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Chapter 1

Introduction

The aim of this thesis is to continue the study of contractions, initiated by B. Sz.-
Nagy and C. Foias and carried on by many researchers, with the hope that our
results help to understand the behaviour of bounded linear operators on Hilbert
spaces, and to get closer to the solution of the famous invariant and hyperinvari-
ant subspace problems. The dissertation contains two different topics concerning
absolutely continuous contractions.

In the first part we study the stability of contractions, we characterize those
sequences of bounded analytic functions, which have the property that an absolutely
continuous contraction T is stable (that is the powers T n converge to zero in the
strong operator topology) if and only if the operators hn(T ) converge to zero in the
strong operator topology. Our result is extended to polynomially bounded operators
too.

In the bigger second part asymptotically non-vanishing contractions are consid-
ered, the study of quasianalytic contractions, initiated by L. Kérchy, are continued.
These investigations are motivated by the invariant and hyperinvariant subspace
problems. Special emphasis is put on the case when the contraction is asymptot-
ically cyclic. New properties of the functional commutant are explored. Analytic
contractions and bilateral weighted shifts are discussed as illuminating examples.
Last, but not least, we pose, and answer partially, questions in connection with the
spectral behaviour of quasianalytic contractions.
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1.1 Motivation and background

The investigations included in this dissertation were mainly motivated by the most
challenging open problems in the theory of Hilbert spaces and bounded linear op-
erators on them, namely, the well-known invariant and hyperinvariant subspace
problems. These are clearly the most fundamental questions concerning the struc-
ture of Hilbert space operators, hence it is quite confusing that these problems are
still unsolved. In what follows let L(H) stand for the C∗-algebra of all bounded
linear operators acting on the (complex) Hilbert space H. The Invariant Subspace
Problem (ISP) asks the existence of a non-trivial invariant subspaceM ⊂ H of an
arbitrary operator T ∈ L(H), while the Hyperinvariant Subspace Problem (HSP)
asks whether there exists a non-trivial hyperinvariant subspace N ⊂ H of an arbi-
trary non-scalar T ∈ L(H)\CI, i.e., an operator which is not a scalar multiple of the
identity operator. The subspace (closed linear manifold)M⊂ H is invariant for T
if TM = {Tx : x ∈M} ⊂M holds, and it is non-trivial ifM 6= {0} andM 6= H.
The subspace N ⊂ H is hyperinvariant for T if it is invariant for every operator
commuting with T : CN ⊂ N whenever CT = TC for an operator C ∈ L(H). The
C = T case shows that every hyperinvariant subspace for T is invariant for that,
and thus, of course, a positive answer for (HSP) would imply a positive answer for
(ISP), while a solution of (ISP) into the negative, would be a solution of (HSP) into
the negative, too. It is easy to see that the eigenspace corresponding to an eigen-
value of T is always hyperinvariant for T , and it is non-trivial if T is non-scalar.
Thus, for example, if H has finite dimension at least two, then (HSP) is solved in
the affirmative. On the other hand, if H is non-separable, then the cyclic subspace,
spanned by the orbit {x, Tx, T 2x, . . .} of any non-zero vector x ∈ H, is a non-trivial
invariant subspace for T .

From now on, throughout the whole thesis, we will assume that H is a complex,
separable, infinite dimensional Hilbert space. In spite of (ISP) and (HSP) are still
open in this case, for several classes of operators existence of invariant and hyperin-
variant subspaces have been proven. For example, the well-known Spectral Theorem
implies that every non-scalar normal operator has a hyperinvariant subspace. We
do not have such a nice structure theorem for compact operators, but in the middle
of the twentieth century N. Aronszajn and K. T. Smith were able to prove that any
compact operator has a non-trivial invariant subspace (see [AS54]). Moreover, in
1973, Lomonosov gave a short proof using the Schauder fixed point theorem that a
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non-scalar operator commuting with a non-zero compact operator has a non-trivial
hyperinvariant subspace (see [Lom73]).

One of the most powerful tools, used for examining non-normal operators, is
the theory of contractions. A linear operator T , acting on a Hilbert space H, is a
contraction if ‖T‖ ≤ 1 holds. This theory was mainly developed by B. Sz.-Nagy
and C. Foias, based on the dilation theorem of Sz.-Nagy, which assigns a unitary
operator to the contraction T , namely the minimal unitary dilation of T .

Theorem 1.1 (Sz.-Nagy’s dilation theorem, [Nagy53]). For every contraction T ∈
L(H), there exists a unitary operator U acting on a Hilbert space K containing H
as a subspace, such that

T n = PHU
n|H

holds for every n ∈ N, where PH ∈ L(K) denotes the orthogonal projection onto
H. A unitary operator U satisfying this condition is called a unitary dilation of T .
Moreover, U can be chosen to be minimal in the sense that∨

n∈Z

UnH = K

is fulfilled. Such a minimal dilation is unique up to isomorphism, and thus can be
called “the minimal unitary dilation” of T .

Considering (ISP) and (HSP) it is sufficient to investigate only contractions,
since the invariant and hyperinvariant subspace lattices of an operator T ∈ L(H)

are the same as of cT for any non-zero complex number c. Moreover, it is well-known
that any contraction can be uniquely decomposed into the orthogonal sum T = T1⊕
Ua⊕Us of a completely non-unitary (c.n.u.) contraction T1, an absolutely continuous
(a.c.) unitary operator Ua, and a singular unitary operator Us (see [NFBK], Theorem
I.3.2 and [Hal51]) . We recall that a contraction is c.n.u. if it is not unitary on any
of its non-zero reducing subspaces, and that a unitary operator is a.c. or singular
if its spectral measure is a.c. or singular with respect to Lebesgue measure on the
unit circle. Applying the Lifting Theorem of Sz.-Nagy and Foias it can be easily
verified that the hyperinvariant subspace lattice of T splits into the direct sum
HlatT = Hlat (T1⊕Ua)⊕HlatUs (see [NFBK, Theorem II.2.3] and [Dou60, Corollary
5.1 and Theorem 3]). Thus, if the singular unitary component Us is non-zero (and
T is non-scalar), then T has a non-trivial hyperinvariant subspace. In the sequel,
mostly, we will assume that the contraction T is absolutely continuous, i.e., its
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singular unitary part is zero. For such contractions, by the aid of the usual functional
calculus (operating with the bounded measurable functions on the unit circle T) for
the minimal unitary dilation U of T , we can introduce the so-called Sz.-Nagy–Foias
functional calculus ΦT for T :

ΦT : H∞ → L(H), f 7→ f(T ) := PHf(U)|H,

where H∞ denotes the Hardy space of all bounded analytic functions on the open
unit disc D (what can be identified with the space of bounded measurable functions
on the unit circle T with zero Fourier coefficients of negative indices). This ΦT

is a contractive, unital algebra-homomorphism, which is continuous in the weak-*
topologies and satisfies the condition T = ΦT (χ) = χ(T ), where χ(z) = z denotes
the identical function.

Another important tool in the study of a contraction T is its unitary asymptote.
The pair (X, V ) is a unitary asymptote of T if V is a unitary operator acting on a
Hilbert space K and X : H → K is a linear transformation satisfying the conditions
∨∞n=1V

−nXH = K, ‖Xh‖ = limn→∞ ‖T nh‖ for every h ∈ H, and XT = V X. For
further properties of unitary asymptotes we refer to [Kér13] and [NFBK, Chapter
IX]. It is easy to see that the nullspace of X is hyperinvariant for T , it is the so-called
stable subspace of T :

H0(T ) =
{
h ∈ H : lim

n→∞
‖T nh‖ = 0

}
.

Considering the asymptotic behaviour of contractions Sz.-Nagy and Foias introduced
the following classes:

• T ∈ C0· if H0(T ) = H, that is, when T n → 0 in the strong operator topology
(SOT). In this case T is called stable, while a non-stable T is usually called
asymptotically non-vanishing.

• T ∈ C1· if H0(T ) = {0}. Contractions of this type are called asymptotically
strongly non-vanishing.

• T ∈ C·0 if T ∗ ∈ C0·;

• T ∈ C·1 if T ∗ ∈ C1·;

• Cij = Ci· ∩ C·j (i, j = 0, 1).
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Obviously, if T /∈ C00 ∪ C01 ∪ C10 ∪ C11, then T has a non-trivial hyperinvariant
subspace, namely H0(T ) or H0(T ∗)⊥. Moreover, Sz.-Nagy and Foias showed that
HlatT is non-trivial in the case of a non-scalar operator T ∈ C11, too (see [NFBK,
Theorem II.5.4]). On the other hand, (ISP) and (HSP) are still open in the classes
C00, C10, and C01. Actually, considering T/(2‖T‖), it can be seen that these prob-
lems in C00 are equivalent to the general questions. The remaining classes C10 and
C01 are the adjoints of each other, hence it is enough to study the class C10, in
which class (ISP) and (HSP) can be reduced to special classes of quasianalytic con-
tractions. In Chapter 3–5 we will examine these kind of contractions. Our basic
reference in connection with the theory of contractions is [NFBK].

1.2 Thesis outline

In Chapter 2 we study stability properties of contractions and polynomially bounded
operators. In Section 2.1 we characterize those sequences {hn}∞n=1 of bounded ana-
lytic functions, which can serve to test the stability of an a.c. contraction, namely,
satisfying the condition that hn(T )→ 0 (SOT) if and only if T ∈ C0·. This answers
a question of M. Dritschel. We prove some connected results too. In Section 2.2
analogous questions for polynomially bounded operators are examined.

In the remaining chapters we investigate special types of asymptotically non-
vanishing contractions, namely, quasianalytic contractions. In the beginning of
Chapter 3, namely, in Section 3.1 we introduce local version of the quasianalytic
spectral set and exhibit its connection with the residual set. In Section 3.2 the fun-
damental properties of quasianalytic contractions are summarized including their
asymptotic behaviour. Asymptotically cyclic quasianalytic contractions are studied
in Section 3.3, where equivalent conditions are given for the existence of a non-trivial
hyperinvariant subspace. For such a contraction T the commutant {T}′ can be iden-
tified with a function algebra F(T ), the so-called functional commutant. Answering
a question posed in [Kér11] we show in Section 3.4 that F(T ) can be a pre-Douglas
algebra only in the case when F(T ) = H∞. We prove also similarity invariance of
F(T ) and detect its representation in the functional model.

Chapter 4 is devoted to special classes of operators, where quasianalytic con-
tractions naturally arise. Namely, we study analytic contractions in Section 4.1 and
bilateral weighted shifts in Section 4.2.

At last, Chapter 5 contains some questions, and partial answers in connection
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with the spectral behaviour of quasianalytic contractions.
The main results and their proofs given here are essentially the same as in the

following three papers, which provide the material of this dissertation:

• L. Kérchy and A. Szalai, Characterization of stability of contractions, Acta
Sci. Math. (Szeged), 79 (2013), 325–332.

• L. Kérchy and A. Szalai, Asymptotically cyclic quasianalytic contractions,
Studia Math., 223 (2014), 53–75.

• L. Kérchy and A. Szalai, Spectral behaviour of quasianalytic contractions,
Proc. Amer. Math. Soc., accepted.



Chapter 2

Stability results

In this chapter we study some stability properties of contractions and polynomi-
ally bounded operators. In Section 2.1 we characterize those sequences {hn}∞n=1 of
bounded analytic functions, which can serve to test the stability of an a.c. contrac-
tion, namely, satisfying the condition that hn(T )→ 0 (SOT) if and only if T ∈ C0·.
This answers a question of M. Dritschel. We prove some connected results too. In
Section 2.2 analogous questions for polynomially bounded operators are examined.

2.1 Contractions

Let H∞ denote the Hardy space of bounded analytic functions defined on the open
unit disc D. We recall that for any h ∈ H∞ the radial limit limr→1− h(rζ) exists for
almost every ζ ∈ T; the limit function will also be denoted by h. In connection with
the basic properties of H∞, we refer to [Hof88] and Chapter III of [NFBK]. The
following property plays crucial role in the characterization of stability.

Definition 2.1. A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ converges
to zero exclusively on D, if

(i) limn→∞ hn(z) = 0 for all z ∈ D,

(ii) sup {||hn||∞ : n ∈ N} <∞,

(iii) lim supn→∞ ||χαhn||2 > 0 for every Borel set α ⊂ T of positive measure, where
χα is the characteristic function of α.

Remark 2.2. (a) The conditions (i) and (ii) together mean that {hn}∞n=1 con-
verges to zero in the weak-∗ topology.
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(b) Because of (ii), condition (iii) can be replaced by

(iii*) lim supn→∞ m ({ζ ∈ α : |hn(ζ)| > ε}) > 0 for every α ⊂ T of positive
measure with some ε > 0 (depending on α).
(That is {hn}∞n=1 does not converge to zero in measure on α.)

(c) If lim infn→∞ |hn(ζ)| > 0 for almost every ζ ∈ T then (iii) holds, and (iii) with
(ii) imply that lim supn→∞ |hn(ζ)| > 0 for a.e. ζ ∈ T. In particular, if we
suppose that the limit limn→∞ |hn(ζ)| exists for a.e. ζ ∈ T, then condition (iii)
can be replaced by the property, that limn→∞ |hn(ζ)| > 0 for a.e. ζ ∈ T.

Example 2.3. (a) According to the last remark, any uniformly bounded sequence
hn ⊂ H∞, converging to zero in the open unit disc and to non-zero almost everywhere
on the unit circle, converges to zero exclusively on D.
(b) For example, we get a sequence of this type, if we set a non-constant inner
function u and consider the sequence hn = un.
(c) Another special example is hn = χn+1 − χn.

Definition 2.4. A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ is a test
sequence of stability for a.c. contractions if for every a.c. contraction T the condition
T n → 0 (SOT) holds exactly when hn(T )→ 0 (SOT).

The main result of this chapter is the following statement.

Theorem 2.5. A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ is a test
sequence of stability for a.c. contractions if and only if it converges to zero exclusively
on D.

Proof. For the proof of necessity let us assume that {hn}∞n=1 is a test sequence of
stability for a.c. contractions. Let S ∈ L (H2) , Sf = χf be the unilateral shift
of multiplicity one (χ(z) = z and H2 is the analytic subspace of L2(T)). Then
S∗n → 0 (SOT) and hence hn (S∗) → 0 (SOT). It is known that f(λ) = 〈f, kλ〉 for
every f ∈ H2 and λ ∈ D, where kλ(z) = (1 − λz)−1 is the Cauchy kernel. Since
S∗kλ = S∗

∑∞
n=0 λ

n
χn = λkλ, it follows that hn(S∗)kλ = hn(λ)kλ and so hn(λ)→ 0

for all λ ∈ D, that is (i) holds.
It can be easily seen that ||h(S∗)|| = ||h||∞ for all h ∈ H∞. Indeed,

||h||∞ ≥ ||h(S∗)|| ≥ ||h(S∗)kλ||2
||kλ||2

= |h(λ)| (λ ∈ D).
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The Banach–Steinhaus Theorem shows that supn ||hn||∞ = supn ||hn(S∗)|| < ∞,
and so (ii) holds.

Let α ⊂ T be a Borel set with m(α) > 0, and let us consider the Hilbert space
L2(α) = χαL

2(T). The multiplication operator Mα ∈ L (L2(α)) , Mαg = χg is an
a.c. unitary operator, and h(Mα)g = hg for every h ∈ H∞ and g ∈ L2(α). Since
Mn

α 6→ 0 (SOT) hence hn(Mα) 6→ 0 (SOT). Assume that ||χαhn||2 = ||hn(Mα)1||2 →
0. Then ||hn(Mα)ϕ||2 = ||ϕ(Mα)hn(Mα)1||2 → 0 for all ϕ ∈ L∞(α), and thus, by
(ii), we infer that hn(Mα) → 0 (SOT) which is a contradiction. Consequently (iii)
holds.

Now we turn to the sufficiency part; so let us assume that {hn}∞n=1 converges to
zero exclusively on D. Setting any stable contraction T , there exists an invariant
subspace M ∈ LatS∗∞ such that T is unitarily equivalent to S∗∞|M. (Here S∗∞ =

S∗ ⊕ S∗ ⊕ . . .; see [Foi63].) Property (i) implies that ||hn(S∗)kλ|| → 0 for all λ ∈ D,
and it is known that ∨{kλ : λ ∈ D} = H2. But {hn(S∗)}∞n=1 is bounded by (ii) and
so hn(S∗)→ 0 (SOT), whence hn(S∗∞)→ 0 and hn(T )→ 0 (SOT) follow.

It is left to prove that hn(T ) 6→ 0 (SOT), whenever T is not stable. If T is a
non-stable a.c. contraction, then it can be written in the form

T =

[
T0 ∗
0 T1

]
∈ L(H = H0 ⊕H1),

where T0 ∈ C0·, T1 ∈ C1· and H1 6= {0}. Then

h(T ) =

[
h(T0) ∗

0 h(T1)

]

for any h ∈ H∞. Now let us assume that hn(T ) → 0 (SOT). This implies that
hn(T1) → 0 (SOT). Let (X1, V1) be a unitary asymptote of T1, where V1 is an a.c.
unitary operator and X1 is an injective transformation intertwining T1 with V1:
X1T1 = V1X1; see Section IX.1 in [NFBK]. Then hn(V1)X1 = X1hn(T1)→ 0 (SOT)
and so ||hn(V1)y|| → 0 for all y ∈ X1H1. Since ||hn(V1)|| ≤ ||hn||∞ ≤ supk ||hk||∞ <

∞, it follows that ||hn(V1)y|| → 0 for all y ∈ (X1H1)−. Since V1 is the minimal
unitary extension of the isometry V1|(X1V1)−, we can easily infer that hn(V1) → 0

(SOT). Then ‖χαhn‖2 → 0 holds for the Borel set α given so that χαdm is equivalent
to the spectral measure of V1. This contradicts (iii), thus hn(T ) 6→ 0 (SOT).

A part of the proof above yields the following proposition.
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Proposition 2.6. Let {hn}∞n=1 ⊂ H∞. Then hn(T ) → 0 (SOT) for every stable
contraction T if and only if {hn}∞n=1 satisfies the conditions (i) and (ii).

A well-known property of the Sz.-Nagy–Foias functional calculus is that hn(T )→
0 (SOT) for every a.c. contraction T, whenever {hn}∞n=1 boundedly converges to zero
a.e. on T (see [NFBK, Chapter III]). The next proposition shows that the necessary
and sufficient condition is weaker.

Proposition 2.7. Let {hn}∞n=1 ⊂ H∞. Then hn(T )→ 0 (SOT) for every a.c. con-
traction T exactly when {hn}∞n=1 is a bounded sequence in H∞ and limn→∞ ||hn||2 =

0.

Proof. First let us suppose that limn→∞ ||hn||2 = 0 holds for the bounded sequence
{hn}∞n=1, and let us consider an a.c. contraction T . Let U be the minimal unitary
dilation of T with spectral measure E. Then for any x ∈ H we have

||hn(T )x||2 ≤ ||hn(U)x||2 =

∫
T
|hn|2fx dm,

where 0 ≤ fx = dEx,x/dm ∈ L1(T). Let ε > 0 be fixed. Choosing N large
enough, we have

∫
βN
fx dm < ε/(2M2), where βN = {ζ ∈ T : fx(ζ) ≥ N} and

M = sup{‖hn‖∞ : n ∈ N}. Hence∫
T
|hn|2fx dm ≤M2

∫
βN

fx dm+N

∫
T\βN
|hn|2 dm ≤ ε

2
+N‖hn‖2

2 < ε,

if n is large enough. Therefore hn(T )→ 0 (SOT).
Now let us suppose that hn(T ) → 0 (SOT) for every a.c. contraction T. In

the proof of Theorem 2.5 we have already seen that if hn(S∗) → 0 (SOT) then
{hn}∞n=1 is a bounded sequence. On the other hand, if we consider the bilateral shift
M ∈ L (L2(T)) , Mg = χg and the constant function 1 ∈ L2(T), then we obtain
that ∫

T
|hn|2 dm = ||hn(M)1||22 → 0.

Remark 2.8. We may consider nets instead of sequences, and we can define exclu-
sive convergence and testing property in a similar way than in the case of sequences.
The proof given before shows that if a net converges exclusively to zero on D than
it is a test net for a.c. contractions. However, considering the reverse implication
we get in the obstacle that convergent nets are not necessarily bounded, and so the
Banach–Steinhaus Theorem cannot be applied.
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2.2 Polynomially bounded operators

Let us denote by P(T) the set of analytic polynomials on T, and by A = A(T)

the disc algebra, i.e., the closure of P(T) in the Banach space C(T) of contin-
uous functions on T. An operator T ∈ L(H) is called polynomially bounded if
there exists a real number KT such that ‖p(T )‖ ≤ KT‖p‖ for all p ∈ P(T), where
‖p‖ = max{|p(ζ)| : ζ ∈ T}. For a polynomially bounded operator T , the map-
ping ΦT,0 : P(T) → L(H), p 7→ p(T ) is a bounded algebra-homomorphism which
extends continuously to the disc algebra: ΦT,1 : A → L(H), f 7→ f(T ). Polyno-
mially bounded operators were studied by W. Mlak in a series of papers using
‘elementary measures’. Here we recall some basic facts from his works. For any
x, y ∈ H let us consider the continuous linear functional ϕx,y : L(H) → C defined
by ϕx,y(C) = 〈Cx, y〉. By the Hahn–Banach Theorem ϕx,y ◦ ΦT,1 : A → C can be
extended to a bounded linear functional Ψx,y : C(T) → C. By the Riesz Represen-
tation Theorem there exists a unique regular complex Borel measure µx,y on T such
that Ψx,y(f) =

∫
T f dµx,y for all f ∈ C(T), in particular for all f ∈ A. Let us de-

note by M(T, x, y) the set of such representing measures. If µ, ν ∈ M(T, x, y) then
µ− ν ⊥ A, hence µ− ν = h dm for some h ∈ H1

0 by the F & M. Riesz theorem; thus
M(T, x, y) = {µx,y + h dm : h ∈ H1

0}. (If T is a contraction then µx,y can be chosen
to be the localization of the spectral measure of the unitary dilation of T .) The poly-
nomially bounded operator T is called absolutely continuous if for every x, y ∈ H
there exists a measure µ ∈ M(T, x, y) which is absolutely continuous with respect
to the Lebesgue measure. T is singular if for any pair x, y ∈ H there is a measure
µ ∈ M(T, x, y) which is singular to m. Every polynomially bounded operator T
can be uniquely decomposed into the direct sum T = Ta u Ts of an a.c. polyno-
mially bounded operator Ta and a singular polynomially bounded operator Ts (see
[Mla73]). We say that an operator T ∈ L(H) admits an H∞-functional calculus if
there is a weak-* continuous, unital algebra-homomorphism ΦT : H∞ → L(H) such
that ΦT (χ) = T . If there exists such a ΦT , then it is bounded and unique. It turns
out that T admits an H∞-functional calculus exactly when T is a.c. polynomially
bounded operator (see p. 68 in [Mla74a]). In this case ΦT |A = ΦT,1.

We proceed with testing the stability of a.c. polynomially bounded operators.

Definition 2.9. A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ is a
test sequence of stability for a.c. polynomially bounded operators if for every a.c.
polynomially bounded operator T ∈ L(H) the condition T n → 0 (SOT) holds
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exactly when hn(T )→ 0 (SOT).

Note that, in principle, a test sequence for a.c. contractions is not necessarily a
test sequence for a.c. polynomially bounded operators. Nevertheless, we can prove
the following theorem.

Theorem 2.10. A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ is a test
sequence of stability for a.c. polynomially bounded operators if and only if {hn}∞n=1

converges to zero exclusively on D.

Proof. The necessity part follows from Theorem 2.5 since a test sequence of stabil-
ity for a.c. polynomially bounded operators is a test sequence of stability for a.c.
contractions too. For the proof of sufficiency let us suppose that {hn}∞n=1 converges
to zero exclusively on D, and let T ∈ L(H) be an a.c. polynomially bounded oper-
ator such that T n → 0 (SOT). In view of (i) and (ii) the Vitali–Montel Theorem
yields that hn → 0 locally uniformly on D, and so, for every k ∈ N, h(k)

n → 0 lo-
cally uniformly on D by the Weierstrass Theorem. Let us consider the expansion
hn =

∑∞
k=0 cn,kχ

k where cn,k = h
(k)
n (0)/k! are the Taylor coefficients. We have

hn =
N−1∑
k=0

cn,kχ
k + χN

∞∑
k=N

cn,kχ
k−N = fn,N + χNgn,N .

By the Maximum Principle ||gn,N ||∞ ≤ ||hn||∞ + ||fn,N ||∞ ≤ M + ||fn,N ||∞, and it
is clear that limn→∞ ||fn,N ||∞ = 0 for any N ∈ N. Let x ∈ H and ε > 0 be fixed.
Then

||hn(T )x|| ≤ ||fn,N(T )x||+ ||gn,N(T )TNx||

≤ ‖ΦT‖‖fn,N‖∞||x||+ ‖ΦT‖‖gn,N‖∞||TNx||.

We can choose N so that ‖TNx‖ < ε. Fixing N in this way, there exists ν ∈ N such
that ‖fn,N‖∞ < ε for every n > ν. Therefore, ||hn(T )x|| ≤ ‖ΦT‖ε||x||+‖ΦT‖(M+ε)ε

holds for all n > ν, and so limn→∞ ||hn(T )x|| = 0.
Now suppose that T n 6→ 0 (SOT). Then there exist an a.c. (non-zero) isometry V

and a bounded linear transformation X with dense range, such that XT = V X; see
[Kér89]. If hn(T )→ 0 (SOT), then hn(V )→ 0 (SOT) and this contradicts (iii).

We conclude this chapter by formulating a statement about the stability of sin-
gular polynomially bounded operators.
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Proposition 2.11. Let {hn}∞n=1 ⊂ A be a bounded sequence in the disc algebra.
Then hn(T ) → 0 (SOT) for every singular polynomially bounded operator T if and
only if limn→∞ hn(ζ) = 0 for every ζ ∈ T. In that case hn(T )→ 0 (SOT) for every
polynomially bounded operator T .

Proof. It is known that any singular polynomially bounded operator T is similar to
a singular unitary operator U , that is T = X−1UX with some boundedly invertible
operator X (see [Mla74b]). Suppose that limn→∞ hn(ζ) = 0 for a.e. ζ ∈ T. Then,
for every y ∈ H, we have

||hn(U)y||2 =

∫
T
|hn|2 dEy,y → 0

by Lebesgue’s Dominated Convergence Theorem. The inequality

||hn(T )x||2 = ||hn(X−1UX)x||2 = ||X−1hn(U)Xx||2

≤ ||X−1||2||hn(U)Xx||2

shows that hn(T )→ 0 (SOT).
If T is an arbitrary polynomially bounded operator, then we decompose it to the

direct sum T = TauTs of an a.c. and a singular polynomially bounded operator. For
the singular component we apply the previous result, while for the a.c. component
we can apply the proof of Theorem 2.10, since our conditions imply that hn → 0

locally uniformly on D. Hence hn(T ) = hn(Ta) u hn(Ts)→ 0 (SOT).
Now let us suppose that hn(T ) → 0 (SOT) for every singular polynomially

bounded operator T . If we consider the operator λI (λ ∈ T) then we obtain that
|hn(λ)|2||x||2 = ||hn(λI)x||2 → 0. The proof is complete.



Chapter 3

Hyperinvariant subspaces of

quasianalytic contractions

In this chapter we investigate special types of asymptotically non-vanishing contrac-
tions, namely, quasianalytic contractions. In the beginning, namely, in Section 3.1
we introduce local version of the quasianalytic spectral set and exhibit its connec-
tion with the residual set. In Section 3.2 the fundamental properties of quasianalytic
contractions are summarized including their asymptotic behaviour. Asymptotically
cyclic quasianalytic contractions are studied in Section 3.3, where equivalent con-
ditions are given for the existence of a non-trivial hyperinvariant subspace. For
such a contraction T the commutant {T}′ can be identified with a function algebra
F(T ), the so-called functional commutant. Answering a question posed in [Kér11]
we show in Section 3.4 that F(T ) can be a pre-Douglas algebra only in the case
when F(T ) = H∞. We prove also similarity invariance of F(T ) and detect its
representation in the functional model.

3.1 Local quasianalytic spectral set

Let T ∈ L(H) be an a.c. contraction and let (X, V ) be a unitary asymptote of T . It
is known that V ∈ L(K) is an a.c. unitary operator, that is the spectral measure E
of V is a.c. with respect to the normalized Lebesgue measure m on the unit circle
T. The residual set ω(T ) of T is the measurable support of E, which means that
E(α) = 0 if and only if m(α ∩ ω(T )) = 0. For any x, y ∈ H, wx,y ∈ L1(T) is the
asymptotic density function of T at x and y: EXx,Xy = wx,y dm. The measurable
ω(T, x) = {ζ ∈ T : wx,x(ζ) > 0} is the local residual set of T at x. (It is easy to
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check that wx,y and ω(T, x) are independent of the special choice of (X, V ).) It is
worth mentioning that Hω(T ) = {x ∈ H : ω(T, x) = ω(T )} is a dense Gδ-set in H
(see Lemma IX.2.15 in [NFBK]).

We recall the notion of another spectral invariant, defined by the Sz.Nagy–Foias
functional calculus ΦT for T . This calculus is monotone in the sense that ‖f(T )x‖ ≤
‖g(T )x‖ for every x ∈ H (in notation: f(T )

a
≺ g(T )) whenever |f(z)| ≤ |g(z)| for

every z in the unit disc D (in notation: f
a
≺ g). Given a decreasing sequence

F = {fn}∞n=1 in H∞ (fn+1

a
≺ fn for every n), let us consider the limit function ϕF

on T, defined by ϕF (ζ) = limn→∞ |fn(ζ)| for a.e. ζ ∈ T, and the measurable set
NF = {ζ ∈ T : ϕF (ζ) > 0}. Then the sequence F (T ) = {fn(T )}∞n=1 of operators is
also decreasing (fn+1(T )

a
≺ fn(T ) for every n) and the set

H0(T, F ) =
{
x ∈ H : lim

n→∞
‖fn(T )x‖ = 0

}
of stable vectors for F (T ) is a hyperinvariant subspace of T . For measurable subsets
α and β of T, we write α = β, α 6= β and α ⊂ β if m(α4β) = 0, m(α4β) > 0 and
m(α \ β) = 0 respectively, that is when χα = χβ, χα 6= χβ and χα ≤ χβ hold for
the corresponding characteristic functions as elements of the Banach space L1(T).
We say that T is quasianalytic on a measurable subset α of T at a vector x ∈ H if
x /∈ H0(T, F ) whenever F is non-vanishing on α, that is NF ∩α 6= ∅. Let A(T, x) be
the system of sets α with this property and set a(T, x) = sup{m(α) : α ∈ A(T, x)}.
Taking a sequence {αn}∞n=1 in A(T, x) so that limn→∞m(αn) = a(T, x), it is easy to
see that π(T, x) = ∪∞n=1αn will be the largest element of A(T, x). The set π(T, x) is
called the local quasianalytic spectral set of T at x. (Note that π(T, x) is uniquely
determined up to sets of measure 0.) We recall from [Kér11] that T is quasianalytic
on α if H0(T, F ) = {0} whenever NF ∩ α 6= ∅; the (global) quasianalytic spectral
set π(T ) is the largest element of A(T ), the system of sets where T is quasianalytic.
The following statement follows immediately from the definitions.

Proposition 3.1. The set π(T ) is the largest measurable set such that π(T ) ⊂
π(T, x) holds for every non-zero x ∈ H.

The next lemma claims that local stability is determined by the asymptotic
density function.

Lemma 3.2. Let F = {fn}∞n=1 be a decreasing sequence in H∞ and x ∈ H.

(a) If limn→∞ ‖fn(T )x‖ = 0 then ϕFwx,x = 0.
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(b) If ϕFwx,x = 0 then there exists an increasing mapping τ : N → N such that
limn→∞ ‖T τ(n)fn(T )x‖ = 0.

Proof. Part (a) readily follows from the equations

lim
n→∞

‖Xfn(T )x‖2 = lim
n→∞

‖fn(V )Xx‖2

= lim
n→∞

∫
T
|fn|2wx,x dm =

∫
T
ϕ2
Fwx,x dm.

Since there exists an increasing τ : N→ N satisfying the condition

lim
n→∞

‖Xfn(T )x‖ = lim
n→∞

‖T τ(n)fn(T )x‖,

the same equations yield (b) too.
Note that G =

{
χτ(n)fn

}∞
n=1

is also a decreasing sequence with ϕG = ϕF .

The following theorem establishes connection among the local and global spectral
invariants introduced before.

Theorem 3.3. For every non-zero x ∈ H we have

π(T ) ⊂ π(T, x) = ω(T, x) ⊂ ω(T ).

Proof. Let F = {fn}∞n=1 be a decreasing sequence with NF ∩ ω(T, x) 6= ∅. Then
ϕFwx,x 6= 0 implies limn→∞ ‖fn(T )x‖ > 0 by Lemma 3.2. Thus T is quasianalytic
on ω(T, x) at x, and so ω(T, x) ⊂ π(T, x).

Setting α = T \ ω(T, x), let ϑ ∈ H∞ be such that |ϑ| = χα + 1
2
χT\α, and form

the decreasing sequence F = {ϑn}∞n=1 with ϕF = χα. By Lemma 3.2, ϕFwx,x = 0

yields the existence of an increasing τ : N→ N such that limn→∞ ‖T τ(n)fn(T )x‖ = 0.
Then G =

{
χτ(n)ϑn

}∞
n=1

is a decreasing sequence with NG = α and x ∈ H0(T,G).
Therefore π(T, x) ⊂ ω(T, x) must hold.

As a consequence we obtain conditions for the existence of a non-trivial hyper-
invariant subspace. (Statement (b) below appears already in [Kér01].)

Corollary 3.4.

(a) If ω(T, x) 6= ω(T ) for some non-zero x ∈ H and F = {fn}∞n=1 is a decreasing
sequence with NF = ω(T ) \ ω(T, x), then there exists an increasing mapping
τ : N → N, such that G =

{
χτ(n)fn

}∞
n=1

is also a decreasing sequence with
ϕG = ϕF , x ∈ H0(T,G), and H0(T,G) ∩Hω(T ) = ∅. Therefore H0(T,G) is a
non-trivial hyperinvariant subspace of T .
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(b) If π(T ) 6= ω(T ) then HlatT is non-trivial.

Remark 3.5. We know that ω(T, x) = ω(T ) for every x ∈ Hω(T ), which is a dense
Gδ-set in H. On the other hand, it may happen that π(T, x) 6= π(T ) for every
non-zero x ∈ H. Indeed, let α1 and α2 be sets of positive measure on T such that
α1 6= α 6= α2 holds for α = α1∩α2. For j = 1, 2, let Tj ∈ L(Hj) be an a.c. contraction
satisfying the condition π(Tj) = ω(Tj) = αj. (Existence of such Tj follows from the
results in Section 3.2.) Form the orthogonal sum T = T1 ⊕ T2 ∈ L(H = H1 ⊕H2).
For a non-zero x = x1 ⊕ x2 ∈ H the local residual set ω(T, x) is α1 if x2 = 0, α2 if
x1 = 0, and α1 ∪ α2 if x1 6= 0 6= x2. On the other hand π(T ) = α.

It is known that the local asymptotic density function, and so the local quasi-
analytic spectral set as well, can be expressed in terms of the resolvent as a non-
tangential limit. (See Lemma 2.2 in [ARS07].)

Proposition 3.6. Given any x ∈ H we have

nt-lim
z→ζ

(
1− |z|2

)
‖(I − zT )−1x‖2 = wx,x(ζ) for a.e. ζ ∈ T.

Proof. For the sake of completeness we sketch the proof, which is based on the
representation of the unitary asymptote in the dilation space.

Let UT ∗,+ ∈ L(K∗,+) be the minimal isometric dilation of T ∗. Then U∗ = (UT ∗,+)∗

is minimal coisometric extension of T . Taking the Wold decomposition UT ∗,+ =

Sn ⊕ R∗∗ ∈ L(K∗,+ = S∗ ⊕R∗), where Sn is a unilateral shift of some multiplicity n
and R∗ is unitary, we obtain the decomposition U∗ = S∗n ⊕R∗. The pair (X∗, R∗) is
a unitary asymptote of T , where X∗ = PR∗ |H.

Given x ∈ H we have

nt-lim
z→ζ

(
1− |z|2

)
‖(I − zR∗)−1X∗x‖2

= nt-lim
z→ζ

∫
T

1− |z|2

|1− zs|2
wx,x(s) dm(s) = wx,x(ζ) for a.e. ζ ∈ T.

Notice that the Poisson kernel appears in the integral. Using tools from harmonic
analysis it can be shown that, for every y ∈ S∗,

nt-lim
z→ζ

(
1− |z|2

)
‖(I − zS∗n)−1y‖2 = 0 for a.e. ζ ∈ T.

Now the statement follows from the decomposition

(I − zT )−1x = (I − zU∗)−1x = (I − zS∗n)−1PS∗x⊕ (I − zR∗)−1X∗x.
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3.2 Quasianalytic contractions

The a.c. contraction T ∈ L(H) is quasianalytic if π(T ) = ω(T ) 6= ∅. In view of
Corollary 3.4, in the setting of asymptotically non-vanishing contractions (HSP)
can be reduced to the case when T is quasianalytic.

For the sake of convenience and easy reference we collect some fundamental
statements on quasianalytic contractions in the following theorem. For their proofs
we refer to [Kér01] and [Kér11].

First we recall some definitions. The simple unilateral shift S ∈ L(H2) is defined
by Sf = χf . The operator A ∈ L(H) is a quasiaffine transform of the operator
B ∈ L(K), in notation: A ≺ B, if there exists a quasiaffinity (i.e. an injective
transformation with dense range) Q ∈ L(H,K) such that QA = BQ. The operators
A and B are quasisimilar, in notation: A ∼ B, if A ≺ B and B ≺ A. The function
f ∈ H∞ is partially inner if |f(0)| < 1 = ‖f‖∞ and the set Ω(f) = {ζ ∈ T :

|f(ζ)| = 1} is of positive measure. The partially inner function f is regular, if
α ⊂ Ω(f),m(α) = 0 imply m(f(α)) = 0; or equivalently, if f(α) is measurable
whenever α ⊂ Ω(f) is measurable.

Theorem 3.7. The operators T , T1 and T2 below are all a.c. contractions.

(a) The unilateral shift S ∈ L(H2) is quasianalytic with π(S) = T.

(b) If T ≺ S, then T is quasianalytic with π(T ) = T.

(c) If T is quasianalytic, then its inflation T (n) = T ⊕ . . .⊕ T︸ ︷︷ ︸
n terms

is quasianalytic

with π
(
T (n)

)
= π(T ) (n ∈ N).

(d) If T is quasianalytic andM is a non-zero invariant subspace of T , then T |M
is quasianalytic with π(T |M) = π(T ).

(e) If T is quasianalytic and f is a regular partially inner function satisfying
the condition Ω(f) ∩ π(T ) 6= ∅, then f(T ) is quasianalytic with π(f(T )) =

f(Ω(f) ∩ π(T )).

(f) If T1 ∼ T2 and T1 is quasianalytic, then T2 is also quasianalytic with π(T2) =

π(T1).

On the basis of these statements a lot of examples of quasianalytic contractions
can be constructed.

We show that quasianalycity determines asymptotic behaviour of the contraction.
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Theorem 3.8. If T is a quasianalytic contraction, then T ∈ C10.

Proof. Since π(T ) 6= ∅ and F = {χn}∞n=1 is a decreasing sequence with NF = T, we
infer that T ∈ C1·.

Let us suppose that T /∈ C·0. Then H1 = H0(T ∗)⊥ is a non-zero invariant
subspace of T and T1 = T |H1 ∈ C11. Hence T1 is quasisimilar to an a.c. unitary
operator V1. By (d) and (f) of Theorem 3.7 it follows that V1 is quasianalytic, what
is impossible since π(V1) = ∅ 6= ω(V1). Therefore T ∈ C·0.

3.3 Asymptotically cyclic contractions

Let T ∈ L(H) be an a.c. contraction, and let (X, V ) be a unitary asymptote of
T . We say that T is asymptotically cyclic, if the a.c. unitary operator V ∈ L(K)

is cyclic, that is ∨∞n=0V
ny = K holds for some y ∈ K. It is known that V is cyclic

exactly when its commutant {V }′ = {D ∈ L(K) : DV = V D} is abelian. The
universal property of the unitary asymptote implies that for every C ∈ {T}′ there is
a unique D ∈ {V }′ such that XC = DX, and the mapping γ : {T}′ → {V }′, C 7→ D

is a contractive, unital algebra-homomorphism (see [NFBK, Lemma IX.1.4]). Hence
{T}′ is abelian if so is {V }′ and γ is injective, which is evidently true if T ∈ C1·.
(Injectivity of γ was studied in [GK11].)

We give sufficient condition for the contraction T to be asymptotically cyclic.
First we fix some notation. Given A ∈ L(E) and B ∈ L(F), I(A,B) = {Q ∈
L(E ,F) : QA = BQ} is the set of transformations intertwining A with B. The
operators A and B are unitarily equivalent, in notation: A ∼= B, if I(A,B) contains
a unitary transformation. Moreover, A and B are similar, in notation: A ≈ B, if
I(A,B) contains an affinity (invertible transformation). Finally A can be injected
into B, in notation: A

i
≺ B, if I(A,B) contains an injection. The minimal unitary

extension of the simple unilateral shift S ∈ L(H2) is the simple bilateral shift S̃ ∈
L(L2(T)), defined by S̃f = χf .

Proposition 3.9. If T ∈ L(H) is a contraction and T ≺ S, then T is asymptotically
cyclic and V |(XH)− ∼= S.

Proof. The relation T ≺ S immediately implies that T ∈ C10; in particular, T is
a.c. and the unitary asymptote V acts on a non-zero space K. Suppose that V is
not cyclic. Then S2 = S⊕S

i
≺ T by Theorem 1 in [Kér07] (see also Theorem IX.3.2
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in [NFBK]). Thus S2

i
≺ S, what is impossible by Theorem 5 in [NF74]. Therefore

V is cyclic, that is T is asymptotically cyclic.
Let Q ∈ I(T, S) be a quasiaffinity, and let Q̃ ∈ I(T, S̃) be defined by Q̃h = Qh

(h ∈ H). There exists unique Y ∈ I(V, S̃) such that Q̃ = Y X. It is known that
kerY is reducing for V , (YK)− is reducing for S̃, and V |(kerY )⊥ ∼= S̃|(YK)−. Since
(YK)− ⊃ (QH)− = H2, it follows that (YK)− = L2(T), and so V |(kerY )⊥ ∼=
S̃. Taking into account that V is cyclic, we infer that kerY = {0}, thus Y is
a quasiaffinity. The relations Y (XH)− ⊂ (Y XH)− = (QH)− = H2 imply that
(XH)− is a non-trivial invariant subspace of V . Since ∨∞n=0V

−n(XH)− = K, we
conclude that V |(XH)− ∼= S.

We note that S2 ≺ S̃, and so T ≺ S̃ does not imply that T is asymptotically
cyclic. Indeed, Q ∈ I(S2, S̃), defined by Q(f ⊕ g) = ϑf + g, is a quasiaffinity,
provided ϑ ∈ L∞(T) is a.e. non-zero and

∫
T log |ϑ| dm = −∞.

The set of asymptotically cyclic, quasianalytic contractions acting on the Hilbert
space H is denoted by L0(H). If T is cyclic then so is V (but not conversely), hence
(ISP) in the setting of quasianalytic contractions can be reduced to the class L0(H).

Proposition 3.10. If T ∈ L0(H) then

(i) {T}′ is abelian, and

(ii) every non-zero C ∈ {T}′ is injective.

Proof. If T ∈ L0(H) then T ∈ C10 by Theorem 3.8, and so γ is injective. Since {V }′

is abelian it follows that {T}′ is abelian too. For the proof of (ii) see Proposition 23
in [Kér01].

Proposition 3.11. If T1, T2 ∈ L0(H) and T1T2 = T2T1, then {T1}′ = {T2}′.

Proof. Fix any C ∈ {T1}′. Since T2 ∈ {T1}′, the commutativity of {T1}′ yields
CT2 = T2C, that is, C ∈ {T2}′.

We have a lot of information on the structure of a contraction if its residual set
covers the unit circle. Hence it is worth considering the special class L1(H) = {T ∈
L0(H) : π(T ) = T}. In the next theorem we summarize important properties of an
operator T ∈ L1(H); for the proof we refer to Section IX.3 in [NFBK]. We recall that
Lats T stands for the set of those invariant subspacesM, where the restriction T |M
is similar to S. The range of the functional calculus ΦT is denoted by H∞(T ), and
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the algebra W(T ) is the closure of H∞(T ) in the weak operator topology. Finally
T is called reflexive if C ∈ W(T ) whenever LatC ⊃ LatT .

Theorem 3.12. If T ∈ L1(H) then

(i) ∨Lats T = H,

(ii) ΦT is an isometry,

(iii) H∞(T ) =W(T ), and

(iv) T is reflexive.

Examples of operators in L1(H) are provided by the following propositions.

Proposition 3.13. If T ∈ L(H) is a contraction such that T ≺ S, then T ∈ L1(H)

and H∞(T ) = {T}′.

Proof. By Theorem 3.7.(b) and Proposition 3.9 it follows that T ∈ L1(H). For the
proof of H∞(T ) = {T}′ see Proposition 5.3 in [Kér11].

Proposition 3.14. If T ∈ L1(H), then T |M ∈ L1(M) holds for every non-zero
invariant subspaceM of T .

Proof. The restriction T |M is quasianalytic with π(T |M) = π(T ) = T by Theo-
rem 3.7.(d). Since T is asymptotically cyclic, so is T |M, since its unitary asymptote
is a direct summand of V .

There is a strong connection between the classes L0(H) and L1(H). The following
statement appears in [KT12] as Theorem 1.

Theorem 3.15. For every T0 ∈ L0(H) we can find T1 ∈ L1(H) so that T0T1 = T1T0;
hence {T0}′ = {T1}′ and so HlatT0 = HlatT1.

Therefore, (HSP) in L0(H) can be reduced to L1(H), where Theorem 3.12 pro-
vides a lot of information on the operator. If {T}′ = H∞(T ), then HlatT = LatT

is non-trivial. However, if {T}′ 6= H∞(T ) then the shift-type invariant subspaces
are not hyperinvariant.

Proposition 3.16. Let T ∈ L1(H) be such that {T}′ 6= H∞(T ). Then, for every
C ∈ {T}′ \H∞(T ), we have LatC ∩ Lats T = ∅.
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Proof. Let C ∈ {T}′ be such that CM ⊂ M holds for some M ∈ Lats T . Since
{T |M}′ = H∞(T |M) by Proposition 3.13 and C|M ∈ {T |M}′, there exists f ∈ H∞

such that C|M = f(T |M) = f(T )|M. In view of Proposition 3.10.(ii), the relations
C − f(T ) ∈ {T}′ and (C − f(T ))|M = 0 yield that C = f(T ).

Corollary 3.17. For any T ∈ L1(H), {T}′ = H∞(T ) holds if and only if HlatT =

LatT .

The following theorem states that if non-trivial hyperinvariant subspaces exist,
then such subspaces can be derived from shift-type invariant subspaces.

Theorem 3.18. Let T ∈ L1(H) be such that {T}′ 6= H∞(T ). Then the following
statements are equivalent:

(i) HlatT is non-trivial;

(ii) there existsM∈ Lats T such that ∨{CM : C ∈ {T}′} 6= H;

(iii) there exists S ⊂ Lats T such that H 6= ∨S ∈ HlatT .

Proof. Let us assume that N is a non-trivial hyperinvariant subspace of T . Since
T |N ∈ L1(N ), there exists a subspace M ∈ Lats (T |N ) ⊂ Lats T included in N
(see Theorem 3.12 and Proposition 3.14). It is clear that N0 = ∨{CM : C ∈ {T}′}
is a hyperinvariant subspace satisfying the conditionsM ⊂ N0 ⊂ N , in particular
N0 is non-trivial.

For any C ∈ {T}′ and λ ∈ C, we have (C − λI)M ∨ M = CM ∨ M. Hence
N0 = ∨{CM : C ∈ {T}′ invertible}. However, if C ∈ {T}′ is invertible, then
T |CM≈ T |M ≈ S and so CM∈ Lats (T ).

It is known that the unilateral shift S is cellular-indecomposable, that is the in-
tersection of any two non-zero invariant subspaces of S is non-zero. The contraction
T ∈ L1(H) is called quasiunitary, if X has dense range and so it is a quasiaffinity,
where (X, V ) is a unitary asymptote of T . (See Section 5 in [Kér01].)

Proposition 3.19. If T ∈ L1(H), then the following conditions are equivalent:

(i) T is not quasiunitary,

(ii) T ≺ S,

(iii) T is cellular-indecomposable.
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Proof. Let (X, V ) be a unitary asymptote of T ; we know that L(K) 3 V ∼= S̃. The
subspace (XH)− is invariant for V and ∨∞n=1V

−n(XH)− = K. Hence, if (XH)− 6= K
then V |(XH)− ∼= S, and so (i) implies (ii). The converse implication follows from
Proposition 3.9, thus (i) and (ii) are equivalent.

If T is not quasiunitary, then the relation S ≺ S̃ implies T ≺ S̃. Hence T ≺ S̃

always holds. Therefore, (ii) and (iii) are equivalent by the result of [Tak90].

If T is not quasiunitary, then HlatT = LatT is a rich lattice containing Lats T

and
(
ker
(
T ∗ − λI

))⊥ (λ ∈ D) because of S∗ ≺ T ∗. (See Propositions 3.13, 3.19 and
Theorem 3.12.) Hence (HSP) in L1(H) can be reduced to the quasiunitary case.
Propositions 3.14, 3.19 and Theorem 3.12 yield:

Proposition 3.20. If T ∈ L1(H) is quasiunitary, then there existM1,M2 ∈ Lats T

such thatM1 ∩M2 = {0}.

3.4 Functional commutant

Let T ∈ L(H) be an asymptotically cyclic a.c. contraction, and assume that T ∈
C1· and ω(T ) = T. Let (X, V ) be a unitary asymptote of T , and let us consider
the contractive algebra-homomorphism γ : {T}′ → {V }′, C 7→ D, where XC =

DX, which is injective because of T ∈ C1·. The functional calculus Φ: L∞(T) →
{V }′, f 7→ f(V ) is an isomorphism between the corresponding Banach algebras.
The composition γ̂T = Φ−1 ◦ γ : {T}′ → L∞(T) is also an injective, contractive,
unital algebra-homomorphism. It can be easily checked that γ̂T is independent of
the special choice of (X, V ). Indeed, for j = 1, 2 let (Xj, Vj) be a unitary asymptote
of T , and let γj,Φj be defined as before. There exist unitary transformations Y1 ∈
I(V1, V2) and Y2 ∈ I(V2, V1) such that X2 = Y1X1, X1 = Y2X2 and Y2 = Y1

−1. Given
any C ∈ {T}′ we have XjC = DjXj = fj(Vj)Xj. Hence

f2(V1)X1 = Y2f2(V2)Y1X1 = Y2f2(V2)X2 = Y2X2C = X1C = f1(V1)X1,

and so f2(V1) = f1(V1), whence f2 = f1 follows.
The uniquely determined γ̂T is called the functional mapping of T , and its range

F(T ) is called the functional commutant of T . Since γ̂T (f(T )) = f holds for every
f ∈ H∞, we obtain that F(T ) is a subalgebra of L∞(T) containing H∞. It is
natural to ask the following questions. Which function algebras H∞ ⊂ A ⊂ L∞(T)

are attainable as a functional commutant: A = F(T ), and what kind of information



3.4. Functional commutant 26

can be derived from the properties of γ̂T and F(T ) on the behaviour of T? We
recall that the function algebra A is called quasianalytic, if f(ζ) 6= 0 for a.e. ζ ∈ T
whenever f is a non-zero element of A. The following statement was proved in
[Kér11] (see Proposition 4.2 there).

Proposition 3.21. If T ∈ L1(H), then F(T ) is quasianalytic.

It is clear that F(T ) = H∞ exactly when {T}′ = H∞(T ), and this happens in
particular if T ≺ S. (For a more complete characterization of this case see Theorem
5.2 in [Kér11].)

If T ∈ L1(H) and F(T ) 6= H∞, then the closure F(T )− contains H∞ + C(T)

(see Theorems IX.1.4 and IX.2.2 in [Gar07]); thus F(T )− is not quasianalytic, and
so F(T ) is not closed, or equivalently, γ̂T is not bounded from below.

We recall that η ∈ H∞ is an inner function, if |η(ζ)| = 1 holds for a.e. ζ ∈ T.
Let H∞i stand for the multiplicative semigroup of all inner functions. Given a
subsemigroup B of H∞i , the algebra B · H∞ generated by B (set of conjugates of
functions in B) and H∞ is clearly quasianalytic. The closure

(
B ·H∞

)− is called the
Douglas algebra induced by B. By the celebrated Chang–Marshall theorem every
closed subalgebra A of L∞(T), containing H∞, is a Douglas algebra (see Theorem
IX.3.1 in [Gar07]). Therefore, F(T )− =

(
B ·H∞

)− holds with B = {η ∈ F(T )− ∩
H∞i : η ∈ F(T )−}. We note that B can be replaced by a semigroup generated
by interpolating Blaschke products (see Theorems IX.3.2 and IX.3.4 in [Gar07]).
The question which pre-Douglas algebras B · H∞ arise as functional commutants
of contractions of class L1(H) was posed in [Kér11]. The next theorem settles this
problem.

Theorem 3.22. The only attainable pre-Douglas algebra is H∞.

Proof. Set T ∈ L1(H), and let us assume that F(T ) 6= H∞. If the spectrum σ(T )

of T covers the closed unit disc D−, then η /∈ F(T ) for every non-constant η ∈ H∞i
(see Proposition 4.4 in [Kér11]), hence F(T ) can’t be a pre-Douglas algebra. Let us
assume now that σ(T ) 6= D−. Select a point a ∈ D\σ(T ), and consider the operator
A = (T − aI)−1 ∈ {T}′ and the function g = γ̂T (A) = (χ − a)−1 ∈ F(T ). Since
Ã := expA =

∑∞
n=0(n!)−1An ∈ {T}′, it follows that g̃ := γ̂T

(
Ã
)

=
∑∞

n=0(n!)−1gn =

exp g belongs to F(T ). The function g̃, defined on T, has an analytic extension
G(z) = exp (1/(z − a)) defined for z ∈ C \ {a}. It is clear that a is an essential
isolated singularity of G. Let us assume that we can find functions h ∈ H∞ and
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k ∈ H∞i so that g̃ = hk = h/k. Let H and K be analytic extensions of h and k,
respectively, onto D. Then H/K is a meromorphic function on D, and

nt-lim
z→ζ

H(z)

K(z)
=
h(ζ)

k(ζ)
= g̃(ζ) = G(ζ)

holds for every ζ ∈ ω0, where m(T \ ω0) = 0. Let Ω be a domain in D bounded
by an open arc α1 on T and a closed segment α2, such that a /∈ Ω−. Let ψ be a
conformal mapping of D onto Ω, and let us consider the bounded analytic function
F = (H ◦ψ)− (G ◦ψ)(K ◦ψ) on D. By Carathéodory’s theorem ψ can be extended
to a homeomorphism of D− onto Ω−. Since the Jordan curve ∂Ω is rectifiable, the
set ω1 = ψ−1(ω0 ∩ α1) ⊂ T is of positive measure. For every ζ ∈ ω1, an rζ ∈ (0, 1)

can be given so that Iζ = {rψ(ζ) : rζ ≤ r < 1} ⊂ Ω. Then the arc Cζ = ψ−1(Iζ) ⊂ D
terminates in ζ, and F (z) converges to 0 when z tends to ζ along Cζ . We conclude
that nt-limz→ζ F (z) = 0 by Lindelöf’s theorem (see Theorem 2.3 in [CL66]). Hence
the theorem of F. and M. Riesz implies that F is identically zero (see Theorem 2.5
in [CL66]). Therefore, we obtain that G = H/K, what is impossible since H/K is
meromorphic on D and a ∈ D is an essential singularity.

Special case of the following property of the functional commutant has been
exploited in the previous proof.

Proposition 3.23. If f ∈ F(T ), r > ‖γ̂−1
T (f)‖ and ϕ is analytic on rD, then

ϕ ◦ f ∈ F(T ).

Proof. Consider the Taylor expansion ϕ(z) =
∑∞

n=0 cnz
n (z ∈ rD), where, of course,

limn→∞
n
√
|cn| ≤ 1/r. Setting C = γ̂−1

T (f) ∈ {T}′, we know that C̃ = ϕ(C) =∑∞
n=0 cnC

n ∈ {T}′ (convergence in norm), and so

ϕ(f) =
∞∑
n=0

cnf
n = γ̂T

(
C̃
)
∈ F(T ).

We recall that H∞ ⊂ A ⊂ L∞ is a generalized Douglas algebra, if for every
f ∈ A and λ ∈ C, |λ| > ‖f‖∞ implies (f − λ)−1 ∈ A. These algebras were
introduced and studied in [Tol92], where among others Gelfand’s theory of maximal
ideals and the theory of Douglas algebras were carried over to such algebras. We
know that F(T ) is a generalized Douglas algebra if and only if γ̂T preserves the
spectral radius, and in that case σ(T ) = T (see Theorems 5.5 and 5.6 in [Kér11]).
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It remains open which generalized Douglas algebras, other than H∞, (if there are
any) arise as a functional commutant F(T ) of a contraction T ∈ L1(H). Are there
any quasianalytic generalized Douglas algebras, other than H∞, at all?

We provide an example of an operator T ∈ L1(H) such that F(T ) 6= H∞ and
F(T ) ∩H∞i = T1. (Here 1 denotes the constant 1 function.)

Example 3.24. We consider extended version of Example 5.8 in [Kér11]. Given
0 ≤ δ < 1, set Gδ = {reit :

√
δ < r < 1, 0 < t < π}. Let ηδ denote the conformal

mapping of D onto the domain Gδ, satisfying the condition ηδ(ζ) = ζ for ζ = 1, i,−1.
Forming the regular partially inner function ϑδ = η2

δ , let us consider the analytic
Toeplitz operator Tδ ∈ L(H2) defined by Tδf = ϑδf . It can be easily verified (see
[Kér11]) that Tδ ∈ L1(H2), σ(Tδ) = {z ∈ C : δ ≤ |z| ≤ 1} and

F(Tδ) = {g ∈ L∞(T) : g ◦ ϑδ,+ = h|T+ for some h ∈ H∞},

where T+ = {z ∈ C : |z| = 1, Im z > 0} and ϑδ,+ = ϑδ|T+.
Let gδ ∈ L∞(T) be the inverse of ϑδ,+, that is gδ(ϑδ,+(ζ)) = ζ for every ζ ∈ T+.

Since gδ(T \ {1}) = T+, it follows that gδ /∈ H∞. (Indeed, assuming gδ ∈ H∞ let us
choose a fractional linear function ψ transforming T+ onto (0, 1). Then Im(ψ◦gδ) = 0

a.e. on T; taking the Poisson transform we obtain that Im(ψ ◦ gδ) is zero on D.
The Cauchy–Riemann equations yield that ψ ◦ gδ is constant. Thus gδ is constant,
what is impossible because of gδ(T \ {1}) = T+.) On the other hand, the equation
gδ◦ϑδ,+ = χ|T+ implies that gδ ∈ F(Tδ). Therefore F(Tδ) 6= H∞ for every δ ∈ [0, 1).
In particular, if δ = 0 then σ(T0) = D−, whence, by Proposition 4.4.(b) in [Kér11],
F(T0) ∩H∞i = T1 follows.

Though F(Tδ) 6= H∞, there is a connection between these algebras. Namely,
for any δ ∈ [0, 1), the commuting relation TδS = STδ yields that {Tδ}′ = {S}′ (see
Proposition 3.11). It is known that {S}′ = H∞(S) and γ̂S is an isometry. Thus the
composition γ̂T ◦ γ̂−1

S is a contractive algebra-isomorphism from H∞ onto F(T ).

We show that the functional commutant is a similarity invariant. Actually, the
following theorem contains a more general statement.

Theorem 3.25. For j = 1, 2, let Tj ∈ L1(Hj) be given with unitary asymptote
(Xj, Vj). Let us assume that there exist Y ∈ I(T1, T2) and Z ∈ I(T2, T1) such that
ZY 6= 0. Then

(a) Y and Z are injective;
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(b) 0 6= γ̂T1(ZY ) = γ̂T2(Y Z) =: g belongs to F(T1) ∩ F(T2) and gF(T1) ⊂ F(T2),
gF(T2) ⊂ F(T1);

(c) in particular, if ZY = I, that is when T1 ≈ T2, then g = 1 and F(T1) = F(T2).

Proof. By the universality property of the unitary asymptotes there exist A ∈
I(V1, V2) and B ∈ I(V2, V1) such that AX1 = X2Y and BX2 = X1Z. Since
X1(ZY ) = BX2Y = (BA)X1, ZY ∈ {T1}′ and BA ∈ {V1}′, we infer that γ̂T1(ZY ) =

g where g(V1) = BA. Similarly, AB = h(V2) with h = γ̂T2(Y Z). The assumption
ZY 6= 0 yields that 0 6= g ∈ F(T1). Since the function algebra F(T1) is quasian-
alytic, we obtain that g(V1) is a quasiaffinity, and so B has dense range. Now the
equations g(V1)B = BAB = Bh(V2) = h(V1)B imply that g(V1) = h(V1), whence
g = h follows. Thus Y Z ∈ {T2}′ is also non-zero, and we conclude by Proposi-
tion 3.10.(ii) that ZY and Y Z are injective, hence Y and Z are injective too.

Given an arbitrary f1 ∈ F(T1), let us consider C1 = (γ̂T1)
−1 (f1) ∈ {T1}′, C2 =

Y C1Z ∈ {T2}′ and γ̂T2(C2) = f2. Then the equalities

f2(V2)X2 = X2C2 = X2Y C1Z = AX1C1Z = Af1(V1)X1Z

= Af1(V1)BX2 = f1(V2)ABX2 = f1(V2)g(V2)X2

yield that f2 = f1g. Therefore gF(T1) ⊂ F(T2), and in a similar way we obtain that
gF(T2) ⊂ F(T1).

Since Z is injective, the equation ZY = I is equivalent to the invertibility of Z
with Y = Z−1. In that case g = γ̂T1(ZY ) = 1, and so F(T1) = F(T2).

We conclude this section by providing representation of the functional mapping
in the functional model.

Let E , E∗ be Hilbert spaces, and let Θ: D → L(E , E∗) be a purely contrac-
tive, analytic, inner and ∗-outer function. Then H(Θ) = H2(E∗) 	 ΘH2(E) is the
corresponding model space, and the model operator S(Θ) ∈ L(H(Θ)) is defined
by S(Θ)u = PH(Θ)(χu), where PH(Θ) ∈ L(H2(E∗)) denotes the orthogonal projec-
tion onto H(Θ). We know that S(Θ) ∈ C10, and every contraction of class C10

is unitarily equivalent to a model operator of this kind. Let us consider the mea-
surable, projection-valued function ∆∗(ζ) = I − Θ(ζ)Θ(ζ)∗ defined for a.e. ζ ∈ T,
the subspace R∗ = ∆∗L

2(E∗) in L2(E∗), and the a.c. unitary operator R∗ ∈ L(R∗)
defined by R∗v = χv. The pair (X∗, R∗) is a unitary asymptote of S(Θ), where
X∗ ∈ L(H(Θ),R∗) is defined by X∗u = ∆∗u. (For the characteristic properties of
∆∗ see [Kér13].)
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The spectral-multiplicity function of R∗ is δ∗(ζ) = rank ∆∗(ζ). Hence S(Θ) is
asymptotically cyclic exactly when δ∗ ≤ 1. The asymptotic density function of S(Θ)

at u, v ∈ H(Θ) is wu,v(ζ) = 〈∆∗(ζ)u(ζ), v(ζ)〉. Thus the local residual set of S(Θ)

at u is ω(S(Θ), u) = {ζ ∈ T : ∆∗(ζ)u(ζ) 6= 0}, while the global residual set is
ω(S(Θ)) = {ζ ∈ T : ∆∗(ζ) 6= 0}. In view of Proposition 3.1 and Theorem 3.3 we
obtain the following characterization.

Proposition 3.26. We have S(Θ) ∈ L1(H(Θ)) if and only if

(i) δ∗(ζ) = 1 for a.e. ζ ∈ T, and

(ii) ∆∗(ζ)u(ζ) 6= 0 for a.e. ζ ∈ T, whenever 0 6= u ∈ H(Θ).

By the Lifting Theorem C ∈ {S(Θ)}′ if and only if there exists a bounded, an-
alytic function Ψ: D → L(E∗) such that ΨΘH2(E) ⊂ ΘH2(E) and Cu = PH(Θ)Ψu

for every u ∈ H(Θ). We note that Ψ can be chosen so that ‖Ψ‖∞ = ‖C‖. Fur-
thermore, the condition ΨΘH2(E) ⊂ ΘH2(E) is equivalent to the existence of a
bounded, analytic function Ψ0 : D→ L(E) such that ΨΘ = ΘΨ0. Let H∞(Θ) stand
for the set of all bounded, analytic functions Ψ: D→ L(E∗) satisfying the condition
ΨΘH2(E) ⊂ ΘH2(E), and for any Ψ ∈ H∞(Θ) let CΨ be the corresponding operator
in {S(Θ)}′ defined by CΨu = PH(Θ)Ψu (u ∈ H(Θ)). Moreover, let ΓΘ(Ψ) denote the
function ψ ∈ L∞(T) defined by ∆∗Ψ∆∗ = ψ∆∗. (Notice that dim ∆∗(ζ)E∗ = 1 for
a.e. ζ ∈ T.)

Theorem 3.27. If S(Θ) ∈ L1(H(Θ)), then for every Ψ ∈ H∞(Θ) we have:

(i) ∆∗Ψ(I −∆∗) = 0, and

(ii) γ̂S(Θ)(CΨ) = ΓΘ(Ψ).

Proof. Set Ψ ∈ H∞(Θ), and let ψ = ΓΘ(Ψ). For any u ∈ H2(E) and n ∈ N, we
have ∆∗ΨΘ(χ−nu) = χ−n∆∗ΨΘu = 0, since ΨΘu ∈ ΘH2(E) and ∆∗Θ = 0. Thus
∆∗ΨΘv = 0 holds for every v ∈ L2(E), and so ∆∗ΨΘ = 0. Since Θ(ζ) is an isometry
from E onto E∗ 	∆∗(ζ)E∗ for a.e. ζ ∈ T, it follows that ∆∗Ψ(I −∆∗) = 0.

For every u ∈ H(Θ), we have

X∗CΨu = ∆∗PH(Θ)Ψu = ∆∗Ψu = ∆∗Ψ(∆∗u+ (I −∆∗)u)

= ∆∗Ψ∆∗u = ψ∆∗u = ψ(R∗)X∗u.

Therefore, γ̂S(Θ)(CΨ) = ψ.



Chapter 4

Quasianalytic contractions in special

classes

This chapter is devoted to special classes of operators, where quasianalytic contrac-
tions naturally arise. Namely, we study analytic contractions in Section 4.1 and
bilateral weighted shifts in Section 4.2.

4.1 Analytic contractions

In [ARS07] the multiplication operator on a general Hilbert space of analytic func-
tions has been studied. Namely, let Ha be a Hilbert space of analytic functions
defined on D, with the usual vector space operations, satisfying the following con-
ditions:

(i) for every f ∈ Ha, we have χf ∈ Ha and ‖χf‖ ≤ ‖f‖ (χ(z) = z);

(ii) for every λ ∈ D, the evaluation Kλ : Ha → C, f 7→ f(λ) is a bounded linear
functional, and so there is a unique reproducing kernel kλ ∈ Ha with the
property f(λ) = 〈f, kλ〉 (f ∈ Ha);

(iii) 1 ∈ Ha.

The operator Ma ∈ L(Ha), Maf = χf is called an analytic multiplication operator.
Since M∗

akλ = λkλ (λ ∈ D) and ∨{kλ : λ ∈ D} = Ha, it follows that Ma is a
C·0-contraction. The condition (iii), which yields H∞ ⊂ Ha, is not always assumed
in [ARS07]; we suppose it here for simplicity. The boundary behaviour of functions
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in Ha is governed by the set

∆(Ha) = {ζ ∈ T : nt-lim
λ→ζ

(
1− |λ|2

)−1 ‖kλ‖−2 > 0}.

Namely, it has been shown in [ARS07] that

(a) for every f ∈ Ha, nt-limz→ζ f(z) exists for a.e. ζ ∈ ∆(Ha);

(b) a function f ∈ Ha can be found so that nt-limz→ζ f(z) does not exist for a.e.
ζ ∈ T \∆(Ha).

The measurable set ∆(Ha) can be related to the quasianalytic spectral set of Ma.

Proposition 4.1. The inclusion ∆(Ha) ⊂ π(Ma) holds. Therefore Ma is quasian-
alytic, whenever ∆(Ha) = ω(Ma) 6= ∅.

Proof. Setting a non-zero f ∈ Ha, the inequality

|f(λ)|2

(1− |λ|2) ‖kλ‖2
≤
(
1− |λ|2

)
‖(I − λMa)

−1f‖ (λ ∈ D)

yields by Proposition 3.6 that

nt-lim
λ→ζ

|f(λ)|2

(1− |λ|2) ‖kλ‖2
≤ wf,f (ζ) for a.e. ζ ∈ T.

By Proposition 3.3 of [ARS07] we know that

nt-lim
λ→ζ

|f(λ)|2

(1− |λ|2) ‖kλ‖2
> 0 for a.e. ζ ∈ ∆(Ha).

Thus ω(Ma, f) ⊃ ∆(Ha), and so ∆(Ha) ⊂ π(Ma); see Proposition 3.1 and Theorem
3.3.

Conditions for the equality ∆(Ha) = ω(Ma) are given in [ARS07].
It is easy to verify that the mapping λ 7→ kλ is coanalytic, which means that

the function ϕ(λ) = 〈f, kλ〉 (λ ∈ D) is analytic for every f ∈ Ha. Hence Ma is an
analytic operator in the sense of [CEP89]. We say that T ∈ L(H) is an analytic
contraction if ‖T‖ ≤ 1 and there exists a coanalytic function η : D → H satisfying
the conditions:

(i) T ∗η(λ) = λη(λ) for every λ ∈ D,

(ii) ∨{η(λ) : λ ∈ D} = H.
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(We note that such contractions are called fully analytic in [CEP89].) The function
η has an expansion η(λ) =

∑∞
n=0 λ

n
yn (λ ∈ D), where

lim
n→∞

‖yn‖
1
n ≤ 1, ∨{yn}∞n=0 = H, T ∗yn = yn−1 for n ∈ N, and T ∗y0 = 0.

We say that T is a purely analytic contraction, if η can be chosen so that y0 /∈
∨{yn}∞n=1. It can be easily verified that these are exactly those contractions, which
are unitarily equivalent to an analytic multiplication operator. We note also that
T ∗ belongs to the Cowen–Douglas class B1(D) introduced in [CD78] if and only if
T is an analytic contraction with approximate point spectrum σap(T ) = T and with
Fredholm index ind T = −1. Surprisingly, rather general spectral conditions ensure
the existence of purely analytic invariant subspaces, i.e. invariant subspaces where
the restriction is a purely analytic contraction. Namely, let T ∈ L(H) be an a.c.
contraction with an isometric functional calculus ΦT , and let us assume that the
extended right spectrum

σ̃r(T ) = D \ {λ ∈ D : (T − λI)H = H and 0 < dim ker(T − λI) <∞}

is dominating in D, that is a.e. ζ ∈ T is a non-tangential cluster point of σ̃r(T ).
Then there is a dense set H0 in H such that ∨{T nx}∞n=0 is a purely analytic invariant
subspace of T , for every x ∈ H0; see [CEP89].

It is not transparent how to identify the unitary asymptote of a general analytic
multiplication operator Ma. This identification can be carried out in the special
case when Ha is induced by a measure satisfying particular conditions considered
in [ARS09]. Let µ be a finite positive Borel measure, supported on D−, with the
property µ(T) > 0. Let P stand for the algebra of complex polynomials, and let
P2(µ) denote the closure of P in L2(µ). We consider the cyclic subnormal operator
Sµ ∈ L(P2(µ)), defined by Sµf = χf . The following assumptions are made:

(i) P2(µ) is irreducible, i.e. P2(µ) does not contain non-trivial characteristic func-
tion;

(ii) for every λ ∈ D, the evaluation Kλ : P → C, p 7→ p(λ) is a bounded linear
functional; its continuous extension to P2(µ) is represented by kλ ∈ P2(µ), i.e.
p(λ) = 〈p, kλ〉 (p ∈ P).

By the results of [ARS09] (see also Chapter VIII in [Con91]), we know that for
every f ∈ P2(µ), the function f̃(λ) = 〈f, kλ〉 is analytic on D, f̃(λ) = f(λ) for
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µ-a.e. λ ∈ D, and for µ0-a.e. ζ ∈ T we have nt-limλ→ζ f̃(λ) = f(ζ). Here µ0 denotes
the restriction of µ to the Borel subsets of T, which is a.c. with respect to m.
Therefore, Sµ can be considered as an analytic multiplication operator. Furthermore,
for h = dµ0/dm we have h(ζ) = nt-limλ→ζ (1− |λ|2)

−1 ‖kλ‖−2 for a.e. ζ ∈ T, and
∆(P2(µ)) = {ζ ∈ T : h(ζ) > 0}. It is clear that (X, V ) is a unitary asymptote
of Sµ, where V ∈ L(L2(µ0)), V f = χf and X ∈ L(P2(µ), L2(µ0)) is defined by
Xf = f |T. Thus Sµ is asymptotically cyclic. Since ω(Sµ) = ∆(P2(µ)), it follows by
Proposition 4.1 that Sµ is quasianalytic.

Proposition 4.2. If h(ζ) > 0 for a.e. ζ ∈ T, then Sµ ∈ L1(P2(µ)) and F(Sµ) =

X(P2(µ) ∩ L∞(µ)).

Proof. The equation for F(Sµ) follows from Yoshino’s theorem; see Theorem II.5.4
in [Con91].

4.2 Bilateral weighted shifts

Weighted shifts always serve as a source of examples. Here we consider those bilateral
weighted shifts, which are C10-contractions. As earlier, S̃ ∈ L(L2(T)), S̃f = χf is
the simple bilateral shift. The Fourier transformation F : L2(T) → l2(Z), f 7→ f̂ ,
where f̂(n) = 〈f, χn〉 (n ∈ Z), is a Hilbert space isomorphism. Let us assume that
the sequence β : Z→ (0,∞) satisfies the conditions:

(i) β(n) ≥ β(n+ 1) for every n ∈ Z,

(ii) limn→∞ β(−n) =∞,

(iii)0 limn→∞ β(n) > 0.

It is clear that

l2(β) =

{
ξ : Z→ C : ‖ξ‖2

β :=
∞∑

n=−∞

|ξ(n)|2β(n)2 <∞

}

is a dense linear manifold in l2(Z), which is a Hilbert space with the norm ‖ξ‖β.
Hence

L2(β) =
{
f ∈ L2(T) : f̂ ∈ l2(β)

}
is a dense linear manifold in L2(T), which forms a Hilbert space with the norm
‖f‖β := ‖f̂‖β. It can be easily verified that Tβ ∈ L(L2(β)), defined by Tβf =
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χf , is a C10-contraction; see Section IX.2 in [NFBK]. Furthermore, we obtain all
bilateral weighted shifts, which are C10-contractions, in this way. Since Tβ is unitarily
equivalent to Tcβ (c > 0), we may assume that limn→∞ β(n) = 1. Moreover, in that
case Tβ is similar to Tβ̃, where β̃(−n) = β(−n) for n > 0 and β̃(n) = 1 for n ≥ 0.
Therefore, without restricting generality, condition (iii)0 can be replaced by the
condition

(iii) β(n) = 1 for every non-negative integer n ∈ Z+.

Obviously, the pair (Xβ, S̃) is a unitary asymptote of Tβ, where Xβ : L2(β) →
L2(T), f 7→ f is a quasiaffinity. Thus Tβ is asymptotically cyclic and quasiuni-
tary, with residual set ω(Tβ) = T.

The special form of Xβ yields that, for any φ ∈ F(Tβ), the operator Mφ,β :=(
γ̂Tβ
)−1

(φ) ∈ {Tβ}′ acts as a multiplication: Mφ,βf = φf (f ∈ L2(β)). Clearly,
F(Tβ) ⊂ L∞(T) ∩ L2(β). The following characterization follows from the Closed
Graph Theorem.

Proposition 4.3. The functional commutant F(Tβ) consists of the measurable func-
tions φ : T→ C satisfying the condition φL2(β) ⊂ L2(β).

The previous discussion shows that Tβ belongs to the class L1(L2(β)) exactly
when the function space L2(β) is quasianalytic, that is when f(ζ) 6= 0 for a.e.
ζ ∈ T whenever f is a non-zero element of L2(β). This happens if β(−n) increases
sufficiently fast as n tends to infinity.

Proposition 4.4. The function space L2(β) is quasianalytic if and only if

∞∑
n=1

n−2 log β(−n) =∞.

Proof. Suppose that
∑∞

n=1 n
−2 log β(−n) =∞, and let us consider a non-zero func-

tion f ∈ L2(β). For any n ∈ N, we have

Fn :=

[
∞∑
k=n

|f̂(−k)|2
] 1

2

≤ 1

β(−n)

[
∞∑
k=n

|f̂(−k)|2β(−k)2

] 1
2

≤ ‖f‖β
β(−n)

,

whence
∞∑
n=1

logFn
n2

≤ (log ‖f‖β)
∞∑
n=1

1

n2
−
∞∑
n=1

log β(−n)

n2
= −∞

follows. We infer by Corollary III.4.2 in [Beu77] that f(ζ) 6= 0 for a.e. ζ ∈ T.
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Let us assume now that
∑∞

n=1 n
−2 log β(−n) < ∞, and set W (n) = β (−|n|)2

(n ∈ Z). Since
∑∞

n=−∞ (logW (n)) /(n2 + 1) < ∞, W (n) ≥ 1 for every n ∈ Z, and
lim|n|→∞W (n) =∞, we obtain by the Corollary in [Koo98] that there exists a non-
identically zero sequence {an}n∈Z of complex numbers such that

∑∞
n=−∞ |an|W (n) <

∞ and the continuous function f =
∑∞

n=−∞ anχ
n satisfies the condition f (eit) = 0

whenever h ≤ |t| ≤ π. Here h ∈ (0, π) is an arbitrarily prescribed number. Notice
that, because of uniform convergence, f̂(n) = an for every n ∈ Z, and so f is non-
zero. On the other hand, the relations

∑∞
n=−∞ |f̂(n)|β(n)2 ≤

∑∞
n=−∞ |an|W (n) <∞

and lim|n|→∞ f̂(n) = 0 imply that
∑∞

n=−∞ |f̂(n)|2β(n)2 <∞, and so f ∈ L2(β).

The invertibility of Tβ is controlled by the number

δβ := inf {β(n+ 1)/β(n) : n ∈ Z} ∈ R+.

Namely, Tβ is invertible if and only if δβ > 0. The non-invertible case is well
understood.

Proposition 4.5. If δβ = 0, then F(Tβ) = H∞ and so HlatTβ = LatTβ is non-
trivial.

Proof. For reader’s convenience we sketch the short proof. Given φ ∈ F(Tβ), for any
n ∈ N and k ∈ Z we have 〈Mφ,βχ

k, χk−n〉β = φ̂(−n)β(k − n)2, whence |φ̂(−n)| ≤
‖Mφ,β‖β(k)/β(k − n) follows. Since δβ = 0, we infer that φ̂(−n) = 0.

Remark 4.6. (a) If β(−n) = exp (n2) (n ∈ N), then Tβ ∈ L1 (L2(β)) , {Tβ}′ =

H∞(Tβ), but Tβ is not a quasiaffine transform of S, since T ∗β is injective. This
example can be contrasted with Proposition 3.13.
(b) The sequence β can be chosen so that δβ = 0 and

∑∞
n=1 log β(−n)/n2 < ∞.

In that case the functional commutant F(Tβ) is a quasianalytic algebra, while the
C10-contraction Tβ is not quasianalytic.

Now let us turn to the case when δβ > 0, and so δβ = ‖T−1
β ‖−1. Let rβ :=

(r(T−1
β ))−1 be the inner spectral radius of Tβ. It is easy to verify that

0 < δβ ≤ rβ ≤
(

lim
n→∞

β(−n)
1
n

)−1

≤
(

lim
n→∞

β(−n)
1
n

)−1

=: Rβ ≤ 1.

It is known that the operators of the form
∑N

n=−N cnT
n
β are dense in {Tβ}′ in the

strong operator topology, see Corollary (b) in Section 8 of [Shi74]. Thus HlatTβ =

LatTβ ∩LatT−1
β , and the hyperinvariant subspaces of Tβ may be called biinvariant.
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The case rβ = 1 has been settled by Esterle, by providing a subspaceM satisfying
condition (ii) of Theorem 3.18. Namely, Theorem 5.7 of [Est97] can be stated in the
following way.

Theorem 4.7 (Esterle). If rβ = 1, then there exists M ∈ Lats Tβ such that M̃ =

∨{CM : C ∈ {Tβ}′} 6= L2(β), and so M̃ is a non-trivial hyperinvariant subspace
of Tβ.

For any R ∈ (0, 1), let A(R) := {z ∈ C : R < |z| < 1}. It is known that the
point spectrum of the adjoint satisfies the condition A(Rβ) ⊂ σp(T

∗
β ) ⊂ A(Rβ)−;

see Theorem 9 of Section 5 in [Shi74]. Thus the (HSP) for bilateral weighted shifts,
which are C10-contractions, is open (up to our knowledge) in the case when

0 < δβ ≤ rβ < Rβ = 1 and
∞∑
n=1

log β(−n)

n2
=∞.

Under these conditions the functional commutant can be related to bounded analytic
functions defined on an annulus. For R ∈ (0, 1), let H∞(A(R)) stand for the Banach
algebra of bounded analytic functions on A(R). We note that F(Tβ) is an abelian
Banach algebra with the norm ‖φ‖β,∞ := ‖Mφ,β‖. In the next statement we consider
this norm on F(Tβ).

Proposition 4.8. If 0 < δβ ≤ rβ < 1, then the mapping

Λβ : F(Tβ)→ H∞(A(rβ)), φ 7→ Φ, where Φ(z) =
∞∑

n=−∞

φ̂(n)zn,

is an injective, contractive algebra-homomorphism, while the mapping

Λ̃β : H∞(A(δβ))→ F(Tβ), Φ→ φ, where φ(ζ) = nt-lim
z→ζ

Φ(z) for a.e. ζ ∈ T,

is a bounded algebra-homomorphism; moreover

ΛβΛ̃β : H∞(A(δβ))→ H∞(A(rβ)), Φ 7→ Φ|A(rβ).

In particular, if 0 < δβ = rβ < 1 then Λβ is an algebra-isomorphism.

Proof. For the sake of completeness we sketch the proof, which is an adaptation of
the proof of Theorem 10′ in Section 6 of [Shi74] to our situation, avoiding formal
series.
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Setting φ ∈ F(Tβ), the inequality occurring in the proof of Proposition 4.5 shows
that∣∣φ̂(−n)

∣∣ ≤ ‖Mφ,β‖ inf{β(k)/β(k − n) : k ∈ Z} = ‖Mφ,β‖ · ‖T−nβ ‖
−1 (n ∈ N),

whence limn→∞ |φ̂(−n)|1/n ≤ rβ follows. Hence, the Laurent series
∑∞

n=−∞ φ̂(n)zn

converges to an analytic function Φ on A(rβ). Let us fix z ∈ A(rβ). Since the linear
functional Ez : F(Tβ) → C, φ 7→ Φ(z) is multiplicative and F(Tβ) is an abelian
Banach algebra, we infer that ‖Ez‖ ≤ 1, and so |Φ(z)| ≤ ‖φ‖β,∞. Thus Λβ is a
contractive algebra-isomorphism.

Given any Φ ∈ H∞(A(δβ)), let us consider the Laurent expansion Φ(z) =∑∞
n=−∞ cnz

n. The function Φ+(z) =
∑∞

n=0 cnz
n is analytic on D, while the function

Φ−(z) =
∑∞

n=1 c−nz
−n is analytic on C \ (δβD)−. For any r ∈ (δβ, 1), Φ− is bounded

on A(r), hence Φ+ = Φ − Φ− is bounded on A(r), and so Φ+ is bounded on D.
By Fatou’s theorem φ(ζ) = nt-limz→ζ Φ(z) = (nt-limz→ζ Φ+(z)) + Φ−(ζ) exists for
a.e. ζ ∈ T. Setting φr(ζ) = Φ(rζ) (r ∈ (δβ, 1), ζ ∈ T), Lebesgue’s dominating
convergence theorem yields that φ̂(n) = limr→1 φ̂r(n) = cnr

n = cn for every n ∈ Z.
(This argument shows that φ can be recovered from Λβφ, and so Λβ is injective.)

For any N ∈ N, set σN =
∑N

n=−N

(
1− |n|

N+1

)
cnχ

n. By a von Neumann-type
inequality for annulus we know that

‖σN(Tβ)‖ ≤ Cβ sup {|σN(z)| : z ∈ A(δβ)} ,

where Cβ depends only on δβ; see Proposition 23 in Section 6 of [Shi74]. Since
|σN(rζ)| ≤ ‖φr‖∞ ≤ ‖Φ‖∞ for r ∈ (δβ, 1) and ζ ∈ T, it follows that the se-
quence {MσN ,β = σN(Tβ)}∞N=1 of operators is bounded. Taking into account that
〈σNχk, χl〉β = σ̂N(l − k)β(l)2 converges to cl−kβ(l)2 as N →∞ (k, l ∈ Z), we con-
clude that MσN ,β ∈ {Tβ}′ converges in the weak operator topology to an operator
Mψ,β with ψ ∈ F(T ), as N → ∞. Since ψ̂(l − k)β(l)2 = limN→∞〈σNχk, χl〉β =

cl−kβ(l)2 (k, l ∈ Z), we obtain that ψ̂(n) = cn = φ̂(n) (n ∈ Z), and so φ = ψ ∈
F(Tβ). Clearly, ‖φ‖β,∞ ≤ Cβ‖Φ‖∞ which means that Λ̃β is a bounded algebra-
homomorphism. The relation

(
Λβ ◦ Λ̃β

)
Φ = Φ|A(rβ) readily follows from the previ-

ous discussions.



Chapter 5

Spectral behaviour of quasianalytic

contractions

Though (ISP) and (HSP) are open for asymptotically non-vanishing (a.n.v.) contrac-
tions, Corollary 3.4 shows that these questions are settled in the non-quasianalytic
case. By this fact it becomes crucial to determine the spectral behaviour of quasian-
alytic contractions. Namely, if an a.n.v. contraction T does not meet this behaviour,
then T is not quasianalytic, and so HlatT is non-trivial.

If the contraction T is quasianalytic, then it is of class C10; see Theorem 3.8.
Under this asymptotic behaviour there is a connection between the spectrum σ(T ) of
T and the spectrum σ(V ) of its unitary asymptote V . First we note that σ(V ) is the
essential support of ω(T ): σ(V ) = es(ω(T )), which is the complement of the largest
open subset O of T with the property m(O ∩ ω(T )) = 0. It can be easily proved
that σ(V ) is neatly contained in σ(T ), that is σ(V ) ⊂ σ(T ) and m(σ(V ) ∩ σ′) > 0

holds for every non-empty closed subset σ′ of σ(T ) with the property that σ(T ) \ σ′

is also closed. More importantly, this is the only constraint on the spectrum of a
C10-contraction, even in the cyclic case, that is when ∨∞n=0T

nh = H holds with some
vector h ∈ H; see Chapter IX in [NFBK]. Are there any other constraints if T is
quasianalytic? More precisely, we pose the following problem.

Question 1. Given a measurable set ω0 ⊂ T of positive measure and a compact
subset σ of the closed unit disc D− such that es(ω0) is neatly contained in σ, does
a quasianalytic contraction T exist with the properties σ(T ) = σ and ω(T ) = ω0?

In the C10 class the construction starts by producing a C10-contraction T sat-
isfying the conditions ω(T ) = ω0 and σ(T ) = es(ω0), as a restriction of a bilat-
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eral weighted shift W to an appropriately chosen invariant subspace. However, if
m(T\ω0) > 0 then W is necessarily non-quasianalytic; otherwise π(T ) = π(W ) = T
would happen. Furthermore, the coincidence σ(T ) = es(ω(T )) is ensured by the
condition

∑∞
n=1 n

p‖T−n‖ < ∞ with some integer p. However, this relation implies
the existence of an operator C ∈ {T}′ and a non-zero continuous function f on T
such that XC = f(V )X and the set {ζ ∈ ω(T ) : f(ζ) = 0} has positive measure,
less than m(ω(T )); see Lemma IX.2.11 and its proof in [NFBK]. Hence we can
present a non-zero vector h ∈ H such that Xh is not cyclic for the commutant {V }′,
which is impossible if T is quasianalytic; see Theorem 16 in [Kér01]. Therefore, we
have to find another approach to provide a quasianalytic contraction T , if it exists
at all, such that its spectrum σ(T ) is a proper subset of T. First of all the following
simpler question should be answered.

Question 2. Do we have for every closed arc J of positive measure on T and for
every c > 0 a quasianalytic contraction T satisfying the conditions σ(T ) = π(T ) = J

and ‖T−1‖ > c?

We know that the a.c. contraction T has shift-type invariant subspaces if ω(T ) =

T. Namely, H = ∨Lats T , where Lats T consists of those invariant subspaces M
where T |M is similar to the simple unilateral shift S ∈ L(H2), Sf = χf (χ(ζ) = ζ);
see Theorem IX.3.6 in [NFBK]. Any quasianalytic contraction can be related to such
a contraction having a rich invariant subspace lattice.

Theorem 5.1. For every quasianalytic contraction T1, there exists a quasianalytic
contraction T2 with π(T2) = T such that {T2}′ ⊃ {T1}′ and so HlatT2 ⊂ HlatT1.

Proof. By Theorem 3 of [KT12] there exist a compact set K ⊂ π(T1) and a continu-
ous function f on D− such that f is analytic (even univalent) on D, f−1(T) = K and
m(f(α)) = 0 for every Borel subset α of K of zero measure. Then π(T2) = T holds
for the a.c. contraction T2 = f(T1) by Corollary 2.5 of [Kér11] (see also Lemma 5 in
[KT12]). It is obvious that {T2}′ ⊃ {T1}′.

Therefore, the (HSP) for a.n.v. contractions can be reduced to the case, when
T is quasianalytic and π(T ) = T. Clearly, T is neatly contained in σ(T ) exactly
when σ(T ) is connected. Thus, in this particular class Question 1 has the following
modified form.
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Question 3. Given a connected, compact subset σ of D−, containing T, does there
exist a quasianalytic contraction T satisfying the conditions σ(T ) = σ and π(T ) =

T?

The preceding two questions are related. Let D+ := {z ∈ D : Im z > 0},
T+ := {ζ ∈ T : Im ζ ≥ 0}, and for any K ⊂ C let K2 := {z2 : z ∈ K}.

Theorem 5.2. A positive answer for Question 2 implies an affirmative answer for
Question 3 in the special case, when σ = K2 for some connected, compact set K
such that T+ ⊂ K ⊂ D−+.

Proof. Let K be a connected, compact set such that T+ ⊂ K ⊂ D−+ and K2 = σ.
We apply the technique used in Section IX.2 of [NFBK] to obtain a quasianalytic
contraction T̃ satisfying the conditions σ(T̃ ) = K and π(T̃ ) = T+.

Let {λn}∞n=1 be a dense sequence in K. For every n ∈ N, let us consider the
connected, open set Ωn = {z ∈ C : dist(z,K) < 1/n}, and select a point λ′n ∈ D∩Ωn

so that |λn−λ
′
n| < 1/(2n). Let Γn ⊂ (Ωn∩D)∪{−1, 1} be a simple rectifiable curve,

with endpoints −1 and 1, such that the simply connected domain Gn bounded by
T+∪Γn is contained in Ωn and λ′n ∈ Gn. There exists a conformal mapping fn : D→
Gn, having continuous extension onto D−, such that fn(0) = λ

′
n. Let us consider the

closed arc Jn = f−1
n (T+). By our assumption there exists a quasianalytic contraction

Tn ∈ L(Hn) such that σ(Tn) = π(Tn) = Jn and ‖T−1
n ‖ > n. Then T̃n = fn(Tn) is also

a quasianalytic contraction with the properties σ(T̃n) = π(T̃n) = T+; see Proposition
IX.2.4 in [NFBK] and Corollary 2.5 in [Kér11].

Setting T̃ =
∑∞

n=1⊕ T̃n, we may verify that σ(T̃ ) = K and π(T̃ ) = T+. Indeed,
for every n ∈ N, there exists a unit vector en ∈ Hn such that ‖Tnen‖ < 1/n.
Since fn(z) − λ

′
n = zgn(z), where ‖gn‖∞ ≤ 2, it follows that ‖T̃nen − λ

′
nen‖ =

‖gn(Tn)Tnen‖ ≤ 2/n. Taking into account that each λ ∈ K is a cluster point of
the sequence {λ′n}∞n=1, we infer that K ⊂ σ(T̃ ). On the other hand, if λ /∈ K then
δ0 = dist(λ,Gn0) > 0 for some n0 ∈ N. Thus, ‖(T̃n−λI)−1‖ ≤ ‖1/(fn−λ)‖∞ ≤ 1/δ0

holds whenever n ≥ n0. Since λ /∈ σ(T̃n) for all n, it follows that λ /∈ σ(T̃ ).
Therefore, σ(T̃ ) = K. Finally, π(T̃ ) = ∩∞n=1π(T̃n) = T+ is obvious. Now, T = T̃ 2

is a quasianalytic contraction satisfying the conditions σ(T ) = K2 = σ and π(T ) =

T2
+ = T.

Remark 5.3. Not every connected, compact set T ⊂ σ ⊂ D− can be represented as
σ = K2 with a connected, compact set T+ ⊂ K ⊂ D−+. Indeed, let ρ : [0, 1)→ [0,∞)
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and ϕ : [0, 1) → [0,∞) be strictly increasing, continuous functions satisfying the
conditions ρ(0) = ϕ(0) = 0, limt→1− ρ(t) = 1, limt→1− ϕ(t) = ∞, and take the
connected compact set σ = T ∪ {ρ(t)eiϕ(t) : t ∈ [0, 1)}.

Clearly, the (ISP) can be reduced to the case when T is asymptotically cyclic.
Therefore, it is important to know the spectral behaviour in this setting too. In the
class L0(H) of asymptotically cyclic quasianalytic contractions and L1(H) = {T ∈
L0(H) : π(T ) = T} the same commutants arise and (HSP) can be reduced to L1(H)

by Theorem 3.15. This fact makes it especially important to answer the following
question.

Question 4. What are the possible spectra of the contractions belonging to L1(H)?

We know that for every 0 ≤ δ < 1 there is a contraction Tδ ∈ L1(H) such that
σ(Tδ) = {z ∈ C : δ ≤ |z| ≤ 1}; see Example 3.24. Now we show that the spectrum
can be the unit circle T too. The following theorem gives positive answer also for
Question 2 in the special case, when the arc J is the whole circle T.

Theorem 5.4. For every c > 1, there is a contraction T ∈ L1(H) such that σ(T ) =

T and ‖T−1‖ ≥ c.

Proof. We present a bilateral weighted shift with the prescribed properties. Let
β : Z → [1,∞) be a sequence such that β(n) = 1 for all n ≥ 0 and β(−n) = eϕ(n)

for n ∈ N, where the increasing sequence ϕ : N → [1,∞) with limn→∞ ϕ(n) = ∞
is specified later. Let

∑∞
n=−∞ f̂(n)χn stand for the Fourier series of the function

f ∈ L2(T), where χ(ζ) = ζ (ζ ∈ T). We consider the Hilbert space L2(β) =

{f ∈ L2(T) : ‖f‖2
β :=

∑∞
n=−∞ |f̂(n)|2β(n)2 < ∞} and the asymptotically cyclic

C10-contraction Tβ ∈ L(L2(β)), defined by Tβf = χf .
Now we specify the sequence ϕ so that Tβ be quasianalytic with σ(Tβ) = T.

Select a strictly decreasing sequence {qk}∞k=1 of real numbers in (0, 1) such that
limk→∞ qk = 0, and then select a strictly increasing sequence {pk}∞k=1 of positive
integers satisfying the conditions p1 = 1 and

∑pk+1

n=pk+1
1
n
≥ 1/qk for every k ∈ N.

Setting c > 1, let ϕ(1) := c, and for any k ∈ N and pk < n ≤ pk+1 let ϕ(n) :=

ϕ(pk) + (n − pk)qk. Clearly, ϕ is increasing. It can be verified by induction that
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ϕ(pk) ≥ pkqk holds for every k ∈ N. Thus ϕ(n) ≥ nqk if pk < n ≤ pk+1, whence

∞∑
n=1

log β(−n)

n2
=
∞∑
n=1

ϕ(n)

n2
= c+

∞∑
k=1

pk+1∑
n=pk+1

ϕ(n)

n2

≥
∞∑
k=1

qk

pk+1∑
n=pk+1

1

n
≥

∞∑
k=1

1 =∞

follows. We conclude that Tβ is quasianalytic, and so Tβ ∈ L1(L2(β)); see Proposi-
tion 4.4.

Since the sequence {qk}∞k=1 is decreasing, it follows that∥∥T−nβ ∥∥ = sup

{
β(j − n)

β(j)
: j ∈ Z

}
= eϕ(n) for all n ∈ N.

In particular, we get ‖T−1
β ‖ = eϕ(1) = ec ≥ c. Furthermore, for every k ∈ N and

pk < n ≤ pk+1 we have

0 ≤ ϕ(n)

n
=
ϕ(pk)

n
+
n− pk
n

qk ≤
ϕ(pk)

pk
+ qk.

Hence limn→∞ ϕ(n)/n = 0 holds, if limk→∞ ϕ(pk)/pk = 0. The inequality

1

qk
≤

pk+1∑
n=pk+1

1

n
≤
∫ pk+1

pk

dx

x
= ln

pk+1

pk

yields that
pk
pk+1

≤ e
− 1
qk ≤ 1

2
.

Applying the recursive formula

ϕ(pk+1)

pk+1

=
ϕ(pk)

pk
· pk
pk+1

+

(
1− pk

pk+1

)
qk

we can check by induction that ϕ(pk)/pk ≤ 2c holds for all k ∈ N. The previous
inequalities imply that

ϕ(pk+1)

pk+1

≤ 2ce
− 1
qk + qk,

whence limk→∞ ϕ(pk)/pk = 0 immediately follows. Therefore, the spectral radius of
T−1
β is

r
(
T−1
β

)
= lim

n→∞

∥∥T−nβ ∥∥ 1
n = lim

n→∞
eϕ(n)/n = 1.

In view of the circular symmetry of σ(Tβ) we obtain that σ(Tβ) = T.

Relying on this statement we can provide contractions in L1(H) with more so-
phisticated spectra.
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Example 5.5. (a) Given any δ ∈ (0, 1), let us consider the domain Ωδ = {z =

reit :
√
δ < r < 1 and 0 < t < π}. Let ηδ be a conformal mapping of D onto Ωδ, and

set ϑδ = η2
δ . If T ∈ L1(H) is an operator with σ(T ) = T, then Tδ = ϑδ(T ) ∈ L1(H)

and σ(Tδ) = T ∪ δT ∪ [δ, 1]. Observe that D \ σ(Tδ) is not connected.
(b) We recall that a domain Ω ⊂ C is called a circular comb domain, if it is of
the form Ω = D \ {rζ : ζ ∈ H, ρ(ζ) < r < 1}, where H ⊂ T is countable and
ρ : H → (0, 1). Let K be a Cantor-type compact set on T of positive measure. In
view of Theorem 3 of [KT12] we know that there exists a compact set K̃ ⊂ K and
a conformal mapping f of D onto a circular comb domain Ω such that f can be
continuously extended onto D−, f−1(T) = K̃, and m(f(α)) = 0 whenever α ⊂ K̃ is
of measure zero. If T ∈ L1(H) with σ(T ) = T, then the spectrum of T̃ = f(T ) ∈
L1(H) is σ(T̃ ) = T ∪ {rζ : ζ ∈ H, ρ(ζ) ≤ r < 1}, where H is dense in T.

Questions 1–4, in their full generality, remain open.



Summary

In this thesis we study the asymptotic behaviour and basic structure of Hilbert space
contractions. The dissertation contains two different topics concerning absolutely
continuous contractions.

In Chapter 2 we study stability properties of contractions and polynomially
bounded operators. In Section 2.1 we characterize those sequences {hn}∞n=1 of
bounded analytic functions, which can serve to test the stability of an a.c. con-
traction, namely, satisfying the condition that hn(T ) → 0 (SOT) if and only if
T ∈ C0·. We call such a sequence a test sequence of stability for a.c. contractions
and it turns out that they are exactly those sequences which fulfill the following
three conditions:

(i) limn→∞ hn(z) = 0 for all z ∈ D,

(ii) sup {||hn||∞ : n ∈ N} <∞,

(iii) lim supn→∞ ||χαhn||2 > 0 for every Borel set α ⊂ T of positive measure, where
χα is the characteristic function of α.

We prove some connected results too. In Section 2.2 analogous questions for
polynomially bounded operators are examined. We prove that test sequences for
a.c. polynomially bounded operators are the same as for contractions.

The remaining chapters are mainly motivated by the famous invariant and hy-
perinvariant subspace problems, we investigate special types of asymptotically non-
vanishing contractions. One can attach unitary operators to this type of contrac-
tions, and then examine how the properties of the well-understood unitaries reflect
in the behaviour of the contractions under consideration. By the concept of a uni-
tary asymptote the residual set, while by the aid of the minimal unitary dilation
and the Sz.-Nagy–Foias functional calculus, the quasianalytic spectral set can be
defined.
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In the beginning of Chapter 3, namely, in Section 3.1 we introduce local version
of the quasianalytic spectral set and exhibit its connection with the residual set.
It turns out that local stability is determined by the asymptotic density function,
and that the local residual set and the local quasianalytic spectral set at a vector
are the same, and hence the (global) quasianalytic spectral set is always contained
in the residual set. If this containment is proper for some T , then HlatT is non-
trivial. In the case of equality T is called quasianalytic. Investigation of this type
of contractions is the main part of the dissertation. In Section 3.2 the fundamental
properties of quasianalytic contractions are summarized including their asymptotic
behaviour. In the setting of quasianalytic contractions (ISP) can be reduced to the
the class L0(H) of asymptotically cyclic quasianalytic contractions, i.e. quasiana-
lytic contractions with cyclic unitary asymptotes. They are studied in Section 3.3,
where equivalent conditions are given for the existence of a non-trivial hyperinvari-
ant subspace. (HSP) in L0(H), by virtue of Theorem 3.15, can be reduced to the
class L1(H) = {T ∈ L0(H) : π(T ) = T}, in which class we have a lot of information
on the structure of a contraction. By Theorem 3.12, there are lots of shift-type
invariant subspaces in this class. Therefore, if {T}′ = H∞(T ), then HlatT = LatT

is non-trivial. However, if {T}′ 6= H∞(T ), then the shift-type invariant subspaces
are not hyperinvariant. On the other hand, if non-trivial hyperinvariant subspaces
exist, then, according to Theorem 3.18, such subspaces can be derived from shift-
type invariant subspaces. We show that if {T}′ 6= H∞(T ), then T is necessarily
quasiunitary, hence (HSP) in L1(H) can be reduced to the quasiunitary case.

For an asymptotically cyclic quasianalytic contraction T , the commutant {T}′

can be identified with a function algebra F(T ) ⊂ L∞(T), the so-called functional
commutant. Answering a question posed in [Kér11] we show in Section 3.4 that
F(T ) can be a pre-Douglas algebra only in the case when F(T ) = H∞. We prove
also similarity invariance of F(T ) and detect its representation in the functional
model.

Chapter 4 is devoted to special classes of operators, where quasianalytic contrac-
tions naturally arise. Namely, we study analytic contractions and bilateral weighted
shifts.

In [ARS07], on a general Hilbert space Ha of analytic functions defined on the
unit disc D, the analytic multiplication operator Ma ∈ L(Ha), Maf = χf has been
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studied. The boundary behaviour of functions in Ha is governed by the set

∆(Ha) = {ζ ∈ T : nt-lim
λ→ζ

(
1− |λ|2

)−1 ‖kλ‖−2 > 0},

where kλ ∈ Ha is the unique reproducing kernel with the property f(λ) = 〈f, kλ〉
for every f ∈ Ha. We show in Section 4.1 that the measurable set ∆(Ha) is always
contained in the quasianalytic spectral set of Ma. Therefore, the conditions for
the equality ∆(Ha) = ω(Ma) given in [ARS07] ensures the quasianalycity of Ma.
It is not transparent how to identify the unitary asymptote of a general analytic
multiplication operator Ma. This identification can be carried out in the special
case when Ha is induced by a measure satisfying particular conditions considered in
[ARS09].

In Section 4.2 we deal with bilateral weighted shifts, which are C10 contractions,
mainly applying the ideas of [Shi74], but working with actual functions instead of
formal series. Without restricting the generality, we can suppose that the bilateral
weighted shift in consideration is asymptotically cyclic and quasiunitary. We realize
a bilateral weighted shift Tβ as multiplication by the identical function on a function
space L2(β). Up to our knowledge, (HSP) for bilateral weighted shifts, which are
C10 contractions, is open in the case when

0 < δβ ≤ rβ < Rβ = 1 and
∞∑
n=1

log β(−n)

n2
=∞.

Here δβ > 0 means that Tβ is invertible, rβ denotes the inner spectral radius of
Tβ, while the growth condition on β(−n) ensures the quasianalycity of the function
algebra L2(β). Under these conditions the functional commutant can be related to
bounded analytic functions defined on an annulus.

Though (ISP) and (HSP) are open for asymptotically non-vanishing (a.n.v.) con-
tractions, Corollary 3.4 shows that these questions are settled in the non-quasiana-
lytic case. By this fact it becomes crucial to determine the spectral behaviour of
quasianalytic contractions. Namely, if an a.n.v. contraction T does not meet this
behaviour, then T is not quasianalytic, and so HlatT is non-trivial.

If the contraction T is quasianalytic, then it is of class C10. Under this asymptotic
behaviour there is a connection between the spectrum σ(T ) of T and the spectrum
σ(V ) of its unitary asymptote V . Namely, σ(V ) is the essential support of ω(T ) (in
notation σ(V ) = es(ω(T ))) and it is neatly contained in σ(T ), that is σ(V ) ⊂ σ(T )

and m(σ(V ) ∩ σ′) > 0 holds for every non-empty closed subset σ′ of σ(T ) with the
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property that σ(T )\σ′ is also closed. More importantly, this is the only constraint on
the spectrum of a C10-contraction, even in the cyclic case, that is when ∨∞n=0T

nh = H
holds with some vector h ∈ H; see Chapter IX in [NFBK]. In Chapter 5 we examine
whether there are any other constraints if T is quasianalytic. We pose four questions
and give partial answers.

We prove that if for every closed arc J of positive measure on T and for every
c > 0 there exists a quasianalytic contraction T satisfying the conditions σ(T ) =

π(T ) = J and ‖T−1‖ > c, then there exists a quasianalytic contraction T satisfying
the conditions σ(T ) = K2 := {z2 : z ∈ K} and π(T ) = T for every connected,
compact set K, containing the upper half-circle and contained in the the closed
upper half-disk.

For every c > 1 we present a bilateral weighted shift Tβ ∈ L1(H) such that
σ(T ) = T and ‖T−1‖ ≥ c. This proves that our assumption in the previous statement
holds if J = T, moreover, relying on this statement we can provide contractions in
L1(H) with more sophisticated spectra.



Összefoglalás

A disszertációban Hilbert-téren értelmezett kontrakciók aszimptotikus viselkedését
és alapvető struktúráját vizsgáljuk. Az értekezés két különböző, abszolút folytonos
(a.f.) kontrakciókkal kapcsolatos témát tartalmaz.

A 2. fejezetben kontrakciók és polinomiálisan korlátos operátorok stabilitási tu-
lajdonságait tanulmányozzuk. A 2.1. alfejezetben karakterizáljuk a korlátos anali-
tikus függvények azon {hn}∞n=1 sorozatait, melyekkel tesztelhető az a.f. kontrakciók
stabilitása, nevezetesen, melyekre hn(T ) pontosan akkor konvergál a zéró operátor-
hoz az erős operátor-topológiában, amennyiben T aszimptotikusan stabil, azaz T n

tart a zéró operátorhoz az erős operátor-topológiában. Belátjuk, hogy pontosan a
következő három tulajdonsággal rendelkező sorozatok lesznek az előbbi értelemben
vett teszt-sorozataink:

(i) limn→∞ hn(z) = 0 minden z ∈ D esetén,

(ii) sup {||hn||∞ : n ∈ N} <∞,

(iii) lim supn→∞ ||χαhn||2 > 0 teljesül bármely pozitív mértékű α ⊂ T Borel-halmaz
esetén, ahol χα az α halmaz karakterisztikus függvényét jelöli.

Néhány további kapcsolódó állítás igazolása után a 2.2. alfejezetben kiterjesztjük
eredményeinket polinomiálisan korlátos operátorokra. Belátjuk, hogy pontosan az
előbbi sorozatokkal tesztelhető az a.f. polinomiálisan korlátos operátorok stabilitása
is.

A további fejezetekben speciális aszimptotikusan nem-eltűnő kontrakciókat vizs-
gálunk, elsősorban a híres invariáns- és hiperinvariáns altér problémák által motivál-
va. Ezekhez a kontrakciókhoz különböző unitér operátorok társíthatók, melyek tu-
lajdonságai tükröződnek a vizsgált kontrakció viselkedésében. Az unitér aszimptota
segítségével a reziduális halmazt, míg a minimális unitér dilatáció és az Sz.-Nagy–
Foias függvénykalkulus által a kvázianalitikus spektrálhalmazt definiálhatjuk.
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A 3. fejezet elején, nevezetesen a 3.1. alfejezetben bevezetjük a lokális kváziana-
litikus spektrálhalmaz fogalmát és feltárjuk a reziduális halmazzal való kapcsolatát.
Kiderül, hogy az aszimptotikus sűrűségfüggvény meghatározza a lokális stabilitást,
továbbá, hogy a lokális reziduális halmaz és a lokális kvázianalitikus spektrálhalmaz
egybeesik tetszőleges vektor esetén. Ebből következik, hogy a (globális) kváziana-
litikus spektrálhalmaz mindig része a reziduális halmaznak. Ha ez a tartalmazás
valódi valamilyen T kontrakció esetén, akkor T -nek van valódi hiperinvariáns alte-
re. Ellenkező esetben a T kontrakciót kvázianalitikusnak nevezzük. Az értekezés
legnagyobb részét ezen kontrakciók vizsgálata adja. A 3.2. részben áttekintjük a
kvázianalitikus kontrakciók alapvető tulajdonságait.

Az invariáns altér probléma a kvázianalitikus esetben visszavezethető az aszimp-
totikusan ciklikus kvázianalitikus kontrakciók L0(H) osztályára, azaz ciklikus unit-
ér aszimptota esetére. Ezt az osztályt vizsgáljuk a 3.3. alfejezetben, ekvivalens
feltételeket adunk valódi hiperinvariáns altér létezésére. A 3.15. Tétel következ-
tében a hiperinvaráns altér probléma ebben az osztályban arra az esetre redukál-
ható, amikor a kvázianalitikus spektrálhalmaz lefedi az egységkörvonalat, azaz az
L1(H) = {T ∈ L0(H) : π(T ) = T} osztályra. Ezen kontrakcióknak számos olyan
invaráns alterük létezik, melyekre való megszorításuk hasonló az egyszerű egyirá-
nyú eltolás-operátorhoz. Így, amennyiben {T}′ = H∞(T ), akkor minden invari-
áns altér egyúttal hiperinvariáns is T -re, így ez utóbbiak is léteznek. Azonban,
ha {T}′ 6= H∞(T ), akkor az eltolás típusú invariáns alterek nem hiperinvariánsak,
ugyanakkor ha létezik valódi hiperinvariáns altér, akkor származtatható eltolás tí-
pusú invariáns alterekből is. Továbbá, a {T}′ 6= H∞(T ) esetben T szükségképpen
kváziunitér, így a hiperinvaráns altér probléma az L1(H) osztályban visszavezethető
a kváziunitér esetre.

Az aszimptotikusan ciklikus kvázianalitikus T kontrakció {T}′ kommutánsa azo-
nosítható egy F(T ) ⊂ L∞(T) függvényalgebrával, az ún. függvénykommutánssal.
A 3.4. szakaszban igazoljuk, hogy ez a függvénykommutáns csak akkor pre-Douglas
algebra, ha éppen a H∞ térrel egyezik meg, ezzel megválaszolva a [Kér01] cikkben
felvetett kérdést. Bizonyítjuk F(T ) hasonlóságra való invarianciáját is, valamint
megadjuk a γ̂T függvény-leképezés reprezentációját a függvény-modellben.

A 4. fejezetet olyan speciális operátorosztályoknak szenteljük, melyekben ter-
mészetes módon vetődnek fel kvázianalitikus kontrakciók. Nevezetesen, analitikus
kontrakciókat és súlyozott kétirányú eltolás-operátorokat vizsgálunk.

Az [ARS07] cikkben a szerzőhármas a nyílt egységkörlapon értelmezett analiti-
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kus függvények egy általános Ha Hilbert-terén értelmezett Ma ∈ L(Ha), Maf = χf

analitikus szorzás-operátort vizsgálta. A Ha tér függvényeinek határon való viselke-
dését meghatározza a

∆(Ha) = {ζ ∈ T : nt-lim
λ→ζ

(
1− |λ|2

)−1 ‖kλ‖−2 > 0}

halmaz, ahol kλ ∈ Ha az az egyértelműen meghatározott magfüggvény, melyre
f(λ) = 〈f, kλ〉 (f ∈ Ha). A 4.1. alfejezetben megmutatjuk, hogy a mérhető ∆(Ha)

halmaz mindig részeMa kvázianalitikus spektrálhalmazának, így az [ARS07] cikkben
a ∆(Ha) = ω(Ma) egyenlőségre adott feltételek teljesülése biztosítja Ma kvázianali-
tikusságát. Nem nyilvánvaló, hogy egy általános analitikus szorzás-operátor unitér
aszimptotája hogyan néz ki, azonban abban a speciális esetben le tudjuk írni, amikor
Ha egy az [ARS09] cikkbeli feltételeket teljesítő mérték által indukált.

A 4.2. alfejezetben olyan kétirányú súlyozott eltolás-operátorokkal foglalkozunk,
melyek benne vannak a C10 osztályban. Javarészt a [Shi74] könyvben található öt-
leteket használjuk, azonban formális sorok helyett valódi függvényekkel dolgozunk.
Az általánosság megszorítása nélkül feltehető, hogy a vizsgált eltolás-operátoraink
aszimptotikusan ciklikusak és kváziunitérek. Egy Tβ súlyozott kétirányú eltolás-
operátorra egy bizonyos L2(β) függvénytéren értelmezett, az identikus függvénnyel
való szorzás-operátorként tekintünk. Tudomásunk szerint a C10-beli kétirányú sú-
lyozott eltolások körében a hiperinvariáns altér probléma abban az esetben nyitott,
amikor

0 < δβ ≤ rβ < Rβ = 1 és
∞∑
n=1

log β(−n)

n2
=∞.

Itt a δβ > 0 egyenlőtlenség azt jelenti, hogy Tβ invertálható, rβ jelöli Tβ belső spekt-
rálsugarát, a β(−n)-re vonatkozó növekedési feltétel pedig az L2(β) függvényalgebra
kvázianalitikusságát biztosítja. Ezen feltételek teljesülése esetén a függvénykommu-
táns bizonyos körgyűrűkön értelmezett korlátos analitikus függvényekkel hozható
kapcsolatba.

Habár az invariáns- és hiperinvariáns altér problémák nyitottak az aszimptoti-
kusan nem-eltűnő kontrakciók körében, a 3.4. Következmény mutatja, hogy a nem-
kvázianalitikus esetben mindkét kérdés megoldott. Ezen tény ismeretében fontos
lenne meghatározni a kvázianalitikus kontrakciók spektrális tulajdonságait, hiszen
ha egy aszimptotikusan nem-eltűnő kontrakció nem rendelkezne ezekkel a tulajdon-
ságokkal, akkor nem lehetne kvázianalitikus, és így létezne valódi hiperinvariáns
altere.
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Amennyiben egy T kontrakció kvázianalitikus, akkor a C10 osztályba tartozik.
Ezen aszimptotikus viselkedés esetén a T kontrakció σ(T ) spektruma, és V unitér
aszimptotájának σ(V ) spektruma között kapcsolat figyelhető meg. Nevezetesen, a
σ(V ) spektrum ω(T ) lényeges tartójával egyezik meg (σ(V ) = es(ω(T ))), továbbá
σ(V ) ⊂ σ(T ) és m(σ(V ) ∩ σ′) > 0 teljesül minden olyan nem-üres zárt σ′ ⊂ σ(T )

részhalmazra, melyre σ(T ) \ σ′ is zárt. Sőt, más megszorítás nincs a C10 kontrak-
ciók spektrumára, még a ciklikus esetben sem; lásd az [NFBK] könyv IX. fejezetét.
A záró fejezetben azt vizsgáljuk, hogy van-e további megszorítás a kvázianalitikus
kontrakciók spektrumára. Négy kérdést vetünk fel és válaszolunk meg részben.

Igazoljuk, hogy, amennyiben tetszőleges c > 0 szám és pozitív mértékű J ⊂ T
zárt ív esetén létezik olyan T kvázianalitikus kontrakció, melyre σ(T ) = π(T ) =

J és ‖T−1‖ > c teljesül, akkor tetszőleges, a felső félkörívet tartalmazó, a zárt
felső félkörben fekvő összefüggő, kompakt K halmazhoz létezik olyan kvázianalitikus
kontrakció, melyre σ(T ) = K2 := {z2 : z ∈ K} és π(T ) = T.

Tetszőleges c > 1 számhoz megadunk egy olyan Tβ ∈ L1(H) kétirányú súlyo-
zott eltolás-operátort, melyre σ(T ) = T és ‖T−1‖ ≥ c. Ezzel belátjuk, hogy az
előző állításban a feltevés teljesül a J = T esetben, továbbá ezen példák segítségé-
vel konstruálunk további, kifinomultabb spektrummal rendelkező L1(H) osztályba
tartozó kontrakciókat.
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