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1. INTRODUCTION 

Disorders of the pancreas, both endocrine (e.g. diabetes mellitus) and exocrine (e.g. chronic 

pancreatitis or cystic fibrosis), can be triggered by different genetic factors. There exist specific mutations that 

can lead to the development of certain pancreatic diseasesdirectly. A little more than half a century ago, 

mankind already had a significant knowledge on these disorders clinically, however at that time not much was 

known about their genetic background. 

1.1. GENETIC RISK FACTORS OF DIABETES 

Based on the definitions provided by the American Diabetes Association, diabetes is a group of 

metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or 

both. Type 1 diabetes is caused by β-cell destruction in the Langerhans islets of the pancreas, usually leading to 

absolute insulin deficiency. Characteristics of type 2 diabetes range from predominant insulin resistance with 

relative insulin deficiency to predominant insulin secretory defect with insulin resistance. The long term 

complications affect several organs including the eyes, kidneys, nerves and blood vessels, making diabetes a 

lifelong disease which predisposes to secondary malfunction of almost all organs in the whole body, primarily 

due to the metabolic changes characteristic of diabetes. 

1.1.1. Genetic risk factors of type 1 diabetes mellitus (DM1) 

Type 1 diabetes mellitus (DM1, OMIM: 222100) is a genetically heterogeneous autoimmune disease of 

glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. β-

cells of the pancreas suffer autoimmune destruction in which several autoantibodies can have a pathogenic role 

against islet cells. 

Based on functional, structural and genetic evidence, haplotypes DR3 and DR4 of the human leukocyte 

antigene (HLA) class II loci are considered strong triggering factors, while DR2 haplotype protects from DM1. 

Certain alleles of other genes which are involved in disease pathogenesis confer relatively low risk for 

development of DM1 compared to HLA class II haplotypes. 

Since DM1 is known to be principally an autoimmune disease, genetic factors which influence the 

physiology of the immune system might have a significant role in the pathophysiology. 

 

1.1.2. Genetic risk factors of type 2 diabetes mellitus (DM2) 

Type 2 diabetes mellitus (DM2, OMIM: 125853) accounts for 90–95% of those with diabetes. This 

type encompasses individuals who have insulin resistance and usually have relative insulin deficiency.Although 

many different etiological factors can be responsible for the development of DM2, the specific causes are not 

known.The innate immune system is the first line of defense against microbial, fungal and viral infections. 

Tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) are released when toll-like 

receptor 4 (TLR4) binds certain danger- or pathogen-associated molecules. These molecules can directly 

increase insulin resistance in fat, muscle and liver cells, which can lead to impaired glucose tolerance, the major 

characteristic of DM2. 
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1.2. DEFENSINS IN DIABETES 

Defensins are small antimicrobial peptides of the innate immune system, which have 3 major types in 

vertebrates: α -, β- and θ-defensins. In humans only α- and β-defensins are expressed, while the genes encoding 

human θ-defensins are pseudogenes. 

1.2.1. αααα- and β-defensins 

The human chromosome locus 8p23.1 harbors 6 different α-defensin genes (DEFA1, DEFA3, 

DEFA1B, DEFA4, DEFA5, DEFA6) and 5 α-defensinpseudogenes. There are 6 different types of α-defensins / 

human neutrophil peptides (HNP) expressed in humans. The protein product of DEFA1, DEFA3, DEFA4 genes 

are HNP-1,-2,-3 and -4 derived from polymorphonuclear immune cells, while intestinal human defensins (HD-5 

and HD-6) are derived from Paneth cells and are the protein products of DEFA5 and DEFA6 genes.The cluster 

of human α-defensin genes include DEFA1 (OMIM: 125220) and DEFA3 (OMIM: 604522) lying on 

chromosome 8 with high variability of copy numbers. 

Today, these peptides are characterized as danger signals (alarmins) that play important roles in 

inflammation and immunity. In addition to antimicrobial effects, α-defensins have an important role in 

chemotaxis and induce proinflammatory cytokines. HNPs increase LDL (low density lipoprotein cholesterol) 

binding to the endothelial surface suggesting that α-defensins may modulate the development of 

atherosclerosis.Neutrophil granulocytes are considered to be the primary cellular origin of HNP 1-3. 

Human β-defensins are also antimicrobial peptides, which are thought to control the microbial flora on 

epithelial surfaces. According to currently accessible data from the HUGO Gene Nomenclature Committee 

(http://www.genenames.org/), 38 different genes were identified encoding potentially expressed β-defensins in 

humans, while 9 genes are referred to as β-defensinpseudogenes. 

Several SNPs have been characterized in the DEFB1 gene. Three frequent SNPs at positions c.-20G>A 

(rs11362), c.-44C>G (rs 1800972) and c.-52G>A (rs1799946) in the 5’-untranslated region (5' UTR) of DEFB1 

were described earlier. The untranslated variants influence HBD1 expression or function. 

1.2.2. Role of defensins in diabetes mellitus 

Although it has been shown that some polymorphisms in certain cytokine genes are associated either 

with DM1 or DM2, little is known about the genetics and the functions of α- and β-defensins in diabetes. 

Infections are frequent in diabetic patients, because the antimicrobial function of their immune response is 

impaired. It has been reported that mRNA levels of rat β1-defensinare decreased in the kidneys, which may 

explain the high incidence of urinary tract infections in diabetes mellitus. Recently, the effect of glucose and 

insulin on β-defensin expression has been described. However, no connection was found between genetic 

polymorphisms of the DEFB1 gene and diabetes in a Brasilian study investigating diabetic children. 

Increased levels of HNP1-3 in type 1 diabetic patients with nephropathy and with cardiovascular 

complications have recently been reported. It is tempting to speculate that copy number polymorphisms and 

alterations of DEFA1/DEFA3 mRNA levels in granulocytes may influence the levels of HNP1-3 in patients with 

diabetes type 1 and type 2. 
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1.3. CONNECTIONS BETWEEN ENDOCRINE AND EXOCRINE PANCREATIC DISEASES AT 

THE GENOMIC LEVEL 

Diabetes is a multifactorial disease, with both environmental and genetic factors playing a role in its 

development. Mutations in only a single gene can also lead to the development of diabetes. Monogenic diabetes, 

also termed maturity onset diabetes of the young (MODY), develops before the age of 25, and presents as a 

nonketotic form of diabetes. Its inheritance follows an autosomal dominant pattern, and mutations associated 

with MODY cause a primary defect in the function of the beta cells of the endocrine pancreas. Exocrine 

pancreas function is not affected in the majority of the 11 different types of MODY. However, in MODY8 (CEL 

MODY), in which there is a defect in the carboxyl ester lipase(CEL, OMIM: 114840) gene, insufficiency of 

both endocrine and exocrine pancreatic function is observed. 

Another example where a single malfunctioning gene may lead to both endocrine and exocrine 

insufficiency of the pancreas is the procolipase gene (CLPS, OMIM: 120105). The products of CLPS gene are 

the precursors of colipase and enterostatin. They are secreted mainly by the exocrine pancreas, but are also 

expressed in stomach, liver and regions of the central nervous system. The mature form of colipase is the 

essential cofactor of lipase, which has a significant role in the digestion of triglycerides emulsified by bile salts. 

Enterostatin acts as a pentapeptide hormone, which selectively down-regulates fat intake and hampers insulin 

secretion in animal models. Certain SNPs of the CLPS gene are associated with altered insulin secretion in non-

diabetic Caucasians. Furthermore, CLPS gene mutant p.R109C was found to be associated with DM2. In a 

functional study, the same mutant was found to be defective in its ability to anchor triglycerides to pancreatic 

lipase. 

The simultaneous appearance of diabetes mellitus and exocrine pancreas insufficiency is surprisingly 

common. In most cases they do not develop together due to a single genetic disorder as described above in the 

case of CEL MODY. Diabetes mellitus stemming from pancreatic tissue damage (pancreatitis, trauma, 

pancreatectomy, neoplasia, cystic fibrosis, hemochromatosis, fibrocalculouspancreatopathy or surgical pancreas 

resection) is classified as type 3c. 

Though endocrine and exocrine malfunction of the pancreas usually have different genetic risk factors, 

they might have a common genetic origin due to certain mutations in CLPS and CEL genes mentioned above. 

Living with chronic pancreatitis leads to the development of endocrine pancreas disfunction over time. 

Therefore, investigation of the mechanisms leading to chronic pancreatitis may not only result in a deeper 

understanding of the function of the exocrine pancreas and related diseases, but may also elucidate the 

mechanism of disease pathogenesis in certain types of diabetes. 

1.4. HEREDITARY CHRONIC PANCREATITIS 

Chronic pancreatitis (CP) is defined as a relapsing or continuing inflammatory disease of the pancreas 

and is characterized by irreversible morphological changes, upper abdominal pain and, in some patients, 

permanent impairment of exocrine or endocrine function or both.  

The first description of familial accumulation of chronic pancreatitis cases was provided in 1952 by 

Comfort and Steinberg. However, it took 44 years before the first gene associated with hereditary pancreatitis 

was identified by Whitcomb et al. in 1996.  
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Mutations in the PRSS1 gene associated with hereditary chronic pancreatitis result in early activation of 

trypsinogen inside the pancreas due to altered regulation by chymotrypsin C (CTRC). High penetrance 

trypsinogen mutations such as p.N29I and p.R122H are associated with an autosomal dominant inheritance 

pattern, whereas mutations with lower penetrance (e.g. mutation p.A16V) may be found not only in hereditary 

but also in sporadic cases without family history. 

1.5. MOUSE TRYPSINOGENS 

Considering the widespread use of mice in experimental studies of the pancreas, it is surprising how 

little is known about mouse trypsinogens. Using the currently accessible NCBI online genomic database 

(http://www.pubmed.org/) we found that eleven of the 20 genes are potentially functional (T4, T5, T7, T8, T9, 

T10, T11, T12, T15, T16, T20), while the other nine genes are either pseudogenes (T1, T2, T3, T14) or relic 

genes (T6, T13, T17, T18, T19). It remained unknown, however, which isoforms of the 11 potentially functional 

trypsinogen genes are expressed at the protein level in the mouse pancreas. More recently, genetic deletion of 

T7 indicated that this isoform may contribute to as much as 60% of pancreatic trypsinogens. It was also found 

that despite the presence of other trypsinogen isoforms, mice deficient in T7 did not respond to 

secretagoguehyperstimulation with the characteristic intra-acinar cell trypsinogen activation, which is an early 

event in acute pancreatitis. 
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2. AIMS 

Like other members of the innate immune system, defensins can also have a role in the development of 

type 1 and type 2 diabetes mellitus and their macro- and microvascular complications. In order to gain deeper 

comprehension about the role of defensins in diabetes, the aims of this study were: 

• to measure plasma levels of human neutrophil peptides 1-3 (HNP 1-3) and to examine their 

possible association with diabetes and / or its complications, 

• to determine gene copy number polymorphism and mRNA expression levels of 

DEFA1/DEFA3 genes in diabetes mellitus, 

• to investigate the association of single nucleotide polymorphisms c.-20G>A, c.-44C>G and c.-

52G>A in the promoter region of the β1-defensin (DEFB1) gene with type 1 and type 2 

diabetes mellitus. 

Research into the pathomechanism of hereditary chronic pancreatitis has been hindered by the lack of 

good animal models which mimic the human disease and develop spontaneous pancreatitis. In order to create a 

mouse model, biochemical characterization of mouse trypsinogens was necessary. The aims of the study of 

mouse trypsinogens were: 

• to identify the major trypsinogen isoforms expressed in the mouse pancreas, 

• to characterize the autoactivation of mouse trypsinogens and study their interaction with 

mouse chymotrypsins, 

• to investigate the biochemical characteristics of the most frequent pathogenic human cationic 

trypsinogen mutation p.R122H introduced into mouse trypsinogen isoforms T7 and T8. 
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3. PATIENTS AND METHODS 

3.1. PATIENTS AND CONTROLS IN GENETIC ASSOCIATION STUDY 

All cases and controls were of Hungarian ethnic origin and were residents of Hungary. Informed 

consent was obtained from all subjects, and the local Ethics Committee of University of Szeged gave prior 

approval to the study. All subjects consented to the study and were treated according to the Patient Right 

Protection Act of our institutions and international guidelines. 

The 221 age- and gender matched members of the control group were selected from healthy blood 

donors from the regional Centre of Hungarian National Blood Transfusion Service(Szeged, Hungary). Blood 

donors with diabetes mellitus, nephropathy, hypertension or ischemic heart disease were excluded from this 

study. 

257 diabetic patients (122 men, 135 women) were enrolled in the study; which included 117 patients 

with type 1 and 140 patients with type 2 diabetes. Diagnosis of diabetes of all patients was based on the ADA 

criteria. 

71 of the cohort had diabetic nephropathy (32 DM1 and 39 DM2), 115 patients suffered from 

retinopathy (47 DM1, 68 DM2). Neuropathy was diagnosed in 95 patients (35 DM1, 60 DM2).54 diabetic 

patients (14 DM1, 40 DM2) had previously been diagnosed with different macrovascular diseases. High number 

of patients (182) had treatedhypertension (50 DM1 and 132 DM2). 

3.2. METHODS USEDIN GENETIC ASSOCIATION STUDY 

To extract genomic DNA and mRNA from leukocytes and to determine α-defensin levels we used 

anticoagulated (EDTA), centrifuged (1200 rpm/min for 15 min), peripheral blood. 

We determined DEFA1/DEFA3gene copy number using quantitative real-time PCR 

according to the method used by Linzmeieret al. In our experiments we chose MPO 

(myeloperoxidase gene) as reference gene. Expression level of DEFA1/DEFA3 mRNA was 

measured by reverse transcriptase quantitative real-time PCR. As a reference gene we used 

GAPDHin this experiment.Relative gene expression was determined using the ∆∆Ct method.Genotyping of 

DEFB1 SNPs (c.-20G>A , c.-44C>G and c.-52G>A) were performed using Custom TaqMan® SNP Genotyping 

Assays. The level of significance of the genotype frequency of different DEFB1 SNPs was analysed by using 

the χ2 test and Fischer test. 

The same peripheral blood samples we used for genomic DNA and RNA extraction from patients and 

controls were also used for isolation of plasma, which was stored at -80oC until further analysis. Plasma HNP1-3 

concentrations were determined by ELISA according to the instructions of the manufacturer.Comparisons of 

plasma concentrations were carried out by Mann-Whitney test and with two-tailed paired Student’s test. 

3.3. EXPERIMENTAL PROCEDURES USED IN MOUSE TRYPSINOGEN EXPERIMENTS 

Mouse trypsinogens were isolated from homogenized mouse pancreata (2-3) using ecotin affinity 

chromatography and cationic exchange chromatography. The eluted proteins were separated by SDS-PAGE, 
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transferred to PVDF membrane and individual bands were subjected to N-terminal protein sequencing by 

Edman degradation. 

For experimental use, human cationic trypsinogen was expressed in the aminopeptidase P deficient 

LG-3 E. coli strain as fusions with a self-splicing mini-intein. Mouse trypsinogens were expressed in E. coli 

BL21(DE3), as described for human trypsinogens previously. Isolation of cytoplasmic inclusion bodies, in vitro 

refolding and purification with ecotin affinity chromatography were performed. Human CTRB2, mouse Ctrb 

and mouse Ctrc carrying 10His affinity tags were expressed in transiently transfected HEK 293T cells using 

Lipofectamine® 2000 and purified from 450 mL conditioned medium using nickel-affinity chromatography. 

Chymotrypsinogens were activated with trypsin and active chymotrypsin concentrations were determined by 

active site titration with ecotin. 

Trypsinogen at 2 µM concentration was incubated in the absence or presence of 25 

nM chymotrypsin. Autoactivation was induced by 10 nM trypsin at 37 ºC. At given times 

aliquots were withdrawn and mixed with assay buffer. Trypsin activity was measured using 

N-CBZ-Gly-Pro-Arg-p-nitroanilide substrate dissolved in assay buffer and following the 

release of the yellow p-nitroaniline at 405 nm for 1 min.Complete activation of 2 µM 

trypsinogen was carried out using 140 ng/mL final concentration of human enteropeptidase. 

To investigate structural changes of trypsinogens during autoactivation and degradation by 

chymotrypsins, aliquots were withdrawn from the reaction mixture at certain time points, protein fragments 

were precipitated and were separated by SDS-PAGE, transferred to PVDF membrane and individual bands were 

subjected to N-terminal protein sequencing by Edman degradation. 
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4. RESULTS 

4.1. RESULTS OF HUMAN GENETIC INVESTIGATIONS 

4.1.1. α-defensins (HNP 1-3) 

There was high individual variation in plasma levels of α-defensin, but a significant 

difference between healthy subjects and both groups of diabetic patients was observed.The 

mean value ± S.E.M. was 28.78 ± 4.2 ng/mL in type 1 diabetes, and 29.82 ± 5.36 ng/mL in type 2 diabetes, 

versus 11.94 ± 2.96 ng/mL in controls; p<0.01 respectively. The highest concentrations of α-defensin levels 

were found in diabetic patients with nephropathy (49.4 ± 4.8 ng/mL), and with neuropathy (38.7 ± 4.8 ng/mL) 

or with cardiovascular complications (45.6.± 1.45 ng/mL) which were significantly higher in comparison with 

HNP1-3 plasma levels of diabetic patients without complications (25.4 ± 3.5 ng/mL). 

There was no significant difference in DEFA1/DEFA3 copy number between controls and patients or 

between patients in the two types of diabetes groups. No positive correlation was observed between the copy 

numbers and the expression levels of DEFA1 / DEFA3 gene and also between the copy numbers and plasma 

levels of human neutrophil peptide 1-3. 

4.1.2. β1-defensin (DEFB1) 

Investigating the DEFB1 polymorphisms c.-20G>A és c.-52G>A,there was no significant difference in 

genotype distribution between the patients overall and the healthy controls. However, the frequency of GG 

genotype of c.-44C>G was significantly lower in both types of diabetes (2.5% and 2%, respectively) than in 

healthy controls (9%). Conversely, the prevalence of the CC genotype was 61% in the group of diabetic patients 

vs. 45 % of controls (Fisher test: p = 0.02, OR = 2.055, 95% CI: 1.27 – 3.745). When the patients were sorted 

according to their diabetic complications, lower frequency of GG genotype among the patients with nephropathy 

and among the patients with neuropathy was found. 

4.2. RESULTS OF BIOCHEMICAL CHARACTERISATION OF MOUSE TRYPSINOGENS 

Mice expressed 4 trypsinogen isoforms at high levels (T7, T8, T9 and T20), which were identified from 

homogenized whole mouse pancreata using N-terminal sequencing and mass spectrometry. 

When recombinant mouse trypsinogens were incubated in 1 mM CaCl2 at pH 8.0, isoforms T7, T8 and 

T9 autoactivated and reached about 40-60% of potentially attainable trypsin levels. According to our 

experiments the T7 isoform autoactivated at the highest rate and reached the highest trypsin levels during 

autoactivation. In contrast, T20 did not autoactivate under these conditions. Slow cleavage of the Leu149-

Ser150 peptide bond by mouse chymotrpysin C (Ctrc) in the autolysis loop was observed in T7 isoform in the 

absence of calcium. The Leu82-Glu83 peptide bond (corresponding to Leu81-Glu82 in human trypsinogens and 

other studied mouse isoforms) in the calcium binding loop was not cleaved to a detectable extent. 

Mouse Ctrc almost completely inhibited autoactivation of T8 and T9 trypsinogen in 1 mM calcium and 

markedly reduced it in 10 mM calcium. Both isoforms were primarily cleaved at the Phe150-Gly151 peptide 

bond, with minimal cleavage observed at the Leu81-Glu82 peptide bond in the absence of calcium. In 

degradation experiments, mouse Ctrb cleaved the Phe150-Gly151 peptide bond at a more than 7-foldslower rate 
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than mouse Ctrc. Mouse Ctrc had essentially no effect on trypsinogen T20, except for a slight stimulation of the 

activation rate in 10 mM calcium. 

The majority of mammalian trypsinogens do not contain Phe150 in their autolysis loop. To test whether 

introduction of Phe150 would reconstitute the chymotrypsin-dependentautoactivation inhibition in another 

mammalian trypsinogen, we mutated Ser150 in human cationic trypsinogen to Phe. Human CTRB2 at 25 nM 

concentration had no effect on the autoactivation of wild type cationic trypsinogen, whereas it inhibited 

activation of the p.S150F mutant, via cleavage at the Phe150-Gly151 peptide bond. 

Mutation p.R123H protected T7 trypsinogen against degradation during autoactivation in 1 mM 

calcium in the presence of Ctrc; however, it had no effect on the cleavage of the Leu149-Ser150 peptide bond 

per se. Mutation p.R122H slightly stimulated autoactivation of T8 trypsinogen in 1 mM calcium, in the absence 

of Ctrc. In the presence of Ctrc, however, autoactivation was strongly inhibited by Ctrc, approximately to the 

same extent as seen with wild type T8. Consistent with the robust inhibitory effect, the Phe150-Gly151 peptide 

bond was cleaved by Ctrc almost as well in T8 p.R122H trypsinogen as in wild type T8, indicating that mutation 

p.R122H does not influence this regulatory mechanism. 
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5. DISCUSSION 

5.1. RELEVANCE OF Α-AND Β-DEFENSINSIN DIABETESMELLITUS 

In this work, HNP1-3 levels from the plasma of venous blood were measured. We investigated copy 

number variation and mRNA expression levels of DEFA1/DEFA3 genes of the same individual. Intriguingly, 

our results showed significantly higher HNP 1-3 plasma levels in patients with both type 1 and type 2 diabetes 

mellitus compared to healthy controls. Moreover, the plasma of diabetic patients with nephropathic and 

neuropathic complications showed the highest concentrations of HNPs.It seems possible that the elevation of 

HNP1-3 in the plasma of patients with nephropathy is the consequence of the decreased renal degradation of the 

peptides together with advanced nephropathy. The cause of high levels of HNP1-3 in patients with neuropathy 

in type 1 and type 2 diabetes remains unknown. 

The G allele of the c.-44C>G SNP generates a putative binding site for nuclear factor-κB (NF-κB), and 

induces overexpression of DEFB1 gene.The present study has demonstrated that the distribution of DEFB1 c.-

44C>G genotypes were different between patients with diabetes and healthy controls. Our results showed that 

the frequency of the GG genotype was significantly higher in the control population. The presence of G allele 

might lead to strengthened HBD1 antimicrobial activity, which is less frequent among patients with diabetes. 

Conversely, in these studies subjects carrying the CC genotype were at a greater risk of aquiring infection.  

Our present findings draw attention to the importance of DEFB1 polymorphisms in diabetes, especially 

in case of nephropathy and neuropathy; the GG genotype could also be protective in diabetes, and the presence 

of CC genotype might be connected with lower expression of human β1-defensin.It is noteworthy that insulin is 

also an important factor mediating HBD1 expression. 

5.2. CTRC REGULATES AUTOACTIVATION OF MOUSE TRYPSINOGENS VIA CLEAVAGE OF 

THE AUTOLYSIS LOOP 

In the past decade there were several attempts to create mouse models that develop chronic pancreatitis 

due to different genetic manipulations.However, none of these models attempted to manipulate genes of 

digestive enzymes. Human cationic trypsinogen (PRSS1), chymotrypsinogen C (CTRC) and carboxypeptidase 

A1 (CPA1) are known to have a role in the development of pancreatitis according to described plethora of 

biochemical and clinical studies. However, animal models that recapitulate the characteristics of human 

hereditary pancreatitis are still lacking. 

We wanted to clarify whether introduction of trypsinogen mutations associated with human hereditary 

pancreatitis into mouse trypsinogens would offer a viable approach to model hereditary pancreatitis in mice. 

Therefore, identification of the major trypsinogen isoforms expressed by the mouse pancreas and 

characterization of their regulation of autoactivation by mouse Ctrc was necessary. 

Investigating the commonly used outbred mouse strain CD-1, we found that only four trypsinogen 

isoforms, T7, T8, T9 and T20, are expressed to high levels in the mouse pancreas. Autoactivation of mouse 

trypsinogens T7, T8 and T9 was comparable, whereas T20 autoactivated more slowly, particularly in 1 mM 

calcium. Surprisingly, regulation of autoactivation by mouse Ctrc was isoform specific and mechanistically 

different from the actions of human CTRC on human cationic trypsinogen.Cleavage of the Leu81-Glu82 peptide 

bond in the calcium binding loop was detectable in T7 but was inefficient and resulted in minimal degradation, 
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when compared to the effect of human CTRC on human cationic trypsinogen. Slow cleavage of the Leu81-

Glu82 peptide bond was also seen in T8 and T9, whereas isoform T20 was not cleaved by Ctrc. 

In contrast, isoforms T8 and T9 were rapidly cleaved at the Phe150-Gly151 peptide bond in the 

autolysis loop and this cleavage resulted in marked inhibition of autoactivation without degradation. The 

Phe150-Gly151 peptide bond was also cleaved by Ctrb at a 7-fold slower rate. However, considering that Ctrb is 

the most abundant chymotrypsin in the mouse pancreas, physiological regulation of activation of T8 and T9 may 

be also dependent on Ctrb.Interestingly, we found that cleavage of the Phe150-Gly151 peptide bond in T8 and 

T9 trypsinogens also inhibits activation by enteropeptidase, the physiological trypsinogen activator in the 

duodenum. 

Our data argue that the previously published mouse model in which a T8 transgene carrying the 

p.R122H mutation was introduced could not have developed the described phenotypic changes as a result of a 

mutation-dependent increase in trypsinogen activation. We found that mutation p.R122H did not affect 

inhibition of autoactivation by Ctrc in T8 trypsinogen, which stands in contrast to the robust negative effect of 

this mutation on CTRC-dependent degradation of human cationic trypsinogen. Thus, it seems more likely that in 

the published mouse model increased gene dosage or nonspecific effects of the transgene may have been the 

cause of the described pancreas pathology. 
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6. SUMMARY AND NEW RESULTS 

I. 

1. We confirmed earlier findings of elevated HNP 1-3 plasma levels in patients with diabetes mellitus 

compared to healthy controls. Furthermore, we found that diabetic patients with nephropathy, 

neuropathy, or cardiovascular complications all had significantly higher HNP1-3 levels compared to 

diabetic patients without complications and also to healthy controls. 

2. Our results demonstrated that the median gene copy number of human DEFA1/DEFA3 gene is 10 per 

diploid genome in the Hungarian population; not only among controls but also in diabetic patients. 

DEFA1/DEFA3 gene copy numbers did not correlate with mRNA expression levels in peripheral 

leukocytes, nor with the     α-defensin (HNP 1-3) levels measured in the plasma of peripheral 

blood.Therefore the elevated HNP 1-3 levels might not be genetically determined, or at least  

independent of the copy number variation of the DEFA1/DEFA3 genes. 

3. The C allele of the c.-44C>G SNP located in the promoter region of the DEFB1 gene was found to be 

more frequent among diabetic patients than in healthy controls, indicating that impaired human β-

defensin function might have a role in the development of diabetes mellitus. 

II. 

1. There are 4 trypsinogen isoforms (T7, T8, T9 and T20) expressed at high levels in the mouse pancreas 

under physiological conditions. In 1 mM CaCl2, at pH=8.0, only T7, T8 and T9 autoactivated, while 

T20 did not autoactivate. 

2. Ctrc and Ctrb almost completely inhibited autoactivation of T8 and T9 isoforms by enzymatic cleavage 

of their autolysis loop, but had no significant effect on the autoactivation of T7 isoform. 

3. Introduction of the p.R123H mutation in T7, or the analogous p.R122H mutation in T8, did not 

significantly change the autoactivation characteristics of mouse trypsinogens. Therefore, the 

biochemical characteristics of these mutants did not mimic the pathogenic phenotype of the p.R122H 

mutation in human cationic trypsinogen. 
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