
Validating Documents of Web-based
Metalanguages Using

Semantic Rules

Summary of the Ph.D. Dissertation

Miklós Kálmán

Supervisor:

Prof. Tibor Gyimóthy
Head of the Software Engineering Department

Doctoral School of Computer Science
Department of Software Engineering

University of Szeged

Szeged
2014





Introduction

Validation has earned a solid place in the ever-growing world of information exchange. Systems are
sharing roughly 1,000 petabytes every day. It is vital that data integrity is achieved and maintained
throughout the life of the data. The need for data validation ranges from web forms through document
exchange, engulfing the area of database records all the way to web service transmissions. The most
common text-based format for information exchange is carried out with the help of XML[6] Documents.
This format is text-based and is capable of describing hierarchic relationships. Many languages and
formats are based on XML as it is easy to extend. In an earlier article [15] we presented a way to define
semantic rules to compact XML files with the help of our SRML metalanguage. The initial versions
(1.0, 1.1) of this metalanguage were aimed at making XML documents more compact by removing
attributes that could be re-calculated using semantic rules.

Short Thesis Title Thesis Publications
Provide a way to validate

and correct XML documents
Validating XML documents using semantic rules [14]

through the extension
of SRML 1.0.

Create a new jSRML
metalanguage, which is capable of

Validating Web Forms defining semantic rules for [12]
the validation and

correction of web forms.
Introduce a new

metalanguage (ProtoML), which can
Validating Google Protocol Buffers validate and correct [11]

the messages of Google
Protocol Buffers.

Combine the previous
metalanguages (SRML 2.0, jSRML,

Validating Web Services ProtoML) into SRML 3.0 and [13]
provide a way to

validate Web Services.

Table 1: Theses of the dissertation

The dissertation describes the evolution of the SRML language along with two additional metalan-
guages, jSRML[12] and ProtoML[11], which were branched from the initial SRML specification to
provide validation. The jSRML language is aimed at providing a way to describe validation rules for
web forms, while ProtoML provides a way to define validation logic for Google Protocol Buffers[7].
The dissertation also covers a fourth area of validation: web services. We demonstrate how combining
the languages and experience gained throughout the research yielded the latest SRML 3.0[13] version.
Using the new extension, it is possible to validate both requests and responses of web services. We
will detail each extension in this document. The high level overview of the SRML versions can be seen
in Figure 1. The four theses of the dissertation can be seen in Table 1.

1 Validating XML Documents

Thesis: Provide a way to validate and correct XML documents using semantic rules
through the extension of SRML 1.0.

1



SRML 1.0 SRML 1.1

Compacting

XML XMI

Allows attributes

SRML 2.0

Validation

Expressions

ProtoML

Protocol Buffers
Function oriented

Chaining

jSRML

Form validation

XML

Databases

JavaScript based

SRML 3.0

Simplified syntax

Function oriented

Web Service validation

Figure 1: Evolution of SRML versions and their areas

The first topic of the dissertation is XML validation. The most common ways to describe the
structure of an XML is using a DTD[17] file or an XSD schema[18]. The latter one is more advanced
as it permits the description of structural elements, their types and allowed element definitions. XSD
schemas are powerful yet lack an important aspect: content validation. To describe the content re-
strictions of an XML file, one must use third party solutions. To provide a rule-oriented approach, we
decided to extend our original SRML 1.0 metalanguage to the validation space. Table 2 outlines the
key differences between the two versions of SRML.

Property SRML 1.0 SRML 2.0
Main Focus Compaction/Decompaction Validation/Correction

Rule reference level Attributes Element and Attributes
Potential Application Area XML Documents XML and Databases

Rules based on Attribute Grammars AG and XPath
Rule Definition Complex Simplified with XPath

Numeric Expression Rules Much overhead Simplified, inner expression engine
Rule dependencies and storage DTD and separate SRML file Encapsulated in the XSD

Table 2: Key differences between SRML 1.0 and 2.0

The new version of SRML provides several novel features from which the following are the most
prominent:

XPath support: Using XPath it is now easier to reference attributes and elements in the XML
context. Previously it was a tedious job to reference specific attribute instances.

Numeric expressions: The new format also allows numeric expressions to be used during the rule
context, making it easier to describe expressions and use them in the rule definitions.

Element and attribute references: The rules can now reference both attributes and elements.
Previously SRML only operated on an attribute level.

Multiple rules for the same context: With this new feature, multiple rules can be defined for
the same context. This is important for validation, as it is possible that the document may be
considered valid if any of the validation rules for that context is fulfilled.

Node relationship for tables: SRML 2.0 introduced the option to describe database tables thus
extending the scope of the rules to the area of databases.

2



When extending the SRML language, we wanted to ensure that we can incorporate it with the
XML structural validation process. Since the XSD document is used for the structural validation it
was a prime candidate. By using the appinfo section of the XSD schema, we can provide a non-
obtrusive way to store and deliver the semantic validation rules. This allows the XSD document to
define both structural and content validation rules. Figure 2 shows the validation process using XSD
and SRML. To leverage the capabilities of the SRML 2.0 extension, a new validation engine was built:
SRMLXsdTool.

Check if XML is 

well-formed

Has more

validation

rules?

Read SRML

rules

Find all nodes

for rule

Valid?Report Errors

For each node

NO

NO

XML Valid

YES

YES

Figure 2: XML validation process using SRML

We also experimented with applying the power of SRML to the database record validation space.
We provided a way to inject SRML rules into the databases and perform record validation using
triggers. To accomplish this, we used an H2[2] database, which allowed the loading of Java classes
as database triggers. Our validation engine was written in Java so we were able to implement trigger
classes which can fire during specific database operations. The biggest challenge was how to represent
database records as DOM[1] trees. DOM trees are hierarchic representations of XML documents. The
records were flattened out and the rule structure was updated to allow the definition of the relationship
between tables using an approach similar to how foreign keys work. Using these keys, we can join the
records together and use the columns as attributes. The database record validation flow can be seen
in Figure 3.

Another key improvement that SRML 2.0 introduced was data correction. With the new SRML
extension, it is now possible to correct the content of XML documents using the semantic rules. If
the mode of the rule is set to “correct” then the validation engine will calculate the expected value
of each node that it is validating and use it as the value in case the validation fails. This provides a
powerful way to correct documents, and this trait is reflected in the jSRML and ProtoML branches
as well.

1.1 Summary of the thesis and own contributions

• The SRML 1.0 language was extended into the validation space. The original language was
aimed at providing a way to make the XML documents smaller, more compact using semantic

3



For each rule node

Has

More

rules?

Return aggregated

validation results

Find all input

DOM entries

using XPath

Validate

entries and

Calculate

Rules

Compare values

with input XML

Store partial

validation results

Figure 3: Validating database records using SRML

rules.

• The new format integrates closely with the XSD validation schema, making it portable and
allowing both structural and content validation logic to be deployed in a single document.

• The new language provides XPath support and allows numerical expressions, simplifying the rule
definitions.

• Another novel result for the extension is that it also provided a way to validate database records
with semantic rules.

• The extension allowed the contents of the XML documents to be corrected using the rule
definitions.

The majority of the topics and approaches outlined in this thesis are my contributions as the result of
my research. The ideas demonstrated in the thesis were published in [14].

2 Validating Web Forms

Thesis: Create a new jSRML metalanguage, which is capable of defining semantic rules
for the validation and correction of web forms.

The second area that the dissertation covers are web forms. The Internet has engulfed most of
our lives. More and more people are coming online to spend their time and do their work (e.g.:
shopping, tax returns...etc). With this growth, the importance of data validation plays a vital role.
Users exchange information with each other and it is very important that the resulting data is valid
and is not corrupted. The most common way users communicate and enter data on the Internet is
using web forms. Web forms contain fields that are filled out by the users, which are then submitted
to a server for processing. The server processes this information and returns the results or performs
operations on the submitted data. These web forms can range from simple user login forms all the
way to online tax returns containing and exchanging sensitive information. Unfortunately this is one

4



of the weakest links in the whole system, which many hackers try to exploit. The forms are contained
within HTML[16] pages, which have a similar format to XML documents so the DOM model is also
applicable to them. This makes web forms an ideal candidate for the use of a semantic rule validation
approach.

We have extended SRML 1.0 to create a new metalanguage called jSRML that allows the validation
of web forms. It should be noted that the language was created parallel to SRML 2.0, thus the reason
why that was not used as the starting point instead of version 1.0. The language constructs and syntax
is similar, however, the feature set is considerably different. With our new jSRML extension, users are
able to define SRML rules for web forms and their fields, describe relationships and requirements for
their content. The engine can be used in any HTML page simply by including the script file in the
document and defining the validation rules. This approach ensures that the HTML content is not
encumbered with JavaScript code. The jSRML rules need to be placed after each field that is to be
validated and the engine will perform all additional validation tasks automatically.

The engine supports multiple types of validation, which are summarized in Table 3. We took the
positive traits of the original SRML 1.0 language and its compaction engine (SRMLTool) and rebuilt
it from the ground up in JavaScript using jQuery to allow exceptional browser performance. We
decided to name the extension jSRML and the new rule engine jSRMLTool to denote the JavaScript
relationship. Previously SRML rules were stored in a separate file, which had its advantages and
disadvantages. The advantage was that all the rules were in one location. However, this also meant
that it was harder to understand the rules when trying to find a rule-set for a given node context.
In the jSRML approach we allow the rules to be defined in-line after each field as well as externally,
making it easier to read the validation rules.

Type Trigger Processing Validation logic Advantage Disadvantage
Returned to Validation Validation

Server Form Sequential browser for logic changes
Side Submit display of hidden require

results from server
user updates

Shown in Fast, since Validation
Client OnClick Client side browser using no data logic
Side intercept JavaScript is sent visible

to to users
server

Direct call Field values More traffic
Real-time Field Either to client and/or validated required,

change Server real-time prior harder to
validation to form update

submission
Direct calls Allows two More

Hybrid Field change Either with round-trip stage validation, complex to
and Submit to server pre-filtering implement

results prior to and
sending to server maintain

Table 3: Validation types

The second advantage of jSRML is that it is non-obtrusive. In order to use it, only a simple script
include is required. If the validation rules need to change then only the affected field rules need to
be updated. No coding experience is needed to perform the update, reducing the possibility of error,
making it a very large benefit compared to the pure JavaScript approaches.

The jSRML engine can also correct the field values if the rule definition specifies it. This is a huge

5



advantage over other rule- or JavaScript-based validators as it allows the field values to be corrected
and allows the form submission to succeed. A good example would be spell checking in a form prior
to submission, which can be accomplished by using the functions in the rule definition. This makes
jSRML more versatile as more seasoned developers can extend the engine with additional methods
besides the standard operation set that the engine provides.

The jSRMLTool engine supports all four types of validation described earlier (Client, Server, Real-
time, Hybrid). This provides the most versatile and powerful approach since the user is not bound to
a single solution. The following summarizes how the different modes operated in jSRMLTool:

• Client-side: In this mode the validation is completed using the included jSRMLTool.js file.
The rules are extracted using XPath conditions. All in-line rules are contained in comments,
which start with [SRML]. A hook is installed on the onClick action of the submit button. When
the button is pressed the engine will validate the fields. If the validation is successful (or corrected
based on the expected values) then the form is submitted to its original location defined by the
“action” attribute of the form. Figure 4 shows the flow of the Client-side validation.

• Server-side: The engine handles the Server-side mode using a separate servlet (jSRMLTool-
Servlet). This servlet uses a unique identifier to associate the rules to each form, allowing
multiple forms from different domains to be submitted/validated against the same servlet. The
flow is similar to the Client-side. However, all fields are pushed over to the servlet along with
the unique identifier. The servlet then performs the validation/correction and returns the data
back to the client. The Server-side validation flow is shown in Figure 5.

• Real-time and Hybrid: Every rule has a “method” attribute, which is not mandatory and has
a default value of “standard”. When this attribute is set to “focus” then a hook is automatically
installed on the onBlur event of every field where this attribute is set. This results in a focus
change validation trigger. The third allowed value for the method attribute is “real-time”. This
installs a keydown listener and performs the validation on every character input. This mode is
useful for example in case of password length checks.

Page Load Find All

Forms

Read SRML

rules

Bind to submit

button

Create DOM

HTML Display onClick Submit

Perform Client Side

Validation

More Fields

to validate?

Validate Field Error?

Form

Processor

Store

Results

Display

Error

No

No

Yes

Yes

Figure 4: Client-Side jSRML

6



Figure 5: Server-Side jSRML

As mentioned previously, we have created a Server-side implementation of the jSRML engine using
Java Servlets[10], allowing the form to be validated asynchronously against a service. The service code
does not change no matter what the rule definitions are. This is accomplished by storing the rule-set
on the server side and performing the validation based on a lookup using a unique form identifier. This
Servlet can be used to validate thousands of different forms spanning multiple domains as long as the
rules were uploaded beforehand. This allows the engine to be leveraged in an on-demand validation
service scenario. The jSRMLToolServlet also has an option to learn the validation rules based on the
form inputs using extensible machine learning methods. This provides a powerful tool for the owner as
it can also "mine" the input and gradually adjust the rules based on what users entered. A hook will
be installed on the form’s submit event and will re-route the call to the jSRMLToolServlet location.
The major difference here is that there is no actual jSRML rule-set on the server. It is merely used
to intercept any submissions and store the form-value pairs. These values are then analyzed by the
learning module and possible jSRML rules are generated. The flow is returned to the client and the
form data is pushed to the original target for the form submission. This means that the form operation
is not hindered but the traffic is intercepted, saved and submission relayed to its original target.

The learning module has several plugins that process form submissions and adjust the proposed
rules accordingly, making the learning a gradual process. The module will perform the learning on 50%
of the available form field examples. Once the rules are proposed it will then test their efficiency on
the remaining 50%. This is important to avoid over generalizing the proposed learning rules. Currently
the engine has the following learning plugins: jpFormat, jpLength, jpCopyContent, jpRelationship,
jpRange, jpPredefinedName, jpRegExp. Each plugin has a confidence factor and a target ratio that is
set by the administrator of the system. If a plugin has a high confidence value it means that almost
every time the plugin breaches the target ratio threshold a rule will be generated. Sometimes it is
possible that multiple plugins provide rules for the same field. In cases like these the system chooses
the solution with the highest confidence factor which surpassed the target ratio. The target ratio
denotes what the minimum expected matching ratio is, i.e. if the actual match is lower than this ratio
the rule will not be considered as a match. In practice this means the ratio of inputs that match the
given rule conditions.

The plugins keep track of their historical form submissions along with their field values. The
learning module goes through all the plugins and collects the partial jSRML rule proposals. Once all

7



the plugins are executed, weighed, then the results are analyzed and stored. Figure 6 demonstrates how
the learning module works. To increase the efficiency of the learning process, it is usually helpful to start
a new rule-set with a supervised learning scenario. During this the owner of the form "teaches" the
engine by providing valid sample inputs. Sometimes previous valid form submissions are also available
in bulk. The tool also has an import feature which can import a CSV file of valid sample data to
prime the initial rules. Since the learning module is very extensible, new plugins can be added easily.
This can increase the learning efficiency of the system.

Form Read Form UID jSRMLTool
Save Field

Values ForEach Field

ForEach Plugin

more

Build Context Tree

Retrieve Historical

values

Execute on 50% of

historical data
Persist Field Values

Validate against remainder

50% of historical data

Above

Ratio

Store jSRML

proposal

Check Results above

ratio

Check confidence

factor

Persist final jSRML

ruleset

No

Yes

Yes

No

Figure 6: jSRMLTool learning process

We have evaluated the plugins programatically and also applied it to a real-world scenario. If the
training examples are positive and do not contain too much noise then the learning engine is able to
provide near perfect results. Table 4 shows the experimental results of learning a form with multiple
fields. It shows how increasing the positive inputs improves the learning ratio. Our jpRelationship plugin
is also able to discover relationships between fields so it can be considered as a form of minimalistic
data mining engine as well.

2.1 Summary of the thesis and own contributions

• The jSRML metalanguage was created, which is able to describe semantic validation rules for
web forms. The new language is extensible and allows the use of external functions.

• The approach is non-obtrusive and is able to insert and define semantic rules in-line with the
code of the form fields.

• The language allows context-oriented rule-definitions, making it a powerful tool for conditional
value validation.

8



Analyzed Total Miss Success
Plugin Examples Count Ratio

jpLength 100 17 83.00 %
jpLength 200 7 96.50 %
jpLength 300 2 99.33 %
jpLength 400 0 100.00 %
jpRange 100 72 28.00 %
jpRange 200 85 57.50 %
jpRange 300 97 67.67 %
jpRange 400 81 79.75 %
jpRange 500 63 87.40 %
jpRange 600 59 90.17 %
jpRange 700 45 93.57 %
jpRange 800 34 95.75 %
jpRange 900 28 96.88 %
jpRange 1,000 11 98.90 %
jpRegExp 100 98 2.00 %
jpRegExp 200 186 7.00 %
jpRegExp 300 198 34.00 %
jpRegExp 400 146 63.50 %
jpRegExp 500 90 82.00 %
jpRegExp 600 48 92.00 %
jpRegExp 700 22 96.85 %
jpRegExp 800 12 98.50 %
jpRegExp 900 6 99.33 %
jpRegExp 1,000 2 99.80 %

Table 4: Plugin Efficiency with gradual positive training examples

• The jSRML rules are able to correct the invalid field values using the rule definitions allowing
the form submissions to succeed.

• The jSRMLTool validation tool can be executed in all four validation modes (Server-side, Client-
side, Real-time, Hybrid).

• A servlet implementation of the validation engine was also implemented which is able to provide
Validation as a Service (VaaS) approach for forms of multiple domains.

• The validation engine’s servlet can also be hooked up to intercept form values and store the
results. The results are then fed into a set of machine learning plugins, which are able to suggest
validation rules for the forms. This learning module also provides a way to discover relationships
between field values making it a minimalistic data-mining approach.

The results of this thesis are entirely based on my contributions and are outlined in [12].

3 Validating Google Protocol Buffers

Thesis: Introduce a new metalanguage (ProtoML), which can validate and correct the
messages of Google Protocol Buffers.

The thesis demonstrates ProtoML[11] as a solution to validate Google Protocol Buffers[7] (PB).
This is a different direction compared to the text-based XML format since PB is binary-based, making
its validation a challenge. Binary-based formats have considerably smaller payloads compared to text-
based formats, thus more data can be transmitted in the same amount of packets. This advantage
comes at a price of the format being boxed in and harder to extend. Most binary formats use a

9



predefined set of fields (similarly to C structs). They often lack standardized validation schemas
and usually have no way to describe the relationship between fields or their formats. The only real
restriction they offer is specifying the type and name of the field and possibly a set of values they
can have (e.g.:ENUMs). The validation task is usually up to the developer (it is rarely encapsulated
within the language).

The reason why the Google Protocol Buffers format was chosen was that it is highly versatile and
has support for various programming languages. Unfortunately the validation side of the messages
in PB was not part of its language specification so it also suffers from the same drawbacks as most
binary-based formats. The ProtoML language is XML-based and uses functions to extend its descriptive
capabilities. It allows the definition of validation and constraint rules for PB messages (using their
.proto file). ProtoML can define multiple constraints on fields depending on their context and values.
Using XPath it is able to reference other field values within the message. The language can also work
with broader contexts by implementing message buffering on the library side (multiple messages can
be placed into one context, building up a larger DOM tree for the rules to operate on). The ProtoML
rules can specify what action the implementing engine should take upon validation errors (“warn”,
“fail”, “ignore”). There is also a validation mode flag that can notify the engine to potentially correct
the field value based on the expected rule value if it does not match.

We have created a draft implementation of the ProtoML language in Java called ProtoMLTool,
which serves both as a library to execute ProtoML rules and create wrapper code based on the input
.proto file and .pml language rule-set. The tool was written using the Spring Framework and uses
Exp4j [3] to evaluate the expressions. The DOM manipulation and access is handled by the JDOM[9]
library. The generated wrapper code no longer uses the .pml file and can be compiled along with
the protoc generated Java code. This is achieved by converting ProtoML rules into chained function
calls and inserting them into a static class wrapper code to gain performance. The library also has
a detached execution mode that can execute ProtoML rules on the messages (this mode, however,
will require the .pml file during runtime as well). Figure 7 shows the code wrapper generation flow of
ProtoML.

.proto

file

.pml

file

ProtoMLTool

Wrapper

classes for

validation

Generates

Figure 7: ProtoMLTool work-flow

The validation flow can be seen in Figure 8. The class that processes the PB message needs to
include a reference to the generated PMLValidator class aside from the library dependency (in a form
of an Ivy dependency). When the message is received a call to PMLValidator.Validate should be
made with the current Message as the input parameter to perform the validation. This static method
is generated from the .proto and .pml files so it will always use the proper generated Message
format. Since PB generates custom types and Enums, these generated types are used by the library.

The generated PMLValidator class contains a HashMap of all fields that will need to be validated
along with a validator descriptor. This descriptor contains a method name (which is executed using

10



reflection) along with the flags for the given rule (validate/correct and the action to take upon
validation failure). During the processing the incoming Message is converted into a DOM tree and
the appropriate reflected method is invoked. This is done by looking up the field XPath in the map
and checking if it has any descriptors assigned. Since all functions contained in the rules have their
corresponding methods in the library, the resulting code is similar to the rule definition.

If the mode was set to “correct” then the engine checks if the field is valid. If it is then the
validation terminates successfully. If the result was not valid it will attempt to correct the value using
the expected value. The library will retry three times to validate (if it fails again) after replacing the
value until it finally terminates with a validation error.

Message

Read Message

with Generated

Classes

ProtoMLTool

Library

Generated

ProtoML wrapper

class

Validate

Message

Valid?Mode check

Attempt

to Correct

base on expected

values

Success

For each

rule
All valid?

Success

Report,

Warn or

Fail

Report,

Warn or

Fail

YES

YES

NO

NO

Validate

Correct

Figure 8: ProtoMLTool Validation work-flow

3.1 Summary of the thesis and own contributions

• A new metalanguage called ProtoML was created, which is capable of validating and correcting
the messages of Google Protocol Buffers using semantic rules.

• The metalanguage provided a function-oriented approach, allowing the functions to be chained
together, giving ProtoML rules a considerably lighter footprint compared to SRML rules.

• The ProtoMLTool validation engine is able to generate Java code from the .proto file and
the ProtoML rule-set. This allows native validation performance for Google Protocol Buffer
messages.

11



• The validation engine can also be run in detached mode, which allows the validation rules to be
executed during runtime.

The development and implementation of ProtoML is completely the result of my research which,
were published in [11].

4 Validating Web Services

Thesis: Combine the previous metalanguages (SRML 2.0, jSRML, ProtoML) into SRML
3.0 and provide a way to validate Web Services.

The final area of the dissertation is the space of web services. The reason why web services are
important is that there has been a paradigm shift in software architectures in a sense that instead of
re-writing services over and over the trend now is to re-use and share functionality to reduce cost. Web
services bridge the gap between systems distributed over multiple geographic regions, providing an easy
way to communicate in a platform independent manner. The advantage of using web services is that
the client does not need to know how the data is created or where it comes from. The client’s system
can implement its own business logic with the consumed data or can connect to other web services as
well. Web services are not limited to one programming language, making them ideal for cross-platform
communication and service sharing. Publicly exposed services are under constant attacks [5][8] (e.g.:
injection attacks, invalid data submission, Denial of Service). This is one of the main reasons why
validation and data sanitization plays a very important role for both the client and provider side. The
service provider needs to ensure that the requested data is in a valid format and will not compromise
the system, whereas the priorities of the client are validating the format and content of the resulting
data along with integrating it into their existing infrastructure. Currently the only real viable way to
validate either side involves changes to the systems. While this is a great solution it requires extensive
resources to introduce the validation logic into an existing system. If the requirements or the format
of the data change over time (e.g.: a new bank account format is introduced) then the backing system
needs to be updated and possibly recompiled. The same situation exists for the client side since the
consumed data may need to be filtered for a subset.

Since web services can use XML to communicate with their consumers (using SOAP[4]) it was
also a good choice as a target for SRML-based validation. Using the experience and knowledge gained
from the development of jSRML and ProtoML, we decided to unify their positive traits into the
SRML language. This led to the new 3.0 extension of the SRML language as described in [13]. The
two metalanguages helped make the new version of the language easier to use, more descriptive and
contain less overhead than its predecessors. The new version along with a new implementation of the
rule engine (wsSRML) can be leveraged to validate web services. The new SRML 3.0 format separates
the expected values (under the values node) from the value/format constraints (conditions element).
The other considerable difference is that the engine received a new validation core, which now works
on a function chaining approach (similar to ProtoML). This makes the rule definition easier since we
can wrap multiple functions into one large condition.

The key syntactic and usability improvements that SRML 3.0 has over the previous version can
be summarized the following way:

12



• Uses a new function-oriented approach, which allows functions to be daisy chained together and
evaluated easier.

• The conditions tag allows listing the conditions that the inspected element has to conform
to. The match parameter can be “all” or “any” depending on whether or not the requirement is
to have all condition expressions met or at least one.

• With the help of the values tag context-specific value definitions can be described. These ex-
pressions are evaluated top-down. The first one to match the context child expression conditions
will be taken as the expected value. This is used to correct the value easier.

• Using the validation-record element, the definition of the XML record elements can be
defined along with their primary ID attributes.

• With the help of validation-doc-root it is possible to define of the XML document root
element.

The new wsSRML tool allows two ways to validate the request and response of web services. The
first way is to perform the validation on the client side by placing the validation process into the
generated code. The second is to intercept incoming and outgoing communication to and from the
target web service and apply the validation logic inside a proxy service.

During the validation phase both Request and Response parameters are accessible, since the
function of the wrapper class is making the actual service call. This provides even more powerful
validation rules since there are cases when conditions can be defined for the response-based on what
the request was. The reason why both requests and responses may need to be validated is for better
security and validity. Most validators only concentrate on the request side. From a security point
there are cases when man-in-the-middle attacks can intercept and shape/change the traffic to exploit
the system for their own advantage. The other situation when response validation is needed is when
the service itself is an aggregation of multiple services, which may not all be valid. In these situations
providing response-based rules ensure a higher level of validity. The response may be structurally valid,
but content validation can only be done with more advanced techniques. SRML 3.0 allows an easy
way to define the expected values as well. Our system also allows the errors to be corrected using the
validation rules themselves, making it more than a simple validation engine.

The wsSRML engine has two operation modes: native and proxy. Each have their advantages and
disadvantages. The flow of the native mode starts with the stub generation. After wsdl2java has
generated the stub classes, our tool will parse the SRML rule-set and augment the code. The SRML
rules are analyzed and the wrapper class is generated on top of the interface. Figure 9 demonstrates
how the native mode generates the wrapper class.

The validation wrapper class is augmented with the business logic that is translated from the
SRML file. The logic is implemented using reflection. Since the rules may contain functions that can
be chained together, the validator library needs to be included into the project that wishes to leverage
the validation. Figure 10 shows what the validation flow looks like in case of this mode.

The advantage of the native mode is that it is fast, provides native compiled validation that can
be used in any project that needs web service validation. The disadvantage is that the business logic
cannot be changed on the fly; it has to be recompiled, which may be hard in a production setting.

13



WSDL

SRML

rules

Set of

generated

classes

wsSRML

Create

wrapper class

with methods

implemented

Parse

SRML

foreach 

service

method

Inject rule

logic into method

code

Convert rule logic

into native code

Figure 9: Native validation class generation

RequestClient

wsSRML

generated

wrapper

Valid?
Validate

request

Attempt

to correct

parameters

Valid?

SRMLException

Invoke

original method

with validated

parameters

Target

Service
Response

wsSRML

wrapper
Valid?

Attempt

to correct

results

Valid?

SRMLException

Return with

updated

response

No

Yes

No

Yes
Yes

No
Yes

No

Figure 10: Native validation flow using wsSRML

The second mode wsSRML supports is the proxy-based mode. This mode is useful in situations
when the client and server cannot be updated with the validation code. Using the proxy approach
we introduce a proxy servlet between the client and server. The clients request the services from the
servlet, which then passes the requests on to the target server. During the process the proxy will use
the provided SRML rules to validate and potentially correct the incoming and outgoing requests. This
is similar to how jSRML solved the server-side validation. Figure 11 shows the validation flow in case
of the proxy-based validation.

Client Request
wsSRML

servlet

Validate

Request

Valid?

Attempt

to correct

Valid?

SRMLException

Proxy

Request

Target

Service

Response

Valid?wsSRML

servlet

Attempt

to correct
Valid?

Updated

response

No

Yes

Yes
No

No

Yes

No

Yes

Figure 11: Proxy based validation flow

There are three operation submodes the proxy servlet can run in: real-time rule loading mode,
compiled rule plugin mode and SOAP intercept mode. The proxy will perform the validation in the
request phase. If the validation fails then an exception is thrown and the error is returned in the
response. In case the server returns data that is invalid the engine will try to correct the results using
the rules. This is not as fast as a native version, however, does provide more flexibility in replacing
the validation rules without any considerable downtime.

14



Request
Find rules

for method

Load SRML

rules

Create

DOM tree

Evaluate

rules

Target

Service

Response
Find rules

for response

Validate/Correct

Validate/Correct

Response

Figure 12: Real-time proxy flow

In case of the real-time proxy the initial setup is the same, since the augmented wrapper class is
generated, but the rules are not compiled to native code, instead every request starts out by converting
its input parameters into a DOM tree using the wsSRML.convertToDOM() method and applying the
validation rules on them. Figure 12 shows the real-time proxy validation flow.

During the “compiled rule plugin” mode the rules are compiled into classes and bundled into a JAR
file similar to how the native compiled mode operates. The advantage here is that the rules will not
need to be processed on each request but rather passed in to the proxy service to handle the request.
This is considerably faster than the real-time rule processing since the rules are not processed over
and over and the parameters are not converted to DOM trees upon every request. The drawback is
that it is more difficult to change the business rules in production since they require downtime and a
recompile of the rule JAR file. Figure 13 shows the compiled rule plugin mode. Every service running
in this mode is deployed in its own context and has a custom class loader associated with it. There is a
challenge here since Java cannot use multiple versions of the dependency classes. To resolve this issue
we use an approach similar to how OSGi works. The plugins are sand-boxed to their own environments
and versions of the classes. The wsSRML proxy servlet will load all the plugin JAR files upon startup
and expose each into its own endpoint. This allows a single wsSRML servlet to expose and validate
multiple web services on different endpoints providing a service store approach. This concept can be
extended even further to potentially provide validation as a service for clients of different domains.

Request
Load Wrapper

class from JAR

Invoke

compiled

method

Validate/Correct

Target

Service

Response

Validate repsonse

using JAR wrapper

class

Updated Response

Figure 13: Compiled Plugin proxy flow

The third mode of wsSRML is based on intercepting the raw SOAP messages. This mode is pure
proxy since no stubs or wrapper classes are generated. It takes the SOAP message from the request
and applies the rules on the raw XML document and updates it wherever necessary. This approach is
similar to the real-time mode in the sense that the rules are looked up and applied on every SOAP
message. It is more transparent as no generated stubs are needed for the validation to work. It operates
purely on the SOAP message that is processed into a DOM document (as it is also an XML document)
and the appropriate rules are executed. The speed is not the most optimal since the rule-set is parsed
upon each request and response. Figure 14 shows the SOAP interception mode of the tool.

The advantage of the proxy mode is that it is usable in situations when the client and/or server code

15



Figure 14: SOAP Intercept flow

is unavailable or cannot be modified. It also allows real-time swapping and extension of validation rules
without any potential downtime. The disadvantage of this mode is that it is considerably slower than
the native compiled version and it requires a proxy servlet to be deployed to perform the interception,
adding an extra level of complexity.

4.1 Summary of the thesis and own contributions

• The SRML 2.0, jSRML, ProtoML languages were combined into a new version of SRML. This
latest extension took all the advantages of the other metalanguages and integrated it into SRML.

• The new SRML 3.0 extension provides function-oriented rule definitions, which can be daisy-
chained together providing an easier description.

• The extension also separates the conditions from the expected values, making the definitions
easier to read and process.

• The wsSRML validation engine is able to validate and correct the Request and Response of web
services. The tool can operate in two modes: native and proxy.

• The engine is able to generate Java code from the SRML 3.0 rules and inject the validation
logic into the wrapper classes generated by wsdl2java. This allows the validation logic to be
executed in-line with the actual service calls.

• It is possible to run the engine in proxy mode, which will intercept the traffic using a servlet and
apply the validation logic on the service packets. This mode offers a plugin submode as well,
making a single servlet capable of validating multiple web service endpoints (similar to how the
servlet validation mode of jSRMLTool worked). This can be useful in situations when the system
cannot be updated, however, validation logic needs to be introduced.

The latest 3.0 extension of SRML along with the wsSRML validation engine are purely based on
my results. The content of the thesis are based on [13].

16



5 Conclusion

The dissertation demonstrated how the author extended the SRML language into the field of validation.
During the evolution of the language several metalanguages were created, which helped the creation
of the final 3.0 version. The dissertation demonstrated a way to validate XML documents, web forms,
Google Protocol Buffers and Web Services. These cover the most common formats used for information
exchange, making the results of the dissertation relevant and viable solutions for every-day use. In the
future we plan to extend the language even further into the binary-format validation space, providing
approaches for validating distributed documents spread out over a cluster (e.g.:Hadoop).

References

[1] Document object model (DOM), http://www.w3.org/dom/.

[2] H2 database engine, http://www.h2database.com/html/main.html.

[3] F. Asseg. Exp4j, http://www.objecthunter.net/exp4j/, 10 2011.

[4] D. Box and D. Ehnebuske. Simple Object Access Protocol (SOAP) 1.1. Technical report, World
Wide Web Consortium, http://www.w3.org/TR/SOAP/, 2000.

[5] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL injection attacks. In LNCS, editor,
International Conference on Applied Cryptography and Network Security (ACNS), volume 2,
2004.

[6] T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible markup language, 1998.

[7] Google. Protocol Buffer, http://code.google.com/apis/protocolbuffers/docs/overview.html,
2008.

[8] M. Handley. Internet Denial-of-Service Considerations. Technical report, IAB, RFC4732, 2006.

[9] J. Hunter. JDOM, http://jdom.org/docs/apidocs/, 2000.

[10] J. Hunter and W. Crawford. Java Servlet Programming. O’Reilly, 2nd edition, 2001.

[11] M. Kálmán. ProtoML: A rule-based validation language for Google Protocol Buffers. In Pro-
ceedings of the 8th International Conference for Internet Technology and Secured Transactions
(ICITST), pages 193–198, London, UK, December 9-12 2013, IEEE Computer Society.

[12] M. Kálmán. Versatile form validation using jSRML. Acta Cybernetica, 2014 (Accepted for
publication).

[13] M. Kalman. Rule-based web service validation. In Proceedings of the 21st International Confer-
ence on Web Services (ICWS), Alaska, USA, June 27 - July 2 2014 (Accepted for publication),
IEEE Computer Society.

[14] M. Kálmán and F. Havasi. Enhanced XML validation using SRML. International Journal of Web
& Semantic Technology (IJWeST), Volume 4(October):1–18, 2013.

17



[15] M. Kálmán, F. Havasi, and T. Gyimóthy. Compacting XML documents. In Journal of Information
and Software Technology, volume 48, pages 90–106. Elsevier, February 2006.

[16] D. Raggett and A.L Hors. HTML 4.0 specification. Technical report, W3C, April 1998.

[17] J.E. Refsnes. Introduction to DTD, http://www.w3schools.com/dtd/dtd_intro.asp.

[18] E. van der Vlist. XML Schema. O’Reilly, 2001.

18


