3)); see Proposi-
tion 4.4.

Since the sequence {qx}32, is decreasing, it follows that

. BG—n) }
" :sup{—,:jGZ —¢?™  foralln e N.
” B ” B(4)
In particular, we get || ' = e#M) = e¢ > ¢. Furthermore, for every k € N and

pr < n < pry1 we have

0 < p(n) _ o(pr) Mt @ (k)

n n n D

IA

—i—qk.

Hence lim,, o ¢(n)/n = 0 holds, if limg_,o, v(px)/pr = 0. The inequality

1 PESL (g
=< Z L S/ ax :lnkarl

yields that
Pk

Pk+1

1
<e x <

N | —

Applying the recursive formula

oprer) _ oor) e (1 L ) 0

Pr+1 B Dk Pr+1 Pr+1

we can check by induction that ¢(pg)/pr < 2¢ holds for all £ € N. The previous

inequalities imply that
©(Prs1)
Pk+1

1
< 2ce” + g,

whence limg_, ¢(pr)/pr = 0 immediately follows. Therefore, the spectral radius of
TB_ Lis 1
-1\ _ 71: —nl|ln _ 71: n)/n __
T(Tﬂ ) = lim HTB H = lim e#™/™ =1,

n—0o0 n—oo

In view of the circular symmetry of o(7j3) we obtain that o(73) = T. O

Relying on this statement we can provide contractions in £;(#) with more so-

phisticated spectra.
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Example 5.5. (a) Given any § € (0,1), let us consider the domain Q5 = {z =
rett vV <r<land0<t< 7}. Let ns be a conformal mapping of D onto s, and
set Vs =mn3. If T € L£,(H) is an operator with o(T) = T, then T5 = 95(T) € L1(H)
and o(T5) = TUT U [, 1]. Observe that D\ o(7T5) is not connected.

(b) We recall that a domain €2 C C is called a circular comb domain, if it is of
the form Q@ = D\ {r{ : ¢ € H,p({) < r < 1}, where H C T is countable and
p: H — (0,1). Let K be a Cantor-type compact set on T of positive measure. In
view of Theorem 3 of [KT12] we know that there exists a compact set K C K and
a conformal mapping f of D onto a circular comb domain 2 such that f can be
continuously extended onto D™, f~(T) = K, and m(f(a)) = 0 whenever a C K is
of measure zero. If T € £,(#) with o(T) = T, then the spectrum of T = f(T) €
Li(H)is o(T) =T U{r¢: ¢ € H,p(¢) <r < 1}, where H is dense in T.

Questions 14, in their full generality, remain open.



Summary

In this thesis we study the asymptotic behaviour and basic structure of Hilbert space
contractions. The dissertation contains two different topics concerning absolutely
continuous contractions.

In Chapter 2 we study stability properties of contractions and polynomially
bounded operators. In Section 2.1 we characterize those sequences {h,}22, of
bounded analytic functions, which can serve to test the stability of an a.c. con-
traction, namely, satisfying the condition that h,(7") — 0 (SOT) if and only if
T € Cy.. We call such a sequence a test sequence of stability for a.c. contractions
and it turns out that they are exactly those sequences which fulfill the following

three conditions:
(1) limy, o0 hn(2) =0 for all z € D,
(ii) sup {||hnlle : m € N} < 00,

(iii) limsup,,_, ||Xahn||2 > 0 for every Borel set o C T of positive measure, where

Xa 18 the characteristic function of a.

We prove some connected results too. In Section 2.2 analogous questions for
polynomially bounded operators are examined. We prove that test sequences for
a.c. polynomially bounded operators are the same as for contractions.

The remaining chapters are mainly motivated by the famous invariant and hy-
perinvariant subspace problems, we investigate special types of asymptotically non-
vanishing contractions. One can attach unitary operators to this type of contrac-
tions, and then examine how the properties of the well-understood unitaries reflect
in the behaviour of the contractions under consideration. By the concept of a uni-
tary asymptote the residual set, while by the aid of the minimal unitary dilation
and the Sz.-Nagy-Foias functional calculus, the quasianalytic spectral set can be
defined.
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In the beginning of Chapter 3, namely, in Section 3.1 we introduce local version
of the quasianalytic spectral set and exhibit its connection with the residual set.
It turns out that local stability is determined by the asymptotic density function,
and that the local residual set and the local quasianalytic spectral set at a vector
are the same, and hence the (global) quasianalytic spectral set is always contained
in the residual set. If this containment is proper for some 7', then Hlat T is non-
trivial. In the case of equality T is called quasianalytic. Investigation of this type
of contractions is the main part of the dissertation. In Section 3.2 the fundamental
properties of quasianalytic contractions are summarized including their asymptotic
behaviour. In the setting of quasianalytic contractions (ISP) can be reduced to the
the class Lo(H) of asymptotically cyclic quasianalytic contractions, i.e. quasiana-
lytic contractions with cyclic unitary asymptotes. They are studied in Section 3.3,
where equivalent conditions are given for the existence of a non-trivial hyperinvari-
ant subspace. (HSP) in Ly(#), by virtue of Theorem 3.15, can be reduced to the
class £1(H) ={T € Lo(H) : 7(T) = T}, in which class we have a lot of information
on the structure of a contraction. By Theorem 3.12, there are lots of shift-type
invariant subspaces in this class. Therefore, if {T'} = H*(T), then Hlat T = Lat T
is non-trivial. However, if {T'} # H*(T'), then the shift-type invariant subspaces
are not hyperinvariant. On the other hand, if non-trivial hyperinvariant subspaces
exist, then, according to Theorem 3.18, such subspaces can be derived from shift-
type invariant subspaces. We show that if {T'} # H*(T), then T is necessarily
quasiunitary, hence (HSP) in £;(#) can be reduced to the quasiunitary case.

For an asymptotically cyclic quasianalytic contraction 7', the commutant {7}
can be identified with a function algebra F(T') C L*(T), the so-called functional
commutant. Answering a question posed in [Kérll] we show in Section 3.4 that
F(T') can be a pre-Douglas algebra only in the case when F(T') = H*. We prove
also similarity invariance of F(T') and detect its representation in the functional
model.

Chapter 4 is devoted to special classes of operators, where quasianalytic contrac-
tions naturally arise. Namely, we study analytic contractions and bilateral weighted
shifts.

In [ARS07], on a general Hilbert space H, of analytic functions defined on the
unit disc D, the analytic multiplication operator M, € L(H,), M,f = xf has been
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studied. The boundary behaviour of functions in H, is governed by the set

A(Ho) = {¢ € Trnt-lim (1~ AP) 7 [~ > 0},
A—=C

where ky € H, is the unique reproducing kernel with the property f(A) = (f, kx)
for every f € H,. We show in Section 4.1 that the measurable set A(H,) is always
contained in the quasianalytic spectral set of M,. Therefore, the conditions for
the equality A(H,) = w(M,) given in [ARSO7| ensures the quasianalycity of M,.
It is not transparent how to identify the unitary asymptote of a general analytic
multiplication operator M,. This identification can be carried out in the special
case when H, is induced by a measure satisfying particular conditions considered in
[ARSO09].

In Section 4.2 we deal with bilateral weighted shifts, which are C'q contractions,
mainly applying the ideas of [Shi74|, but working with actual functions instead of
formal series. Without restricting the generality, we can suppose that the bilateral
weighted shift in consideration is asymptotically cyclic and quasiunitary. We realize
a bilateral weighted shift T as multiplication by the identical function on a function
space L?(3). Up to our knowledge, (HSP) for bilateral weighted shifts, which are

C1o contractions, is open in the case when

1
0<55<’I“5<R5—1 and ZM:OO

n=1
Here 95 > 0 means that T} is invertible, rg denotes the inner spectral radius of
T, while the growth condition on 3(—n) ensures the quasianalycity of the function
algebra L?*(3). Under these conditions the functional commutant can be related to
bounded analytic functions defined on an annulus.

Though (ISP) and (HSP) are open for asymptotically non-vanishing (a.n.v.) con-
tractions, Corollary 3.4 shows that these questions are settled in the non-quasiana-
lytic case. By this fact it becomes crucial to determine the spectral behaviour of
quasianalytic contractions. Namely, if an a.n.v. contraction 7" does not meet this
behaviour, then T is not quasianalytic, and so Hlat 7" is non-trivial.

If the contraction T is quasianalytic, then it is of class Cy. Under this asymptotic
behaviour there is a connection between the spectrum o(7") of T" and the spectrum
o(V') of its unitary asymptote V. Namely, o(V) is the essential support of w(7) (in
notation o(V') = es(w(7"))) and it is neatly contained in o(T"), that is o(V) C o(T)
and m(o(V)Na’) > 0 holds for every non-empty closed subset ¢’ of o(7") with the
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property that o(7")\ ¢’ is also closed. More importantly, this is the only constraint on
the spectrum of a C'jp-contraction, even in the cyclic case, that is when V2 ;[ T"h = H
holds with some vector h € H; see Chapter IX in [NFBK]|. In Chapter 5 we examine
whether there are any other constraints if 7" is quasianalytic. We pose four questions
and give partial answers.

We prove that if for every closed arc J of positive measure on T and for every
¢ > 0 there exists a quasianalytic contraction T' satisfying the conditions o(T') =
7(T) = J and |T7!|| > ¢, then there exists a quasianalytic contraction T satisfying
the conditions o(T) = K? := {z? : 2z € K} and «n(T) = T for every connected,
compact set K, containing the upper half-circle and contained in the the closed
upper half-disk.

For every ¢ > 1 we present a bilateral weighted shift 75 € £;(#H) such that
o(T) = Tand |T7!|| > ¢. This proves that our assumption in the previous statement
holds if J = T, moreover, relying on this statement we can provide contractions in

L1(H) with more sophisticated spectra.



Osszefoglalas

A disszertacioban Hilbert-téren értelmezett kontrakciok aszimptotikus viselkedését
és alapvetd strukturajat vizsgaljuk. Az értekezés két kiilonb6zs, abszolit folytonos
(a.f.) kontrakciokkal kapcsolatos témat tartalmaz.

A 2. fejezetben kontrakciok és polinomidlisan korlatos operatorok stabilitési tu-
lajdonsagait tanulményozzuk. A 2.1. alfejezetben karakterizaljuk a korlatos anali-
tikus fiiggvények azon {h,}>° ; sorozatait, melyekkel tesztelhets az a.f. kontrakciok
stabilitasa, nevezetesen, melyekre h,(T") pontosan akkor konvergal a zér6 operator-
hoz az er6s operator-topologiaban, amennyiben T aszimptotikusan stabil, azaz T
tart a zérd operatorhoz az erds operator-topologiaban. Belatjuk, hogy pontosan a
kovetkezd harom tulajdonsaggal rendelkezd sorozatok lesznek az elébbi értelemben

vett teszt-sorozataink:
(i) lim, o0 hp(2) = 0 minden z € D esetén,
(i) sup{||hnlleo : m € N} < 00,

(iii) limsup,,_, |[Xafn|l2 > 0 teljesiil barmely pozitiv mértékd o C T Borel-halmaz

esetén, ahol y, az o halmaz karakterisztikus fiiggvényét jeloli.

Néhéany tovabbi kapcsolodo allitas igazolasa utan a 2.2. alfejezetben kiterjesztjiik
eredményeinket polinomialisan korlatos operatorokra. Belatjuk, hogy pontosan az
elébbi sorozatokkal tesztelhets az a.f. polinomiélisan korlatos operatorok stabilitasa
is.

A tovabbi fejezetekben specialis aszimptotikusan nem-eltiing kontrakcidkat vizs-
galunk, elsGsorban a hires invarians- és hiperinvarians altér problémak altal motival-
va. Ezekhez a kontrakciokhoz kiilonb6z6 unitér operatorok tarsithatok, melyek tu-
lajdonséagai tiikrozédnek a vizsgalt kontrakcié viselkedésében. Az unitér aszimptota
segitségével a rezidualis halmazt, mig a minimélis unitér dilatacié és az Sz.-Nagy—

Foias fliggvénykalkulus altal a kvazianalitikus spektralhalmazt definialhatjuk.
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A 3. fejezet elején, nevezetesen a 3.1. alfejezetben bevezetjiik a lokalis kvaziana-
litikus spektralhalmaz fogalmét és feltarjuk a rezidualis halmazzal valo kapcsolatéat.
Kideriil, hogy az aszimptotikus stirtségfiiggvény meghatarozza a lokélis stabilitast,
tovabba, hogy a lokalis reziduélis halmaz és a lokélis kvazianalitikus spektralhalmaz
egybeesik tetszSleges vektor esetén. Ebbgl kovetkezik, hogy a (globalis) kvaziana-
litikus spektralhalmaz mindig része a rezidualis halmaznak. Ha ez a tartalmazas
valodi valamilyen T' kontrakcié esetén, akkor T-nek van valodi hiperinvarians alte-
re. Ellenkezd esetben a T kontrakciot kvazianalitikusnak nevezziik. Az értekezés
legnagyobb részét ezen kontrakciok vizsgélata adja. A 3.2. részben attekintjiik a
kvézianalitikus kontrakciok alapvets tulajdonsagait.

Az invarians altér probléma a kvézianalitikus esetben visszavezethetd az aszimp-
totikusan ciklikus kvéazianalitikus kontrakciok Lo(#H) osztalyara, azaz ciklikus unit-
ér aszimptota esetére. Ezt az osztalyt vizsgaljuk a 3.3. alfejezetben, ekvivalens
feltételeket adunk valédi hiperinvarians altér létezésére. A 3.15. Tétel kovetkez-
tében a hiperinvarans altér probléma ebben az osztalyban arra az esetre redukal-
hato, amikor a kvézianalitikus spektralhalmaz lefedi az egységkorvonalat, azaz az
Li(H) ={T € Lo(H) : ©(T) = T} osztalyra. Ezen kontrakcioknak szamos olyan
invarans alteriik l1étezik, melyekre valé megszoritasuk hasonlé az egyszerd egyira-
nyt eltolds-operatorhoz. Igy, amennyiben {T'}' = H*(T), akkor minden invari-
ans altér egyuttal hiperinvarians is T-re, igy ez utobbiak is léteznek. Azonban,
ha {T}' # H>(T), akkor az eltolas tipust invarians alterek nem hiperinvariansak,
ugyanakkor ha létezik valoédi hiperinvarians altér, akkor szarmaztathato eltolas ti-
pust invarians alterekbél is. Tovabba, a {T'}' # H>®(T) esetben T sziikségképpen
kvéziunitér, igy a hiperinvarans altér probléma az £, (H) osztalyban visszavezethetd
a kvéaziunitér esetre.

Az aszimptotikusan ciklikus kvazianalitikus 7" kontrakecio {7}’ kommutansa azo-
nosithato egy F(T) C L*°(T) fiiggvényalgebraval, az tn. fiiggvénykommutanssal.
A 3.4. szakaszban igazoljuk, hogy ez a fliggvénykommutans csak akkor pre-Douglas
algebra, ha éppen a H™ térrel egyezik meg, ezzel megvalaszolva a [Kér01] cikkben
felvetett kérdést. Bizonyitjuk F(7') hasonloségra valé invarianciajat is, valamint
megadjuk a yp fliggvény-leképezés reprezentacidjat a fiiggvény-modellben.

A 4. fejezetet olyan specialis operatorosztalyoknak szenteljiik, melyekben ter-
mészetes modon vetGdnek fel kvazianalitikus kontrakciok. Nevezetesen, analitikus
kontrakciokat és stlyozott kétiranyu eltolas-operatorokat vizsgélunk.

Az [ARSO7| cikkben a szerz6harmas a nyilt egységkorlapon értelmezett analiti-
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kus fiiggvények egy altalanos H, Hilbert-terén értelmezett M, € L(H,), M,f = xf
analitikus szorzas-operatort vizsgalta. A H, tér fliggvényeinek hataron valo viselke-

dését meghatarozza a
A(Ha) = {¢ € T ut-lim (1 — [AP) " ka2 > 0}
A=

halmaz, ahol k\, € H, az az egyértelmiien meghatarozott magfiiggvény, melyre
fON) = (f,kx) (f €Ha). A 4.1. alfejezetben megmutatjuk, hogy a mérhets A(H,,)
halmaz mindig része M, kvazianalitikus spektralhalmazéanak, igy az [ARS07| cikkben
a A(H,) = w(M,) egyenlgségre adott feltételek teljesiilése biztositja M, kvazianali-
tikussagat. Nem nyilvanvalo, hogy egy altalanos analitikus szorzés-operator unitér
aszimptotija hogyan néz ki, azonban abban a specidlis esetben le tudjuk irni, amikor
H, egy az [ARS09] cikkbeli feltételeket teljesité mérték altal indukalt.

A 4.2. alfejezetben olyan kétiranyu sulyozott eltolas-operatorokkal foglalkozunk,
melyek benne vannak a Cg osztélyban. Javarészt a [Shi74]| konyvben talalhato 6t-
leteket hasznaljuk, azonban formalis sorok helyett valodi fiiggvényekkel dolgozunk.
Az altalanossag megszoritasa nélkiil feltehets, hogy a vizsgalt eltoléds-operatoraink
aszimptotikusan ciklikusak és kvaziunitérek. Egy Tj stlyozott kétirdnyd eltolés-
operétorra egy bizonyos L*() fiiggvénytéren értelmezett, az identikus fiiggvénnyel
valo szorzas-operatorként tekintiink. Tudomésunk szerint a Cip-beli kétiranyu su-

lyozott eltolasok korében a hiperinvarians altér probléma abban az esetben nyitott,

amikor
001 o
0<dg<rg<Rg=1 és E w:oo.
n
n=1

Itt a o5 > 0 egyenl6tlenség azt jelenti, hogy T invertalhato, rg jeloli Tz belss spekt-
ralsugarat, a 8(—n)-re vonatkozo névekedési feltétel pedig az L2(f3) fiiggvényalgebra
kvéazianalitikussagat biztositja. Ezen feltételek teljesiilése esetén a fiiggvénykommu-
tans bizonyos korgytrtikon értelmezett korlatos analitikus fiiggvényekkel hozhato
kapcsolatba.

Habar az invarians- és hiperinvaridns altér problémék nyitottak az aszimptoti-
kusan nem-eltting kontrakciok korében, a 3.4. Kovetkezmény mutatja, hogy a nem-
kvézianalitikus esetben mindkét kérdés megoldott. Ezen tény ismeretében fontos
lenne meghatarozni a kvazianalitikus kontrakciok spektralis tulajdonségait, hiszen
ha egy aszimptotikusan nem-eltting kontrakcié nem rendelkezne ezekkel a tulajdon-
sagokkal, akkor nem lehetne kvéazianalitikus, és igy létezne valodi hiperinvarians

altere.
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Amennyiben egy T kontrakcié kvazianalitikus, akkor a C4g osztilyba tartozik.
Ezen aszimptotikus viselkedés esetén a T kontrakci6 o(T') spektruma, és V' unitér
aszimptotajanak o(V') spektruma kozott kapesolat figyelheté meg. Nevezetesen, a
o(V) spektrum w(7T') lényeges tartojaval egyezik meg (o(V) = es(w(7))), tovabba
o(V) C o(T) és m(a(V)No') > 0 teljesiil minden olyan nem-iires zart o' C o(7T)
részhalmazra, melyre o(T') \ o’ is zart. S6t, mas megszoritas nincs a Cjy kontrak-
ciok spektruméra, még a ciklikus esetben sem; lasd az [NFBK]| konyv IX. fejezetét.
A zar6 fejezetben azt vizsgéaljuk, hogy van-e tovabbi megszoritas a kvazianalitikus
kontrakciok spektruméara. Négy kérdést vetiink fel és valaszolunk meg részben.

[gazoljuk, hogy, amennyiben tetszé6leges ¢ > 0 szdm és pozitiv mértékd J C T
zart iv esetén létezik olyan T kvazianalitikus kontrakcio, melyre o(T) = 7(T) =
J és ||T7Y| > c teljesiil, akkor tetszdleges, a felss félkorivet tartalmazo, a zért
felss félkorben fekve osszefiiggs, kompakt K halmazhoz létezik olyan kvéazianalitikus
kontrakcio, melyre o(T) = K? :={2*: 2 € K} és n(T) = T.

Tetszbleges ¢ > 1 szamhoz megadunk egy olyan Ts € L£,(H) kétiranyua stlyo-
zott eltolas-operatort, melyre o(T) = T és |T7'|| > c. Ezzel belatjuk, hogy az
el6zG allitasban a feltevés teljesiil a J = T esetben, tovabba ezen példak segitségé-
vel konstruélunk tovabbi, kifinomultabb spektrummal rendelkezd L£1(H) osztalyba

tartoz6 kontrakciokat.
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