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BEVEZETÉS 

 

A téma aktualitását támasztja alá, hogy a szelénnel kapcsolatos kutatások csak 

az elmúlt pár évtizedben kerültek előtérbe. A kutatók rávilágítottak arra, hogy bár a 

szelén a növények számára nem létfontosságú, az állati és emberi szervezetben azonban 

esszenciális mikroelem, így nélkülözhetetlen az optimális működéshez, valamint egyre 

több kutatás irányul a szelén szerepének a tanulmányozására. 

A szelén terhelés, más környezeti stresszfaktorokhoz hasonlóan morfológiai 

változásokat (stressz-indukált morfogenetikai válaszok, SIMV) idéz elő a növényi 

szervezetben, hiszen a növények szerveik növekedését, fejlődését a környezet aktuális 

állapotához (pl.: víz- és tápanyag ellátottság, szerves és szervetlen szennyezők jelenléte) 

igazodva szabályozzák. A stressz-indukált morfogenetikai válaszok a gyökér- és 

hajtásrendszert egyaránt érintik. A környezeti tényezők mellett a gyökér endogén 

hormonális rendszere (pl. auxin, citokinin és etilén) is szabályozza a morfológiai 

válaszokat, vagyis a szelén stressz által indukált SIMV kialakulásában a növényi 

hormonok metabolizmusának és transzportjának megváltozása is szerepet játszik. A 

külső, környezeti és belső, hormonális szabályozó elemek közötti gazdag jelátviteli 

hálózatban szignálmolekulák teremtenek kapcsolatot, biztosítva a fejlődési és növekedési 

jelek összehangolását. 

A jelátviteli molekulák újabb csoportját képezik a nitrogén-monoxid (NO) és 

reakciótermékei, az ún. reaktív nitrogénformák (RNF). A NO mint jelátvivő, jelentős 

szerepet tölt be a fejlődési folyamatokban, és újabb kutatások igazolják, hogy a NO és 

reakciótermékei nem specifikus, sokkal inkább általános és multifunkcionális 

jelmolekuláknak tekinthetők. Stresszválasz során azonban nem csak a RNF töltenek be 

jelátvivő funkciót, hanem a reaktív oxigénformák (ROF) is hozzájárulnak a 

morfogenetikai változásokhoz. A NO és ROF között aktív jelátvitel működik és a kutatók 

legújabb álláspontja szerint nitro-oxidatív stresszről beszélhetünk, mely során a ROF és 

RNF képződése biotikus vagy abiotikus stresszre indukálódik, és ezek együttesen 

alakítják ki a makromolekulákat érintő válaszokat. 
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CÉLKITŰZÉSEK 

 
  

Munkám során célul tűztem ki, hogy megvizsgáljam a szelén kezelés milyen 

hormonális és jelátviteli folyamatok indukálása által eredményezi a bekövetkező 

morfogenetikai válaszokat (SIMV) lúdfűben, illetve az e mögött húzódó 

háttérmechanizmusok feltérképezését. További célom volt, hogy a lúdfű (Arabidopsis 

thaliana L.) mint modellnövény mellett, a szelénnel történő biofortifikáció lehetőségét is 

megvizsgáljam egy egyszerű konyhakerti növény, a borsó (Pisum sativum L. Rajnai 

törpe) segítségével, hiszen a minőségi éhezés komoly egészségügyi és gazdasági károkat 

okoz a szelén hiányos területeken. 

 

Kutatásaim során a következő kérdésekre kerestem a választ: 

1. Hogyan hatnak az alkalmazott szelén koncentrációk a lúdfű modellnövények 

növekedésére, és kialakul-e morfogenetikai válasz szelén stressz során? 

2. Milyen változásokat idéz elő a szelén kezelés a hormonális rendszerben? 

3. Milyen változásokat idéz elő a szelén terhelés a fejlődést szabályozó 

jelmolekulák (a nitrogén-monoxid és a hidrogén-peroxid) szintjében az 

Arabidopsis növények gyökérzetében? 

4. Milyen interakciók állnak fenn a fejlődést szabályozó hormonális és jelátviteli 

rendszer között szelén kitettség során? 

5. Milyen hosszú távú hatása van a szelén kezelésnek a borsó növények 

fejlődésére és a terméshozásra? 

6. Az általam alkalmazott módszer alkalmas lenne-e biofortifikációs eljárásként a 

szelén dúsítására borsó növényekben? 
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ANYAGOK ÉS MÓDSZEREK 

 
Arabidopsis thaliana L. növényen végzett kísérletek 

 

Kísérleteimet 2, 4, 7 és 14 napos (DAG2/DAG4/DAG7/DAG14; days after 

germination; napok száma csírázás után) lúdfű (Arabidopsis thaliana L.) növényekkel 

végeztem. A növekedési periódust egy 4 napos csírázási időszak előzte meg. A vad típus 

(Col-0) mellett felhasználtam a nia1nia2 dupla mutánst, a gsnor1-3 mutánst, valamint a 

β-glükuronidáz (GUS) transzgenikus vonalakat a hormon státusz vizsgálatához 

(DR5::GUS, ARR5::GUS és az ACS8::GUS/GFP. Kísérleteket végeztem továbbá három 

különböző AtCKX::GUS (AtCKX4, AtCKX5, AtCKX6) növényvonallal. Tanulmányoztam 

az ipt-161 és 35S:CKX2 lúdfű vonalakat is. Ezek mellett kísérleteim során felhasználásra 

került az aux1-7, hookless (hlsl1-1) és az etr1-1 Arabidopsis. A módosított aszkorbinsav 

(Asa) tartalommal rendelkező vonalak közül a vtc2-1 és a miox4 került felhasználásra 

munkám során. A sejtosztódás vizsgálatához a CYCB1;1::GFP Arabidopsis vonalat 

alkalmaztam. Fő kezelésként nátrium-szelenitet (Na2SeO3) alkalmaztam 10, 20 és 40 µM 

koncentrációban, melyet közvetlenül a táptalajba adtam, a növények a Se-t tartalmazó 

táptalajon csíráztak és nevelkedtek. Kontrollként szelenit kezelést nem kapott növényeket 

használtam. A táptalajba adott Se mellé a következő kezeléseket alkalmaztam: S-nitrozo-

N-acetil-DL-penicillinamin (SNAP), mint NO donor 10 µM koncentrációban és 6-

benzilaminopurin (BA), mint exogén CK 0,1 µM koncentrációban. 

A szelén és kén tartalmakat induktív csatolású plazma tömegspektrométerrel 

(ICP-MS) határoztam meg a 14 napos (DAG 14) vad típusú Arabidopsis-ok gyökér- és 

hajtásrendszerében.  

A mintavételi napokon a következő morfológiai paramétereket határoztam 

meg: sziklevél terület, hipokotil hossz, főgyökér hossz. A mérések digitális fotókon 

történtek a Fiji, illetve a Zeiss Axiovision Rel. 4.8 szoftverek segítségével. A digitális 

felvételek elkészítéséhez Zeiss Axioskope 200-C sztereomikroszkópot és Zeiss Axiovert 

200M inverz mikroszkópot használtam. A morfológiai adatok alapján szelén tolerancia 

indexet is számoltam. 
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Azokban a transzgenikus Arabidopsis vonalakban, melyek rendelkeztek β-

glükuronidáz (GUS) aktivitással, 5-bromo-4-kloro-3-indolil glükuronid (X-Gluc) festést 

végeztem. A mintákat Zeiss Axiovert 200M inverz mikroszkóppal detektáltam. A 

DR5::GUS növények X-Gluc festése lehetővé tette számomra, hogy lokalizáljam és 

megszámoljam az oldalgyökereket, valamint a fejlettségi állapotukat is meg tudtam 

határozni. 

A fluoreszcensen jelölt minták in situ és in vivo vizsgálatához a technikai 

hátteret a Zeiss Axiovert 200M típusú inverz mikroszkóp biztosította számomra. A pixel 

intenzitásokat a gyökérben és sziklevélben egyaránt meghatároztam. A NO szint 

meghatározása a 4-amino-5-metilamino-2’-7’-difluorofluoreszcein diacetát (DAF-FM 

DA) festék használatával történt, míg a hidrogén-peroxid szint meghatározásához a 

növényekben az Ampliflu TM (vagy 10-acetil-3,7-dihidroxifenoxazin vagy Amplex Red) 

festéket alkalmaztam. A gyökércsúcsok és a sziklevél életképességének meghatározására 

fluoreszcein diacetát (FDA) festéket használtam. 

A CYCB1;1::GFP növények GFP expresszióját Zeiss LSM 700 Axio 

Observer.Z1 és Olympus LSM 700 lézer scanning konfokális mikroszkóppal vizsgáltam. 

A 4 napos (DAG4) növényeket propídium jodid (PI) festéssel jelöltem, hogy láthatóvá 

váljanak a sejtfalak. A GFP jel intenzitását és lokalizációját digitális képeken elemeztem 

Zeiss Zen2010 és Olympus Fluoview FV100, valamint Fiji szoftverek segítségével.  

Meghatározásra került a távolság a nyugalmi centrumtól (QC) az átmeneti zóna (TZ) 

kezdetéig, ahol a sejtek megnyúlása már erőteljes. A gyökér merisztéma méretét digitális 

felvételeken, Fiji szoftver segítségével mértem meg. 

 

Pisum sativum L. növényen végzett kísérletek 

 

Kísérleteim során Pisum sativum L. Rajnai törpe borsó növényeket használtam. 

A csíranövényeket perlittel megtöltött 5 literes cserepekbe ültettem (4 növény/cserép és 6 

cserép/kezelési koncentráció) és üvegházi körülmények között neveltem. A növények 

locsolása Hoagland tápoldattal történt. A borsó növények 35 napos korukig kontroll 

körülmények között nevelkedtek, majd 10, 50 és 100 µM Na2SeO3 kezelést kaptak a 
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tápoldattal 50 (50 és 100 µM Se), illetve 56 napig (10 µM Se). A kísérleti periódus alatt 

háromszor történt mintavétel a termésből, 2 hetes időközönként. 

A következő morfológiai paramétereket határoztam meg manuálisan: hajtás 

hossz, hajtás friss tömeg, levél hossz, főgyökér hossz és gyökér friss tömeg. A termés 

morfológiai paramétereit tekintve borsóhüvely szám/növény, a magokat tartalmazó 

hüvely friss és száraz tömege, a magok friss tömege, a magok száma/hüvely kerültek 

meghatározásra. 

A szelén mellett egyéb mikro- (Zn, Mn, Fe, Co, Cu, Mo) és makroelemek (K, 

Mg, Ca) koncentrációit is meghatároztam a növények gyökerében, hajtásában és a 

termésben ICP-MS technikával. 

 

 

EREDMÉNYEK 

  

Ph.D. munkám során genetikai és biokémiai módszerek felhasználásával 

megvizsgáltam, hogy a szelenit különböző koncentrációban alkalmazva milyen 

fejlődésbeli, hormonális és jelátviteli változásokat indukál a modell organizmusként 

használt Arabidopsis thaliana L. növényekben. Tanulmányoztam továbbá, hogy az 

általunk felállított biofortifikációs rendszerben feldúsul-e a Se a borsó növények 

termésében, és ez a fajta hosszú távú Se kitettség milyen növekedési változásokat idéz 

elő. A két rendszer használatával nem csak a növényélettani alapismeretek, hanem a 

gyakorlati hasznosítás lehetőségének bővítéséhez is hozzájárultam. 

 

Munkám során kapott eredményeim alapján elmondható, hogy: 

1. A magasabb Se koncentrációk (20 és 40 µM) a hajtás és a főgyökér 

növekedésgátlását idézték elő, hosszú távon (14 nap), enyhe Se kitettség 

esetén (10 µM) pedig a stressz indukált morfogenetikai válasz megjelenését 

tapasztaltuk. Ezek a növekedésbeli válaszok az adaptáció folyamatának 

tekinthetők, hiszen az erőforrások fejlődésről védekezésre történő 

átcsoportosítása a növény jobb túlélését jelentheti. A növekedésgátlás mellett 
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sejthalál is történt, amit a Se fehérjékbe történő beépülése (szelenocisztein és 

szelenometionin kialakulása) okozhat.  

2. Kimutattam, hogy a Se terhelés jelentős változásokat idéz elő a gyökér 

hormonháztartásában: az auxinválaszt (DR5-függő GUS aktivitás) csökkenti, 

az etilén bioszintézist (ACS8-függő GUS aktivitás) jelentős mértékben 

megnöveli. A citokininválasz promóter-függő (ARR5) GUS aktivitása és 

térbeli mintázata szintén módosul szelén kitettség hatására, feltehetően a 

gyökérből hajtásba irányuló CK transzlokáció gátlása és az AtCKX4 és 

AtCKX5 regulációja révén. 

3. A korai csíranövény fejlődés során a szelén többlet csökkenti a nitrogén-

monoxid tartalmat (ez a nitrát reduktáz aktivitásától függetlenül történik), és 

emeli a hidrogén-peroxid szintet a gyökérben, ami a két molekula 

antagonizmusára utal. Továbbá biokémiai (NO donor kezelés) és genetikai 

(gsnor1-3 és nia1nia2 mutánsok) módszerekkel  bizonyítottam, hogy a nagy 

NO tartalom hozzájárul a szelén tolerancia kialakulásához, míg a H2O2 

optimális szintje szükséges a Se tűréshez. 

4. Feltételezhető, hogy a korai fejlődés során a szelén által indukált H2O2 

csökkenti az auxin-függő génexpressziót, míg az idősebb gyökerekben a 

NO gátolja az auxin transzportját, így redukálva a gyökér auxin szintjét és 

növekedésgátlást okozva. A szelén terhelés által fokozott etilén bioszintézis 

(az ACS8 expressziója) részt vesz a sejthalál indukciójában, így a növekedés 

gátlásban és a H2O2 downstream eleme a jelátvitelnek. Eredményeim azt 

mutatják továbbá, hogy az etilén és a NO között nincs szabályozó kapcsolat 

szelén stressznek kitett gyökerekben. Kontroll körülmények között 

kölcsönösen negatív szabályozó kapcsolat áll fenn a CK és a NO között az 

Arabidopsis gyökerekben. Szelén terhelés esetén a CK befolyásolja a NO 

metabolizmusát, és a NO szint csökkenése szükséges az ARR5 promóter 

aktivációjához. Ez utóbbi eredmény a negatív CK-NO kapcsolatra utal 

szelén stressz alatt is. 
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5. A szelén hosszú távon negatívan hat a borsó növények növekedésére és a 

reproduktív fázisban a növények túlélési stratégiája a terméshozásra és 

érlelésre fókuszál.  

6. A termés fejlődését szintén gátolja a szelenit, ám a biofortifikáció sikeresnek 

bizonyult, hiszen a borsószemekben a Se feldúsul. 

 

Mindezekből világosan látszik, hogy a hormonális (auxin, citokinin és etilén) és 

jelátviteli rendszer (NO és H2O2) elemei együttesen, egymással kapcsolatban állva 

regulálják a szelén többlete által kiváltott fejlődési válaszokat. Munkacsoportunk 

elsőként írta le a NO metabolizmusában szelén hatására bekövetkező változásokat és 

részvételét, illetve szerepét a tolerancia kialakulásában. Fontos új eredményünk a NO és 

a citokinin közötti kapcsolat kimutatása és jellegének feltárása abiotikus (szelén) stressz 

alatt. Véleményünk szerint, az elvégzett kísérleti munkával hozzájárultam a növényi NO 

szerepének és interakcióinak jobb megértéséhez. 
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