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A. tumefaciens Agrobacterium tumefaciens 
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CAI cholera autoinducer 
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DPD 4,5-dihydroxy-2,3-pentadione 

DSF diffusible signal factor 
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E. cloaceae Enterobacter cloaceae 

E. coli Escherichia coli 

EPS extracellular polymeric substances 

HHQ 2-heptyl-4-(1H)-hydroxyquinolone 

H. pylori Helicobacter pylori 

IDU iodine deoxyuridine 

LB Luria-Bertani 



LB* modified Luria-Bertani 

MHA Mueller-Hinton agar 

MHB Mueller-Hinton broth 

MIC minimum inhibitory concentration 

OD optical density 

P. aeruginosa Pseudomonas aeruginosa 

PBS phosphate-buffered saline  

PDA potato dextrose agar 

PMF proton motive force 

PQS Pseudomonas quinolone signal 

P. syringae Pseudomonas syringae 

QQ quorum quenching 

QS quorum sensing 

RFF relative final fluorescence 

SAH S-adenosylhomocysteine 

SAM S-adenosylmethionine 

S. aureus Staphyllococcus aureus 

S. pneumoniae Streptococcus pneumoniae 

SRH S-ribosylhomocysteine 

S. typhimurium Salmonella typhimurium 

THMF methyl-2,3,3,4-tetrahydroxytetrahidrofuran 

TI tumour inducing 

TLC thin layer chromatography 

TZ thioridazine 

V. cholerae Vibrio cholerae 



V. fischeri Vibrio fischeri 

V. harveyi Vibrio harveyi 

V. paradoxus Variovorax paradoxus 

X. campestris Xanthomonas campestris 

X. fastidiosa Xilella fastidiosa 
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1. Introduction 

 

Quorum is a Greek word. In the ancient Hellenic and Roman forums, it was necessary for the 

members of the senate to form at least a minimal majority in order for them to make a 

decision. The group of persons whose number was sufficient for them to be able to accept or 

reject an act was the quorum.  

 In general, microbes have numerous genes which become activated only when the bacterial 

population owersteps a threshold concentration. The term used to describe this population 

size-dependent gene regulation is quorum sensing (QS), involving communication between 

bacteria.  

In spite of the ancient origins of the word “quorum”, QS is a relatively new area of science. 

When Leuweenhoek first glimpsed inside the bacterial world, it was thought that microbes 

live in a blind and deaf world, where all cells live their own lives without any influence from 

others. The first signs of the collapse of this theory, was the discovery of the competence 

stimulating factor of Streptococcus pneumoniae (S. pneumoniae) in 1965 (1). It was obserwed 

that this bacterium needs an extracellular peptide to reach the competent state, and this 

molecule can be produced only at a high population size density. This is very useful, because 

there is no reason for a bacterium to waste energy reaching the competent state if there are 

insufficient cells in the near environment. The first direct evidence and the birth of QS 

emerged 5 years after this interesting discovery. This was the light production of Vibrio 

fischeri (V. fischery), (2). This bacterium can colonize the light organ of several species of 

deepwater animals, includeing squids and fish. In this special organ, all nutrients are given to 

reach a high cell density. The wall of this organ is usually very flexible and fish can press 

water out of it. When this happens, the cell density of the vibrios increases, and light is 

produced. The first-described QS system was the V. fischeri LuxI/LuxR system (3), which is a 

characteristic feature in other G- bacterial species too.  

After these initial discoveries, it seemed that QS is very rare and almost unique in the 

bacterial world, influencing merely a few and not too important bacterial features. Nowadays, 

this has completely changed. As more and more QS systems have been discovered, it has 

become clear that bacterial communication does not occur in only a few isolated cases.   

 QS is an essential part of bacterial life. The bacterium, with its QS system, has leverage, 

which is why QS is widely prevalent in the microbial world. With communication systems, 

microbes can accommodate to their habitat like multicellular organisms, and can fight as a 

unit against environmental impacts, other bacteria or the host immune system. Group 
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behaviour is probably the most developed bacterial lifestyle. In a complex multispecies 

biofilm, every bacterium knows its place, and what is the best to do for the community and 

for itself. Division of labour is an evident thing in multicellular eukaryotes, but in prokaryotic 

biofilms too. QS has a special role not only in prokaryotic-prokaryotic, but also in eukaryotic-

prokaryotic communication. The human body contains 10 times more bacterial cells than 

human cells, and most bacteria generally live in full harmony with us. It is clear that, it is 

virtually impossible to maintain this symbiosis without communication. We have hormones 

which affect our flora, and our symbionts also deploy QS signals which have effects on our 

cells. QS is also a very important phenomenon for the pathogenic bacteria. Signal molecules 

contribute directly to pathogenesis via the organization of biofilms or the synchronized 

production of virulence factors.   

 Antibiotic resistance is the most important problem in modern microbiology. Bactericidal or 

bacteriostatic compounds exert strong selective pressure on microbes. Because of the 

irresponsible use of antibiotics, pathogenic bacteria nowadays often display resistance to at 

least a few medicines. The appearance of multidrug-resistant strains which tolerate the latest 

antibiotics too enhances this problem. There is an urgent need to discover new antimicrobial, 

antipathogenic and antivirulence drugs. QS inhibitors may be a good alternative to solve this 

situation.  

 

1.1. QS 

 

QS is a widely prevalent feature of both Gram-negative and Gram-positive bacteria. There are 

many different types of QS systems and signal molecules in the bacterial world, but each 

system relies on the same basics. Each bacterium synthesizes signal molecules in low 

amounts. When the population density is low, the number of signal molecules is also low, 

when the number of bacteria increases, the concentration of QS molecules increases. When 

the concentration of signal molecules exceeds a threshold concentration, a positive feedback 

starts, and the bacteria increase the production of signal molecules. At this very high 

concentration of QS molecules, they bind their receptors. The nature of the receptors can 

differ considerably in each case, but in the end of the process is the same: the initiation of 

target gene transcription.  
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Figure 1. 

Schematic outline of QS. 

Left side: Low concentrations of bacteria and signal molecules (blue circles). 

Right side: When the concentration of bacteria increases, the amount of signal molecules 

increases too. when it reaches the threshold concentration, binding to the receptors occurs and 

activates the transcription of the target genes (4). 

 

 

1.2. QS in Gram-negative bacteria 

 

1.2.1. LuxI/LuxR system of V.  fischeri 

The first described QS was the LuxI/LuxR system of V fischeri (3). Two proteins, LuxI and 

LuxR, control the synthesis of the enzyme luciferase. The bacterium synthesizes the signal 

molecules with the acyl homoserine lactone (AHL) synthase LuxI. When the AHL reaches the 

threshold concentration, it can bind to LuxR, the cytoplasmic receptor (5,6). The LuxR-AHL 

complex activates the transcription of the luciferase operon. The LuxR-AHL complex also 

induces the expression of luxI because it is encoded in the luciferase operon. This positive 

feedback leads to a flood of more and more AHL molecules to the environment, which can 

diffuse freely to the receptor and activate the transcription of the structure genes. The end of 

this process is the light production of the bacteria. LuxI/LuxR-type AHL-dependent QS 

systems are highly prevalent in G-bacteria. It mainly takes place in intraspecies 

communication too.  

 

1.2.2. LasI/LAsR-RhlI/RhlR system of Pseudomonas aeruginosa (P. aeruginosa) 

P. aeruginosa is an abundant, opportunistic pathogenic bacterium which lives in soil and 

natural waters, and frequently colonizes and organizes biofilms in taps, air conditioners and 
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other water-associated equipment.  Although this bacterium rarely causes infections in healthy 

adults, it involves a great health risk. This bacterium is responsible for most nosocomial 

infections, and it exhibits very strong antibiotic resistance.  

 P. aeruginosa has two LuxI/LuxR homologues, LasI/LasR and RhlI/RhlR (7). LasI and RhlI 

are autoinducer (AI) synthases that produce the signal molecules 3OC12HSL and C4HSL (8, 

9). LasR and RhlR are specific AHL receptors. The LasR-AHL complex activates the 

expression of lasI and a variety of other target genes, and also activates the RhlI/RhlR system. 

There are hundreds of genes which are under QS control in P. aeruginosa. Some of them are 

induced by only one AI, while some need both 3OC12HSL and C4HSL to activate. There are 

also genes which are activated by either C4HSL or 3OC12HSL (10, 11). P. aeruginosa has a 

LuxR “solo” receptor which does not have a cognate synthase pair. This is called QscR, and is 

activated by 3OC12HSL (12). The QS system of Pseudomonas species is very complex. 

Besides the two LuxI/LuxR type synthase/receptor pairs and the LuxR solo, it uses other 

types of AIs for the stringent control of QS. The Pseudomonas quinolone signal (2-heptyl-3-

hydroxy-4(1H)-quinolone; PQS) is used only by P. aeruginosa, its precursor 2-heptyl-4(1H)-

hydroxyquinolone (HHQ), is used by other Pseudomonas species and Burkholderia spp. as 

well. Both PQS and HHQ act as AIs via the interaction of the transcriptional regulator PqsR 

(13). 

 

Figure 2. 

The QS system of P. aeruginosa (14) 

   

1.2.3. The TraI/TraR QS system of Agrobacterium tumefaciens (A. tumefaciens) 

A. tumefaciens is a tumour-inducing (TI) phytopathogenic bacterium which causes infections 

mainly in arboreal dicotyledonous plants. The bacterium penetrates into the host through 

injured tissues, and causes crown gall tumours via the intercalated T-DNA (located in the TI 

plasmid). These tumours produce opines which the bacteria use as carbon source.  Besides the 

opine genes, TI plasmid encodes phytohormones, which are necessary for the tumour growth, 

and the genes traI and traR, which are responsible for the QS of the bacteria (15, 16).  
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The QS system of A. tumefaciens is quite interesting, because this bacterium needs an opine 

signal from the infected plant to activate the QS system responsible for the mobilization of the 

TI plasmid.  These molecules are detected by the cytoplasmic receptor OccR (15). The OccR-

opine complex induces the expression of traR. After the binding of their AHL, the TraR 

receptors induce the expression of structure genes, which are responsible for the TI plasmid 

replication. These genes also include traM, which is responsible for the down-regulation of 

the process. 

 

1.3. QS in Gram-positive bacteria 

 

The Gram-positive bacteria do not have any LuxI/LuxR-type homologues; they mainly use 

different peptide molecules as autoinducers. Usually, these oligopeptides cannot penetrate 

through the membrane; specialized active transporters are needed to deliver them into the 

external space. The AI peptides (AIPs) are subject to various modification events, such as 

processing or cyclization. The detection of the AIPs can be extra- or intracellular, but most of 

the receptors are localized extracellularly. When the receptors binds the AIPs, a 

phosphorylation-dephosphorylation cascade starts which reaches the response regulator and 

activates or represses the QS target genes (17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 

The mechanism of peptide based QS (18). 
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1.3.1. The QS system of Staphylococcus aureus (S. aureus) 

S. aureus is a widely prevalent bacterium which causes numerous human diseases. It can 

nearly infect all kinds of tissues e.g. skin, bone, the lungs and the nervous system. It has great 

resistance to most antibiotics, and has evolved multiresistant strains, that tolerate all kinds of 

antibiotics.  S. aureus strains use interesting QS-mediated strategies to cause diseases. At low 

cell density they express factors which promote attachment, biofilm formation and 

colonization, while at high cell density they produce proteases and toxins, which promote 

dissemination and infection. This density-dependent pathogenicity in S. aureus is regulated by 

the RNAIII molecule, the level of which is mediated through the AgrC/AgrA QS system. The 

AIP of S. aureus is encoded by agrD. The AgrD molecule is transported and modified with a 

thiolactone ring by the AgrB transporter. The AgrC receptor binds the AIP extracellularly, 

this complex leads to the phosphorylation of AgrA and the phosphorylated AgrA then induces 

the expression of RNAIII. This regulatory RNA represes the expression of biofilm formation 

factors and promotes the expression of toxins and proteases. RNAIII also induces the 

expression of the agrBDCA locus, which increases the levels of AIPs (19).  

 Interestingly, these AIPs and therefore the S. aureus-es belong in 4 different groups. Each 

type of signal molecule competitively blocks the receptors of the others. The bacteria which 

colonize first, therefore kill or inhibit the colonization of the bacteria from the other groups 

(20). 

 

4. Figure 

The QS system of S. aureus (14) 

 

1.3.2. The QS system of S. pneumoniae 

The QS system of S. pneumoniae was the earliest investigated QS system, (although when 

Tomas carried out his research, this area of science did not exist). It was revealed that S. 

pneumoniae needs an extracellular peptide, called a competence stimulating pheromone, to 

reach the competence state (1,21). Nearly 30 years later Pestova described the QS system of 

this bacterium. ComC is the precursor peptide of the CSP (competence stimulating peptide) 

AI. This molecule is secreted out of the cell through the ComAB ABC transporter.  When the 
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CSP molecules reach the threshold concentration, they bind their receptors, called ComD. 

This AIP-receptor complex launces a phosphorylation-dephosphorylation cascade, which 

finally activates the transcription of the comX gene. The ComX protein is essential for the 

transcription of the genes which take part in the competence (22).  

 

1.4. QS signal molecules 

 

QS is population size-dependent gene regulation, mediated by small signal molecules called 

AIs. The natures of these molecules are very different, but most belong in 3 groups: AHLs are 

mainly used by Gram-negative bacteria, autoinducer II (AI-2) is used by both Gram-negatives 

and Gram-positives, and AIPs are used by Gram-positives. Some bacteria use AIs which do 

not fit these groups, e.g. the PQS diffusible signal factor (DSF) or autoinducer III (AI-3). 

 

1.4.1. AHLs 

AHL-s are the most common signal molecules of Gram-negative bacteria. The first 

discovered signal molecule was the V.  fischeri 3OC6-HSL, which catalyses luciferase 

production. Many other bacteria use the same AHL to communicate, e.g. Pseudomonas 

syringae, Erwinia carotovora and Pseudomonas stewarti. In these species, these compounds 

influence the virulence and plant colonization. The length of the acyl side-chain in the AHL 

molecules can vary in between 4 and 18 carbon atoms. The lactone ring is conserved, but they 

can also differ in the saturation state of the acyl side-chain and the oxidation state at carbon 3. 

These molecules are usually synthesized by LuxI-type AHL synthase, using acylated acyl 

carrier proteins (acyl-ACPs) and S-adenosylmethionine as substrate (23). 

Gram-negative bacteria can use only one AHL molecule, e.g. V. fischeri, or can use a multiple 

signal system, e.g. P. aeruginosa. This microbe uses two types of AHLs, 3oxoC12-HSL and 

C4-HSL, supplemented with the PQS and HHQ.  

The AHLs mainly takes part in intraspecies communication. The receptors of these molecules 

are usually AHL-specific, but there are other examples. In Chromobacterium violaceum (C. 

violaceum), the bacterium which uses C6-HSLs to supervise violacein production, the AHL 

receptor can bind other types of AHLs with a short acyl side-chain. 

The AHL receptors are usually cytoplasmic receptors for short-chain AHLs, and membrane-

bound sensor kinases for long-chain AHLs. The short-chain AHLs can freely diffuse in and 

out of the cell, but long-chain AHLs need active transport to move to the external space.  
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Most species use signal/receptor pairs to produce and respond to the AHL molecules. In some 

cases, there are also orphan receptors, or LuxR solos which can detect distinct AHL signals. 

These receptors do not have cognate LuxI synthase, e.g. SidA in Escherichia coli (E. coli) 

(12).  

 

Figure 5. 

The AHL molecule (14) 

 

1.4.2. Peptide-type autoinducers 

AIPs are mainly used by Gram-positive bacteria. These signals are synthesized ribosomally. 

A large precursor peptide is usually synthesized first, and after the cleavage can be modified 

with lactone or thiolactone rings, lanthionines or isoprenyl groups. (24-26). In all cases, 

specialized active transporters are needed to move the AIPs out of the cell. The transport 

proteins usually ensure the modification events too. The modified oligopeptides are detected 

extracellularly, by a two-component membrane-bound sensor histidine kinase. After the 

binding a phosphorylation-dephosphorylation cascade starts, which reaches the response 

regulator, and the activated response regulator promotes or represses the target genes.   

In some cases, small linear AIPs are transported back into the cell, where they directly 

influence the response regulation, e.g the PrgX system in Enterococcus faecalis, or the PlcR 

and NprR systems in Bacillus thuringiensis (27-29). 

 

Figure 6. 

AIP-1 in S. aureus (14) 

 

1.4.3. AI-2 

AI-2 is the universal signal molecule in bacteria. It is widely prevalent in both Gram-positive 

and Gram-negative species. More than a third of the currently investigated bacteria use AI-2 

molecules for interspecies communication. The AI-2 systems are usually complemented with 

AHL (in Gram-negatives) or AIP (in Gram-positives) -based QS.  
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AI-2 is generated from S-adenosylhomocysteine (SAH), which is formed when S-

adenosylmethionine (SAM) releases the activated methyl group. SAH is converted by Psf (5’-

methylthioadenosine/S-adenosylhomocysteine nucleosidase) to S-ribosylhomocysteine (SRH) 

(30, 31). LuxS catalyses the cleavage of SRH to homocysteine and 4,5-dihydroxy-2,3-

pentadione (DPD). This molecule spontaneously cyclizes into two isomers, S-2-methyl-

2,3,3,4-tetrahydroxytetrahydrofuran-borate (S-THMF-borate) and non-borated R-2-methyl-

2,3,3,4-tetrahydroxytetrahydrofuran (R-THMF) (32). Both enantiomers have AI-2 activity, 

and are detected by different bacterial species. The AI-2 molecules are relatively membrane-

impermeable; active transport is needed to move them in and out of the cell. The YdgG 

protein in E. coli is the only AI-2 exporter so far known, but other mechanisms of AI-2 

transport must exist (33). There are also some black spots in the receptor binding of AI-2 

molecules. Three kinds of AI-2 receptors are known. The LuxP family is found only in 

Vibrios spp.. This periplasmic binding protein is typically associated with ATP binding 

casettes (ABC) (34). The ligand of this receptor is S-THMF-borate (32, 35).  

Other well-known AI-2 receptors belong in the LsrB family. This high-affinity substrate-

binding periplasmic protein also interacts with the ABC transport system, called Lsr (36). The 

LsrB family is typically present in enteric bacteria and the members of the Rhizobiaceae and 

Bacillaceae and have high affinity for the R-THMF isomer of DPD (35, 37). 

Agregatinobacter actinomycetemcomitans and Haemophilus influenzae use other type of 

receptors as well for the sensing of AI-2s, the RbsB proteins, which have high homology 

(above 70%) with the ribose ABC transporter (38, 39). 

 

Figure 7 

The AI-2 of V. harvei (left) and S. enterica (right) (14) 

 

1.4.4 Pseudomonas quinolone signal PQS  

The PQS and its precursor HHQ both act as QS signal molecules via the PqsR transcriptional 

regulator. The PQS is found only in P. aeruginosa, but HHQ appears in many Pseudomonas 

and Burkholderia spp. (40,13). 

 



10 

 

 

 

Figure 8. 

The PQS molecule. 

 

1.4.5. The DSF 

DSF (cis-11-methyl-2-dodecenoic acid) is present in many plant pathogenic bacteria e.g. 

Xanthomonas campestris (X. campestris), Burkholderia cenocepacia and Xilella fastidiosa (X. 

fastidiosa). The mechanism of signal detection differs between species, but after the binding 

they share a general feature: all influence the intracellular level of cyclic di-GMP (41,42).  

 

 
Figure 9. 

The DSF signal of X. campestris (14) 
 

1.4.6. AI-3 

Although the structure of AI-3 is not yet known, it must be similar to the human hormones 

epinephrine and norepinephrine. This QS molecule produced is by the members of the 

commensal enteric flora and intestinal pathogens. In E. coli and Salmonella typhimurium (S. 

typhimurium), the detection of AI-3 and also the hormones epinephrine and norepinephrine 

occurs via the two-component QseC/QseB system (43,44). This is an interesting example how 

we can influence the flora via hormones and how the bacteria can affect their host via QS 

molecules.     

  

1.4.7. Alpha-hydroxyketones (AHKs) 

One of the firstly identified AHK was the 3-hydroxytridecan-4-one (Cholera autoinducer I 

(CAI-1)) in Vibrio cholerae (V. cholerae). It produced by the enzyme CqsA from the 

substrates (S)-2-aminobutyrate and decanoyl coenzyme A. The receptor of CAI-1 is CqsS 

sensor kinase, which have effect on LuxU and LuxO. These proteins also influenced by AI-2 

and AHL dependent QS systems in V. cholerae and Vibrio harveyi. Above Vibrios, 

Legionella pneumoniae also use AHKs as QS molecules (45). 
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Figure 10. 

The CAI-1 molecule (14) 

 

1.5. Quorum quenching 

 

 Bacteria with different QS systems gain numerous benefits. They can monitor the density of 

their own population and those of other bacteria and eukaryotes too. They can coordinate and 

optimize their gene expression in a density-dependent manner. The cost of signal molecule 

production is very low and is usually associated with necessary cell metabolic pathways (46). 

For example, a bacterium does not gain leverage and waste much energy if it produces 

antibiotics when the cell number is not large enough to produce it in sufficient concentration. 

Hence it is necessary to produce signal molecules to optimize the production of difficult and 

expensive molecules. QS is essential in bacterial life, and many strategies have therefore been 

developed to disrupt it in bacterial-bacterial, and also prokaryotic-eukaryotic interactions. The 

mode of interaction with other QS systems can be very different, but the 3 attack points are 

the same: the synthesis of the signal molecule, the signal molecule and the signal detection.  

  

 1.5.1. Inhibition of signal production  

The first step of QS is the biosynthesis of signal molecules, and numerous inhibitors therefore 

have the aim of this target. Evidence has been found in the inhibition of AHL, AI-2, peptide-

type autoinducer and PQS production. AHL signals are produced from SAM and acyl-ACPs 

by acyl-HSL synthases, e.g. LuxI or AinS-type synthases. Some antimicrobials, e.g. 

diazobromines and triclosan, inhibit FabI (NADH-dependent enoyl-ACP reductase), the 

enzyme which catalyses the production of acyl-ACPs (47). Another example is found in the 

phytopathogenic bacterium Burkholderia glumae. The J8C8 molecule is competitivein 

inhibiting acyl-ACP utilization, and thereby inhibits the production of C8HSL (48). The SAM 

analogues, S-adenosylcysteine, S-adenosylhomocysteine and sinefungin also inhibit AHL 

production (22). 5’-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is 

involved in both the AHL and AI-2 production, and is also necessary in cell metabolic 

pathways (22). Inhibition of MTAN results in aberrant grown, and not only in decreased 

signal production. Even so, some tested MTAN inhibitors, immucillin A and DADMe-ImmA 
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derivatives, have proved to be good inhibitors (49, 50). Besides these molecules, AI-2 

production is also impaired by different LuxS inhibitors. Enzime LuxS is probably the best 

target to reduce AI-2 production. S-Anhydroribosyl-L-homocysteyl and S-homoribosyl-L-

cysteine were the first molecules identified as this type of inhibitors. Both are competitive 

inhibitors, though unfortunately with very weak effects (51). The most potent LuxS inhibitors 

were synthetized by the Shen’s group: compounds 10 and 11 had the greatest effects (52).  

Halogenated furanones also inhibit AI-2 production to various degrees (53). 

The synthesis of the PQS and HHQ, the signal molecules produced by Pseudomonas species, 

can be inhibited by anthranilate analogues. Methyl anthranilate influences the PQS production 

in P. aeruginosa (54). Farnesol, the signal molecule of Candida albicans (C. albicans), also 

inhibits the PQS production of P. aeruginosa. Interestingly, this opportunistic fungal 

pathogen frequently causes mixed infections with this bacterium (55). 

The targets involved in the synthesis of AIPs are usually essential for the growth of cells too. 

Most QSI compounds also have bactericidal activity.  There have been only a few studies on 

this theme. One of them related to the fungal secondary metabolite product ambuic acid, 

which can inhibit cyclic AIP biosynthesis in many bacterial species (56). 

 

 1.5.2. QS signal degradation and inactivation 

Most QSI compounds use signal degradation as the mode of action. This is therefore the most 

studied field of QQ. There are numerous examples in AHL, AI-2, PQS, AIP and DSF signal 

degradation.  

 AHL molecules recruit a homoserine lactone ring and a 4-18 carbon atom acyl side-chain.  

The lactone ring is spontaneously hydrolysed at alkaline pH, and is also spontaneous restored 

at acidic pH. Through modification of the pH level, bacteria and higher organisms can interact 

with microbes and communicate with AHL molecules. In most cases the point of attack is 

more direct, and specific enzymes are used to degrade AHLs. There are 3 main categories: 

lactonases, acylases and oxidoreductases. AHL lactonases hydrolyse the ester bond on the 

homoserine lactone ring. The structure of the lactone ring is conserved, and most of 

lactonases therefore have very wide substrate specificity. Gram-positive microbes and higher 

organisms usually use this type of QQ. The first examples were found in Bacillus species and 

the aiiA (AI inactivation) gene in them was identified (57). The purified lactonases inactivate 

numerous types of AHLs. To produce enzymes which attack the lactone ring is not confined 

to microbes. For example, human paraxonase 1,2 and 3 (PON1-3), mainly produced by 

airway epithelial cells, also have lactonase activity (58, 59). Studies have revealed the 
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differences between these 3 proteins. PON1 and PON3 have very wide substrate specificities, 

but both have lactonase activity. PON2 does not have such a wide substrate specificity but has 

the greatest activity against AHLs (60-62). AHL acylases hydrolyse the acyl-amide bond 

between the lactone ring and acyl tail. The substrate specificity of this molecule is much 

stricter, than in lactonases.  The first acylase enzyme was inentified in Variovorax paradoxus 

(V. paradoxus). This bacterium is able to use various kinds of AHL as energy source (63).  

AHL acylases are found in various other bacteria too e.g. AhlM in Streptomices sp. strain 

M664 (64), HacA and HacB in P. syringae (65 Shepherd 2009) and PvdQ in P. aeruginosa 

(66). The third and probably the least known enzyme family which can disrupt AHL 

molecules are the oxidoreductases.  This was first discovered in Rhodococcus erythropolis. 

Like V. paradoxus, this bacterium uses the AHLs as carbon and nitrogen sources (67). The 

effectiveness of oxidoreductases is usually lower than those of then AHL acylases and 

lactonases (68,69), but there have been only a few studies of these molecules. AHL molecules 

can also be inactivated by different antibodies. For example, MAbs (monoclonal antibodies) 

inactivate QS-mediated pyocyanin production in P. aeruginosa (70). 

The QQ of AI-2 molecules is not as well known as in the case of AHLs. The enzyme Lsrk 

adds a phosphate group to the signal molecule, createing P-AI-2, with a decreased receptor 

binding ability. LsrK added externally to S. typhimurium, E. coli, and V. harvei cultures 

causes QQ in each case (71). DSF signals are used by many plant pathogenic bacteria, as in 

Xanthomonas species (causing black root) and X. fastidiosa, the causative agent of Pierce 

disease. Co-cultivation experiments have shown that numerous bacteria interfere with DSF 

signalling. Pseudomonas, Bacillus and Staphylococcus strains also have the carA and carB 

genes, responsible for the QQ activity (72). Co-infection with bacteria, harbouring high level 

of DSF degrading activity results in decreased pathogenicity in both black root and Pierce 

disease as well. The PQS-mediated QS of P. aeruginosa can be decreased by the enzyme 

Hod. A lower pathogenicity has been demonstrated in a lettuce leaf model (73). The AIPs can 

be inactivated by different kinds of antibodies. For example, Mabs, like AP4-24H11, 

decreases the production of virulence factors and increases biofilm production (which is 

down-regulated by QS) in S. aureus (74).  

 

 1.5.3. Inhibition of signal detection 

The inhibition of signal detection is based on different QS signal analogues. These molecules 

can bind the receptor of the given QS molecule, but do not cause the same effect in gene 

expression. This competitive binding is a very good alternative for QQ. Analogues can exhibit 
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different activities, e.g. no activity, pure antagonism, pure agonism, partial antagonism, partial 

agonism or synergistic agonism (75-77). Inhibition of signal receptors is found in many cases, 

including AHL, AIP, AI-2, AI-3, PQS and HHQ-based systems.   

 A wide range of AHL analogues have been tested, including thiolactones (78), lactams (79), 

urea (80) and triazolyldihydrofuranone (81) based analogues. Many AHL receptors are 

known, e.g. QscR, LasR, TraR and LuxR. The Mattmann laboratory has tested a plethora of 

analogues and found molecules which cause antagonism on these receptors (82). The most 

interesting molecule is S7, which is active against all 4 investigated AHL receptors (Fig 11). 

 

 

Figure 11. 

Different AHL receptor antagonists (82) 

 

Different halogenated furanones are good inhibitors of both AHL and AI-2 receptors (83-85). 

Besides brominated and chlorinated furanones, numerous AI-2 receptor inhibitors are known. 

Pyrogallol is probably the best inhibitor, but different DPD analogues also have a great future 

(86-88). 

 The usage of peptide-type AI analogues is a good alternative to quench the QS system of 

Gram-positive bacteria. The most marked evidence of this is found in S. aureus. At least 4 

types of S. aureus exist as concerns their AIPs. The AgrC receptor responds to its own AIP, 

but binds the signal molecules from the other groups without modifying the gene expression. 

This competitive binding ensures the stability of the first colonizing strain (89). One type of 
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AIP of S. aureus can block the QS of the other strains. trAIP-II is a very good inhibitor for all 

4 strains (90). Naturally, the AIP antagonists based on Gram-positive QS inhibition are not 

restricted to S. aureus, AIP analogues synthesized against other species as well e.g. S. 

pneumoniae (91). 

 

1.6. Biofilms and QS 

 

Biofilms are complex bacterial communities embedded in extracellular polymeric substances 

(EPSs). This multicellular lifestyle provides numerous benefits for the bacteria. The EPS 

matrix protects the bacteria from chemicals, the immune system, predation, desiccation, 

oxidizing molecules and other damaging agents (92). Division of labour is also evident in 

multispecies biofilm. In spite of the developed aqueduct structures, there are spaces where 

oxygen, water and nutrient availability is relatively low. Here, metabolically inactive cells 

exist, which can recolonize the biofilm after antibacterial attack. The biofilm also prove a 

good place for genetic information exchange. The EPS holds the microbes close proximity to 

each other, helping the bacterial-bacterial interactions. The persistence of drug resistance 

markers and other virulence factors is therefore promoted. Because of these beneficial 

features, biofilms cause most problematic bacterial infections. The antibiotic resistance inside 

the biofilm is nearly 1000-fold higher, than in planktonic bacteria. Biofilms have the greatest 

significance in the following cases: catheter and other device-associated infections (93, 94), 

urinary tract infections (95), periodontitis (96) and upper respiratory tract infections (97, 98). 

QS is essential for normal biofilm development in numerous pathogens. The life of a biofilm 

can be categorized by 3 stages. The first is the attachment, which is followed by the 

maturation and finally the dispersion. There are examples of the influence of QS in all 3 

stages. In the attachment phase, probably the most interesting examples are found in S. aureus 

and Helicobacter pylori (H. pylori). The AgrC/AgrA QS system of S. aureus regulates the 

level of surface adhesins, which influence the attachment to the host (99). The luxS 

homologue of H. pylori is also implicated in the biofilm attachment. The luxS mutants adhere 

twice as effectively (100). There is also considerable evidence of the influence of QS-

mediated processes in biofilm maturation: in Serratia liquefaciens (101), Burkholderia 

cepacia (102), Aeromonas hydrophila (103), Streptococcus mutans (104). There are also 

examples of QS mediation of the dispersion; for example, a plant pathogen bacterium, X. 

campestris, uses DSF signals to regulate the biofilm dispersal (105). 
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1.7. Aims 

 

Antibiotic-resistant and pathogenic bacteria often cause life-threatening infections.  To 

overcome these infections, we wished to know the different mechanisms of various bacterial 

species and host interactions. In the present thesis, my attention focused on in vitro models of 

interbacterial communication called QS, i.e. the communication system dependent on the size 

of the population in an in vitro model basically related to antibiotic resistance and biofilm 

formation. The main points studied in the thesis are as follows: 

 

1. First of all, the antibacterial effects of essential oils and other compounds were studied, 

before studies of the effects of QS signal transmission. 

 

2. As known inhibitors of ABC transporters, the phenothiazines were included in structure-

activity studies of QS. 

 

3. The structure-activity-dependent effects of trifluoromethyl ketone (TF) proton pump 

inhibitors on QS signal transmission were investigated in vitro. 

 

4 The interaction with some QS inhibitors was investigated with AHLs. 

 

5. The effect of interference between bacterial population on the QS signal were investigated 

by using different bacterial strains, including clinical isolates and laboratory strains. 

 

6. The EZF 10-17 grapevine isolate, and its AHL profile were identified. 

 

2. Materials and Methods 

 

2.1. Tricyclic compounds used: promethazine (Pipolphen, EGIS, Hungary), amitriptyline 

(Teperin, EGIS, Hungary), acridine orange (AO) (Reanal, Hungary), imipramine 

(Melipramin, EGIS, Hungary), desipramine, chlorprothixene (Truxal, Lundbeck, Denmark), 

promazine, diethazine (Parkazin, Rhone-Poulenc, France) and desertomycin. Stock solutions 

of these tricyclic compounds were prepared in distilled water at 25.0 mg/ml before use. 

Thioridazine (TZ) (Sigma, Madrid, Spain) was used as positive control for the efflux pump 

inhibition. 
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2.2. Other chemicals 

5-Fluorouracil (5-FU) (Sigma-Aldrich, Budapest, Hungary)  

Iodine deoxyuridine (IDU)   

Ethidium bromide (EB) (Sigma, Madrid, Spain) 

Dimethyl sulfoxide (DMSO) 

N-Hexanoyl-DL-homoserine lactone (SIGMA, Budapest). 

 

                                          

Figure 12. 

The N-hexanoil-DL-homoserine lactone molecule (106) 

 

2.3. Trifluoromethyl ketones used: Eleven TFs (1-9, 11 and 12) were synthetized by 

reaction of the corresponding 2-methylbenzazoles with trifluoroacetic or chlorodifluoroacetic 

anhydride (107). Compound 10 was prepared by treatment of 2-lithiomethylbenzoxazole with 

ethyl acetate (108, 109). N-Hexanoyl-DL-homoserine lactone was purchased from Sigma 

(Budapest, Hungary). TFs were dissolved in, DMSO.The structures of the TFs is presented in 

Table 1.  
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Table 1. 

Trifluoromethyl ketones investigated in the study 
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2.4. Essential oils used: Rose (Rosa damascena L., Rosaceae), lavender (Lavandula 

angustifolia L., Labiatae), chamomile (Matricaria recutica L., Asteraceae), orange (Citrus 

sinensis L., Myrtaceae), eucalyptus (Eucalyptus globulus L.,Myrtaceae), geranium  

(Geranium robertianum L., Geraniaceae), juniper (Juniperus communis L., Cupressaceae), 

citrus (Citrus lemon) and rosemary oils (Rosmarinus officinalis L., Lamiaceae) were 

purchased from Phoenix Pharma Ltd. (Hungary). The oils were either used directly 

(concentrated) or dissolved in DMSO to yield a dilution of 10% (v/v). The stock solution was 

either used directly or further diluted with 10% DMSO. Both AO and 5-FU were dissolved in 

distilled water.  

 

2.5. Bacterial strains:  

 C. violaceum 026 (CV026) served as QS sensor. C. violaceum is a common bacterium which 

lives in soil and water. When C. violaceum reaches a high cell density, it produces a purple 

pigment, violacein (110). The CV026 sensor strain is a Tn5 mutant which alone cannot 

synthesize AHLs; it produces the purple pigment only in the presence of externally added 

inducers (111). This strain has been used to detect a wide range of short-chain AHLs or QS 

inhibitors (112-114).  
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 EZF 10-17 was isolated from a grapevine crown gall tumour. This strain induced pigment 

production by CV026 and proved to be efficient for the study of QS interactions (115). 

 Enterobacter cloaceae (E. cloaceae) 31298; a clinical wound isolate, was used as AHL 

producer. 

 E. coli wild-type AG100 [argE3 thi-1 rpsL xyl mtl (gal-uvrB) supE44] was employed for 

determination of the effects of TFs on the activity of the intrinsic efflux pump of this 

organism (116). 

 P. aureginosa 49010 was clinical strains isolated from the human trachea. 

  

Strains used in the interference of QS amongst microbial species experients: 

Fungi: Candida krusei, Candida tropicalis and C. albicans 

Bacteria: Achromobacter xylosoxidans 40502, Acinetobacter baumannii 32703, A. baumanni 

42701, Bacillus cereus, Bacillus subtilis, Bacillus clausii, Bacillus megaterium PV 361, 

Bacillus megaterium MS 941, Bacillus megaterium 216, Staphylococcus epidermidis, S. 

aureus and E. coli strains were isolated from extraintestinal infections numbered 5536, 

10902, 10904, 11925, 14525, 14584, 18596, 19579, 19672, 24310, 24409, 24442, 33444, 

36446 and 40312. 

 

2.6. Media 

LB (Luria-Bertani) medium: containing yeast extract 5 g/l, trypton 10 g/l and NaCl 10 g/l 

Modified LB agar (LB*) containing yeast extract 5 g, trypton 10 g, NaCl 10 g, K2HPO4 1 g, 

MgSO4.7H2O 0.3 g and FeNaEDTA 36 mg in 1.0 l of distilled water, Potato dextrose agar 

(PDA), Mueller-Hinton broth (MHB) and  Mueller-Hinton agar (MHA) purchased in powder 

form from Sigma (Madrid, Spain), Blood agar, complemented with sheep blood 

 

Methods 

2.7. QS tests: LB* was used for the experiments. The sensor strain CV026 and the AHL 

producer strains EZF 10-17, E. cloaceae 31298 or P. aureginosa 49010 were inoculated as 

parallel lines and incubated at room temperature (20 
o
C) for 24-48 h. QS inhibition was 

monitored by the agar diffusion method. Filter paper discs (7.0 mm in diameter, Whatmann 

3MM) were impregnated with 10 µl of stock solutions of the compounds in distilled water or 

DMSO. The discs were placed between the parallel lines of sensor and AHL producer strains 

on the surface of nutrient agar. The plates were incubated at room temperature for a further 

24-48 h and the interactions between the strains and  compounds were evaluated as concerns 
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the reduction in size of the zone of pigment production and the zone of growth inhibition of 

the affected strains, in mm. 5-FU  and AO was applied as positive controls (117). 

 

2.8. QS interference tests 

QS modification experiments with E. coli strains: Suspensions of each E. coli strain were 

separately mixed with molten LB* agar medium. One hour later, parallel lines of the pair of 

CV026 sensor and Ezf 10-17, and E. cloaceae 31298 AHL-producing strains were inoculated, 

and incubation was performed at room temperature (20 ºC) for 24-48 h. 

 

QS inhibition of bacterial strains: Each investigated strain was inoculated at right angles 

through the parallel lines of the pair of CV026 sensor and EZF 10-17 AHL-producing strains, 

and then incubated at room temperature for a further 24-48 h. LB* medum was used, for 

Candida, Acinetobacter, Achromobacter, Bacillus, E. coli and Staphylococcus species, etc. 

For Streptococcus species, blood agar was used, and the plates were pre-incubated for 5 h at 

37 ºC, and further incubation being continued at room temperature. QS inhibition was 

revealed as a decreased level of violacein production by CV026. 

 

2.9. Evaluation of complex formation between N-hexanoyl-DL-homoserine lactone and 

QS inhibitors: Biological method: 1 µl of a solution of 5, 10 or 25 ng of AHL was mixed 

with  10 µl of stock solution (25 mg/ml) of the potential QS inhibitor. Filter paper discs (7.0 

mm in diameter, Whatmann 3MM) were impregnated with 11 µl of the mixture of QS 

inhibitor and AHL solution. The discs were placed upon the inoculation line of the CV026 

sensor strain on the surface of nutrient agar medium. The plates were incubated at room 

temperature (18-22 °C) for a further 24-48 h, and the interactions between the AHL and the 

tricyclic compounds were evaluated in terms of the reduction in diameter of pigment 

production, and the reduced colour intensity. 

 

2.10. Taxonomic identification of EZF 10-17 and analysis of its AHL production  

The V3 region of 16S rDNA from EZF 10-17 was amplified by using the forward primer (5’-

ACTCCTACGGGAGGCAGCAG-3’) and reverse primer (5’-ATTACCGCGGCTGCTGG-

3’) and sequenced. Sequence data were compared and analysed by BLAST to the published 

16S V3 sequences available in the database. The AHLs from the liquid culture of EZF 10-17 

were extracted and concentrated by using acidified ethyl acetate liquid-liquid extraction. The 
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purified AHLs were analysed by using thin-layer chromatography (TLC) overlaid with the C. 

violaceum CV026 biosensor strain. 

 

2.11. Minimum inhibitory concentration (MIC) of each TF on CV026 and E. coli AG100. 

The MICs of TFs were determined by the broth dilution method according to the Clinical and 

Laboratory Standards Institute (CLSI) guidelines (118). 

 

2.12. Assessment of the effects of each TF on the activities of the efflux pump systems of 

CV026 and E. coli AG100. The activities of the TFs on the real-time accumulation of EB 

were assessed by the automated EB method previously described in detail (119), using the 

Rotor-Gene 3000
TM

 thermocycler with real-time analysis software (Corbett Research, 

Sydney, NSW, Australia). Briefly, E. coli AG100 was cultured in MHB medium until the 

culture reached an optical density (OD) of 0.6 at 600 nm. The culture was then centrifuged at 

13,000 rpm for 3 min, the pellets were resuspended in phosphate-buffered saline (PBS; pH 

7.4), with a final concentration of 0.4% glucose, and the OD was adjusted to 0.6 at 600 nm. 

Aliquots of 45 l of the cell suspension were distributed to 0.2 ml tubes. The TFs were 

individually added at concentrations equal to half their MIC against the strain in 5 l volumes 

of their stock solutions, and finally 45 l of EB to yield a final concentration of 1 mg/l 

(Sigma-Aldrich Química SA, Madrid, Spain) in PBS, with or without glucose, was added. 

The selection of the concentration of each TF at half its MIC was due to the empirical fact 

that at this concentration there is no significant effect on the viability of the organism 

(119, 120).  It is also important to note that prior to the experiments described, the maximum 

concentration of EB which was within the capacity of the bacterium to extrude was 

determined at least three times. For the wild-type E. coli AG100 reference and the CV026 

strains employed in the study, these concentrations of EB were determined to be 1 and 0.5 

mg/l, respectively (116, 119, 120). The tubes were placed into a Rotor-Gene 3000
TM

 

thermocycler and the fluorescence was monitored on a real-time basis. From the real-time 

data, the activity of the TF, i.e. the relative final fluorescence (RFF) of the last time point (at 

30 min) of the EB accumulation assay was calculated according to the formula: 

 

RFtreated - RFuntreated 

                                            RFF = 

                                                                   RFuntreated 
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where RFtreated is the relative fluorescence at the last time point of the EB retention curve in the 

presence of an inhibitor, and RFuntreated is the relative fluorescence at the last time point of the EB 

retention curve of the untreated control. The greater the difference between RFtreated and 

RFuntreated, the greater the degree of EB accumulated, and therefore the greater the degree of 

inhibition of the efflux pump system of the bacterium promoted by the agent at that 

concentration. 

The RFF was then divided by the concentration of the TF that corresponded to half its MIC. 

This yielded a measure of the effect of each TF at a milligram level (specific activity) and 

therefore afforded comparison of each TF for activity against the efflux pump systems of the 

CV026 and E. coli AG100 strains. The experiments were repeated three times and the specific 

activity values presented are the averages of three independent assays. This method of 

analysis has been described previously (121). TZ an efflux pump inhibitor (122), served as a 

positive control. 

  

3. Results 

 

3.1. QS inhibition of essential oils 

The agar diffusion method provides a convenient and semiquantitative method with which to 

assess antibacterial activities and QS signal production in the presence of essential oils. Using 

this method, we tested 9 essential oils compared to the positive controls of AO and 5-FU. 

Most of these oils are known as inhibitors of bacterial growth (123). Our data demonstrate 

that several plant-derived essential oils not only inhibit bacterial growth, but also block QS 

regulation processes.  

As evident from Fig. 13, DMSO did not affect bacterial growth or AHL-induced violacein 

production.  As demonstrated by Fig. 14, the positive controls 5-FU and AO produced the 

anticipated inhibition of QS. However, the inhibitory activity of 5-FU was considerably 

greater than that of AO.  

The use of discs impregnated with DMSO containing various essential oils afforded an 

understanding of which oils inhibited the QS response of CV026 to AHL released by the 

bacteria employed in this study. As examples, although geranium oil was most effective as an 

inhibitor of the QS response of CV026 (Fig. 15a) following induction by the AHL-producing 

strains E. cloaceae 31298 and EZF 10-17, rose oil also displayed significant inhibitory 

activity on QS responses (Fig. 15b). Rose, lavender and rosemary oils also inhibited the 
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colour development to varying degrees (Table 2). Eucalyptus oil inhibited violacein 

production only after induction with E. cloaceae 31298, while citrus oil reduced the colour 

formation only in the CV026 + EZF 10-17 combination. As expected, the oils also inhibited 

bacterial growth to variable degrees. The other tested essential oils too exhibited weak 

antibacterial activity on CV026 but the growth of the AHL-producing bacteria was not 

affected.  QS was moderately inhibited by lavender, eucalyptus and citrus oils, while 

chamomile, orange and juniper oils were ineffective (Table 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 14. 

Positive controls: Disc impregnated with AO (left) or 5-FU (middle, right) inhibited the 

production of colour by C. violaceum CV026 (left lines) in response to the AHL-producing 

bacterium EZF 10-17 (Fig. 2a,b) and E. cloaceae 31298 (Fig. 2c). 

 

 

 

EZF 10-17 CV026 

Figure 13. 

Negative control: DMSO did not affect colour production by the QS sensor C. violaceum CV026 

in response to an AHL-producing bacterium. 

A C B 



24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Effects of tested essential oils on QS signal production between C. violaceum CV026 

as sensor, and E. cloaceae 31298 and EZF 10-17 as producer strains after a 48 h incubation. 

 

Essential oils 

10% oil 100% oil 

CV026 + 

E. cloaceae 

31298 

CV026 + 

EZF 10-17 

CV026 + 

E. cloaceae 

31298 

CV026 + 

EZF 10-17 

Rose 15-20 10 18 20 

Lavender 0 5 10 15 

Chamomile 0 0 0 0 

Geranium 0 3 13 15 

Eucalyptus 0 3 6 0 

Juniper 0 0 0 0 

Citrus 0 2.5 0 16 

Orange 0 0 0 0 

Rosemary 0 3 18 18 

The numbers in the Table indicate the sizes of the inhibition zones in mm 

 

 

 

Figure 15a. 

Effect of geranium oil on QS. The disc contained 10 µl geranium oil. 

 

 

Figure 15b. 

Effect of rose oil on QS. The disc contained 10 µl rose oil. 

 



25 

 

 

3.2. QS inhibition of tricyclic compounds 

The agar diffusion method provided an opportunity to investigate the potential inhibition of 

tricyclic compounds on QS between the QS sensor C. violaceum and 3 AHL-producing 

bacteria. For control experiments, EZF 10-17 adjacent to the QS sensor CV026 cultured in the 

presence of a water-containing disc resulted in the purple colouration of the swabbed sensor, 

an indication of a positive response to the presence of AHLs produced by EZF 10-17. To 

demonstrate that the colouration of the sensor strain is prevented by a known inhibitor of the 

QS response, 5-FU and AO were used as positive controls. Since the phenothiazines exert 

antimicrobial activity against E. coli (124), the inhibition of violacein production as QS signal 

on the growth of inoculated bacteria was measurable only at subinhibitory concentrations. 

Consequently, the production of AHL as a QS mediator was evaluated below the MICs of the 

phenothiazines against the AHL-producing bacteria. 

 The amount of each phenothiazine placed onto the disc was chosen so that it did not produce 

any antimicrobial effect against the given bacterium (less than one-half of the MIC). In 

summary, amitriptyline, desipramine, imipramine and promethazine inhibited the production 

of the purple colour by the sensor CV026 strain. Although the concentration of each 

phenothiazine was identical, the degree of inhibition varied as the distance between the disc 

and the margins of the diameter of the produced colouration. Table 3 shows the antibacterial 

effects of the phenothiazines: the diameters of the growth inhibitory zones are indicated in 

mm.  

Table 3. 

Investigation of antibacterial effects of tricyclic compounds with the agar diffusion method. 

Tricyclic 

compounds 

Growth inhibition zones in mm 

EZF 10-

17 

E. 

cloaceae 

31298 

P. 

aeruginosa 

49010 

CV026 

(+EZF  

10-17) 

CV026 

(+ E. 

cloaceae 

31298) 

CV026 

(+ P. 

aeruginosa 

49010) 

AO - - - - - - 

Amitriptyline 8 

 

- - 9 10 12 

Desipramine 9 7 - 11 16 9 

Imipramine - - - 9 9 7 

Diethazine 7 - - 9 7 8 

Promazine 8 - - 10 12 15 

Promethazine 9 7 - 11 15 10 

Chlorprothixene - - - 7 7 7 

10 µl of a 25 mg/ml solution was added to the filter paper discs 
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  To study the effects of phenothiazines and structurally related compounds on QS, the 

tricyclic compounds were examined in a concentration below the growth inhibitory doses. 

The inhibition of QS signal transmission was measured as described in the Methods section. 

The production of colourless zones by the phenothiazine compounds impregnated into the 

filter paper discs was measured around CV026, in response to the inhibited AHLs produced 

by EZF 10-17, E. cloaceae and P.aeruginosa. As shown in Table 4, the degree of inhibition 

of purple colour formation by CV026 in response to the AHLs produced by the various 

bacteria differed, indicating that the effectivities of the tricyclics differed as regards the QS 

response to the sensor CV026. 

 

Table 4. 

Inhibitory effects of tricyclic compounds on QS signal transmission. 

Tricyclic 

compounds 

QS inhibition zone in mm 

EZF10-17 E. c. 31298 P. a. 49010 

AO  14 12 14 

Amitriptyline  64  30 60  

Desipramine 26 26 - 

Imipramine 15 12 - 

Diethazine 18 12 - 

Promazine 13 13 20 

Promethazine  26 20 15 

Chlorprothixene  - - - 

10 µl of 25 mg/ml stock solution was impregnated into the filter paper discs (25 µg/disc) and 

the colourless zone around the C. violaceum was measured after incubation for 24-36 h at 

room temperature. 

 

 The mechanism of QS inhibition was studied by measuring the effects of the direct 

interactions between the AHL and QS inhibitors on violacein production in the bioassay. The 

most effective inhibitors were imipramine, promethazine, desipramine and amitriptyline, 

which in high concentration inactivated the AHL and probably formed micellar complexes. 

 The activities of the complexes between AHL and its inhibitors were measured in AHL-

specific chromogenic tests. The biological activities of the AHL complexes were apparently 

reduced by complex formation, compared with the uncomplexed control AHL (Table 5). 
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Table 5. 

The effects of  QS inhihibitors on N-hexanoyl-DL-homoserine lactone (C6 HSL)-mediated 

violacein production.  

Quantity of C6 HSL 0 ng 5 ng 10 ng 25 ng 

Tested compounds Diameter of colouration in mm (18 h) 

IDU 10 µg 0 15 25 30 

Desertomycin 200 µg 0 22 25 30 

5-FU 30 µg 0 29 35 35 

Promethazine 250 µg 0 0 30 33 

Desipramine 250 µg 0 0 28 32 

Promazine 250 µg 0 0 30 32 

Imipramine 250 µg 0 0 20 26 

Amitriptyline 250 µg 0 0 25 30 

C6 HSL control 0 25 34 35 

 

3.3. Identification of EZF 10-17 and its AHLs 

In our previous studies, the unidentified grapevine tumour isolate EZF 10-17 proved to be an 

inducer of violacein production by C. violaceum CV026. Thus, this pair of inducer/sensor 

strains was successfully used to study potential QS inhibitors (115, 125). To identify EZF 10-

17, we sequenced the V3 region of the 16S rDNA gene from its genome. On comparison of 

the sequence data with those found in the databases, this strain proved to be a member of the 

Sphingomonadaceae family. 

 The signal production of EZF 10-17 was analysed by TLC overlaid with C. violaceum 

CV026. As compared with the standard AHLs, EZF 10-17 produces a strong signal that co-

migrated with 3-oxo-C6 AHL. Additionally, weaker signals which seemed to be identical to 

C6 AHL, 3-oxo-C8 AHL and C8 AHL were also observed (Figure 16). These data support 

our earlier observations on the suitability of EZF 10-17 in QS assays with C. violaceum 

CV026 (125).  
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Figure 16. Detection of AHLs from EZF 10-17. 

 

Legend. Pure AHLs (lanes 1-4) and purified AHL produced by EZF 10-17 (lane 5) isolated 

by TLC. The plate was overlaid with the responder CV026. The application of varying 

concentrations of pure AHLs provided standards of the degree of response (intensity of 

colour) 

 

3.4. QS and efflux pump inhibitor activity of TF compounds 

In order for an agent to be correctly evaluated for effects on a QS system whose intensity of 

colour is dependent upon the growth of the producer of the QS signal and the growth of the 

responding bacterium, the concentration of the agent that is to provide a meaningful 

interpretation must be one that does not affect the viability of either bacterium.  As 

summarized in Table 6, various TFs displayed antimicrobial activities against the producer 

and responding bacteria.  
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Table 6.  Inhibitory effects of the TFs on QS and the growth of producing and QS sensor 

bacterial strains, after 24 h of incubation.  

 

 

 

 

 

 

 

 

 

 

The extent of the colourless zone indicates the inhibitory effect of the given compound 

on QS signal transmission. (CV026: C. violaceum 026) 

 

Consequently, the amounts of TFs selected for the evaluation of effects on the QS 

system were at or below those that had no effect on the growth of either species. Because of 

the limitations of space, the range of effects of the TFs on the QS system cannot be presented 

pictorially. Rather, the effects are illustrated in Figure 17 and Table 7. Briefly, TF 5 had the 

least inhibitory effect (a deep colour associated with the responder CV026) and TF 3 had the 

greatest inhibitory effects on the response of the CV026. The effect of the TFs on the QS 

system were clearly inhibitory.  Whether the effect is due to the TF inhibiting the release of 

the QS signal or due to the inhibition of the response of the responding species cannot be 

distinguished from the above evaluation.  

The direct effects of each TF on the QS response by CV026 were determined with the use of 

discs impregnated with combinations of a constant amount of the AHL and differing amounts 

of TF. The discs with TF alone did not produce the purple colour associated with CV026. The 

presence of pure AHL in the disc led to the production of the deep purple colour associated 

with CV026. The presence of the TF that inhibited the production of colour in the QS assay 

described, when in combination with the AHL, inhibited the production of the purple colour 

by the responding CV026.  

 

 

 

TF 
Extent of QS inhibition (zone 

of discolouration)                  

at 20 µg/disc (mm)

1 50 25 26

2 12,5 25 28

3 12,5 12,5 30

4 50 50 20

5 50 50 16

6 >200 >200 0

7 >200 >200 0

8 >200 >200 0

9 50 25 29

10 >200 >200 0

11 >200 >200 0

12 >200 >200 0

           MIC (μg/ml)              

CV026           EZF 10-17
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Figure 17.  

The length and intensity of the purple colouration induced by 10 ng AHL/disc on C. 

violaceum 026, after a 24 h incubation in the presence of TFs applied at 20 g/disc. The 

effective inhibitors reduced the length and intensity of the purple colouration. The scale 

indicates an increasing intensity of colouration. A lower colour intensity means a greater 

inhibition of QS. 

-, No colouration; +, white-purple; ++, pale-purple; +++, purple; ++++, dark-purple; 

 

Table 7. 

 Effects of TFs on AHL-mediated QS. 

TF 

20 µg/disc

Intensity of 

colouration 

(mm)

Length of 

colouration 

(mm)

Growth 

inhibition 

(mm)

1 +++ 34 0

2 + 30 17

3 + 34 22

4 +++ 35 0

5 +++ 37 0

9 + 36 22

AHL control ++++ 40 0  

Intensity scored as described in Figure 17 

 

These results clearly show that the TF has a powerful inhibitory effect on the QS responding 

strain. However, the question of whether this same TF can inhibit the secretion of the QS 

signal by the producer species remains unanswered. The activity of each TF at half its MIC on 

the efflux pump system of the CV026 is exemplified by Figure 18 (126). 
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Figure 18. The effects of half the MIC of TFs 1, 4, 5, 9 (A), and 6, 7, 8, 10, 11, 12 (B) as 

compared with the positive phenothiazine control TZ. 
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 The data presented by these Figures suggest that all of the TFs have activity against the 

efflux pump of CV026.  However, as the concentrations of TFs used in the assay were half of 

their MICs, and the MICs of the TFs against the strain differed significantly, the activities 

shown in Figure 18 do not permit a comparison of the activities between the TFs. However, 

calculation of the specific activity of each TF by the formula for RFF presented in the 

Materials and Methods section affords a comparison, and these data are presented in Table 8.  

 

Table 8. The related final fluorescence (RFF) and specific activity (SA) of each (TF) on the efflux 

pump system of CV026.  

TF 
 

RFF SA 

1 (25 mg/l) 4.20 1.68 

2 (6.25 mg/l) 2.99 4.78 

3 (6.25 mg/l) 2.21 3.53 

4 (25 mg/l) 4.42 1.77 

5 (25 mg/l) 5.10 2.04 

6 (100 mg/l) 4.31 0.43 

7 (100 mg/l) 0.92 0.09 

8 (100 mg/l) 1.24 0.01 

9 (25 mg/l) 3.97 1.59 

10 (100 mg/l) 0.44 0.04 

11 (100 mg/l) 0.73 0.07 

12 (100 mg/l) 1.18 0.12 
Samples consisted of saline plus 1 mg/l of EB, 0.4% glucose, without or with half the MIC of 

the positive control and TFs. The fluorescence was assessed at 37 °C for 30 min. Data in bold 

indicate TFs that express very high inhibitory activity against the efflux pump system of 

CV026. SA=RFF/(0.5 MIC). 

 

Briefly, the activity of the positive control TZ was 1.02. On comparison of the activity of each 

TF relative to the positive control, TFs-2 and 3 prove to exhibit the greatest activities against 

the efflux pump system of CV026; TFs-1, 4, 5 and 9 displayed significant activity; and TFs-7, 

8, 10, 11 and 12 had no activity. The facts that the TFs inhibited the response of an 

environmental strain to a QS signal and the same TFs inhibited the efflux pump of the 

environmental responding strain themselves did not support clinical interest in the TFs for 

possible use in the therapy of a bacterial infection. Therefore, in order to establish the 

necesarry support for the claim that the TFs do indeed have clinical value, the TFs were 

examined for activity against the efflux pump system of E. coli, a pathogenic bacterium. 

Since a large number of graphs would be needed to depict each effect, an example of the data 

obtained is presented in Figure 19 for TF-4. As evident from the Figure, the presence of TF-4 
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promoted an increase of the fluorescence due to the accumulation of EB, whereas in the 

absence of the compound there was no significant increase of fluorescence (the curve is rather 

flat). 
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Figure 19. The effect of TF-4 on the activity of the efflux pump system of E. coli AG100. 

The concentration of TF-4 that corresponded to half the MIC was 30 mg/l. Note that the 

control did not accumulate EB during the 30 min of the assay. 

 

 

 The effects of the TFs on the activity of the efflux pump are summarized in Table 9. This 

Table provides the concentrations of the positive control TZ and each of the TFs that 

corresponded to half their MIC. As noted in Table 9, TFs-2 and 3 exerted the highest 

activities against the efflux pump system of E. coli. TFs-1, 4, 5 and 9 were also very active 

since their inhibitory activities exceeded that of TZ, the efflux pump inhibitor that served as 

positive control. 

 

 

 

 

 

 

▲ E. coli AG100 control; ■ E. coli AG100 and TF-4 
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Table 9.  The effects of (TFs) on the efflux pump system of E. coli AG 100. 

Sample RFF SA 

AG100 control 0.5397 0.000 

+ TZ positive control. 30 mg/l 11.8703 0.6998 

+ TF-1   7.5 mg/l 5.0638 1.1176 

+ TF-2   3.75 mg/l 12.9179 6.1160 

+ TF-3   3.75 mg/l 10.4916 4.9172 

+ TF-4   30 mg/l 31.1324 1.8894 

+ TF-5   7.5 mg/l 7.8839 1.8143 

+ TF-6   30 mg/l 5.1950 0.2875 

+ TF-7   240 mg/l 7.2390 0.0517 

+ TF-8   60 mg/l 6.9595 0.1982 

+ TF-9   7.5 mg/l 6.4451 1.4589 

+ TF-10   240 mg/l 19.3553 0.1452 

+ TF-11   120 mg/l 6.6206 0.0938 

+ TF-12   60 mg/l 7.0865 0.2021 

RFF: relative final fluorescence; SA: specific activity = RFF/(0.5 MIC). 

Samples consisted of saline plus 1 mg/l of EB, 0.4% glucose, without or with half the MIC of the 

positive control and TFs. Fluorescence was assassed at 37 °C for 30 min. Data in bold idicate TFs that 

expressed very high inhibitory activities against the efflux pump system of E. coli. 

 

3.5. Bacterial-bacterial interactions in QQ 

Our results reflect ex vivo interactions, and exemplify various bacterial interactions on QS. 

We investigated 31 bacteria and 3 yeast strains for their ability to inhibit or modify QS 

(Tables 10 and 11), of which 2 bacterial genera, Escherichia and Bacillus, proved to be 

effective inhibitors. Of the 6 investigated bacillus strains, B. cereus was the best inhibitor, 

with a clear QS inhibitory effect (Fig. 20), while B. subtilis and B. clausii inhibited QS 

moderately, and the 3  B. megaterium strains (PV361, MS941 and 216) did not exhibit any 

QS inhibitory activity (Table 10). Surprisingly, 14 of the 15 investigated Escherichia clinical 

isolates were effective inhibitors, and only 1 had no inhibitory effect. We investigated the QS 

inhibitory activity between E. cloaceae 31298 and CV026 and also that between EZF 10-17 

and CV026: 10 strains exerted an antibacterial effect on E. cloaceae, and 4 of them inhibited 

the growth of CV026 too (Table 11). The antibacterial effects of the E. coli isolates on E. 

cloaceae were more pronounced than those on EZF 10-17. This probably originated from the 

long co-evolution in the same niche. The 2 strains with antibacterial activity on EZF 10-17 

also had antibacterial effects on E. cloaceae 31298 and CV026. There were 5 strains which 

had no growth inhibitor activity against either the sensor or the producer strains. 
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Figure 20.  

QS inhibitory activity of B. cereus in the system containing the CV026 sensor and the EZF 

10-17 producer strain. The inhibition of QS is revealed in the decreased level of violacein 

production. 

 

Table 10. 

Effects of various bacterial and Candida species on QS signal transmission. 

 

Strain Medium QS inhibition 

Candida albicans 40502 LB* - 

Candida tropicalis 47402 LB* - 

Candida krusei 47813 LB* - 

Acinetobacter baumannii 

32703 

LB* - 

Acinetobacter baumannii 

32905 

LB* - 

Acinetobacter baumannii 

42701 

LB* - 

Achromobacter xylosoxidans 

40502 

LB* - 

Staphylococcus aureus LB* - 

Staphylococcus epidermidis LB* - 

Bacillus subtilis LB* Moderate 

Bacillus cereus LB* + 

Bacillus clausii LB* Moderate 

Bacillus megaterium PV 361 LB* - 

Bacillus megaterium MS 941 LB* - 

Bacillus megaterium 216 LB* - 

Streptococcus pneumoniae blood agar - 

Streptococcus salivarius blood agar - 

Streptococcus agalactiae blood agar - 

Streptococcus pyogenes blood agar - 

 

All of the 15 tested E. coli isolates except strain 19579 modified the QS (Table 11). The most 

exciting strains were 5539, 24310, 33444 and 40312, which strongly inhibited the established 

CV026 EZF   

10-17 

B. cereus 
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QS system, but the tested isolates did not affect the growth of the indicator and 2 producer 

strains (Fig. 21). 

Interestingly, phenothiazines enhanced the QS-inhibitory effect of the ineffective E. coli 

19579 and the 2 Bacillus strains, which displayed moderate QS-inhibitory effects without 

phenothiazines. 

 

 

Table 11. 

Effects of various E. coli strains on the QS signal transmission between CV026 sensor and 

EZF 10-17 and E. cloaceae 31298 AHL producer strains. 
E. coli 
strain 
number  

Growth inhibition of 
CV026 

Growth 
inhibition of EZF 
10-17 

Growth inhibition of 
 E. cloaceae 31298 QS inhibition Origin of isolate (specimen) 

5536 - - - + Abscess 

10902 + + + + blood culture 

10904 + + + + blood culture 

11925 - - + + (very low) blood culture 

14525 - - +  + abdominal wound 

14584 + low - + + Conjunctiva 

18596 + low - + + Wound 

19579 - - - - Urine 

19672 + - + + Urine 

24310 - - -  + blood culture 

24409 - - +  + blood culture 

24442 - - + (very low) + blood culture 

33444 - - - + blood culture 

36446 - - + + blood culture 

40312 -  - - + blood culture 
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Figure 21. 

The interference of different E. coli strains with the QS signal between the CV026 sensor and 

the EZF 10-17 producer strain. 

The sensor and producer strains are situated on the top of the medium containing different E. 

coli strains. 

A: Strain 5536 lacks QS between the sensor CV026 and producer EZF 10-17 strains. 

B: Strain 11925 has high QS-inhibitory activity. 

C: Strain 19579 has no QS-inhibitory activity. 

D: Control. 
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CV026 CV026 CV026 

CV026 
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4. Discussion 

 

The discovery of QS has opened up new perspectives in modern microbiology. QS is 

necessary in many crucial bacterial features e.g. biofilm formation (127), virulence factor 

production (128), competence (1), sporulation (129), antibiotic production (130) and 

resistance (131). Without communication, the microbes are lose the ability to fight as a unit 

against the immune system, produce virulence factors or organize biofilms. On the whole, it is 

impossible for most the bacteria to cause infections without QS. On the other hand, the 

increasing level of antibiotic resistance is currenly the greatest problem in microbiology. Most 

bacteria tolerate at least a few antibiotics, and, unfortunately, numerous multiresistant strains 

have appeared, which have also adapted to the latest antibiotics. The investigation of QS is 

therefore of increasing significance. In the future, QS inhibitors may offer a new perspective 

in the fight against multiresistant infections and take over the function of decaying antibiotics. 

Numerous compounds have been investigated in this search of QS inhibitors. Three main 

categories, essential oils, tricyclic compounds, and TFs proved to be the best inhibitors. These 

compounds and bacterial-bacterial co-existence are discussed below.  

Essential oils: Land plants have co-evolved with microorganisms during 700 million years 

ago (132). Plants therefore produce various molecules which have effects on bacteria. Some 

attract microbes with beneficial effects, some are antibacterials, and some influence the 

bacterial QS (133). Because of the long co-evolution, probably the best source of different 

QSI compounds is to be found in plants. We investigated numerous essential oils and pure 

compounds for their QS inhibition. Many of them exert a QSI effect and it was found that 

most ethnomedical plants used against bacterial infections, also have a QSI ability. Purified 

plant QSI compounds, e.g. ajoene from garlic or thymol from thyme, in combination with 

antibiotics, will probably prove a good alternative to fight against complex bacterial 

infections.  

Tricyclic compounds: The effects of tricyclic compounds on various Gram-positive and 

Gram-negative bacteria and R-plasmid elimination were examined earlier (124, 134), and the 

inhibition of horizontal plasmid transfer due to the blocked conjugation (135), antibacterial 

and plasmid curing in co-existing bacterial populations is known. The importance of tricyclic 

compounds as a class of  ”non-antibiotics” which may provide alternatives to the ineffective 

therapy of serious bacterial infections has already been reviewed (136). Despite this 

considerable body of evidence, the effects of tricyclic compounds on QS have not been 
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studied before. Obviously, if the specific QS system is blocked during the bacterial infectious 

process, the therapy of serious infections may be improved. In view of the demonstration that 

certain tricyclic compounds can block the QS signal response of diverse bacterial species, it is 

conceivable that in the future these compounds may be used to modify biological signal 

transmission at a population level, e.g. by the modification of antibiotic resistance in biofilms, 

the production of virulence factors and the antibiotic production of some microbes in 

combination with conventional therapy to reduce the virulence of certain types of bacterial 

infections. 

TFs: The results presented in this study show that some TFs have inhibitory activities against 

the response of CV026 to a QS signal such as AHL and the efflux pump systems of the 

CV026 and E. coli strains. Comparison of the efflux pump inhibitory activities of the TFs 

towards both strains suggests that the inhibition is practically identical in each case. This 

suggests that the TFs are of clinical value. Comparison of the individual inhibition induced by 

each TF on the QS response by CV026 to AHLs indicates that it is TF-3 that exerts the 

greatest inhibition on the QS response. From comparisons of the MIC of each effective TF, it 

is clear that the most effective inhibitors of the efflux pump system of E. coli also have the 

most potent antibacterial activities. TFs such as TF-7, 10 and 11 are devoid of any significant 

antibacterial activity (the MIC for TF-7 and 10 is 480 mg/l, and for TF-11, it is 240 mg/l) and 

have little activity against the efflux pump of E. coli. The demonstration of a QS response by 

the method used in this study requires the growth of the responding organism. If an agent 

inhibits growth, it pre-empts any response since there are no bacteria present to respond. The 

application of 20 μg of each TF to discs promoted strong antibacterial effects by TFs with 

very low MICs. Applying amounts of a TF that has significant antibacterial properties to a 

disc below the inhibitory concentration exceeds the sensitivity of the system, since the 

distance between evident growth and the absence of a response (no colour) is masked by the 

deep purple colour associated with the growing population that is less than a millimetre from 

the disc. This is why TFs with very high MICs were able to produce evidence of an inhibition 

of the QS response by CV026, whereas for TFs with low MICs, with the exception of TF-3 

(MIC 7.5 mg/l), the antibacterial effect of the TF pre-empted growth. Our previous study 

demonstrated that phenothiazines were able to inhibit the QS system that involved EZF 10-17, 

the producer of the signal and CV026, the responder to the signal (125). The phenothiazine 

TZ, an inhibitor of efflux pumps of Gram-negative bacteria (119-122, 137), also inhibits the 

response of CV026 to pure AHL. Since phenothiazines and TFs that inhibit the efflux pumps 

of the CV026 and E. coli, as shown in the current study, also inhibit access to energy supplied 
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by the proton motif force (PMF) (138,139), we believe that the response to a QS signal 

depends upon a functional efflux pump system that deflects the noxious QS signal before it 

reaches its intended target. Moreover, as all the secretory activity of a bacterium, such as the 

secretion of a QS signal, is controlled (140-142), and the main efflux pump systems of Gram-

negative bacteria are the secretory paths of internally produced noxious agents (143-146), 

inhibition of the efflux pump system of a QS signal producer will result in obviating the 

secretion of the QS signal. Therefore, it is our contention that inhibitors of an efflux pump, 

such as phenothiazines and now also TFs, will inhibit the QS. The results of the current study 

clearly show that various TFs have the ability to inhibit the response of C. violaceum 026 to 

the QS signal AHL and to inhibit the efflux pump of the QS-responding CV026 and that of E. 

coli. This ability is a direct one since none of the TFs formed a complex with AHL. In view of 

the fact that some TFs inhibit the QS response, inhibit an efflux pump system and also have 

significant antibacterial activity, TFs have a promising future for the therapy of problematic 

infections that rely on an efflux-mediated multidrug-resistant phenotype and which, due to 

QS, make their therapy problematic. 

Bacterial interactions: In nature, bacteria live in a complex environment, in which they 

share their niche with a number of other bacterial and eukaryotic cells. Bacterial cells must 

select among numerous alternatives to find the most advantageous way to co-exist with their 

neighbours and to maintain their own optimum population level. They may gain benefit from 

the QQ of other species. The microbial world is very complex, with an abundance of social 

interactions, and bacteria with QS systems can acquire many benefits. Mixed bacterial 

infections are common in oropharyngeal, gastrointestinal and urinary tract infections. The 

presence of different bacterial species can result in difficulties in chemotherapy because the 

co-existing bacterial population can modify the interspecies communications and horizontal 

gene transfer (139 Molnár). Nature provides numerous examples of bacterial-bacterial and 

eukaryotic-bacterial interactions (63,64 148-153). As an example, a furanosyl borate diester, 

AI-2, a universal signal molecule that is characteristic in both Gram-negative and Gram-

positive bacteria, plays a very important role in bacterial-bacterial interspecies 

communication. Bacteria also synthesize molecules with special effects on eukaryotic cells. 

For instance, P. aeruginosa operates with a signal molecule, N-3-O-dodecanoyl homoserine 

lactone, which exerts various effects on mammalian cells, induces apoptosis and modulates 

the expression of immune mediators in murine fibroblast and human vascular epithelial cells 

(149). Among the many alternatives available to silence the QS of competitive bacteria, 

probably the most common way is the production of lactonase, an enzyme which opens the 
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lactone ring of AHLs, this being a characteristic feature of the majority of Bacillus species 

(147). Another widely used alternative for inactivating AHLs is AHL-acylase production, 

which can occur in both Gram-positive and Gram-negative bacteria. These enzymes are more 

specific than lactonases. The AHL-acylase of Ralstonia eutropha is more effective on AHLs 

with a long acyl side-chain (150), whereas that of Streptomyces sp. strain M664 exerts a high 

AHL-degrading effect on AHLs with a short acyl side-chain (64). This is why a bacterium 

which communicates with short-chain AHLs can quench long acyl side-chain AHLs without 

affecting its own communication, and vice versa. Our results have afforded some evidence of 

the complexity of bacterial-bacterial interactions. Of the tested isolates, E. coli strains proved 

to be the best inhibitors of the AHL-dependent QS, 14 of the 15 samples exhibiting an 

inhibitory effect. There are a number of possibilities to explain why E. coli strains are such 

good QS inhibitors in our system. They may produce molecules which compete with the AHL 

signals of CV026, or metabolize the signal molecules, or use systems such as the AI-2 

importers. E. coli possesses a special strategy to compete with the AI-2 signals of other 

bacteria. E. coli strains have AI-2 specific importers, which are activated at a high level of the 

inducer molecules. The import of AI-2 eliminates these signals from the extracellular 

environment (148). These importers probably play a role in the AHL-dependent QS-inhibitory 

effects too in our system. Another, and perhaps the most likely way to reduce AHLs from the 

environment is the AHL sensing of E. coli. This bacterium cannot produce AHLs, but has 

special LuxR-solo receptors, SdiA, which allow it to detect foreign AHLs. This competitive 

binding probably reduces the number of signal molecules in the population below the 

threshold concentration (154, 155). 

In spite of the fact that most QSI investigations, including my own studies, have been in vitro 

experiments, numerous in vivo studies underpin the effectiveness of anti-QS treatments. Two 

excellent examples are found in the serous pathogens: V. cholerae and S. aureus. The QS 

system of V. cholerae is really interesting. It promotes virulence factor production in low cell 

density, and switches to the dispersion state at high cell density. The application of externally 

added AIs can theoretically abolish cholera toxin production. Douan and March created an E. 

coli Nissle strain wich expresses the CAI-1 gene (156). This probiotic strain has proved very 

effective in in vivo mouse models. This experiment not only reveals a new treatment of 

cholera, but also highlights the potential power of probiotic bacteria to serve as AI vectors. 

Another example is found in S. aureus. These dangerous, highly antibiotic-resistant bacteria 

can be categorized in several groups as concerns their signal molecules. At least 4 types of S. 

aureus exist as concerns their AIPs. The AgrC receptor responds to its own AIP, but binds the 
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signal molecules from the other groups without modifying the gene expression. This 

competitive binding ensures the seperiority of the first colonizing strain (89 Ji G 1997). The 

Lyons group synthetized an antagonist molecule traAIP-II, which inhibit the QS in all the 4 

groups. It also inhibits the toxin production of the pathogen in mouse models (90 lyon 2000).  

To summarize, in the past nearly 40 years we have learned much about bacterial 

communication, but in my opinion what we see is nearly the tip of the iceberg. QS is still one 

of the most rapidly developing fields in microbiology. Many QS molecules, receptors or 

complete systems and QSI compounds are already known, but the great breakthrough is still 

to come. I fully expect that, in the near future, QSI based treatments against complicated 

bacterial infections will become available in human medicine. 

 

The following of our results are considered novel: 

 

The QSI activity of the investigated essential oils 

 

The QSI activity of phenothiazines  

 

The QSI activity of TFs, and the connection between efflux pump inhibitor activity and QSI 

activity of TFs 

 

The AHL profile of and identification of EZF 10-17 

 

The interaction of E. coli with AHL-based QS systems  
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5. Summary 

 

QS is population size-dependent gene regulation, mediated by small signal molecules called 

AIs. The natures of these molecules are very different, but most belong in 3 groups: AHLs are 

mainly used by Gram-negative bacteria, autoinducer II (AI-2) is used by both Gram-negatives 

and Gram-positives, and AIPs are used by Gram-positives. Some bacteria use AIs which do 

not fit these groups, e.g. the PQS, DSF or AI-3. QS is a widely prevalent feature of both 

Gram-negative and Gram-positive bacteria. There are many different types of QS systems, but 

each system relies on the same basics. Each bacterium synthesizes signal molecules in low 

amounts. When the population density is low, the number of signal molecules is also low, 

when the number of bacteria increases, the concentration of QS molecules increases. When 

the concentration of signal molecules exceeds a threshold concentration, a positive feedback 

starts, and the bacteria increase the production of signal molecules. At this very high 

concentration of QS molecules, they bind their receptors. The nature of the receptors can 

differ considerably in each case, but in the end of the process is the same: the initiation of 

target gene transcription. QS is necessary in many crucial bacterial features e.g. biofilm 

formation (127), virulence factor production (128), competence (1), sporulation (129), 

antibiotic production (130) and resistance (131). Without communication, the microbes are 

lose the ability to fight as a unit against the immune system, produce virulence factors or 

organize biofilms. In the present thesis, my attention focused on in vitro models of QS to 

investigate QSI alternatives. Numerous compounds have been investigated in this search of 

QS inhibitors. Three main categories, essential oils, tricyclic compounds, and triofluoroketone 

proton pump inhibitors (TFs) proved to be the best inhibitors.  The bacterial-bacterial co-

existence also investigated. Our results have afforded some evidence of the complexity of 

bacterial-bacterial interactions. Of the tested isolates, E. coli strains proved to be the best 

inhibitors of the AHL-dependent QS, 14 of the 15 samples exhibiting an inhibitory effect.  

Antibiotic resistance is the most important problem in modern microbiology. Bactericidal or 

bacteriostatic compounds exert strong selective pressure on microbes. Because of the 

irresponsible use of antibiotics, pathogenic bacteria nowadays often display resistance to at 

least a few medicines. The appearance of multidrug-resistant strains which tolerate the latest 

antibiotics too enhances this problem. There is an urgent need to discover new antimicrobial, 

antipathogenic and antivirulence drugs. QS inhibitors may be a good alternative to solve this 

situation. 
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6. Összefoglaló 

 

A „quorum” egy görög eredetű szó, igazán jó magyar megfelelője nincsen. Az ókori görög és 

római fórumokkal lehet összefüggésbe hozni. A döntéshozás ezen színterein, egy törvény 

elfogadásához vagy elvetéséhez  létre kellett jönnie a quorumnak, azaz egy minimális 

többségnek ami a szavazás eredményességéhez szükséges. A quorum sensing, lényegében a 

mikrobák között sem zajlik másként, rengeteg olyan bakteriális gént ismerünk, amely csak 

bizonyos sejtkoncentráció felett aktiválódik. Számos különféle QS rendszert és jelmolekulát 

ismerünk, de a működési elvük minden esetben azonos alapokon nyugszik. A baktériumok 

egy alap szinten mindig termelnek jelmolekulákat. Alacsony mikrobaszámnál a 

szignálmolekulák száma is alacsony marad, és nem indukálnak változást a génkifejeződésben. 

A baktériumszám növelésével a jelmolekulák száma is növekszik, amint elérik a 

küszöbkoncentrációt kötődnek a receptoraikhoz. A receptor típusok és szignál transzdukciós 

utak szintén nagyon változatosak, de végső soron minden esetben egyrészt a jelmolekulák 

termeléséért felelős gének, másrészt a struktúrgének transzkripcióját indukálják. A pozitív 

visszacsatolás hatására egyre több jelmolekula kerül a környezetbe, egyre több struktúrgén is 

íródik át, és bekövetkezik a baktériumpopuláció fenotipusbeli változása. Rendszerint a 

jelmolekulák szintézisének növelése együtt jár a receptorok szintézisének csökkenésével, így 

téve szabályozottá a reakciót. A szignál molekulák többsége 3 nagy csoportba sorolható: a 

Gram-pozitívokra jellemző autoinducer peptidekre, a Gram-negatívokra jellemző acyl 

homoszerin laktonokra és az interbakteriális kommukációban szerepet játszó autoinducer 2-re. 

Egyre több szignál molekulát ismerünk meg, amely nem sorolható be egyik csoportba sem, 

ilyenek például az AI-3, DSF, PQS és HHQ szignálok. Quorum sensing rendszerükkel az 

egysejtű élőlények is képesek bizonyos mértékben többsejtűként viselkedni. Az adott 

mikrobaközösségek egy egységként képesek organizálni biológiai folyamataikat. Napjaink 

egyik legnagyobb, minél sürgetőbb megoldást igénylő mikrobiológiai problémáját az egyre 

szélesebb körben terjedő antibiotikum rezisztencia jelenti. Ennek leküzdésére a különféle 

quorum sensing gátló szerek jelenthetnek alternatívát. A QS rendszerek a baktériumok 

legkülönfélébb tulajdonságait befolyásolják. Szerepük lehet az antibiotikum rezisztenciában, 

biofilm képződésben, a kompetencia kialakításában, virulencia faktorok termelésében, az 

antibiotikum termelésben, a biolumineszcenciában, a konjugációban, sporulációban, 

motilitásban és még számos egyéb tulajdonság kialakításában. Így egy hatásos QS 

blokkolóval meggátolhatjuk az antibiotikum rezisztencia terjedését, a biofilmek létrejöttét, 

vagy a virulencia faktorok termelését is. Ezáltal a kórokozók zöme elveszítené, vagy 
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csökkentené az antibiotikum rezisztenciáját, virulenciáját és más QS mediált tulajdonságait. 

Munkám során célul tűztem ki, a quorum sensing gátlási lehetőségeinek vizsgálatát, különféle 

gátló anyagok keresését és tanulmányozását, a mikrobák egymás kommunikációs rendszereire 

való hatásának megfigyelését. Kísérleteim alapját a CV026 (Chromobacterium violaeum 026) 

szenzortörzs jelentette, mely rövid szénláncú AHL-ek jelenlétében lila pigmentet, violaceint 

termel. Segítségével több batériumtörzsnél is detektáltunk AHL termelést, melyek közül a 

P.aeriginosa 49010-et és az E. cloaceae 31298-at és az akkor még identifikálatlan EZF 10-

17-et használtuk a további munkákhoz. Kísérleteimben elsőként különféle illóolajok QS-re 

kifejtett hatását vizsgáltam. Az irodalmakban már említett (fokhagyma, kakukkfű) 

kivonatokon kívül is számos esetben mutattam ki QS gátlást, így például a rózsa, citrom, 

levendula, gólyaorr és rozmaringolaj esetében is. Két vegyületcsoport az ABC transzporter 

gátló háromgyűrűs vegyületek és a proton pumpa gátló trifluorometil ketonok többsége 

esetében szintén erőteljes QS gátlás volt tapasztalható. A háromgyűrűs vegyületek közül az 

amitriptilin fejtette ki a legerősebb hatást az AHL termelő törzsek segítségével végzett 

kísérletek esetében. A C6 HSL jelmolekula és a háromgyűrűs vegyületek direkt interakcióján 

alapuló vizsgálatoknál pedig az imipramin gátolta legeredményesebben a QS-et. A vizsgált 12 

protonpumpa gátló trifluorometil keton közül 6 bizonyult erős QS gátlónak. A trifluoro keton 

proton pumpa gátló TF vegyületek efflux pumpákra kifejtett hatását is vizsgáltuk. A 

legeredményesebb efflux pumpa gátlóknak ugyanazok a vegyületek bizonyultak, mint a 

legeredményesebb QS inhibitorok (TF-1, 2, 3, 4, 5, 9,). A különféle baktériumok egymás QS 

rendszereire való hatásának tanulmányozása során pedig a vizsgált 15 E. coli törzs közül 14 

bizonyult hatásosnak. A jövőben a különféle QS gátló szerek óriási jelentőségre tehetnek szert 

a komplikált bakteriális fertőzések kezelésénél. 
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The role of quorum sensing (QS) is well known in microbial pathogenicity and antibiotic resistance. QS is 
responsible for motility, swarming, and biofi lm production based on the signal molecules, e.g., acylated homo-
serine lactones (AHLs) produced by micro-organisms above certain population density. The inhibition of QS 
may reduce pathogenicity, antibiotic resistance and biofi lm formation in systemic and local infections. The 
homoserine lactones and other transmitters contribute to antibiotic resistance and pathogenicity of several 
bacteria; consequently the inhibition of QS signals reduces the problem of resistance and virulence. Due to the 
increasing number of persistent non-treatable infections, there is an urgent need to develop new strategies to 
combat infections that destabilize bacterial communities in the host.

The effect of essential oils on bacterial growth and QS were evaluated using the sensor strain Chromobac-
terium violaceum CV026 and N-acyl homoserine lactone (AHL) producing Escherichia coli ATTC 31298 and 
the grapevine colonizing Ezf 10-17 strains. Of the tested oils, rose, geranium, lavender and rosemary oils were 
the most potent QS inhibitors. Eucalyptus and citrus oils moderately reduced pigment production by CV026, 
whereas the chamomile, orange and juniper oils were ineffective. Copyright © 2009 John Wiley & Sons, Ltd.
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INTRODUCTION

Intercellular communication among bacterial cells 
resulting in coordinated gene expression that leads to a 
‘community-behavour’ of bacteria is a rather common 
phenomenon in nature. The process itself depends on 
cell density, thus it has been called ‘quorum sensing’ 
(QS). Among others, N-acyl homoserine lactones 
(AHLs) are the most common mediators and are auto-
inducers of QS-regulated gene expression in bacteria. 
The specifi city of AHLs is determined by the length of 
the acyl chain and the substitution (–H, –OH or =O) 
on the 3 carbon position. This regulatory system 
consists of two genes: one produces the inducer homo-
serine lactones (usually designated luxI type genes) and 
the other codes for the luxR type receptor protein 
(Williams, 2007; Braeken et al., 2008; Case et al., 2008).

Cell-density-dependent regulation of bacterial genes 
has signifi cant importance in several ecological relation-
ships in plant and human pathology, as well as in the 
communication between prokaryotes and eukaryotes 
(von Bodman et al., 2003; 2008; Braeken et al., 2008: 
Hughes and Sperandino, 2008). Manipulation of QS 
may also be an effi cient tool for modifi cation of micro-
bial communities, for improved plant protection strate-
gies and for curing human bacterial diseases (Hentzer 
and Givskov, 2003; Cui and Harling, 2005; Waters and 

Bassler, 2005; González and Keshavan, 2006; Scott 
et al., 2006; Williams, 2007).

In the case of plant pathogens, the QS in agrobacteria 
is one of the best studied auto-inductive signal transfer 
systems. Agrobacterium tumefaciens produces only one 
single AHL, N-3-oxo-octanoyl-L-homoserine lactone 
that contributes to conjugative plasmid transfer and 
increases copy number of the tumor inducing plasmid 
pTi (Li and Farrand, 2000; Pappas and Winans, 2003). 
The grapevine pathogen Agrobacterium vitis produces 
several types of AHLs coded by chromosomal or 
plasmid genes but their functions have not been com-
pletely determined. The chromosomal AHLs contrib-
ute to tissue necrosis and hypersensitive reactions of 
grapevines and tobacco, respectively (Li et al., 2005; 
Hao and Burr, 2006). Besides these, the role of QS 
regulation is well documented in several additional 
plant-bacterial interactions (Lithgow et al., 2001; Molina 
et al., 2005; Quinones et al., 2005; Braeken et al., 2006; 
2008).

Besides plant pathology, QS plays a key impotant 
role in several human diseases. Pseudomonas 
aeruginosa-related diseases are the most studied 
(Hentzer and Givskov, 2003; Rasmussen et al., 2005; 
Ishida et al., 2007). Manipulations of the QS system may 
open new possibilities and improve therapies for chronic 
bacterial and other diseases (Hentzer and Givskov, 
2003; Rasmussen et al., 2005; Ishida et al., 2007) inluding 
cancer (Li et al., 2004; Shiner et al., 2006; Hickson et al., 
2009). Our main aim was to construct a model for 
investigation of QS signal transmission regulation by 
using natural compounds such as essential oils.
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MATERIAL AND METHODS

Essential oils. Rose (Rosa damascena L., Rosaceae), 
lavender (Lavandula angustifolia L., Labiatae), chamo-
mile (Matricaria recutica L., Asteraceae), orange 
(Rutaceae), eucalyptus (Eucalyptus globulus L., 
Myrtaceae), geranium (Geranium robertianum L., 
Geraniaceae), juniper (Juniperus communis L., Cupres-
saceae), citrus (Citrus sinensis L., Rutaceae) and rose-
mary oils (Rosmarinus offi cinalis L., Lamiaceae) were 
purchased from Phoenix Pharma Ltd. (Hungary, 
Budapest) in quality according to the requirements of 
Hungarian pharmacopoeia ( Ph. Hg. VII.). The essen-
tial oils used in this study were either used directly 
(concentrated) or dissolved in dimethyl sulfoxyde 
(DMSO) to yield a dilution of 10% (v/v). This stock 
solution was either used as it is or further diluted with 
10% DMSO. Acridine orange was purchased from 
Reanal (Budapest, Hungary) and 5-Fluorouracil pur-
chased from Sigma-Aldrich (Budapest, Hungary). Both 
compounds were dissolved in distilled water.

Bacterial strains. To detect auto-inducer production of 
tested bacteria, the biosensor strain Chromobacterium 
violaceum CV026 (obtained from Prof. Thomas J. Burr, 
Cornell University, Geneva, NY) was used. This Tn5 
mutant strain produces the purple pigment violacein 
upon induction with externally added short-chain auto-
inducers (McClean et al., 1997) and it has been widely 
used for the detection of N-acyl homoserine lactones or 
quorum sensing inhibitors (Lithgow et al., 2001; Molina 
et al., 2003; McClean et al., 2004). Escherichia coli ATTC 
31298 and the partially characterized Ezf 10/17 isolated 
from a grapevine crown gall tumor (Szegedi, unpub-
lished) were used as AHL producers. Both strains 
induce pigmentation of CV026 and therefore they can 
be used to monitor AHL-induced pigment production 
by C. violaceum CV026.

Culture medium. An MIC equivalent inoculum from 
each bacterial overnight culture were streaked on agar 
modifi ed Luria Bertani (LB) agar plates containing 
yeast extract (1 g/l), tryptone (10 g/l), NaCl (10 g/l), 
K2HPO4 (1 g/l), MgSO4 × 7H2O ( 0,3 g/l), FeNaEDTA 
(36 mg/l) and agar (20 g/l). pH was adjusted to 7.15. 
Cultures were grown at 25°C for 48 h.

Agar diffusion. Pair combinations of the sensor strain 
CV026 and the producer strains ATTC 31298 or Ezf 
10-17 each at an MIC equivalent inoculum were swabbed 
on LB plates as approx. 5 cm line cultures at a 5 mm 
distance from each other. Whatman 3MM fi lter paper 
discs, 7 mm in diameter, impregnated with 10 μl of con-
centrated or DMSO-diluted oils and placed on the 
inoculated line cultures. Discs containing acridine 
orange and 5-fl uoro-uracil served as positive controls 
and that containing DMSO (10 μl) served as the nega-
tive control. Signal transmission was assessed by the 
effect of the agent present on the disc that did not affect 
the development of purple colour defi ned as ‘No QS 
inhibitory activity’ and by the absence of colour and the 
size of the colourless zone defi ned as ‘QS activity’ after 
24- and 48-h incubation periods.

The diameter of the reduced bacterial growth around 
the fi lter paper discs in mm yields the degree of the 

antibacterial effect of the tested compounds. Drug-free 
DMSO blanks served as controls for any effect pro-
duced by the DMSO diluent.

RESULTS AND DISCUSSION

The agar diffusion method provides a convenient and 
semi-quantitative method to assess the antibacterial 
activities and QS signal production in the presence of 
essential oils. Using this method we tested 9 essential 
oils compared to the positive controls of acridine orange 
and 5-fl uoro-uracil. Most of these oils are known as 
inhibitors of bacterial growth (Schelz et al., 2006). Our 
present data demonstrate that several plant-derived 
essential oils not only inhibit bacterial growth but also 
block QS regulation processes.

As evident from Fig. 1, DMSO did not effect bacterial 
growth or AHL-induced violacein production. As dem-
ostrated by Fig. 2, the positive controls 5-fl uoro-uracil 
and acridine orange produced the anticipated inhibition 
of QS. However, the inhibitory activity of 5FU is con-
siderably greater than that produced by acridine orange.

The use of impregnated disks with DMSO containing 
various essential oils afforded an understanding of 
which oils inhibited the sensor response of Chromobac-
terium violaceum CV026 to AHL released by the bac-
teria employed in this study. As examples, although the 
geranium oil was most effective as an inhibitor of the 
QS response of Chromobacterium violaceum CV026 
(Fig. 3A) following induction by the strains ATTC 
31298 and Ezf 10-17, rose oil also has signifi cant inhibi-
tory activity on QS responses (Fig. 3B). Rose, lavender 

Ezf 10-17CV026 

Figure 1. Negative control: DMSO does not affect colour pro-
duction by the QS sensor Chromobacterium violaceum CV026 
in response to an AHL producing bacterium. Control demon-
strating color production by the CV responding strain and that 
10 μl DMSO does not affect this response.



Copyright © 2009 John Wiley & Sons, Ltd. Phytother. Res. 24: 782–786 (2010)
DOI: 10.1002/ptr

784 M. Á. SZABÓ ET AL.

and rosemary oils also inhibited colour development to 
varying degrees (Table 1). Eucalyptus oil inhibited vio-
lacein production only after induction with ATTC 31298 
while citrus oil reduced colour formation only in the 
CV026 + Ezf 10-17 combination. As expected they also 
inhibited bacterial growth to variable degrees (data not 
shown). The other tested essential oils also had a weak 

antibacterial activity on C. violaceum CV026 but the 
growth of the AHL producing bacteria were not affected 
(data not shown). QS was moderately inhibited by lav-
ender, eucalyptus and citrus oils, while the chamomile, 
orange and juniper oils were ineffective (Table 1).

The role of QS is well known in plant pathology; 
however it also plays an important role in several human 

E. coli 
ATTC 
31298 

CV026 

A

CV026  

Ezf 10-17 

B

Figure 2. Positive controls: Impregnated disks with acridine orange and 5-FU inhibit the production of color by Chromobacterium 
violaceum CV026 in response to the AHL producing bacterium. (A) 5-FU inhibits colour response by CV 026 to the AHL produced by 
E. coli ATTC 31298. (B) 5-FU inhibits colour production by CV 026 to the AHL produced by Ezf 10-17. (C) Acridine orange inhibits 
response of CV026 to AHL produced by Ezf 10-17. Comparison of the degree of response to that affected by 5FU indicates that acridine 
orange has a lower inhibitory effect than 5FU. 

Ezf 10-17 CV026 

C
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diseases. To cure bacterial diseases through the manipu-
lation of QS-regulated processes, several natural 
and synthetic compounds have already been tested 
(Rasmussen et al., 2005; Ishida et al., 2007). The results 
obtained in our study show that some essential oils can 
also inhibit QS. Although at this time we are not sug-
gesting that these compounds be used for the modifi ca-
tion of QS in bacterial populations of a host, we do 
suggest that because these compounds modify QS 
at least in the laboratory environment, that the 
approaches employed in our study may eventually lead 
to a new form of therapy for some mixed human 

E. coli ATTC 31298

CV026

A

CV026

Ezf 10-17B

Figure 3. Demonstration of the QS inhibitor activity of essential oils. (A) Effect of Geranium oil on QS. The disc contains 10 μl Gera-
nium oil. (B) Effect of Rose oil on QS. The disc contains 10 μl Rose oil.

infections which, at this time, are problematic for 
therapy. (Hentzer and Givskov, 2003; Rasmussen et al., 
2005; Ishida et al., 2007) including cancer (Shiner et al., 
2006).
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Table 1. Effect of tested essential oils on quorum sensing signal production between Chromobacterium violaceum CV026 as sensor, and 
Escherichia coli ATTC 31298 and Ezf 10-17 as producer strains after 48 hr incubation

Essential oils

10% oil 100% oil

CV026 + E. coli ATTC 31298 CV026 + Ezf 10-17 CV026 + E. coli ATTC 31298 CV026 + Ezf 10-17

Rose 15–20 10 18 20
Lavender 0 5 10 15
Chamomile 0 0 0 0
Aeth. Geranium 0 3 13 15
Eucalyptus 0 3 6 0
Juniper 0 0 0 0
Citrus 0 2.5 0 16
Orange 0 0 0 0
Rosemary 0 3 18 18
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Abstract: A quorum is the smallest number of people able to organize the decisions concerning functional activity. 
Similarly microbes use chemical signal molecules to make population size-dependent ”decisions” by changing their gene 
regulations.  

 The inhibition of quorum sensing (QS) by phenothiazines and structurally related molecules, e.g. amitriptyline, 
promethazine, acridine orange, imipramine, promazine, diethazine, desipramine, desertomycin and 5-fluorouracil as 
positive control was studied with Chromobacterium violaceum 026 as a sensor strain, which detects short carbon chain 
AHLs by the development of a purple pigment. The AHL was produced by Novospingobium Ezf 10-17, and the 
antibiotic-resistant clinical isolates, E. coli 31298. 

 The QS was demonstrated as a signal transmission between the two bacterial strains. The most effective inhibitors of QS 
were amitriptyline, promethazine, acridine orange and desertomycin. Imipramine and diethazine were moderately active, 
while chlorprothixene was ineffective relative to 5-fluorouracil as positive control. The direct complex formation between 
AHL and QS inhibitors markedly reduced the QS in a chromogenic test. The AHL-neutralizing effect of the related 
compounds was shown by chromogenic method. 

The inhibition of QS signal transmission appears to be related to the quasi-planar structure and electron donor capacity of 
the conjugated -electron system of the tricyclic framework. The results can be exploited in rational drug design as a new 
way to reduce the QS mediated processes eg. virulence of pathogens, to vary the formation of biofilms and to modify 
antibiotic resistance. 

Keywords: 5-Fluorouracil, Amitriptyline, Homoserine lactone complexes, Imipramine,  Promethazine, Quorum quenching. 

INTRODUCTION 

Phenothiazines and structurally related tricyclic 
compounds exert various effects on bacterial cells including 
the inhibition of growth and the reversal of antibiotic 
resistance [1-3]. 

Quorum sensing (QS) is a communication system 
mediated by chemical signals which depends on the 
population density of bacterial species within a common 
environment and contributes to their ability to compete and 
survive [4, 5]. It is common to both Gram-positive and 
Gram-negative bacteria and plays a role in intra- and 
interspecies communications, additionally allowing 
communications between microbes and their hosts [6]. QS is 
of great significance in the formation of biofilms [7], the 
production of virulence factors [8], the development of 
intrinsic antibiotic resistance [9], the facilitation of growth in 
a competitive environment [10] and the enhancement of 
motility [11]. It may also provide genetic advantages due to 
the promotion of conjugational gene transfer [12] and control 
of the competent state [13]. 
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The most common mediators in Gram-negative bacteria 
are the N-acyl homoserine lactones (AHLs). The specificity 
of the AHLs is determined by the length of the acyl chain 
and the substitution at C-3. The QS regulation system 
consists of two types of genes. The luxI-type genes produce 
autoinducer molecules such as AHLs, and the luxR-type 
genes produce their receptor proteins [14-16]. In Gram-
positive bacteria, various types of peptides have the same 
role in QS.  

The bacterial interactions focused on QS between various 
species have not yet been studied in the presence of tricyclic 
compounds. Since these compounds have various effects on 
bacterial functions, QS signal transmission seems to be a 
good model for the characterization of molecular interactions 
between AHLs and commonly used tricyclic drugs. 

The aim of our study was to investigate the effects of 
some phenothiazines and structurally related compounds on 
the QS signal transmission between the sensor strain 
Chromobacterium violaceum 026 and three different AHL-
producing bacterial isolates. 

MATERIALS AND METHODS 

Chemicals 

The following tricyclic compounds were used: 
promethazine (Pipolphen, EGIS, Hungary), amitriptyline 
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(Teperin, EGIS, Hungary), acridine orange (Reanal, 
Hungary), imipramine (Melipramin, EGIS, Hungary), 
desipramine, chlorprothixene (Truxal, Lundbeck, Denmark), 
promazine, diethazine (Parkazin, Rhone-Poulenc, France) 
and desertomycin. Stock solutions of these tricyclic 
compounds were prepared in distilled water at 25.0 mg/ml 
before use. For control experiments 5-fluorouracil (5-FU), 
and acridine orange were used as known inhibitors [2, 17]. 
Iodine deoxy uridine (IDU). N-hexanoyl-DL-homoserine 
lactone (SIGMA, Budapest). 

Bacterial Strains 

Chromobacterium violaceum 026 (CV026) served as QS 
sensor. C. violaceum is a common bacterium which lives in 
soil and water. When C. violaceum reaches a high cell 
density, it produces a purple pigment called violacein [18]. 
The CV026 sensor strain is a Tn5 mutant which alone cannot 
synthesize AHLs; it produces the purple pigment only in the 
presence of externally added inducers [19]. This strain has 
been used to detect a wide range of short-chain AHLs or QS 
inhibitors [20-22]. As AHL signal producers inducing 
CV026, the following strains were used: Ezf 10-17 is an as 
yet unidentified grapevine crown gall tumour isolate which 
resembles Novospingobium sp.; Esherichia coli 31298 and 
Pseudomonas aureginosa 49010 were clinical strains 
isolated from a wound lesion and the human trachea, 
respectively. 

Quorum Sensing Tests 

A modified LB medium containing yeast extract 5 g/l; 
Trypton 10 g/l; NaCl 10 g/l; K2HPO4 1 g/l; MgSO4x7H2O 
0.3 g/l and FeNaEDTA 36 mg/l supplemented with agar 
(Difco) 20g /l) (pH 7.2) was used for the experiments. The 
sensor strain CV026 and the AHL producer strains Ezf10-17, 
E. coli 31298 or P. aureginosa 49010 were inoculated as 
parallel lines and incubated at room temperature (20 oC) for 
24-48 h. 

QS inhibition was monitored by the agar diffusion 
method. Filter paper discs (7.0 mm in diameter, Whatmann 
3MM) were impregnated with 10 l of stock solutions of the 
tricyclic compounds in distilled water. The discs were placed 
on the surface of nutrient agar between the parallel lines of 
sensor and AHL producer strains. The plates were incubated 

at room temperature for further 24-48 h and the interactions 
between the strains and tricyclic compounds were evaluated 
as concerns the reduction in the size of the zone of pigment 
production and the size of the zone of growth inhibition of 
the affected strains, in mm. 5-FU was applied as positive 
control [17]. 

Evaluation of Complex Formation Between the 

Comercially AHL and QS Inhibitors 

Biological method: 1 l of a solution of 5, 10 or 25 ng of 
AHL was mixed with 10 l of stock solution (25 mg/ml) of 
the potential QS inhibitor. Filter paper discs (7.0 mm in 
diameter, Whatmann 3MM) were impregnated with 11 l of 
the mixture of QS inhibitor and AHL solution. The discs 
were placed on the surface of nutrient agar media, upon the 
inoculation line of the CV026 sensor strain. The plates were 
incubated at room temperature (18-22 °C) for a further 24-48 
h and the interactions between the AHL and the tricyclic 
compounds were evaluated in terms of the reduction in the 
diameter of pigment production (due to complex formation 
when the AHL was inactivated), and the reduced colour 
intensity. 

RESULTS 

The agar diffusion method provides an opportunity to 
investigate the potential inhibition of tricyclic compounds on 
QS between the QS sensor C. violaceum and three AHL 
producing bacteria. For control experiments, Ezf 10-17 adja-
cent to the QS sensor CV026 cultured in the presence of a 
water-containing disc resulted in the purple colouration of 
the swabbed sensor, an indication of a positive response to 
the presence of AHLs produced by Ezf 10-17. To 
demonstrate that the colouration of the sensor strain is 
prevented by a known inhibitor of the QS response, 5-FU 
and acridine orange were used as positive controls. Since the 
phenothiazines have antimicrobial activity against E. coli 
[1], the inhibition of violacein production as quorum signal 
was measurable only at subinhibitory concentrations on the 
growth of inoculated bacteria. Consequently, the production 
of AHL as a QS mediator was evaluated below the MICs of 
the phenothiazines against the AHL-producing bacteria. 

Table 1. Investigation of Antibacterial Effects of Tricyclic Compounds with the Agar Diffusion Method 

Growth Inhibition Zones in mm 

Tricyclic Compounds 
Ezf10-17 E. coli 31298 

P. aeruginosa 
49010 

CV026 
(+Ezf  

10-17) 

CV026 
(+ E. coli. 

31298) 

CV026 
(+ P. aeruginosa 

49010) 

Acridine orange - - - - - - 

Amitriptyline 8 - - 9 10 12 

Desipramine 9 7 - 11 16 9 

Imipramine - - - 9 9 7 

Diethazine 7 - - 9 7 8 

Promazine 8 - - 10 12 15 

Promethazine 9 7 - 11 15 10 

Chlorprothixene - - - 7 7 7 

10 l of a 25 mg/ml solution was added into the filter paper discs. 
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The amount of each phenothiazine placed onto the disk 
was chosen so that it did not produce any antimicrobial 
effect against the given bacterium (less than one-half of the 
MIC). In summary, amitriptyline, desipramine, imipramine 
and promethazine inhibited the production of the purple 
colour by the sensor CV026 strain. Although the 
concentration of each phenothiazine was identical, the 
degree of inhibition varied as the distance between the disk 
and the margins of the diameter of the produced colouration. 
Table 1 shows the antibacterial effects of the phenothiazines: 
the diameters of the growth inhibitory zones are indicated in 
mm. To study for the effects of phenothiazines and 
structurally related compounds on QS, the tricyclic 
compounds were examined in a concentration below the 
growth inhibitory doses. The inhibition of QS signal 
tranmission was measured as described in the Methods 
section. The production of colourless zones by the 
phenothiazine compounds impregnated into the filter paper 
discs was measured around CV026, in response to the 
inhibited AHLs produced by Ezf10-17, E.coli and 
P.aeruginosa. As shown in Table 2, the degree of inhibition 
of purple colour formation by CV026 in response to AHLs 
produced by the various bacteria differed, indicating that the 

effectivities of the tricyclics differed as regards the QS 
response on the senzor CV026. 

The mechanism of QS inhibition was studied by 
measuring the effects of the direct interactions between the 
AHL and QS inhibitors on violacein production in the 
bioassay. The most effective inhibitors were imipramine, 
promethazine, desipramine and amitriptyline, which in high 
concentration inactivated the AHL and probably formed 
micellar complexes. 

The activities of the complexes between AHL and its 
inhibitors were measured in AHL-specific chromogenic 
tests. The biological activities of the AHL complexes were 
apparently reduced by complex formation, compared with 
the uncomplexed control AHL (Table 3). 

DISCUSSION 

The effects of tricyclic compounds on various Gram-
positive and Gram-negative bacteria and R-plasmid 
elimination were examined earlier [1, 24], and the inhibition 
of horizontal plasmid transfer due to the blocked conjugation 
[25], antibacterial and plasmid curing in coexisting bacterial 
populations is known. The importance of tricyclic 
compounds as a class of  ”non-antibiotics” which may 

Table 2. Inhibitory Effects of Tricyclic Compounds on QS Signal Transmission 

QS Inhibition Zone in mm 
Tricyclic Compounds 

EZF10-17 E. c. 31298 P. a. 49010 

Acridine orange  14 12 14 

Amitriptyline  64  30 60  

Desipramine 26 26 - 

Imipramine 15 12 - 

Diethazine 18 12 - 

Promazine 13 13 20 

Promethazine  26 20 15 

Chlorprothixene  - - - 

10 l of 25 mg/ml stock solution was impregnated into the filter paper discs (25 g/disc) and the colourless zone around the disc measured on C. violalaceum was measured after 
incubation for 24-36 h at room temperature. 

Table 3. The Effects of  QS Inhihibitors on N-hexanoyl-DL-homoserine Lactone (C6 HSL) Mediated Violacein Production 

 

Quantity of C6 HSL 0 ng (K) 5 ng 10 ng 25 ng 

Tested Compounds Diameter of Coloration in mm (18h) 

IDU 10 g 0 15 25 30 

Desertomycin 200 g 0 22 25 30 

5-FU* 30 g 0 29 35 35 

Promethazine 250 g 0 0 30 33 

Desipramine 250 g 0 0 28 32 

Promazine 250 g 0 0 30 32 

Imipramine 250 g 0 0 20 26 

Amitriptyline 250 g 0 0 25 30 

C6 HSL control 0 25 34 35 
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provide alternatives to the ineffective therapy of serious 
bacterial infections has already been reviewed [3]. Despite 
this considerable body of evidence, however the effects of 
tricyclic compounds on QS have not been studied before. 

QS signal transmission plays a key role in several 
microbial processes since the inhibition of QS may modify 
pathogenicity, virulence and antibiotic resistance.  

Obviously, if the specific QS system is blocked during 
the bacterial infectious process, the therapy of serious 
infections may be improved. In view of the demonstration 
that certain tricyclic compounds can block the QS signal 
response of diverse bacterial species, it is conceivable, that in 
the future these compounds may be used to modify 
biological signal transmission at a population level, e.g. by 
the modification of antibiotic resistance in biofilms, the 
production of virulence factors and the antibiotic production 
of some microbes in combination with conventional therapy 
to reduce the virulence of certain types of bacterial 
infections. 

We presume that in a mixed bacterial population the 
partners may outcompete competitors in vivo too, 
consequently gaining benefit within the population. There 
are other practically important opportunities when QS can 
also be a signal, mediating messages in microorganisms and 
host relationships. 

The effects of known QS inhibitors can be exploited to 
prevent or lower virulence and antibiotic resistance and the 
formation of biofilms on catheters. The results obtained may 
lead to a rational drug design with perspectives of improved 
chemotherapy. We assume that the inhibition of proton 
motive forces plays a key role in the modification of QS 
signal transmission. 

CONCLUSION 

The inhibition of quorum sensing signal transmission by 
the studied tricyclic compounds may open a new perspective 
to modify various quorum sensing mediated processes: like 
biofilm formation, bacterial pathogenicity and antibiotic 
resistance. 
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Abstract. Background: One major microbiological problem
is the widespread antibiotic resistance. There is an urgent
need for new antibiotics and ways to treat multi-drug-
resistant infections. Inhibition of bacterial quorum sensing
(QS) systems could be an effective alternative in a smuch as
they regulate a broad spectrum of cell functions, including,
virulence factor production, biofilm organisation and
motility. Influx and efflux bacterial systems involved in
quorum sensing (QS) are known to depend on the proton
motive force (PMF). Thus, a new series of 12 trifluoromethyl
ketones (TFs) known to inhibit the PMF, was investigated for
effects on the efflux pump of a QS responding bacterium, for
its subsequent effect on the response to a QS signal and its
direct inhibition of the response to a QS signal. Materials
and Methods: Chromobacterium violaceum 026 (CV026)
was used as the indicator strain to evaluate the QS inhibitory
effect of TFs. This strain responds to the presence of short
carbon chain acyl-homoserine lactones (AHLs) by the
development of a purple pigment. Effect on the QS response
of CV026 to externally added AHLs was evaluated. In
addition, the specific activity of the TFs on the efflux pump
system of the CV026 strain and a wild-type Escherichia coli
strain was assessed with the aid of the automated real-time

ethidium bromide method. Results: From the 12 compounds,
6 proved to be effective inhibitors of the QS response by
CV026, as well as inhibit the efflux pumps of CV026 and
Escherichia coli. Conclusion: Our results show that TFs have
QS inhibitory properties that are mediated through their
inhibition of efflux pumps that extrude the noxious QS signal
before it reaches its intended target. Because the TFs also
inhibit the efflux pump of a pathogenic bacterium, the
method used for the evaluation of the TFs in the current
study has clinical relevance and may be exploited for the
prevention of QS responses of infecting bacteria.

The antimicrobial and antimotility effects of 30 trifluoromethyl
ketones (TFs) on various bacterial species have already been
studied (1-5). Some of these TFs only inhibit the growth of
various Gram-positive bacteria, while others exhibit
antimicrobial activity against Gram-negative bacteria and
yeasts. The combination of certain derivatives of TFs with
promethazine results in a synergistic antibacterial effect (1). 

TFs at subinhibitory concentrations inhibit the motility of
Proteus vulgaris. Detailed analysis demonstrated that the
proportion of mobile bacterial cells is reduced (2),
suggesting that the action of TFs at concentrations that have
no effect on the viability of the studied bacteria involves the
inhibition of an energy source upon which flagellae depend
for their action, namely, the proton motive force (PMF) (2). 

Quorum sensing (QS) signal systems regulate a broad
spectrum of cell functions in bacterial populations (6-8).
Among the functions that depend or interact with QS is the
secretion of biofilms. Bacteria whose main efflux pump has
been deactivated or deleted are deficient in the secretion of
QS signals (9) as well as production of biofilm (10). Efflux
pumps of the resistance nodulation division (RND) family of
transporters, depend upon the energy provided by the PMF
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for effective function (11, 12). These efflux pumps extrude
noxious agents that penetrate the outer cell wall of the
organism prior to reaching their intended targets (13). QS
signals that are produced by one species for the inhibition of
growth of a competing bacterial species can be considered
noxious agents; consequently one would expect that
compounds shown to inhibit access to energy provided by
the PMF would have a negative effect on the main efflux
pump of the responding competitor and hence the response
to a QS signal such as N-acyl homoserine lactone (AHL)
would be negatively affected. Since TFs have been shown to
affect access to energy provided by the PMF (5) we have
been studying the effects of a series of 12 systematically
synthesized TFs (1-12) (Table I) on the QS signal system.
This study evaluated the effect of 12 TFs on the expression
of the AHL-mediated signal in a system containing the
environmental member Sphingomonas sp. Ezf 10-17 strain,
as producer of AHL and the Chromobacterium violaceum
CV026 as the responding sensor to AHL. Since the effects
of the TFs on the QS system by the former system do not
distinguish an effect on the producer versus the responder,
the effects of the TFs on the responder were directly assessed
by combinations of pure commercial N-Hexanoyl-DL-
homoserine lactone AHLs and each TF. In addition, we have
studied the effects of the TFs on the activity of the efflux
pumps of the QS-responding CV026 strain, as well as on the
efflux pump system of Escherichia coli, in order to
determine the role that an efflux pump system might play in
the response to a QS signal.

Materials and Methods

Chemicals. Eleven TFs (1-9, 11 and 12) were synthesized by
reaction of the corresponding 2-methylbenzazoles with
trifluoroacetic or chlorodifluoroacetic anhydride (14). Compound
10 was prepared by treatment of 2-lithiomethylbenzoxazole with
ethyl acetate (15, 16). N-Hexanoyl-DL-homoserine lactone was
purchased from Sigma (Budapest, Hungary). TFs were dissolved in,
dimethyl sulfoxide (DMSO).

The structures of the TFs are presented in Figure 1. Ethidium
bromide and thioridazine were purchased from Sigma (Madrid, Spain). 

Bacterial strains. Chromobacterium violaceum is a common
bacterium which lives in soil and water. When it attains a high cell
density, it produces a purple pigment called violacein (17). The C.
violaceum CV026 used as a sensor strain to study the effect of TFs
on QS is a Tn5 mutant that cannot synthesize AHLs; it produces the
purple pigment only in the presence of externally added inducers
(18). This strain has been used to detect a wide range of short-chain
AHL molecules and QS inhibitors (19-21). Ezf 10-17 was isolated
from a grapevine crown gall tumor. This strain induced pigment
production by CV026 and proved to be efficient to study QS
interactions (22). Escherichia coli wild-type AG100 [argE3 thi-1
rpsL xyl mtl (gal-uvrB) supE44] was employed for the
determination of effects of TFs on the activity of the intrinsic efflux
pump of this organism (13).
Medium. A modified LB agar containing yeast extract 5 g, trypton
10 g, NaCl 10 g, K2HPO4 1 g, MgSO4•7H2O 0.3 g and FeNaEDTA
36 mg in 1.0 liter of distilled water was used to study the effect of
TFs of QS. Ezf 10-17 was grown on potato dextrose agar (PDA) to
prepare signal compounds. E. coli was cultured on Mueller-Hinton
broth (MHB) and colonies isolated on Mueller-Hinton agar (MHA)
purchased in powder form from Sigma (Madrid, Spain).

in vivo 26: 277-286 (2012)
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Figure 1. Structures of trifluoromethyl ketones investigated in this study.

Table I. Inhibitory effects of the (TFs) on (QS) and the growth of
producing and QS sensor bacterial strains, after 24 hours of incubation.
The extent of the colourless zone indicates the inhibitory effect of the
given compound on QS signal transmission.

TF MIC (μg/ml) Extent of QS 
inhibition [zone of 

CV026 EZF 10-17 discolouration)   
at 20 μg/disc (mm)]

1 50 25 26
2 12.5 25 28
3 12.5 12.5 30
4 50 50 20
5 50 50 16
6 >200 >200 0
7 >200 >200 0
8 >200 >200 0
9 50 25 29

10 >200 >200 0
11 >200 >200 0
12 >200 >200 0

CV026: Chromobacterium violaceum 026.
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Taxonomic identification of Ezf10-17 and analysis of its AHL
production. The V3 region of 16S rDNA from Ezf 10-17 was
amplified using the forward primer (5’-ACTCCTACGGGAGGCA
GCAG-3’) and reverse primer (5’-ATTACCGCGGCTGCTGG-3’) and
sequenced. Sequence data were compared and analysed by BLAST
against the published 16S V3 sequences available in the database.

The AHLs from the liquid culture of Ezf 10-17 were extracted and
concentrated by using acidified ethyl acetate liquid-liquid extraction.
The purified AHLs were analysed using thin layer chromatography
(TLC) overlaid with C. violaceum CV026 biosensor strain.

Evaluation of the effect of TFs on the response by CV026 to AHL.
Isolated colonies of the AHL-responding CV026 were plated
directly as a 6 to 7 cm line on the surface of the modified LB agar.
One microlitre of solution containing 5 or 10 ng of N-Hexanoyl-DL-
homoserine lactone AHLs was mixed with 10 μl of the stock 
(2 mg/ml or 0.4 mg/ml) solution of the potential QS inhibitor TF
compound. Filter paper discs (7.0 mm in diameter) were
impregnated with 11 μl of the mixture of different concentrations
of each TF and AHL, and the disks were placed on the inoculated
line of the CV026 sensor strain (18). For sets of assays that aimed
to evaluate the interaction between AHL and each TF, blank filter
disks were separately impregnated with 11 μl of AHL alone, with
11 μl each of the TFs alone, and with 11 μl of DMSO, the latter
serving as an absolute control. The plates were incubated at room
temperature (ca. 20˚C) for 24-48 hs.

Minimum inhibitory concentration (MIC) of each TF on CV026 and
E. coli AG100. The MIC of TFs was determined by the broth
dilution method according to Clinical and Laboratory Standards
Institute (CLSI) guidelines (23).

Assessment of the effects of each TF on the activity of the efflux
pump systems of CV026 and Escherichia coli AG100. The activity of
the TFs on the real-time accumulation of ethidium bromide (EB)
was assessed by the automated EB method, previously described in
detail (24), using the Rotor-Gene 3000™ thermocycler with real-
time analysis software (Corbett Research, Sydney, NSW, Australia).
Briefly, E. coli AG100 was cultured in MHB medium until the
culture reached an optical density (OD) of 0.6 at 600 nm, the culture
was then centrifuged at 13,000 rpm for 3 min, the pellets were re-
suspended in phosphate-buffered saline (PBS; pH 7.4) with a final
concentration of glucose of 0.4% and the OD adjusted to 0.6 at 600
nm. Aliquots of 45 μl of the cell suspension were distributed to 0.2
ml tubes. The TFs were individually added at concentrations equal
to half their MIC against the strain in 5 μl volumes of their stock
solutions, and finally 45 μl of EB to yield a final concentration of 1
mg/l (Sigma-Aldrich) in PBS, with and without glucose, were
added. Note that the selection of a concentration of each TF at half
its MIC is due to the empirical fact that at this concentration there
is no significant effect on the viability of the organism (24, 25). It is
also important to note that prior to the experiments described, the
maximum concentration of EB which was within the capacity of the
bacterium to extrude, was determined at least three times. For the
wild-type E. coli AG100 reference and the CV026 strains employed
in the study, these concentrations of EB were determined to be 1
and 0.5 mg/l, respectively (13, 24, 25). The tubes were placed into
a Rotor-Gene 3000TM thermocycler and the fluorescence monitored
on a real-time basis. From the real-time data, the activity of the TF,
namely the relative final fluorescence (RFF) of the last time point

(minute 30) of the EB accumulation assay was calculated according
to the formula:

RFtreated-RFuntreated
RFF =

RFuntreated

Where RFtreated is the relative fluorescence at the last time point of
the EB retention curve in the presence of an inhibitor, and RFuntreated
is the relative fluorescence at the last time point of the EB retention
curve of the untreated control. The greater the difference between
RFtreated and RFuntreated, the greater the degree of EB accumulated
and, therefore, the greater the degree of inhibition of the efflux
pump system of the bacterium promoted by the agent at that
concentration.

The RFF was then divided by the concentration of the TF that
corresponded to half its MIC. This yielded a measure of the effect of
each TF at a milligram level (specific activity) and therefore
afforded comparison of each TF for activity against the efflux pump
systems of the CV026 and E. coli AG100 strains. The experiments
were repeated three times and the specific activity values presented
are the average of three independent assays. This method of analysis
has been previously presented (26). Thioridazine (TZ) an efflux
pump inhibitor (12), was used as as a positive control. 

Results

In our previous studies, the unidentified grapevine tumor
isolate Ezf 10-17 proved to be an inducer of violacein
production by C. violaceum CV026. Thus, this pair of
inducer/sensor strains was successfully used to study
potential QS inhibitors (21) (Figure 2). To identify Ezf 10-
17, we sequenced the V3 region of 16S rDNA gene from its
genome. Comparing the sequence data to those found in
databases, this strain proved to be a member of the
Sphingomonadaceae family.

Signal production of Ezf 10-17 was analysed by TLC
overlaid with C. violaceum CV026. As compared to the
standard AHLs, Ezf 10-17 produces a strong signal that co-
migrates with 3-oxo-C6 AHL. Additionally, weaker signals
which seem to be identical with C6 AHL, 3-oxo-C8 AHL
and C8 AHL were also observed (Figure 3). These data
support our earlier observations on the suitability of Ezf 10-
17 in QS assays with C. violaceum CV026 (21). 

In order for an agent to be correctly evaluated for effects
on a QS system whose intensity of colour is dependent upon
the growth of the producer of the QS signal and the growth
of the responding bacterium, the concentration of the agent
that is to provide meaningful interpretation, must be one that
does not affect the viability of either bacterium. As
summarized in Table I, various TFs have antimicrobial
activities against the producer and responding bacteria.
Consequently, the amounts of TFs selected for the evaluation
of effects on the QS system were at or below those that had
no effect on the growth of either species. Because of space
limitation, the range of effects of the TFs on the QS system



cannot be pictorially presented. Rather, the effects are
presented in Figure 4 and Table II. Briefly, TF 5 had the least
inhibitory effect (deep colour associated with the responder
CV026) and TF 3 had the greatest inhibitory effect on the
response of the CV026. The effect of the TFs on the QS
system is clearly inhibitory. Whether the effect is due to the
TF inhibiting the release of the QS signal or to the inhibition
of the response of the responding species cannot be
distinguished from the above evaluation. 

The direct effects of each TF on the QS response by CV026
was determined with the use of disks impregnated with
combinations of a constant amount of the AHL and differing
amounts of TF. As evident from the example provided in
Figure 5, whereas the disks with TF alone (Figure 5A) do not
produce the purple colour associated with CV026, the
presence of pure AHL in the disk led to the production of the
deep purple colour associated with CV026 (Figure 5B). The
presence of the TF that inhibited the production of colour in
the QS assay described, when in combination with the AHL,
inhibits the production of the purple colour by the responding
CV026 (Figure 5C). These results clearly show that the TF has
a powerful inhibitory effect on the QS responding strain.
However, the question of whether the same TF can inhibit the
secretion of the QS signal by the producer species remains

unanswered. The activity of each TF at half its MIC on the
efflux pump system of the CV026 is exemplified by Figure 6.
The data presented on those figures suggest that all of the TFs
have activity against the efflux pump of CV026. However,
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Figure 2. The quorum sensing response of CV026 to the presence of the
(AHL) producer Ezf 10-17. A: CV026 responder strain alone. B: CV026
responder strain (right) with Ezf 10-17 AHL producer strain (left). The
deep colour associated with the responder strain CV026 was found only
when CV026 was cultured in parallel with the AHL producer Ezf 10-17.

Figure 3. Detection of N-acyl-homoserine lactones (AHL) from Ezf 10-17.
Pure, commercial AHLs (lanes 1-4) and purified AHL produced by Ezf 10-
17 (lane 5) isolated by thin layer chromatography. The plate overlaid with
the responder CV026. The application of varying concentrations of pure
commerical AHLs provide standards of the degree of response (intensity
of colour). EZF 10-17 AHL extracts were prepared with acidified ethyl
acetate of re-suspended 4-day old cultures of EzF 10-17 grown on potato
dextrose agar.

Figure 4. The length and intensity of the purple colouration induced by
10 ng AHL/disc on Chromobacterium violaceum 026, after 24-hour
incubation in the presence of TFs applied at 20 μg/disc. The effective
inhibitors reduce the length and intensity of the purple colouration. The
scale indicates an increasing intensity of colouration. A lower colour
intensity means higher inhibition of QS. –, No coloration; +, white-
purple; ++, palepurple; +++, purple; ++++, darkpurple.



because the concentrations of TFs used in the assay were half
of their MICs, and the MICs of the TFs against the strain
differed significantly, the activities presented in Figure 6 do
not permit a comparison of the activities between TFs.
However, calculation of the specific activity of each TF by the
formula for RFF presented in the Materials and Methods
section affords a comparison, and these data are presented in
Table III. Briefly, the activity of the positive control
thioridazine was 1.02. Comparison of the activity of each
relative to the positive control, TFs 2 and 3 have the greatest
activity against the efflux pump system of CV026; TFs 1, 4, 5
and 9 have significant activity; and, TFs 7, 8, 10, 11 and 12
have no activity. The demonstrations that the TFs inhibit the
response of an environmental strain to a QS signal and the
same TFs inhibit the efflux pump of the environmental

responding strain, by themselves, do not support clinical
interest in the TFs for possible use in the therapy of a bacterial
infection. Therefore, in order to establish the needed support
for the claim that indeed, the TFs have clinical value, the TFs
were examined for activity against the efflux pump system of
E. coli, a pathogenic bacterium. Since the number of graphs
needed to depict each effect is large, an example of the data
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Figure 5. The effect of (TFs) on the response of CV026 (AHL). A:
Control disc with TF4 (20 μg) alone (no colour).B: Control disc with
AHL (10 ng) alone (deep purple colouration). C: Disc with TF4 (20
μg/disc) and AHL (10 ng) (very light purple colouration).

Table II. Effects of (TFs) on (AHL)-mediated quorum sensing.

TF Intensity of Length of Growth 
20 μg/disc colouration (mm) colouration (mm) inhibition (mm)

1 +++ 34 0
2 + 30 17
3 + 34 22
4 +++ 35 0
5 +++ 37 0
9 + 36 22
AHL control ++++ 40 0

Intensity scored as described in Figure 4.

Table III. The related final fluorescence (RFF) and specific activity (SA)
of each (TF) on the efflux pump system of CV026. Samples consisted of
saline plus 1 mg/l of ethidium bromide, 0.4% glucose, and without and
with half (MIC) of positive control and TFs. Assessment of fluorescence
took place at 37˚C for 30 minutes. Data in bold identifies TFs that express
very high inhibitory activity against the efflux pump system of CV026.

TF RFF SA

1 (25 mg/l) 4.20 1.68
2 (6,25 mg/l) 2.99 4.78
3 (6,25 mg/l) 2.21 3.53
4 (25 mg/l) 4.42 1.77
5 (25 mg/l) 5.10 2.04
6 (100 mg/l) 4.31 0.43
7 (100 mg/l) 0.92 0.09
8 (100 mg/l) 1.24 0.01
9 (25 mg/l) 3.97 1.59

10 (100 mg/l) 0.44 0.04
11 (100 mg/l) 0.73 0.07
12 (100 mg/l) 1.18 0.12

SA=RFF/(0.5 MIC).

Table IV. The effects of (TFs) on the efflux pump system of Escherichia
coli AG 100.

Sample RFF SA

AG100 control 0.5397 0.000
+ TZ positive control. 30 mg/l 11.8703 0.6998
+ TF 1 7.5 mg/l 5.0638 1.1176
+ TF 2 3.75 mg/l 12.9179 6.1160
+ TF 3 3.75 mg/l 10.4916 4.9172
+ TF 4 30 mg/l 31.1324 1.8894
+ TF 5 7.5 mg/l 7.8839 1.8143
+ TF 6 30 mg/l 5.1950 0.2875
+ TF 7 240 mg/l 7.2390 0.0517
+ TF 8 60 mg/l 6.9595 0.1982
+ TF 9 7.5 mg/l 6.4451 1.4589
+ TF 10 240 mg/l 19.3553 0.1452
+ TF 11 120 mg/l 6.6206 0.0938
+ TF 12 60 mg/l 7.0865 0.2021

RFF: Relative final fluorescence; SA: specific activity=RFF/(0.5 MIC).
Samples consisted of saline plus 1 mg/l of ethidium bromide, 0.4%
glucose, and without and with half (MIC) of positive control and TFs.
Assessment of fluorescence took place at 37˚C for 30 min. Data in bold
identifies TFs that express very high inhibitory activity against the
efflux pump system of E. coli.



obtained is presented in Figure 7 for TF 4. As evident from
the figure, the presence of TF 4 promotes an increase of
fluorescence due to the accumulation of EB whereas in the
absence of the compound, no significant increase of
fluorescence takes place (the curve is rather flat). The effects

of the TFs on the activity of the efflux pump is summarised
in Table IV. This Table provides the concentration of the
positive control thioridazine and each of the TFs that
corresponds to half their MIC. As noted in Table IV, TFs 2 and
3 have the highest activity against the efflux pump system of
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Figure 6. The effect of half the minimum inhibitory concentration of (TFs) 1, 4, 5, 9 (A) , and 6, 7, 8, 10, 11, 12 (B) as compared to the positive
control thioridazine (TZ).



E. coli. TFs 1, 4, 5 and 9 are also very active since their
inhibitory activity exceeds that of thioridazine, the efflux
pump inhibitor that serves as positive control. 

Discussion 

The results presented in this study show that some TFs have
inhibitory activities against the response of CV026 to a QS
signal such as AHL and the efflux pump systems of the CV026
and E. coli strains. Comparison of the efflux pump inhibitory
activities of the TFs towards both strains suggests that the
inhibition is practically identical in both cases. This suggests
that the TFs have clinical value. Comparison of the individual
inhibition induced by each TF on the QS response by CV026
to AHLs indicates that TF 3 exerts the greatest inhibition on the
QS response. By comparison of the MIC of each effective TF, it
is clear that the most effective inhibitors of the efflux pump
system of E. coli also have the most potent antibacterial activity.
TFs such as TF 7, 10 and 11 are devoid of any significant
antibacterial activity (MIC for TF 7 and 10 is 480 mg/l, and for
TF 11, it is 240 mg/l) and have little activity against the efflux
pump of E. coli. The demonstration of a QS response by the
method used in this study requires the growth of the responding
organism. If an agent inhibits growth, it pre-empts any response
since there are no bacteria present to respond. The application of
20 μg of each TF to discs promoted strong antibacterial effects
by TFs with very low MICs. Applying amounts of a TF that
have significant antibacterial properties to a disc below the
inhibitory concentration exceeds the sensitivity of the system,

since the distance between evident growth and the absence of a
response (no colour) is masked by the deep purple colour
associated with the growing population that is less than a
millimetre from the disc. This is why TFs with very high MICs
were able to produce evidence of an inhibition of the QS
response by CV026, whereas for TFs with low MICs, with the
exception of TF 3 (MIC 7.5 mg/l), the antibacterial effect of the
TF pre-empted growth. QS is essential for various pathogens.
In nature there are many types of organisms which can quench
QS signals of other species. For example, Bacillus species
produce lactonase enzyme to degrade the AHL signals of Gram-
negative species. Eukaryotic cells also deploy QS inhibitors to
prevent bacterial infection. QS has great importance in the
organisation of biofilms (6), the production of virulence factors
(8), and also in the spread of antibiotic resistance. The antibiotic
resistance of bacteria in biofilms is several hundred or even
thousand-fold higher than the one of free living bacteria.
Without the ability to make biofilms or virulence factors
production, pathogens lose the ability to cause infections.
Therefore, if we reduce or completely block bacterial QS, we
can reduce these QS-dependent/related activities as well. Our
previous study demonstrated that phenothiazines were able to
inhibit the QS system that involved Ezf 10-17, the producer of
the signal and CV026, the responder to the signal (27). The
phenothiazine thioridazine, an inhibitor of efflux pumps of
Gram-negative bacteria (11, 12, 24, 25) also inhibits the
response of CV026 to pure AHL (data not shown). Because
phenothiazines and TFs that inhibit the efflux pumps of the
CV026 and E. coli, as shown in the current study, also inhibit

Varga et al: Effects of TFs on the Efflux Pump of a QS System

283

Figure 7. The effect of TF 4 on the activity of the efflux pump system of Escherichia. coli AG100. The concentration of the TF 4 that correspond to
half minimum inhibitory concentration was 30 mg/l. Note that the control does not accumulate ethidium bromide during the 30 minutes of the assay.



access to energy supplied by the PMF (4, 5), we believe that the
response to a QS signal depends upon a functional efflux pump
system which extrudes the noxious QS signal before it reaches
its intended target. Moreover, because all secretory activity of a
bacterium such as the secretion of a QS signal, is controlled (28-
30), and the main efflux pump systems of Gram-negative
bacteria are the secretory paths of internally produced noxious
agents (31-34), the inhibition of the efflux pump system of a
QS signal producer will result in obviating the secretion of the
QS signal. Therefore, it is our contention that inhibitors of an
efflux pump, such as phenothiazines and now also TFs, will
inhibit the secretion of the QS signal and the response to the QS
signal. The results of the current study clearly show that various
TFs have the ability to inhibit the response of C. violaceum 026
to the QS signal AHL and to inhibit the efflux pump of the QS-
responding CV026 as well as the one of E. coli. This ability is
a direct one since none of the TFs formed a complex with AHL
(spectrophotometric data not shown). Since some TFs inhibit
the QS response, inhibit an efflux pump system and also have
significant antibacterial activity, TFs have a promising future for
therapy of problematic infections that rely on an efflux-
mediated multidrug-resistant phenotypes and which, due to QS,
make their therapy problematic.
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Antibiotics are usually studied on pure cultures of a single bacterial strain,
whereas multi-species communities that inhabit human niches and the biosphere are
generally ignored. The modification of quorum sensing (QS) is investigated in a sys-
tem involving a co-existing signal producer and sensor bacterial cells. A pure culture
of merely one bacterial species is quite rare in any niche. The interactions of different
bacterial species may therefore be of special importance in pathogenicity, antibiotic
resistance and signal transmission.

In the present study the authors investigated the QS in model experiments in-
volving several Gram-positive and Gram-negative bacterial species isolated from hu-
man infections or laboratory strains. The effects of various compounds on QS were
studied in mixed bacterial populations during the incubation period of 24–48 h. As the
simplest example of co-existing cell populations, the N-acyl homoserine lactone pro-
ducing Ezf 10-17 was applied with Chromobacterium violaceum 026 as sensor.

The signal of QS transmission between the co-existing QS system and patho-
genic bacteria isolated from various patients was found to be modified by certain bac-
terial cells. The bacterial-bacterial interactions in a mixed flora can change the classi-
cal signal transmission in the microbial community and should therefore be taken into
consideration in rational chemotherapy.

Keywords: Quorum sensing, Escherichia coli, Chromobacterium violaceum
CV026, coexistence, Quorum quenching
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Introduction

The quorum sensing (QS) signal systems regulate a wide spectrum of cell
functions in the microbial or bacterial flora. In general, microbes contain numer-
ous genes which are activated only when the bacterial population exceeds a
threshold concentration. This population size-dependent gene regulation is known
as QS. Models have been proposed for the communication of two different bacte-
rium population, where the cells of one bacterial species produce mediator mole-
cules, e.g. homoserine lactones, which induce pigment production in the sensor
Chromobacterium violaceum, resulting in the signal transmission responsible for
violacein production, antibiotic resistance and biofilm formation in the latter pop-
ulation.

This signal transmission can be inhibited by various compounds, with the
consequence of beneficial effects. In view of this opportunity to modify the QS, it
is of interest to learn what happens after the modification of QS signal transmis-
sion in a mixed bacterium population of three or more species living and growing
together, as in the habitat of the surface waters, in the human mouth or gut, etc.,
and whether beneficial effects can be attained in signal transmission.

Various natural and synthetic compounds have been shown to exert QS in-
hibition in vitro [1]. The QS inhibitory effects of phenothiazines and trifluoro-
methyl ketones have been studied in a number of cultures containing only the sen-
sor and producer strains [1–3]. However, there are differences in the antiplasmid
effect of promethazine in mixed bacterial cultures [4]. Under natural conditions,
bacteria in the environment and in the human body form multi-species communi-
ties, such as the densely populated normal and pathogenic flora of the gastrointes-
tinal tract, skin or oral cavity [5–9]. The functions of the normal flora include
maintenance of the integrity of metabolic processes, regulation of the rate of
growth of pathogens and ensurance of the persistence of some type of “immunity”
at the biological niche through competition.

Disturbance of the flora by antibiotics, xenobiotics or superinfections leads
to functional changes mediated by QS mechanisms in the microbial communities.
Those can come about through changes in virulence, antibiotic resistance, biofilm
formation, etc. [10–16]. The normal QS can be modified by xenobiotics and the
presence of other micro-organisms. Direct evidence has been found that N-acyl
homoserine lactones (AHLs) are decomposed by the lactonase produced by some
members of the Gram-positive bacterial family Bacillaceae [17].

The objective of our present experiments was to study the stability of QS in
mixed bacterial cultures, through measurement of the QS signal transmission in
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the presence of various Gram-positive cocci, Gram-positive bacilli and Gram-
negative pathogenic and non-pathogenic bacterial species. The possible modifica-
tion of QS has also been determined in the presence of phenothiazine compounds
in mixed bacterial cultures.

Materials and Methods

Microbial strains

The Chromobacterium violaceum CV026 sensor strain, which detects
AHLs with a short acyl side-chain via development of the purple pigment
violacein [18]. Ezf 10-17 (isolated from “ezerfürtû”, a traditional Hungarian grape
variety), which belongs in the Sphingomonadaceae family and Enterobacter

cloaceae 31298 (a clinical isolate from a wound) are AHL-producing strains.
Microbes tested for QS modification or inhibition: the Candida albicans,

C. tropicalis, C. krusei, Achromobacter xylosoxidans 40502, Acinetobacter

baumannii 32703, A. baumannii 32905, A. baumannii 42701, Bacillus cereus, B.

subtilis, B. clausii, B. megaterium PV 361, B. megaterium MS 941, B. megaterium

216, Staphylococcus epidermidis, S. aureus and Escherichia coli clinical isolates
were applied from extraintestinal infections numbered 5536, 10902, 10904,
11925, 14525, 14584, 18596, 19579, 19672, 24310, 24409, 24442, 33444, 36446
and 40312.

Media

Blood agar complemented with sheep blood; and a modified LB medium
(LB*) containing yeast extract 5 g/l, Tryptone 10 g/l, NaCl 10 g/l, K2HPO4 1 g/l,
MgSO4 × 7H2O 0.3 g/l and FeNaEDTA 36 mg/l, supplemented with agar (Difco)
20 g/l) (pH 7.2).

QS modification experiments with E. coli strains

Suspensions of each E. coli strain were separately mixed with molten LB*
agar medium. One hour later parallel lines of the pair of CV026 sensor and
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Ezf 10-17, and E. cloaceae 31298 AHL-producing strains were inoculated and in-
cubation was performed at room temperature (20ºC) for 24–48 h.

QS inhibition of bacterial strains

Each investigated strain was inoculated at right angles through the parallel
lines of the pair of CV026 sensor and EZF 10-17 AHL-producing strains, and then
incubated at room temperature for further 24–48 h. LB* media were used, for
Candida, Acinetobacter, Achromobacter, Bacillus, E. coli and Staphylococcus

species, etc. For Streptococcus species, blood agar was used, and the plates were
pre-incubated for 5 h at 37ºC and further incubation being continued at room tem-
perature. QS inhibition was revealed as a decreased level of violacein production
by CV026.

Results

Our results reflect ex vivo interactions, and exemplify various bacterial in-
teractions on QS.

We investigated 31 bacteria and 3 yeast strains for their ability to inhibit or
modify QS (Tables I and II), of which two bacterial genera, Escherichia and Bacil-

lus, proved to be effective inhibitors. Of the 6 investigated bacillus strains, B. ce-

reus was the best inhibitor, with a clear QS inhibitory effect (Fig. 1), while
B. subtilis and B. clausii inhibited QS moderately, and the three B. megate-

rium strains (PV361, MS941 and 216) did not exhibit any QS inhibitory activity
(Table I).

Surprisingly, 14 of the 15 investigated Escherichia clinical isolates were
effective inhibitors and only one had no inhibitory effect. We investigated the QS
inhibitory activity between E. cloaceae 31298 and CV026 and also between Ezf
10-17 and CV026: 10 strains exerted an antibacterial effect on E. cloaceae, and 4
of them inhibited the growth of CV026 too (Table II). The antibacterial effects of
the E. coli isolates on E. cloaceae were more pronounced than those on Ezf 10-17.
This probably originated from the long co-evolution in the same niche. The 2
strains, with antibacterial activity on Ezf 10-17 also had antibacterial effects on
E. cloaceae 31298 and CV026. There were 5 strains which had no growth inhibi-
tor activity against either the sensor or the producer strains.
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All of the tested isolates except strain 19579 modified the QS (Table II).
The most exciting strains were 5539, 24310, 33444 and 40312, which strongly
inhibitied the established QS system, but the tested isolates did not affect the
growth of the indicator and 2 producer strains (Fig. 2).
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Table I

Effects of various bacterial and Candida species on QS signal transmission

Strain Medium QS inhibition

Candida albicans 40502 LB* –
Candida tropicalis 47402 LB* –
Candida krusei 47813 LB* –
Acinetobacter baumannii 32703 LB* –
Acinetobacter baumannii 32905 LB* –
Acinetobacter baumannii 42701 LB* –
Achromobacter xylosoxidans 40502 LB* –
Staphylococcus aureus LB* –
Staphylococcus epidermidis LB* –
Bacillus subtilis LB* moderate
Bacillus cereus LB* +
Bacillus clausii LB* moderate
Bacillus megaterium PV 361 LB* –
Bacillus megaterium MS 941 LB* –
Bacillus megaterium 216 LB* –
Streptococcus pneumoniae blood agar –
Streptococcus salivarius blood agar –
Streptococcus agalactiae blood agar –
Streptococcus pyogenes blood agar –

Figure 1. QS inhibitory activity of B. cereus in the system containing the CV026 sensor
and Ezf 10-17 producer strain.

The inhibition of QS is revealed in the decreased level of violacein production

CV026 Ezf

10-17

B. cereus
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Table II

Effects of various E. coli strains on the QS signal transmission between CV026 sensor and Ezf 10-17
and E. cloaceae 31298 AHL producer strains

E. coli Growth Growth Growth QS Origin of
strain inhibition inhibition inhibition of inhibition isolate
number of CV026 of Ezf 10-17 E. cloaceae 31298 (specimen)

5536 – – – + abscess
10902 + + + + blood culture
10904 + + + + blood culture
11925 – – + + (very low) blood culture
14525 – – + + abdominal wound
14584 + low – + + conjunctiva
18596 + low – + + wound
19579 – – – – urine
19672 + – + + urine
24310 – – – + blood culture
24409 – – + + blood culture
24442 – – + (very low) + blood culture
33444 – – – + blood culture
36446 – – + + blood culture
40312 – – – + blood culture

Figure 2. The interference of different E. coli strains with the QS signal between the CV026 sensor and
the Ezf 10-17 producer strain. The sensor and producer strains are situated on the top of the medium

containing different E. coli strains

A: Strain 5536 lacks QS between the sensor CV026 and producer Ezf 10-17 strains;
B: Strain 11925 has high QS inhibitor activity;

C: Strain 19579 has no QS inhibitor activity; D: Control

D EZF 10-17

CV026



Interestingly, phenothiazines enhanced the QS inhibitory effect of the inef-
fective E. coli 19579 and the 2 bacillus strains, which display moderate QS inhibi-
tory effects without phenothiazines.

Discussion

In nature, bacteria live in a complex environment, in which they share their
niche with a number of other bacterial and eukaryotic cells. Bacterial cells must
select among numerous alternatives to find the most advantageous way to coexist
with their neighbours and to maintain their own optimal population level. They
may gain benefit from the quorum quenching of other species. The microbial
world is very complex with an abundance of social interactions, and bacteria with
QS systems can acquire many benefits.

Mixed bacterial infections are common in oropharyngeal, gastrointestinal
and urinary tract infections. The presence of different bacterial species can result
in difficulties in chemotherapy because the co-existing bacterial population can
modify the interspecies communications and horizontal gene transfer [4].

Nature provides numerous examples of bacterial-bacterial and eukaryotic-
bacterial interactions [17, 19–26]. As an example a furanosyl borate diester,
autoinducer II (AI2), a universal signal molecule that is characteristic in both
Gram-negative and Gram-positive bacteria, plays a very important role in bacte-
rial-bacterial interspecies communication. Bacteria also synthesize molecules
with special effects on eukaryotic cells. For instance, Pseudomonas aeruginosa

operates with a signal molecule, N-3-O-dodecanoyl homoserine lactone, which
exerts various effects on mammalian cells, induces apoptosis and modulates the
expression of immune mediators in murine fibroblast and human vascular epithe-
lial cells [20].

Among the many alternatives available to silence the QS of competitive
bacteria, probably the most common way is the production of lactonase, an en-
zyme which opens the lactone ring of AHLs, this being a characteristic feature of
the majority of Bacillus species [17]. Another widely used alternative for inacti-
vating AHLs is AHL-acylase production, which can occur in both Gram-positive
and Gram-negative bacteria. These enzymes are more specific than lactonases.
The AHL-acylase of Ralstonia eutropha is more effective on AHLs with a long
acyl side-chain [21], whereas that of Streptomyces sp. strain M664 exerts a high
AHL-degrading effect on AHLs with a short acyl side-chain [22]. This is why a
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bacterium which communicates with short-chain AHLs can quench long acyl
side-chain AHLs without affecting its own communication, and vice versa.

Our results have afforded some evidence of the complexity of bacte-
rial-bacterial interactions. Of the tested isolates, E. coli strains proved to be the
best inhibitors of the AHL-dependent QS, 14 of the 15 samples exhibiting an in-
hibitory effect. There are a number of possibilities to explain why E. coli strains
are such good QS inhibitors in our system. They may produce signals which com-
pete with the AHL signals of CV026, or metabolize the signal molecules, or use
systems like the AI2 importers. E coli possesses a special strategy to compete with
the AI2 signals of other bacteria. E. coli strains have AI2 specific importers, which
are activated at a high level of the inducer molecules. The import of AI2 eliminates
these signals from the extracellular environment [19]. These importers probably
play a role in the AHL-dependent QS inhibitory effects too in our system. An-
other, perhaps the most likely way to reduce AHLs from the environment, is the
AHL sensing of E. coli. This bacterium cannot produce AHLs but has special
LuxR-solo receptors, SdiA, which allow it to detect foreign AHLs. This competi-
tive binding probably reduces the number of signal molecules in the population
below the threshold concentration [27, 28].

Further studies are clearly needed to clarify the interactions between the
various bacterial species in a biological niche, e.g. in the range from the human gut
flora to surface waters in nature.
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