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1. BEVEZETÉS 1

1. Bevezetés

A komplex Hilbert tereken ható, nem-normális operátorok vizsgála-

tának egyik fő iránya a kontrakciók elmélete. Az operátorelmélet ezen

területét Szőkefalvi-Nagy Béla és Ciprian Foias fejlesztették ki az Sz.-

Nagy-féle dilatációs tételből kiindulva. Azt mondjuk, hogy egy T ∈ B(H)

korlátos, lineáris opperátor kontrakció, ha ‖T‖ ≤ 1 teljesül, ahol B(H)

jelöli a H Hilbert téren ható korlátos, lineáris operátorok halmazát.

Sz.-Nagy és Foias aszimptotikus viselkedés szerint osztályozták a

kontrakciókat. Ezt az osztályozást meg lehet tenni az úgynevezett

hatványkorlátos operátorok osztályán is. A T ∈ B(H) operátort hatvány-

korlátosnak h́ıvjuk, ha sup{‖Tn‖ : n ∈ N} < ∞ teljesül. Azt mond-

juk, hogy az x ∈ H vektor stabil T -re, ha limn→∞ ‖Tnx‖ = 0. Jelölje

H0 = H0(T ) a stabil vektorok halmazát. Könnyen belátható, hogy a H0

halmaz T hiperinvariáns altere ([11]), ami azt jelenti, hogy H0 invariáns

altere minden olyan operátornak, mely T -vel felcserélhatő. Ezért H0-at

a T operátor stabil alterének h́ıvjuk. A fentebb emĺıtett osztályozás a

következő:

• a T hatványkorlátos operátort C1·-osztályúnak vagy aszimp-

totikusan nem-eltűnőnek h́ıvjuk, ha H0(T ) = {0};
• a T hatványkorlátos operátort C0·-osztályúnak vagy stabilnak

nevezzük, ha H0(T ) = H, azaz ha Tn → 0 az erős operátor-

topológiában (EOT) teljesül;

• azt mondjuk, hogy a T hatványkorlátos operátor C·j-osztályú

(j ∈ {0, 1}), ha a T ∗ Cj·-osztályú;

• a Cjk (j, k ∈ {0, 1}) osztály azon operátorokat tartalmazza,

melyek benne vannak a Cj· és C·k osztályokban is.

Sz.-Nagy 1947-ben karakterizálta azon operátorokat, melyek ha-

sonlóak egy unitér operátorhoz. Ez a tétel az operátorok hasonlóságának

témakörében ma is az egyik legismertebb és legfontossabb eredmény. A

tétel a következő:

1.1. Tétel (Sz.-Nagy [15]). A T ∈ B(H) operátor pontosan akkor

hasonló egy unitér operátorohoz, ha invertálható továbbá T és T−1 is

hatványkorlátos.

A bizonýıtáshoz Sz.-Nagy definiálta a T hatványkorlátos operátor

egy úgynevezett L-szimptotikus limeszét, ami általában függ az adott

L Banach limesztől. Abban az esetben, ha T kontrakció, akkor ez a

defińıció független L-től, sőt, ekkor ez tulajdonképpen az EOT-limesze a T
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önadjungált iteráltjainak {T ∗nTn}∞n=1. Ezt a határértéket AT -vel jelöljük,

és a T aszimptotikus limeszének h́ıvjuk. Azonban ha T hatványkorlátos,

akkor a fenti sorozat általában nem konvergens. Ebben az esetben az alábbi

másfél-lineáris funkcionált tekintjük:

wT,L : H×H → C, wT,L(x, y) := L-lim
n→∞

〈T ∗nTnx, y〉.

Mivel ez korlátos és pozit́ıv, ezért egyértelműen létezik egy reprezentáló

AT,L ∈ B(H) pozit́ıv operátor, melyre

wT,L(x, y) = 〈AT,Lx, y〉 (x, y ∈ H)

teljesül. Az AT,L operátort T L-aszimptotikus határértékének h́ıvjuk.

Egyszerűen megmutatható, hogy ha T és T−1 is hatványkorlátos, akkor

AT,L invertálható, és létezik pontosan egy olyan U ∈ B(H) unitér operátor,

melyre A
1/2
T,LT = UA

1/2
T,L teljesül. Könnyen látható, hogy kerAT,L = H0(T )

is teljesül minden L Banach limesszel.

Megjegyezzük, hogy érvényes az 1.1. Tétel alábbi megfogalmazása is

([13]).

1.2. Tétel (Sz.-Nagy). Tekintsünk egy T ∈ B(H) operátort és egy L

Banach limeszt. Az alábbi álĺıtások ekvivalensek egymással:

(i) T hasonló egy unitér operátorhoz;

(ii) T ráképezés és hasonló egy izometriához;

(iii) T hatványkorlátos és létezik egy c > 0 szám, mellyel ‖Tnx‖ ≥
c‖x‖ és ‖T ∗nx‖ ≥ c‖x‖ teljesül minden n ∈ N és x ∈ H esetén;

(iv) T ráképezés, hatványkorlátos és létezik egy c > 0 szám, mellyel

‖Tnx‖ ≥ c‖x‖ teljesül minden n ∈ N és x ∈ H esetén;

(v) T hatványkorlátos és az AT,L, AT∗,L operátorok invertálhatóak;

(vi) T invertáható, valamint a T−1 és T operátorok hatványkorlátosak.

Ha a T ∈ B(H) operátorról feltesszük, hogy hatványkorlátos is, akkor az

alábbi három feltétel is ekvivalens egymással:

(i’) T hasonló egy izometriához;

(ii’) létezik egy c > 0 konstans, mellyel ‖Tnx‖ ≥ c‖x‖ teljesül minden

n ∈ N és x ∈ H esetén;

(iii’) az AT,L operátor invertálható.

Sz.-Nagy módszere természetesen vezet el minket egy általánosabb

defińıcióhoz. Ez az úgynevezett izometrikus- és unitér aszimptoták

fogalma. Tekintsük az X+
T,L ∈ B(H,H+

T ) operátort, ahol H+
T =

(ranAT,L)− = (kerAT,L)⊥ = H⊥0 és X+
T,Lx = A

1/2
T,Lx igaz minden x ∈ H
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vektorra. Mivel ‖X+
T,LTx‖ = ‖X+

T,Lx‖ teljesül (x ∈ H), ezért létezik egy

egyértelműen meghatározott VT,L ∈ B(H+
T ) izometria, mellyel teljesül az

X+
T,LT = VT,LX

+
T,L összefűzési egyenlőség. A VT,L operátort (vagy sok-

szor a (VT,L, X
+
T,L) párt) h́ıvjuk a T izometrikus aszimptotájának. Te-

kintsük a VT,L izometria WT,L ∈ B(HT,L) minimális unitér dilatációját,

és az XT,L ∈ B(H,HT,L), XT,Lx = X+
T,Lx (x ∈ H) operátort. Nyil-

ván XT,LT = WT,LXT,L is teljesül. A WT,L operátort (vagy sokszor a

(WT,L, XT,L) párt) nevezzük a T unitér aszimptotájának. Ezek az aszimp-

toták és általánośıtásaik fontos szerepet játszanak az operátorelmélet

különböző területein, például a hiperinvariáns altér probléma, hasonlósági

problémák, operátor modellek esetében.

Ha T /∈ C1·(H) ∪ C0·(H), akkor az alábbi felbontási tétel igaz, melyet

kontrakciókra Sz.-Nagy és Foias láttak be, hatványkorlátos operátorokra

pedig Kérchy László.

1.3. Lemma (Kérchy [12]). Legyen T /∈ C1·(H)∪C0·(H), és tekintsük a

H = H0⊕H⊥0 ortogonális felbontást. Ebben a felbontásban a T blokk-mátrix

alakja a következőképpen néz ki:

T =

(
T0 R

0 T1

)
∈ B(H0 ⊕H⊥0 ), (1.1)

ahol a T0 elem C0·-, a T1 pedig C1·-osztályú.

A fenti Lemmát sokszor használtam disszertációmban.

Disszertációmban hatványkorlátos operátorok aszimptotikus visel-

kedését tanulmányoztam. Bemutattam néhány alkalmazást is, neveze-

tesen bebizonýıtottam egy hasonlósági tételt, aszimptotikusan nem-

eltűnő kontrakciók kommutáns leképezését vizsgáltam, illetve egy újfajta

operátorosztály ciklikussági tulajdonságairól nyertem új információkat. A

dolgozat öt cikket dolgoz fel: [3, 4, 5, 6, 7]. A következő fejezetekben

bemutatom dolgozatom főbb eredményeit.

2. Kontrakciók aszimptotikus határértékei

A dolgozat második fejezetében karakterizáltam azon pozit́ıv A ∈
B(H) operátorokat, melyekhez található olyan T ∈ B(H) kontrakció, hogy

AT = A teljesül. Az ebben a fejezetben bemutatott eredményeimet a

[4] cikkben közöltem le. Először azt láttam be, hogy az L-aszimptotikus

limesze bármely hatványkorlátos operátornak vagy 0, vagy a normája le-

galább 1.
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2.1. Tétel. Legyen L Banach limesz és T egy hatványkorlátos

operátor, melyre AT,L 6= 0 teljesül. Ekkor igaz az alábbi egyenlőtlenség:

‖AT,L‖ ≥ 1. (2.1)

Speciális esetben, ha T kontrakció, akkor ‖AT ‖ = 1 teljesül.

Ezután bebizonýıtottam az alábbi karakterizációt véges dimenzióban.

2.2. Tétel. Legyen T ∈ B(Cd) kontrakció. Ekkor AT = A2
T = AT∗ ,

azaz AT pontosan az az ortogonális projekció, melynek képtere H0(T )⊥.

Ezen felül H0(T ) = H0(T ∗) is teljesül.

Azt mondjuk, hogy az A ∈ B(H) operátor aszimptotikusan előáll a T

kontrakcióból az egyenletes konvergenciára nézve, ha limn→∞ ‖T ∗nTn −
A‖ = 0. Természetesen ekkor A = AT teljesül. Megjegyezzük, hogy kon-

trakciók esetén általában a limn→∞ T ∗nTn = A csak az EOT-ban tel-

jesül. A σe és re szimbólumok jelölik a lényeges spektrumot és a lényeges

spektrálsugarat. A jellemzés szeparábilis, végtelen dimenziós terekben a

következőképpen szól.

2.3. Tétel. Legyen dimH = ℵ0, és A ∈ B(H) egy kontrakció. Az

alábbiak ekvivalensek egymással:

(i) A aszimptotikusan előáll egy kontrakcióból;

(ii) A aszimptotikusan előáll egy kontrakcióból az egyenletes konver-

genciában;

(iii) re(A) = 1 teljesül vagy pedig A egy véges rangú projekció;

(iv) dimH(]0, 1]) = dimH(]δ, 1]) igaz minden 0 ≤ δ < 1 számra,

ahol H(ω) jelöli az A operátor ω ⊆ R Borel halmazhoz tartozó

spektrálalterét.

Sőt, ha a fenti teljesül, és dim ker(A − I) ∈ {0,ℵ0}, akkor T választható

olyan C·0-kontrakciónak, hogy vele (ii) teljesül.

A nem-szeparábilis esetben is bizonýıtottam egy hasonló jellemzést.

Legyen κ egy olyan számosság, melyre κ ≤ dimH teljesül. Ekkor az

Eκ := {S ∈ B(H) : dim(R(S))− < κ} halmaz lezártja egy valódi két-oldali

ideál, melyet Cκ-val jelölünk. Tekintsük az Fκ := B(H)/Cκ faktor algebrát.

A πκ : B(H)→ Fκ jelölje a faktor-leképezést, és ‖ · ‖κ a faktor-normát Fκ-

án. Tetszőleges A ∈ B(H) operátor esetén használni fogjuk a következő

jelöléseket: ‖A‖κ := ‖πκ(A)‖κ, σκ(A) := σ(πκ(A)) és rκ(A) := r(πκ(A)).

(Ha κ = ℵ0, akkor a kompakt operátorok ideálját kapjuk, ‖A‖ℵ0 = ‖A‖e
a lényeges norma, σℵ0(A) = σe(A) és rℵ0(A) = re(A).) Részletek ezen
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ideálokkal kapcsolatban a [2] vagy [14] publikációkban találhatóak. A

jellemzés nem-szeparábilis tereken a következő.

2.4. Tétel. Legyen dimH > ℵ0 és A ∈ B(H) egy pozit́ıv kontrakció.

Ekkor a következő négy feltétel ekvivalens egymással:

(i) A aszimptotikusan előáll egy kontrakcióból;

(ii) A aszimptotikusan előáll egy kontrakcióból egyenletes konver-

genciában;

(iii) A egy véges rangú projekció, vagy pedig rκ(A) = 1 teljesül κ =

dimH(]0, 1]) ≥ ℵ0-val;

(iv) dimH(]0, 1]) = dimH(]δ, 1]) igaz minden 0 ≤ δ < 1 számra.

Sőt, ha a fenti teljesül, és dim ker(A − I) ∈ {0,∞}, akkor T választható

olyan C·0-kontrakciónak, hogy vele (ii) teljesül.

Azt mondjuk, hogy egy T kontrakció teljesen nem-unitér, ha nincs

olyan nem-nulla invariáns altere, melyra való megszoŕıtása T -nek unitér

operátor. Természetesen vetődik fel a kérdés: két T1, T2 ∈ B(H) kontrak-

ció esetén mely feltételek teljesülése biztośıtja, hogy AT1 = AT2 , vagy

visszafele, a T1 és T2 kontrakciókról mit tudunk mondani, ha tudjuk,

hogy rájuk AT1
= AT2

teljesül. A második fejezet utolsó tétele erről a

problémáról szól.

2.5. Tétel. Legyen H tetszőleges Hilbert tér, T, T1, T2 ∈ B(H) pedig

kontrakciók. A következők teljesülnek:

(i) ha T1, T2 felcserélhető, akkor AT1T2 ≤ AT1 és AT1T2 ≤ AT2 ;

(ii) ha u ∈ H∞ egy nem-konstans belső függvény, és T egy teljesen

nem-unitér kontrakció, akkor AT = Au(T );

(iii) az AT1
= AT2

= A egyenlőségből A ≤ AT1T2
következik;

(iv) ha T1 és T2 felcserélhetőek, és AT1 = AT2 teljesül, akkor

szükségképpen AT1T2
= AT1

= AT2
is igaz.

3. Hatványkorlátos mátrixok Cesàro aszimptotikus limeszei

A harmadik fejezet célja az volt, hogy karakterizáljam azon pozit́ıv

szemi-definit mátrixokat, melyek előállnak, mint egy hatványkorlátos

mátrix L-aszimptotikus limesze. A fejezet bemutatja az [5] publikációm

eredményeit. Az első fontos lépés az volt, hogy megmutattam, nem

kell Banach limeszekkel számolnuk, ugyanis hatványkorlátos mátrixok

esetén az L-aszimptotikus limesz mindig az önadjungált hatványok Cesàro

értelemben vett határértéke. Erről szól az alábbi tétel.
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3.1. Tétel. Legyen T ∈ B(Cd) hatávnykorlátos. Ekkor

AT,L = AT,C := lim
n→∞

1

n

n∑
j=1

T ∗jT j

teljesül minden L Banach limesszel.

Az AT,C = limn→∞
1
n

∑n
j=1 T

∗jT j mátrixot T Cesàro aszimp-

totikus limeszének h́ıvjuk. A bizonýıtásban először T Jordan felbontását

vizsgáltam. Ezután megadtam a C11-osztályú mátrixok Cesàro aszimp-

totikus limeszeit az alábbi módon.

3.2. Tétel. A következő álĺıtások ekvivalensek minden pozit́ıv definit

A ∈ B(Cd) esetén:

(i) A a Cesàro aszimptotikus limesze egy T ∈ C11(Cd) hatványkorlátos

mátrixnak;

(ii) ha az A sajátértékei t1, . . . , td > 0, multiplicitással számolva,

akkor
1

t1
+ · · ·+ 1

td
= d (3.1)

teljesül;

(iii) létezik egy olyan invertálható S ∈ B(Cd) mátrix, melynek osz-

lopvektorai mind egységvektorok, és fenáll az

A = S∗−1S−1 = (SS∗)−1

egyenlőség.

Az általános eset karakterizálása felhasználja a fenti C11 esetben

megadott karakterizációt. Ugyancsak felhasználtam az 1.3. Lemmát, és

egy speciális alakú blokk-mátrix blokk-diagonalizálását. A hatványkorlátos

T ∈ B(Cd) mátrixot l-stabilnak h́ıvjuk (0 ≤ l ≤ d), ha dimH0 = l. A

következő tételben Il jelöli az l× l-es identikus mátrixot, 0k ∈ B(Ck) pedig

a zéró mátrixot.

3.3. Tétel. A következő három feltétel ekvivalens egymással bármely

A ∈ B(Cd) szinguláris pozit́ıv szemi-definit mátrix és 1 ≤ l < d egész szám

esetén:

(i) létezik egy hatványkorlátos és l-stabil T ∈ B(Cd) mátrix, mellyel

AT,C = A teljesül;

(ii) legyen k = d − l, ha t1, . . . tk jelöli az A nem-zéró sajátértékeit,

multiplicitással számolva, akkor

1

t1
+ · · ·+ 1

tk
≤ k
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teljesül;

(iii) létezik egy olyan invertálható S ∈ B(Cd) mátrix, melynek osz-

lopvektorai mind egységvektorok és fenáll az

A = S∗−1(Il ⊕ 0k)S−1

egyenlőség.

Természetes kérdés, hogy van-e bármilyen összefüggés AT,C és AT∗,C
közt? Ha T ∈ B(Cd) kontrakció, akkor amint azt már láttuk AT∗ = AT
teljesül (2.2. Tétel). Azonban ha T hatványkorlátos, akkor általában még

a H0(T ) és H0(T ∗) stabil alterek sem egyeznek meg, és ı́gy AT∗,C és

AT,C is különbözők. Az alábbi összefüggést láttam be C11-osztályú 2×2-es

hatványkorlátos mátrixokra.

3.4. Tétel. Minden T ∈ C11(C2) mátrixra teljesül az alábbi

egyenlőség:

A−1
T,C +A−1

T∗,C = 2I2. (3.2)

A fenti tétel már nem igaz három dimenzióban. Ezt disszertációmban

egy konkrét példán mutattam meg.

4. Normálishoz hasonló operátorok aszimptotikus limesze

A negyedik fejezet a [6] publikációm eredményeit tartalmazza. Először

az Sz.-Nagy hasonlósági tétel szükségességi részének egy általánośıtását

bizonýıtottam be (1.1. és 1.2. Tétel). Tekintsünk egy N ∈ B(H)

normális, hatványkorlátos operátort. Mivel r(N)n = r(Nn) = ‖Nn‖
(n ∈ N) teljesül, azt kapjuk, hogy N kontrakció. A normális operátorok

függvénymodelljének alkalmazásával könnyedén kapjuk, hogy AN =

IH0(N)⊥ ⊕ 0H0(N) teljesül, ahol N |(ranAN )− az N unitér része. Az 1.2.

Tétel miatt jogos azt sejtenünk, hogy ha egy hatványkorlátos T operátor

hasonló egy normális operátorohoz, akkor az AT,L|(ranAT,L)− megszoŕıtás

invertálható kell, hogy legyen. Az A ∈ B(H) nem-zéró operátor redukált

minimum modulusa a következő mennyiség: γ(A) := inf{‖Ax‖ : x ∈
(kerA)⊥, ‖x‖ = 1}. Speciálisan ha A pozit́ıv operátor, akkor a γ(A) > 0

feltétel ekvivalens azzal, hogy A|(ranA)− invertálható. Első eredményem

két egymáshoz hasonló hatványkorlátos operátor kapcsolatáról szól.

4.1. Tétel. Tekintsünk két hatványkorlátos T, S /∈ C0·(H) operátort,

melyek hasonlóak egymáshoz. Ekkor γ(AT,L) > 0 pontosan akkor teljesül

valamely (következésképpen minden) L Banach limeszre, ha γ(AS,L) > 0

igaz.
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A γ(AT,L) > 0 feltétel ekvivalens azzal, hogy T hatványai a H0(T )⊥

altéren egyenletesen alulról korlátosak, azaz létezik olyan c > 0 konstans,

mellyel

c‖x‖ ≤ ‖Tnx‖ (x ∈ H0(T )⊥, n ∈ N)

teljesül.

Következésképpen ha T hasonló egy normális operátorhoz, akkor

γ(AT,L) > 0 és γ(AT∗,L) > 0 teljesül.

A fenti tétel bizonýıtása az 1.3. Lemmát használja. A 4.1. Tétel tu-

lajdonképpen az Sz.-Nagy hasonlósági tétel szükségességi részének egy

általánośıtása, mely bizonyos esetekben seǵıthet eldönteni, hogy egy adott

operátor hasonló-e normális operátorhoz. Fontos megjegyezni, hogy a 4.1.

Tétel utolsó pontja nem megford́ıtható, mely könnyen látható egyszerű

példákon.

Ahogy már azt láttuk, az Sz.-Nagy tétel kimondja, hogy AT,L in-

vertálható, ha T hasonló egy unitér operátorhoz. Kontrakciók esetén ennél

többet tudunk belátni AT -ről. Nevezetesen bebizonýıtottam az alábbi

tételt, ahol az (i) csupán egyirányú következtetés, melynek (ii) a ford́ıtottja

szeparábilis esetben. Egy A önadjungált operátor spektrumának minimális

elemét r(A)-vel jelöljük.

4.2. Tétel.

(i) Legyen dimH ≥ ℵ0 és T ∈ B(H) egy olyan kontrakció, mely

hasonló egy unitér operátorhoz. Ekkor dim ker(AT − r(AT )I) ∈
{0,∞} teljesül. Következésképpen r(AT ) ∈ σe(AT ) teljesül.

(ii) Tegyük fel, hogy dimH = ℵ0, A ∈ B(H) egy invertálható, pozit́ıv

kontrakció, 1 ∈ σe(A) és dim ker(A − r(A)I) ∈ {0,ℵ0} teljesül.

Ekkor létezik egy T ∈ B(H) kontrakció, mely hasonló egy unitér

operátorhoz és AT = A.

Ez a tétel tekinthető az Sz.-Nagy tétel egy általánośıtásának kont-

rakciók esetén. A szeparábilis esetben karakterizálja az unitér operátor-

okhoz hasonló kontrakciók lehetséges aszimptotikus határértékeit. Meg-

jegyezzük, hogy a probléma hatványkorlátos operátorok esetén nem

megoldott.

5. A kommutáns-leképezés

Tekintsünk egy T ∈ B(H) kontrakciót. Minden C ∈ {T}′ esetén létezik

pontosan egy D ∈ {WT }′ úgy, hogy XTC = DXT teljesül. Ez definiálja a



5. A KOMMUTÁNS-LEKÉPEZÉS 9

T kommutáns-leképezését, melyet γT jelöl:

γ = γT : {T}′ → {WT }′, C 7→ D, ahol XTC = DXT .

Megmutatható, hogy γ egy kontrakt́ıv algebra-homomorfizmus ([16, Sec-

tion IX.1]). Ez a leképezés azért fontos, mert összekapcsolja a kontrakciót

egy unitér operátorral, melyet jól ismerünk. Seǵıtségével struktúrális és

stabilitási eredményeket is bizonýıthatunk. Célunk a [3] publikációban az

volt, hogy γ injektivitását vizsgáljuk, és a disszertáció ötödik fejezete ezen

eredményeket foglalja össze. Ha T ∈ C1·(H), akkor XT és ezért γT is biz-

tosan injekt́ıv. Természetesen adódik a kérdés, hogy lehet-e a kommutáns-

leképezés injekt́ıv, ha T /∈ C1·(H)? Kiderült, hogy lehet, s ezt az ötödik

fejezetben egy konkrét példával igazoltam. Bebizonýıtottam azt is, hogy

γ injektivitása esetén szükségképpen teljesülnie kell négy feltételnek T -re.

Egy T kontrakció esetén jelölje P0 a stabil altérre való ortogonális pro-

jekciót. A P0T |H0 és (I − P0)T |H⊥0 kompressziókat T00 és T11 jelöli.

5.1. Tétel. Ha a γT injekt́ıv, akkor

(i) az XT11 = T00X egyenlőség csak zéró X esetén teljesülhet,

(ii) σap(T ∗00) ∩ σap(T11) 6= ∅,
(iii) σp(T ) ∩ σp(T ∗) ∩ D = ∅, és

(iv) nem létezik olyan H = M0 uM1 direktfelbontás, ahol M0,M1

invariánsak T -re és {0} 6=M0 ⊂ H0.

Legyen A ∈ B(F) operátor és λ ∈ C, ekkor az A operátor λ-hoz tartozó

gyöktere a k̃er(A− λI) := ∨∞j=1 ker(A− λI)j altér. Azt mondjuk, hogy az

A-nak generáló a gyöktérrendszere, ha F = ∨
{

k̃er(A− λI) : λ ∈ σp(A)
}

teljesül.

A fejezet második eredménye elégséges feltételek megadásáról szól.

Nevezetesen, bizonyos feltételek mellett az 5.1. Tétel (iii) része elegendő is

γT injektivitásához.

5.2. Tétel. Tegyük fel, hogy T00 kieléǵıti a következő feltételeket:

(i) σp(T
∗
00) ⊂ σp(T00);

(ii) T ∗00 gyöktérrendszere generáló.

Ekkor γ pontosan akkor injekt́ıv, ha σp(T ) ∩ σp(T ∗) ∩ D = ∅ teljesül.

Megjegyezzük, hogy az előbbi tétel feltételei az úgynevezett C0-

kontrakciók egy nagy osztályára teljesülnek.

Ezután példát mutattam olyan kontrakcióra, mely nem C1·-osztályú,

mégis a kommutáns-leképezése injekt́ıv. Ezt követően kvázihasonló kont-

rakciók és ortogonális összegek kommutáns-leképezését vizsgáltam. Azt



10

mondjuk, hogy az A,B ∈ B(H) operátorok kvázihasonlóak, ha léteznek

olyan X ∈ B(H) és Y ∈ B(H) injekt́ıv, sűrű képterű operátorok, melyekre

XB = AX és Y A = BY teljesül. A T ∈ B(H) kontrakció stabil kapcso-

latban áll a T ′ ∈ B(H′) kontrakcióval, ha a CT = T ′C és ranC ⊂ H′0(T ′)

feltételekből C = 0 következik, és ha C ′T ′ = TC ′ és ranC ′ ⊂ H0(T ) a

C ′ = 0 egyenlőséget implikálja.

5.3. Tétel. Legyen T ∈ B(H) és T ′ ∈ B(H′) két kontrakció.

(i) Ha T és T ′ kvázihasonlóak, akkor γT pontosan akkor injekt́ıv, ha

γT ′ is az.

(ii) A γ̃ := γT⊕T ′ kommutáns-leképezés pontosan akkor injekt́ıv, ha

γT és γT ′ is az, továbbá T stabil kapcsolatban áll T ′-vel.

(iii) Tegyük fel, hogy T = T ′, ekkor γ̃ = γT⊕T injektivitása ekvivalens

a γT injektivitásával.

Megjegyezzük, hogy a fenti (ii)-(iii) álĺıtások kiterjeszthetők megszámlál-

ható ortogonális összegekre is. Dolgozatomban példát mutattam arra az

esetre, amikor γT és γT ′ injektivitása nem implikálja γ̃ injektivitását.

Végül eltolás-operátorok seǵıtségével megmutattam, hogy az 5.1. Tétel

négy pontja együtt sem biztośıtja γT injektivitását. A γT injektivitásának

teljes jellemzése nyitva maradt.

6. Iránýıtott fákon való eltolások ciklikussága

Az iránýıtott fákon való eltolás-operátorok osztályát nemrég vezette

be Z. J. Jab lonski, I. B. Jung és J. Stochel. Ez az osztály a jól ismert

súlyozott kétirányú, egyirányú és csonḱıtó visszafele tolás operátorok egy

természetesen adódó általánośıtása. A [10] monográfia szerzői ezzel az új

operátor osztállyal addig nyitott problémákat válaszoltak meg.

Disszertációm utolsó fejezetében ilyen t́ıpusú korlátos operátorok cik-

likussági tulajdonságait vizsgáltam. Ehhez először aszimptotikus viselke-

désüket vizsgáltam meg, majd ennek alkalmazásaként nyertem a cik-

likussági eredményeket. A fejezetben a [7] benyújtott cikk eredményeit

ismertettem.

Most feleleveńıtünk pár szükséges defińıciót a [10] monográfiából. A

T = (V,E) rendezett párt iránýıtott gráfnak h́ıvjuk, ha V egy tetszőleges

(általában végtelen) halmaz és E ⊆ (V × V ) \ {(v, v) : v ∈ V }. A V

elemeit csúcsoknak, E elemeit pedig (iránýıtott) élekenek h́ıvjuk. A T
gráf összefüggő, ha bármely két különböző u, v ∈ V csúcs összeköthető

iránýıtatlan úttal, azaz létezik véges sok u = v0, v1, . . . vn = v ∈ V (n ∈ N)

csúcs úgy, hogy (vj−1, vj) ∈ E vagy (vj , vj−1) ∈ E teljesül minden
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1 ≤ j ≤ n esetén. A v0, v1, . . . vn ∈ V (n ∈ N) véges csúcs-sorozatot

(iránýıtott) körnek nevezzük, ha (vj−1, vj) ∈ E teljesül minden 1 ≤ j ≤ n
esetén, és (vn, v0) ∈ E. A T = (V,E) iránýıtott gráfot iránýıtott fának

h́ıvjuk, ha az alábbi három feltételt teljeśıti:

(i) T összefüggő;

(ii) minden v ∈ V -hez legfeljebb egy olyan u ∈ V található, mellyel

(u, v) ∈ E teljesül;

(iii) T -ben nincs iránýıtott kör.

Ettől kezdve T mindig egy iránýıtott fát fog jelölni. A v csúcs gye-

reke az u ∈ V -nek, ha (u, v) ∈ E. Az u összes gyerekének halmazát

ChiT (u) = Chi(u)-val jelöljük. Ford́ıtva, ha a v csúcshoz található olyan u

(mely ekkor egyértelműen meghatározott), mellyel (u, v) ∈ E igaz, akkor

azt mondjuk, hogy u a v szülője, és az u = parT (v) = par(v) jelölést

használjuk. A par egy parciális leképezés, ezért értelmezhetők az iteráltjai

is, melyeket park(v) = par(. . . (par︸ ︷︷ ︸
k-times

(v)) . . . ) jelöl, a par0 függvény pedig

legyen az identikus függvény.

Ha egy csúcsnak nincs szülője, akkor gyökérnek h́ıvjuk. Könnyű látni,

hogy T -nek legfeljebb egy gyökere lehet ([10, Proposition 2.1.1.]), és ha

ez létezik, akkor ezt rootT = root fogja jelölni. Egy olyan részgráfot, mely

maga is iránýıtott fa, T részfájának nevezünk. Bevezetjük a V ◦ = V \
{root} jelölést is. Ha egy csúcsnak nincs gyereke, akkor azt levélnek h́ıvjuk.

A levelek összes halmazát Lea(T ) jelöli. Tetszőleges W ⊆ V részhalmaz

esetén legyen Chi(W ) = ∪v∈WChi(v), Chi0(W ) = W , Chin+1(W ) =

Chi(Chin(W )) (n ∈ N) és DesT (W ) = Des(W ) =
⋃∞
n=0 Chin(W ), ahol

Des(W )-t a W halmaz leszármazottjának h́ıvjuk, és ha W = {u}, akkor

egyszerűen csak Des(u)-t ı́runk.

Egy n ∈ N0 := N ∪ {0} esetén a Genn,T (u) = Genn(u) =⋃n
j=0 Chij(parj(u)) halmazt u n-edik generációjának h́ıvjuk (legfeljebb n-

szer mehetünk felfele, majd pedig ugyanannyit lefele) és a GenT (u) =

Gen(u) =
⋃∞
n=0 Genn(u) halmazt u generációjának/szintjének h́ıvjuk. Az

alábbi egyenlőségből ([10, Proposition 2.1.6])

V =

∞⋃
n=0

Des(parn(u)) (6.1)

könnyen látható, hogy a különböző szinteket indexelhetjük az egész számok

egy részhalmazával úgy, hogy ha v a k-adik szinten van, akkor szülője a

(k − 1)-ediken, gyerekei pedig a (k + 1)-ediken lesz.
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Tekintsük az `2(V ) komplex Hilbert teret, azaz a V -n definiált

nágyzetesen összegezhető függvények terét, ahol a belső szorzatot a

követező módon definiáljuk:

〈f, g〉 =
∑
u∈V

f(u)g(u), f, g ∈ `2(V ).

Minden u ∈ V esetén legyen eu(v) = δu,v ∈ `2(V ), ahol δu,v a Kronecker-

delta szimbólumot jelöli. Nyilvánvalóan az {eu : u ∈ V } rendszer egy

ortonormált bázist alkot. Használni fogjuk az `2(W ) = ∨{ew : w ∈ W}
jelölést, ha W ⊆ V .

Legyen most λ = {λv : v ∈ V ◦} ⊆ C egy súlyhalmaz, mely kieléǵıti az

alábbi feltételt:

sup


√ ∑
v∈Chi(u)

|λv|2 : u ∈ V

 <∞.

Ekkor a T -n való súlyozott eltolás-operátort a következőképpen definiáljuk:

Sλ : `2(V )→ `2(V ), eu 7→
∑

v∈Chi(u)

λvev.

A [10, Proposition 3.1.8.] miatt ez egy korlátos operátort definiál, melynek

normája ‖Sλ‖ = sup
{√∑

v∈Chi(u) |λv|2 : u ∈ V
}

.

Kizárólag korlátos eltolásokat tekintettem, sőt, a fejezet nagy részében

kontrakciókat. Ismert, hogy minden Sλ unitér ekvivalens az S|λ| eltolás-

operátorral, ahol |λ| := {|λv| : v ∈ V ◦} ⊆ [0,∞[. Ha egy súly zéró, akkor

a fán való eltolás-operátor unitér ekvivalens két másik fán való eltolás

ortogonális összegével ([10, Theorem 3.2.1 és Proposition 3.1.6]. Erre való

tekintettel csak olyan fán vett eltolás-operátorokat vizsgáltam, melyeknél

a súlyok mind pozit́ıvak.

A T ∈ B(H) operátort ciklikusnak h́ıvjuk, ha létezik olyan h ∈ H
vektor, hogy

HT,h = Hh := ∨{Tnh : n ∈ N0} = {p(T )h : p ∈ PC}− = H,

ahol PC jelöli a komplex polinomok halmazát. Egy ilyen h ∈ H vektort a T

egy ciklikus vektorának h́ıvunk. A fejezet első tétele csonḱıtó visszatolás-

operátorok egy megszámlálható ortogonális összegéről szól.

6.1. Tétel. Tegyük fel, hogy {ej,k : j ∈ J , k ∈ N0} egy ortonormált

bázis a H Hilbert térben, ahol J 6= ∅ egy megszámlálható halmaz, és
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{wj,k : j ∈ J , k ∈ N0} ⊂ C egy korlátos súly-halmaz. Tekintsük a következő

korlátos operátort:

Bej,k =

{
0 ha k = 0

wj,k−1ej,k−1 egyébként
.

(i) Ha nincs a súlyok közt zéró, akkor B ciklikus.

(ii) Tegyük fel, hogy nincs zéró súly, és létezik egy olyan g ∈
∩∞n=1 ran(Bn) vektor, mely minden fix j ∈ J esetén a 〈g, ej,k〉 6= 0

feltételt végtelen sok k ∈ N0 esetén teljeśıti. Ekkor található olyan

ciklikus vektor, mely a ∩∞n=1 ran(Bn) lineáris sokaság eleme.

(iii) A B operátor pontosan akkor ciklikus, ha legfeljebb egy zéró súly

szerepel.

A 6.1. Tétel bizonýıtását a [8, Problem 160] megoldása motiválta. Sze-

retném megjegyezni, hogy a (iii)-ban az az eset, amikor #J = 1, már be

volt bizonýıtva a [9] cikkben. Azonban a cikk ḱınaiul ı́ródott, s ı́gy azt nem

tudtam elolvasni. A fenti tétel tekinthető a [9] cikk általánośıtásának.

Ezután bebizonýıtottam az iránýıtott fákon való eltolás-operátorokkal

kapcsolatban pár ciklikussági eredményt. A

Br(T ) =
∑

u∈V \Lea(T )

(#Chi(u)− 1)

számot a T elágazási indexének h́ıvjuk. A [10, Proposition 3.5.1]

következménye, hogy

dim(ran(Sλ)⊥) =

{
1 + Br(T ) ha T -nek van gyökere,

Br(T ) ha T -nek nincs gyökere.
(6.2)

Könnyű látni, hogy minden ciklikus T ∈ B(H) operátor esetén teljesül

a dim(ran(T )⊥) ≤ 1 egyenlőtlenség. Ezért a ciklikussági probléma csak

abban az esetben érdekes, ha Sλ egy olyan fán definiált, melynek nincs

gyökere, és BrT = 1. (Ha BrT = 0, akkor a szokásos eltolás-operátorokat

kapjuk.)

Ha #Lea(T ) = 2, akkor a T iránýıtott fát az alábbi módon definiáljuk:

V = {j ∈ Z : j ≤ j0} ∪ {k′ : 1 ≤ k ≤ k0}, ahol feltesszük, hogy 1 ≤ k0 ≤
j0 <∞, és E = {(j−1, j) : j ≤ j0}∪{(0, 1′)}∪{((j−1)′, j′) : 1 < j ≤ k0}.
A súlyok pedig a következők: λ = {λv : v ∈ V }. Ha #Lea(T ) = 1 vagy 0,

akkor teljesen hasonló módon reprezentáljuk T -t. A következő eredmény

az Sλ operátor ciklikusságáról szól.

6.2. Tétel. Tegyük fel, hogy a T = (V,E) iránýıtott fának nincs

gyökere, és Br(T ) = 1.
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(i) Ha #Lea(T ) = 2, akkor minden T -n vett eltolás-operátor cik-

likus.

(ii) Tegyük fel, hogy T = (V,E)-nek egy levele van. Ekkor az Sλ
operátor pontosan akkor ciklikus, ha a W ∈ B(`2(Z)) kétirányú

eltolás-operátor, mely a T ′ := (Z, E∩ (Z×Z)) részfán definiált a

{λn}∞n=−∞ = {λv : ∈ V ∩ Z} súlyokkal, ciklikus. Speciálisan, ha

Sλ /∈ C·0(`2(V )) kontrakció, akkor Sλ szükségképpen ciklikus.

(iii) Ha Sλ ∈ C1·(`
2(V )) kontrakció (következésképpen Lea(T ) = ∅),

akkor Sλ-nek nem létezik ciklikus vektora.

(iv) Ha T -nek nincs levele, akkor létezik rajta olyan eltolás-operátor,

mely ciklikus.

Úgy tudjuk, hogy a kétirányú eltolás-operátorok ciklikusságának teljes

jellemzése nyitott probléma. Utolsó eredményem az iránýıtott fákon való

eltolás-operátorok adjungáltjának ciklikusságáról szól.

6.3. Tétel.

(i) Ha a T -nek van gyökere és a kontrakt́ıv Sλ operátor C1·-osztályú,

akkor S∗λ ciklikus.

(ii) Ha a T -nek nincs gyökere, Br(T ) < ∞ és a Sλ operátor C1·-

kontrakció, akkor S∗λ ciklikus.

A fenti tételt úgy bizonýıtottam, hogy előtte beláttam, hogy az

S⊕(S+
k )∗ (k ∈ N) operátor ciklikus, ahol S jelöli a súlyozatlan kétirányú el-

tolás-operátort és S+
k pedig k darab egyirányú súlyozatlan eltolás-operátor

ortogonális összegét. Természetesen adódik a kérdés, hogy a fenti (ii) pont-

ban a Br(T ) <∞ feltétel elhagyható-e? Ha be tudnánk bizonýıtani, hogy

S ⊕ (S+
ℵ0)∗ ciklikus, akkor az emĺıtett feltétel eldobható. Ezt a kérdést

azonban nyitva hagytam disszertációmban.
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ćımű disszertációját, amelyet a Szegedi Tudományegyetemre nyújt be.
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