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1 Introduction

The thesis investigates delayed differential and difference equations modelling
neural networks and a discrete time population dynamical model. We give ne-
cessary and sufficient conditions in terms of the parameters on the existence and
uniqueness of periodic solutions and global stability. The obtained theorems
contribute to the better understanding of the global behaviour of the models.

The dissertation is based on four papers of the author [1–4]. In this outline
we use the same numbering and notations as in the thesis.

2 Neural models

In this chapter, we consider the neural network modelled by the following sys-
tem of delayed differential equations:

ẋ0(t) = −αx0(t) + fβ(x1(t)),
...

ẋn−1(t) = −αxn−1(t) + fβ(xn(t)),

ẋn(t) = −αxn(t) + δ fβ(x0(t− τ)),

(2.4)

where xj represents the electric potential of the jth neuron, α > 0 and τ > 0
are parameters, and δ ∈ {−1, 1}. According to the sign of δ we distinguish the
positive and negative feedback case. The delay τ is present due to the finite
propagation velocity of the electric signal. The feedback function fβ : R → R is
either defined by fβ(x) = β f0(x), where f0(x) = (|x + 1| − |x− 1|)/2 or fβ ∈ S,
that is fβ is a continuous, strictly increasing, odd function having f ′β(0) = β, and
possessing the property that the map ξ 7→ ξ f ′(ξ)/ f (ξ) is strictly decreasing on
(0, ∞). We note that equation

ẋj(t) = −αxi(t)± fβ(xi+1(t− τi)), i = {0, 1, . . . , n},

can be easily transformed into the form of (2.4), where the indices are modulo
(n + 1).

The former function is the most common feedback function in the theory of
certain artificial neural networks, the so-called cellular neural networks, which
play an important role in the research of artificial intelligence (e.g. solving im-
age processing and optimization problems. In these models, neurons (cells) are
put on a d-dimensional grid and neighbouring cells are connected (with some
conditions on the boundary). The above model corresponds to a 1-dimensional
cellular neural network with periodic boundary condition. We shall refer the
case of this type of feedback function as the “piecewise linear case”.

The latter, so-called sigmoid type of feedback functions are widely used in
models of (real) neural networks. The most common examples of sigmoid func-
tions are the tangent hyperbolic and the inverse tangent functions.
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Throughout the chapter, non-constant periodic solutions of the above system
of delay differential equations are investigated. Periodic solutions are of great
importance in neural networks. A technical difficulty in the piecewise linear
case is that the function f0 is neither smooth, nor strictly monotonic, therefore
the solution operator is neither differentiable everywhere nor injective and for
this reason the Poincaré–Bendixson type theorem of Mallet-Paret and Sell [13]
and several other related theorems cannot be applied directly.

Preliminaries

The natural phase space for equation (2.4) is the Banach space of continuous
real functions C(Kτ) = C(Kτ, R) equipped with the supremum-norm, where
Kτ = Kτ,n = [−τ, 0] ∪ {1, 2, . . . , n}. We shall use the notation K for K1.

Definition 2.7. Let t0 ∈ R be fixed. A function x =
(
x0, . . . , xn) is a solution of

equation (2.4) on the interval (t0, ∞), if x0 ∈ C([t0 − τ, ∞), R), xi ∈ C([t0, ∞), R)
and xi is continuously differentiable on interval (t0, ∞) for all i ∈ {0, 1, . . . , n}
and x satisfies equation (2.4) for all t > t0. We say that x : R→ Rn+1 is a solution
of equation (2.4) on R, if it is a solution on interval (t0, ∞) for all t0 ∈ R.

Assume that x is a solution of equation (2.4) on (t0, ∞). Let xt ∈ C(Kτ) be
defined for all t ≥ t0 as follows:

xt(θ) =

{
x0(t + θ) if θ ∈ [−τ, 0],
xθ(t) if θ ∈ {1, . . . , n} .

One can readily show by the method of steps that for all ϕ ∈ C(Kτ) there
exists a unique solution x of equation (2.4) on the interval (0, ∞) such that
x0(θ) = ϕ(θ) for all θ ∈ Kτ.

According to Mallet-Paret and Sell [14] we introduce to following discrete
Lyapunov functionals.

V+
Kτ

: C(Kτ) \ {0} → {0, 2, 4, . . . , ∞}, V−Kτ
: C(Kτ) \ {0} → {1, 3, 5, . . . , ∞},

V+
Kτ

(ϕ) =

{
sc(ϕ, Kτ) if sc(ϕ, Kτ) is even of infinite,
sc(ϕ, Kτ) + 1 if sc(ϕ, Kτ) is odd,

V−Kτ
(ϕ) =

{
sc(ϕ, Kτ) if sc(ϕ, Kτ) is odd or infinite,
sc(ϕ, Kτ) + 1 if sc(ϕ, Kτ) is even,

where sc(ϕ, H) denotes the number of sign changes ϕ has on subset H of its
domain. For brevity, we shall use notation V±τ in the case when n = 0.

Let V denote V±Kτ
determined by the sign of δ. Then according to the results

of Mallet-Paret and Sell [14], if x : R → Rn+1 is a periodic solution of equation
(2.4), then V(xt) is finite and constant for all t ∈ R. Thus in case of periodic
solutions we shall usually omit the lower index and write V(x).
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The theorem of Gopalsamy and He [7] implies that for β < α, all solutions
of (2.4) converge to (the unique) equilibrium point. By their argument one can
easily prove that there are no non-constant periodic solutions of equation (2.4)
when β = α, which proves the lemma below.

Lemma 2.9. If 0 < β ≤ α, then there exist no non-constant periodic solutions of
equation (2.4).

According to the above lemma, for the investigation of non-constant periodic
solutions, it is sufficient to concentrate on the case when β > α.

Categorization and number of periodic orbits for one equation

In Section 2.4 we investigate the non-constant periodic solutions of equation (2.4)
in the case when n = 0, that is we consider the following equation:

ẋ(t) = −αx(t)± fβ(x(t− τ)). (2.15)

In the sigmoid case, a very detailed picture of the global attractor is available
due to the monograph of Krisztin, Walther and Wu [11] and to a sequence of
papers [5,8–10]. In particular, necessary and sufficient conditions in terms of the
parameters α, β and τ are known for the existence and uniqueness of periodic
solutions. The section is devoted to prove analogous theorems in the piecewise
linear case. It seems reasonable to approximate our piecewise linear feedback
function with functions from the sigmoid class, but the problem is that the global
attractor is only upper semi-continuous, hence this approach cannot provide
uniqueness and non-existence results.

Theorem 2.27 summarizes the results of the section. The proof consists of
several steps: first we prove some technical lemmas, which we do not detail
here, then we prove the non-existence and uniqueness parts of the theorem. The
definition below and the following theorem has an important role throughout
the hole section.

Definition 2.19. Let x : R → R be a continuously differentiable, periodic func-
tion with minimal period Tx. We call the curve X : [0, Tx] 3 t 7→ (x(t), ẋ(t)) ∈ R2

the D-trajectory of function x.

It can be shown that – in both feedback function cases – the D-trajectory X of
a non-constant periodic solution x is a simple closed curve on the plane contain-
ing the origin in its interior. Let |X| denote the trace of X, which separates the
plane into one bounded and one unbounded connected set, which are denoted
by int(X) and ext(X), respectively. The following theorem states basically that
bigger delays imply bigger D-trajectories.

Theorem 2.25 (Garab, Krisztin [4]; Garab [3]). Let α, β, fβ, and τ1, τ2 be fixed and
0 < τ1 < τ2. Furthermore, let x1 and x2 be non-constant periodic solutions of equation
(2.15) with delays τ = τi, i ∈ {1, 2} and D-trajectories Xi, respectively. Let ε denote
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the sign +, resp. −, in the case of positive, resp. negative feedback. If Vε
τ1
(x1) = Vε

τ2
(x2),

then
|X2| ⊂ ext(X1) ∪ |X1| and |X2| ∩ ext(X1) 6= ∅.

The results of Krisztin and Walther [10] imply in the sigmoid case, that if a so-
called slowly oscillating periodic solution exists (V+

τ (x) = 2 type), then for fixed
parameters it is uniquely defined (up to translation of time). The uniqueness
parts of Theorem 2.27 – proved in the dissertation – guarantee this property also
in the piecewise linear case. Therefore we can define the period of that solution
as a function of the delay. The following theorem on the period function plays
an essential role in the proof of the existence of periodic solutions of equation
(2.15) and in the investigation of the periodic solutions of system (2.4).

Theorem 2.26 (Garab, Krisztin [4]; Garab [3]). Let T denote the period function of
equation (2.15) with positive feedback and α > 0, β > 0 fixed. Assume that τ1 are τ2
are from the domain of T and that τ1 < τ2 holds. Then

0 ≤ T(τ2)− T(τ1) < 2(τ2 − τ1).

The next theorem is one of the main results of the chapter and it summarizes
the statements on existence, non-existence and uniqueness of periodic orbits of
equation (2.15) for the piecewise linear case fβ = β f0.

Theorem 2.27 (Garab [3]). Let α, β, τ > 0, fβ = β f0 and k ≥ 1 be fixed, and

ν = ν(α, β, τ) = τ
√

β2 − α2 + arccos
α

β
.

Then the following statements hold.

(i) In case of positive feedback, equation (2.15) has a periodic solution x such that
V+

τ (x) = 2k if and only if β > α and ν ≥ 2kπ hold. There exist no non-constant
periodic solutions of V+

τ = 0 type.

(a) If ν > 2kπ, then the solution of this type is unique up to translation of time.

(b) If ν = 2kπ, then the non-constants periodic solutions of equation (2.15) are
the functions x(t) = A cos(t

√
β2 − α2 + ∆), where constants ∆ ∈ R and

A ∈ (0, 1] can be arbitrarily chosen. In this case V+
τ (x) = 2k necessarily

holds.

(ii) In case of negative feedback, equation (2.15) has a periodic solution x such that
V−τ (x) = 2k− 1 if and only if β > α and ν ≥ (2k− 1)π hold.

(a) If ν > (2k− 1)π, then the solution of this type is unique up to translation of
time.

(b) If ν = (2k− 1)π, then the non-constants periodic solutions of equation (2.15)
are the functions x(t) = A cos(t

√
β2 − α2 + ∆), where constants ∆ ∈ R

and A ∈ (0, 1] can be arbitrarily chosen. In this case V−τ (x) = 2k − 1
necessarily holds.
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The proof consists of several parts. The sufficient condition for the existence
of slowly oscillating periodic orbits was given by Vas [20]. Combining this with
Theorem 2.26 we are able to prove the statement of the theorem on existence
in the negative feedback case and for faster oscillations as well. The proof of
the statements on uniqueness and non-existence are carried out by applying
and suitably modifying the Cao–Krisztin–Walther technique and is based on the
investigation of the D-trajectories.

The periodic solutions of a ring-like system of equations

In Section 2.5, we consider the non-constant periodic solutions of system (2.4)
for n ≥ 1 and with both feedback functions. We note that τ = 1 may be assumed
without loss of generality. The main result of the section is that we give necessary
and sufficient conditions on the existence and uniqueness of relatively quickly
oscillating periodic solutions and we give sufficient conditions on the existence
and non-existence for periodic solutions that oscillate slower. The results are
summarized in Theorem 2.34 and Theorem 2.35.

Following and, at some parts, modifying the argument of Yi, Chen and
Wu [21], one can derive the theorem below, which shows the strong connec-
tion between the periodic solutions of system (2.4) and the slowly oscillating
periodic solutions of equation (2.15).

Theorem 2.32 (Garab, Krisztin [4]; Garab [3]). Let T denote the period function of
equation (2.15) with positive feedback. Then in case of positive feedback there is a one-
to-one correspondence between the periodic solutions of system (2.4) of V+

Kτ
= 2k ≥ 2

type and the intersection points of the following two curves:

domT 3 γ 7→ (γ, T(γ)) and R 3 ζ 7→
(
(n− k + 1)ζ + 1

n + 1
, ζ

)
.

Analogously, for negative feedback, there is a one-to-one correspondence between the non-
constant periodic solutions of system (2.4) of V−Kτ

= 2k − 1 type and the intersection
points of the following two curves:

domT 3 γ 7→ (γ, T(γ)) and R 3 ζ 7→
(
(n− k + 3/2)ζ + 1

n + 1
, ζ

)
.

Combining this result with Theorem 2.26, we obtain Theorem 2.34 and The-
orem 2.35, which are one of the main results of the section. The following the-
orem is a generalization of the results of Yi, Chen and Wu [6, 21].

Theorem 2.34 (Garab, Krisztin [4]; Garab [3]). Let τ = 1 and use the following
notation:

νn(α, β) =
√

β2 − α2 + (n + 1) arccos
α

β
.

Assume that fβ ∈ S and δ = 1. Then the following statements hold.
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(i) If N 3 k ≥ n+1
2 , then equation (2.4) has a periodic solution x for which

V+
K (x) = 2k holds if and only if νn(α, β) > 2kπ. This solution is uniquely

defined (up to translation of time).

(ii) If N 3 k < n+1
2 , then νn(α, β) > 2kπ implies that equation (2.4) has a non-

constant periodic solution x for which V+
K (x) = 2k holds.

(iii) There exist no non-constant periodic solutions of V+
K = 0 type.

Analogously, for negative feedback, if fβ ∈ S and δ = −1, then the following statements
hold.

(iv) If N 3 k ≥ n+2
2 , then equation (2.4) has a periodic solution x for which

V−K (x) = 2k − 1 holds if and only if νn(α, β) > (2k− 1)π. This solution is
uniquely defined (up to translation of time).

(v) If N 3 k < n+2
2 , then νn(α, β) > (2k − 1)π implies that equation (2.4) has a

non-constant periodic solution x for which V−K (x) = 2k− 1 holds.

In the case when fβ = β f0, the relations “>” should be changed to “≥” everywhere.
When equation holds, then the periodic solutions are unique up to translation of time
and to a constant multiple.

Note that if n = 0, then Theorem 2.34 gives the statements of Theorem 2.27
(and the analogues for the sigmoid case). Moreover, if the feedback is positive
and n = 1, then the above theorem gives necessary and sufficient conditions on
existence and uniqueness of all types of periodic solutions. The following the-
orem is a simple consequence of Theorem 2.26 and the results of Nussbaum [17].

Theorem 2.35. Let τ = 1 and use the following notation:

τ∗ =
2π − arccos α

β√
β2 − α2

.

Then the following statements hold.

(i) Assume that n+1
4 < k < n+1

2 , δ = 1 and τ∗(4k− n− 1) ≥ 3 hold. Then equation
(2.4) has no periodic solution of V+

K = 2k type.

(ii) Assume that n+3
4 < k < n+2

2 , δ = −1, and τ∗(4k− n− 3) ≥ 3 hold. Then
equation (2.4) has no periodic solution of V−K = 2k− 1 type.

Yi, Chen and Wu [21] formulated a conjecture – for the sigmoid, positive
feedback case which they considered – that statement (i) of Theorem (2.34) holds
for all k ≥ 1. Using Theorem 2.32, it can be easily shown that in order to prove
the consejture – for the negative and positive feedback case and for both type of
feedback functions – it is sufficient to prove our conjecture below. The conjecture
can be strengthened by computer simulations.

Conjecture 2.36. (Garab, Krisztin [4]; Garab [3]). Let T denote the period function
of equation (2.15) with positive feedback. Then the map domT 3 τ 7→ T(τ)/τ is
monotonically non-increasing.
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3 Global stability analysis of second order difference
equations

In this chapter we give necessary and sufficient conditions on the global stabil-
ity of the equilibrium of two second order, parametric difference equations. In
Section 3.1 we consider the following difference equation:

xn+1 = mxn − α tanh(xn−1),

where (α, m) ∈ R2. This equation can be regarded as a discrete-time single
neuron model, but one can also easily transform it to get a Clark type population
dynamical model, as well.

In Section 3.2, we investigate the following delayed Ricker type population
dynamical model

xn+1 = xneα−xn−d ,

where xn denotes the size of the population living in a certain area at time instant
n, α is a positive parameter, and d > 0 is the delay in the self-regulatory system.
The model was first formulated by Ricker [18] in 1954 (at that time without
delay) to model the dynamics of baleen whale populations. Since then it became
one of the most widespread population dynamical models.

The proof of the global asymptotic stability is carried out similarly for the
two equations. We combine different validated computer aided methods with
analytical tools. Essentially, the proof consists of the following steps. First we
construct a uniform neighbourhood of the equilibrium that is independent of
the parameters and belongs to the basin of attraction of the fixed point for all
parameters for which local asymptotic stability holds. For parameters near the
critical values, this is done in both models by analysing the (resonant) normal
form of the Neimark–Sacker bifurcation. To the best of our knowledge, such
application of the normal form of the Neimark–Sacker bifurcation is new in the
literature. Thereafter, we show by validated computer aided methods that every
trajectory enters this small neighbourhood, which proves that local asymptotic
stability of the equilibrium implies its global asymptotic stability. The latter part
of the proof is done by Ferenc Bartha using graph representations and interval
arithmetical tools.

The term “computer aided” means here that some of our calculations and
estimates are done by using a computer program which gives validated results,
that is, all possible numerical errors are controlled. This allows us to prove
mathematical theorems from the obtained outputs.

A discrete-time neural model

Section 3.1 is devoted to the analysis of the global stability of the delayed differ-
ence equation

xn+1 = mxn − αϕ(xn−1), (3.1)
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where (α, m) ∈ R2 and ϕ is a bounded, continuous, real function satisfying the
following Yorke type condition:

min{0, x} < ϕ(x) < max{0, x} for all x 6= 0. (3.2)

Instead of equation (3.1), we shall consider the following equivalent two-
dimensional map:

Fα,m : R2 → R2, Fα,m : (x, y) 7→ (y, my− αϕ(x)). (3.3)

The main result of the section is that we give necessary and sufficient condi-
tions on the global asymptotic stability of the (0, 0) fixed point of the map (3.3)
for the case when ϕ(x) ≡ tanh(x), which is one of the most common feedback
functions in the field of neural networks.

Computer aided graph representational methods may be applied only on a
bounded domain of the phase space. By consideration of the global dynamics
by elementary techniques we obtain – among others – the following corollary.

Corollary 3.8 (Bartha, Garab [1]). Suppose that (α, m) ∈ [0, 1]2 and M is a strict
upper bound of function ϕ. Then the bounded set[

− 2M
max{m,1−m} ,

2M
max{m,1−m}

]2
⊂ R2

containes a compact subset, which is positive invariant and globally attractive with
respect to the map (3.3).

This allows us to restrict the phase space to the above bounded domain in the
analysis of the long-time behaviour.

We concentrate on the case ϕ(x) ≡ tanh(x) in the sequel, thus we consider
the map

F : R2 → R2, F(x, y) = Fα,m(x, y) = (y, my− α tanh(x)). (3.5)

We shall use notation Fk for the kth iterate of the map F. It can be easily seen
that global asymptotic stability of the fixed point may only hold if

(α, m) ∈ R(m) = [|m| − 1, 1]× [−1, 1] \ {(0,−1), (0, 1)}.

We show that this condition is also sufficient. As the tanh function is odd, one
may assume that m ≥ 0. General results of Nenya and Nenya et al. [15, 16]
guarantee that the trivial fixed point of the map (3.5) is globally asymptotically
stable if α ≤ m2+1

|m|+1 and (α, m) ∈ R(m). To our knowledge, that is the best known
result so far for the global stability of the map (3.5). The following theorem –
which is one of the main results of the chapter – gives necessary and sufficient
conditions on the global asymptotic stability of the trivial equilibrium of the map
(3.5).

Theorem 3.11 (Bartha, Garab [1]). The (0, 0) fixed point of (3.5) is globally asymp-
totically stable if and only if (α, m) ∈ R(m).
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In order to prove the theorem, first we have to construct a neighbourhood
belonging to the basin of attraction of the fixed point.

Theorem 3.12 (Bartha, Garab [1]). Let α ∈
[1

2 , 1
)
, m ∈ [0, 1], and

ε(α) = 4
√

27
800

√
1−
√

α.

If (x, y) ∈
(
− ε(α), ε(α)

)2, then limk→∞ Fk(x, y) = (0, 0) holds.

The above theorem can be proved by analysing the linearised map. As α

tends to the critical value α = 1, the size of the neighbourhood given in the
theorem converges to zero, hence if α is near to 1, then one cannot show by val-
idated interval arithmetical tools that every trajectory enters the obtained neigh-
bourhood. Therefore we need a different approach. The next theorem gives a
neighbourhood which is in the basin of attraction of the fixed point and whose
size is independent of the parameters.

Theorem 3.13 (Bartha, Garab [1]). Let α ∈ [0.98, 1], m ∈ [0, 1], and

ε(α) =
1
6

,

If (x, y) ∈
(
− ε(α), ε(α)

)2, then limk→∞ Fk(x, y) = (0, 0) holds.

At (α, m) = (1, 0) a strong 1:4 resonance occurs, hence the proof of the above
theorem is carried out by analysing the resonant normal form of the Neimark–
Sacker bifurcation. Throughout the proof, one has to give uniform estimates on
the coefficients of the normal form and on the higher order error terms, too.

Now, let ε(α) be defined as in Theorem 3.12 if α ∈
[1

2 , 0.98) and let it be 1
6 (as

in Theorem 3.13) for α ∈ [0.98, 1]. It can be proved by using validated computer
aided tools that if (α, m) ∈

[1
2 , 1]× [−1, 1] and (x, y) ∈ [−4, 4]2, then there exists

an integer k ≥ 0, such that Fk(x, y) ∈ (−ε(α), ε(α))2 holds. Combining this
with Corollary 3.8, Theorems 3.12 and 3.13 and with the results of Nenya et al.
completes to proof of Theorem 3.11.

A Ricker type population dynamical model

In 1976, Levin and May formulated a conjecture on a class of delayed difference
equations involving xn+1 = xneα−xn−d , that the local asymptotic stability of the
positive equilibrium implies its global attractivity [12]. We are interested in the
case of d = 1. Accordingly, let us consider the following two-dimensional map:

Fα : R2 3 (x, y) 7→ (y, yeα−x) ∈ R2,

where α > 0 is a parameter. We use notation Fk
α for the kth iterate of Fα. The

map Fα has two fixed points: (0, 0) and (α, α). According to the conjecture, the
(α, α) fixed point is globally asymptotically stable (in the sense that R2

+ is in its
basin of attraction) for all α ∈ (0, 1]. The best result so far in the topic follows
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from the general theorem of Tkachenko and Trofimchuk [19] and states that
if α ∈ (0, 0.875), then the positive equilibrium is globally asymptotically stable.
The following theorem is one of the main results of the thesis, in which we prove
the conjecture in the case of d = 1.

Theorem 3.15 (Bartha, Garab, Krisztin [2]). If 0 < α ≤ 1, then the (α, α) fixed point
of the map Fα is locally asymptotically stable and Fn

α (x, y)→ (α, α) for all (x, y) ∈ R2
+,

as n→ ∞.

The proof is similar to what we have seen in the previous part. First we
construct for all parameter values α ∈ [0.875, 1] a compact, positive invariant
S(α) set, such that for all (x, y) ∈ R2

+ there exists k ∈ N, so that Fk(x, y) ∈ S(α)
holds. The next step is to give a neighbourhood of the fixed point using one of
the following theorems (according to the value of α), which belongs to the basin
of attraction of the equilibrium point.

Theorem 3.18 (Bartha, Garab, Krisztin [2]). The set{
(x, y) ∈ R2 : |x− α| < 1

37
, |y− α| < 1

37

}
belongs to the basin of attraction of the (α, α) fixed point of the map Fα for all
α ∈ [0.875, 1].

Theorem 3.19 (Bartha, Garab, Krisztin [2]). The set{
(x, y) ∈ R2 : |x− α| < 1

22
, |y− α| < 1

22

}
belongs to the basin of attraction of the (α, α) fixed point of the map Fα for all
α ∈ [0.999, 1].

As there is no resonance in this case, the above theorems are proved by es-
timating the non-resonant normal form of the Neimark–Sacker bifurcation. It is
natural to ask why it is not enough to prove Theorem 3.18. That is because at
and near the critical value α = 1 the convergence is so slow that if we intend to
prove that every trajectory enters into the neighbourhood (α− 1/37, α + 1/37)2,
then the 128 GB memory capacity of the computer cluster would not be enough
to store the necessary graph representation of the map.

We complete the proof of Theorem 3.15 by showing by validated computer
aided tools that for all α ∈ [0.875, 0.999], resp. α ∈ [0.999, 1], and (x, y) ∈ S(α)
there exists an integer k ≥ 0, such that Fk

α(x, y) is in the neighbourhood defined
in Theorem 3.18, resp. Theorem 3.19.
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