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1 Introduction
Using the methods of bijective combinatorics, this thesis investigates

two topics which are related to enumeration problems on lattice walks.
The main result of Chapter 2 is a bijective proof of Shapiro’s convolution

formula involving Catalan numbers of even index, as asked by Stanley. As
one of the consequences of our argument, we obtain an elementary proof of
the alternating convolution formula of the central binomial coefficients, too.

In Chapter 3, we prove a convexity property of the hitting distribution
of the x-axis for symmetric planar random walks, then we consider the higher
dimensional analogue of the problem. This work has been motivated by the
fact that the main theorem implies a new proof of a recent result on the
density function of certain harmonic measures.

The dissertation is based on the author’s papers [1]–[4]. We use the
same numberings and notations in the outline as in the thesis (except for the
references).

2 Convolution of Catalan numbers with even index
We say that 1

n+1

(
2n
n

)
is the nth Catalan number, and it is denoted by Cn.

Stanley has collected more than 200 equivalent combinatorial definitions of
them [16, 15]. This number also indicates that the Catalan numbers are
fundamental combinatorial quantities [10], for which a reason is that they
satisfy the recurrence relation

C0 = 1; Cn+1 =

n∑
k=0

CkCn−k,

which often arises in combinatorial problems.
In 2002, Shapiro observed [10; p. 123] that the following elegant identity

can be easily deduced from the closed form of the generating function of the
Catalan numbers:

Theorem 2.1 (Shapiro [15; 6.C18], Nagy [2], Hajnal–Nagy [1])

n∑
k=0

C2kC2n−2k = 4nCn. (2.2)

However, in spite of its simple form and its short non-combinatorial proofs,
this formula is difficult to prove combinatorially, it is listed in Stanley’s
Bijective Proof Problems as unsolved [14]. (We note that Andrews formu-
lated a q-analog of the identity and, together with other proofs, he gave a
combinatorial proof of it [5].) The main result of Chapter 2 is that we verify
(2.2) first by an elementary combinatorial reasoning in Section 2.2, following
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the argument of paper [2]; then we present a completely bijective proof of it
in Section 2.3, based on our joint paper with Péter Hajnal [1].

We will double count certain paths, where a path is a sequence of up-
steps and down-steps. Although formally we defined one-dimensional walks
here, we will visualize paths in the plane in the usual way: Unless otherwise
stated, they start from the origin, an up-step is interpreted as a step (1, 1),
and a down-step is interpreted as a step (1,−1). We also need the following
notion: A path is even-zeroed if it never hits the x-axis at a point of the
form (4k + 2, 0), for k ∈ Z. Our counting problem associated to Shapiro’s
identity is based on the observation that the number of even-zeroed paths
from the origin to the point (4n, 0) is given by the Catalan number C2n (see
Lemma 2.4). This has been posed as an American Mathematical Monthly
problem [12] in 1981, and a bijective proof has been published [11] in 1987, in
which an explicit bijection is given between the set of paths in question and
the set of Dyck paths of length 4n. It is well known that the latter set has C2n

elements. (A Dyck path is a path that ends on the x-axis but never goes below
it, provided that it is started from the origin. Of course, the length of a path
is the number of its steps.) This yields a combinatorial interpretation of the
left-hand side of (2.2), together with an analogous proposition (throughout
the thesis, Bn denotes the central binomial coefficient

(
2n
n

)
):

Corollary 2.5 (Nagy [2])
a)
∑n

k=0 C2kC2n−2k counts the number of even-zeroed paths from the origin
to (4n+ 1, 1).

b)
∑n

k=0 C2kB2n−2k counts the number of even-zeroed paths of length 4n.

So, in order to prove (2.2), we have to show that the right-hand side,
4nCn, also counts the paths of part a) of the corollary. First, we establish a
connection between the two parts of the corollary. A straightforward calcu-
lation shows that the convolution in part b) is (n+ 1) times the convolution
in part a):

Lemma 2.6 (Nagy [2])

n∑
k=0

C2kB2n−2k = (n+ 1)

n∑
k=0

C2kC2n−2k.

In other words, Corollary 2.5 interprets combinatorially both the left-hand
side of Shapiro’s identity and the (n+1)st multiple of it. Using this, one can
enumerate the paths in the corollary in a recursive way:

Lemma 2.7 (Nagy [2])
a) The number of even-zeroed paths from the origin to (4n+ 1, 1) is 4nCn.

b) The number of even-zeroed paths of length 4n is 4nBn.
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By Corollary 2.5, Lemma 2.6, and the fact Bn = (n + 1)Cn, the two state-
ments are equivalent. It is not hard to prove part b) by induction, using also
the equivalence of the two parts. In sum, we proved Shapiro’s formula by
double counting, and also the following equivalent form, which is just (2.2),
multiplied by (n+ 1):

n∑
k=0

C2kB2n−2k = 4nBn. (2.4)

In Section 2.3, we present the bijective proof of Shapiro’s identity. (In
this proof, we view Cn as the number of Dyck paths of length 2n.) Taking into
account that Corollary 2.5 has been proved bijectively, to achieve our goal
it suffices to find a bijective proof of Lemma 2.7.a, i.e. to show bijectively
that the number of (0, 0)  (4n + 1, 1) even-zeroed paths in part a) of
Corollary 2.5 is 4nCn. Denoting the set of these paths by H, we construct a
bijection ψ:H → D4, where D4 is an appropriate set with 4nCn elements: D4

is the set of 4-labeled Dyck paths of length 2n, where a 4-labeled Dyck path is
a Dyck path in which each step in even position is labeled with a number from
{0, 1, 2, 3} and the steps in odd positions are unlabeled. The definition of ψ
is a long process, the milestones are indicated by lemmas (Lemmas 2.8–2.10).
In preparation of the major step, we apply a simple technical conversion on
the paths first, then we “compress” them, which yields a bijection H → E∗3 ,
where E∗3 denotes the set of (unlabeled, generalized) paths that have the
following three properties:

(i) They start from the point (0, 1) and end at (2n, 1) or (2n,−1);

(ii) they contain either an unlabeled “long” step (1,±3) or a “short” step
(1,±1) labeled with ‘1’, ‘2’, or ‘3’ in each even position (and each step
is an unlabeled short step in odd position);

(iii) they never hit the x-axis (but they are allowed to “jump over” it).

We will see that in some sense the labels 1,2,3 of the paths of E∗3 and D4 can
be neglected. So, let E∗ and D2 be the sets that contain the same paths as E∗3
and D4, respectively, but with the labels omitted. Accordingly, E∗ consists
of those (0, 1) (2n,±1) (unlabeled) paths that can have long steps (1,±3),
but only in even positions, while all their other steps are conventional steps
(1,±1), and that never hit the x-axis; and D2 consists of such Dyck paths
of length 2n in which each step in even position is either marked (labeled
with ‘0’) or unmarked (unlabeled). The paths of D2 are called marked Dyck
paths (of length 2n). It is not hard to see that a desired bijection E∗3 → D4 can
be constructed from a bijection E∗→ D2 satisfying the following requirement:

Lemma 2.10 (Hajnal–Nagy [1]) There exists a bijection φ: E∗→ D2 such that,
for all E ∈ E∗, the number of marked steps in φ(E) is equal to the number
of long steps in E.
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This is the key lemma of our proof. There are two main phases of the
conversion E∗ 3 E 7→ φ(E). First, those long steps in E that jump over the
x-axis are replaced with marked (short) steps, and the “negative” parts of
E are reflected across the x-axis to obtain a path E+ that stays above the
x-axis. (This is the easy part.) Next, we show that all possible paths E+

can be built up from fairly simple “building blocks”; the building process
is an extension of the decomposition of the sequences of parentheses, that
can be identified with Dyck paths, into matching pairs of parentheses. In
the second phase, the building blocks of the path E+ are transformed by
applying a predefined conversion method, and the image of E is defined to
be the obtained signed Dyck path.

The next two corollaries can be read off from the the details of the proof:

Corollary 2.11 (Hajnal–Nagy [1]) Let E∗(n) denote the set of those (0, 1)  
(2n,±1) (unlabeled) paths that never hit the x-axis and that can contain long
steps in even positions. (This set is just E∗, with a notation indicating n.)

a) The number of all paths in E∗(n) is 2nCn.
b) The number of paths in E∗(n) with k long steps is

(
n
k

)
Cn.

c) Consequently, Cn counts the number of paths in E∗(n) with n long steps
(i.e. with alternating short and long steps).

d) If n ≥ 1, Cn counts the number of such (0, 0) (n, 1) paths of length n
in which every step is either (1,±1) or (1,±2) and that never hit the
x-axis after the starting point.

Corollary 2.12 Let E ′(n) denote the set of those 2n-length (unlabeled) paths
starting from (0, 1) that never hit the x-axis and that can contain long steps
in even positions.

a) The number of all paths in E ′(n) is 2nBn.
b) The number of paths in E ′(n) with k long steps is

(
n
k

)
Bn.

In Section 2.4, we present some further consequences of the foregoing.
(Our goal is always to find a purely combinatorial proof, it is not hard to
prove these results using generating functions.) We establish a technical
convolution formula first, from which (2.4), an equivalent form of Shapiro’s
identity, can be deduced.

Lemma 2.14 (Nagy [2]) For arbitrary fixed n,

2 ·
∑

i+j+k=n

C2iC2jB2k = B2n+1,

where the indices i, j, k are nonnegative integers.

In part c) of Theorem 2.15, we determine the closed form of the convo-
lution of the numbers Bn with even index:

n∑
k=0

B2kB2n−2k =
16n + 4nBn

2
.

4



We give a combinatorial proof of an equivalent form, which is called the
alternating convolution formula of central binomial coefficients:

Theorem 2.16 (Spivey [13], Nagy [2])

n∑
k=0

B2kB2n−2k −
n−1∑
k=0

B2k+1B2n−2k−1 = 4nBn.

By double counting, we obtain the form

n∑
k=0

B2kB2n−2k −
n−1∑
k=0

B2k+1B2n−2k−1 =

n∑
k=0

C2kB2n−2k,

thus, the problem is reduced to (2.4). Our proof differs from Spivey’s elegant
combinatorial proof [13] that interprets the identity with the help of random
colored permutations.

In Section 2.5, we pose two conjectures, based on computational expe-
rience. We need the following notation for the formulation of them, which
can be used to define classes of paths in the way the set of even-zeroed paths
are defined: For a 0-1-2-sequence b0, b1, . . . , bn, let P[b0b1 . . . bn] denote the
set of such (conventional) paths of length 2n that start from the origin and
avoid the points {(2i, 0) : bi = 0} on the x-axis but visit at least one point of
{(2i, 0) : bi = 2}. Our first conjecture is a generalization of Lemma 2.7 (the
second equations are obvious in both parts, the real question is the validity
of the first equations):

Conjecture 2.19 (Hajnal–Nagy [1])
a)
∣∣P[(1k0k)n−11k2k]

∣∣ =
∣∣P[10n−1212kn−n−1]

∣∣ = 42kn−n−12Cn−1,

b)
∣∣P[(1k0k)n]

∣∣ =
∣∣P[10n12kn−n−1]

∣∣ = 42kn−n−1Bn.

We showed the equivalence of the two parts, so it is enough to prove one of
them. In the second conjecture both the sequences defining the set P and
the conjectured cardinalities are similar to previous ones:

Conjecture 2.20
a)
∣∣P[1(1k0k+1)n−11k2k+1]

∣∣ =
∣∣P[10n−1212kn]

∣∣ = 42kn2Cn−1,

b)
∣∣P[1(1k0k+1)n]

∣∣ =
∣∣P[10n12kn]

∣∣ = 42knBn.

3 A convexity property of discrete random walks
We deal with symmetric random walks in Chapter 3. The research was

motivated by a 2012 result on certain planar harmonic measures [6], of which
we gave a new proof in our joint paper with Vilmos Totik [4], using a discrete
approach. (Harmonic measure [8], a fundamental tool in harmonic analysis,
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has an interpretation via Brownian motion, and the Brownian motion can be
approximated by discrete random walks.) The chapter presents the discrete,
combinatorial results of the submitted paper [4], together with further, joint
results with Attila Szalai [3] which generalize the base theorems.

Let us introduce the required concepts. A walk on Z2 is finite or infinite
sequence Q0, Q1, Q2 . . . (Qi ∈ Z2) such that the vector Qi+1 − Qi is either
(0, 1), (0,−1), (1, 0), or (−1, 0) for all i. (These vectors are called the steps
of the walk.) The walks on Zd are defined analogously: in d dimensions,
there are 2d permitted steps, the standard base vectors, and their opposites.
For a given point Q0, the (symmetric) random walk with starting point Q0

is an infinite walk starting from Q0 whose steps are chosen uniformly and
independently at random. The basic result of the chapter is the main lemma
of [4]:

Theorem 3.1 (Nagy–Totik [4]) For k ∈ Z, let pk be the probability that a
symmetric random walk on Z2, started from the point (0, 1), first hits the
x-axis at the point (k, 0). Then the sequence (pk)

∞
k=0 is convex, that is,

pk ≤ 1
2 (pk−1 + pk+1) holds for all k ≥ 1.

In Section 3.2, we present an elementary proof of the theorem that does
not involve any calculations. Clearly, when determining the probability pk,
we only have to deal with the initial parts of the walks, the parts preceding
the first intersection with the x-axis; this is the reason for the following
definition: We say that a (k1, h) (k2, 0) walk is positive, if it stays strictly

above the x-axis before its last step. W(k1,h)
k2

denotes the set of positive

(k1, h)  (k2, 0) walks, and the set W(k1,h)
k2

[l] consists of the l-length walks

ofW(k1,h)
k2

. By conditioning on the first step and the initial part of the walks
that contribute to the probability pk, it can be easily seen that the following
lemma implies Theorem 3.1:

Lemma 3.2 (Nagy–Totik [4]) For all integers k, there exists an injective

length-preserving map W(0,2)
k → W(1,1)

k ∪ W(−1,1)
k . This means that, for

all k ∈ Z and l ∈ N,∣∣∣W(0,2)
k [l]

∣∣∣ ≤ ∣∣∣W(1,1)
k [l]

∣∣∣+
∣∣∣W(−1,1)

k [l]
∣∣∣ .

In the proof, we give a simple injection such that the image of a path ofW(0,2)
k

is obtained by interchanging some right-steps and up-steps, or some right-
steps and down-steps. (It is somewhat surprising that we have not found
any injection that could be easier to visualize geometrically.) In addition,
we sketch some other proofs of Theorem 3.1: After presenting the first steps
of the original argument by Vilmos Totik that is based on expressing pk as
the kth Fourier-coefficient of an elementary function, we also outline two
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other combinatorial proof of Lemma 3.2 which involve more or less algebraic
manipulations.

In Section 3.3, we investigate the convexity of the hitting distribution of
the x-axis for random walks with arbitrary starting point, and we establish
an analogous result:

Theorem 3.3 (Nagy–Szalai [3]) Let phk be the probability that a symmetric
random walk on Z2, started from the point (0, h), first hits the x-axis at
the point (k, 0). Then, for arbitrary fixed h ≥ 2, the sequence

(
phk
)∞
k=h−2 is

convex, that is, phk ≤ 1
2

(
phk−1 + phk+1

)
holds for all k ≥ h− 1.

Similarly to the case h = 1, now it is enough to prove the following
analogue of Lemma 3.2:

Lemma 3.4 (Nagy–Szalai [3]) Let h, k be integers such that k ≥ h − 1 and

h ≥ 2. Then there exists a length-preserving injectionW(0,h−1)
k ∪W(0,h+1)

k →
W(1,h)

k ∪W(−1,h)
k . This means that, for all l ∈ N,∣∣∣W(0,h−1)

k [l]
∣∣∣+
∣∣∣W(0,h+1)

k [l]
∣∣∣ ≤ ∣∣∣W(1,h)

k [l]
∣∣∣+
∣∣∣W(−1,h)

k [l]
∣∣∣ .

When defining the image of W ∈ W(0,h−1)
k ∪W(0,h+1)

k in the proof, we dis-
tinguish two cases, depending on whether W hits a diagonal or a side of the
square with vertices (h, 0), (h, 2h), (−h, 2h) and (−h, 0) first. The simpler
case is when it hits a diagonal first; in this case we perform a reflection. In
the case when W hits a side of the square first (necessarily the top side),
we utilize the following sublemma when defining the image of W to obtain
a suitable injection. The sublemma is a generalization of Lemma 3.2, it can
be also proved in a similar way:

Lemma 3.5 (Nagy–Szalai [3]) For integers h, k,m such that h ≥ 1 and

−h < m < h, there exists an injective length-preserving map from W(m,2h)
k

into W(h,h+m)
k ∪W(−h,h−m)

k .

The continuous version of the problem is easy to solve, and its solu-
tion suggests that Theorem 3.3 is not sharp. That is why we investigate
the question whether we can improve it with our method (by strengthen-
ing Lemma 3.4), i.e. whether we can replace h − 2 with a better convexity
threshold for some h, or prove concavity on an interval. The answer is no,
so one needs more sophisticated methods. However, the attempt resulted in
two interesting observations, for which we do not know any combinatorial
proof. (We can prove them by elementary but tedious calculation based on
the fact that the number of positive (a, b)  (c, d) walks of length n has a
simple closed form by [7] and [9], see Lemma 3.7.) The obtained results are
the following:
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Theorem 3.6 (Nagy–Szalai [3]) Let h ≥ 2 and k be fixed, and let Vl [and Fl]

denote the number of l-length walks in W(0,h)
k that start with a horizontal

(left or right) step [or vertical (up or down) step].

◦ If l = h2 − k2, then Vl = Fl.

◦ If l ≥ h2 − k2, then Vl ≥ Fl.

◦ If l ≤ h2 − k2, then Vl ≤ Fl.

Moreover, if l 6= h2 − k2, then Vl = Fl can occur only if Vl = Fl = 0, i.e. if l

is such that W(0,h)
k [l] = ∅.

Lemma 3.9 (Nagy–Szalai [3]) Let h ≥ 2 and k be fixed, and let Jl [and Ll]

denote the number of l-length walks in W(0,h)
k that start with a right step [or

down step].

◦ If l = (h− k)(2h− 1), then Jl = Ll;

◦ If l ≥ (h− k)(2h− 1) then Jl ≥ Ll;

◦ If l ≤ (h− k)(2h− 1) then Jl ≤ Ll.

Moreover, if l 6= (h− k)(2h− 1), then Jl = Ll can occur only if Jl = Ll = 0.

Finally, we consider the higher dimensional analogue of the problem in
Section 3.4. We will need the following generalization of the convexity of
sequences: We say that the discrete function f :Zn → R is (locally) sub-
harmonic at the point k ∈ Zn, if

f(k) ≤ 1

2n

∑
j∈N(k)

f(j),

where N(k) denotes set of 2n neighbors of the point k in Zn, i.e. N(k) :=
{k ± ei : i = 1, . . . , n}, using the notation e1, . . . , en for the standard basis
vectors.

We investigate the following probabilities in an arbitrary fixed dimension
d ≥ 2: For given h ∈ N and k = (k1, . . . , kd−1) ∈ Zd−1, let phk be the
probability that a symmetric random walk on Zd, started from the point
(0, . . . , 0, h), first hits the hyperplane xd = 0 at the point (k1, . . . , kd−1, 0).
The following analogue of Theorem 3.1 has been proved by Vilmos Totik:

Theorem 3.10 (Nagy–Totik [4]) The function Zd−1 3 k 7→ p1k is subharmonic
at all k 6= 0.

The theorem can be deduced from the already proven planar case. We con-
clude the chapter with an analogous extension of Theorem 3.3:

Theorem 3.11 (Nagy–Szalai [3]) For all h ≥ 2, the function Zd−1 3 k 7→ phk
is subharmonic at all points of [h− 1,∞)d−1 ∩ Zd−1.
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