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INTRODUCTION

The basal forebrain corticopetal system

Since the classic experiments of Guiseppi Moruzzi and Horace Magoun in the late
1940’s (Moruzzi and Magoun, 1949), it has been well known that both sleep and wakefulness
are actively induced, actively maintained, and highly organized states of the brain. An
extensive network of neurons that is designated as the ascending arousal system (AAS)
orchestrates the characteristic forebrain activities during sleep and wakefulness (for review
see Rechtschaffen and Siegel, 2000; Hobson and Pace-Schott, 2002; Pace-Schott and Hobson,
2002). In addition to being the effector in the sleep/wake-inducing circuitry, the AAS plays a
crucial role in regulating consciousness, cognitive and visceral functions, as well as motor
responses by means of controlling the responsiveness of cortical and thalamic neurons to
incoming stimuli. The AAS comprises of several widely distributed groups of neurons that
can be characterized by their neurotransmitter content (Fig. 1). They include the
monoaminergic and cholinergic neurons in the brainstem and hypothalamus, the perifornical
orexin-containing cells, the cholinergic and GABAergic neurons in the basal forebrain (BF),
as well as the glutamatergic neurons in the thalamic intralaminar nuclei (for review see e.g.

Saper, 2000; Sutcliffe and de Lecea, 2002).
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Fig.1. The members of the ascending arousal system. A: central adrenergic system; BF: basal forebrain corticopetal system; D: A8-Al
dopaminergic cell groups; HIS: tuberomammillary histaminergic neurons; NA: locus ceruleus noradrenergic cell group; ORX: posterior
hypothalamic orexin-containing neurons; SER: raphe serotonergic system; Th: thalamic intralaminar glutamatergic cells.



The basal forebrain corticopetal system plays a prominent role in the AAS. Since the
discovery in the late ‘70s that Alzheimer’s disease is characterized by a severe decline of
cholinergic activity in the forebrain (e.g. Dringenberg, 2000), the BF cholinergic system has
been in the center of scientific attention. It has also become widely accepted that besides
Alzheimer’s disease (Muir, 1997), the derailment of the BF cholinergic system can play a role
in the pathomechanism of other neurodegenerative and neuropsychiatric disorders such as
Parkinson’s disease (Jellinger, 1990), or schizophrenia (Sarter and Bruno, 1999). During the
past decades, several studies have provided evidence that BF neurons are implicated in the
regulation of sleep/wakefulness, sensory processing, attention, learning and memory, and
motivation (Everitt and Robbins, 1997; Sarter and Bruno, 2000). The rat cholinergic BF
comprises several territories closely associated to the medial and basal surfaces of the cerebral
hemispheres (for review see Detari et al., 1999; Jones and Muhlethaler, 1999; Zaborszky et
al., 1999; Zaborszky and Duque, 2003). These areas include the medial septum, vertical and
horizontal limbs of the diagonal band of Broca, substantia innominata, bed nucleus of stria
terminalis (BST), as well as the pallidal regions including the globus pallidus and ventral
pallidum. These areas are richly populated by cholinergic, GABAergic, and peptidergic
neurons (Zaborszky et al., 1999) that are intermingled with fiber bundles of several ascending
and descending neuronal pathways. BF neurons serve either as projection cells innervating the
entire cortical mantle, the amygdala, and hippocampus, and/or interneurons forming the
complicated circuits underlying local information processing (Zaborszky and Duque, 2000).

Recent discoveries in neuroscience research have raised new important functional and
morphological aspects of the basal forebrain corticopetal system. These new discoveries
prompted the series of experiments that are detailed in the present thesis. Using
neuroanatomical examination techniques, our goal was to address the following specific
issues. (1) There is accumulating evidence that the BF cholinergic system participates in
autonomic regulation, especially in cardiovascular control (Berntson et al., 1998; Takahashi et
al., 2001). It is still unresolved, however, how the viscerosensory information is conveyed to
the BF, and how BF cholinergic neurons may affect autonomic regulation. (2) The recently
discovered vesicular glutamate transporter (VGLUT) molecules (Aihara et al., 2000;
Bellocchio et al., 2000; Takamori et al., 2000) have been proven to be highly specific markers

for neurons that utilize glutamate as neurotransmitter. In situ hybridization and



immunohistochemical demonstration of VGLUTSs enabled scientists to study the extensive
glutamatergic circuitry in the central nervous system. It is well known that glutamate elicits
strong functional responses in BF neurons. However, due to the lack of specific methods to
visualize glutamatergic neuronal structures, the details of the BF glutamatergic circuitry are

still unresolved.

Do basal forebrain cholinergic neurons receive autonomic input?

Based on previous evidence that BF neurons participate in autonomic regulation, we
hypothesized that these cells receive neuronal input from known autonomic centers of the
brain. To test the validity of our hypothesis, we studied the morphological aspects of a
possible adrenergic/cholinergic link in the BF. Previous studies have described significant
input to BF neurons from brainstem noradrenergic and serotonergic neurons both in rat
(Milner, 1991; Gaykema and Zaborszky, 1996; Zaborszky and Cullinan, 1996; Rodrigo et al.,
1998; Leranth and Vertes, 1999) and primates (Smiley and Mesulam, 1999; Smiley et al.,
1999). However, these cell groups are well-established members of the AAS in addition to
being part of the autonomic network. Thus, the nature of noradrenergic and serotonergic input
to the BF cannot be clearly classified as autonomic. On the other hand, the central adrenergic
system participates almost exclusively in autonomic and/or neuroendocrine regulation (for
review see e.g. Saper, 1995). Therefore, the possible adrenergic innervation of BF cholinergic
neurons may transmit only autonomic information.

The neurons that belong to the central adrenergic system are dispersed in the
brainstem reticular formation and are arranged in three loose cell groups designated as C1, C2
and C3 (Hokfelt et al., 1974; Armstrong et al., 1982; Hokfelt et al., 1984; Ruggiero et al.,
1985). The C1 and C2 groups are frequently characterized as rostral extensions of the Al and
A2 noradrenergic nuclei in the ventrolateral medulla and in the nucleus of the solitary tract,
respectively. The cells of the C3 group are distributed along the fibers of the medial
longitudinal fascicle, largely corresponding to the area of the nucleus prepositus hypoglossy
in the dorsomedial medulla. Adrenergic axons innervate the intermediolateral column of the
spinal cord (Tucker et al., 1987; Carlton et al., 1991) and provide viscerosensory information

to several brainstem as well as limbic autonomic centers (Saper, 1995).



Earlier biochemical studies (Palkovits and Brownstein, 1988) have provided evidence
that both adrenaline and its biosynthetic enzyme, phenylethanolamine N-methyltransferase
(PNMT), are undetectable in the majority of BF areas. Even in territories such as the septum,
the horizontal limb of the diagonal band (HDB), and BST, where adrenaline and PNMT were
detected, the concentration of adrenaline did not exceed 10% of that of noradrenaline. Despite
these biochemical data, morphological studies have repeatedly highlighted the widespread
existence of PNMT-containing fibers in BF areas both at light and electron microscopic levels
(Chang and Kuo, 1989; Phelix et al., 1992; Rodrigo et al., 1998). Tract-tracing experiments
have suggested that the adrenergic input to BF originates in the C1-C2 adrenergic cell groups
of the brainstem (Semba et al., 1988; Zagon et al., 1994). Nevertheless, morphological studies
have concluded that the vast majority of catecholaminergic fibers that innervate BF areas
contain dopamine and/or noradrenaline. Along these lines, electrophysiological and
pharmacological experiments have primarily studied the effects of dopamine (Momiyama and
Sim, 1996) and noradrenaline (Fort et al., 1995) on BF neurons. As a result, it is still
unresolved whether the central adrenergic system has any direct physiological influence on
the BF. To address the morphological aspect of this issue, we performed a series of light and

electron microscopic double-immunolabeling studies in our first set of experiments.

What is the morphological foundation of glutamatergic effect on memory?

The caudal portion of the BF corticopetal system, the medial septum diagonal band
complex (MSDB) is known to be involved in the generation of hippocampal theta rhythm and
plays a key role in memory and cognitive functions (for review see e.g. Vertes and Kocsis,
1997). The MSDB contains a large population of both cholinergic and GABAergic neurons
that project to the hippocampus and/or serve as locally acting interneurons (Jakab and
Leranth, 1994). Since the discovery that cholinergic neurons of the MSDB undergo severe
atrophy in various neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease
(Whitehouse et al., 1982; Mufson et al., 1989; Arendt et al., 1995), the septo-hippocampal
cholinergic pathway has become one of the well characterized systems of the brain. In
contrast to these septo-hippocampal cholinergic neurons that innervate a broad range of
hippocampal cells (Frotscher and Leranth, 1985), the GABAergic neurons of the septo-
hippocampal pathway (Kohler et al., 1984) selectively inhibit specific populations of GABA



cells in the hippocampus (Freund and Antal, 1988). Via this connection, the septo-
hippocampal GABA neurons exert a powerful disinhibitory influence on hippocampal
pyramidal cells. Several studies have suggested that tonic impulse flow in this septo-
hippocampal GABAergic pathway may be critical for the generation of theta rhythm and
normal cognitive functions (Lee et al., 1994; Alreja et al., 2000; Wu et al., 2000).

During the past decade, several authors have reported that intraseptal perfusion of
glutamatergic drugs is able to powerfully influence the hippocampal theta rhythm and
memory processes (Izquierdo, 1994; Puma and Bizot, 1999; Carre and Harley, 2000)
supposedly by controlling the activity of septo-hippocampal neurons. Several studies have
suggested that the sources of glutamatergic input to the MSDB may be in the frontal cortex
(Jaskiw et al., 1991), entorhinal cortex (Leranth et al., 1999), supramammillary area (Leranth
and Kiss, 1996; Kiss et al., 2000), and nucleus reuniens thalami (Bokor et al., 2002). Based on
these data, we hypothesized that glutamatergic axons innervate septo-hippocampal
GABAergic cells. Since the presence of glutamatergic neurons has been strongly suggested in
septal areas (Gonzalo-Ruiz and Morte, 2000; Manns et al., 2001; Kiss et al., 2002), we also
speculated that the source of the glutamatergic innervation is, at least in part, intrinsic to the
septum. Since the septal glutamatergic cell bodies and the putative local targets of their
terminals occupy the same and/or closely associated areas, tracing these glutamatergic local
circuit neurons with retrograde tracers injected into the MSDB would produce questionable
results. Therefore, to clarify whether the glutamatergic input to the MSDB comes from local
sources and/or from extraseptal origin, we surgically separated the septum from part of its
afferents by septal undercut and fimbria/fornix transection in our second set of experiments.
Subsequently, simultaneous immunohistochemical visualization of the recently discovered
specific glutamatergic marker VGLUTs (Aihara et al., 2000; Bellocchio et al., 2000;

Takamori et al., 2000) and parvalbumin enabled us to test the validity of our hypotheses.



MATERIALS AND METHODS

Animals and surgical procedures

Animals. Adult male Sprague-Dawley rats (250-300 g; Charles River, Wilmington,
MA) were group-housed and maintained on a 12/12 h light/dark cycle and provided with
unlimited access to water and rat chow. All animal protocols used in this study were in
compliance with the National Institutes of Health Guide for the Care and Use of Laboratory
Animals. All surgical interventions and perfusions were carried out using a ketamine-based
anesthetic [ketamine (25 mg/ml), xylazine (1.2 mg/ml), and acepromazine (0.03 mg/ml) in
saline; 3 ml/kg, i.m.].

Septal undercut (SX). In order to isolate the MSDB from all of its ventral afferents
coming from the right side, unilateral septal undercut was carried out according to our
standard protocol (Szeidemann et al., 1995). Briefly, rats (n=6) were fixed into a stereotaxic
apparatus (David Kopf Instruments, Tujunga, CA) and an L-shaped knife with the tip facing
towards the nose was sunken into the right lateral ventricle at the rostral end of the septum in
a position parallel to the sagittal plane (stereotaxic coordinates: AP: 1.60; L: 1.50; V: 8.00).
The knife was then rotated by 90° towards the sagittal plane and pulled back up to the caudal
end of the septum (AP: 0.26). Finally, the knife was rotated back to its original position and
removed. Rats were allowed to survive for five or ten days after SX. Following fixation and
Vibratome sectioning, all lesion sites were examined throughout their rostro-caudal extent.
Only brains with complete lesions extending from the lateral ventricle to the basal surface of
the MSDB (Fig. 11a) were used in the experiments.

Fimbria/fornix transection (FFX) was done according to our standard protocol
(Leranth et al., 2000) to separate the MSDB from all afferents coming from the hippocampus
via the right fimbria/fornix. Briefly, rats (n=6) were fixed into a stereotaxic apparatus and
from a dorsal penetration, the overlying cortical areas and corpus callosum were aspirated.
Then, under clear visual control, the right fimbria/fornix was completely disrupted by vacuum
aspiration. Following surgery, the rats were allowed to survive for five or ten days.

Colchicine treatment. In order to visualize VGLUT2-immunoreactive (IR) cell bodies
in the septum, the axonal-transport blocker, colchicine was applied to enhance the

accumulation of VGLUT2 in the perikarya. Under stereotaxic control, rats (n=3) were



injected with 180 pg colchicine [dissolved in 20 pl 0.1 M phosphate-buffered saline (PBS;
pH=7.60)] into the lateral ventricle using a Hamilton microsyringe (stereotaxic coordinates:
AP: 0.90; L: 1.50; V: 4.00). Following the colchicine injection, rats were allowed to survive
for 40 hours.

Tissue processing for light microscopy

Rats were transcardially perfused with 50 ml PBS, then either by a 100 ml mixture of
4% acrolein and 2% paraformaldehyde and, subsequently, 200 ml 2% paraformaldehyde
(experiment I; n=6) or by 400 ml fixative containing 4% paraformaldehyde, 0.1%
glutaraldehyde and 15% picric acid (experiment II) in PBS. The brains were removed and
postfixed overnight in 4% paraformaldehyde dissolved in PBS. Coronal Vibratome sections
(50 um) were cut into either six series from the BF (experiment I) or four separate sets
throughout the MSDB (experiment II) and collected in PBS. Different sets of sections from
each brain were used for light and electron microscopic processing. For light microscopy, the
tissue was immunostained as described below, then the sections were mounted on gelatin-
coated slides, air-dried, cleared in xylenes, coverslipped with Permount and analyzed under an
Olympus BX60 microscope (Olympus Optical, Tokyo, Japan) equipped with a Zeiss

AxioCam digital camera.

Immunohistochemical procedures

Experiment I. In order to visualize adrenergic and cholinergic neuronal structures,
PNMT and choline acetyltransferase (ChAT), the synthesizing enzymes for adrenaline and
acetylcholine, respectively, were detected as markers. All incubations detailed below were
done at room temperature (RT) unless otherwise specified. For simultaneous
immunoperoxidase labeling of PNMT and ChAT, the tissue was incubated overnight in a
mixture of polyclonal rabbit anti-PNMT [1:10,000; (Bohn et al., 1987)] and polyclonal sheep
anti-ChAT (1:20,000; Chemicon, Temecula, CA) diluted in PBS containing 2% normal horse
serum and 0.5% triton. After rinsing in PBS, the sections were incubated in biotinylated goat
anti-rabbit IgG (Vector Laboratories, Burlingame, CA; 1:500 in PBS containing 2% normal
horse serum and 0.5% triton; overnight) followed by ABC Elite (Vector LaBoratories; 1:500
in PBS; 2 hours). Following a brief rinse in TRIS-buffered saline (TBS; pH=7.60), PNMT-IR



elements were visualized using a nickel-diaminobenzidine chromogen (0.4 mg/ml 3,3’-
diaminobenzidine tetrahydrochloride, 0.4 mg/ml nickel ammonium sulfate and 0.0006%
hydrogen peroxide dissolved in TBS). This reaction resulted in the black staining of PNMT-
IR elements. The nickel-diaminobenzidine precipitate was silver-gold intensified as described
earlier (Liposits et al., 1984), but the thyoglycolic acid pretreatment was omitted from the
protocol. The ChAT-IR neuronal structures were visualized by incubating the sections,
already immunostained for PNMT, in biotinylated donkey anti-sheep IgG (Jackson
ImmunoResearch Laboratories, West Grove, PA; 1:500 in PBS containing 2% normal horse
serum and 0.5% triton; overnight) and then in ABC Elite. The tissue went through the biotin-
tyramide amplification procedure followed by the peroxidase reaction using the
diaminobenzidine chromogen (0.4 mg/ml 3,3’-diaminobenzidine tetrahydrochloride and
0.0006% hydrogen peroxide dissolved in TBS) that resulted in light brown staining of ChAT-
IR neurons.

Experiment II. In order to visualize glutamatergic and septo-hippocampal
GABAergic neuronal structures, VGLUT1 and VGLUT2 were detected as markers for
glutamatergic elements and parvalbumin for the septo-hippocampal GABAergic neurons
(Freund, 1989). The immunostaining was carried out as described above using polyclonal
guinea pig anti-VGLUTI1  (1:20,000; Chemicon), polyclonal guinea pig anti-VGLUT2
(1:20,000; Chemicon), and monoclonal mouse anti-parvalbumin (1:1000; Sigma, Saint Louis,
MO). The applied secondary antibodies were biotinylated donkey anti-guinea pig IgG (1:500;
Jackson ImmunoResearch Laboratoriés) for VGLUT1 and VGLUT2 and biotinylated horse
anti-mouse IgG (1:500; Vector Laboratories) for parvalbumin. VGLUT- and parvalbumin-IR
elements were visualized using the nickel-diaminobenzidine and diaminobenzidine
chromogens, respectively.

Control. As a control for immunostaining, some sections were immunostained as
described above, but the primary antisera were replaced with non-immune serum. No

immunostaining or cross-reaction was registered in these control experiments.

Tissue processing for electron microscopy
Sections were double-immunostained for PNMT/ChAT and VGLUT2/parvalbumin as

described above, although the preservation of ultrastructural details required the complete
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omission of triton from all solutions. Instead, to enhance antibody penetration, the sections
were incubated in a cryoprotective solution (25% sucrose, 10% glycerol in 0.01 M PBS; 2
hours) and freeze-thawed in liquid nitrogen prior to incubation in the primary antibodies.
After the immunohistochemical procedure, the sections were osmicated (1% osmium
tetroxide in PBS; 40 min), déhydrated in ethanol (the 70% ethanol contained 1% uranyl
acetate; 40 min) and flat embedded in Araldite (Electron Microscopy Sciences, Fort
Washington, PA) between liquid release agent-coated slides and coverslips. Putative synaptic
contacts were selected under the light microscope. The selection criteria are described in
detail below in the quantitative analysis section. The selected structures were photo-
documented and reembedded in Araldite blocks. Serial ultrathin sections were cut and
collected on single-slot Formvar-coated grids and examined in a Tecnai 12 transmission
electron microscope equipped with an AMT Advantage 4.00 HR/HR-B CCD camera system
(Advanced Microscopy Techniques, Danvers, MA).

Quantitative analysis and digital imaging

All quantitative analyses were performed from groups of three successfully treated
animals. In statistical analyses, data were summarized and diagrams were constructed using
the Microsoft Excel 97 software. Significance of changes was determined with the Student’s
t-test. Contrast and lightness were adjusted on digital images, and figures were assembled and
lettering was added using the Adobe PhotoShop 6.0 software. The figures were printed with
an Epson Stylus Photo 700 printer.

Mapping and quantitative analysis of adrenergic/cholinergic interactions in the BF.
For the mapping and quantitative analysis of putative contact sites between adrenergic
boutons and cholinergic neuronal profiles, a computer-controlled Zeiss Axioskop microscope
equipped with the Neurolucida software (MicroBrightField, Colchester, VT) was used.
Screening with the 100x oil-immersion lens, ChAT-IR cell bodies and adrenergic/cholinergic
appositions were mapped in sections from six different rostro-caudal levels of a representative
brain. For quantitative analysis, numbers of cholinergic perikarya and adrenergic/cholinergic
appositions were obtained from maps of sections from three brains at three different rostro-
caudal levels of the BF. Appositions were mapped and counted only if they qualified for

electron microscopic analysis, i.e. side-to-side contacts with both the adrenergic bouton and
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the cholinergic profile strictly in the same focal plane with no discernible gap between the
structures. Profiles mapped and counted as cholinergic cell bodies were ChAT-IR perikarya
with clearly recognizable cell nucleus.

In order to find out whether there are any statistical differences in the distribution
patterns of adrenergic/cholinergic appositions across BF territories, statistical analysis was
used based on data obtained from the Neurolucida mappings. A hypothetical distribution
pattern of adrenergic/cholinergic appositions was established based on the null hypothesis that
the appositions are distributed homogeneously on BF cholinergic neurons across the entire
extent of the BF. To construct this hypothetical pattern, a ratio of PNMT/ChAT appositions
per cholinergic cell body was computed by dividing the total number of appositions by the
total number of ChAT-IR cell bodies for each brain. The numbers of cholinergic neurons in
individual BF areas were then multiplied with this ratio to arrive at the hypothetical amount of
appositions in case of homogeneous distribution. The Student’s t-test was finally used to
determine whether there are any significant differences between the hypothetical
homogeneous and the actual distribution patterns.

VGLUT?2 bouton density analysis in the MSDB. In order to quantitatively analyze the
relative changes in VGLUT2 bouton density caused by the deafferentations, sections from
intact, SX, and FFX animals (three rats in each group) were immunolabeled for VGLUT2 as
described above. Thereafter, high power (100x objective lens) non-overlapping light
micrographs were taken at three different rostro-caudal levels [rostral: Bregma +0.80; middle:
Bregma +0.40; caudal: at Bregma] from septal areas, such as the medial septum/lateral
septum border zone (MS/LS) both ipsi- and contralateral to the lesion, and from the middle
septal area (between the right and left MS/LS, along the midline). VGLUT2-immunopositive
varicosities were counted within 400 pum? unit areas that were randomly selected from each
micrograph by blind dropping an overlay grid onto the printed pictures. Only those
varicosities were considered that were clearly in focus. Bouton densities obtained this way
were statistically compared between ipsi- and contralateral MS/LS in SX and FFX animals, as
well as between the same areas of SX versus intact and FFX versus intact rats.

Quantitative analysis of VGLUT2 input to parvalbumin-positive neurons in the
MSDB. To reveal whether SX has any influence on the VGLUT2 innervation of MSDB

parvalbumin neurons, sections from intact and SX animals (three rats in each group) were

12



double-immunostained for VGLUT2 and parvalbumin as described above. Then, by high
magnification light microscopic screening of both sides of the MSDB at the three different
rostro-caudal levels specified above, parvalbumin cells were counted and sorted into two
groups. Parvalbumin neurons were sorted into the first group if they were contacted by
VGLUT2 boutons according to the following criteria: Parvalbumin cells were considered as
targets of VGLUT2-IR boutons, if at least one VGLUT2 varicosity was found in close
apposition either to the cell body or to a dendrite being continuous with the perikaryon.
Parvalbumin cells that did not fulfill these criteria were sorted into the second group. These
very same criteria were applied for both the electron microscopic studies and the quantitative
analysis. Thus, the validity of the light microscopic quantitative analysis of VGLUT?2 input to
parvalbumin-positive neurons is backed by the ultrastructural findings. Finally, the amount of
parvalbumin neurons contacted by VGLUT2 boutons (first group) was expressed as the
percentage of all parvalbumin cells in the MSDB (first group + second group). These data
obtained from SX animals were then statistically compared to those from intact rats. FFX
animals were not analyzed in this way because similar to a previous study (Peterson et al.,

1987), we observed a severe loss of parvalbumin-IR cells in the MSDB following FFX.
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RESULTS

Experiment I

Distribution of PNMT-positive fibers/terminals in relation to cholinergic neurons
Medial septum diagonal band complex. In the dorsal part of the septal complex, a

PNMT-positive fiber network was found to occupy a position laterodorsal to the bulk of
cholinergic cell bodies (Fig. 2a). However, some scattered adrenergic axons were observed as
they approached ChAT-positive profiles along the lateral border of the medial septum.
Around the ventral part of the vertical limb of the diagonal band (VDB) where it bends into
the HDB, an especially rich network of PNMT-IR fibers was visible. In this region, a few
adrenergic varicosities appeared to be closely associated with cholinergic profiles (Fig. 2b).

Horizontal limb of the diagonal band of Broca. PNMT-containing fibers were found
to accumulate along the borders of HDB, running mediolaterally close to the basal surface of
the brain and adjacent to the ventral pallidum and substantia innominata (Fig. 2c). Adrenergic
axons in the medial part of HDB appeared to originate from a rich network around the
organum vasculosum of the lamina terminalis and pass undemeath the ventral part of the
VDB (Fig. 2b). From the borders, the mediolaterally-running PNMT-positive axons gave rise
to perpendicular side branches (Fig. 2¢) that approached neighboring cholinergic neurons
(Fig. 2d-f). Caudally, close to the ventromedial border of the HDB, cholinergic neurons
closely associated with the hypothalamic supraoptic nucleus (SON) were embedded in a
relatively rich network of adrenergic axons (Fig. 2g).

Ventral pallidum. In the ventral pallidum (not shown), both PNMT-positive fibers
and cholinergic structures were scarce. However, sparse to moderate amounts of adrenergic
axons were observed ventromedially along the border to the HDB and dorsomedially near the
border to the BST.
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Fig. 2. The low power photomicrographs (a-c), taken from double-immunostained coronal sections of the rat brain, demonstrate the
dorsal (a) and ventral (b) parts of the septal complex and the horizontal limb of diagonal band of Broca (HDB, c). The high power
micrographs (d-f) demonstrate putative adrenergic/cholinergic interaction sites. a: In the dorsal part of the septal complex, a
phenylethanolamine N-methyltransferase (PNMT)-positive fiber network (arrows) occupies a position laterodorsal to the cholinergic cell
bodies of the medial septum (MS). Some scattered adrenergic axons (arrowhead) approach choline acetyltransferase (ChAT)-positive
profiles. Dots represent the midline. Scale bar: 50 um. b: An especially rich PNMT-positive fiber network is visible in the organum
vasculosum of the lamina terminalis (OVLT). Some mediolaterally-running axons seem to emanate from this network (arrowheads) on their
course underneath the ventral part of the vertical limb of diagonal band of Broca (VDB) towards the HDB. Scale bar: 50 pm. ¢:
Mediolaterally-running PNMT-positive fibers are distributed along both the ventral (solid arrows) and dorsal (open arrow) borders of the
HDB. From this network, perpendicular side branches originate (arrowheads) and approach neighboring cholinergic neurons. The territory in
the rectangle is enlarged in (d). Scale bar: 50 um. d-f: These high power photomicrographs demonstrate representative
adrenergic/cholinergic appositions taken from the HDB. In (d), both the thick (solid arrows) and thin (open arrows) types of adrenergic
axons are visible. The open arrowhead in (e) points to a varicosity on a thin-type adrenergic fiber in close apposition to a ChAT-positive
profile that is also contacted by thick fibers (solid arrowheads). Scale bars: 10 pm. g: Scattered cholinergic neurons (arrowheads) positioned
dorsolateral to the hypothalamic supraoptic nucleus (SON) are embedded in a rich PNMT-positive fiber network. ox: optic chiasma. Scale
bar: 50 pm.
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Fig. 3. The low power photomicrographs (a, ¢, and e), taken from double-immunostained coronal sections of the rat brain,
demonstrate the lateral part of the bed nucleus of stria terminalis (BST, a) and the rostral (c) and caudal (e) substantia innominata
(SI). The high power micrographs (b, d, and f) are enlargements from their low power counterparts demonstrating
adrenergic/cholinergic appositions. a: In the BST, a single cholinergic neuron is embedded in a rich meshwork of phenylethanolamine N-
methyltransferase (PNMT)-positive fibers. The arrowhead points to a putative contact that is enlarged in (b). ic: internal capsule. Scale bar:
50 um. b: An adrenergic/cholinergic apposition (arrowhead) enlarged from (a). Scale bar: 10 um. e: This micrograph demonstrates a part of
the rostral SI as indicated by the rectangle in Fig. 4d. A characteristic cluster of cholinergic neurons receives a heavy supply of PNMT-
positive fibers. Scale bar: 50 um. d: Enlargement from (¢). For orientation, the asterisks in both (¢) and (d) label the same vessel. Cholinergic
neuronal elements are embedded in a network containing both thick (solid arrows) and thin (open arrows) types of adrenergic axons.
Examples of putative contacts established by large (solid arrowhead) and small (open arrowheads) boutons are shown. Scale bar: 10 pm. e:
In the caudal SI, scattered choline acetyltransferase (ChAT)-positive neurons are surrounded by adrenergic fibers. The solid arrow points to
cholinergic neurons that are enlarged in (f). Scale bar: 50 um. f: Enlargement from (e). A fusiform ChAT-positive cell is contacted by a large
adrenergic bouton (arrowhead). Scale bar: 10 um.
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Globus pallidus and internal capsule. The globus pallidus (not shown) contained
moderate amounts of PNMT-positive fibers at its ventral and ventromedial borders near the
internal capsule. Within the internal capsule (not shown), many adrenergic fibers of passage
were observed heading between the BST and the substantia innominata. Occasionally, these
axons gave rise to terminal boutons that established close contacts with neighboring
cholinergic profiles.

Bed nucleus of stria terminalis. Despite the massive adrenergic innervation of the
BST, the adrenergic/cholinergic interaction sites encountered here were very infrequent due to
the low number of cholinergic profiles (Fig. 3a-b).

Substantia innominata. A rich network of PNMT-IR axons was observed throughout
the rostro-caudal extent of the substantia innominata. Within a characteristic area of a
cholinergic cell cluster (Fig. 3c) as well as in the caudalmost part of the substantia innominata
(Fig. 3e), both adrenergic fibers and ChAT-IR neurons appeared to accumulate. In these
areas, PNMT-positive axons were aligned parallel with and wrapped around bundles of
cholinergic dendrites and numerous close associations (Fig. 3d,f) were encountered. Although
fine adrenergic fibers occasionally climbed around thin ChAT-positive dendrites, the majority
of contacts were individual established by en passant boutons as their intervaricose segments

crossed over the cholinergic profiles.

Distribution and quantitative analysis of PNMT/ChAT appositions

The schematic drawings of Figure 4 illustrate the distribution pattern of PNMT-
positive varicosities in close apposition to cholinergic profiles at six different rostro-caudal
levels of a representative brain. The adrenergic/cholinergic appositions showed an uneven
distribution across different BF structures. Preferential distribution sites were in the ventral
part of HDB (Fig. 4a-d), within the cholinergic cell cluster of the substantia innominata (Fig.
4d), and in a narrow band bordering the substantia innominata from the globus pallidus and
internal capsule (Fig. 4e-f). The majority of appositions were found in the substantia
innominata (51%) followed by the HDB (30%). The remaining BF structures together

contained 19% of all appositions.
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Fig. 4. These schematic drawings illustrate the distribution pattern of
phenylethanolamine N-methyltransferase (PNMT)-positive varicosities in close
apposition to cholinergic profiles at six different rostro-caudal levels of the rat
basal forebrain. Red spots represent adrenergic/cholinergic appositions, while black
dots represent cholinergic perikarya. The rectangle in (d) indicates the territory
demonstrated in the micrograph of Fig. 3¢. 3V: 3rd ventricle; ac: anterior commissure;
AcbC: nucleus accumbens, core; AcbSh: nucleus accumbens, shell; BLA: basolateral
amygdaloid nucleus; BST: bed nucleus of stria terminalis; CA1-3: fields CA1-3 of
hippocampus; cc: corpus callosum; CPu: caudate putamen; D3V: dorsal 3rd ventricle;
DG: dentate gyrus; f: fornix; fi: fimbria of hippocampus; GP: globus pallidus; HDB:
horizontal limb of diagonal band of Broca; ic: internal capsule; lo: lateral olfactory
tract; LV: lateral ventricle; MS: medial septum; opt: optic tract; ox: optic chiasma;
PVH: paraventricular nucleus of hypothalamus; SI: substantia innominata; sm: stria
medullaris; st: stria terminalis; Th: thalamus; VP: ventral pallidum.
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By comparing a
hypothetical homogeneous
distribution of PNMT/ChAT
appositions with the actual

pattern, the analysis (Fig. 5)
demonstrated that the number of
adrenergic  appositions ~ was
significantly (p<0.05) higher in
the substantia innominata than it
should be in case of homogeneous
distribution (an average of 90.3
actual appositions versus 27.5
appositions for homogeneous
distribution). On the other hand,
the septal complex contained
significantly fewer
(8.3 38.3)
significance of this difference was
(p<0.01). The

numbers of appositions in all of

appositions

versus and the

even stronger
the remaining areas were not
significantly different from those
of the hypothetical homogeneous

distribution.

Ultrastructural characteristics of
PNMT/ChAT relations

In our correlated light and

electron  microscopic  studies,
diamonibenzidine was used to

label cholinergic neurons and the



silver-gold intensified nickel-diaminobenzidine to stain PNMT-positive structures. At the
light microscopic level, adrenergic fibers and terminals appeared in black and were easily
differentiated from ChAT-positive elements that were revealed by brown deposits of
diaminobenzidine. This color difference persisted after osmication and plastic embedding of
the sections. Furthermore, the presence of the highly electron-dense silver-gold grains in the
PNMT-positive structures made the electron microscopic identification of adrenergic profiles
obvious.

A total of 16 individual PNMT-immunoreactive varicosities, closely associated to
cholinergic profiles, were randomly selected for ultrastructural analysis. Ten appositions were

classified as axodendritic involving either

Distribution of PNMT/ChAT appositions 4 ¥ £ 5 .
12000 . proximal or distal cholinergic dendrites.
g 10000 During the ultrastructural analysis, eight of
£ w0 Y
§ them were confirmed as synaptic. All of these
g 6000
- axodendritic  synapses were of the
T i ; ¢
5 00 l |* m asymmetric type with clear and prominent
000 & . - g e postsynaptic densities (Fig. 6). The remaining
[OHomogencus @ Counted 6 selected boutons were located adjacent to

Fig. 5. Quantitative analysis of the distribution of cholmerglc cell bOdleS’ however Only one of

adrenergic/cholinergic appositions in the rat basal forebrain
based on data obtained from the Neurolucida mappings (Fig. 4).
Open columns represent the null hypothesis as average numbers of i A ¢
appositions in each area, as it would be in case of hypothetical demonstrates that this identified axosomatic
homogeneous distribution, while solid columns show the averages of

actual numbers. As indicated by the asterisks, the differences synapse is of the symmetric type. In the other
between homogeneous and actual distributions are significant in the

septal complex and in the SI. Bars represent standard deviation. z : e

ChAT: choline acetyltransferase; GP: globus pallidus; HDB: SaReS, the identification of RYRRPECS Was
horizontal limb of diagonal band of Broca; ic: internal capsule; y

MS/VDB: septal complex; PNMT: phenylethanolamine N- either precluded by the presence of dense

methyltransferase; SI: substantia innominata; VP: ventral pallidum.

them was confirmed as synaptic. Figure 7

immunoprecipitate at the contact sites or the
ultrastructural investigation revealed intervening glial processes between PNMT-positive
varicosities and cholinergic profiles. In some cases, adrenergic boutons were observed as they

established synaptic contacts with chemically unidentified neuronal profiles in the BF.
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Fig. 6. This composite picture demonstrates the correlated light and electron microscopic analysis of an axodendritic, asymmetric
type synapse between an adrenergic bouton and a cholinergic dendrite in the substantia innominata (SI). a: Schematic map of a
coronal section of rat brain at the level of the caudal basal forebrain. In the SI, the asterisk indicates the position of the neuronal profiles that
were selected for ultrastructural analysis. ACo: anterior cortical amygdaloid nucleus; BLA: basolateral amygdaloid nucleus; CPu: caudate
putamen; f: fornix; GP: globus pallidus; ic: internal capsule; LH: lateral hypothalamic area; mt: mamillothalamic tract; opt: optic tract. b:
This low power photomicrograph, taken from a double-immunostained, resin-embedded coronal section, demonstrates the area labeled by the
asterisk in (a). The region in the rectangle contains the selected neuronal structures that are enlarged in (c). Scale bar: 80 um. ¢: This high
power photomicrograph demonstrates the area indicated by the rectangle in (b). The arrow points to a large adrenergic varicosity abutting a
proximal dendrite of a cholinergic neuron. Note that the initial segment of the dendrite is out of focus. Scale bar: 8 um. d: Low power
electron micrograph correlated to the micrograph of (c¢). For orientation, the asterisks in both (¢) and (d) label the same capillary. The highly
electron-dense adrenergic bouton (arrow) is in direct contact with the cholinergic dendrite (D). As predicted by the photomicrograph of (c),
the initial segment of the dendrite is not visible at this level. Nu: cell nucleus; P: cholinergic perikaryon. Scale bar: 2 um. e: The high power
electron micrograph reveals that the adrenergic bouton (B), containing silver-gold grains, forms an asymmetric type synapse (arrowheads)
with the cholinergic dendrite (D). Scale bar: 300 nm.
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Fig. 7. This composite picture demonstrates the correlated light and electron microscopic analysis of an axosomatic, symmetric type
synapse between an adrenergic bouton and a cholinergic cell body in the septal complex. a: Schematic map of a coronal section of rat
brain at the level of the rostral basal forebrain. In the septal complex, the asterisk indicates the position of the neuronal profiles that were
selected for ultrastructural analysis. 2n: optic nerve; ac: anterior commissure; AcbC: nucleus accumbens, core; AcbSh: nucleus accumbens,
shell; cc: corpus callosum; CPu: caudate putamen; HDB: horizontal limb of diagonal band of Broca; ICjM: island of Calleja, major island;
lo: lateral olfactory tract; MS: medial septum; VDB: vertical limb of diagonal band of Broca; VP: ventral pallidum. b: The low power
photomicrograph, taken from a double-immunostained, plastic-embedded coronal section of the rat brain, demonstrates the area labeled by
the asterisk in (a). The rectangle highlights the selected neuronal structures that are enlarged in (¢). Scale bar: 80 pm. ¢: This high power
photomicrograph demonstrates the area indicated by the rectangle in (b). The arrow points to a large adrenergic varicosity in close proximity
to a cholinergic perikaryon. Scale bar: 8 um. d: Low power electron micrograph correlated to the micrograph of (¢). For orientation, the
asterisks in both (¢) and (d) label the same neighboring cholinergic cell body. The highly electron dense adrenergic varicosity (arrow) is in
direct contact with the cholinergic cell body identified by the diaminobenzidine (DAB) precipitate. The area in the rectangle is enlarged at
high power in (e). Nu: cell nucleus. Scale bar: 1 um. e: The adrenergic bouton (B), containing both the electron-dense, homogeneous nickel-
DAB precipitate and the highly electron-dense silver-gold deposits, establishes symmetric type synaptic contact (arrowheads) with the
cholinergic perikaryon (P). Scale bar: 300 nm.
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Experiment 11

Fig. 8. Vesicular glutamate transporter 2 (VGLUT2)-
immunoreactive terminals can be visualized in the
vicinity of parvalbumin (PV)-positive neurons within
the septal complex. a: Low power light micrograph that

shows the distribution of the black VGLUT2-
immunopositive varicosities and the brown-colored PV-
immunoreactive neuronal structures in the medial septum
(MS). Along the midline (marked by dots) where most of
the PV neurons reside, relatively few VGLUT2-containing
boutons can be observed. VGLUT2-positive varicosities
occupy mainly the medial septum/lateral septum border
zone (MS/LS, lateral to the dashed line). Scale bar: 50 um.
b, ¢, d: High power light micrographs that demonstrate
PV-containing cell bodies from the MS and the vertical
diagonal band (VDB) that are surrounded by VGLUT2-
immunopositive varicosities and several axosomatic
(arrowheads) and axodendritic (arrows) close associations
can be seen. Scale bars: 10 um.

VGLUT2-immunoreactive boutons synapse with

parvalbumin-containing neurons in the MSDB

Although the immunostaining of VGLUTI

fibers revealed a rich network of varicosities within
the lateral septal areas of intact animals, the MSDB
appeared to be almost completely devoid of these
boutons (Fig. 11b). On the other hand, we observed
a medium abundance of VGLUT2 fibers in the
MSDB region. Therefore, the present study
concentrated only on the VGLUT2 innervation of
parvalbumin neurons.

In intact rats, the VGLUT2-containing
neuronal elements appeared as varicosities ranging
from 0.5-1.2 pum in diameter. The intervaricose
segments of axons were only occasionally stained
and very short in length. The overall distribution of
VGLUT2-positive

homogeneous in the MSDB. They gathered mainly

varicosities was not

in the medial septum/lateral septum border zone
(Fig. 8a) and along the boundaries of the vertical
limb of the diagonal band. Along the midline,
relatively fewer boutons were  observed.
Parvalbumin-containing neurons were dispersed in

this rich network of VGLUT2-IR axons and several

close associations were observed both with cell bodies (Fig. 8b-d) and dendrites (Fig. 8d). In

some cases, parvalbumin-positive cell bodies were completely surrounded by VGLUT2-

containing varicosities (Fig. 8b-c) that resembled pericellular baskets.
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Fig. 9. Ultrastructural evidence for the existence of asymmetric, axo-somatic synaptic contacts between vesicular glutamate
transporter 2 (VGLUT2)-immunoreactive varicosities and parvalbumin (PV)-positive septo-hippocampal neurons. a: In this
schematic drawing, the asterisk indicates the location of the analyzed PV cell body. b, ¢: High power light micrographs showing the PV cell
body at two different levels. Scale bars: 10 um. d, e: These low power electron micrographs are correlated to the light micrographs of panels
b and ¢, respectively. The numbering of VGLUT2-containing boutons in all electron micrographs refers to the numbers on panels b and c.
Scale bars: 2 um. f-j: High power electron micrographs demonstrate axo-somatic asymmetric synapses (arrowheads) between VGLUT2-
positive boutons (1, 3, 4, 5, 6) and the PV perikaryon (P). On panel j, a PV-positive varicosity (PV) establishes a symmetric synapse (arrow)
in the vicinity of the asymmetric synapse (arrowhead) formed by the VGLUT2-immunoreactive bouton (6). Scale bars: 250 nm. k: The
VGLUT2-containing varicosity (8) establishes an asymmetric synapse (arrowheads) with a PV-positive dendrite (PV). In the vicinity of this
synaptic contact, there is a symmetric synapse (arrow) on the same dendrite formed by an immunonegative bouton (B). Scale bar: 250 nm.
Abbreviations: 2n: optic nerve; ac: anterior commissure; cc: corpus callosum; CPu: caudate putamen; LS: lateral septum; MS: medial
septum; n: nucleolus; N: nucleus; P: PV-positive perikaryon; VDB: vertical diagonal band.
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Fig. 10. Ultrastructural demenstration of asymmetric, axo-dendritic synaptic
contacts between vesicular glutamate transporter 2 (VGLUT2)-immunoreactive
varicosities and parvalbumin (PV)-positive dendrites. a: In this schematic drawing,
the asterisk indicates the location of the analyzed tissue sample. b: In this high power
light micrograph, the numbers label VGLUT2-immunoreactive boutons that are shown
on the electron micrograph panels c-f. Scale bar: 10 um. ¢-f: High power electron
micrographs showing axo-dendritic asymmetric synapses (arrowheads) between
VGLUT2-containing boutons (1, 2, 3, 4, 5) and PV-positive dendrites (PV). On panel f,
the large VGLUT2-positive bouton (4) establishes asymmetric synapses with two
different PV-positive dendrites (PV1 and PV2). Scale bars: 250 nm. Abbreviations: ac
— anterior commissure; cc — corpus callosum; CPu — caudate putamen; LS — lateral
septum; MS — medial septum.

The notion of strong

glutamatergic  influence upon

septo-hippocampal GABA
neurons was further strengthened
by the
observations. A total number of

24 VGLUT2/parvalbumin close

electron microscopic

associations were analyzed both
in intact and SX animals. Ten of
the 13 VGLUT2-IR boutons
closely associated to parvalbumin
cell bodies (Fig. 9) were revealed
to establish synaptic contacts.
of 11

VGLUT2/parvalbumin

Furthermore, the

axo-
dendritic close associations, eight
were found to form synapses
(Fig. 10). All synapses were of
the asymmetric type with
prominent postsynaptic densities

suggesting that the VGLUT2

input exerts an  excitatory
influence (Kandel and
Siegelbaum, 2000) upon
parvalbumin neurons.

Occasionally, symmetric synaptic
specializations were also found in
the vicinity of these asymmetric
synapses. The  presynaptic

boutons forming these symmetric

synapses were either parvalbumin-positive (Fig. 9j) or immunonegative (Fig. 9Kk).
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Fig. 11. Demonstration of vesicular glutamate
transporter 1 and 2 (VGLUT1 and VGLUT2)-
immunoreactive varicosities in the septal complex
following septal deafferentations. a: This low power
light micrograph shows VGLUT2 immunolabeling five
days following a unilateral septal undercut (SX; arrows
point to the line of lesion). Although there is an abrupt
decrease in the density of VGLUT2-containing boutons
in the lateral septal area (LS) ipsilateral to the lesion,
there is no obvious change in the medial septal complex
(MS, VDB). Abbreviations: HDB — horizontal diagonal
band; LV — lateral ventricle; VDB — vertical diagonal
band. Scale bar: 250 pm. b: Five days following
fimbria/fornix transection (FFX), there is a clear
decrease in VGLUTI immunoreactivity in the LS
ipsilateral to the lesion (left side on the picture). Scale
bar: 250 pm. ¢: The VGLUT2 immunostaining five days
after FFX demonstrates no discernible change in any
septal area. The side ipsilateral to the lesion is on the left
side of the picture. Scale bar: 250 pm.

The majority of VGLUT2-containing varicosities in

the MSDB remains intact following septal
deafferentation
Relative changes in VGLUT bouton

densities. Five days following SX, no visible changes
in VGLUT2 immunolabeling within the MSDB were
revealed while an obvious decrease in the density of
VGLUT2-positive boutons was observed in the lateral
septum ipsilateral to the lesion (Fig. 11a). On the
other hand, fimbria/fornix transection, i.e., the
surgical separation of the MSDB from all afferents
the via the right

coming from hippocampus

fimbria/fornix, caused a clear-cut decrease in
VGLUT1 bouton density in the lateral septum
ipsilateral to the lesion (Fig. 11b) demonstrating the
effectiveness of the intervention. However, FFX
failed to induce any visible changes in VGLUT2
immunostaining in any areas of the septum, including
the MSDB (Fig. 11c¢). Despite the lack of
recognizable changes under the light microscope, the
quantitative analysis of the density of VGLUT2-
containing boutons in the MSDB revealed significant
the of

alterations. Comparing

VGLUT2-IR boutons

density values

between the ipsi- and
contralateral MS/LS, there were significant (p<0.01)
decreases in the ipsilateral side both in SX and FFX
animals by 24% and 12%, respectively (Fig. 12).
Taking into account the possibility that VGLUT2-
positive axons may cross over, the density data from
SX and FFX animals were compared to those from

intact rats. In this paradigm, SX resulted in a
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Blpsilateral MSLS O Middle @ Contralateral MS/LS

Fig. 12. Quantitative analysis of changes in the density values of
vesicular glutamate transporter 2 (VGLUT2)-containing boutons
in the septal complex following deafferentations. This diagram
shows the number of VGLUT2-positive varicosities in a unit area in
intact rats and following unilateral septal undercut (SX) and
fimbria/fornix transection (FFX). Compared to the contralateral side,
there was a significant decrease (p<0.01; asterisks) in the density of
VGLUT2-containing boutons in the medial septum/lateral septum
border zone (MS/LS) on the side ipsilateral to the lesion, in both the
SX and FFX animals. Compared to intact animals, the bouton density
was significantly decreased (p<0.01; diamonds) in the ipsilateral
MS/LS and the middle septal area following SX, and in both the ipsi-
and contralateral MS/LS following FFX (p<0.05). Both the
contralateral MS/LS in SX animals and the middle septal area in FFX
rats remained statistically unchanged following these surgical
interventions.

- it

Proportion of PV Cells that Are Contacted by VGLUT2 Boutons

6 67.76 67.83

Middle
Olntact @SX

Caudal

Fig. 13. Quantitative analysis of changes in the percentage of
parvalbumin (PV) cells that were contacted by vesicular
glutamate transporter 2 (VGLUT2)-positive boutons following
septal undercut (SX). This diagram represents PV neurons that were
contacted by VGLUT2-containing varicosities on their perikarya
and/or proximal dendrites as percentages of all PV cells at rostral,
middle, and caudal levels (see methods for Bregma values) of the
medial septum diagonal band complex (MSDB), in intact and SX
rats. In intact animals, the cell bodies and/or proximal dendrites of
about 68% of PV neurons were contacted by VGLUT2-containing
boutons at all oro-caudal levels of the MSDB. Following SX, this
proportion decreased significantly (asterisks) by about 22-24% at
rostral and middle levels. In contrast, there was no change in caudal
regions of the MSDB.

significant (p<0.01) decrease in the density of
VGLUT2-containing of
ipsilateral MS/LS and of the middle area of
the MSDB by 28% and 13%, respectively

boutons the

(Fig. 12). Following FFX, a significant
(p<0.05) decrease in the density of VGLUT2-
IR boutons was observed in both the ipsi-
(21%) and contralateral (10%) MS/LS (Fig.
12).

Changes in VGLUT2 input to
parvalbumin-positive neurons in the MSDB.
The quantitative light microscopic analysis
also showed alterations in the innervation of
MSDB  parvalbumin-positive  cells by
VGLUT2-containing axons, following SX. In
intact animals, about 68% of parvalbumin
neurons were found to be contacted by at
least one VGLUT2-containing bouton on
their perikarya and/or proximal dendrites, at
all three levels of the MSDB (Fig. 13). In SX
rats, this percentage decreased significantly
(p<0.01) by 24% at the rostral level of the
MSDB and by 22% at the middle level (Fig.
13). The SX caused no change in this
percentage at the caudal level (Fig. 13).

Control. To determine the effective
survival time after deafferentation surgeries,
we performed similar VGLUT2 bouton

density calculations following ten days of

survival. The results were compared to data obtained from animals with five-day survival

period as described above. No significant difference was observed between the two groups
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(data not shown) suggesting that five-day survival is sufficient to abolish the VGLUT2

immunoreactivity of disrupted fibers.

VGLUT2-immunoreactive neurons exist in the septum

Light microscopic observation of the septum of colchicine-treated rats revealed a large
number of VGLUT2-IR cell bodies distributed throughout the septal complex. In the MSDB,
scattered fusiform cells were observed with their longitudinal axis parallel to the sagittal plane
(Fig. 14b). The majority of these cells occupied mainly the MS/LS and relatively few were
seen along the midline (Fig. 14a). In the lateral septum, small numbers of VGLUT2-positive,
fusiform cell bodies were encountered, mainly in the dorsal and intermediate lateral septal
nuclei (Fig. 14a) located at the more rostral level of the septum. On the other hand, a very
dense population of VGLUT2-containing neurons was found in the caudal part of the septal
complex (Fig. 14¢c). Along the midline and within the fiber bundles of the fornix, these
fusiform cells were oriented parallel to the fiber bundles (Fig. 14c¢). In the septofimbrial and
triangular nuclei, as well as in the caudal end of the lateral septal division, a large number of
VGLUT2-IR perikarya gathered to form clusters and bundles of cell bodies (Fig. 14d). These
clusters contained round and fusiform cells with no clear orientation of the dendritic tree. The

diameter of all of these VGLUT2-containing cell bodies was found to be 10-15 um.
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Fig. 14. Evidence for the existence of vesicular glutamate transporter 2 (VGLUT2)-immunoreactive cell bodies in the septum and
their pattern of distribution. a: Taken from rostral septal areas, this low power light micrograph demonstrates VGLUT2-containing cell
bodies that are located mostly in the medial septum/lateral septum border zone. Abbreviations: LSi — intermediate lateral septal nucleus; LV
— lateral ventricle; MS — medial septum. Scale bar: 250 pm. b: Higher power micrograph of the boxed area in panel a shows scattered
VGLUT2-immunoreactive cells in the MS. Scale bar: 50 pm. ¢: In caudal septal areas, a very rich VGLUT2-containing cell population
occupies mainly the septofimbrial nucleus (SFi) and the lateral septum (LSi). Abbreviation: f — fornix. Scale bar: 100 um. d: High power
micrograph of the boxed area on panel ¢ demonstrates a cluster of VGLUT2-containing neurons (arrows). Scale bar: 25 um.
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DISCUSSION

The adrenergic/cholinergic link in the basal forebrain

Adrenergic versus noradrenergic input to BF cholinergic neurons

In previous studies, the immunohistochemical identification of dopamine f-
hydroxylase (DBH) has been used to describe noradrenergic input to the BF (Chang and Kuo,
1989; Zaborszky et al., 1993; Zaborszky and Cullinan, 1996; Milner and Prince, 1998;
Rodrigo et al., 1998; Smiley and Mesulam, 1999). However, DBH-positive neuronal elements
comprise both noradrenergic and adrenergic structures (Hokfelt et al., 1984) that renders DBH
an imperfect marker for noradrenergic terminals. On the other hand, PNMT-immunoreactivity
solely represents adrenergic neuronal structures. Since the central adrenergic and
noradrenergic systems participate in different, and to some extent, the same functional
processes, it is important to know what proportion of DBH/ChAT interaction sites does
represent real noradrenergic input. By comparing the.results of the present experiment (Fig. 4)
with data obtained from the previous study on the noradrenergic innervation of BF cholinergic
neurons (Zaborszky and Cullinan, 1996), it becomes obvious that noradrenergic innervation
more than likely predominates in the septal complex and ventral pallidum, since these
territories are almost completely devoid of PNMT/ChAT appositions, while notable amount
of DBH/ChAT interactions does exist. Regarding the HDB, globus pallidus, BST, and
substantia innominata, the comparison of the number of PNMT/ChAT interaction sites with
that of DBH/ChAT appositions suggests that about 35-45% of the putative DBH/ChAT
contact sites represent adrenergic input to BF cholinergic neurons.

Due to the widely accepted notion that the predominant catecholaminergic input to BF
is represented by noradrenergic axons, electrophysiological studies (Fort et al., 1995; Berridge
et al., 1996) have focused on the effects of noradrenaline on BF neurons. Since there is no
affinity difference between adrenaline and noradrenaline for almost all adrenoceptors
described to date (Bylund et al., 1994; Minneman and Esbenshade, 1994; Guarino et al.,
1996), the differentiation between BF noradrenergic and adrenergic actions seems to be very
challenging. On the other hand, the effects of noradrenaline may suggest possible actions of

adrenaline. It has been suggested by several studies (Fort et al., 1995; Alreja and Liu, 1996;
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Fort et al., 1998) that both cholinergic and noncholinergic neurons in the BF are affected by
noradrenaline with possible involvement of a; and 8 adrenoceptors. In addition, it has been
reported that acetylcholine release in the prefrontal cortex is inhibited by o, receptor
activation in the BF (Acquas et al., 1998; Tellez et al., 1999).

The suggestion from functional experiments that adrenoceptors exist in BF territories
has been confirmed by several histochemical studies. Neurons located in cholinergic BF areas
have been shown to express mRNAs for oy, 0, O1d, 022, O2c, B1 and B, adrenoceptors
(Asanuma et al., 1991; McCune et al., 1993; Nicholas et al., 1993ab; Pieribone et al., 1994;
Scheinin et al., 1994; Day et al., 1997; Domyancic and Morilak, 1997; Winzer-Serhan et al.,
1997a). Furthermore, radiohistochemical ligand binding studies (Unnerstall et al., 1985;
Boyajian et al., 1987; Zilles et al., 1991; King et al., 1995; Winzer-Serhan et al., 1997ab) have
provided evidence for the existence of o, aja, 18, O2, 024 and a;c adrenoceptor proteins in
BF areas. By means of immunohistochemistry, further evidence has been given for the
existence of a;g, 024, 0t2c and P adrenoceptors in BF (Wanaka et al., 1989; Aoki et al., 1994;
Rosin et al., 1996; Talley et al., 1996; Acosta-Martinez et al., 1999). By comparing the
locations of PNMT/ChAT appositions (Fig. 4) with the rough distribution pattern of the
different adrenoceptor subtypes, it may be hypothesized that in the HDB and substantia
innominata, where the number of appositions is high, the o4, &1, 024 and B; receptors may
be involved in adrenergic/cholinergic interactions. Since cholinergic neurons are intermingled
in BF areas with different types of GABAergic and peptidergic interneurons and/or projection
neurons (Zaborszky et al.,, 1999; Zaborszky and Duque, 2000), locally applied adrenergic
drugs reach not only cholinergic neurons but other neuronal types as well. As a result, the
knowledge of the cellular localization of adrenoceptors in the BF is of particular importance.
Unfortunately, except for a preliminary study demonstrating a4 receptor immunoreactivity in
the cytoplasm of BF cholinergic neurons (Zaborszky et al., 1995), the cellular localization of

other adrenoceptors has yet to be described.

Participation of the basal forebrain PNMT/ChAT interaction in autonomic control
The central adrenergic system has been well known for decades to be one of the key

components of autonomic regulatory mechanisms. It is involved in the control of the

neuroendocrine 'system, energy balance, body temperature homeostasis, stress, reproductive
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behavior, and the regulation of the cardiovascular system (for review see e.g. Hokfelt et al.,
1974; Saper, 1995). PNMT-IR neurons, primarily in the C1 group, display hypovolemia-
induced Fos protein expression (Chan and Sawchenko, 1994; Ruggiero et al., 1996),
suggesting that adrenergic neurons play an essential role in the pressor response and
maintenance of tonic and reflex control of arterial pressure (Ciriello et al., 1986). Adrenergic
axons from the medullary C1-C2 cell groups may transfer viscerosensory-related information
directly or via the brainstem parabrachial relay to cholinergic neurons in the BF (Zaborszky et
al., 1991; Saper, 1995). Recently, it has been shown that lesioning of the rat BF cholinergic
system results in the abolition of B-carboline induced cardiovascular responses (Berntson et
al., 1998), suggesting the involvement of the BF cholinergic system in autonomic regulation.
Our quantitative analysis of the distribution of PNMT/ChAT appositions showed that the
adrenergic input is biased towards cholinergic neurons in the substantia innominata (Figs. 4
and 5). This region contains the majority of cholinergic neurons that are known to project to
cortical areas involved in autonomic control (Rye et al., 1984; Carlsen et al., 1985; Woolf,
1991), including the insular cortex (Saper, 1982; Ruggiero et al., 1987; Yasui et al., 1991) and
medial prefrontal cortex (Neafsey, 1990). Furthermore, the BF cholinergic effects on
autonomic functions may be mediated via central amygdaloid cells (Swanson and Petrovich,
1998; Pitkanen, 2000) since the amygdala and BF cholinergic neurons are in reciprocal
connection (Zaborszky et al., 1984; Carlsen et al., 1985).

In addition to influencing specific cortical and amygdaloid areas, the
adrenergic/cholinergic link in the BF may participate in autonomic control by modulating
hypothalamic neuroendocrine and autonomic networks. Several experiments in the rat have
provided evidence for cholinergic influence on osmosensitive neurons and vasopressin release
in the hypot.halamic paraventricular and supraoptic nuclei (Mason, 1985; Okuda et al., 1993;
Shioda et al., 1997; Qadri et al., 1998; Zaninetti et al., 2000), and on body temperature and
water intake regulation in the preoptic-anterior hypothalamic areas (Takahashi et al., 2001)
and in the lateral hypothalamus (Puig de Parada et al., 1997). Although the source of
cholinergic input to these neuroendocrine and autonomic networks remains to be elucidated, it
is likely that at least a proportion of this input originates as collaterals of BF cholinergic
neurons that receive PNMT innervation. For example, it has been suggested that the

cholinergic input to the SON originates from a cell cluster located dorsolateral to this nucleus
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(Meyer and Brownstein, 1980; Mason et al., 1983; Meeker et al., 1988; Theodosis and Mason,
1988). Indeed, cholinergic neurons in the immediate vicinity of the SON receive a particularly

dense PNMT input (Fig. 2g, 4d).

Role of the basal forebrain PNMT/ChAT interaction in cortical activation

It has been proposed in earlier studies that the central adrenergic system may play a
role in the regulation of sleep/wakefulness and arousal (Hokfelt et al., 1974). More recently,
Foote and coworkers have shown (Berridge et al., 1996; Berridge and Foote, 1996) that (3-
receptor stimulation in the rostral forebrain elicits robust activation of both cortical and
hippocampal EEG in rats. Atropine pretreatment was sufficient.to abolish this EEG activation,
indicating that it is mediated via muscarinic cholinergic mechanisms. The region of effective
injection sites in the BF encompassed several structures, including the medial septum, the
shell of the nucleus accumbens, ventral pallidum and the rostral part of the substantia
innominata. These areas contain [-receptors, DBH/ChAT and also PNMT/ChAT appositions,
suggesting that the central adrenergic system may participate in this B-receptor elicited
increase in cortical activity. On the other hand, infusion of isoproterenol, a B-receptor agonist
into the substantia innominata, an area that is heavily innervated by PNMT-IR fibers, failed to
evoke any changes in cortical EEG (Berridge et al., 1996). In another study, however, it has
been reported that infusion of noradrenaline into the substantia innominata facilitates y-EEG
activity and elicits waking (Cape and Jones, 1998). This, together with previous
electrophysiological results from guinea pig BF slices (Fort et al., 1995), suggests that mainly
a; receptors mediate the arousal-enhancing effects of both noradrenaline and adrenaline in the
substantia innominata. These physiological data are in line with our results to suggest that the
central adrenergic system can support cortical activation via o; and B adrenoceptors located

on cholinergic corticopetal neurons in the BF.

Glutamate in the septo-hippocampal system

Role of glutamate in synaptic integration on septo-hippocampal GABA cells

The activity of a single neuron, i.e., triggering an action potential or remaining silent,

is a consequence of the cumulative actions of all synaptic signals that reach the cell. However,
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the synaptic integration does not mean the simple summation of inhibitory and excitatory
inputs. If a synapse resides closer to the action potential trigger zone, i.e., near to the axon
hillock, it has a larger influence on the activity of the neuron. These ‘strategic’ areas are the
cell body, proximal dendrites, and the axon hillock. According to current knowledge, these
strategic areas are overwhelmingly occupied by GABAergic inhibitory synapses while the
excitatory axons synapse on dendrites and spines. Thus, the activity of the neuron is usually at
the mercy of the axo-somatic inhibitory input (for review see e.g. Kandel and Siegelbaum,
2000).

In the case of septo-hippocampal GABA cells, previous studies have demonstrated a
strong axo-somatic inhibitory control (Toth et al., 1993). Arising from hippocampal non-
pyramidal cells, GABAergic fibers preferentially terminate on the parvalbumin neurons of the
MSDB, frequently forming pericellular baskets as well as multisynaptic contacts on their
dendrites. This GABAergic innervation pattern highly parallels that of the glutamatergic
innervation found in the present study. Furthermore, we frequently observed the presence of
symmetric (usually unlabeled) and asymmetric (VGLUT2-positive) synaptic contacts on
parvalbumin-positive dendrites or cell bodies close to each other (Fig. 9j-k). This
morphological situation may lead to the following functional consequences: (1) since
glutamatergic excitatory synapses also occupy the ‘strategic’ areas (see above), the
glutamatergic input may be capable of strongly activating the septo-hippocampal GABA cells
and, in turn, hippocampal theta rhythm and cognitive functions. Physiological evidence that
support this hypothesis is discussed below. (2) The distribution patterns of GABAergic and
glutamatergic synapses on septo-hippocampal GABA cells, especially those located on their
somata seem to be very similar. As a result, the glutamatergic excitatory input may be capable
of challenging the action of the neighboring GABAergic inhibitory synapses. Thus, instead of
being highly influenced by the GABAergic innervation as known to date, the activity of
septo-hippocampal GABA neurons may be determined by the balanced activity of
GABAergic and glutamatergic inputs.

Implications of the deafferentation experiments
In the present study, the distribution of VGLUT2-containing varicosities in the septum

of intact animals was the same as published previously (Fremeau et al., 2001; Kaneko and
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Fujiyama, 2002; Kaneko et al., 2002; Varoqui et al., 2002). Thus, changes in VGLUT2-
positive bouton densities caused by the surgical interventions suggest that about 28% of these
fibers in the MS/LS and 13% in the middle septal area have an extraseptal origin and arrive
via the ventral pathway, since SX caused a VGLUT2 bouton density depletion of this
magnitude. Another 31% of VGLUT2-containing boutons in the MS/LS are from axons
traversing the fimbria/fornix of hippocampal origin (21% via the ipsilateral + 10% via the
contralateral fimbria/fornix; data obtained from FFX animals). All of the remaining boutons,
i.e., 41% in the MS/LS and 87% in the middle septal area may originate within the septum.
Indeed, in colchicine-treated rats, we detected VGLUT2-immunopositive neurons throughout
the septum. The distribution of these cell bodies was generally the same as previously
determined by in situ hybridization experiments (Hisano et al., 2000; Fremeau et al., 2001;
Herzog et al., 2001; Lin et al., 2003), but our results provide ultimate evidence that these
neurons do express the VGLUT?2 protein and they are really capable of using glutamate as
neurotransmitter. Furthermore, previous studies have not shown data about the large posterior
septal population of glutamatergic neurons described in the present study. Nevertheless, the
exact proportional contribution of the septal VGLUT2-containing neurons to the innervation

of the MSDB and septo-hippocampal GABA cells remains to be elucidated.

Functional considerations

Although several microdialysis studies have provided evidence that intraseptal
infusions of different glutamatergic drugs are capable of increasing hippocampal
acetylcholine outflow by as much as 500% (Giovannini et al., 1994; Moor et al., 1996;
Giovannini et al., 1998; Moor et al., 1998), relatively little is known about the effect of
glutamate on GABA release. It has been reported that perfusing the septum with an N-methyl-
D-aspartate (NMDA)-receptor antagonist results in a decreased septal GABA outflow
(Giovannini et al., 1994) suggesting a tonic glutamatergic activation of septal GABA neurons.
Furthermore, intraseptal infusions of glutamate, NMDA and alpha-amino-3-hydroxy-5-
methyl-4-isoxazoleproprionate (AMPA) increased hippocampal theta frequency (Puma et al.,
1996; Puma and Bizot, 1999; Carre and Harley, 2000), while infusion of an NMDA-receptor
antagonist caused an opposite effect (Puma et al., 1996). Since septo-hippocampal cholinergic

neurons regulate primarily theta amplitude (Lee et al., 1994), changes in theta frequency
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elicited by intraseptal administration of glutamatergic agents are probably mediated by septo-
hippocampal GABA neurons. In behaving animals tested in different memory tasks, several
authors have reported that memory processes and long-term potentiation are blocked at the
time of their initiation by intraseptal infusions of both NMDA- and metabotropic glutamate-
receptor antagonists (e.g., [zquierdo et al., 1992; 1993; Izquierdo, 1994; Flood et al., 1998),
while infusion of glutamate causes memory facilitation. Although several types of glutamate
receptors have been implicated in these experiments, only AMPA receptor proteins have been
colocalized with parvalbumin in the MSDB (Martin et al., 1993; Kumamoto, 1997). All of
these experiments lend support to the view that the glutamatergic influence upon septo-
hippocampal GABA neurons may be a crucial and powerful driver of theta rhythm and
hippocampus-associated memory processes. Our present data provide a morphological
explanation for these strong glutamatergic effects.

To date, glutamatergic excitatory neurons of the central nervous system have been
considered as projection cells. On the other hand, our results support the possibility that they
may function as local circuit neurons, as well, and raise a new functional aspect of the
extensive glutamatergic neuronal network in the brain. Recently, using electrophysiological
recordings in a rat brain slice preparation, we discovered that rapid applications of nicotine
excited 90% of retrogradely labeled septo-hippocampal GABA-type neurons and increased
the frequency of spontanecously occurring fast GABAergic and glutamatergic synaptic
currents via the a4P2-nicotinic receptor. Interestingly, tetrodotoxin blocked all effects of
nicotine on septo-hippocampal GABAergic neurons, suggesting involvement of indirect
mechanisms. We demonstrated that these effects of nicotine involve the recruitment of a
novel, local glutamatergic circuitry as (1) group I metabotropic glutamatergic receptor
antagonists reduced the effects of nicotine; (2) the number of nicotine-responsive neurons was
significantly reduced in recordings from slices that had been trimmed so as to reduce the
number of glutamate-containing neurons within the slice preparation. These findings coupled
with the knowledge of strong local glutamatergic input to septo-hippocampal GABA cells
reveals intraseptal glutamatergic neurons as new members of the local information processing
circuitry in the MSDB. As we noted above, this glutamatergic excitatory influence on the
activity of septo-hippocampal parvalbumin-IR neurons seems to be as powerful as the action

of its GABAergic inhibitory counterpart.
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Conclusions

In the first experiment, we provided morphological evidence that adrenergic terminals
synapse on cholinergic neurons of the BF. This innervation is most pronounced in the
substantia innominata, that is the source of cholinergic input to a distributed forebrain
network, including the prefrontal and insular cortices, the amygdala, and several
hypothalamic sites involved in neuroendocrine and autonomic regulation. Cholinergic
neurons together with other local and projection cells in the BF are well positioned
anatomically to integrate and coordinate cognitive functions with autonomic regulation. The
adrenergic input from the brainstem can provide viscerosensory, peripheral feedback to this
process.

The main findings of the second experiment are: (1) VGLUT2-IR varicosities form
asymmetric synaptic contacts with parvalbumin-IR cell bodies and dendrites in the MSDB.
(2) A surprisingly large number of these synapses represent axo-somatic contacts. (3)
Following the disruption of septal afferents, the majority of both VGLUT2-containing
boutons and their synaptic contacts with parvalbumin-positive cells remained intact in the
MSDB. (4) A large population of VGLUT2 protein-containing neurons exists in almost all
areas of the septum. The latter two observations suggest that the major portion of MSDB
glutamate axons have an intraseptal origin and raise a novel functional aspect of glutamatergic
cells as local circuit neurons. A constant impulse flow in the septo-hippocampal GABA
pathway is essential for the generation of theta rhythm. Thus, the heavy glutamatergic
innervation of these septo-hippocampal GABA cells establishes the morphological basis for
the powerful glutamatergic influence upon theta rhythm and hippocampus-associated memory

processes.
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