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1. Bevezetés

A komplex Hilbert tereken haté, nem-normalis operatorok vizsgala-
tdnak egyik f6 irdnya a kontrakcidk elmélete. Az operatorelmélet ezen
teriiletét Szokefalvi-Nagy Béla és Ciprian Foias fejlesztették ki az Sz.-
Nagy-féle dilatécids tételbdl kiindulva. Azt mondjuk, hogy egy T' € B(H)
korldtos, linedris opperdtor kontrakcié, ha ||T|| < 1 teljesiil, ahol B(H)
jeloli a ‘H Hilbert téren haté korlatos, linearis operatorok halmazat.

Sz.-Nagy és Foias aszimptotikus viselkedés szerint osztélyoztak a
kontrakcidkat. FEzt az osztilyozast meg lehet tenni az tdgynevezett
hatvanykorldtos operatorok osztalydn is. A T' € B(#H) operatort hatvany-
korldtosnak hivjuk, ha sup{||T"]: n € N} < oo teljesiil. Azt mond-
juk, hogy az x € H vektor stabil T-re, ha lim, o ||T™z| = 0. Jeldlje
Ho = Ho(T) a stabil vektorok halmazat. Konnyen beldthatd, hogy a H
halmaz T hiperinvaridns altere ([11]), ami azt jelenti, hogy Ho invaridns
altere minden olyan operatornak, mely T-vel felcserélhats. Ezért Ho-at
a T operator stabil alterének hivjuk. A fentebb emlitett osztalyozas a
kovetkezo:

e a T hatvanykorlatos operatort Cj.-osztalyinak vagy aszimp-
totikusan nem-eltinének hivjuk, ha Ho(T) = {0};

e a T hatvanykorlatos operdatort Cy.-osztalyuinak vagy stabilnak
nevezziik, ha Ho(T) = H, azaz ha T™ — 0 az er6s operdtor-
topolégidban (EOT) teljesiil;

e azt mondjuk, hogy a T hatvénykorldtos operator C.;-osztdlyu
(j € {0,1}), ha a T* Cj.-osztalyy;

e a Cj; (j,k € {0,1}) osztdly azon operatorokat tartalmazza,
melyek benne vannak a Cj. és C'j, osztalyokban is.

Sz.-Nagy 1947-ben karakterizalta azon operatorokat, melyek ha-
sonldak egy unitér operatorhoz. Ez a tétel az operdtorok hasonlésaganak
témakorében ma is az egyik legismertebb és legfontossabb eredmény. A
tétel a kovetkezo:

1.1. TETEL (Sz.-Nagy [15]). A T € B(H) operdtor pontosan akkor
hasonld eqy unitér operdtorohoz, ha invertdlhatd tovdbbd T és T~ is
hatvdnykorldtos.

A bizonyitdashoz Sz.-Nagy definidlta a T hatvanykorliatos operator
egy ugynevezett L-szimptotikus limeszét, ami &altaldban fligg az adott
L Banach limeszt6l. Abban az esetben, ha T kontrakcid, akkor ez a
definicié fliggetlen L-t0l, s6t, ekkor ez tulajdonképpen az EOT-limesze a T



onadjungdlt iterdltjainak {T*"T"}22 ;. Ezt a hatérértéket Ap-vel jeloljiik,
és a T aszimptotikus limeszének hivjuk. Azonban ha T hatvanykorldtos,
akkor a fenti sorozat altalaban nem konvergens. Ebben az esetben az alabbi
masfél-linearis funkcionalt tekintjiik:

wrn: HxH—C, wpp(zy) =LUim(T"T"z,y).

n—r oo

Mivel ez korlatos és pozitiv, ezért egyértelmiien 1étezik egy reprezentald
Ap 1, € B(H) pozitiv operator, melyre

wr,p(z,y) = (ArLz,y) (z,y € H)

teljesiill. Az A operdtort T L-aszimptotikus hatarértékének hivjuk.
Egyszertien megmutathaté, hogy ha T és T~! is hatvanykorldtos, akkor
Arp, 1, invertalhatd, és 1étezik pontosan egy olyan U € B(#H) unitér operator,
melyre AlT/ iT =U AlT/ i teljesiil. Kénnyen lathaté, hogy ker A 1 = Ho(T)
is teljesiil minden L Banach limesszel.

Megjegyezziik, hogy érvényes az 1.1. Tétel alabbi megfogalmazasa is

([13]).

1.2. TETEL (Sz.-Nagy). Tekintsiink eqy T € B(H) operdtort és eqy L
Banach limeszt. Az alabbi dllitasok ekvivalensek egymdssal:

(i) T hasonld egy unitér operdtorhoz;
(ii) T rdképezés és hasonld egy izometridhoz;
(i) T hatvdnykoridtos és létezik egy ¢ > 0 szdm, mellyel || T™z| >
cllz|| és || T*"x|| > c||z|| teljesil minden n € N és x € H esetén;
(iv) T rdképezés, hatvdnykorldtos és létezik egy ¢ > 0 szdm, mellyel
IT™z|| > c||x| teljesil minden n € N és x € H esetén;
(v) T hatvdnykorldtos és az Ar 1, Ar- 1 operdtorok invertdlhatdak;
(vi) T invertdhatd, valamint a T—1 és T operdtorok hatvinykorldtosak.
Ha o T € B(H) operdtorrdl feltessziik, hogy hatvanykorldtos is, akkor az
alabbi hdrom feltétel is ekvivalens egymdassal:
(i) T hasonld egy izometridhoz;
(it") létezik egy ¢ > 0 konstans, mellyel |T™z|| > c||z|| teljesil minden
n €N ésx € H esetén;
(iii") az Ap, 1, operdtor invertdlhatd.

Sz.-Nagy modszere természetesen vezet el minket egy &altalanosabb
definiciéhoz. Ez az ugynevezett izometrikus- és unitér aszimptotdk
fogalma. Tekintsiik az X;L € B(H,H; ) operdtort, ahol HIf =

(rtan A7 1)~ = (ker Ap )t = Hg és Xif v = A;/ia; igaz minden = € H
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vektorra. Mivel HX;LTLUH = HX;:L(EH teljesiil (z € H), ezért 1étezik egy
egyértelmiien meghatdrozott Vi, € B(H7) izometria, mellyel teljesiil az
X; I =V, LX}', ; Osszeflizési egyenl6ség. A Vp 1 operdtort (vagy sok-
szor a (VT,L,X; ;) part) hivjuk a T izometrikus aszimptotdjanak. Te-
kintsiik a Vp  izometria Wy € B(Hr,r) minimalis unitér dilatacidjat,
és az Xpp € BH,Hrr), Xz = X;L;C (x € H) operdtort. Nyil-
vén Xp [T = Wr . Xp is teljesiil. A Wrp  operdtort (vagy sokszor a
(Wr 1, X1 1) part) nevezziikk a T unitér aszimptotajanak. Ezek az aszimp-
totdk és altalanositasaik fontos szerepet jatszanak az operatorelmélet
kiilonboz6 teriiletein, példaul a hiperinvarians altér probléma, hasonldosagi
problémak, operdtor modellek esetében.

Ha T ¢ C1.(H) U Cy.(H), akkor az aldbbi felbontdsi tétel igaz, melyet
kontrakciokra Sz.-Nagy és Foias lattak be, hatvanykorlatos operatorokra
pedig Kérchy Lészlé.

1.3. LEMMA (Kérchy [12]). Legyen T ¢ C1.(H)UCo.(H), és tekintsiik a
H = Ho®Hg ortogondlis felbontdst. Ebben a felbontdsban a T blokk-mdtriz
alakja a kovetkezdképpen néz ki:

T:<TO R) € B(Ho ® Hy), (1.1)
0 T

ahol a Ty elem Cy.-, a T pedig Cy.-osztdlyi.

A fenti Lemmat sokszor hasznaltam disszertdciémban.

Disszertaciomban hatvanykorlatos operatorok aszimptotikus visel-
kedését tanulmanyoztam. Bemutattam néhany alkalmazast is, neveze-
tesen bebizonyitottam egy hasonldosagi tételt, aszimptotikusan nem-
eltlin6 kontrakcidk kommuténs leképezését vizsgaltam, illetve egy ujfajta
operatorosztaly ciklikussagi tulajdonsagairdl nyertem 14j informécidkat. A
dolgozat ot cikket dolgoz fel: [3, 4, 5, 6, 7]. A kovetkezd fejezetekben
bemutatom dolgozatom fébb eredményeit.

2. Kontrakciék aszimptotikus hatarértékei

A dolgozat méasodik fejezetében karakterizdltam azon pozitiv A €
B(H) operatorokat, melyekhez taldlhaté olyan T' € B(H) kontrakcid, hogy
Ar = A teljesiil. Az ebben a fejezetben bemutatott eredményeimet a
[4] cikkben kézoltem le. Eldszor azt 1ldttam be, hogy az L-aszimptotikus
limesze barmely hatvanykorlatos operatornak vagy 0, vagy a normaja le-
galabb 1.



2.1. TETEL. Legyen L Banach limesz és T eqy hatvdnykorldtos
operdtor, melyre At 1, # 0 teljesil. Ekkor igaz az aldbbi egyenldtlenség:

[Ar,z| = 1. (2.1)
Specidlis esetben, ha T kontrakcid, akkor |Ar| =1 teljesil.
Ezutan bebizonyitottam az alabbi karakterizacidt véges dimenzidban.

2.2. TETEL. Legyen T € B(C?) kontrakcid. Ekkor Ap = A2 = Ar-,
azaz A pontosan az az ortogondlis projekcio, melynek képtere Ho(T)™:.
Ezen felil Ho(T) = Ho(T™*) is teljesiil.

Azt mondjuk, hogy az A € B(H) operétor aszimptotikusan el6all a T'
kontrakciébdl az egyenletes konvergencidra nézve, ha lim,, o ||T*"*T" —
Al = 0. Természetesen ekkor A = Ap teljesiil. Megjegyezziik, hogy kon-
trakcidk esetén &altaldban a lim, ., T*"T™ = A csak az EOT-ban tel-
jestl. A o, és 7. szimb6lumok jelolik a lényeges spektrumot és a lényeges
spektrilsugarat. A jellemzés szepardbilis, végtelen dimenziés terekben a
kovetkezdképpen szdl.

2.3. TETEL. Legyen dimH = Ng, és A € B(H) egy kontrakcid. Az
aldbbiak ekvivalensek egymdssal:

(i) A aszimptotikusan elddll egy kontrakcidbdl;

(ii) A aszimptotikusan elddll egy kontrakcidbdl az egyenletes konver-
gencidaban;

(iii) r(A) =1 teljesil vagy pedig A egqy véges rangi projekcid;

(iv) dim#H(]0,1]) = dimH(]9,1]) igaz minden 0 < 6 < 1 szdmra,
ahol H(w) jeloli az A operdtor w C R Borel halmazhoz tartozd
spektrdlalterét.

S6t, ha a fenti teljesiil, és dimker(A — I) € {0,R0}, akkor T wvdlaszthatd
olyan C.g-kontrakcionak, hogy vele (ii) teljestil.

A nem-szeparabilis esetben is bizonyitottam egy hasonlé jellemzést.
Legyen k egy olyan szamossag, melyre « < dimH teljesiil. Ekkor az
Ep:={S € B(H): dim(R(S))~ < k} halmaz lezértja egy valddi két-oldali
idedl, melyet C,.-val jeloliink. Tekintsiik az F,, := B(H)/C faktor algebrat.
A .. B(H) — F jelolje a faktor-leképezést, és || - ||, a faktor-normét F,-
an. TetszOleges A € B(H) operédtor esetén hasznélni fogjuk a kovetkez6
jeloléseket: | Al := |7 (A)|lxy 0x(A) := o(mx(A)) és r.(A) := r(m.(A)).
(Ha k = Ny, akkor a kompakt operdtorok idedljét kapjuk, || A|lx, = I|4]le
a lényeges norma, ox,(A) = 0.(A4) és ry,(A) = 1.(A4).) Részletek ezen
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idedlokkal kapcsolatban a [2] vagy [14] publikdcidkban taldlhatéak. A
jellemzés nem-szepardbilis tereken a kovetkezo.

2.4. TETEL. Legyen dimH > Vo és A € B(H) egy pozitiv kontrakcid.
Ekkor a kévetkezé mégy feltétel ekvivalens egymdssal:

(i) A aszimptotikusan elddll eqy kontrakcicdbdl;
(ii) A aszimptotikusan elddll egy kontrakcidbdl egyenletes konver-
gencidban;
(iii) A egy véges rangi projekcid, vagy pedig r.(A) = 1 teljesil k =
dim #(]0, 1]) > Ng-val;
(iv) dim#H(]0,1]) = dim H (]9, 1]) igaz minden 0 < 6 < 1 szdmra.
Sét, ha a fenti teljesil, és dimker(A — I) € {0,000}, akkor T wdlaszthatd
olyan C.g-kontrakcionak, hogy vele (ii) teljestil.

Azt mondjuk, hogy egy T kontrakcié teljesen nem-unitér, ha nincs
olyan nem-nulla invaridns altere, melyra valé megszoritasa T-nek unitér
operétor. Természetesen vetédik fel a kérdés: két Ty, T» € B(H) kontrak-
ci6 esetén mely feltételek teljesiilése biztositja, hogy Ap, = Ap,, vagy
visszafele, a T7 és T5 kontrakcidékrdl mit tudunk mondani, ha tudjuk,
hogy rajuk Ap, = Arp, teljesill. A masodik fejezet utolsé tétele errdl a
problémardl szol.

2.5. TETEL. Legyen H tetszbleges Hilbert tér, T, Ty, T € B(H) pedig
kontrakciok. A kovetkezdk teljesiilnek:

(i) ha Th, Ty felcserélhetd, akkor Apyp, < Ap, és Apr, < Ar,;
(ii) ha u € H™ egy nem-konstans belsd figgvény, és T egy teljesen
nem-unitér kontrakcio, akkor Ar = Ay (r);
(i) az A, = A, = A egyenldséghdl A < Ap, 1, kévetkezik;
(iv) ha Ty és Ty felcserélhetdek, és Ar, = Ar, teljesil, akkor
sziikségképpen Ar, 1, = Ar, = A, is igaz.

3. Hatvanykorlatos matrixok Cesaro aszimptotikus limeszei

A harmadik fejezet célja az volt, hogy karakterizdljam azon pozitiv
szemi-definit matrixokat, melyek el6allnak, mint egy hatvanykorlatos
matrix L-aszimptotikus limesze. A fejezet bemutatja az [5] publikdciém
eredményeit. Az els6 fontos lépés az volt, hogy megmutattam, nem
kell Banach limeszekkel szamolnuk, ugyanis hatvanykorlatos matrixok
esetén az L-aszimptotikus limesz mindig az 6nadjungalt hatvanyok Cesaro
értelemben vett hatarértéke. Errdl szol az alabbi tétel.



3.1. TETEL. Legyen T € B(C?) hatdvnykorldtos. Ekkor

1 o

= = 1 _— *j ]

Arp =Arc: nlgrgon ElT T
j:

teljestil minden L Banach limesszel.

Az Arc = limpoeo Z;Zl T*IT7 métrixot T Cesaro aszimp-
totikus limeszének hivjuk. A bizonyitasban el6szor T' Jordan felbontédsat
vizsgaltam. Ezutdn megadtam a C7i-osztalyd métrixok Cesaro aszimp-
totikus limeszeit az alabbi mddon.

3.2. TETEL. A kévetkezd dllitdsok ekvivalensek minden pozitiv definit
A € B(C?) esetén:
(i) A a Cesaro aszimptotikus limesze eqy T € C11(C?) hatvdnykorldtos

mdtrixnak;
(ii) ha az A sajdtértékei ty,...,tq > 0, multiplicitdssal szdmolva,
akkor 1 L
4.4+ = =( 3.1
0 + -+ » (3.1)
teljestil;

(iii) létezik egy olyan invertdlhats S € B(C?) mdtriz, melynek osz-
lopvektorai mind egységuektorok, és fendll az

A=g8"1571 = (857!
egyenldség.

Az Aaltalanos eset karakterizaldsa felhaszndlja a fenti Cy; esetben
megadott karakterizdcidt. Ugyancsak felhasznaltam az 1.3. Lemmat, és
egy specialis alaku blokk-matrix blokk-diagonalizalasat. A hatvanykorldtos
T € B(C%) métrixot I-stabilnak hivjuk (0 < [ < d), ha dimHy = I. A
kovetkezd tételben I jeloli az [ x I-es identikus métrixot, 0, € B(CF) pedig
a zérd matrixot.

3.3. TETEL. A kévetkezd hdrom feltétel ekvivalens eqymdssal bdarmely
A € B(CY) szinguldris pozitiv szemi-definit mdtriz és 1 <1 < d egész szdm
esetén:
(i) létezik egy hatvdnykorldtos és l-stabil T € B(C?) mdtriz, mellyel
Ar o = A teljesiil;
(ii) legyen k = d —1, ha ty,...t; jeloli az A nem-zérd sajatértékeit,
multiplicitdssal szdmolva, akkor
1 1

— 4+ —<k
i tr
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teljestil;
(iii) létezik egy olyan invertdlhaté S € B(C?) mdtriz, melynek osz-
lopvektorai mind egységuektorok és fendll az

A=8S"YLo0,)st
egyenldséy.

Természetes kérdés, hogy van-e barmilyen Gsszefliggés Ar ¢ és A~ ¢
kozt? Ha T € B(CY) kontrakcié, akkor amint azt mar lattuk Ap- = Ap
teljesiil (2.2. Tétel). Azonban ha T hatvdnykorldtos, akkor dltaldban még
a Ho(T) és Ho(T™*) stabil alterek sem egyeznek meg, és igy Arp« ¢ és
Ar ¢ is kiilonbo6zok. Az alabbi Gsszefiiggést lattam be Ci-osztalytd 2 x 2-es
hatvanykorlatos matrixokra.

3.4. TETEL. Minden T € C11(C?) madtrizra teljesiil az aldbbi
eqyenldség:
ATlo + ALl o =2D. (3.2)

A fenti tétel mar nem igaz harom dimenzioban. Ezt disszertdciémban
egy konkrét példin mutattam meg.

4. Normalishoz hasonl6 operatorok aszimptotikus limesze

A negyedik fejezet a [6] publikdciém eredményeit tartalmazza. El8szor
az Sz.-Nagy hasonldségi tétel sziikségességi részének egy altalanositasat
bizonyitottam be (1.1. és 1.2. Tétel). Tekintsiink egy N € B(H)
normdlis, hatvénykorldtos operdtort. Mivel r(N)™ = r(N™) = |N"||
(n € N) teljesiil, azt kapjuk, hogy N kontrakcié. A normdlis operdtorok
figgvénymodelljének alkalmazédsaval konnyedén kapjuk, hogy Ay =
Ly (vyr @ Opgo(vy teljesiil, ahol N|(ran Ax)~ az N unitér része. Az 1.2.
Tétel miatt jogos azt sejteniink, hogy ha egy hatvanykorlatos T' operator
hasonlé egy normaélis operdtorohoz, akkor az Ap 1 |(ran Ap )~ megszoritds
invertdlhat6 kell, hogy legyen. Az A € B(H) nem-zér6 operédtor redukalt
minimum modulusa a kévetkezd mennyiség: v(A) := inf{||Az|: x €
(ker A)L, ||z|| = 1}. Specidlisan ha A pozitiv operdtor, akkor a y(A) > 0
feltétel ekvivalens azzal, hogy A|(ran A)~ invertdlhaté. Elsé eredményem
két egymashoz hasonlé hatvanykorlatos operator kapcsolatardl szol.

4.1. TETEL. Tekintsiink két hatvdnykorldtos T, S ¢ Co.(H) operdtort,
melyek hasonldak egymdshoz. Ekkor v(Ar,r) > 0 pontosan akkor teljesiil
valamely (kovetkezésképpen minden) L Banach limeszre, ha v(Ag ) > 0
19az.



A y(Arp.L) > 0 feltétel ekvivalens azzal, hogy T hatvdnyai a Ho(T)*
altéren egyenletesen alulrdl korldatosak, azaz létezik olyan ¢ > 0 konstans,
mellyel

clzll < |T"2| (z € Ho(T)",n €N)

teljesil.
Kovetkezésképpen ha T hasonlé egy mormdlis operdtorhoz, akkor
Y(Ar,L) > 0 és y(Ap- 1) > 0 teljesiil.

A fenti tétel bizonyitisa az 1.3. Lemmat hasznalja. A 4.1. Tétel tu-
lajdonképpen az Sz.-Nagy hasonlésagi tétel szlikségességi részének egy
altalanositasa, mely bizonyos esetekben segithet eldonteni, hogy egy adott
operator hasonlé-e normalis operatorhoz. Fontos megjegyezni, hogy a 4.1.
Tétel utolsé pontja nem megfordithaté, mely konnyen lathaté egyszerii
példakon.

Ahogy mar azt lattuk, az Sz.-Nagy tétel kimondja, hogy Ar in-
vertalhato, ha T hasonlé egy unitér operatorhoz. Kontrakcidk esetén ennél
tobbet tudunk belatni Ap-rél. Nevezetesen bebizonyitottam az alabbi
tételt, ahol az (i) csupédn egyirdnyu kovetkeztetés, melynek (ii) a forditottja
szeparabilis esetben. Egy A 6nadjungalt operator spektruméanak minimalis
elemét r(A)-vel jeloljiik.

4.2. TETEL.

(i) Legyen dimH > Vg és T € B(H) egy olyan kontrakcid, mely
hasonld egy unitér operdtorhoz. Ekkor dimker(Ar — r(Ar)I) €
{0, 00} teljesiil. Kovetkezésképpen r(Ar) € o.(Ar) teljesil.

(ii) Tegyiik fel, hogy dimH = Ry, A € B(H) egy invertdlhato, pozitiv
kontrakcid, 1 € o.(A) és dimker(A — r(A)I) € {0,Ro} teljesiil.
Ekkor létezik eqy T € B(H) kontrakcid, mely hasonld eqy unitér
operdtorhoz és Ar = A.

Ez a tétel tekintheté az Sz.-Nagy tétel egy altalanositasanak kont-
rakciok esetén. A szepardbilis esetben karakterizdlja az unitér operdtor-
okhoz hasonlé kontrakcidk lehetséges aszimptotikus hatarértékeit. Meg-
jegyezziik, hogy a probléma hatvanykorldtos operatorok esetén nem
megoldott.

5. A kommutans-leképezés

Tekintsiink egy T' € B(H) kontrakciét. Minden C' € {T'} esetén létezik
pontosan egy D € {Wr}' gy, hogy X7C = DX teljesiil. Ez definidlja a
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T kommutans-leképezését, melyet vy jelol:
Y =7T" {T}/ — {WT}I, C .D7 ahol XTC =DXrp.

Megmutathaté, hogy v egy kontraktiv algebra-homomorfizmus ([16, Sec-
tion IX.1]). Ez a leképezés azért fontos, mert dsszekapcsolja a kontrakciot
egy unitér operdtorral, melyet jol ismeriink. Segitségével strukturalis és
stabilitdsi eredményeket is bizonyithatunk. Célunk a [3] publikdciéban az
volt, hogy v injektivitasat vizsgaljuk, és a disszertacié 6todik fejezete ezen
eredményeket foglalja 6ssze. Ha T' € C1.(H), akkor X és ezért yp is biz-
tosan injektiv. Természetesen adédik a kérdés, hogy lehet-e a kommutans-
leképezés injektiv, ha T ¢ Cy.(H)? Kideriilt, hogy lehet, s ezt az 6todik
fejezetben egy konkrét példaval igazoltam. Bebizonyitottam azt is, hogy
~ injektivitdsa esetén sziikségképpen teljesiilnie kell négy feltételnek T-re.
Egy T kontrakcié esetén jelolje Py a stabil altérre valé ortogondlis pro-
jekciot. A PyT|Hg és (I — Py)T|Hg kompresszidkat Tog és Typ jeldli.

5.1. TETEL. Ha a vy injektiv, akkor
()
(ii) Uap(Tgo) N Uap(Tll) #0,
(iii) op(T)Nop(T*)ND =0, és
) nem létezik olyan H = My + My direktfelbontds, ahol Mo, M
invaridnsak T-re és {0} # Mo C Hyp.

az XT11 = TooX egyenldség csak zéro X esetén teljestilhet,

(iv

Legyen A € B(F) operator és A € C, ekkor az A operdtor A\-hoz tartozd
gyoktere a ker(A — XI) := V52, ker(A — AT)? altér. Azt mondjuk, hogy az
A-nak generald a gyoktérrendszere, ha F = Vv {lge}(A —A): e Jp(A)}
teljesiil.

A fejezet mésodik eredménye elégséges feltételek megadasardl szol.
Nevezetesen, bizonyos feltételek mellett az 5.1. Tétel (iii) része elegend§ is
~r injektivitasahoz.

5.2. TETEL. Tegytik fel, hogy Too kielégiti a kovetkezd feltételeket:

(i) ap(T50) < p(To0);
(il) T¢, gyoktérrendszere generdld.
Ekkor ~ pontosan akkor injektiv, ha op(T) Nop(T*) ND = 0 teljesil.

Megjegyezziik, hogy az elobbi tétel feltételei az tgynevezett Cp-
kontrakcidk egy nagy osztalyara teljesiilnek.

Ezutan példat mutattam olyan kontrakciéra, mely nem Cj.-osztély,
mégis a kommutans-leképezése injektiv. Ezt kovetéen kvazihasonld kont-
rakcidk és ortogondlis Osszegek kommutédns-leképezését vizsgdltam. Azt
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mondjuk, hogy az A, B € B(H) operdtorok kvazihasonléak, ha léteznek
olyan X € B(H) és Y € B(H) injektiv, siliri képterii operdtorok, melyekre
XB = AX és YA = BY teljesiil. A T € B(H) kontrakcié stabil kapcso-
latban 4ll a 77 € B(H') kontrakciéval, ha a CT = T'C és ranC C H{(T”)
feltételekbél C' = 0 kévetkezik, és ha C'T" = TC' és ranC’ C Ho(T) a
C’" = 0 egyenl8séget implikalja.

5.3. TETEL. Legyen T € B(H) és T' € B(H') két kontrakcid.

(i) HaT ésT' kvdzihasonldak, akkor yr pontosan akkor injektiv, ha
YT 1S Q.
(il) A 7 := yrer kommutdns-leképezés pontosan akkor injektiv, ha
Y1 €s yr 18 az, tovdbbd T stabil kapcsolatban dll T’ -vel.
(i) Tegyiik fel, hogy T =T, ekkor ¥ = vyror injektivitdsa ekvivalens
a yr injektivitdsdval.

Megjegyezziik, hogy a fenti (ii)-(iii) dllitdsok kiterjeszthet6k megszamlal-
haté ortogonalis Osszegekre is. Dolgozatomban példat mutattam arra az
esetre, amikor yr és v+ injektivitdsa nem implikalja 7 injektivitdsat.

Végiil eltolas-operatorok segitségével megmutattam, hogy az 5.1. Tétel
négy pontja egyiitt sem biztositja v injektivitdsat. A vyp injektivitasanak
teljes jellemzése nyitva maradt.

6. Iranyitott fakon valé eltolasok ciklikussaga

Az iranyitott fakon vald eltolds-operdtorok osztalyat nemrég vezette
be Z. J. Jablonski, I. B. Jung és J. Stochel. Ez az osztaly a jol ismert
stulyozott kétiranyu, egyiranyu és csonkitd visszafele tolas operdtorok egy
természetesen adédé éltaldnositdsa. A [10] monogrifia szerzéi ezzel az 1]
operator osztéllyal addig nyitott problémakat véalaszoltak meg.

Disszertaciom utolso fejezetében ilyen tipusi korlatos operatorok cik-
likussagi tulajdonsagait vizsgaltam. Ehhez el6szor aszimptotikus viselke-
désiiket vizsgaltam meg, majd ennek alkalmazasaként nyertem a cik-
likussdgi eredményeket. A fejezetben a [7] benyijtott cikk eredményeit
ismertettem.

Most felelevenitiink pér sziikséges definiciét a [10] monografidbdl. A
T = (V, E) rendezett pdrt irdny{tott grafnak hivjuk, ha V egy tetszdleges
(&ltaldban végtelen) halmaz és E C (V x V) \ {(v,v): v € V}. AV
elemeit csicsoknak, E elemeit pedig (irdnyitott) élekenek hivjuk. A T
graf Osszefiiggd, ha barmely két kiillonboz6 u,v € V csics Gsszekothetd
irdnyftatlan tttal, azaz létezik véges sok u = vg, v1,... v, =v € V (n € N)
csucs ugy, hogy (vj_1,v;) € E vagy (vj,vj_1) € E teljesil minden
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1 <7 < nesetén. A vy,v1,...v, € V (n € N) véges csiics-sorozatot
(irdnyitott) kérnek nevezziik, ha (vj_1,v;) € E teljesiil minden 1 < j <n
esetén, és (vp,v0) € E. A T = (V,E) irdnyitott grafot irdnyitott fanak
hivjuk, ha az alabbi harom feltételt teljesiti:

(i) T osszefiiggd;
(ii) minden v € V-hez legfeljebb egy olyan v € V taldlhatd, mellyel
(u,v) € E teljesiil;
(iii) 7-ben nincs irdnyitott kor.

Ettél kezdve T mindig egy iranyitott fat fog jeldlni. A v csics gye-
reke az u € V-nek, ha (u,v) € E. Az u Osszes gyerekének halmazdt
Chir(u) = Chi(u)-val jeloljiik. Forditva, ha a v cstcshoz taldlhaté olyan u
(mely ekkor egyértelmiien meghatarozott), mellyel (u,v) € E igaz, akkor
azt mondjuk, hogy u a v sziil§je, és az u = pary(v) = par(v) jelolést
hasznéljuk. A par egy parcidlis leképezés, ezért értelmezheték az iterdltjai
is, melyeket par®(v) = par(...(par(v))...) jeldl, a par’ fiiggvény pedig

—_————
k-times
legyen az identikus fliggvény.

Ha egy cstcsnak nincs sziil6je, akkor gyokérnek hivjuk. Konnyt 1atni,
hogy T-nek legfeljebb egy gyokere lehet ([10, Proposition 2.1.1.]), és ha
ez 1étezik, akkor ezt root7 = root fogja jelolni. Egy olyan részgrafot, mely
maga is irdnyitott fa, 7 részfdjanak nevezlink. Bevezetjik a V° = V' \
{root} jel6lést is. Ha egy csicsnak nincs gyereke, akkor azt levélnek hivjuk.
A levelek osszes halmazat Lea(T) jeloli. Tetszbleges W C V részhalmaz
esetén legyen Chi(W) = U,ewChi(v), Chi’®(W) = W, Chi""' (W) =
Chi(Chi"(W)) (n € N) és Desr(W) = Des(W) = (J,—, Chi" (W), ahol
Des(W)-t a W halmaz leszdrmazottjdnak hivjuk, és ha W = {u}, akkor
egyszertien csak Des(u)-t frunk.

Egy n € Nyo = NU {0} esetén a Gen, 7(u) = Gen,(u) =
Uj—o Chi’ (par’ (u)) halmazt u n-edik generaciéjanak hivjuk (legfeljebb n-
szer mehetiink felfele, majd pedig ugyanannyit lefele) és a Geny(u) =
Gen(u) = U, 2, Geny, (u) halmazt u generdcijdnak/szintjének hivjuk. Az
aldbbi egyenléségbél ([10, Proposition 2.1.6])

V= U Des(par”™(u)) (6.1)

n=0

konnyen lathaté, hogy a kiilonb6z6 szinteket indexelhetjiik az egész szamok
egy részhalmazaval ugy, hogy ha v a k-adik szinten van, akkor sziilGje a
(k — 1)-ediken, gyerekei pedig a (k + 1)-ediken lesz.
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Tekintsiikk az ¢2(V) komplex Hilbert teret, azaz a V-n definialt
nagyzetesen Osszegezheté fliggvények terét, ahol a bels6 szorzatot a
kovetezé modon definialjuk:

(f.9) =" flwglu), fgel(V).

ueV

Minden u € V esetén legyen e, (v) = 0, € €*(V), ahol 6, , a Kronecker-
delta szimbdlumot jeldli. Nyilvanvaléan az {e,: u € V} rendszer egy
ortonormalt bézist alkot. Haszndlni fogjuk az ¢2(W) = V{e,: w € W}
jelolést, ha W C V.

Legyen most A = {\,: v € V°} C C egy stlyhalmaz, mely kielégiti az

alabbi feltételt:
sup Z Ao2:ueV 3 < oo
ve€Chi(u)

Ekkor a T-n valé sulyozott eltolds-operatort a kovetkezoképpen definialjuk:

Sx: C(V) = V), ewrr D> Aew.
v€Chi(u)

A [10, Proposition 3.1.8.] miatt ez egy korlatos operédtort definidl, melynek
norméja [|Sy|| = sup{ 2 veChi(u) Aol u € V}.

Kizarolag korlatos eltolasokat tekintettem, s6t, a fejezet nagy részében
kontrakcidkat. Ismert, hogy minden S, unitér ekvivalens az S)y| eltoléas-
operatorral, ahol |A| := {|A,|: v € V°} C [0,00[. Ha egy suly zéré, akkor
a fan vald eltolds-operator unitér ekvivalens két masik fan vald eltolds
ortogonélis Gsszegével ([10, Theorem 3.2.1 és Proposition 3.1.6]. Erre valé
tekintettel csak olyan fan vett eltolas-operatorokat vizsgdltam, melyeknél
a sulyok mind pozitivak.

A T € B(H) operdtort ciklikusnak hivjuk, ha létezik olyan h € H
vektor, hogy

Hrpn =Hp = V{T"h: n € No} = {p(T)h: pc Pc}” =H,

ahol P¢ jeloli a komplex polinomok halmazéat. Egy ilyen h € ‘H vektort a T
egy ciklikus vektoranak hivunk. A fejezet els6 tétele csonkité visszatolds-
operatorok egy megszamlalhaté ortogonalis Osszegérol szol.

6.1. TETEL. Tegyik fel, hogy {e;r: j € J,k € No} egy ortonormdlt
bdzis a H Hilbert térben, ahol J # 0 eqy megszimldlhaté halmaz, és
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{wjr:j €T, keNy} CC egy korldtos suly-halmaz. Tekintsik a kivetkezd
korldtos operdtort:

Be. . = 0 ha k=0
S Wjk—1€jk—1  eqyébként’

(i) Ha nincs a sulyok kozt zérd, akkor B ciklikus.

(ii) Tegytk fel, hogy mincs zérd sily, és létezik egy olyan g €
N, ran(B"™) vektor, mely minden fix j € J esetén a (g,e; ) # 0
feltételt végtelen sok k € Ny esetén teljesiti. Ekkor taldlhato olyan
ciklikus vektor, mely a N ran(B™) linedris sokasdg eleme.

(iii) A B operdtor pontosan akkor ciklikus, ha legfeljebb egy zérd sily
szerepel.

A 6.1. Tétel bizonyitését a [8, Problem 160] megolddsa motivalta. Sze-
retném megjegyezni, hogy a (iii)-ban az az eset, amikor #.J = 1, mar be
volt bizonyitva a [9] cikkben. Azonban a cikk kinaiul {rédott, s {gy azt nem
tudtam elolvasni. A fenti tétel tekinthetd a [9] cikk altaldnositdsanak.

Ezutdn bebizonyitottam az irdanyitott fakon valé eltolas-operatorokkal
kapcsolatban pér ciklikussdgi eredményt. A

Br(7T)= Y (#Chi(u)—1)
ue€V \Lea(T)
szdmot a T eldgazdsi indexének hivjuk. A [10, Proposition 3.5.1]
kovetkezménye, hogy

1+ Br(7) ha T-nek van gyokere,

2
Br(7)  ha 7-nek nincs gyokere. (6:2)

dim(ran(Sy)*) = {
Konnyti 14tni, hogy minden ciklikus T € B(H) operator esetén teljesiil
a dim(ran(T)%) < 1 egyenlétlenség. Ezért a ciklikussdgi probléma csak
abban az esetben érdekes, ha Sy egy olyan fin definidlt, melynek nincs
gyokere, és BrT = 1. (Ha BrT = 0, akkor a szokdsos eltolds-operatorokat
kapjuk.)

Ha #Lea(T) = 2, akkor a T irdnyitott fat az aldbbi médon definidljuk:
V={jeZ: j<jobU{k:1<k<kp}, ahol feltessziik, hogy 1 < kg <
Jo < 00,68 B = {(G—1,3): j < o} U0, 1) UL((i— 1), 57): 1 < j < kol
A silyok pedig a kovetkezok: A = {\,: v € V'}. Ha #Lea(T) = 1 vagy 0,
akkor teljesen hasonlé médon reprezentaljuk 7T-t. A kévetkezé eredmény
az Sy operétor ciklikussdgaroél szol.

6.2. TETEL. Tegyiik fel, hogy a T = (V,E) irdnyitott fdnak nincs
gyokere, és Br(T) = 1.
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(i) Ha #Lea(T) = 2, akkor minden T-n vett eltolds-operdtor cik-
likus.

(ii) Tegyiik fel, hogy T = (V,E)-nek egy levele van. Ekkor az Sx
operdtor pontosan akkor ciklikus, ha a W € B((*(Z)) kétirdnyi
eltolas-operdtor, mely a T' := (Z, EN(Z x 7)) részfdin definidlt a
{2 ={ : € VNZ} sulyokkal, ciklikus. Specidlisan, ha
Sy & Co(€%(V)) kontrakcid, akkor Sy sziikségképpen ciklikus.

(iii) Ha Sy € C1.(¢*(V)) kontrakcié (kivetkezésképpen Lea(T) = 0),
akkor Sy-nek nem létezik ciklikus vektora.

(iv) Ha T -nek nincs levele, akkor létezik rajta olyan eltolds-operdtor,
mely ciklikus.

Ijgy tudjuk, hogy a kétiranyu eltolds-operatorok ciklikussdganak teljes
jellemzése nyitott probléma. Utolsé eredményem az iranyitott fakon vald
eltolas-operatorok adjungaltjanak ciklikussagarodl szol.

6.3. TETEL.
(1) Ha a T-nek van gydkere és a kontraktiv Sy operdtor Ci.-osztdlyi,
akkor SY ciklikus.
(ii) Ha a T-nek nincs gyokere, Br(T) < oo és a Sy operdtor C).-
kontrakcio, akkor Sy ciklikus.

A fenti tételt ugy bizonyitottam, hogy elétte beldttam, hogy az
S®(SH)* (k € N) operator ciklikus, ahol S jeldli a silyozatlan kétirdny el-
tolas-operatort és S,j pedig k darab egyiranyu stlyozatlan eltolas-operator
ortogondlis Osszegét. Természetesen adddik a kérdés, hogy a fenti (ii) pont-
ban a Br(T) < oo feltétel elhagyhat6-e? Ha be tudndnk bizonyitani, hogy
S @ (S;{O)* ciklikus, akkor az emlitett feltétel eldobhaté. Ezt a kérdést
azonban nyitva hagytam disszertaciomban.
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