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Chapter 1

Introduction

Differential equations have been in the focus of mathematical biology since the famous
work of Volterra. Dynamical models are powerful tools to describe various processes in
life sciences by applying rigorous analytical techniques. Simple models are often unable to
capture the rich variety of dynamics observed in biological phenomena, thus it is necessary
to consider complex systems for the modeling. There are numerous reasons to incorpo-
rate time delays into biological models: they can represent resource regeneration times,
maturation or incubation periods, reaction times, transport-related delays, or can simply
account for the time required for a process to complete. The inclusion of delayed terms into
differential equations brings us to the field of delay differential equations, where the deriva-
tive of the unknown function at a certain time is determined by the values of the function
at previous times. The vast majority of works in the mathematical literature focus on
model equations where the delayed feedback function is given explicitly (see, for instance,
the Mackey—Glass equation, Nicholson’s blowflies equation and Wright’s equation), while
others only require some particular properties (for instance, monotonicity or unimodular-
ity) of the feedback. In this work, we propose various models from population dynamics
and epidemiology where the delayed term in the corresponding system cannot be given ex-

plicitly by the model variables, but it depends on the solution of another differential system.

In this Ph.D. dissertation, initial value problems for differential equations with such
dynamically defined delayed feedback function will be considered. We propose a class of
models from mathematical biology where the population is distributed over several discrete
geographical regions, and show that the qualitative analysis of these models leads to the
study of such systems if mobility (e.g., migration of species or transportation of individuals)
between the regions is incorporated. Investigating the fundamental properties of the initial
value problem is an interesting mathematical challenge in itself, but more significantly, the

results obtained for the general system also enable us to gain more insight into the dynamics
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of the biological applications. In particular, we will describe the spatial spread of infectious
diseases by formulating a series of mathematical models, each of which is equivalent to a
large system of differential equations with dynamically defined delayed terms. First, we

discuss a simple problem from mathematical biology.

A basic model from population dynamics

A simple model describing the growth of a single population with fixed period of temporary

separation is given by

() = b(n(t)) — d(n(t)) — q(n(t)) + V(n(t — 7)),

no = ¥,

(1.1)

where ¢ denotes time and functions b, d and ¢ stand for recruitment, mortality and tem-
porary separation (e.g., migration). Let 7 > 0 be the fixed duration of separation. We
define the phase space C as the nonnegative cone of C([—7,0],R), the Banach space of
continuous functions from [—7,0] to R™ equipped with the supremum norm. The notation
n¢ is used for the segment of the solution, where n; € C4 and it holds that n.(0) = n(t —6)
for @ € [—7,0]. Then, ng = ¢ gives the initial state of the system for any ¢ € C.

We say that a function F': R — R satisfies the Lipschitz condition on each bounded subset of
R if for all M > 0 there is a K (M) > 0 such that the inequality |F'(z1)—F(x2)| < K|z1—x2|
holds whenever |x1],|z2| < M. We assume that b,d,q: R — R satisfy the Lipschitz prop-
erty on each bounded subset of R, which implies their continuity on R. Since b, d and ¢
denote the recruitment, mortality and separation functions, it should hold that they map

nonnegative values to nonnegative values.

The function V expresses the inflow of individuals arriving to the population at time
t after 7 units of time of separation. For the precise definition of V, it is needed to
describe the growth of the separated population. We assume that individuals who left the
population due to separation in different times do not make contact to each other. Hence
for each time t,, the evolution of the density of the separated population with respect to
the time elapsed since the beginning of separation is given by the following differential
equation, when separation started at time t,:
Cm(0:1.) = 85 (m(0:1.)) — & (m(6:1.))
dog (1.2)
m(0;t.) = q(n(t+)),

where 6 denotes the time elapsed since the beginning of separation, and functions b° and
d® stand for recruitment and mortality during separation. At § = 0, the density of the

separated population is determined by the number of individuals who start separation at
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time ¢, hence the initial value for system (1.2) is given by m(0;¢.) = q(n(t«)). We assume
that b, d5: R — R satisfy the Lipschitz condition on each bounded subset of R, which
also yields that they are continuous on R. The Picard-Lindelof theorem ([22]) ensures
that for any initial value m, there exists a unique solution y(#;0, m,) of system (1.2) on
[0, @] for some o > 0. As separation lasts for 7 units of time, it is reasonable to make the
additional assumption that the unique solution exists at least for 7 units of time for every
m.. This hypothesis can be fulfilled by some additional (however, biologically meaningful)
conditions on b and d°; for instance, if the functions are defined such that the solution
of (1.2) is bounded, then y(#;0, m.) can be continued for all positive times. In order to
guarantee that nonnegative initial data give rise to nonnegative solutions of (1.2), we as-
sume that the inequality 5°(0) — d(0) > 0 holds, and remark that this condition can be

satisfied with several reasonable choices of the recruitment and mortality functions.

Now we are in the position to define the delayed feedback function V' in system (1.1).
Since the duration of separation is exactly 7 units of time, the inflow of individuals arriving
to the population at t, + 7 after separation is determined by the solution of (1.2) at § = 7
with ¢, fixed. We hence define the feedback function V: R - R as V(v) = y(7;0, q(v)).

By the formulation of the model, we obtain that the system describing the growth of the
population is connected to another system via a delayed feedback term. More precisely, for
the solution of system (1.1) at any time ¢, it is necessary to compute V' which is determined
by the dynamics of system (1.2). Nevertheless, (1.2) takes the initial value from (1.1), and
thus evaluating V' at n(t — 7) in system (1.1) results in a delayed term which cannot be
given explicitly, but through the solution of the differential system (1.2). Henceforth, a
system like (1.1) is referred to as a system of differential equations with dynamically defined

delayed feedback term.

Chapter 2 of the dissertation is devoted to the formulation of an initial value prob-
lem for nonautonomous functional differential equations with dynamically defined delayed
term. We investigate the fundamental properties of such systems. The general existence,
uniqueness and continuous dependence result will be derived, and we give conditions for
the nonnegativity of solutions. Furthermore, after determining the steady state solutions
of the autonomous system, we obtain the linearized equation about the equilibria. Before
proceeding to the general theory in Chapter 2, we present here a class of epidemic models
to further motivate the study of such systems. The model proposed above with temporary

separation will be revisited in Chapter 2.
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Epidemic models with travel-related infection

National boundaries have never prevented infectious diseases from reaching distant ter-
ritories; however, the speed at which an infectious agent can spread around the world
via the global network of human transportation has significantly increased during the re-
cent decades. Studying the role that the global airline transportation network plays in the
worldwide spread of infectious diseases has been in the focus of mathematical epidemiology
for a while, especially since the 2002-2003 SARS outbreak. Previous works on metapop-
ulation models for disease spread in connected regions were mostly concerned only with
the impact of the network structure and the volume of travel on the spatial dynamics (see
Arino [2], Arino and van den Driessche [3]|, Baroyan et al. [5], Ruan et al. [36], Rvachev
and Longini [37], Wang and Zhao [50] and the references therein). On the other hand, as
it was highlighted in the risk assessment guideline of the European CDC [16], on-board
transmission is a real threat for many infectious diseases, even during flights with a dura-

tion of less than eight hours.

The possibility that individuals may contract the disease while they travel was modeled
by Cui, Liu, Takeuchi and Saito [10, 29, 42| using a system of ordinary differential equations
based on the standard SIS (susceptible-infected—susceptible) epidemic model. While these
works were based on the consideration that travel times between the regions are negligible,
Liu et al. [28] incorporated the time needed to complete transportation into the model.
Though the length of intercontinental flights is only a fraction of a day, it is reasonable to
take into account any small delays if one’s aim is to consider rapidly progressing diseases
such as SARS and influenza. The SIS—type epidemic model proposed by Liu et al. [28]
was further investigated by Nakata [33] and Nakata and Rost [34] by describing the global
dynamics for an arbitrary n number of regions with different characteristics and general

travel networks.

The models in [28, 33, 34| provide a good basis to investigate the spread of an in-
fectious disease in regions which are connected by transportation. As a submodel, an
age-structured system can be constructed to incorporate the possibility of disease trans-
mission during travel, where age is the time elapsed since the start of the travel. Following
the assumption that transmitting the infection is possible on-board, the model setup leads
to a system of delay differential equations with delay representing travel time. The two
systems, describing the dynamics in the regions and during transportation, are intercon-
nected; initial values of the system for disease spread during travel depend on the state
of the system in the regions, while the inflow term of arrivals to the regions after being

in transportation for a fixed time arises as the solution of the subsystem for travel. If the
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subsystem can be solved analytically (this was the case for the age-structured SI model
used in |28, 33, 34]), then the system for disease spread in the regions decouple from the
subsystem. Recalling that initial data of the system during travel comes from the equations
for the regions, the inflow term of travelers completing a trip appears as a delayed feedback
term. On the other hand, in case of choosing SIR (susceptible-infected-recovered)-type
models as an epidemic building block when the subsystem does not admit a closed form
solution, the delayed term in the system for the regions cannot be expressed explicitly, but

is defined dynamically, via the solutions of another system.

Three different epidemic models will be formulated in the thesis for the spread of in-
fectious diseases in the population of individuals who travel between distant regions. In
Chapter 3 we introduce an SEAIR (susceptible-exposed—asymptomatic infected—infected—
recovered)-based model to properly describe the temporal evolution of an epidemic in two
regions of the world, which are connected by long distance travel such as intercontinental
flights. We incorporate the consideration that infected travelers not only carry the disease
from one place to another, but also infect some of their fellow passengers. This implies
that the epidemic spreads more rapidly to farther regions than to closer ones, since longer
flights provide more opportunity for infection. We use the phrase “antigravity model”
to express this special feature of our model. This notion originates from the fact that
the speed of disease propagation between regions is usually inversely proportional to the
distance between those territories, as regions closer to each other are typically more con-
nected; and this inverse relationship between speed and distance shows some analogy to
physical gravity. Our model also distinguishes local residents from visitors to incorporate
differences in individuals’ mixing behavior. We use our framework to model the spread of
influenza, one of the diseases that pose a threat of a global pandemic in modern times.
For the numerical simulations which are performed to model three hypothetical situations
with different characteristics for the regions, we use real demographic and air travel data.
The model is also applied to the first wave of the A(HIN1) 2009 pandemic influenza in
Mexico and Canada. One of the main challenges of this work is to compute the basic
reproduction number (Rg), which gives the expected number of secondary infections gen-
erated by a single infected agent in a susceptible population. This quantity is of particular
importance in epidemic models as it works as a threshold for the stability of the disease
free steady state. To our knowledge, no general method has been published in the liter-

ature before to find Ry for the special type of systems considered in this Ph.D. dissertation.

The topic of investigating disease propagation in and between connected regions is fur-

ther elaborated in Chapter 4. We present two SIR-based epidemic models, one for the
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spread of infection between two regions with an entry screening procedure initiated for
travelers upon the arrival to a region, and another one with general incidence term in
multiple regions. Setting up the system of differential equations for the first model leads to
a situation when the dimension of the system for the disease spread in the regions differs
from the dimension of the age-structured system during travel. The framework established
in Chapter 2 for the general theory of systems with dynamically defined delayed feedback

term is extended for the multiregional model to the case of multiple delays.

Chapter 5 is devoted to the bifurcation analysis of some epidemic models where trav-
eling is considered. In particular, an SIVS (susceptible-infected—vaccinated—susceptible)-
based model will be investigated which exhibits the phenomenon of backward bifurcation,
this is, there is an interval for R to the left of one, where the disease free equilibrium co-
exists with two positive fixed points, typically one stable and one unstable. Such behavior
cannot be observed in the more common scenario of forward transcritical bifurcation, when
positive steady states only exist for Ry > 1. Backward bifurcation and the presence of a
stable endemic state for Rg < 1 have a significant epidemiological implication: the typical
requirement of decreasing the reproduction number below one is no longer sufficient for

effective epidemic control.

A number of mathematical models have been developed recently which deal with the
various causes of backward bifurcation (see the well-known results of Dushoff, Huang,
Castillo-Chavez, Hadeler and van den Driessche [15, 19, 20|, and the work of Gumel [18§]
which provides a thorough overview of the relevant literature.). A simple disease transmis-
sion model with vaccination of susceptible individuals has been considered by Kribs-Zaleta
and Velasco-Hernandez in [26, 27|, and later elaborated by Brauer in [7, 8], where one
reason for the emergence of positive fixed points for Rg < 1 is that vaccination does not
provide perfect protection against infection. We study an extension of this model as we in-
vestigate the effect of mobility on the dynamics by including the possibility of immigration
of susceptible and vaccinated individuals into the model. After showing global stability
results for the model, an explicit condition for the existence of backward bifurcation and
multiple endemic equilibria will be given. We also examine in detail how the structure of

the bifurcation diagram depends on the immigration.



Chapter 2

Differential equations with

dynamically defined delay term

The general form of systems of nonautonomous functional differential equations with dy-
namically defined delayed feedback function will be introduced. This work was motivated
by applications from population dynamics and epidemiology where the model setup leads
to a system of differential equations with the delay term defined via the solution of another
system of differential equations. We obtain the general existence, uniqueness and continu-
ous dependence result for the initial value problem by showing a Lipschitz property of the
dynamically defined delayed feedback function, and give conditions for the nonnegativity
of solutions. Steady-state solutions of the autonomous system will also be determined, and
we derive the linearized equation about the equilibria. We revisit the single population
model with fixed period of temporary separation, which has been introduced in Chapter

1, and obtain some basic properties of the model.

2.1 General formulation of the system

We consider the initial value problem for the nonautonomous functional differential equa-

tion

2/ (t) = F(t,zy), 2.1)

Lo =
where x: R R" ne€Z,,t,0 € Rand ¢t > o. For 7 > 0, we define our phase space C' =
C([—,0],R™) as the Banach space of continuous functions from [—7,0] to R", equipped
with the usual supremum norm || - ||. Let ¢ € C be the state of the system at . For the
segments of solutions, we use the notation z; € C, where x4(0) = x(t + 0) for 6 € [—7,0].
Let F: R x C - R™ and let F have the special form F(t,¢) = f(t,#(0)) + W (t, ¢(—7)) for
pelC, [ RxR"=R" W:RxR" - R"
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In the sequel we use the notation |v|; for the Euclidean norm of any vector v € R/ for
j € Zy. For j =1 we omit lower index 1 for simplicity. We define a Lipschitz condition
as follows. For j,1 € Z,, we say that a function F': R x R? — R/ satisfies the Lipschitz
condition (Lip) on each bounded subset of R x R/ if:

(Lip) For all a, b € R and M > 0, there is a K(a,b, M) > 0 such that:
|[F'(t,21) — F(t,22)); < Koy — 225, a <t <b, |21, [22]; < M.

We assume that f: R x R” - R" is continuous and satisfies (Lip) on each bounded subset
of R x R™. For the definition of W, we make the following preparations. For any sg € R
and y, € R™, m € Z, we consider the initial value problem

Y'(s) = g(s,y(s)), (2.2)

y(50) = Y,
where y: R - R™, 5,50 € R, s > 59, g: R Xx R™ - R™, ¢ is continuous on R x R™ and
satisfies the Lipschitz condition (Lip) on each bounded subset of R x R™. The Picard—
Lindel6f theorem (see Chapter II, Theorem 1.1 and Chapter V, Theorem 2.1 in [22]) states
that, as ¢ is continuous on a parallelepiped R : so < s < s9 + ¢, |y — Ys|m < d with the
bound B for |g|,, on R and g possesses the Lipschitz property (Lip), there exists a unique
solution y(s; so, y«) of (2.2) on the interval [s, so + & for o = aigy 4, c.a := min{c, £}, and
the solution continuously depends on the initial data. We make the following additional

assumption:

(x) For every sg and v, the solution y(s; sg,y«) of (2.2) exists for 7 units of time, i.e., on

[s0, 80 + T].

Remark 2.1. The reader may notice that (%) is equivalent to the following assumption:

For every sg and y, the solution y(s; sg, y«) exists for all s > sq.

Remark 2.2. With assuming various conditions on g we can guarantee that (x) is fulfilled.
For instance, for any so € R and L € Ry, we define the constant L, = Ly(so, L) as the
maximum of |g|,, on the set [sg,s0 + 7] X {v € R™ : |v|,,, < 2L} (continuous functions
attain their maximum on every compact set). Then the condition that for every sg € R
and L € Ry the inequailty I

T < L—g (2.3)

holds immediately implies that (x) is satisfied. Indeed, for any sp and y., choose ¢ = T,
d = |y«|m. Then the Picard-Lindel6f theorem guarantees the existence and uniqueness
of solution y(s;so,y«) on [sg,so + a| for @ = min{r, %}, where B is the bound for

|glm on the parallelepiped sop < s < s + 7, |y — Ys|m < |Ys|m. Choosing L = |y.|pm, it
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follows from the definition of Lg4(so, L) that B < L, is satisfied, and using (2.3) we get

T < % < %. We conclude that @ = 7, hence the solution y(s;sg,y«) exists on
[s0, S0 + 7] and (x) is satisfied.

The less restrictive condition x := infy, 1, LLg > (0 implies the existence of the solution of
(2.2) on [sp, so + k] for any sg. Then it follows that for any sp, the solution exists for all
s > sp, which is equivalent to (%). If we assume that a global Lipschitz condition (gLip)
holds for g, that is, the Lipschitz constant for g in (Lip) can be chosen independently of
a,b and M, then for any sy and y, the solution of (2.2) exists for all s > s¢, thus also for

7 units of time.

Now we are ready for the definition of W. For h: R x R - R™ k: R x R™ —» R",
let us assume that h and k are continuous and satisfy the Lipschitz condition (Lip). For

simplicity, we use the notation ys, . (s) = y(s; so, h(so, v)) for the unique solution of system
(2.2) in the case ys = h(so,v), v € R". We define W: R x R" - R" as

W(s,v) = k(s,ys—rp(s)) = k(s,y(s;s — 7, h(s — T,v))). (2.4)

2.2 Fundamental properties

Our goal is to prove the usual existence and uniqueness theorem for (2.1). First we obtain

the following simple results.
Proposition 2.3. F is continuous on R x C.

Proof. The Picard-Lindel6f theorem and () guarantee that for every so,ys, there exists
a unique solution of system (2.2) on the interval [sg, sp + 7] and the solution y(s; sg, yx)
continuously depends on the initial data. Moreover, h and k are continuous which implies
the continuity of W. The function f is also continuous, hence we conclude that F is

continuous on R x C. O

Proposition 2.4. For any c¢,d € R such that ¢ < d and for any L € Ry, there exists a
bound J = J(c,d, L) such that for any so € [c,d] and for any y. € R™ such that |y.|m < L,
the inequality

|y(3§ 30>y*)|m <J
holds for s € [so, so + T].
Proof. The Picard-Lindel6f theorem and (x) guarantee that for every sp € R and y, € R™,
there exists a unique solution y(s; so, y.) of system (2.2) on the interval [sg, sg + 7], and

the solution continuously depends on the initial data. Thus, for any ¢,d € R where ¢ < d

and for any L € R4, the solution y(s; so, y«), as a function of s, sg and yx, is continuous
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on the set {(s1,s2,v) : 51 € [c,d + 7], 52 € [¢,d], 51 > s2,|v|m < L}. Continuous functions
map compact sets to compact sets, hence there exists a constant J(c,d, L) such that

ly(s; 80, Yx)|m < J. The proof is complete. O

Now we show that besides continuity, F also satisfies a Lipschitz condition on each
bounded subset of R x C"

(Lip®) For all a, b € R and M > 0, there is a K(a,b, M) > 0 such that:

[f(t,0) = f(t, )l < Kllg = ¢ll, a <t <b, [|9]], [[{]] < M.
Lemma 2.5. F satisfies the Lipschitz condition (Lip©) on each bounded subset of R x C.

Proof. Fix constants a,b and M, a < b, M > 0. Our aim is to find K(a,b, M). Due to
the continuity of h, there exists a constant Ly (a,b, M) such that for any |[[¢|] < M and
so € la — 7,b — 7|, the inequality |h(sg,¥(—7))|m < Lp holds. By choosing ¢ = a — 7,
d=b—r71, L =Ly and y. = h(sp,(—7)) it follows from Proposition 2.4 that for any
s0 € [a—7,b— 7], the inequality [y, y(—r)(5)[m < J(a,b, Ly,) is satisfied for s € [so, so +7].

Let K, = Kp(a,b, M) be the Lipschitz constant of h on the set [a — 7,0 — 7] X {v €
R" : |v|, < M}, let Ky = K4(a,b, M) be the Lipschitz constant of g on the set [a — 7,b] x
{v € R" : |v|, < J} (note that J depends on a, b and M). For any ||¢||,||¢|] < M
it holds that |p(—7)|n,|¢(—7)|n < M. Since the solution of (2.2) can be expressed as
y(8;80,Yx) = Ys + :0 g(r,y(r; s0,y«))dr, for any so € [a — 7,b — 7| we have

‘ySQ,(ﬁ(—T) (S) - yso,w(—'r) (3)‘771 = ’h(soa ¢(_T)) +/ g(T’, yso,¢(—r) (7’)) dr

S0

) <h(so,w<—7>> ) dT) ‘m

S0

< |A(s0, (=7)) = h(50, (7))l (2.5)
+ [ lg(

/ r, y50,¢(—7) (T)) - 9("", yso,’(/)(—T) (T))|m dr
S0
< Kpllg — ]|

+ / K plso.o(-m) () — sy ()l
0

for s € [so,s0 + 7]. For a given sg € [a — 7,b — 7| we define
F(s) = |yso,¢(—7)(3) - yso,w(—r)(8)|m
for s € [so, s0 + 7]. Then (2.5) gives

[(s) < Kallo— vl + K, [ T() an
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and from Gronwall’s inequality we have that for any sg € [a — 7,0 — 7]
T(s) < Kpllg — f[e/se70) (2.6)

holds for s € [sg, so + 7].

For any t € [a,b] it is satisfied that ¢ — 7 € [a — 7,b — 7], hence for s € [t — 7,t] we
obtain

e b)) — sy (8)lm < Kl — o) (27)

as a special case of (2.6) with s9 =t — 7. The constant J = J(a,b, Lj,) was defined as the
bound for |y, y(—7)(8)|m for any so € [a — 7,0 — 7], [[¢|]| < M, s € [so,80 + 7]. For any
t € [a,b] it follows that t — 7 € [a — 7,b — 7], hence the inequality [y;_r y(—r)()|lm < J
holds for any ||¢|| < M. Let Ky = Kg(a,b, M) be the Lipschitz constant of k on the set
[a,b] x {veR™: |v|, <J}. Then for any ¢ € [a,b] and ||¢||, ||v|| < M it is satisfied that
|6(—=T) |, |[(=T)|n < M, so we arrive to the following inequality:

(W(t,d(=7)) = W(t, ¥(=7))|n = |kt Ys—r.p(~7) (1) = Kt Yt—rap(—r) (D)) In
< Kk|yt—7',¢(—’r) (t) — Yt—rp(—1) (t)|m
< KKl — lle™o,

where we used (5.24) and (2.7).

Finally, let K¢(a,b, M) be the Lipschitz constant of f on the set [a,b] x {v € R" :
|vl, < M}. Then for any ¢ € [a,b] and for any ||¢||,||[¢)|| < M it holds that |p(0)],,
(0 ln, [¢(=T)lns [(=7)In < M, hence we get

[F(t,0) = F(t,9)ln < |f (£ 6(0)) = £ 0(0)|n + [W(E, ¢(=7)) = W(t, % (=7))ln
< Killo — 9| + KpKpl¢ — o[,

and it is clear that K¢(a,b, M)+ Ky (a,b, M)Ky(a, b, M)emKq(a:b:M) g 5 suitable choice for
K(a,b, M), the Lipschitz constant of F on the set [a,b] x {¢p € C : ||¢|| < M}. O

We state the following simple remark.

Remark 2.6. If f, g, h and k satisfy a global Lipschitz condition (gLip), that is, if Ky,
K, Kj, and K}, can be chosen independently of a, b and M in the definition of the Lipschitz
condition (Lip), then a global Lipschitz condition (gLip®) holds for F, i.e., there exists a
Lipschitz constant K of F which is independent of a, b and M.
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Now, as we have proved that F is continuous and satisfies the Lipschitz condition
(Lip©), all conditions of Theorem 3.7 in [38] are satisfied. We arrive to the following

result.

Theorem 2.7. Let 0 € R, M > 0. There exists A > 0, depending only on M such
that if ¢ € C = C([—7,0],R"™) satisfies ||¢|| < M, then there exists a unique solution
xz(t) = x(t;0,0) of (2.1), defined on [0 — 1,0 + A]. In addition, if K is the Lipschitz
constant for F corresponding to 0,0 + A] and M, then

max |z(n;0,0) — z(1;0,%)|n < ||¢ — ¥[|e"? for any ||¢]], [|¥]] < M.

o—17<n<o+A
Assuming stronger conditions on f, g, h and k, we arrive to a more general existence
result. We follow Remark 3.8 in [38].

Remark 2.8. If f, g, h and k satisfy condition (gLip), then condition (gLip®) arises for
JF and we do not need to make any restrictions on A in Theorem 2.7. More precisely, its
statements hold for any A > 0. In this case, the solution exists for every t > ¢ and the
inequality

||lz(d) — 2 (W)]| < || — |eX =)
holds for all t > o.

Most functional differential equations that arise in population dynamics or epidemiol-
ogy deal only with nonnegative quantities. Therefore it is important to see what conditions
ensure that nonnegative initial data give rise to nonnegative solutions.

We reformulate (2.1) using the definition of F. Since F(t,x¢) = f(t,z(t)) + W (t,z(t — 7)),

we consider the following system of differential equations, which is equivalent to (2.1):
' (t) = ft,x(t) + W(t,z(t — 7)),

LTy = P.

(2.8)

We claim that under reasonable assumptions, the solution of system (2.8) preserves non-
negativity for nonnegative initial data. Let us suppose that for each ¢t € R, h and k map
nonnegative vectors to nonnegative vectors. We also assume that for every i € {1,...,n},
je{l,....om},u e R}, w € R and t,s € R, u; = 0 implies f;(¢t,u) > 0 and wj; = 0
implies g;j(s, w) > 0. Then for any nonnegative initial value, the solution of system (2.2) is
nonnegative, which implies that for every i € {1,...,n}, v € R’} and t € R, the inequality
(k(t,y(t;t — 1, h(t —T,v)))), = Wi(t,v) > 0 holds. Hence f;(t,u)+ W;(t,v) > 0 is satisfied
for u,v € R, u; = 0, t € R, all conditions of Theorem 3.4 in [38] hold and we conclude
that nonnegative initial data give rise to nonnegative solutions of system (2.8). Clearly
systems (2.8) and (2.1) are equivalent, which implies that the result automatically holds

for system (2.1). We summarize our assumptions and their consequence.
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Proposition 2.9. Suppose that h: R x R” - R™ and k: R x R™ - R™ map nonnegative

vectors to nonnegative vectors for each t € R, moreover assume that

Vi, t,Yu € R : u; = 0= fi(t,u) >0,

Vi, s,YVw € RY : w; =0 = g;(s,w) > 0.

Then for nonnegative initial data the solution of system (2.1) preserves nonnegativity, i.e.,

x(t) > 0 for all t > o where it is defined.

2.3 The autonomous case

2.3.1 Basic properties

As a special case of system (2.1), we may derive similar results for the autonomous system.
Let x: R - R" y: R - R™ t,s € R, let f: R® - R", g: R™ - R™ h: R" - R™,
k: R™ — R™. Let us assume that f, g, h and k satisfy the Lipschitz condition (Lip), which
can be stated as follows. For j,1 € Z,, we say that a function F': R/ — R! satisfies the
Lipschitz condition (Lip) if for all M > 0 there is a K (M) > 0 such that for |x1|;, |z2]; < M
the inequality |F(z1) — F(z2)|; < K|z1 — 22|; holds. There is no need to assume the
continuity for f,g,h and k, since these functions are independent of ¢ and hence this
property follows from the Lipschitz condition (Lip). For 7 > 0, let C' = C([—7,0],R™) be
the phase space, where C' has been defined in Section 2.1. Then system (2.1) has the form

a'(t) = F(w), (2.9)

o = @,

where t > 0, ¢ € C is the state of the system at t = 0, F: C -» R" and F has the special
form F(¢) = f(¢(0)) + W(¢p(—7)), ¢ € C. For any y, € R™, system (2.2) turns into

(2.10)

where s > 0. Similarly as in Section 2.1, the Picard—Lindel6f theorem guarantees the
existence and uniqueness of the solution of system (2.10) on [0, ] for some a > 0. We

make the following additional assumption:
(%) For every y,, the solution y(s;0,ys) of (2.10) exists at least for 7 units of time.

This is equivalent to the assumption that y(s;0,y.) exists on [0,00) for every y,, which
holds if g satisfies (gLip) (see Remark 2.2). We use the notation yg ,(s) = y(s;0, h(v)) for
the unique solution of system (2.10) in the case y, = h(v), and we define W: R™ — R" by

W(v) = k(yo (7)) = k(y(730, h(v))), (2.11)
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where v € R”. Tt is straightforward that the Lipschitz condition (Lip®) and the continuity
of F hold, furthermore if we assume that f, g, h and k satisfy the global Lipschitz condition
(gLip), then we obtain that condition (gLip®) is satisfied for F (for the definitions of (gLip)
and (gLip®), see Remark 2.6). As an immediate consequence of Theorem 2.7, we state the

following corollary.

Corollary 2.10. Suppose that M > 0. There exists A > 0, depending only on M such
that if ¢ € C satisfies ||| < M, then there exists a unique solution z(t) = xz(t;0,¢) of
(2.9), defined on [—71, A]. In addition, if K is the Lipschitz constant for F corresponding
to M, then

max |2(n;0,8) — x(n; 0,9)|n < [|¢ — [ for any |||, [[]] < M.

—7<n<A

The following remark arises automatically as the autonomous case of Remark 2.8.

Remark 2.11. If f, g, h and k satisfy the global Lipschitz condition (gLip), then we do
not need to make any restrictions on A in Corollary 2.10. More precisely, its statements

hold for all A > 0. In this case, the solution exists for all t > 0 and the inequality

lze(¢) — ()| < |16 — e
holds for all ¢ > 0.
Clearly we can adapt Proposition 2.9 to the autonomous system with similar conditions.

Corollary 2.12. Suppose that h: R™ - R™ and k: R™ - R™ map nonnegative vectors to

nonnegative vectors, moreover assume that
Vi,Vu € R} : u; =0 = fi(u) >0,
Vi, Yw € R : w; =0 = g;(w) > 0.

Then for nonnegative initial data the solution of system (2.9) preserves nonnegativity, i.e.,
z(t) > 0 for all t > 0 where it is defined.

2.3.2 Equilibria and linearization
Consider the nonlinear functional differential equation system (2.9)
a'(t) = F (),

where F(¢) = f(¢(0)) + W(¢(—7)) for ¢ € C. Then z(t) = = € R" is a steady-state
solution of (2.9) if and only if F(z) = 0 holds, where Z € C is the constant function equal
to Z. Suppose there exists such an equilibrium. We formulate the linearized system about
the equilibrium z as

2 (t) = DF(Z)z, (2.12)
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where DF(z): C — R" is a bounded linear operator and z: R — R™. Due to the special

form of F, (2.12) reformulates as
2 (t) = A1z2(t) + Agz(t — 7),
where A; = Df(z) € R™*™ and Ay = DW (z) € R™*™.

Proposition 2.13. Suppose that g, h and k are continuously differentiable. Then the ma-
trix DW () can be represented with g,h and k as follows:

DW (&) = Dk(y(r; 0, h(z)))elo PIws0n@)) dr pp 7).

Proof. Theorem 3.3 in Chapter I in |21] states that as g has continuous first derivative, the
solution y(s;0,y.) of system (2.10) is continuously differentiable with respect to s and y.
on its domain of definition. The matrix %O*’y*) € R™*™ gatisfies the linear variational
equation

Y'(s) = Dg(y(s;0,u4))Y (s), (2.13)

where Y: R - R"™*™ (we use slightly different notations from [21]) and %yo*,y*) =1,
where I denotes the identity. As from (2.13) it follows that Y (s) = efo P9 (ri0.u=)) dry (@),
for Y'(0) = I we conclude that

ay(ra;o,y*) — o Do(y(ri0,y.)) dr (2.14)
Y«

holds for s = 7. From (2.11) we get that for v € R",

DW(v) = Di(y(r; 0, h(v))) 200

ov
, (2.15)
= Di(y(rs0.(0) 2L i),
hence from (2.14) and (2.15) we derive
DW (v) = Dk(y(7;0, h(v)))elo Pawr0r@)) dr pp . (2.16)

Finally, setting v = Z in (2.16), we arrive to the equality
DW (z) = Dk(y(r; 0, h(z)))elo PI@r:0m@) dr pp (7).

Note that Dk(y(7;0,h(Z))) € R™™ Dg(y(r;0,h(z))) € R™*™ and Dh(z) € R™*™, hence
the result of the matrix multiplication is indeed DW (z) € R™*™. The proof is complete. [J

It follows from (2.11) that Z satisfies the equation —f(z) = k(y(7;0, h(Z))). However,
Z being a steady-state solution of (2.9) does not necessarily imply that y(s,0; h(Z)) = h(Z)
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holds for s € [0, 7], i.e., h(Z) is an equilibrium of (2.10).

We say that z € R™ is a total equilibrium of systems (2.9) and (2.10) if z(t) = Z is a
steady-state solution of (2.9) and y(s) = h(Z) is a steady-state solution of (2.10). The
equilibrium solution y(s) = g, g € R™ of (2.10) satisfies the equation g(y) = 0, and since
h(z) = g and —f(Z) = k(y(7;0, h(Z))) should hold for the total equilibrium, we conclude

that = arises as the solution of the system

— (@) = k(h(7)), (2.17)
0

g(h(z)) = 0.

It follows from (2.17) that, in the special case when f and g are invertible functions,
the total equilibrium can be expressed as = f~!(—k(g~1(0))), moreover we also obtain
5= h(~ (~k(g~ ().

We remark that if the functions g, h and k are continuously differentiable and Z is the
total equilibrium of systems (2.9) and (2.10), then it follows from Proposition 2.13 that
the matrix DW (%) has the form DW (z) = Dk(h(z))e™P9"() Dh(z).

2.4 A model from population dynamics with temporary sep-

aration

We are now in the position to revisit the single population model described by system (1.1)
in the introduction, and obtain some basic properties for the model. First, for a given ¢, we
define y(s) = m(s;t.) and let g(y) = b5(y) — d°(y), where y: [0,7] = R, g: R - R. Then
(2.10) is a compact form of the autonomous system (1.2). Furthermore, for A, k: R - R we
let h(v) = q(v), k(v) = v, moreover we define z: [0,00) - R as z(t) = n(t) and f: R - R
as f(x) =b(z) — d(z) — q(x). Then it follows that system (1.1) can be written in a closed

form as the autonomous system (2.9).

Clearly, the functions f, g, h and k defined above satisfy the Lipschitz condition (Lip)
on each bounded subset of R, moreover (%) also holds by means of the assumption on the
solution of system (1.2). Hence F, defined as F(¢) = f(¢(0)) + W(¢p(—7)) for ¢ € C1
satisfies the Lipschitz condition (Lip®), so Corollary 2.10 states that system (1.1) has a
unique solution defined on [—7, A] for some A > 0. By assuming that condition (gLip)
holds for b, d, ¢, b° and d°, we get that f, g, h and k satisfy the global Lipschitz condition
(gLip) and A = co. We have assumed in the model setup that ¢ = h maps nonnegative
values to nonnegative values, which obviously holds for k as well, moreover we gave the
condition 5%(0) — d¥(0) > 0. In addition, if we suppose that b(0) — d(0) — ¢(0) > 0 is
satisfied (e.g., b(0) = d(0) = ¢(0) = 0 holds in many models), then Corollary 2.12 implies
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that for nonnegative initial data the solution of system (1.1) preserves nonnegativity, that

is, C is invariant. We summarize these results in the following theorem.

Theorem 2.14. System (1.1) has a unique nonnegative solution for nonnegative initial
values. Biologically reasonable conditions on the functions b, d, q, b° and d° ensure that

the solution exists on [—T,00).



Chapter 3

A delay model for the spread of
pandemics between connected

regions

National boundaries have never prevented infectious diseases from reaching distant terri-
tories. However, the speed at which an infectious agent can spread around the world via
the global airline transportation network has significantly increased during recent decades.
We introduce an SEAIR (susceptible-exposed—asymptomatic infected—infected-recovered)-
based model to investigate the spread of an infectious disease in two regions which are
connected by transportation. As a submodel, an age-structured system is constructed
to incorporate the possibility of disease transmission during travel, where age is the time
elapsed since the start of the travel. We show that the model is equivalent to a large system
of autonomous differential equations of the form considered in Chapter 2. After describing
fundamental, but biologically relevant properties of the system, we detail the calculation of
the basic reproduction number and obtain disease transmission dynamics results in terms
of Ryg. We parametrize our model for influenza, and use real demographic and air travel
data for the numerical simulations. To understand the role of the different characteristics
of the regions in the propagation of the disease, three distinct origin—destination pairs will
be considered. The model will also be fitted to the first wave of the influenza A(HIN1)

2009 pandemic in Mexico and Canada.

3.1 Introduction

The global network of human transportation has been playing a paramount role in the
spatial spread of infectious diseases. The high connectedness of distant territories by air

travel makes it possible for a disease to invade regions far away from the source faster than

18
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ever. Some infectious diseases, such as tuberculosis, measles and seasonal influenza, have
been known to be transmissible during commercial flights. The importance of the global
air travel network was highlighted in the 20022003 SARS outbreak (WHO [51]), and
clearly contributed to the global spread of the 2009 pandemic influenza A(HIN1) (Khan
et al. [25]). Therefore, mathematically describing the spread of infectious diseases on the

global human transportation network is of critical public health importance.

There are a few well-known studies which constructed and analyzed various metapop-
ulation models for disease spread in connecting regions (see Arino |2|, Arino and van den
Driessche [3], Baroyan et al. [5], Ruan et al. [36], Rvachev and Longini [37|, Wang and
Zhao [50] and the references therein). These studies focus mainly on the impact of spatial
dispersal of infected individuals from one region to another, and do not consider trans-
portation as a platform of disease dynamics. However, during long distance travel, such
as intercontinental flights, a single infected individual may infect several other passengers
during the flight (Wagner et al. [49], Technical Report of ECDC [16]), thus potentially
inducing multiple generating infections in the destination region. It is therefore desirable
to properly describe the spread of the disease via long distance travel, that incorporates

into the models the transmission dynamics during the travel.

Cui et al. [10] and Takeuchi et al. [42] modeled the possibility that individuals may
contract the disease while traveling by a system of ordinary differential equations based on
the standard SIS epidemic model. They discovered that the disease can persist in regions
connected by human transportation even if the infection died out in all regions in the
absence of travel. Liu et al. [28] noted that the previously proposed models |10, 29, 42]
implicitly used the assumption that the transportation between regions occurs instanta-
neously. For some diseases of major public health concern, such as SARS and influenza,
the progress of the disease is so fast that even a short delay (a fraction of a day) can be
significant. Based on such considerations, Liu et al. [28] introduced the time needed to
complete the travel into the SIS-type epidemic model and also the possible infections dur-
ing this time. Nakata [33] described the global dynamics of this system for two identical
regions in terms of the basic reproduction number. The model was later generalized by
Nakata and Rost [34] to the case of n regions with different characteristics and arbitrary

travel networks.

The purpose of this chapter is to formulate a model to properly describe the temporal
evolution of an epidemics in regions connected by long distance travel, such as interconti-

nental flights. The European Centre for Disease Prevention and Control (ECDC) developed
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a risk assessment guideline [16] for infectious diseases transmitted on aircrafts. Existing
studies confirmed that on-board transmission was possible in flights even with a duration of
less than eight hours. For most diseases which pose a threat of a global pandemic, an SIS-
type model is not adequate. For this reason, here we use the SEAIR (susceptible—exposed—
asymptomatic infected—infected-recovered) model as a basic epidemic model building block
in the regions and also during travel. The SIS model can be reduced to a logistic equation
and then can be solved analytically. This property was heavily used in the analysis done
in [28, 33, 34]. However, the lack of closed form solution causes substantial technical diffi-

culties in the analysis of SEAIR-type models, as will be shown in this paper.

More significantly, the aforementioned existing models did not distinguish local res-
idents from temporary visitors in the model setup. In reality, the large part of travels
are return trips, and not only the number of visitors, but also the average time that vis-
itors spend in the other region may significantly affect the speed of spatial spread of the
disease. If visitors spend more time in a region which is a hotspot of the disease, they
will more likely carry the disease back to their region of origin. In addition, visitors and
local residents may have very different contact rates and mixing patterns, for example if
the visitors are typically on holiday and stay in selected resorts and hotels. Hence in our

model we use different compartments for residents and visitors to capture this phenomenon.

Many multiregional epidemic models, specially the gravity type models, are based on
the assumption that the speed of the spread of epidemics between regions is inversely
proportional to the distance between those regions (see for example Tuite et al. [45] for
the recent cholera outbreak in Haiti). However, in case of air travel, the travel behavior
is different and can be just the opposite. First, the number of travelers does not depend
directly on the distance between regions, but determined by other, more important factors,
such as business and cultural relations, tourist attractions. Second, the transmission rate
of an infectious disease can be much higher than usual when a large number of passengers
are sharing the same cabin, and the longer the flight (which means the distance is larger
between regions), the greater number of infections can be expected (Wagner et al. [49]).

Hence air travel models we are proposing here is in principle “antigravity”.

3.2 Model description

We formulate a dynamical model describing the spread of an infectious disease in and be-

tween two regions, and also during travel from one region to the other. We divide the entire
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Variables
Fy Force of infection of residents in region j
Fy Force of infection of visitors in region j
F jj;k Force of infection during travel from region j to region k
S}", E7, A’]T, I7, R} Susceptible, exposed, asymptomatic, symptomatic

infected and recovered residents in region j

S;?, EY, A}’, I7, R} Susceptible, exposed, asymptomatic, symptomatic
infected and recovered visitors in region j

NI, N7, Nj Total population size of residents, visitors and
all individuals in region j

S;k, 631« a;k, z;k, r;k Density of susceptible, exposed, asymptomatic,
symptomatic infected and recovered individuals
during the travel from j to k (traveling to visit k)

s§7k, e;k, a§7k, i;fyk, T;'],k Density of susceptible, exposed, asymptomatic,
symptomatic infected and recovered individuals during
the travel from j to k (returning to k from visiting j)

n;,kv n}{ o ik Total density of residents, visitors and

all individuals during the travel from j to k

Table 3.1: Variables of the SEAIR model (j, k € {1,2}, j # k). In the table, “density”

means the density with respect to the time elapsed since the start of travel.

populations of the two regions into the disjoint classes S7*, ET", AT", I'", R, j € {1,2},
m € {r,v}, where the letters S, E, A, I and R represent the compartments of susceptible,
exposed, asymptomatic infected, symptomatic infected and recovered individuals, respec-
tively. Lower index j € {1, 2} specifies the current region, upper index m € {r,v} denotes
the residential status of the individual in the current region (resident versus visitor). For
instance, S7 is the compartment of individuals who are susceptible for the disease and
staying in region 1 as a visitor (hence, they originally belong to region 2), members of Aj

are those who are asymptomatic infected residents in region 2.

Let ST'(t), ET*(t), AT (1), I"(t), R]'(t), j € {1,2}, m € {r,v}, be the number of
individuals belonging to S}”, E;”, A}", Ijm, R}”, respectively, at time t. The transmission
rate between an infected individual with residential status m and a susceptible individual
with residential status n in region j (j € {1,2},m,n € {r,v}) is denoted by 5;"". Let
F7 denote the force of infection (this is, the rate at which susceptible individuals acquire
the disease) of residents, and F} the force of infection of visitors in region j. Model

parameter p, denotes the inverse of the incubation period, p, and p, are the recovery
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Key model parameters

A; Recruitment rate in region j
dj, di  Natural death rate of residents and visitors of region j
1) Disease-induced death rate
g Transmission rate between an infected individual
with residential status ‘m’ and a susceptible individual

with residential status ‘n’ in region j (m,n € {r,v})

BT Transmission rate during the travel

o Traveling rate of residents of region j to region k
V; Inverse of duration of visitors’ stay in region j

T Duration of travel between the regions

P Probability of developing symptoms

P Reduction of infectiousness of asymptotic infecteds

g, u;‘g Reciprocal of the length of the incubation period

in the regions and during the travel

oy, ,uf Recovery rate of asymptomatic infecteds
in the regions and during the travel

T ,u? Recovery rate of symptomatic infecteds

in the regions and during the travel

Table 3.2: Parameters of the SEAIR model (j, k € {1,2}, j # k).

rates of asymptomatic and symptomatic infected individuals. Let p be the reduction
factor of infectiousness of asymptomatic infected individuals (we assume they are capable
of transmitting the disease, but generally with a lower rate than symptomatic infected
individuals). Let p denote the probability that an infected individual develops symptoms,
and let § denote disease-induced mortality rate. We assume constant recruitment terms
A;, while dj and dj denote natural mortality rate of residents and visitors in region j. We
denote the travel rate of residents between region j and region k£ by «; and the rate visitors
of region j travel back to region k by «;, thus 1/+; is the average time visitors spend in
region j. For the total population of residents, visitors, and all individuals currently being

in region j at time ¢, we use the notations

NI(t) = Si(8) + E5(8) + AL(t) + I () + RI(t),
NY(t) = SY(t) + EX(t) + A1) + I2(8) + RY(1), (3.1)

N;(t) = Nj(t) + Nj(t).

We divide the population during travel into the classes s??k, e%, a;-’?k, z;”k, r;"k, Letters

s, e, a, i, r denote susceptible, exposed, asymptomatic infected, symptomatically infected
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Travel

Figure 3.1: Color-coded flow chart of disease transmission and travel dynamics of the
SEAIR model. The disease transmission in the two regions is shown in two different
columns, the disease progresses vertically from the top to the bottom. Classes having the
same origins are marked by the same colors. Red corresponds to the classes originated from
region 1, blue represents classes of region 2. Arrows colored with the same colors indicate
how the disease progresses. Green dashed-dotted arrows represent traveling. Green solid
arrows show the dynamics of the pandemic during the course of the travel. The description

of the variables can be found in Table 3.1.
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and recovered travelers, respectively. Lower indices j,k € {1,2},j # k, indicate that
individuals are traveling from region j to region k. Upper index m € {r,v} determines
individuals’ residential status in the region they have just left: for instance, an individual
who is now being in r{ 5 is recovered, traveling from region 1 to region 2, was a visitor in

region 1, which means the individual originally belongs to region 2.

Let 7 > 0 denote the average time required to complete a one-way trip. To describe
the disease dynamics during travel, we define sfk(ﬁ;t*), eg.’:‘k(ﬁ; ty), aZLk(H;t*), i?}k(ﬁ;t*),
TTk(Q; ty), j,k € {1,2},7 # k, m € {r,v}, as the density of individuals who started travel
at time t, and belong to classes s?:‘k, e;-'}k, a;flk, i?}k, r;?;‘k with respect to 6, where 6 € [0, 7]
denotes the time elapsed since the beginning of the travel. Let

n (05 te) = 87505 tx) + €75(0; i) + ajy, (0 ts) + 4775 (0; 1) + 17505 Ls), (3.2)
where j, k € {1,2},j # k,m € {r,v}, and let
k(0 tx) = 15 (63 £2) + 15 (6; ). (33)

Thus, f 9021 njx(0;t—0) df is the number of individuals who left region j in the time interval
[t — 61,t — 0], where 7 > 01 > 0 > 0. In particular, for 6; = 7 and 2 = 0, this gives
the total number of individuals who are in transition from region j to region k at time ¢.
We assume that infected individuals do not die during travel, hence n; ;(6;ts) = n; 1(0; ts)
for all § € [0, 7]. During the course of travel, infected individuals can transmit the disease
at the rate S7. We use the notations pg, uf, ,uIT for the inverse of the incubation pe-
riod and the recovery rates of asymptomatic and symptomatic infected individuals during
travel. Let FJTk denote the force of infection during travel from region j to region k. Then
sTp(Tit = 1), ey (Tt — 1), @y (it = 7), iy (73t — 7), ry (7t — 7) gives the inflow of
individuals arriving from region j to compartments S}, E7, AZ, I}, Ry, j,k € {1,2},

Jj # k, m,n € {r,v}, m # n, respectively, at time ¢.

All variables and model parameters are listed in Tables 3.1 and 3.2. The flow chart of
the model is depicted in Figure 3.1. Based on the assumptions formulated above, we obtain

the following system of differential equations for the disease transmission in the regions:
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where

$1(6) = As — STVET(0) — (d + ) S3(6) + 8§, (73— 7),
BY(0) = S{(OF](6) ~ (& + iy + ) B} (0) + €m0 = 7),
A5(0) = (1= P 25 (0) = (5 + g+ jua) A5(0) + af (5t = 7),
170 = pig 5 (6) = (5 + g+ 6+ u) I (0) + i (s = 7),
B3 (6) = prI7(0) + padf(0) — (d + g R(0) + i (st = 7).
(n)
$(1) = —SYFP(E) — (5 + 7)Y (1) + sfy st = 7),
BY(0) = SYOFL(E) — (5 + g + ) B (0) + €y (73— 7),
A3(0) = (1= D)pp B 1) — (& + + ja) A3(0) + .y st — 7).
19 (0) = prug By (2) — (& + 5 + 8+ w) I (1) + (73 = 7),
RY(0) = prI}(0) + pa AY(0) — (05 + ) RY(E) + (it = 7),
Fi(t) = le( 5y (577 50+ pA5(0) + 67 (170 + pA45 (1)
F(0) = 5 (B30 + pA5(0) + 87 (1 0) + pA(0).

For each given t,, the following system (7') describes the evolution of the densities

during the travel initiated at time t,.

(0500 =~ 0 ) FL0:1),

@%(Gst*) = 851 (0 ) F (05 1) — el 1 (05 ),
5051 = (1= Pl 05 12) — Tl (6:1),
i3 0:1.) = DT (0:1) — T 05,

d
rip(03ts) = i (0 6) + 17 15 (05 L),
e

d v
0 s7 (05 t) = =85 (05 6) Fp (65 10),

d

0 €%k (0; 1) = 85 1.(0; ) F (05 82) — el 1 (05 ),
d v

T aj (65 t) = (1 —p)uﬁej,k(& te) — phal(6; L),

Y .

d
0 7 (03t) = ph aj . (0; te) + pl i5 (03 1),



26 CHAPTER 3. SPREAD OF PANDEMICS BETWEEN CONNECTED REGIONS

where j, k € {1,2},j # k, and

/BT r v r v
(06 (1% 1 (05 ) + % 1(0; 1) + p(af 1 (0: 1) + af 1 (6; L)),

1k (05 ) = (S (8e) + Ej (t) + Af(te) + I7 (8) + Rj(t.))
+ 75 (57 () + Ej (8) + A (8) + 17 (8) + R (1))
= N} (t) + 7 Vj ().

ka(e, t*)

For 8 = 0, the densities are determined by the rates at which individuals start their travels
from one region to the other at time ¢,. Hence, the initial values for system (7') at § =0

are given by

Sir(05t4) = a;Sj(t),  55,(058) = 7,55 (84,
€ e(0its) = o B (), €55 (05ts) = v E7 (L),
ajr(0its) = o A5 (L), afp(0it.) = v A5 (L), (IVT)
G505 84) = aj I3 (E), i3 ,(0584) = 2515 (2s),
rir(0ite) = a;Rj(ts),  755.(0it) = 7 Rj (L)

for j,k € {1,2}, j # k.

Now we turn our attention to the terms s73 (7t — 7), e (3t — 1), Ty (73t — 7),
i (it = 7), r7y(73t — 7) in system (L), which are the densities of individuals arriving to
classes Sp', B, A}, I}, RE, 4,k € {1,2}, j # k, m,n € {r,v},m # n, respectively, at time
t upon completing a one-way trip from region j. At time ¢, these terms are determined by

the solution of system (7") with initial values (/VT) for t, =t —7 at 0 = 7:
(i) individuals who enter region k at time t are those who left region j at time ¢ — T;

(ii) residents of region j become visitors of region k and vice versa (m # n) upon com-

pleting a one-way trip;

(iii) an individual may move to a different compartment during travel, for example a
susceptible resident who travels from region j may arrive as an infected visitor to

region k (j,k € {1,2}, j # k), as given by the dynamics of system (7).

Next we specify initial values for system (L) at ¢ = 0. Since travel takes 7 units of
time to complete, arrivals to region j are determined by the state of region k (j, k € {1, 2},
j # k) at t —7, via the solution of systems (7") and (/V'7T"). Thus, we set up initial functions

as follows:
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Sj(u) = @5 (), Sj(u) = @5 ;(u),
Ej(u) = ¢p;(u), Ej(u) = ¢f ;(u),
Aj(u) = ¢l (u),  Aj(u) = ¢y ;(u), (IVL)
Ij(u) = ¢p;(u),  Ij(u) = ¢f ;(u),
Rj(u) = ¢p (u), Rj(u) = g ;(u),

where u € [—7,0], and each ¢} ; is a continuous function for j € {1,2},m € {r,v},K €
(S, E,A,1,R)}.

Note that systems (L) and (7') are interconnected, in order to determine the dynamics
of the model, simultaneous solution of them is required. Considering the fact that disease
transmission is possible during travel, the solution of system (7") at (7;¢ — 7) is required
for all t > 0 to find the solution of (L). However, in order to obtain the solution of (7") at
(t;t — ), it is necessary to use the solution of (L) at ¢ — 7, because (7") takes the initial
conditions from (L). Hence, in order to describe the disease transmission in the regions, the
solution of another differential equation system is required at each time ¢, which has initial
values depending on the earlier state of the system on the regions. Thus (L) is a delay
differential system, where the delayed feedback is determined by a solution of a parallel
system of ordinary differential equations. In previous papers with travel delay, such as
[28, 33, 34|, the authors used an SIS type system during travel, which was analytically
solvable, thus it was possible to express the delayed feedback explicitly. Unlike the SIS
model, the SEAIR model is not analytically solvable, therefore here we have to deal with
a system of functional differential equations, where the delay term is given only implicitly

via a solution of a nonlinear system of ordinary differential equations.

3.3 Basic properties of the model

In this section, we show that our model is equivalent to a system of nonlinear functional
differential equations where the delay term is defined dynamically, via the solution of an-
other system of differential equations. Then we also investigate some biologically relevant

properties of the system. Let

‘s v T v
5 5 Sk Sik
Ej LY €5k €5k
A r v __ v T T v v
Xy = AT |, X5 =AY | v = | afp | Vi = | @k | >
r v T v
1 I Uik Uik

T v r v
1 R Tk Tk
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where j, k € {1,2},j # k, then for

X1 Y21
N B I
X5 911),2
X35 Y12

it holds that z: Ry — R?% and y: Ry x Ry — R?. For a given t, € R, we define the
system (77) for y(-) = y(-;ts) as

9(y(0)), .
(T7)

Yo,

where § € R, yg € R, g: R?® — R?° and g¢; equals the right-hand side of the equation

for y; in system (7') for each i € {1,...,20}; for instance,

Y6
g7(y) = 5TT(Q4 +yo+ p(ys +ys)) — ,ugy7.

Zj:l Yj
Let y(60;t«,yo) denote the solution of the initial value problem (7*), defined for t.. For

now let us assume that the solution exists and is unique for 6 € [0, 7] for each yo, and we

will shortly detail the proof of this statement. By introducing

Y2Ui415 if 1 = 1,...,5,
Q2Vi+5 if i = 6, ceey 10,
yvies  ifi=11,...,15,

a1Vi—15 if i = 16, ey 20,

we get that (7) is a compact form of (7)) and (IVT) with yo = h(z(t.)).

Furthermore, we define f, f: R?® — R2? where for each i € {1,...,20}, f; is given by

the right-hand side of the equation of z; in (L) without the inflow from travel; for instance,

T16
fi6(z) = — 55— (85" (z14 + pz13) + B5" (219 + pr18)) — (d + V2)T16-

ijn Zj
Finally we let W (v) = y(7;t — 7, h(v)), W: R?® - R??  and claim that our system (L) can

be written in a closed form as a system of functional differential equations

/(t) = F (),
(L7)
o — (1)7
where F(x;) = f(z(t)) + W(x(t — 7)), F: C+ — R with the phase space defined
as the nonnegative cone Cy = C([—,0],R?°) of the Banach space of continuous func-

tions from [—7,0] to R?", equipped with the supremum norm. Using the notations of
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(IVL), we also let & = (®f, Y, @5, ®4)", where ®F = (9% ;, ¢ ¥l s ©7 5 PR )T B =
(0555 0% P> 07 1 PR )T 7 € {1,2}.

Fundamental properties for functional differential equations with dynamically defined
delayed feedback term (elaborated in Chapter 2) guarantee that there exists a unique solu-
tion of the model equations. Both (L*) and (77) are autonomous, thus we refer to Section
2.3 of Chapter 2 to get that the general existence and uniqueness result holds for (L*) if F
satisfies a global Lipschitz property (gLipC), in which case the solution exists on [0, 00).
In terms of the notations of Chapter 2, for n = 20, m = 20 and k: R?® » R?° k(v) = v,
systems (L*) and (7) can be obtained in compact forms as systems (2.9) and (2.10), and
we have seen that for (gLipC) to be fulfilled, it suffices to show a global Lipschitz prop-
erty (gLip) for f, g h and k (note that g satisfying (gLip) also implies that the solution
y(0; ts, yo) exists and is unique on the entire positive half line for every yp). It is not hard
to see that (gLip) holds for h and k, and shortly we will prove that f and g satisfy this
property as well.

First we state a proposition about the nonnegativity of solutions for system (L*) by ap-
plying Corollary 2.12 from the general theory (the conditions in it clearly hold), moreover
we claim without proof that nonnegative initial data give rise to nonnegative solutions in
system (77) (since it is a compact form of the system describing the evolution of densities
during travel, which is formulated as the standard SEAIR model). The equivalences of
systems (L) and (L"), and systems (7') and (7*) imply that the results obtained for (L*)
and (7%) automatically hold for (L) and (7T), respectively. Henceforth, we formulate our

statements for systems (L) and (7).

Proposition 3.1. For any ® € C4, the solution of system (L) is nonnegative where it

exists. System (T) preserves nonnegativity for nonnegative initial values.

We arrive to the following lemma which proves that the global Lipschitz condition is
satisfied for f and ¢ on the nonnegative cone of R?°. With the use of Proposition 3.1 and

the theory in Section 2.3, this yields the existence and uniqueness of the solution of (L).

Lemma 3.2. Functions f and g, as defined for the SEAIR model, satisfy the global Lips-
chitz condition (gLip) on each bounded subset of R2C.

Proof. Due to the similarities in the definitions of f and g, here we prove the condition
only for one of them, e.g., for f. The function f: R?® - R?° possesses the global Lipschitz
condition (gLip) if there exists a Lipschitz constant K > 0 such that |f(z) — f(w)]|20 <
K|z — w3 holds for any z,w € R2° (in the sequel we will use | - | to denote any Euclidean
vector norm for convenience). First we show that there exist constants Ki,... K5 > 0,

such that inequalities | fi(2) — fi(w)| < Ki|z—w|, i =1,...,5, hold; then we proceed as we
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argue that the formulas of fg,..., fi0, fi1,--., fi5 and fig,..., foo differ only in constants
from f1,..., fs and henceforth Kg, ..., Kog can be obtained similarly as Ki,..., Ks5. For
Z,w € Rio, z # 0, w # 0, it holds that

z1

A — —15— (B (24 + p23) + B} (20 + p2s)) — (d] + 1)z
Zj:l Zj

w
—A1 4 g (B (wa + pws) + BY (wy + pus)) + (df + ar)wn
ijl wj

< (d} + a1)lwr — z1| + 81"

|f1(2) = fi(w)| =

W1 W4 n pWIW3 _ 2174

10 10 10
Zj:l wj Zj:l wj Zj:l Zj
w1wWy pwiws 2129 PZ128

+ — — )
10 10 10 10
Zj:l wj Zj:l wj Zj:l “j Zj:l “j

Pz1%3

10
Zj:l Zj

+ By

For an expression of the form |=H%2— — bl{)be‘
Ej:l aj Zj:l J

(aj,b; € R4), the following estimation

can be derived:

10 10
Zj:l aj Zj:l b

10 10
Zj:l (Ij Z]:l b]

‘ aias b1b2

‘ ay1ag _ ale
2]10:1 a; 2321 a;
+ ale _ ble

Zjl'il b, Zjl‘il b,

| a1bs a1bs

10

10
:|Cl —b |L+ b; — a; wube

j=14;

bo
+ |ay — b1|T
Zj:l b

aj bQ
Zj:l aj Zj:l b
10 aib
+ > |bj — ay -
10 10
=1 <Zj:1 aj) (Zj:l bj)
10

< lag = bo| + |ar — b + > [b; — aj],
j=1

and we use that the inequality |w; — z;| < |w — z| holds for each j € {1,...,10} to get that

1f1(2) = fr(w)| < (dy + ea)|wr — z1] + 61" (12w — 2| + 12pfw — 2|)
+ 87" (12|w — 2| + 12p|w — z])
< (df + a1 +12(1+ p) (51" + B7")) [w — 2.

By defining K7 = d} + a1 + 12(1 + p)(B]" + B7") we see that |f1(z) — fi(w)| < Kj|w — 2|
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holds, furthermore one can derive that

|f2(2) — fa(w)] = 12071(5?(24 + pz3) + B (20 + p28)) — (di + py + 1)1
Zj:l Zj

w T
— =5 (BT (wa + pwy) + B (wy + pws)) + (d} + p, + a1)wr

Zj:lwﬂ
< (df 4 pp +oa + 121+ p)(B1" + A1) lw — 2],
where df + p,, + a1+ 12(1+ p)(B]" + B{") is a suitable choice for Ks in |fa(z) — fa(w)| <
Ks|w—z|. Clearly, by choosing K3 = (1—p)u,+dj+u,+oq and Ky = ppy,+dj+p,+0+aq,
the inequalities
f3(2) = fs(w)| = |(L = p)ppze = (di + py + o)z — (1 = plugwa + (dy + py + ar)ws]
< ((1 _p):U’E + d71n Tyt al)‘w - Z‘,
| fa(2) = fa(w)| = |ppgze — (di + p, + 6 + 1)z — pugws + (di + g, + 6 + cr)wa|
< (pqu erq +luA Jr5+O‘1>|wiz|’
yield | f(2) — fo(w)] < Kaw— 2| and |fa(2) — faw)| < Kalw— 2], and last | f3 (=) — fs(w)] <
Ks|lw — z| arises from
[f5(2) = fs(w)| = | 23 + 20 — (dy + o)z — pyws — pywa + (di + an)ws|
< (pa +pp +di 4 on)|w — 2|

with K5 = p, +p, +dj + oq.

As pointed out earlier in the proof, the constants K, ..., Kog can be derived in a similar
way. To obtain K, the global Lipschitz constant for f, we simply let K = 230:1(1(@)2
The proof is complete. O

We conclude that all conditions for the general existence and uniqueness theorem are
satisfied for the SEAIR model. As elaborated earlier, the solution exists for all positive

times.

Proposition 3.3. For any fized t. and initial data, there exists a unique solution of system
(T) on [0,00).
Theorem 3.4. For any initial data ® € Cy, there exists a unique solution of system (L)

defined on [—T,00).

Next we turn our attention to steady-state solutions and long-term behavior in the

model. We define the disease free subspace C’if as

d A A A A A A
C+f = {(I)’¢) = (cpgj,O,O,0,w%,j,wgd,O,O,O,cp%,j)T} - C—‘m
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where 0 denotes the constant 0 function. If ® € C¥ , then

Ei(t) = B (t) = Aj(t) = Ai(t) = L[ (t) = [} (t) =0

for all £ > 0, hence the disease free subspace is positively invariant.
Proposition 3.5. In the disease free subspace Cﬁlrf there exists a unique positive equilibrium
of system (L) which is globally asymptotically stable in C’jl_f,

Proof. Using the definitions of N and N}’ in Section 3.2, for these variables we derive the
following differential equation system
N7 (t) = Aj — (df + )N () + 3 NE (¢ = 7),

N]'“(t) = —(dj + ;) Nj (t) + ax N (t — 1),

(3.4)

where j, k € {1,2},7 # k. One can find that the positive equilibrium (]\7{, Nf,Ng, Nﬁ’) is
given by

NT di+a; 0 0 —o Ay
NV 0 dy — 0 0
N3 0 —Y2 dg + ao 0 Ao
NY —as 0 0  dy+ 0

Set MJ(t) :== NJ(t) — Nj, M (t) := Nj(t) — Ny, j € {1,2}. We obtain the decoupled

linear systems
My (t) = = (df + ar) M{ (1) + 2 M3 (t — 7),

. (3.6)
M3 (t) = —(dy + y2) M3 (t) + cn My (t — 7),

and

M (t) = —(dj + a2) M5 (1) + 1 M (t — 7),
Mp(t) = —(df +71) MY () + a2 M5 (t — 7).
We apply the results of Suzuki and Matsunaga ([41]) to systems (3.6) and (3.7), where

(3.7)

criteria for the stability of the trivial solution in a class of linear differential equations has
been given. Since df,dY,d5,d5 and aq,as2,v1,72 are positive, moreover the inequalities
(df + on)(dy +v2) > a1z and (dy + a2)(d} + 71) > agy; are satisfied, condition (16) in
[41] holds. Thus, the zero solutions of systems (3.6) and (3.7) are asymptotically stable,
which implies that the positive equilibrium (N{ , Nf, Ng , ]\75’ ) is asymptotically stable.

Since on the disease free subspace %T;Tk(O;t*) =0 and %r§7k(0;t*) =0, from (/VT)
we obtain 7{ (73t —7) =y R (t—7) and rp (75t —7) = ap R (t—7) for j, k € {1,2},j # k.

Consider the following subsystem

R (t)
RY(t)

—(dj + aj) Rj(t) + Ry (t — 1),
—(dY + ;) RY(t) + aw Ry (t — 7).
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With similar argument as for systems (3.6) and (3.7), we obtain that the equilibrium
( A’{, Al, Ag, RS) = (0,0,0,0) is asymptotically stable. We conclude that R;(t), R})(t) -0
as t —» 00, j,k € {1,2},j # k. In the disease free subspace, N7 (t) = S} (t) + R’(t) and
Ny (t) = S7(t) + Ri(t), j € {1,2}, thus S} (¢) - Nj and S} () - N} as t — oo.

Henceforward, in the disease free subspace the solutions of (L) converge to the equilibrium
N = (N7,0,0,0,0,N7,0,0,0,0, N3, 0,0,0,0, N¥,0,0,0,0)7. O

As an immediate consequence of Propositions 3.1 and 3.5, we have that in the disease

free subspace the solutions of (L) are bounded.

Proposition 3.6. If§ = 0 then the total populations (N7 (t), Ny (t), N5 (t), N3 (t)) converge
to (N7, NV, N§, NY), which is given by (3.5).

Proof. 1f 6 = 0, then it is easy to see that Ny (t), N7 (t), N5 (t), N3 (t) satisfy system (3.4),
hence we obtain the same positive equilibrium (N{ , ]\7{’, Ng , N; ) which is globally asymp-
totically stable. O

Proposition 3.7. Solutions of system (L) are bounded.
Proof. For any ® € C., the system of Ny (t), N{(t), N5 (t), N3 (t) becomes
Nj(t) = Aj = (df + aj)Nj (£) = 0I7 () + N (t = 7),

N;’(t) = —(d + ;) NJ(t) = ST} (t) + ap Ni (t — 7).

(3.8)

By Proposition 3.1, NJ"(u), I]*(u), j € {1,2}, m € {v,r}, are nonnegative, thus by a
standard comparison argument (see Theorem 4.1 in [23]), solutions of (3.8) are bounded
by the solutions of (3.4), which are convergent according to Proposition 3.5. Thus, we
conclude that N7 (t) and NJ(t), j € {1,2}, are bounded. Since

0 < S5(t), ES (1), A%(t), I (1), R;(t) < Nj(t),

0 < 55(1), Ej (1), A7 (1), I} (1), B (t) < Nj (1),

solutions of system (L) are bounded. O

3.4 The basic reproduction number

The basic reproduction number (Rg) is a central quantity in epidemiology as it determines
the average number of secondary infections caused by a typical infected individual during
the period of infectiousness, who was introduced into a completely susceptible population.
In Section 3.2 we introduced a dynamical model describing the temporal evolution of an
infectious disease in and between two regions connected by public transportation. This

section is devoted to the computation of the basic (global) reproduction number of the
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model. It is defined as the dominant eigenvalue of the next generation matrix (NGM), as
introduced in [11, 12]. First we apply some modifications on the model setup and calculate
the NGM. Then we show that the reproduction number works as a threshold quantity for
the stability of the disease free equilibrium of the system.

We define the local reproduction numbers as we consider our model in the absence of
travel. In this case the two regions are isolated, hence to obtain the (local) reproduction
number of region j, j € {1,2}, it suffices to follow a typical infected individual during the
infectious period in region j. Given that the probability of developing symptoms is p, the
reduction of infectiousness of asymptomatic infecteds is p, and the average length of the

infectious period in classes I and A is 1/, and 1/ ,, respectively, we arrive to the formula

rr p
Rr,j = B; <H+(1—P)p>,

I Ha

where (7" is the transmission rate in region j. In case of isolated regions, the global repro-
duction number arises as the maximum of the local reproduction numbers. However, the
unlimited number of travels and the possibility of disease transmission during travel make

it very complicated to trace secondary cases if we incorporate air transportation.

In this section, we neglect the transition from exposed to infected, and from infected
to recovered classes during travel, i.e., we assume that ,ug = ,u:g = M? = 0. Although with
this limitation we ignore the possibility of going to the infected classes or to the recovered
compartment on the plane, this assumption also ensures that individuals do not undergo
multiple disease states during the same travel. For realistic values of the travel duration
T it is quite unrealistic to expect that, for instance, someone who was susceptible before
travel arrives as recovered upon completing the travel. As shown below, this hypothesis
also allows us to calculate the basic reproduction number explicitly, and the most impor-
tant part of the transmission dynamics during travel, namely exposure of susceptibles to

the infection, is still fully considered in the modified model.

With the assumption that ,ug = MZ; = ,u? = 0 and the notations
a7

1 k(05 ts)

nj k(05 ts) =i Nj (te) + v NJ (ts),

Fl(0:t,) = (17 (05 tx) + 15 (05 ) + p(a £ (05 ) + af , (05 L4))),
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our system (7") becomes

d T T
@Sj,kw; te) = —Sj,k<9§ t*)F}Tkw;t*),
d T T
@%,k(e; ty) = Sj,k(0§t*)F]‘7,1k(0§t*)a
d T -7 T
g%k t) = G k(05t) = —5rjn(6;t:) =0,
(77)
d v v T
@Sj,k(‘g; te) = =57 (05 1) F; (0 L),
d v v

d , d d

where j,k € {1,2}, j # k. Using systems (7”) and (/V7T), we obtain the densities of
asymptomatic, symptomatic infected and recovered individuals during travel with respect

to 0 as
ajp(05te) = aj ,(05t.) = A% (L), afp(0;t) = af,(05t) = v; A7 (L),
TR0 ) = B(058) = G TI(L), (056) = 4(08) = IY(E),  (39)
rik(0it) = 155 (05 8) = o Ry (t), 75 p(05te) = 75 1 (0584) = v RS (tx)

for all t,, 0 € [0,7] and j,k € {1,2}, j # k. Then, using (3.9), the force of infection F};k

can be obtained as

g7 a;j I5 (te) + 917 () + play Af () +75A5(8))

FT (6;t, ,

where 6 € [0,7] and j,k € {1,2},j # k, and we can determine the density of susceptible
individuals during travel for 6 € [0, 7], j,k € {1,2},j # k as

0
S;,k(e; t*) = S;’k(o; t*)e_ fo F}:k(u,t*)du

_08T o I7 (b )+, 17 (£2)+p (0 AT (tx) +5 AT (£x))

= a;5] (t:)e o Nj ()47 N7 ()

)

fe FT (v,ty)dv (310)
v v - . yUx
87 5(05t) = 7 (05t )e Jo Tok

g™ oajI;(t*%LWjI;(:*)Jrﬂ(oajA%(t*)Jr’yjA;(t*))
:ry]S‘;)(t*)e aij(t*)+'Yij(t*)

Last, using the definition of n7} (0;t.) (j,k € {1,2}, m € {r,v}), we obtain the density of
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exposed individuals during travel as
i k(05t) = nj (05 8s) — @) (05 s) — 65 (05 84) — 1] (03 84) — 87 (05 24)
= a;Nj (te) — aj A (t) — oI5 (t) — Ry () — 85 (03 1)

05T o 17 ()7 IF () +p (o AT (bx) +7; AY ()
- o NT (ts N (ts
=aj | Sj(ts) | 1—e SN N +Ej(t) |,
(3.11)

ik (05t) = nj L (05 ) — af 1 (05 ts) — 05 1 (0;t) — 1] k(05 ) — 57 (03 )

= Y NJ (t) = 9 AG (te) = 9 I () = v R (8) — 85 5(65 L)
_ TajI]T"(t*)JF’YjI;'}(f*)+P(O<jA;(t*)+’YjA}}(t*>)

= 7555 (t) + 5 (t)) — 755 (t)e ERASNTHE

Choosing 6 = 7 and t, = t—7, the inflow terms s}f‘k(T; t—7), eg-t’k(T; t—7), a?}k(r; t—7),
iy (Tit — 1) and 17 (T35t — 1) (4, k € {1,2}, m € {r,v}), determined in (3.9), (3.10) and

(3.11), arise as delay terms of S, ET, AT I and R

Notation 3.8. In the sequel, we denote by (L’) the special case of (L) with the particular
inflow terms defined in (3.9), (3.10) and (3.11).

We use the notations of Section 3.3 and define W: R?® — R?" as W; equals the inflow

term of the right-hand side of the equation for z; in (L'). For instance,

—rgT agvigt+2vi9+p(agviz+y2vig)
az Z31‘211 vitr2 2?0:16 vj

W1(1}> = 7Y2U16€ ng(v) = (1V3.

System (L) can be written in the compact form of

2'(t) = Fa(t),z(t — 7)), (L)
where F(x(t),z(t — 7)) = f(x(t)) + W(z(t — 7)), F: R® x R? - R2. Now we focus on

system (L) and we detail the computation of the reproduction number.

Notice that the disease free equilibrium N = (N{, 0,0,0,0, Nf, 0,0,0,0, ]\75, 0,0, 0,0,
Nﬁ’, 0,0,0, 0> of system (L), defined in Section 3.3, is the unique positive equilibrium of (L)
in the disease free subspace. In the initial stage of the epidemic, we can assume that system
(L) is near the equilibrium N and approximate the equations of classes BN AT I G €
{1,2},m € {r,v}, with the linear system

2 (t) = Az(t) + Bz(t — 1), (3.12)

where z: R - R'2, A, B € R'?*!2 and A = Df(N), B = DW(N) hold. The matrices A
and B have the form

Al A Az Au Bi1 B2 Bis Bu
A Ao1 Agy Agz Ay B By1 B2 Bz By
Az; Ay Asz Asy | Bsi Bsy Bss By |’

Ap A Auz A By1 Biz Biz Bu



3.4. THE BASIC REPRODUCTION NUMBER 37

where A; 1, Bj € R3*3 for j,k € {1,2,3,4}, and A, and Bj can be obtained as follows:

An = 0Py Gt on + ) 0 )
Pl 0 —(p; + o1 +6 +dj)

() pﬁl N7" iNU 61 NT’+NU
Aia=1 o 0 0 ;
0 0 0

and Ay 3 = A1 4 = O, where we denote the matrix with O-entries by O, moreover

78T pasya Ny 78T asya N 8T 3Ny B8T3NY
2Ny 472Ny aaNy+72 N V2 R 1Ny aaNg +72N2
Biz=1 0 0 0 » Bu=1] o0 Y2 0 :
0 0 0 0 0 -

and By = Bi2 = O. The matrix elements A, B, j € {2,3,4}, k € {1,2,3,4}, can be

derived similarly.

Next we decompose the matrix A + B as F — V, where F is the transmission part,
describing the production of new infections, and —V is the transition part, describing all
other changes in state (see [11, 47| for more details and some motivation for the decompo-
sition). We first determine what we call reproduction here, i.e., in what kind of situations

do new infections occur. We define two possible ways of reproduction:
(i) a susceptible moves to exposed class while being in a region;

(ii) an exposed individual, who was susceptible before travel, arrives to a region upon

completing a trip.

With this definition in mind, we obtain F € R12X12 and V € R!2*12 a5

Fin Fi2 Fiz Fu Viin Vi Vis Vis
F— Fo1 Fay Faz P V= Vor Vo Vag Vo 7

F31 F3o Fs3 F3 Va1 Vo Vi3 Vi

Fy Fp Fy3 Fy Viu Vaz Vi Vi

where Fj i, Vi € R¥3 (j,k € {1,2,3,4}). It is easy to see that

O pﬂl NT’+N’U Bl NT‘+NU O pﬁl N7‘+NU /81 NT’+N’U
Fu=1| o 0 0 ;o Fi2=1 0 0 0 ;
0 0 0 0 0 0
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787 paya Ny 78Tz Ny BT pENY - _rBTAENY
a2N£+’)/2N§ a2N£+’yzN§ a2N§+'yQN§ a2N2T+'yQN§’
Fis=1 0 0 0 . Fu=1o0 0 0 ;
0 0 0 0 0 0

and the elements Fj;,j € {2,3,4},k € {1,2,3,4} arise similarly. The elements of —V

represent rates at which individuals progress from one class to another:

Wy + a1 +df 0 0
Vii=| —-(1-pu, p,+ar+d; 0 ;
—Plhy 0 p,+a1+06+dj
-2 0 0
Vig = 0 —y O )
0 0 —

while V12 = Vi3 = O, and the elements V1, j € {2,3,4},k € {1,2,3,4}, can be obtained
similarly. Clearly I is a positive matrix, that is, all of its entries are non-negative, and it is
easy to check that —V is positive-off-diagonal, that is, all entries are non-negative except
possibly those on the diagonal. For a square matrix M we define the spectral bound s(M)
and the spectral radius p(M) by s(M) := sup{Re(\) : A € (M)}, p(M) :=sup{|A| : A €
(M)}, where o(M) denotes the set of eigenvalues of M. One can show that s(—V) < 0,
this is equivalent to the statement that V is invertible and V~1 is a positive matrix (for the

proof of the equivalence, see, e.g., Lemma 6.12 in [11]). We state the following proposition.

Proposition 3.9. The zero solution of the linear delay differential equation
2'(t) = Az(t) + Bz(t — 1)
is asymptotically stable if p(FV~1) < 1 and unstable if p(FV~1) > 1.

Proof. The principal result of Section 5, Chapter 5 in [39] is that the stability of an
equilibrium of a cooperative and irreducible system of delay differential equations is the
same as for an associated system of cooperative ordinary differential equations. System
(3.12) is cooperative since A is positive-off-diagonal and B is a positive matrix. Every
column of B contains at least one non-zero element, which together with the irreducibility
of matrix A + B implies that system (3.12) is irreducible. Corollary 5.2 in [39] states that
the zero solution of the linear delay differential equation (3.12) is asymptotically stable

(unstable) if and only if the zero solution of the linear ordinary differential equation
w'(t) = (A+ B)w(t) (3.13)
is asymptotically stable (unstable). We can reformulate (3.13) as

w'(t) = (F — V)w(t).
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We have seen that F is a positive matrix and —V is a positive-off-diagonal matrix with
s(—V) < 0. The stability of the zero steady state of w'(t) = (F — V)w(¢) is determined by
the sign of s(F — V), which coincides with the sign of p(FV~1) — 1 (see Theorem A.1 in
[13]). The proof is complete. O

The statement of Proposition 3.9 extends to the nonlinear system (L) by the principle

of linearized stability.

Proposition 3.10. The disease free equilibrium of system (L) is asymptotically stable if
p(FV—Y) < 1 and unstable if p(FV~1) > 1.

After obtaining stability results for (L), a system of delay differential equations, we

consider the following associated system of ordinary differential equations

2(t) = fla(t)) + W (a(), (3.14)

where W was introduced previously in this section and for the definition of o and f, see
Section 3.3. The concept of the next generation matrix (NGM) of an epidemic model was
introduced in Diekmann et al. [12] (and elaborated in Chapter 5 [11]) as a matrix whose
elements give the number of newly infected individuals in specific categories. To obtain
this matrix, one considers the equations of the system that describe the production of
new infections and changes in state among infected individuals; in case of system (3.14),
this infected subsystem consists of the equations for ET, A}”, I, j e {1,2}, m € {r,v}.
Clearly N works as the unique disease free equilibrium of (3.14), so we can linearize the

infected subsystem about the infection-free steady state and get
w'(t) = (A+ B)w(t) = (F - V)w(t). (3.15)

Diekmann et al. [13] refers to FV—! € R12%12 a5 Iy, the next generation matrix for sys-
tem (3.14) with large domain. However, this matrix does not equal the next generation
matrix I of the ODE system (3.14), because the decomposition of A + B relates to the
expected offspring of individuals of any state and not just epidemiological newborns (new
infections). Since in the case of system (3.14), only states E], E}, Ej and EY are involved
in the action of the next generation matrix K, it is clear that X € R**4. The work [13]
claims that p(Kr) = p(K) and it can be shown that the next generation matrix for (3.14)

. 1,4,7,1
can be obtained as K = (K1)}’;210.

Next we determine the next generation matrix N and the reproduction number R for
the delay system (L), then we will show that /' = K, i.e., the next generation matrix for
the delay system (L) equals the next generation matrix for the ODE system (3.14). This

result implies the following conclusion.
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Proposition 3.11. The disease free equilibrium of system (L) is asymptotically stable if
Ro < 1 and unstable if Ry > 1.

Proof. Since Ry is defined as the dominant eigenvalue of A/ (the existence of the dominant
eigenvalue is guaranteed by the Frobenius—Perron theorem), moreover K, = FV~! and
p(K1) = p(K) hold, we obtain that Ro = p(FV~!). Then it follows from Proposition 3.10
that Rg works as a threshold quantity for the stability of the disease free equilibrium of
system (L). O

3.4.1 The next generation matrix

We construct the next generation matrix A for system (L) as we divide all exposed in-
dividuals into four groups: residents of region 1 (E]), visitors of region 1 (EY}), residents
of region 2 (E%) and visitors of region 2 (E3). We denote the number of new infections
among individuals of region k with residential status n generated by an exposed individual
of region j with residential status m by RZL];”, where j, k € {1,2},m,n € {r,v}. Then
N € R¥* has the form
T T T T
11 . frgp figg
11 R Ryy Ry
N T ur T v
12 ftig frgg figg
TV vV TV VU
12 {flig gy fipg
We can obtain the elements of N by biological reasoning, i.e., by following a typical infected
individual during the infectious period, and using our definition of reproduction. Here we
detail the calculation of two elements of A and then show that they equal the correspond-
ing elements of I, the next generation matrix of the associated system of ODEs (3.14).
Formulas for other elements — and hence the equalities (N)]k = (IC)M, J. k€ {1,2,3,4} -

can be derived similarly.

First, let us consider the element R]}, namely the number of new infections in EY
generated by an exposed resident of region 1 (a member of EY). Since in the model setup
we addressed no restrictions on the number of travels an individual can start, we distinguish

two scenarios:

(A) After completing some even number of trips, the exposed individual turns infected

(member of class I or A) in region 1.

(B) After completing some odd number of trips, the exposed individual turns infected in

region 2.
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We calculate the probabilities of these events. First, the probability of turning infected
after (2n) trips, n =0,1,2,..., is obtained as

< ] 2 >n Mg
Oé1+/-‘LE+d1£72+/~‘LE+d5 al_‘_uE‘i_d?{?

which implies that

[e.9] n
(€3] V2 Hg
P(A) =
) Z<a1+uE+d7{’yg+uE+d§> a1+ p + dj

n=0

n=0
= a2 . 1
ar+pg +dp - a1+§;+d1 ’72+A7;+d§’
Hi . (an +Hg +di) (72 + Hg + d3)

ar+pip +dy (o1 +py +d) (2 + pp £ dy) — a1y
_ fp(v2 + pp +d3)
(a1 + pp +dy)(v2 + pp +dy) — 172

On the other hand, the probability of becoming infected after (2n+1) trips, n = 0,1,2,. ..,

is

( a > e ( 72 ) " g
ay + pp +dy Yoty +ds) ppty2tdy
hence we get the probability of case (B) by the calculations

oo n
Mg aq (o5 V2
P(B :E .
(B) =y T2 Fdy oy +dy <a1+uE+d’{fyg+uE+d§>

_ HEg ) aq i< aq 2 >n
P +y2+dy oy + pg +df a1+ pp +d e + py + d

n=0
= ME . al . 1
petyztdi on g +di 1 - gl ey
_ I _ o (a4 pp +di) (2 + pp £ d3)
Cpp et dS oty di (1 d) (e g+ dS) = arye
2775831

(a1 +pg +d)(v2 + pp +d3) — a1y’

In case (A), an infected individual can transmit the disease in two ways:

(al) as a member of class I] (A7), i.e., the individual infects in region 1 after an even

number of completed trips (counted since the individual became infected), or

(a2) after an odd number of completed trips (counted since the individual became in-
fected), the individual is a member of class I3 (A%); the individual leaves region 2

and infects during travel from region 2 to region 1.
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Similarly, in case (B), the two ways of disease transmission are as follows:

(b1) as a member of class I] (A]), i.e., the individual infects in region 1 after an odd

number of completed trips (counted since the individual became infected), or

(b2) after an even number of completed trips (counted since the individual became in-
fected), the individual is a member of class I3 (AY); the individual leaves region 2

and infects during travel from region 2 to region 1.

In case (al), the expected duration of infection of an individual in class I after the (2n)th

trip (n =0,1,...) is

< aq V2 )n 1
o+, +0+di o+, +0+dy) ar+p, +5+d

we derive the total expected infection time in region 1 as

oo n
Z( 03] Y2 ) 1
a1+ul+5+d§72+ul+5+d12’ a1+ul+(5+d71"

n=0
_ 1 i( aq 72 >n
Cartpu F 0 d] = Ny 6+ dy ey + 0+ dy

1 1

o +p+0+dp 11— a1+,u?—1&-5+d71' 72+u7-2+5+dg
1 (a1 +p, + 6+ di)(y2+p, + 6 +di)
a1+, +0+d; (o +p, +0+d)) (2 + gy + 0 +dS) — a1y
Yo+ py + 0+ dj
(1 +p; +0+dD)(va+p, +0+d8) —arye

Similar formula holds for individuals in class A7, so we obtain the number of new infections

in case (al) as

pp (V2 + py +d3)
(o1 + pg +d5)(v2 + pp + dY) — 12
' Y2 + i, + 6 + d o N
(o +p, +6+dY)(va+ p, +0 +dy) —arye ! N{+N}’
+(1 _ p) Mg (72 t gyt dg)
(o1 + pg +d5)(v2 + pp + dY) — 12
. '72‘1'#,4 +d12] p rr Nf
(1 +py +d) (2 + iy +d3) —cry2’ T NT 4 NP )

We derive the number of new infections in case (a2) similarly. Since the probability of

being (symptomatic) infected just before the (2n + 2)th trip (n =0,1,...) is

ar+pr+04+d; \ay+py +0+d;v2+p, +0+d5) yo+p, +6+dy
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and the duration of infection during the (2n + 2)th trip is 7, we get the total expected

infection time of an individual of I{ as

0 n+1
ZT< 631 72 )
ay + iy + 0 +di o+ py +0+df

n=0
e m 1
a0 dy ey HOHdy 1 - ot e
. o ' V2 o (o +p +0+dY) (2 +py + 0+ d3)
Lty A0+ d) oty Fo+dy (ar oy +0+d)) (et 0+ dy) — arye
Ta1Y2

(a1 +p, +04+d) (2 +p, +0+d5) —aaye’

This implies that the number of new infections in case (a2) is

( o (V2 + oy + d3)

(al + Hg + d{)(’Y? + Mg + dg) — 172

' 172 A7 Y2 NY
(a1 +p, +0+d)(v2+p, +0+d5) —c1r2 49 NY 4 aaNy

+(1-p) fip (2 + pg +d3)
(al + Hg + d{)(’}? + Mg + dg) — 172

' Q172 - T ’Y?Ng
(1 + py +d7)(v2 + py +d3) —arye YNy + g Ny

Next, we go through the possible scenarios in case (B). In case (bl), the expected

duration of infection of an individual in class I{ after the (2n + 1)th trip (n =0,1,...) is

V2 ( (051 Y2 >n 1
Yo+, +o+dy N +p, +6+diye+p, +0+ds ) p+ar+6+dp

thus the total expected infection time can be obtained as

Y2 i( %1 Y2 )n 1
72+u,+5+d§n:0 o+, Fo+di o+, +0+dy) o +p, +6+df
_ V2
S (ot 6+ dY) (2 + 64 dY) — arye’

and the number of new infections in case (bl) is

p HgO1
(1 + pp +d7)(v2 + pp +d5) — ar1ye
72 rr N{ >

ot Ao+ d) (2 O+ dY) —arye ' NI 4+ WY

1257583
+(1 -
=) <<a1 i+ ) (2 + 1o + ) — a1

. 72 qgrr D
(a1 +py +d7) (2 +py +d3) —crne” 1 NT 4 N7
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Similarly, the probability of being (symptomatic) infected just before the (2n + 1)th trip
(n=0,1,...) in case (b2) is

( 72 e%1 )n 72
’yz+u1+5+d§a1+ul+6+d’{ 'yg+,u,+5+d§’

moreover the duration of the infectious period during the (2n + 1)th trip is 7. Thus it
follows that the total expected infection time of a symptomatic infected individual in case

(b2) is

i7< V2 a )” 2

= \etp +o+dior+p, ++di) vetp +0+d3
B Ty2(a1 + p, + 6+ dy)

(ot p, S+ d) (et + 6+ dY) —arye

and we obtain the number of new infections in case (b2) as

D Hp®1
(a1 + pg +d7) (2 + pyy +d5) — 172
_ Yo(an 4+ p, + 6+ df) 47 72 Ng
(1 +p; +0+d)(v2+p, +6+d3) —aav2 © Ny + asNj
1235581
+(1 -
(=) ((m s T ) w2 + i ¥ ) — o
_ v2(a1 +py +df) 0T 72 N3
(a1 +p, +d))(v2+p, +d5) —ony2 " 4 N§ + aaNj

We arrive at the formula for R}] by summing the number of new infections in the different

cases.
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Hp
=p
H ((041 +pp D) (2 + By +d3) — a1y

 (etpsd)etp +0+d) e . N
(a1 +p, +6+d) (2 +py +0+dY) — e NJ + NV

+ HpQ172
(al + py + d{)(’}/? + g+ dg) —a172
et tdtontp +0+d g Ny
(1 +p, +0+d) e+, +0+dy) —a1y2 © NY + N3

K
+(1-p
( )<(041+ME+d§)(72+ME+d§)—06172
(i + 1y + d3) (2 + py + d3) Honre o Ny
(1 +py+di)(v2+py +d3) —arya”  NJ + NY
+ Mg Q172
(1 + pg +d7) (2 + pp +ds) — a1y2

Y2 + pp +ds + o+ py, +df 037 YN )

(0 + iy +d) (2 F iy +d8) — 017 Y2 NY + g N

We detail the calculation of another element R75, which is the number of new infections
in E3 originated from E]. We may define the two scenarios for the exposed-to-infected
transition as before, and thus the above calculated probabilities for events (A) and (B)
still hold.

P(A) = fp (V2 + pg +d3)
(a1 + pg +d7)(v2 + pp +dy) — a1y’
P(B _ HEOl

(ot d]) (2 g+ d3) —aae
Again, in each case different ways of disease transmission arise. In case (A), an infected

individual can transmit the disease as follows:

(al) after an even number of completed trips (counted since the individual became in-
fected), the individual is a member of class I] (A]); the individual leaves region 1

and infects during travel from region 1 to region 2, or

(a2) as a member of class I§ (AY), i.e., the individual infects in region 2 after an odd

number of completed trips (counted since the individual became infected).

Similarly, in case (B), the individual can transmit the disease in one of the following ways:

(b1) after an odd number of completed trips (counted since the individual became in-
fected), the individual is a member of class I] (A7]); the individual leaves region 1

and infects during travel from region 1 to region 2, or
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(b2) as a member of class I3 (AY), i.e., the individual infects in region 2 after an even

number of completed trips (counted since the individual became infected).

The total infection time in case (al), (a2), (b1) and (b2) can be obtained with very similar
calculations as by the element R7}; that is, since the time of infection during travel is 7,

the total infection time of a symptomatic infected individual in case (al) and (bl) is

i7< (€3] 72 >n aq

N +0+dip+p,+0+d5) ar+p+0+d
Tay(y2 + p; +6 +d3)

(a1 +p, +64+dY)(y2 4+ p; +0 +dy) —arye

and

iT V2 < Y2 aq >n fo%1

ety A6+ dS \ Vot O HdSan F o+ 6+ dy ) an O+
— Ta2

(ar+p, +0+d})(ya + p; +6+dy) —arye’

respectively, the duration of infection in case (a2) and (b2) is

i( a1 V2 )n aq _ 1
e\t +o+dive+p,+0+dy) antp+0+d] vt +0+d3

(a1 4+ p, +64+d)) (v +p, +0+ds) —ary

and

- 2 a1 " 1

;)<72+“1+5+d50‘1+/‘1+5+d’£> Yoty + 0+ d3
_ a1+ py + 0+ df

(a1 +p, +6+dy)(v2+p, +0+d3) — a1y

Thus, the number of new infections from cases (al) and (b1) are determined by the formulas

NE(72 +IUE +d12})
(1 + pg +d7) (2 + pp +d5) — a1z
, a1(y2 + gy + 0+ d3) 4T o N7
(a1 + p; + 5+d71n)(72 +py 0+ dg) — o172 011]\7{ +’71Nf
fp (2 + pp +d5
+(1 _p) E(r E 2)11
(1 + pg +d7) (V2 + pp +d5) — arye

| a1 (2 + 1, + d) oo
(a1 +p, +d7) (2 + py +d3) — 1y a1 NT + 7 NV
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and
P MOl
(1 + pp +d7) (2 + py + d8) — a12
. Q172 P 041N{
(1 +p, +0+d)(v2+p, +0+d5) —a1y2 NP+ Nf
2375831
+(1 -
=) ((041 + pp + A1) (V2 + pp +d3) — o172
) 172 03T OqN{
(a1 +py +d7) (2 + py + d3) — 1y VNY 4 a1 Ny

We derive the number of new infections in cases (a2) and (b2) as

pog (2 + iy +d3)
(a1 + py +d7)(v2 + pp +dY) — a1y2

, a1 v V3
(a1 +p, +0+dy)(v2 +py +0+d5) —anne’? Ny 4 Ny

+1—p) pe (2 + pp + d3)
(01 + pp +df)(v2 + p +d3) — 0172

. 1 a3
(a1 +py +dp) (2 + oy +d3) —arye” 2 N5 4+ Ng

and

P Mga1
(1 + pg +d7) (2 + p +d8) — a1y
ar+p, +0+dy S )

2

e+ 0+ d) (e + g + 6+ d5) — i N+ Ny
HpQa
+(1 -
4= <(041 + py +d) (2 4 pyp + d3) — a1y2
. a1+MA+d7i p VY Né)
(@1 + g +d) (2 +py +d5) a1y’ 2 Ny + Ny )

We obtain the new infections in Ej generated by individuals in E] by the formula
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2 (a1 + pg +d)(v2 + pp +dY) — a1y2

ety d)(ntp ot dy) oy or a1 Ny
(+p, +o+d)(va+p, +0+dy) —ary2 3 NP 4+ g NT

+ Hp®1

(011 + gt d{)(’}/? + py + d12}) — Q172
L erpptditortp +4di g, Ny
(a1 +p, +6+d) (e +p, +6+d5) —are’ 2 NJ + Ny

1277183t
+(1-
4= <(041 + g +d) (2 + pp +d3) — a1y

(2t pg +d3)(v2+p, +di) +oarve  p Ny
P
(1 + py +d])(v2 + py +d8) — arye a1 NT 4~ NV

+ HgQa
(a1 + pip +dy)(v2+ py +dy) —aay

' Yo 4 pip +dy + g 4 p, +df e NY
(a1 +py +dy) (2 +py +d3) —arye” 2 Ny 4 Ny

The element Rl can be obtained very similarly as Rl (change ST to SV, change 725y to
2S5, change B7" to B7Y). RIZ is derived as one writes S5 instead of SY, v1.5? instead of
157 and BY" instead of 83Y in the formula of R!2. The elements of the second column can
be derived by using the elements of the first column and changing the first upper index of
the transmission rates from r to v (i.e., 8" instead of 5]" etc). For an element Rﬂ" of
the third or forth column one may consider RZZ", the corresponding element which is in

the first or second column, and change index 1 to 2 and index 2 to 1.

Now we show that K = A. The first element of the first row of K is obtained as the
scalar product of the first row of F and the first column of V~!. From earlier in this section
we obtain

N N
N7 Ny TH NT 4 Ny

Ny Ny
NI+ NV NT 4 NP
T8 parys Ny TBTaxeNy | rBTpENS _1BTHING
aaN§ + 7Ny aaNy + 79Ny agNy + 7N agNj 4+ 49Ny )’

vr

ur
» Uy PP

1

9

(F)L. = (07 pﬁ{r
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(Vfl)ﬂ -
Y2 +ME +d12)
(a1 + py +db)(v2 + o +d2) — a1y’
(1 —pug (et pg Hdy) (2 +p, Hd3) oy
(1 4 pop +d)(v2 + oy +d8) —arye (o0 + py +d7)(y2 + py +dy) — a1y’
Py (et pg tds) (e +p, +0+d5) + oy
(a1 + pg +di)(v2 + py +d5) —ary2 (a1 +p, +0+d7) (2 +p, +0+dy) —arye’
a1
07 07 0? 0? 07 07 )
(1 + pg +db) (2 + py + d2) — a1y2
(1 —pluy o retpptditontp, +d
(1 + pp +d)) (2 + py +d5) — e (a1 + py +dy)(y2 + py +d3) — arya’
T
Dl 01 ‘ Yo+ py +ds + a4+ p, + 0+ df
(1 +pp +dy)(v2+ py +d3) —a1va (o1 +py +5+dY) (2 + p;, +0+dy) — arye

and the product indeed equals R}7. In order to obtain the first element of the forth row of
IC, one needs to multiply the tenth row of F with the first column of V!, The tenth row
of F is

(F) —|o TﬂTpO‘%N{ TﬁTa%N{ 0 TBTPal’Yle TBTOél’YlN{
O\ Ny 4+ i Nl NT A NP an N+ i NY T ag N+ N

NY NY NY
ijﬁgv 2 0 VU 2 va 2 ),

Ny
Ng—l—NQU’ 2 Ng‘i‘Ng’ » PP2 Ng—i—N;’ 2 N§+N§
the product indeed gives R}Y. The equalities of the other 14 elements of K and N arise

similarly.

3.4.2 The dependence of Ry on key model parameters

Throughout this subsection we demonstrate how the reproduction number depends on vari-
ous key model parameters. We previously described the calculation of R as the dominant
eigenvalue of the next generation matrix. We obtained that each element of this 4 x 4
matrix is given by a complex formula of the model parameters, hence due to the com-
plicated structure, we do not present here analytic results but numerical simulations with
reasonable parameter values. We performed a systematic analysis to reveal the dependence
of Ry on several model parameters. We chose reasonable values for the parameters (see
Section 3.5 for plausible parameter ranges for influenza), population sizes and travel rates
(see [24]). In this subsection we assume that the two regions are symmetric in the popula-
tion sizes, travel rates and epidemiological characteristics. This assumption enables us to
focus on a better understanding of the role of the key parameters. The findings support

our intuitions about the dependence of the basic reproduction number on epidemiological
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Figure 3.2: The dependence of Ry on S7. Parameter values were chosen as Rrpi =14,
Rpp=14,7=05v"=v"=7p =14, p1=3 p;' =41,p=06, p=0.1.

parameters like the transmission rates and duration of infectious periods: increasing the
values of these parameters results in an increase of the value of the reproduction number.
However, we observed some unexpected behavior when examining R as a function of the

transmission rate during travel and the travel rate of visitors.

Figure 3.2 shows R as a function of 37 when other model parameters are fixed and the
local reproduction numbers are set to 1.4. For 87 < 30 the reproduction number settles
at around 1.4, however the function approaches a line with a strictly positive slope as we
further increase the parameter value. Numerical simulations proved that there is an eigen-
value of the NGM whose dependence on 87 is almost linear. As the parameter value grows,
this eigenvalue dominates the one which is close to 1.4 for each value of 7. Next we set
BT = 40 and examine the effect of parameters v; and v, on the reproduction number. If we
ignore the time needed to complete a one-way trip, the value of these parameters does not
influence the value of R in the case of identical regions: if 7 = 0 and the two regions are
symmetric in the population sizes and values of epidemiological parameters including the
local reproduction numbers, then Rg = Rr,1 = Rr 2 holds. However, for positive values of
T we obtain some non-monotonic behavior of R as a function of the duration of visitors’
stay (reciprocal of 7, and ~2) as shown in Figure 3.3. To understand this phenomenon
we examined how the elements of the next generation matrix depend on 7—11 and %2 We
found that these parameters do not significantly influence most of the matrix elements if

or  puu pur

one considers realistic parameter range (0 < %, 712 < 50 (days)). However, RS}, RSV, RYY,

and RYS have similar non-monotonic shapes as obtained by the reproduction number.

See Figure 3.4 for the graph of four elements of the next generation matrix. The values
of R]] and R3] do not depend strongly on the length of visitors’ stay, as for real air traffic

data travel rates of residents are low, hence with high probability the exposed resident never
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Figure 3.3: The dependence of R on 7% and 7% in the case of 71 = 72 and 7 > 0. Parameter
values were chosen as Ry 1 = 1.4, Rp2 = 1.4, 7 = 0.5, BT = 40, ,u;l =14, #,_1 = 3,
p,t=41,p=06,p=0.1
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Figure 3.4: The dependence of some elements of the next generation matrix on 711 and %2
in the case of 71 = 72 and 7 > 0. Parameter values were chosen as Ry 1 = 1.4, R 2 = 1.4,
7=05 61 =40, p =14, p 7t =3, p =41, p=06, p=0.1.

becomes a visitor. The longer visitors stay in the foreign region on average, the higher R{]
is (converges to Ry, 1 as 7—11 and % tend to infinity). The element RY] defines the number
of new infections among residents of region 1 caused by a single exposed visitor of region
2. Following our definition of reproduction, R5] counts new infections accrued while the
visitor was traveling to region 1 and while the visitor was staying there. If the duration

of visitors’ stay is short, the probability that a visitor leaves region 2 before finishing his
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we neglect the time required to complete a one-way trip. Parameter values were chosen as

Rpai=12Rpp=16,7=0,p =14, p 1 =3, p=41,p=06,p=0.1

Figure 3.5: The dependence of Ry on and %2 in the case of 71 = v and 7 = 0, i.e.,

exposed period is high, and as we neglected the possibility of moving to classes I or A
during travel, he will start his infectious period only in region 1. Choosing realistic values

for travel rates makes the chance of leaving region 1 small, thus for small values of % and

1 ur

5 Bot approximately equals 1.4, the value of the local reproduction number Rz ;. As

the length of visitors’ stay increases, the chances for the visitor to move to class I or A
before traveling back to region 1 rise. This results in the elevated number of newly infected
individuals due to increased transmission potential during travel. However, if the duration
of visitors’ stay is much longer, the probability that the visitor travels back to region 1
and gets into contact with residents there (in region 1) is low, hence the expected number
of such new infections is close to zero. The graphical interpretation of other elements
of the NGM can be explained similarly. We remark that the non-monotonic behavior
of the reproduction number as a function of the duration of visitors’ stay is observed in
the case of asymmetric regions as well. However, if we neglect the duration of travel
and assume different local reproduction numbers in the regions, the graph of Ry becomes
monotonically decreasing as shown in Figure 3.5. This shows that including travel-related
infections can fundamentally change the way the reproduction number depends on various
model parameters, and in the case of a non-monotone dependence on a parameter, one has

to be very careful when proposing control measures which change the given parameter.

3.4.3 R, as the threshold quantity for epidemic outbreaks

The importance of parameter 87 in the computation of the reproduction number has been
revealed in the previous subsection. However, it is not clear how the nonlinear dependence
of Ry on the transmission rate during travel is reflected on the epidemic curves or the
final epidemic size. We consider the hypothetical case when the two regions are symmetric
in the population sizes, travel rates and values of every model parameter except the local

reproduction numbers (R, 1 = R 2 would result in identical epidemic curves). See Section



3.4. THE BASIC REPRODUCTION NUMBER 53

Ro= 1404 R= 204
Ra= 12 R= 14 Rii= 12 Rp= 14

2400 0.6 2400 0.6

2000 0.5 2000 0.5
§ 1600 0.4 § 1600| 0.4
S S Y N —
g 1200 0.3 é g 1200 0.3 é
; F ; F

800 0.2 800 0.2

400 0.1 400 0.1

0 0 50 106 = 150 200 250 300 3500' 0 0 56 = 100 150 200 250 300 3500'
time (days) time (days)
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in region 2: day 122, when R 1 = 1.2, Rp2 = in region 2: day 103, when R 1 = 1.2, Rp 2 =
1.4, g7 = 25. 1.4, 87 = 50.

Figure 3.6: Epidemic curves and attack rates of region 1 (red and red-dashed) and region 2
(orange and orange-dashed) for two values of 47 when both the local reproduction numbers
are greater than 1. The increase in the value of 87 significantly alters the value of Rg, but
its effect on the epidemic curves only manifests in earlier peak times. Parameter values
were chosen as Rp1 = 1.2, Rpp = 1.4, 7 =05, p ' =14, 7t =3, p ' =4.1, p= 0.6,
p=01,"'=w'=7 0 =510 az =5-107°, NJ(0) = 3.4-107, N5 (0) = 3.4-10".

3.5 for realistic travel rates, population sizes and epidemiological parameters for influenza.

If both the regional reproduction numbers are greater than one, increasing 37 does not
have a significant effect on the disease outbreak: although the curves peak earlier for larger
values of the parameter, peak sizes and attack rates (defined as the fraction of individuals
who have contracted the disease) remain similar in both regions. However, as illustrated in
Figure 3.6, the difference manifests in the value of the basic reproduction number: chang-

ing AT from 25 to 50 can increase Rg from 1.4 for 2 in this particular case.

There is no epidemic outbreak in the absence of travel if we assume that both regional
reproduction numbers are less than 1. In case of connected regions, minor outbreaks can
occur if the value of 37 is set to ensure that R exceeds one. However, further increasing 7
may result in long-continued outbreaks with small peak sizes but relatively high values of
the reproduction number and the attack rates, as indicated in Figure 3.7. These examples
clearly show that although — as we have proved it in Section 3.4 — Ry works as a threshold
regarding the stability of the disease free state (that is relevant to the initial growth of an
epidemic), it is not necessarily a good predictor for the entire course of the outbreak and

the attack rates.
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Figure 3.7: Epidemic curves and attack rates of region 1 (red and red-dashed) and region 2
(orange and orange-dashed) for two values of 47 when both the local reproduction numbers
are below 1 but Ry > 1. The relatively high value of the reproduction number is reflected
in the size of the outbreak: the dashed curves show that for 37 = 50 more than 40 % of
the populations of both region 1 and 2 has been infected by day 4500. Parameter values
were chosen as Rp1 = 0.9, Rpo =099, 7 =05, p ' =14, pt =3, pt =41, p= 0.6,
p=01,v'=3%'=70 =510 ay =5-10"°, NJ(0) = 3.4-107, N5 (0) = 3.4-10".

3.5 Parametrization for influenza

We parametrize our model for the 2009 A(HIN1) pandemic influenza. We ignore demogra-
phy and set parameters A;, d; and d;, J € {1,2}, equal to 0, moreover we also neglect the
possibility of disease induced mortality and let 6 = 0. Several studies (|1, 4, 6, 9, 16, 30,
46, 48, 49] and the references therein) estimated the local reproduction number and values
of key epidemiological parameters for recent influenza pandemics. In Table 3.3 we give an
overview of the ranges of these parameters, and choose reasonable values from the ranges
for our simulations. Parameter 87, the transmission rate during travel is estimated to be
10-20, as [49] claims that the expected number of HIN1 infections caused by a single in-
fectious case varies between 5 and 10, considering transmission during an eleven-hour-long

flight.

In the model description, several parameters were introduced to characterize trans-
portation between the regions: travel rate of residents from their origin, duration of visitors’
stay, duration of travel. We determine the values of these parameters for specific cases: we
pick Canada to be region 1 (origin) and we consider three possible destinations as region 2
(for the destinations, see Section 3.6). We derive travel rates from [24|, which provides the
annual volume of passengers toward Canada from several international sources. However,

neither records about travelers’ origin (Canadian resident or visitor of Canada), nor data
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Parameter || Value for simulations | Range from literature
Ay, d7, 0 0
it 1.4 (1-2.62)  [4, 46, 48]
prt 3 (1.1-4.69)  [4, 46, 48]
wit 4.1 (2.06-4.69) [30, 46]
p 0.1 (0-0.5) [1, 6, 30]
0.6 (0.5-0.75) |1, 9]
BT 15 (10-20)  [16, 49]
Rr 13,14 (1.05-1.88) [4, 46, 48]
ﬁ;n’n calculated from R,
g, Vs T see specific cases

Table 3.3: Parameters for simulations (j € {1,2}, m,n € {r,v}).

about the volume of passengers traveling in other directions are available in this study.
For many destinations available from Canada, the surveys of Statistics Canada [40] pro-
vide information about the ratio of the volume of foreign travelers to Canada and Canadian
travelers to the other region. We assume that all Canadian residents who leave Canada will
return sometimes later, therefore for a specific region 2, the ratio of the annual volume of
residents of this region traveling to Canada and Canadians returning home from the region
is explicitly given by the statistics. Thus, given the annual volume of all passengers from
a specific region 2 toward Canada, we can determine {29, the annual volume of residents of
region 2 traveling to Canada, and the annual volume of Canadian residents returning home
from region 2. We assume that this number equals €2, the annual volume of Canadian
passengers to region 2. The annual volume of passengers toward Canada and the ratio of
Canadian residents and residents of region 2 traveling between Canada and region 2 for

three origin—destination pairs can be found in Table 3.4.

We need a7 and a9, the traveling rates of Canadian residents and residents of region

2. In our simulations, we define the traveling rate of residents of region j at time ¢ as

a;(t) = %N%(t), J € {1,2} (the definition is slightly different in the case of the origin—
J

destination pair “Canada—Mexico”, see the corresponding subsection). Parameters v; and
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Origin—destination pair || Khan et al. [24] | Statistics Canada 2009 [40]
Canada — China 786569 9:5
Canada — UK 1203272 14 : 11
Canada — Mexico 655219 15: 2

Table 3.4: Annual travel volumes and statistics for three origin—destination pairs. The
annual volumes of passengers toward Canada were derived from [24]. The statistics of [40]
provide the ratio of Canadian residents and residents of the other region (China / United

Kingdom / Mexico).

7 are determined for each specific origin—destination pair. Initial values are set as follows:

. (1-10"%)M; ifu=0,
Sj(u) = {

Mj if u <0,
Qp
SY(u) =
i (u) 3657,
107°M; if u =0,
By (u) = ro
0 if u<0,

where M; denotes the population size of region j, and E} (u) = AT (u) = I["(u) = R}*(u) =
0 for uw € [-7,0], 5,k € {1,2}, j # k, m € {r,v}. We determine the transmission rates
B;n’n, j € {1,2}, m,n € {r,v}, as follows. For each origin-destination pair of our model,
we denote the local reproduction number of region j (i.e., the reproduction number of the
region in the absence of travel) by Ry, ;. Several recent studies (|4, 46]) estimated the basic
reproduction number for regions which were affected by the 2009 HIN1 pandemic. For a

given Ry ;, we can use the formula

S70) /p p
Ri; = Bj <+(1—P))
7 INT(0) \py N
to calculate 3;. Assuming homogeneous mixing in the regions, we can set Bim = Bj" =
B}” = 5}”’ = f3;. For the numerical simulations we set ,u,z; = uz; = ,uIT = (; as pointed out

in Section 3.4, this assumption allows us to obtain the inflow terms explicitly and also to

calculate the reproduction number.

3.6 Prototype origin—destination pairs

In this section, we present simulations for influenza using real demographic and air traffic
data. We set up three distinct scenarios for the origin—destination pairs: we choose Canada
to represent region 1 and consider three possible geographic locations for region 2: China,

Mexico and the United Kingdom. All these three countries are popular destinations of
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flights originated from Canada. We would like to emphasize that, although we used real
demographic and air travel data in the simulations and chose reasonable parameter values
from the ranges of Table 3.3, the epidemic curves depicted below do not need to match with
the 2009 A(HIN1) influenza pandemic data reported, since there were other factors which
are not considered in our model setting. The purpose of choosing such origin—destination
pairs for simulations was to illustrate our model for regions parametrized with different
values of the key model parameters. Nevertheless, we also present the data fitting results of
the model to the Canadian and Mexican morbidity data of the first wave of the pandemic,
since in the early stage these data were largely determined by the characteristics of the
two countries and the travel between them. Table 3.4 summarizes real air traffic data and
the ratios of Canadian residents traveling to region 2 and residents of region 2 traveling to

Canada for three origin—destination pairs.

3.6.1 Canada — China: The case of asymmetric populations

China, including Hong Kong generates the third largest volume of international passenger
traffic entering Canada: approximately 780000 air passengers initiate their trip from within
China’s borders. In aspect of global preparedness against worldwide spreading pandemics
China is of particular interest: its variability of poverty and wealth provides a platform
for the appearance of emerging infectious diseases (e.g., HSN1, SARS). The country’s high
connectivity with all parts of the world (it possesses the fifth largest international airport

in the world) clearly shows it’s significance in international spreading of the infection.

In the model construction we assumed that each individual of the population has equal
chances to travel. This generalization is definitely not fulfilled in a population of more than
1 billion with various social-economic background, hence here we use a somewhat smaller
population of potential travelers of China (150 million). The population size of Canada
is set to 34.461 million, we let 7 = 0.5 (days) since we assume that a flight between the
regions takes approximately 12 hours. For the local reproduction numbers of Canada and

China, we pick Rr1 = 1.3 and Rr2 = 1.4. Parameters a1 and ap were derived using

1
=

travel volumes as explained in Section 3.5, we choose v = 73 =

We present Figures 3.8 and 3.9 to demonstrate the role of the human transportation
system played in the spread of influenza. Assuming that initial outbreaks in Canada (red
curves) and China (blue curves) occurred independently, the effect of traveling on the
spread of the epidemic seems negligible, because the epidemic curves in case of separated
regions (Figure 3.8(a)) are very similar to the epidemic curves in case of connected regions

(Figure 3.8(b)). However, Figure 3.8(c) clearly shows the importance of incorporating
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Figure 3.8: Epidemic curves of Canada (region 1, red) and China (region 2, blue). In case
of independent outbreaks in Canada and China, the effect of travel on the spread of the
pandemic is negligible. However, if we assume that the pandemic originates from China
and Canada is susceptible, then due to air transportation the infection invades the disease
free Canada, though with delayed peak time. For the simulations, we set Rp 1 = 1.3,
Rrp=14,7=05"=v%"'=7 " =15 pt =14, p7! =3, p;t = 4.1, p = 0.6,
p=0.1.

transportation into the model: if we assume that initial cases only appear in China and
Canada is completely susceptible, then the disease reaches Canada, obviously due to air
transportation. This scenario results in approximately the same peak size as if we assumed
initial outbreaks in both regions, although the peak time in Canada is delayed by almost 40
days. Analyzing the public reports of health agencies confirms that large delays between
peak times of connected regions are unrealistic when one considers pandemics where air

transportation was proved to play a key role in disease transmission (SARS 2002-2003,
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Figure 3.9: Epidemic curves of Canada (region 1, red) and China (region 2, blue) when
we ignore the possibility of disease transmission during travel and we assume that the
pandemic originates from China and Canada is susceptible. Peak time in Canada: day
220, peak time in China: day 125. For the simulations, we set Ry 1 = 1.3, Rr2 = 1.4,
T=05"'=%"'=78"=15p =14, p4 ' =3, ;' =41,p=06, p=0.1.

A(HINT)v influenza 2009). Figure 3.9 shows what happens if we ignore the possibility
of on-board disease transmission in the model. Comparing this result with Figure 3.8(c)
is of particular interest: if one incorporates disease dynamics during travel, the model
predicts the peak time of the invaded region to be 30 days earlier. As a concluding remark,
we wish to emphasize that, following these findings, simpler models that ignore travel-
related infections can seriously overestimate the time a region has for preparation before

the outbreak arrives.

3.6.2 Canada — United Kingdom: The symmetric case

The European Union generates almost one-fifth of all international traffic entering Canada.
Although the EU may be an unlikely source for the emergence of new or dangerous infec-
tious disease threats, it generates over 19 % of the world’s international traffic volume and
consequently should receive special consideration as an important potential location from
which infectious disease threats may enter Canada. Being the second leading international
source of passenger traffic entering Canada (6.6 %), the United Kingdom is an important

international traffic intersection.

Unlike the Canada—China and the Canada—Mexico origin—destination pairs, the Canada—
United Kingdom pair can be considered as the case of two symmetric regions. The popu-
lation sizes of the two countries have the same magnitude, moreover just like Canada, the
UK also possesses highly developed health care system and advanced intervention tech-
niques in disease control and prevention, hence we can assume that the local reproduction

numbers are similar. In the simulations we set the population size of the UK to be 62.262
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Figure 3.10: Reducing travel volumes by 90 % between Canada (region 1, red) and the
UK (region 2, orange) results in a delay of the peak time in Canada by 40 days. We
assumed the initial number of infectious cases in Canada to be 0. For the simulations,
weset Rp1 = 1.3, Rpp =13, 7=05"' =% =780 =15 p ! =14, ! =3,
pt=4.1,p=06,p=0.1

million, Rp1 = Rro =13, 11 =7 =% and 7 = 0.5.

Reducing the number of flights to and from infected areas and screening out infected
individuals at their arrival to international airports are considered to be powerful tools when
one’s aim is to mitigate the severity of pandemic outbreaks. However, entry screening works
ineffectively on asymptomatic infected individuals, who — despite their reduced disease
transmissibility — can spread the infection after arrival. We examined the benefits of travel
restrictions on the spread of the pandemic in two symmetric regions. We found that in
the case of a single outbreak in the UK, the peak time of the outbreak in the originally
disease free Canada can be delayed by 40 days when we consider the hypothetical case of
90% limitation in the travel volumes between the two regions. See Figure 3.10, red and
orange curves show the number of symptomatic infected cases per 1000000 in Canada and

the UK, respectively.

3.6.3 Canada — Mexico: The case of asymmetric travel

Mexico is a potential source of threatening pandemics due to high population density,
poverty and limited health care resources on one side but high volume of international
traffic on the other side. The country generates the forth largest volume of international
passenger traffic entering Canada (approximately 655000 passengers, second largest volume

from any developing countries). A significantly large part of this traffic originates from re-
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(a) Peak time in Canada: day 195, peak time (b) Peak time in Canada: day 230, peak time
in Mexico: day 123 when v, = %, Yo = 1—15 in Mexico: day 123 when v, = é, Yo = 0%2.

Figure 3.11: In case of a single initial outbreak in Mexico (region 2, green), the outbreak in
Canada (region 1, red) can be delayed by 35 days if the average stay of visitors is reduced
from 15 days to five hours. For the simulations, we set Ry 1 = 1.3, Rp2 = 1.4, 7 = 0.25,
B =15, p =14, p 1 =3t =41,p=06, p=0.1.

sort cities like Cancun (177000) and Puerto Vallarta (105000) between January and April,
as Canadians return home from winter vacations. However, Mexico City is a steady source
of inflowing air traffic throughout the year (190000). This asymmetric travel behavior may

cause very dissimilar epidemic courses if we consider outbreaks in different parts of the year.

In order to incorporate the phenomenon of this asymmetric travel behavior of passen-
gers traveling between Canada and Mexico, we divide the course of the year into two phases.
Between January and April (Phase I) the daily volume of Canadian residents traveling to
Mexico is significantly higher than during the other 8 months of the year (May—December,
Phase II). We denote the travel rates of Canadian residents toward Mexico in Phase I
and Phase II by of and af!, respectively. Parameter (2; was introduced in Section 3.5 to
denote the annual volume of Canadians entering Mexico, and using the data of Table 3.4,
we obtain that ) = 655000%. We define (), the traveling rate of Canadian residents
toward Mexico at time t as follows: we assume that the passenger traffic from Canada to
resort cities like Cancun and Puerto Vallarta is due to Canadian residents only, who travel
to Mexico for vacation, and all travelers to these cities arrive to Mexico during the first
four months of the year. We denote the number of all residents of region 1 (Canada) at
time ¢ by N7 (t). We get that

on(t) = ol = 0 — 177(;)06(;)— 105000 N{l(t)
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Ro= 1.39997
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Figure 3.12: Epidemic curves of Canada (region 1, red, peak time: day 160) and Mexico
(region 2, green, peak time: day 117) when peak times were fitted to the real morbidity
data of the first wave of the 2009 HIN1 and day 0 corresponds to December the 31st 2008.
Travel rates arise from [24], historical peak times (day 117-123 in Mexico, day 155-162
in Canada) were derived from [32, 35, 52|. We set Ry 1 = 1.38, Rpo = 1.4, 7 = 0.25,
Yl =yt =15, 8T =20, pt =14, ot =27, p7t =41, p=0.6, p=0.1.

for t > 121, i.e., in Phase II and

;g 177000 + 105000 1
! +

ar(t) = =g 121 NI (1)

for 0 <t <121, where t = 0 corresponds to December 31, 2008.

As mentioned above, a significant part of the passenger traffic between Canada and
Mexico is due to Canadian vacationers who visit holiday resorts in the first four months of
the year. Although the news about an epidemic outbreak might not make people cancel
their vacation, it may affect the length of their stay in the affected area. We considered
two scenarios for the average length of visitors’ stay to reveal the importance of this time
period. Figure 3.11 shows that the smaller the value of parameters % and 712 is, the later
the pandemic hits Canada (red curve) if we assume that the first cases were identified in
Mexico (green curve). If visitors spend 15 days on average in the other region, the pandemic
peaks 35 days earlier in Canada than if we consider an 0.2 day-long (approximately five
hours, usual waiting time of transit passengers at airports) stay only. These results were
obtained using parameter values 7 = 0.25, R 1 = 1.3, R 2 = 1.4 and the population size

of Mexico was set 112.323 million.

3.6.4 Fitting the model to the 2009 A(H1N1) pandemic

To illustrate the applicability of our approach, we fitted the model to the first wave of the
2009 A(HIN1)v pandemic in Canada and Mexico. For the simulation, we chose reasonable

values for epidemiological parameters from the ranges of Table 3.3, moreover we used real
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demographic and air traffic data of the Canada—Mexico origin—destination pair. Travel
rates were derived from [24], and we set 7 = 0.25. According to the public reports of
the Mexican Social Security Institute [32], WHO Global Influenza Virological Surveillance
[52] and the Public Health Agency of Canada [35], the epidemic peaked around week 18
in Mexico and weeks 23-24 in Canada. If day O corresponds to December the 31st 2008,
then historical peak times are obtained around days 117-123 in Mexico and around days
155-162 in Canada. For the simulations, we estimated the local reproduction numbers to
ensure that the peak times of the epidemic curves fit the real morbidity data. The result
can be seen in Figure 3.12, where Ry 1 = 1.38 and R 2 = 1.4. These local reproduction
numbers match the results of [4, 46, 48].

We performed a systematic analysis to reveal the sensitivity to several key parameters.
The analysis showed the robustness of the presented fitting in parameters 71, 2, p and p,
although it turned out that the length of latency and infectious periods, the transmission
rate during travel and the local reproduction numbers strongly affect the peak times.
We wish to emphasize the utmost importance of incorporating disease dynamics during
transportation into our model. The discussion around Figures 3.8(c) and 3.9 in Section
3.6 clearly shows that ignoring the possibility of on-board disease transmission results in
delayed peak times, thus we could not have had a fitting as presented in Figure 3.12 if we
had neglected travel-related infections while keeping every other parameter fixed. To ensure
that the curve of Canada peaks around day 155-162 in the absence of travel infections, a
much higher value for the Canadian reproduction number Ry, ; would be necessary, which

is unrealistic according to the above mentioned references.

3.7 Conclusion

Recent epidemics like the 2002-2003 SARS outbreak and the 2009 pandemic influenza
A(HIN1) exemplified the role of the global air transportation network played in the world-
wide spread of infectious diseases. The topic of epidemic spread due to human trans-
portation has recently been examined in several studies. The metapopulation models in
[2, 3, 36, 50] describe the spatial dispersal of infected individuals in connected regions, al-
though ignore the fact that long distance travel such as intercontinental flights provides a
platform for on-board transmission of the disease (|16, 49]). The studies [10, 28, 33, 34, 42]
account for the fact that, since the progress of the above mentioned diseases is fast, the
time needed for transportation between regions is not negligible. They consider the pos-
sibility of disease transmission during travel, although the standard SIS-type models used

in these works might not be suitable for modeling influenza or SARS.
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We introduced a dynamic model which describes the spread of an infectious disease in
and between two regions which are connected by transportation. In the model setup we
distinguished local residents from temporary visitors because they might have very differ-
ent contact rates, mixing patterns and travel behavior. We used the SEAIR model as a
basic epidemic building block in the regions and also during the travel, and we modeled
disease dynamics during travel by a system structured by travel time. We showed that our
model is equivalent to a system of nonlinear functional differential equations with dynam-
ically defined delayed feedback, and we examined the fundamental dynamic properties of

the system.

We detailed the computation of the basic reproduction number, which is a threshold
quantity for epidemic outbreaks, and discussed the dependence of Rg on several key model
parameters. The analysis demonstrates the importance of incorporating the phenomenon
of disease transmission during transportation: transmission rates during travel can be much
higher than under usual circumstances and our results show that 87 may significantly alter
the value of Rg. We parametrized our model for influenza and performed simulations with
real demographic and air traffic data. Three origin—destination pairs were introduced for
the regions to demonstrate the effect of changing the value of various key model param-
eters and addressing possible interventions. We showed the applicability of our approach
by fitting the model to the first wave of the 2009 A(HIN1) influenza pandemic in Canada

and Mexico.

Our results, in conjunction with recent studies [16, 28, 49|, support that considering dis-
ease transmission during travel is of particular interest to model the spread of diseases with
fast progression. We demonstrated that simpler models which ignore on-board infections

can seriously overestimate the time a region has before the epidemic wave arrives.



Chapter 4

Epidemic models with

travel-related infection

In the introduction we presented a class of models for the spread of infectious diseases in
regions which are connected by means of long distance travel. The SEAIR-based model we
established and analyzed in Chapter 3 describes how the global airline network contributes
to the propagation of pandemics of the present age, like SARS or influenza. Our results
highlight the importance of including travel time and disease dynamics during travel in the
model: the invasion of disease free regions is highly expedited by the elevated transmission
potential during transportation. Intervention techniques like partial or full airport closure
are considered to be potential tools in epidemic prevention and control, as these strategies
are aimed to prevent a situation of multiple induced outbreaks generated by infected agents
who arrive from endemic regions. In this chapter, we further investigate the topic of
infection spread on travel networks as we consider a simple disease transmission model
in two connected regions with an entry screening procedure initiated for travelers upon
arrival to a region. We also formulate an epidemic model that describes the propagation
of a disease in a population of individuals who are distributed over an arbitrary r number
of regions, which are connected by a general transportation network. We will see that
the model setup leads to a system of autonomous equations with multiple delays, thus we
extend our framework elaborated in Chapter 2 to such systems. Instead of the typical
assumption of modeling disease transmission by standard incidence, we consider a general

infection term and give condition for the existence of solutions in the model.

4.1 An epidemic model with entry screening

We formulate a dynamic model describing the spread of an infectious disease in two regions,

and also during travel from one region to the other. We assume that the time required to

65
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Region 1

Figure 4.1: Color-coded flow chart of disease transmission and travel dynamics of the SIRJ
model. The disease transmission in the two regions is shown in two different columns,
the disease progresses vertically from the top to the bottom (solid arrows). Green dashed
arrows represent traveling. Green solid arrows show the dynamics of the pandemic during

the course of the travel. The description of the variables can be found in Table 4.1.

complete travel between the regions is not negligible. We divide the entire populations of
the two regions into the disjoint classes Sy, I1, Ry, J1, So, Is, Ry and Jo. Lower index
denotes the current region, letters S and R represent the compartments of susceptible and
recovered individuals, respectively. We assume that individuals are traveling between the
regions and travelers are requested to undergo an entry screening procedure before enter-
ing a region after travel. The purpose of the examination is to detect travelers who are
infected with the disease and isolate them in order to minimize the chances of an infected
agent spreading the infection in a disease free region. Such interventions were proven to
have significant effect in mitigating the severity of epidemic outbreaks. Some individuals
who are infected with the disease get screened out upon arrival to a region, so they become
isolated and belong to class J. Others whose illness remains hidden by the examination,

and those who are sick but do not travel are in class I and we simply call them infecteds.

Let Sy(t), I1(t), Ri(t), Ji(t), Sa(t), I2(t), Ro(t) and Ja(t) be the number of individuals
belonging to Sy, I, R1, J1, Sa, 12, Ro and Js, respectively, at time t. Susceptible, infected
and recovered individuals of region 1 travel to region 2 by travel rate a;. The travel rate
of individuals in classes So, Is and Rs from region 2 to region 1 is denoted by as. Isolated
individuals are not allowed to travel, moreover we assume that they do not make contact

with individuals in other classes until they recover. Model parameters p; and po represent
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Variables and key model parameters

S1, I1, R1, J1 Susceptible, infected, recovered and isolated individuals in region 1
So, Is, Ro, Jo Susceptible, infected, recovered and isolated individuals in region 2
s1, 11, M Density of susceptible, infected and recovered individuals

during the travel from region 2 to region 1
So, 19, T Density of susceptible, infected and recovered individuals

during the travel from region 1 to region 2

51, B2 Transmission rate in region 1 and in region 2
a1, Qg Traveling rate of individuals in region 1 and in region 2
1, 2 Recovery rate of infected and isolated individuals

in region 1 and in region 2
D1, P2 Probability of screening out infected travelers

arriving to region 1 and to region 2

T Duration of travel between the regions
BT Transmission rate during travel
ul Recovery rate during travel

Table 4.1: Variables and parameters of the SIRJ model. In the table, “density” means the

density with respect to the time elapsed since the start of travel.

the recovery rate of infected and isolated individuals in region 1 and region 2, we denote

the transmission rates in region 1 and region 2 by 1 and (5.

Let s1, i1, r1 and so, i9, 9 denote the classes of susceptible, infected, recovered individ-
uals during the trip to region 1 and to region 2, respectively. The recovery rate of infecteds
in travel is 47, they transmit the disease by rate 87 during the course of travel. Let 7 > 0
denote the time required to complete a one-way trip, which is assumed to be fixed. To
describe the disease dynamics during the travel, for each t. we define s1(60;t,), i1(0;t%),
r1(0;ts), s2(0;ts), i2(0;ts) and ro(0;t,) as the density of individuals with respect to § who
started travel at time ¢, and belong to classes si, i1, 71, S92, i2 and ro, respectively, where
0 € [0, 7] denotes the time elapsed since the beginning of the trip. The total density of

individuals who started travel at t. is constant during the trip, that is,

$1(0;5ts) +i1(05ts) + r1(0;5t) = s1(0;5ts) +91(0;4) + 71 (05 t4),
s2(0;ts) + i2(0; i) + r2(0; 1) = 5205 ti) +42(0; 1) + 72(0; £4)

for all & € [0,7]. By choosing 6§ = 7, t. = t — 7, the terms s1(r;t — 1), ri(7;t — 7)
and so(T;t — 7), ro(T;t — 7) express the inflow of susceptible and recovered individuals

arriving to region 1 to compartments Si, Rj, and to region 2 to compartments Sy, Ro,
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respectively, at time t. We assume that travelers undergo an examination upon the arrival
to region 1 and 2, which detects infection by infecteds with probability 0 < pi,ps < 1.
This implies that the densities p1i1(7;t — 7) and poia(7;t — 7) determine individuals who
enter J; and J, respectively, at time ¢, since p; and py are the probabilities that infected
travelers get screened out upon arrival. However, infected individuals enter classes I; and
I, with probabilities 1 — p; and 1 — po upon completing a trip, hence (1 — p1)ii(7;t — 7)

and (1 — pe)ia(7;t — 7) give the inflow to classes I; and I, respectively, at time t.

The flow chart of the model is depicted in Figure 4.1, see Table 4.1 for variables and key
model parameters. We obtain the following system of differential equations for the disease

spread in the regions, where disease transmission is modeled by standard incidence:

o Syt (1) |
Si(t) = —5151(t) +111(t§ SR a1S1(t) + s1(m;t — 1),
i) = g ODO L p ) aan(t) + (1 pa)ia(rt— 1),

S1(t) + 1 (t) + Ri(?)
Ry (t) = pa (11 (t) + J1(t) — cn Ry (t) + ri (73t — 7),
Ji(t) = = J1(t) + pria (T3t — 1),

(4.1)
So(t) = —fs S0 %z)(g(_? Rall) aSs(t) + sa(T;t — 1),
0=t %g)éj . o F22(0) —eela(t) + (L= pa)ia(rst =),

Rz(t) = po(Ia(t) + J2(t)) — aaRo(t) + ro(T5t — 7),
| Jo(t) = —paJa(t) + paia(Tit — 7).

For each t,, the following system describes the evolution of the densities during the travel

which started at time Z,:

d p N gT s1(6;t.)i1 (6; 1)

d931(97t*) - ﬁ Sl(e,t*) +Zl(9,t*) +T1(9,t*),

d. gy gr_ siBit)in(0:t) o
deh(&t*) =5 s1(0;ts) +i1(0;t) + r1(0;ts) poir(85ts),
d .
@rl(G;t*) = uTi1(6:t,),

: (4.2)

d, 0:t,) = —BT s2(0; £ )i2(0; )

g™ S9(0;ts) +i2(0;t) + 12(0; ts)’

d. gy gr s2(f5t)ia(0: ) .

a6 2 ) = 0 G i) + @) P )
d .
—ro(0:t,) = ulia(6;t),

dé
where again we assume standard incidence for the disease transmission. Note that the

dimensions of systems (4.1) and (4.2) are different.
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For 8 = 0, the densities are determined by the rates individuals start their travels from
one region to the other at time ¢,. Hence, the initial values for system (4.2) at 6 = 0 are
given by

51(0;ty) = aaSa(ts), $2(0;tx) = @1.51(tx),

i1(0;t) = aala(ty), i2(0;ts) = a1 li(ts), (4.3)

r1(0;ts) = agRo(ty), 7m2(0;t) = a1 Ry (tx).
Now we turn our attention to the terms si(7;t — 7), (1 — p1)is(7;t — 7), ri(m;t — 7),
prit(ryt — 1), sa(m;t — 1), (1 — pa)ia(T;t — 7), ro(7;t — 7) and pois(7;t — 7) in system
(4.1), which are the densities of individuals arriving to classes Sy, I1, Ry, J1, S2, I2, R
and Jo, respectively, at time ¢ upon completing a one-way trip. At time ¢, these terms
are determined by the solution of system (4.2) with initial values (4.3) for t, =t — 7 at
0 = 7. An individual may move to a different compartment during travel, for example
a susceptible individual who travels from region 1 may arrive as infected to region 2, as

given by the dynamics of system (4.2).

Next we specify initial values for system (4.1) at ¢ = 0. Since a one-way trip takes 7
units of time to complete, arrivals to region 1 are determined by the state of classes Ss, 1o
and Ry at t — 7 and vice versa, via the solution of systems (4.2) and (4.3). Thus, we set

up the initial functions as follows:

where u € [—7,0] and ¢k ; is continuous for each j € {1,2}, K € {S,I,R, J}.

4.1.1 The compact form of the model

For a given t,, we define y(0) = (s1(0;t.), i1(0; 1), 11(0;t4), 52(0; 1), i2(0;t4), r2(0;t:))T
and let ¢ = (91, 92,93,94,95,96) ", where y: [0,7] - RS and g: R® - RS. Function g
is defined as g;(y) equals the right-hand side of the equation for y; in system (4.2) for

j=1,...,6. For instance,

T YaYs5 T
g5y) =p" ———— — ' ys.
) Ya+yYs +Ys H

Then we find that for each fixed t,, (2.10) is a compact form of (4.2) for m = 6, with
the initial value y, set as (4.3). To apply the results we have obtained in Chapter 2 for

the general system (2.10) it is necessary to prove that the conditions made in Section 2.3
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hold for the SIRJ model. We have seen that the benefit of showing the global Lipschitz
property (gLip) for g is twofold, since it guarantees the existence of the solution of (2.10)
on [0,00), and trivially also yields that (Lip) holds for g. First we need a simple result
on the nonnegativity of solutions of (4.2), which is stated here without proof since it is
immediate from the equations. We remark, however, that existence of the solution follows

from the continuity of g, without assuming the Lipschitz property ([22]).

Proposition 4.1. For each fized t., the solution of system (4.2) is nonnegative for non-

negative initial values, where it exists.

Proposition 4.2. Function g, as defined for the SIRJ model, satisfies the global Lipschitz
condition (gLip) on each bounded subset of Rg_. It follows that for each fized t,, there

exists a unique nonnegative solution of system (4.2) on [0,00) for nonnegative initial data.

Proof. The function g: R® — RS possesses the global Lipschitz condition (gLip) if there
exists a Lipschitz constant K, > 0 such that |g(z) — g(w)|¢ < K4|z — w|e holds for any
zyw € RS, 2z # 0, w # 0. First, we show that there exists a (Ky); > 0 such that
l91(2) — g1(w)| < (K4)1]2z — wle (all norms will be denoted by | - | throughout the proof).

For z,w € RS, 2 # 0, w # 0, it holds that

T 2122 T wi1w2
91(2) — g1 (w)| = |8
21+ 22+ 23 w1 + wo + ws
wiw Z1%
S ﬂT 1w2 _ 1<2
w1 + wo + ws 21+ 22 4+ 23
AT wiwsa B w122
w1 + wy + ws w1 + wy + ws
w122 w122 w122 w122
w1 + wo + ws w1 + 29 + ws w1 + 29 + ws w1 + 29 + 23
w122 w122 w122 2172

w1 + 29 + 23 21+ 22+ 23 21+ 22 + 23 21+ 22 + 23

§5T<

' w129 W1 29

wi1w9 w129
w1 +wy +w3  wyp + w4+ ws

w1 + wo + ws w1 + 29 + ws

w1 + 29 + ws w1 + 29 + 23

)

‘ w129 w129

W1z2 z1%2

' w122 w122

w1 + 29 + 23 21+ 220+ 23 21+ 22 + 23 21+ 220+ 23
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w1

w122
w1 + wo + w3

(w1 + wa + ws)(wy + 22 + ws)

where we used that the inequality 29— <1 holds for any (a,b,c) € R3 \ {0}. We define

(Kg4)1 = 567, and note that the same constant works for (Kj)4 in |ga(2) — ga(w)| <
(Kg)alz — w] as

— g7 <|w2 — 2|

’4—\22—%02!

W1z2

+ |23 —w
| 3 3‘ (w1+z2+w3)(w1+zz+23)

w122

)
(w1 + 22 + 23) (21 + 22 + 23)

T~ Hteta

+ w1 — 21

< BT (2lwg — zo| + |23 — w3| + 2|21 — wy)
< 5ﬁ7WU)4’Zh

T 2526 T W5We
z)—ga(w)| = |—
194(2) = 9a(w)| ‘ b z5 + 26 + 27 ws + we + wy

< (Kg)4|w —z|.

Furthermore, we derive

2122

92(2) — ga(w)| = | B Tz — g7 wiwWa

21+ 22+ 23 w1 + wo + ws

+ pFwo

< MT\wg — 29| +BT (2lwg — 29| + |23 — w3| + 2wy — 21|)
< (W' 4587w - 2],

where T + 587 is a suitable choice for (Kj)2, and it is clear that (K,)s = u + 587
satisfies

T 2425 T T w4w5
Z)— w) = - 2 —
|95( ) 95( )’ b 24 + 25 + 26 was—p wy + ws + weg

< (Kg)5|w — 2.

+ pws

Last, by the computations

f3(2) = fa(w)] = |n" 22 — p" o)

< MTWHJA’ZL
Fol2) — fi(w)] = [Tz — uTu
< NTWU’—‘Zﬁ

we arrive to (K,)3 = p! and (K,)¢ = u’. To obtain the global Lipschitz constant for g,

we simply choose the squared sum of (Ky)1,...,(Ky)s. The proof is complete. O

Now as the existence and uniqueness of the solutions of (4.2) has been proved on [0, 7]

for each t., we get that the terms s1(7;t—7), (1 —p1)ir (75t —7), ri(7;t —7), prias(T;t—7),
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so(Tit—7), (1 —p2)ia(T;t—7), ro(T;t — 7) and poia(7;t — 7), representing inflow by means
of travel to the respective compartments in system (4.1), are well-defined. We proceed as
we let x(t) = (S1(t), I1(t), Ri(t), Ji(t), Sa(t), Ia(t), Ra(t), Jo(t))T for z: [0,00) — R® and
define f = (f1, f2, f3, far f5, fo, fr, f3)T, f: R® = RS, as for each j € {1,...,8} fj(z) is the

right-hand side of the equation of x; in (4.1) without the inflow from travel; for instance,

_ 5, 2
filz) = 61561+1?2+333 R

If we let
hi(v) = agvs, ha(v) = aqos,

hz(v) = (9Vg, h5(v) = (X1V2,
hs(v) = agvy, hg(v) = aqvs,

h = (h17h27h3a h47 h5a h6): RS - RG) and

k1(v) = vy, ks(v) = vy,

ka(v) = (1 = p1)va, ke(v) = (1 — p2)vs,
k3(v) = vs, k7(v) = ve,

ka(v) = prva, ks(v) = pavs,

k = (k1,ko, k3, k4, ks, ke, k7, kg): RS — R8 then our system (4.1) with initial conditions
(4.4) can be written in a closed form as (2.9) for n = 8. The feasible phase space is the
nonnegative cone C. of C = C([—,0],R®), the Banach space of continuous functions from

[—7,0] to R® equipped with the supremum norm.

Our aim is to show that there exists a unique solution of system (4.1), moreover non-
negative initial data give rise to nonnegative solution. As (4.1) is equivalent to system
(2.9), we can use the framework established in Chapter 2, which yields that these results
can be obtained by checking certain conditions on f, g, h and k. Corollary 2.12 is applied
to get that solutions of system (4.1) preserve nonnegativity (where they exist), which also

ensures that it suffices to show the Lipschitz property for f only for nonnegative vectors.

Proposition 4.3. The solution of system (4.1) is nonnegative for nonnegative initial val-

ues, where it exists.

Proposition 4.4. Functions h and k, as defined for the SIRJ model, possess the global
Lipschitz property (gLip) on each bounded subset of Réj_ and R(j_, respectively. Function
f, as defined for the SIRJ model, satisfies the global Lipschitz condition (gLip) on each
bounded subset of ]R%_,
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Proof. It immediately follows from the definitions that h and k possess the global Lips-
chitz condition (gLip), moreover minor modifications in the computations for the Lips-
chitz constant of g in the proof of Proposition 4.2 yield that the condition holds for f.
Indeed, the inequalities |f;(2) — fj(w)| < (Ky)jlz —wls, 7 = 1,...,8, are satisfied if we
let (Ky)1 = 581 + a1, (Ky)2 = 581 + a1 + p1, (Ky)3 = 2u1 + o1, (Kf)s = p1 and
(Ky)s = 5P2 + a2, (Ky)s = 502+ o+ po, (Ky)7 = 2up + ag, (Ky)s = p2. Again, with Ky
defined as the squared sum of these constants we arrive to |f(z) — f(w)|s < K¢lz — wls,

which proves the statement. O

The necessary conditions for Corollary 2.10 are satisfied, thus using Remark 2.11 we
claim that there exists a unique solution of (4.1) on [—7,00) with initial conditions (4.4).
We recall that nonnegative initial data give rise to a nonnegative solution of (4.1), which

means that C, is invariant.

Theorem 4.5. For nonnegative initial values system (4.1) has a unique nonnegative so-

lution, which exists on [—T,00).

4.2 Multiregional SIR model with general infection term

We consider an arbitrary » number of regions which are connected by transportation, and
present an SIR-based model which describes the spread of infection in and between the
regions. We will learn that the compact form of the corresponding system of functional
differential equations is similar, though not identical, to systems (2.9) and (2.10) intro-
duced in Chapter 2. Henceforth, we refer to the general framework where applicable, and
prove some analogous results in this chapter if the setting considerably differs from the one

established in Chapter 2.

We formulate a dynamical model describing the spread of an infectious disease in r
regions and also during travel from one region to another. We divide the entire populations
of the r regions into the disjoint classes S}, I;, Rj, j € {1,...,r}, where S;(t) I;(t), R;(t)
denote the number of susceptible, infected and recovered individuals, respectively, at time
t in region j, j € {1,...,r}. For the total population in region j at time ¢, we use the
notation

N;(t) = S;(t) + I;(t) + R;(t).

The incidence in region j is denoted by A;(S;(t),I;(t), Rj(t)), model parameter y; repre-
sents the recovery rate of infected individuals in region j. We denote the travel rate from
region j to region k by «a;y for j,k e {1,...,7}, j # k, and we let o j = 0.

Let s j, i, Tk, denote susceptible, infected and recovered travelers, respectively, where
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Figure 4.2: Color-coded flow chart of disease transmission and travel dynamics of the
multiregional SIR model for » = 4 regions. The disease transmission in the regions is shown
in four blocks, arrows colored with the same colors indicate how the disease progresses.
Green dashed-dotted arrows represent traveling. Green solid arrows show the dynamics
of the pandemic during the course of the travel. The description of the variables can be
found in Table 4.2.

lower index-pair {k,j}, j,k € {1,...,7}, j # k, indicates that individuals are traveling
from region k to region j. Let 74 ; > 0 denote the time required to complete the travel
from region k to region j, which is assumed to be fixed. To describe the disease dynamics
during travel, for each t, we define sy ;(6;ts), i (05 ts), 75,;(0;ts), j, k€ {1,...,r}, j #k,
as the density of individuals with respect to 6 who started travel at time ¢, and belong
to class s j, ik j, Tk,j, respectively, where 6 € [0, 7y ;| denotes the time elapsed since the
beginning of the travel. Then sy ;(7k i3t — Tk ), ik (Th i3t — Thj), Tk (Th j;t — Tk j) €Xpress

the inflow of individuals arriving from region & to compartments Sj;, I;, R; at time ¢t. Let
T j (05 t4) = $k,(03 1) + 3 (05 84) + 7h,5 (03 )

denote the total density of individuals with respect to 6 during the travel from region k
to j, where j,k € {1,...,r} and j # k. The total density is constant during travel, i.e.,
Ny, (0;te) = ng ;(0,t,) for all 6 € [0, 74 ;]. During the course of travel from region & to j,

Ak

(81,05 84), g (65 84), 75,5(0;t)) describes the incidence, and we let uf’j denote the
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Variables and key model parameters

S;, I;, Rj, N;j Susceptible, infected, recovered and all individuals in region j
Sk,j» ik,js Tkyjs Tk, Density of susceptible, infected, recovered and all individuals

during the travel from region k to region j

A; Incidence in region j

)‘;}F, ; Incidence during travel from region k to region j

1 Recovery rate of infected individuals in region j

u%’ j Recovery rate during travel from region k to region j
Qi ke Travel rate from region j to region k

Th.j Duration of travel from region k to region j

Table 4.2: Variables and parameters of the multiregional SIR model (j,k € {1,...,r},
j # k). In the table, “density” means the density with respect to the time elapsed since

the start of travel.

recovery rate.

For convenience, we define functions s; j,4;;,7;;: R xRy = Ras s;;(0;t.) = i;;(0;ts) =
r;;(0;ts) = 0, and constants 7;; = 0 for each j € {1,...,r}. All variables and model
parameters are listed in Table 4.2, while Figure 4.2 depicts the flow chart of the model.
Based on the assumptions formulated above, we obtain the following system of differential

equations for the disease transmission in region j, j € {1,...,r}:
T T
Si(t) = —A;(-) — (Z %}k) Si() + Y sk (Thgit — ),
k=1 k=1

L) = Ay() — (Z aj,k) L) = Ly (8) + > i (Thgit = Thg), (L;)
k=1 k=1

Rj(t) = p;l;(t) — (Z %k) Ri(t) + > 1k (Thgit — i)
k=1 k=1

For each j,k € {1,...,n}, j # k, and for each t,, the following system (7}, ;) describes the

evolution of the densities during the travel from region k£ to j which started at time %,:

d
—— sk, (05 1) = —Ag,j(‘%

a0
d . .
g% (O3 t) = Nieg () = g i (03 4), (Tk.5)

d .
@Tk,j(e; ty) = uf,ﬂk,j(&t*)-

For sake of simplicity, in systems (L;) and (7} ;) we use the notations A;(-) and /\,7; ()
for the incidences, where these functions are meant to be evaluated at the respective

points. For § = 0, the densities sy ;(6;ts), i ;(0;ts), 7%,;(0; ts) are determined by the rates
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individuals start their travels from region k to region j at time t,. Hence, the initial values

for system (7} ;) at # = 0 are given by
0;t4)
i, (05 ) = ag 1 (ts), (IVTy;)
0;t4)

Now we turn our attention to the terms sy (ki t =7k j): @k, (Th i3 t—Tk ), Thj (Th i3 t—Thj),
g,k e {1,...,r}, j # k, in system (L;), which give the inflow of individuals arriving to
classes S, Ij, Rj, respectively, at time ¢ upon completing a trip from region k. At time ¢,
these terms are determined by the solution of system (7}, ;) at # = 75, ; with initial values
(IVTy, ;) for t, =t — 73 5, since individuals who left region k with rate ay ; at time t — 7, ;

will enter region j at time £.

Next we specify initial values for system (L;) at t = 0. Since for k € {1,...,r}, k # j,
travel from region k to region j takes 73 ; units of time to complete, arrivals to region j at
time ¢ are determined by the state of the classes of region k at ¢t — 7, ;, via the solution of

system (7}, ;) and initial values (IVT}, ;). Thus, we set up initial values as follows:

Iij(u) = ¢rj(u), (IVLj)
Rj(u) = or,j(u),
where u € [—7,0] for 7 := max; pe(1,.. r} Th,j, MOTeOver @g ;, ¢r; and g ; are continuous

functions for each j € {1,...,7}.

4.2.1 The compact form of the model
For each j,k € {1,...,r}, j # k and t, > 0, we define y(0) = y}ifj(e) = (s1,j(0;t4),
ik, (65 ts), Tk’j(H;t*))T and g = grj = (95,91, 9r)", where y: 0, 7% ;] = R3, ¢g: R? - R3

and
gS(y) = _A{,j(yla Y2, ?J3)7

91(y) = N (1,92, 93) — 1k, ;2.
9r(Y) = pf. jys-
Then for each 7,k and t,, system

9(y(9)), (4.5)
Y

is a compact form of system (7}, ;) with initial values (/V7T} ;) for yo = (o ;Sk(t+),

o i1k (ts), cu ;Ri(t:))T. The following theorem concerns with fundamental properties of
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the solution y(0;0,y0) of system (4.5). The statement is based on the Lipschitz condition
(Lip) which was defined in Chapter 2.

Theorem 4.6. Assume that )\%:j possesses the Lipschitz condition (Lip) for any j,k €
{1,...,7}, 7 # k, on each bounded subset of R3. Moreover, suppose that )\gj(zl,zg,z'g)
> 0 and /\k (0, z9,23) = 0 hold for z1,z9,23 > 0. Then there exists a unique solution of
system (4.5) for 0 € [0,00), which continuously depends on the initial data. Furthermore,
the inequality

0 < y(6;0,50) < V3]yol

holds componentwise, which means that solutions are bounded and remain nonnegative for

nonnegative initial data.

Proof. By the definition of g we get that ¢ satisfies (Lip). The Lipschitz condition guar-
antees the existence of a unique solution, which continuously depends on the initial data
(|22]). In the model setup we have seen that ny ;(6;t,) is constant for all # in the maximal
interval of existence, moreover from the nonnegativity condition on )\Z’j it follows that

nonnegative initial data give rise to nonnegative solution. Hence we obtain

0 < npj (05 84) = npj(0; 8,

0 < 58,5 (05t4) + ik, (05 ) + 7,5 (0584) = sk,5(0; 1) + i j (05 84) + 78,5(0; T4
= v, (S () + T () + Rip(t4)),

0 < s (0;t4),0k,5(0; ), 7k, (05 1) < 0w (Sk(ts) + I (ts) + Ri(t4)),

(4.6)

where we used (IVT}, ;). With the definitions of y and yg, (4.6) implies that the inequality

0 < (y(6;0,%0)),, (¥(6;0,%0)) 5, (¥(6;0,50)) 5 < (Y0)1 + (%0)2 + (v0)3
< V3V (o)) + ((0)2) + (wo)s)?

holds on the maximal interval of existence, where we used the arithmetic-quadratic mean

inequality. We conclude that the solution is bounded and thus exists for 6 € [0, 00). O

For every j,k € {1,...,7}, 7 #k, let hy;: R3" = R3 be defined by hij = (hskjs Prkj,
hp ;)" and
hs . j(v) = ag var—2,
hi;(v) = o jv3k—1,
hRrkj(v) = o jvsk.
The feasible phase space is the nonnegative cone Cy = C([—,0],R3") of the Banach

space of continuous functions from [—7, 0] to R?" with the supremum norm. For ¢ € Oy,
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we use the notation ygr, 1(0) = y(6;0, hgj(d(—T7%;5))) € R3. Furthermore, we define
Wi: Cy —» R as

Yo(—mo)(Thg) 17 #k,
0 it =k,

(Wk(9))3j—2
(Wi(¢))3j—1
(Wi(9))s;
je{l,...,r}. Let z(t) = (Si(t), I1i(t), Ri(t),...,S,(t), I.(t), R.(t))T for t > 0, and
f=s1 f10, fr1s s fSs f1s fRe)T with

T
fsj(x) = —Aj(23j-2, 2351, 235) — (Z aj,k) 352,
k=1
T
frj(x) = Aj(wsj—2, v3j-1,35) — pjT3j-1 — <Z aj,k) T3j-1,
k=1

.
frj(@) = pjzsj1 — (Z %k) T3
k=1

for j € {1,...,r}. Clearly the union of systems (L;) with initial conditions (/V'L;),

j€{1,...,7}, can be written in a closed form as

a'(t) = f(z(t) + T Wi(xe) =: F(x),
; ' (4.7)

xo = O,

where z: Ry — R%, f: R - R¥ F:C, — R%¥, and ® € C, is defined as ® :=
(£S1, P11 PR, - - -+ PSPl PR -

We note that the compact form of the multiregional model shows similarities with the
general systems (2.9) and (2.10) defined in Section 2.3, Chapter 2. Thus, it is reasonable
to expect that results on the existence, uniqueness and nonnegativity of the solution of this
model can be derived using analogous methods as in Chapter 2. These issues are detailed

in the next section.

4.2.2 Basic properties of the model

This section is devoted to the proof of the general existence and uniqueness result of system
(4.7), moreover we will show that, under reasonable conditions on the incidence functions,
solutions are nonnegative. First we prove that if we assume that A; and )\%7 ; possess the
Lipschitz property (Lip), then F also satisfies the Lipschitz condition (Lip®) which has

been defined in Chapter 2 for autonomous systems.
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Lemma 4.7. Suppose that for all j,k € {1,...,r}, j #k, Aj and A%j possess the Lipschitz
property, moreover )\;‘gj(zl, z9,23) > 0 and )\g:j(O, z9,23) = 0 hold for z1,29,23 > 0. Then

F satisfies the Lipschitz condition on each bounded subset of C..

Proof. We claim that for every M > 0 there exists a constant K = K (M) such that the
inequality |F(¢) — F(¢)| < K||¢ — v|| holds for every ¢, ¢ € Cy with [|8]], ||¢|| < M.
Fix indices j,k € {1,...,r}, j # k. For [[¢|| < M it holds component-wise that
0 < Y(—m;) < M, so due to the continuity of hy ;, there exists a constant LZJ-(M)
such that 0 < hy ;(¢Y(—7x,5)) < Lz’j is satisfied component-wise. For yo = hy ;(¢(—7k;))
Theorem 4.6 implies that there exists a Ji, j = Jj (LZJ) = Ji j(M) such that the inequal-
ity [Yy(—n,;)(0)] < Ji,; holds for 6 € [0, 7] (for instance, one can let Jy j = \/gLﬁj)

The Lipschitz property of hy; follows from its definition. We assumed that )\£ ;s
Lipschitz continuous, this implies the Lipschitz continuity of g. Let K ,’; ;=K ,ff j(M ) be
the Lipschitz constant of hy ; on the set {v € R : |v] < M}, we denote the Lipschitz
constant of g = gx; on the set {v € R® : [v| < Jy;} by K} ; = K] ;(J) = K} ;(M). For
any ||¢[], [|¢¥]| < M, it holds that [¢(—7y ;)|,[¥(—7k ;)| < M. Since solutions of (4.5) can
be expressed as y(0;0,y0) = yo + f09 9(y(u;0,yp)) du, we have

0
iy (S(—7i)) + /0 9 Won () du

o ) (8) = U ry ) (6)] =
0

- (hk,jw(—m,j)) + [ ot a0 du)

e (D(—=Th ) — P (0(=Tk 5))]

+ /09 )g(yd)(—m,j)(“)) - g(yzb(—mf)(“))‘ du

IN

6
<KL =011+ | KL om0 = o ()]
for 6 € [0, 7]. By the definition
L(0) = [yg( ) () = Yo re ) (0)]

for 0 € [0, 7], it follows that

0
r(0) < K ll6— il + K2, /0 I(u) du,

and using Gronwall’s inequality we derive

L(0) < KJ |6 — |57 (4.8)



80 CHAPTER 4. EPIDEMIC MODELS WITH TRAVEL-RELATED INFECTION

Applying the definition of Wy, we arrive to the inequality

(Wi(9))3j—2 (Wir(¥))35-2
(Wi(d))zj—1 | = | Wk(®))szj—1 || = |Yo(—ri;) (Thig) = Yup(—m ;) (The)
(Wk(0))3; (Wk(¥))3;

< K je"ham g — g,

where we used (4.8) at § = 75, ;. It follows that W}, satisfies the Lipschitz condition for any
ke{l,...,r},and KWr = KWr(M) = \/Z§:1 (K,?jeKz»jT’“’jf is a suitable choice for the
i#k

Lipschitz constant.

Finally, the assumption that A; is Lipschitz continuous for any j € {1,...,r} implies
the Lipschitz continuity of f, so let K/ = Kf(M) be the Lipschitz constant of f on the
set {v € R3 : |v| < M}. Then for any ||¢||, ||¢|| < M it holds that |¢(0)], [(0)], |¢(—7)],
|(—7)| < M, thus we arrive to

[F(9) = F()] < 1F(6(0) = f@(0)] + D IWi(e) = Wi(¥)]
k=1

< KTljgp =yl + Y KWr||g — ],

k=1

Hence K/ 4+, /301 (K L’jergJ Thd )2 is a suitable choise for K, the Lipschitz constant
J#k ’

of F on the set {¢p € Cy : ||[¢]| < M}. O

Proposition 4.8. Assume that for any j,k € {1,...,r}, 7 # k, Aj(21,22,23) > 0,

A;(0, 22, 23) = 0, )\fyj(zl,zg,z;»,) >0 and Aij(o,zg,zg) =0 hold for z1, 22,23 > 0. Then for

any ® € C4, the solution of system (4.7) is nonnegative, where it exists.

Proof. As proved in Theorem 4.6, solutions of system (4.5) are nonnegative. For each
ke {l,...,r}, we define Wj: R x --- x R¥ - R%" as

_ | Y(Tk,45 0, hie i (wy)) if 5 # k,

= 0 if j =k,
(Wi(ws, ..., w))s nJ

where j € {1,...,7}, wy,...,w, € R¥. Consider the following differential equation with

multiple discrete delays
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It is not hard to see that (4.9) is equivalent to system (4.7), and we claim that the solution
of system (4.9) preserves nonnegativity. Similarly as in Chapter 2 we use Theorem 3.4 in
[38] which extends naturally to the case of multiple discrete delays, its conditions are clearly
satisfied: W, > 0 holds by the nonnegativity of y(7x ;; 0, hi ; (w;)), 4,k € {1,...,r}, j #k,
and the assumption on the Aj-s guarantees that fj(xz) > 0 is satisfied whenever x € R3",
x; = 0,1 € {1,...,3r}. We conclude that for non-negative initial data the solution of

system (4.7) remains nonnegative, where it exists. O

The assumptions of Lemma 4.7 and Proposition 4.8 on the incidences A;(S;(t), 1;(t),
R;(t)) and /\{J(sm(e; ts),ik,;(0;t4), 71, (05t)) can be fulfilled by various choices on the
type of disease transmission. For instance, let 8; > 0 be the transmission rate in region

j and let B,{J > 0 denote the transmission rate during the travel from region k to j,

gk e{l,...,r}, j # k. If we define

z1
Aj(z) = —fBj——— 2,
J() szl—i—ZQ—i-Zg 2
21
)\f,j(z)zfﬁkT —— 2,

J 21 4 29+ 23

for z € R3\ {0} then A; and )‘g,j obtain the forms

S.
A;(S;, 15, Rj) = _ﬁjﬁj,lja
j
. ‘ T Sk (4.10)
N (Skgo b g Thg) = =Bl j =1k js
Nk,j

which is called standard incidence.

Theorem 4.9. With the incidences A; and )\Zd- defined in (4.10), there exists a unique
solution of system (4.7).

Proof. Similarly as in Chapter 2, we refer to Theorem 3.7 from [38] which states that the
autonomous functional differential equation of the general form 2/(t) = F(x;) has a unique
solution if the condition (Lip®), defined in Chapter 2, is satisfied for F. We showed in
Lemma 4.7 that the Lipschitz condition for F follows from the Lipschitz property of the
incidences and the nonnegativity condition on )‘;'C, ;- The latter clearly holds with (4.10),
hence it remains to prove that the incidences possess the Lipschitz property (Lip). As one
may observe, the definition of the Aj-s and )\g = only differ in constant multipliers, hence
it is sufficient to prove the Lipschitz condition only for one of them, i.e., for A;. Moreover,

we prove this property only on the nonnegative cone R, which is invariant under systems
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(4.5) and (4.7) (see Theorem 4.6, Proposition 4.8). For z,w € RY | z # 0, w # 0, by

2129 wi1w2
A(z) = AM(w)| = |—
[A1(2) = A (w)) ‘ B1z1+z2+23 Ywy + wy + w3
W1W9 w1292
<5 -
w1 +wy +w3  wyp + wy + ws

+ w122 w122
wy + we +wz  wi + 29 + w3
—I_ ‘

w1 + 29 + w3 w1 + 29 + 23

)

’ w122 w122

w122 w122 W1z2 2122

21+ 220+ 23 21+ 22+ 23

w1 + 29 + 23 21+ 22+ 23

Bl | | | e
= Wy — 29| —————— + |29 —w
! 2= w1 + wa + ws 2 2 (w1 + wo + w3) (w1 + 22 + w3)
w129
+ |z3 —w
|3 3|(w1+22+1U3)(w1+22+Z3)
w122 ]
+lz1 —w + |lwy — 2| ———
21 1|(w1+22+23)(zl+22+23) [y 1|21+zg+23>

< b1 (2lwa — 22| + |23 — w3| + 2|21 — wy])
< 581w — 2|3

we obtain the Lipschitz constant K = 551, where we used that -3 < 1 holds for any

a,b,c >0, (a,b,c) # (0,0,0). O
Remark 4.10. It follows from the proof of Theorem 4.9 that the incidences A; and /\a j
defined in (4.10) also satisfy the global Lipschitz property, meaning that there is a Lipschitz

constant K which is independent of M. In this case, the solution of system (4.7) exists on
[0, 00).

Another natural choice for the incidences can be the following: for z = (21, 22, z3) € R3
and for j,k € {1,...,7}, j #k, let

Aj(z) = —Bjz1z,

Mej(2) = =i jz122,

which leads to the mass action-type disease transmission, therefore A; and )‘;}F, j have the

forms
Aj(S;,1;, R;) = —B;S;1;,
. J( Jr+] J) JTJ J (411)
Niej (ks 1k js Tk i) = — DB jSk.jik -

Theorem 4.11. With incidences A; and A%:j defined in (4.11), there exists a unique
solution of system (4.7).
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Proof. Similarly as in Theorem 4.9, it suffices to show that A; and )\g j satisfy the Lipschitz
property, and we detail the proof only for A1 and consider the nonnegative subspace Ri.

For any M > 0 and for any z,w € R} such that |z[3, |w|s < M, we obtain

[A1(2) — A (w)] = | = Brz1ze + Brwiwy|
< Brlz122 — wiws|
< Bilzize — z1we + 21w2 — wiws|
< Bi(Jz122 — z1wa| + [21w2 — wiwz|)
< Bi(z1]22 — wa| + walz1 — w1)

< 2Mﬂ1|w - Z|37
so we can choose K (M) = 2Mf;. O

Remark 4.12. Although the global Lipschitz property does not hold for A; and /\{J
defined in (4.11), the boundedness of the solution of (4.7) implies its existence on [0, o).
Indeed, Proposition 4.8 yields nonnegativity, and it follows from the model equations that
solutions are bounded above by the total population of r regions Ni(t)+- - -+ N, (t), which

is constant for all ¢ > 0 since demographic effects are not incorporated into the model.



Chapter 5

Backward bifurcation in SIVS
model with immigration of

non-infectives

This chapter investigates how travel-related inflow of individuals (e.g., immigration) af-
fects the bifurcation dynamics of an epidemic model in a single population. A simple
SIVS (susceptible-infected—vaccinated—susceptible) disease transmission model with im-
migration of susceptible and vaccinated individuals is considered, which may undergo two
different types of bifurcations, i.e., forward and backward transcritical bifurcations, when
the reproduction number equals unity. The difference between the two scenarios lies in the
number of positive (endemic) steady states of the model: in contrary to the case of forward
bifurcation when positive equilibria can only exist for Rg > 1, there are two endemic states
for some values of Rg less than one when the system exhibits backward bifurcation. After
giving an explicit condition for the existence of backward bifurcation and multiple endemic
equilibria, we show global stability results for the model and examine in detail how the

structure of the bifurcation diagram depends on the immigration.

5.1 Introduction

The basic reproduction number Ry is a central quantity in epidemiology, as it determines
the average number of secondary infections caused by a typical infected individual intro-
duced into a wholly susceptible population. In epidemic models describing the spread of
infectious diseases, the reproduction number works as a threshold quantity for the stability
of the disease free equilibrium. The usual situation is that for Rg < 1 the DFE is the
only equilibrium and it is asymptotically stable, but it loses its stability as Rg increases

through one, where a stable endemic equilibrium emerges, which depends continuously

84
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(a) Forward bifurcation. (b) Backward bifurcation.

Figure 5.1: Schematic bifurcation diagrams.

on Rg. Such transition of stability between the disease free equilibrium and the endemic
equilibrium is called forward bifurcation. However, it is possible to have a very different
situation at Rg = 1, as there might exist positive equilibria also for values of Rq less than
one. In this case we say that the model undergoes a backward bifurcation at Rg = 1,
when for values of R in an interval to the left of one, multiple positive equilibria coexist,
typically one unstable and one stable. The behavior in the change of stability is of par-
ticular interest from the perspective of controlling the epidemic: considering Ry > 1, in
order to eradicate the disease it is sufficient to decrease R to one if there is a forward
bifurcation at Rg = 1, however it is necessary to bring Ry well below one to eliminate the
infection in case of a backward bifurcation. This also implies that the qualitative behavior
of a model with backward bifurcation is more complicated than that of a model which
undergoes forward bifurcation at Ry = 1. In the latter case, the infection usually does not
persist if Ry < 1, although with backward bifurcation the presence of a stable endemic
equilibrium for Ry < 1 implies that, even for values of R less than one, the epidemic can
sustain itself if enough infected individuals are present. The phenomena of forward and

backward bifurcations are illustrated by the schematic bifurcation diagrams of Figure 5.1.

Backward bifurcation has been observed in several studies in the recent literature (for
an overview see, for instance, [18] and the references therein). The well-known works
[15, 19, 20] consider multi-group epidemic models with asymmetry between groups or
multiple interaction mechanisms. Some simple epidemic models of disease transmission in
a single population with vaccination of susceptible individuals are presented and analyzed

in [7, 8, 26, 27]. A basic model can be described by the following system of ordinary
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differential equations:

N(t)) = BIN@)SOI(t) — (n+ ¢)S(t) +7I(t) + 0V (D),
I(t) + oSNV () I(E) — (n+7)I(2), (5.1)
N@)VI(t) = (u+0)V(H),

where S(t), I(t), V(t) and N(t) denote the number of susceptible, infected, vaccinated in-
dividuals and the total population, respectively, at time ¢. A represents the birth function
into the susceptible class and p is the natural death rate in each class. Disease transmis-
sion is modeled by the infection term S(N)SI, ¢ and v stand for the vaccination rate of
susceptible individuals and the recovery rate of infected individuals. It is assumed that
vaccination loses effect at rate 6, moreover we include the parameter o, 0 < o < 1, to
incorporate that vaccination may reduce but not completely eliminate susceptibility to
infection. With certain conditions on the birth function A, system (5.1) can be reduced to
a two-dimensional system, of which a complete qualitative analysis including a condition

for the existence of backward bifurcation has been derived in [7].

We can extend model (5.1) by considering a population that resides in two regions
which are connected by transportation. Assuming it takes 7 > 0 units of time to complete
the travel between the regions, a system of delay differential equations can be formulated

as

S1(t) = A (N1(1) — Br(N1(8))S1(0)11(8) — (1 + ¢1)S1(t) + 71T (t) + 01VA (1)

— a8 (t) + as Sa(t — 1),
Li(t) = Bu(N1 () Sa ()] ( )+ o1 (N (@)Vi(t) 11 () = (pa +71) 11 (2) (5.2a)
— ol L(t) + asly(t — 7),
Vi(t) = ¢15:(t) — olﬁl(Nl Vi) 11(t) — (pa + 01)VA(t)
—al Vi(t) + a¥ Va(t — 1),
Sa(t) = Aa(Na(t)) — Ba(Na(£)) Sa(t)Ia(t) — (12 + $2) Sa(t) + 72Ta(t) + O2Va(1)
— a5 Sa(t) +af Si(t — 1),
L(t) = 52(N2( ))S2 (t)Iz( ) + 0282(Na(t)) Va(t)12(t) — (2 + v2)I2(t) (5.2b)

Va(t) = ¢2Sa(t) — Uzﬁz(Nz(t))Vz(t)b(t) — (2 + 02)V2(t)
—ay Va(t) +af Vit = 7)
to describe the spread of an infectious disease in the two subpopulations with vaccination.
Lower indices 1 and 2 are introduced to label model compartments and parameters in region

1 and 2, respectively. We assume that susceptible, infected and recovered individuals of
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S
] Y

j # k. In the special case when transportation is one-directional (for instance, there is

region j travel by rates o a]I and ozfi from region j to region k, where j,k € {1,2} and

no connection from region 1 to region 2 and af = 0, ol = 0 and o} = 0), the equations
of Sy, Iy and Ry are independent of the other three equations in system (5.2a)—(5.2b). If
the subsystem (5.2b) attains a unique globally attracting equilibrium with lim;_, Sa(t) =
S, limyoo [2(t) = I$° and limy,oo Va(t) = V5°, then it follows that system (5.2a) is

asymptotically autonomous with the limiting system
Si(t) = Ai(Ni(t) = Br(N1(£) St ($) T (8) — (1 + 61)S1(2)
+nl(t) + 0Vi(t) + a5 557,
L) = Bu(N1(£)S1(6) 11 (8) + o1 Bt (N1 (VA () T2 (8) — (g + ) Ta (8) + a3 15°,
Vi(t) = 151 (t) — o1 i (N1 () Vi (D) 11 (1) = (s + 61)Va () + a3 V5.

The aim of this chapter is to investigate system (5.3) with the additional assumption that

(5.3)

ol = 0. In this case, system (5.3) allows us to describe and analyze the spread of an
epidemic in a single population, where demographic effects — such as immigration of non-
infected individuals — are incorporated into the model. The assumption that there is no
inflow of infected individuals into the population is realistic if one considers a pandemic
situation when entry screening is applied as control policy upon the arrival of passengers
to a country. On the other hand, individuals who are showing symptoms like fever or are
in pain might decide not to travel anyway. The model we study generalizes the above
presented vaccination model (5.1) by incorporating the possibility of immigration, and we

investigate how immigration changes the bifurcation behavior.

5.2 Model description

A general vaccination model with immigration of non-infected individuals can be described

by the system

(N () = BIN(E)SOI(E) = (n+ ¢)S(E) +~I(t) + OV (L) +,
(N(@)S@L(E) +aBINE)V L) = (u+ 7)), (5.4)
V(t) = ¢S(t) — o B(N())V (O)I(t) — (n+O)V (1) +w,

where we assume that immigration of susceptible and vaccinated individuals occurs with
constant rates 1 and w, respectively. The other parameters of the model have been de-
scribed in Section 5.1 and are tabulated in Table 5.1, along with the model variables. For

the total population N (t) we obtain
N(t) = A(N(t)) — uN(t) + 1 + w. (5.5)

The proof of the following proposition is obvious and thus omitted.
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Variables and key model parameters
S, I, V, N Susceptible, infected, vaccinated and all individuals
A Birth function
n Natural death rate
I3 Transmission rate
ol Recovery rate of infected individuals
10} Vaccination rate of susceptible individuals
0 Waining rate of vaccine
o Reduction of susceptibility of vaccinated individuals
n, w Immigration rate of susceptible and vaccinated individuals

Table 5.1: Variables and parameters of the SIVS model with immigration.

Proposition 5.1. If for the birth function A it holds that A(0) = 0, A’(0) > p and there
exists an xs > 0 such that A'(x.) < p, moreover A'(x) > 0 and A"(z) < 0 for all z > 0,

then for any n,w > 0 there exists a unique positive solution of A(x) = px —n — w.

The conditions of the last proposition on the birth function can be satisfied for various
definitions of A. An example of the birth function found in the literature is A(z) = z-b(x) =
x - ﬁ with ¢,d > 0 and ¢ < i, where the function b(z) is known as the Beverton-Holt
function.

We define the population carrying capacity K = K (A, u,n,w) as the unique solution of
A(x) = px —n — w. Note that from A(K) = uK —n — w it follows that uK —n —w > 0.
We can rewrite equations (5.4)y and (5.4)3 in terms of N(t), I(t) and V(¢) using S(t) =
N(t) — I(t) — V(t) and consider this system as a system of non-autonomous differential
equations with non-autonomous term N(t), which is governed by system (5.5). Then, by
lim¢,oo N(t) = K we find that system (5.4) is asymptotically autonomous with the limiting
system
[(t) = BIK = I(t) = (1= a)V()I(t) = (n+ ) (), (5:6)
V(t) = ¢(K = I(t)) = aBV () I(t) = (u+ 6 + §)V (1) +w,
where § = S(K). In what follows we focus on the mathematical analysis of system (5.6),
then we use the theory of asymptotically autonomous systems [31, 43, 44| to obtain infor-

mation on the long-term behavior of solutions of (5.4).

5.3 Basic properties of the model

The existence and uniqueness of solutions of system (5.6) follows from fundamental results

for ODEs. Since K was defined as the carrying capacity of the population, it is biologically
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meaningful to assume that for the initial conditions of system (5.6) it is satisfied that
0 < 1(0),V(0),1(0)+V(0) < K.

Proposition 5.2. If for initial values I1(0) and V(0) it holds that 0 < I(0),V(0),1(0) +
V(0) < K, then 0 < I(t),V(t),1(t)+ V(t) < K is satisfied for all t > 0.

Proof. If I(t) = 0 then I(t) = 0, which yields that for nonnegative initial conditions I
never becomes negative. If V(t) = 0 when 0 < I(t) < K, then V() > w > 0, thus
solutions never cross the line V' = 0 from the inside of the region R: 0 < I, V,I+V < K.
If I(t) + V(t) = K when I(t),V(t) > 0, then summing (5.6); and (5.6)y gives

1)+ V(t) = —puK —~yI(t) — 0V (t) + w,

which is negative since w — puK is non-positive, thus I(¢) + V(¢t) > K is impossible. O

The disease free equilibrium of system (5.6) can be obtained as

PK + w

gt
pw+0+¢
In the initial stage of the epidemic, we can assume that system (5.6) is near the equilibrium

(0, V) and approximate the equation of class I with the linear equation

y(t) = (BK = (1= 0o)V) = (u+))y(t), (5.7)

where y: R - R. The term S(K — (1 — 0)V) describes the production of new infections,
and p + vy is the transition term describing changes in state, hence with the formula for

the disease free equilibrium V, we can define the basic reproduction number as

BK—(1—0)V)

pty
__F (K'(u+0+a¢)_(1_g)w> (5.8)
Hy .

Ro =

w40+ w+0+o

The following proposition shows that Ry works as a threshold quantity for the stability of

the disease free equilibrium of system (5.6).

Proposition 5.3. The disease free equilibrium of system (5.6) is asymptotically stable if
Ro < 1 and unstable if Ro > 1.

Proof. The stability of the zero steady state of system (5.7) is determined by the sign of
B(K — (1 —a)V) — (u +7), which coincides with the sign of Rg — 1. This means that
the zero solution of (5.7) is asymptotically stable if Ry < 1 and unstable if Ry > 1. This

statement extends to the nonlinear system (5.6) by the principle of linearized stability. [
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5.4 Endemic equilibria

The problem of finding equilibrium (7, V) for system (5.6) yields the two-dimensional
System
0=B(K~I-Q1-o)V)—(u+)1, 5.9
0=¢(K—1)—oBVI—(u+0+ )V +w.
The existence of a unique disease free equilibrium has been proved, so now we focus on

finding endemic equilibria (I, V) with I > 0. From (5.9); we obtain the formula

TR

then by substituting V into (5.9)9 it follows from straightforward computations that

A’ + BI+C =0 (5.11)
should hold for 1 , where
A=op,
B=(pu+0+0¢)+o(un+y)—obK, (5.12)
o= WINWTOED) (gL oh)K+(1- o).

g
We note that SC = (1— Ro)(y+ ) (4 ¢+6) and we characterize the number of solutions

of the equilibrium condition (5.11).

Proposition 5.4. If Rg > 1 then there exists a unique positive equilibrium I =
—B+VB2—4AC
2A :

Proof. If C' < 0, or equivalently, Ry > 1, then the equilibrium condition (5.11) has a
j— fB+v1‘j’:—4Ac O
3 )

unique positive solution, which can be obtained as

At Rg =1 it holds that A > 0 and C' = 0, so there exists a unique nonzero solution
I =-B /A of (5.11), which is positive (and thus, biologically relevant) if and only if
B < 0. Let us now assume that B is negative at Ry = 1, which also implies that
B? —4AC = B? > 0. Then there is a positive root of the equilibrium condition at Rgy = 1,
and due to the continuous dependence of the coefficients A, B and C on [ there must be
an interval to the left of Ryg = 1 where B < 0 and B2 — 4AC > 0 still hold. Since C' > 0
whenever Ry < 1, it follows that on this interval there exist exactly two positive solutions

of (5.11) and thus, two endemic equilibria of system (5.6). We denote these equilibria by

. —B—VB?—4AC ; _ —B+VB?-44C

I =
! 24 ’ 2 24
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and with the aid of formula (5.10), we can derive the V-components to get the equilibria
(I, V1) and (I, V). With other words, if B < 0 when Ro = 1, then system (5.6) has
a backward bifurcation at Ry = 1, since besides the zero equilibrium and the positive
equilibrium [, = =B+VBZ-44C W (which both exist for Ry > 1 as well), another positive
equilibrium emerges when Rg is passing through 1 from the right to the left.

Theorem 5.5. If the condition

(L—o)w  (0+n+09)"—o(uty)(1-0)¢
K O+p+op)+o(pu+7)

(5.13)

holds then there is a backward bifurcation at Ro = 1.

Proof. The condition for the backward bifurcation is that B < 0 when f satisfies Rg = 1.

This can be obtained as an explicit criterion of the parameters: as B < 0 yields
oBK > (p+0+0¢)+o(p+7),

moreover from C' = 0 we derive

- W+”W+f$ﬁw

(0+p+o9) 126

we get
T R
~ g
o(p+7)(k+0+9) (1—-0o)w
O+ ntod)+outy)  CTEOO) T
(1-0o)w o(p+7)(k+0+9)
R Al Crrarers prer e
1-ow (0 +p+09)?  op+y)(A—o)e
K O+p+op)+o(ut+y) (O+p+op)+o(u+ty)
where we used that uK —w > 0. O

Theorem 5.6. If condition (5.13) does not hold, then system (5.6) undergoes a forward

bifurcation at Ro = 1. In this case there is no endemic equilibrium for Ry € [0, 1].

Proof. We proceed similarly as in the proof of Theorem 5.5 to find that if

(L=o)s _ (6+n+00)—olut)(1 —0)o
K ~ O+ p+oo)+o(p+7y)

)

then B > 0 when C = 0, or equivalently, when S is set to satisfy Rg = 1. For Rg < 1 it
holds that A, C' > 0, moreover B is also positive because B is decreasing in 3, these imply
that there is no endemic equilibrium on Rg € [0,1). At Ry = 1 the equilibrium condition
(5.11) becomes AI2 + BI =0, and A > 0, B > 0 give that (5.11) has only non-positive
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solutions. However, we know from Proposition 5.4 that there is a positive solution of (5.11)
for Ro > 1, thus we conclude that if the condition (5.13) does not hold, then system (5.6)
undergoes a forward bifurcation at Rg = 1, where a single endemic equilibrium emerges
when R( exceeds 1. O

If (5.13) is satisfied, then there is an interval to the left of Rg = 1 where there exist
positive equilibria. In what follows we determine the left endpoint of this interval. Let us

assume that there is a backward bifurcation at Ry = 1. We define

U:w+u+mw—u;;w,
$:(1;QW+UW+7% (5.14)
va_x+gw+uﬂg+¢+®.

Note that = and U are positive since K — w > 0 by assumption. The condition for the

backward bifurcation can be obtained as

W > U, (5.15)

which also yields the positivity of W. We let

r—U+2VvUW U

Re = :
(n+7v)o w0+

(5.16)

and claim that it defines the critical value of the reproduction number for which there exist

endemic equilibria on the interval [R., 1].

Proposition 5.7. Assume that there is a backward bifurcation at Rg = 1. With R,
defined in (5.16), only the disease free equilibrium exists if Ro < R, a positive equilibrium
emerges at Rog = R, and on (R¢, 1) there exist two distinct endemic equilibria. There

also exists a positive equilibrium at Rg = 1.

Proof. The last statement follows from the fact that at Ro = 1 (C' = 0), the single non-zero
solution I = % of (5.11) is positive since B < 0. The necessary and sufficient conditions
B < 0 and B? — 4AC > 0 for the existence of two positive distinct equilibria hold on an
interval to the left of Rg = 1. B = 0 automatically yields B?> —4AC < 0 if Rg < 1, hence
it is clear that the condition B?> — 4AC = 0 determines the value of R for which the
positive equilibria disappear. First, we derive the critical value (. of the transmission rate
from this equation, then substitute 5 = (. into the formula of Rg (5.8) to give the critical

value of the reproduction number. Using notations U,z and W introduced in (5.14), we
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reformulate B as B =U +x — ofK and C as C = W'w(‘ﬂ — UK. The condition
B? — 4AC = 0 becomes

U? +2U(x — BKo) + (x — BK0)? — 4o (i + ) (1 + 0 + ¢) + 40 SKU
=U? - 2U(x — BKo) + (x — fKo)> +4Ux — do(p+7)(p + 0 + ¢)
=U? - 2U(x — BKo) + (x — fKo)? —4UW = 0,

so we obtain the roots

2U +A4U? — 4U? + 16UW

({L‘—BKO')LQZ 9

=Ux2VvUW.

For the positive root (x — BKo)2, we get B =U + (x — 8Ko )2 > 0, but we require B < 0
thus we derive from x — Ko = U — 2/ UW that

Bc = Ko

Substituting (. into (5.8) gives

B (K(p+6+08) (1-okw
Ro(Be) = -
ety p+0+o p+0+o
r-U+2/OW U
(n+7)o p+0+¢’
which is indeed equal to R. defined in (5.16). O

The condition Ry = 1 reformulates as 0K = W + x, so with the aid of (5.15) and

the computations
2
0< (VU-vVW),
2VUW < U+ W,
c—U+2VUW < W + z,

it is easy to verify that R. < 1. The positivity of 8., and hence, the positivity of R fol-
lows from the fact that at 5 = . it should hold that B < 0, which is only possible if 5 > 0.

We wish to draw the graph of I as a function of [ to obtain the bifurcation curve. By

implicitly differentiating the equilibrium condition (5.11) with respect to 3, we get

- dl  (dA., dB. dC
(zAerB)Zé:Jj(K_f)JF (7+M)(g2+¢+9)‘
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The positivity of the right-hand side follows from K > I, which implies that the term 2AI+
B has the same sign as j—g. If Ro > 1 then there exists the equilibrium o = =BEVE=44C Vf:_“c,
and we obtain that 241> + B > 0, hence for Ry > 1 the curve has positive slope. If there
is a backward bifurcation at R = 1, then on (R, 1) there exists two positive equilibria
fg and fl = =B=v B 4AC Vﬁ:_‘mc with fg > fl, and since it holds that 2Af1 + B < 0, we conclude
that on (R, 1) the bifurcation curve has negative slope for the smaller endemic equilibrium
and positive slope for the larger one. As a matter of fact, the unstable equilibrium is a

saddle point, and thus the system experiences a saddle-node bifurcation.

5.5 Stability and global behavior

The stability of the disease free equilibrium has been examined in Section 5.3, so now we
derive local stability analysis of endemic equilibria. The Jacobian of the system (5.6) at
(I,V) gives

S ( —BI —(1-0)Bi )
~(+0BV) —(u+0+¢+0Bl) )
where we used the identity B(K —I —(1—0)V) = p++ from (5.9), hence the characteristic
equation has the form
asA® + a1 A +ag =0

with
ag =1,

a1 =Bl + (n+0+ ¢+ opl),

ao = pl(u+0+¢+0Bl) — (1—0)Bl(¢+oBV).
Theorem 5.8. The endemic equiltbrium (f, V) for which I=1is locally asymptotically
stable where it exists: on Ro € (1,00), and also on Ry € (R, 1] in case there is a backward

bifurcation at Ro = 1. The endemic equilibrium (f, V) for which I = I, is unstable where

it exists: on Ry € (Re, 1) in case there is a backward bifurcation at Ry = 1.

Proof. The Routh-Hurwitz stability criterion (for a reference see, for example, [17]) states
that for all the solutions of the characteristic equation to have negative real parts, all
coefficients must have the same sign. Since a9 and a; are positive, the sign of ap determines

the stability. For that it holds that
ao = BI(p+0+¢+0pl) — (1—0)BI(¢p+apBV)
=BI(n+0+0p+208 —oB(+(1—0)V),
so using —f(I + (1 — 0)V) = p+~ — BK we derive
ao = BI(n+ 0+ 0o+ 2081 + o(u+ v — BK))
— BI(2AI + B).
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For Ry > 1 the only endemic equilibrium is jg = —B+VB —4AC W, for which 2Af2 +B>0
holds and thus ag > 0 yields its stability. If there is a backward bifurcation at Rg = 1,
then endemic equilibria exist on ( R, 1] as well; here I is again stable for the same reason
as above, however [; = =B=VB2-4AC VQAQ_MC is unstable since ag = 813 (Afl + B) < 0. O

With the next theorem we describe the global behavior of solutions of system (5.6).

Theorem 5.9. If there exists no endemic equilibrium, that is, if Rg < 1 in case of a
forward bifurcation and if Rog < R in case of a backward bifurcation, then every solution
converges to the disease free equilibrium. For Rg > 1, the unique endemic equilibrium is
globally attracting. If there is a backward bifurcation at Ro = 1 then on (R, 1) there is

no globally attracting equilibrium, though every solution approaches an equilibrium.

Proof. We first show that every solution of system (5.6) converges to an equilibrium. In
Section 5.3 we have proved that the region R: 0 < I,V, I +V < K is positively invariant
for the solutions of system (5.6). We take the C! function (I, V) = 1/I, which does not
change sign on R to show that system (5.6) has no periodic solutions lying entirely within

the region R. The computation

QB(K—I—O—U)V)I—(M+7)I+i¢(K—I)—05VI—(M+9+¢)V+w
ol 1 ov 1
:_5_05_ﬁi§if

yields the result by means of the Dulac criterion [14]. We use the well-known Poincaré—

<0

Bendixson theorem to conclude that every solution of (5.6) approaches an equilibrium.

The first statement of the theorem immediately follows from the fact that every solution
of (5.6) approaches an equilibrium. If Ry > 1, then besides the disease free equilibrium,
which is unstable according to Theorem 5.8, there exists a single locally stable endemic

equilibrium I,. We show that no nontrivial solution can converge to the disease free

equilibrium.
If limy .o I(t) = 0 when I(0) > 0, then it follows from (5.6)s that lim; oo V(t) = 275
Then for every € > 0 there exists a t.(e) such that I(t) < ¢ and V(¢) < ;ff@t'; + € for
t > t,. Using (5.6)1 we get
: K +
iz (K= 1-0) (25 1 ) ) 10 - s 1)
w40+ (5.18)
K- (p+0+00) (1—a>w> '
= - I(t) + (—2e+ oe — (n+)) I(t
g (Rt BT 10 4 (2 oe- uk ) 10)
for t > t,, moreover Ry = % (K'L‘feﬁ:f@ — E};ﬂ;) > 1 implies that there exists an €;

small enough such that

K- (p+t0+09) (A-ow
,8( L1010 —Iu_{_e_i_d))+(—261+0’61—(/L+7))>0.
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(a) Solutions of system (5.6). (b) Stream plot of system (5.6) on R : 0 <
LV,I+V <K.

Figure 5.2: Solutions of system (5.6) in case there is a backward bifurcation at Ry = 1
and Re < Ro < 1. Welet A(z) = 5
0=05,0=02¢=16,c=1,d=1.8, §=0.33, n =5, w =5, which makes K = 153.6
and Ry = 0.95. Endemic equilibria (I3, V}) = (8.6,135.4) and (I, V3) = (50.7,82.8) are
represented as (a) red-dashed and blue-dashed lines, (b) red and blue points, respectively.

and choose parameter values as p = 0.1, v = 12,

On (b) the green point denotes the unique disease free equilibrium (0,148.4). Solutions
with initial values (1(0),V(0)) = (9,120) — red curve, (18,130) — blue curve and (100, 50)
~ black curve converge to (1o, V3), however for (1(0),V(0)) = (5,140) the curve of I — here,
green — approaches the DFE.

With the choice of € = €1, the right-hand side of (5.18) is linear in I(¢) with positive mul-
tiplier, which implies that I(t) increases for ¢.(e1) > ¢ and thus, cannot converge to 0. We
conclude that no solution of (5.6) with positive initial conditions converges to the disease

free equilibrium, so the endemic equilibrium indeed attracts every solution.

If there is a backward bifurcation at Rg = 1, then besides the disease free equilibrium
there exist two endemic equilibra on (R, 1), one locally stable and one unstable (see again
Theorem 5.8). As the DFE is locally stable when Ry < 1, we experience bistability on
(Re, 1), which implies the third statement of the theorem. O

We present Figure 5.2 to illustrate the statements of this section. The values of the
model parameters were set to ensure that system (5.6) undergoes a backward bifurcation
at Ro = 1, moreover we chose the value of 8 such that there exist two endemic equilibria.
The plots of the figure support our results about the long-term behavior of solutions and

the local stability of equilibria; solutions starting near the unstable saddle point (fl, \71)
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(b) w=0,7=10,12,...,48.

Figure 5.3: Bifurcation diagrams for 20 different values of (a) w and (b) 7 in the case when

0+ p+0¢)? < o(p+7)(1 —0)p. Proposition 5.10 implies that for all n and w there

is a backward bifurcation at Ry = 1. The curves move to the left as the immigration
x

parameter increases. We let A(z) = 14z and choose parameter values as p = 0.1, v = 12,

0=050=026=16,c=1,d=18.

approach another equilibrium, however (f 2, f/g) seems to attract every solution with 7(0) >

I, for the particular set of parameter values indicated in the caption of the figure.

5.6 The influence of immigration on the backward bifurcation

In this section, we would like to investigate the effect of parameters n and w on the

bifurcation curve. In Section 5.4 we gave the condition (5.13)

(1o _ (O+n+00) —olu+1)(1— )
K O@+up+op)+o(u+7y)

for the existence of backward bifurcation at Rg = 1; in what follows we analyze this
inequality in terms of the immigration parameters. We keep in mind that if there is no
backward bifurcation at Rg = 1, then there is forward bifurcation, i.e., there always exists

an endemic equilibrium for Ry > 1.

First, we present results about how the existence of backward bifurcation depends on

1 and w. The nonnegativity of w and K immediately yields the following proposition.

Proposition 5.10. If (0 + p+ 0¢)? < o(u+7)(1 — o), then for all n and w there is a

backward bifurcation at Rg = 1.

The special case of w = 0 automatically makes the left-hand side of inequality (5.13)
zero, hence in this case there is a backward bifurcation if and only if the right-hand side

is negative; note that the right-hand side is independent of 7.
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Proposition 5.11. If w = 0, then there is a backward bifurcation at Rg = 1 if and only
if (04 p+0¢)? <o(u+v)(1—0)p. This also means that in this case  has absolutely no

effect on the direction of the bifurcation.

Figure 5.3 shows how the bifurcation curve deforms as we increase (a) w and (b) 7.
Parameter values y = 0.1, v = 12, 8 = 0.5, ¢ = 0.2, ¢ = 16 were chosen so that the
condition (6 + p + 0¢)? < o(p+7v)(1 — o)¢ holds (14.44 < 30.976).

After all this, the following question arises naturally: is it possible to have backward

bifurcation at Ro = 1if (0 + u + 0¢)? > o(u+7)(1 — )¢, i.e., if the right-hand side of
condition (5.13) is nonnegative? Recall that if w = 0 then (04 pu+0¢)? > o(u+~)(1—0)¢
means forward bifurcation.
Note that the right-hand side of (5.13) is independent of 7 and w; however, K depends on
both of these parameters, i and the birth function A. As we did not define A explicitly
(in Section 5.2, we only gave conditions to ensure that for each n,w > 0 the population
carrying capacity K > 0 can be defined uniquely), it is not clear how the left-hand side of
(5.13) depends on the immigration parameters. In the sequel, we use the general form

T
c+dx

A(z) = (5.19)

for the birth function with parameters 0 < ¢ < 1/ and d > 0; it is not hard to see that
with this definition all the conditions made in Section 5.2 for A are satisfied. The carrying

capacity K(u,n,w) can be obtained as the solution of
A(z) = pr —n — w,
which, with our above definition (5.19), gives the second-order equation
2?pd + (=1 + ep — d(n + w)) — ¢(n + w) =0,

The unique positive root yields K as

l—cu+dn+w 1—cu+dn+w))?+4dude(n+w
K(p,m,w) = 2ud( ) ( 2/“3) tw) (5.20)

Our assumption ¢ < 1/p implies 1 — cp > 0, hence

K 1 [1—cu+td 1—cu+d 2 4ud 4pd
S (T g (T g +“2m7+“c
w  2ud w

w w
1 1-— d 1-— d
2ud w w
1 1
> —2d=—
2ud 7



5.6. THE INFLUENCE OF IMMIGRATION ON THE BACKWARD BIFURCATION 99

and thus
1—
d-ow K")“’ m (5.21)
It also follows from the above computations that lim,,_ % = (1—o0)pu, i.e., although

the left-hand side of (5.13) is always less than (1 — o)y, the expression gets arbitrary close

to this limit as w approaches oco.

Next we fix every model parameter but n and w and obtain two propositions as follows.
Proposition 5.12. Assume that (0 + p+0¢)? > o(u++)(1 — o)¢ holds. If the condition

O+p+op)(0+op+op) <o(l—o)(u+y)(n+e)

is satisfied, then for any n there is an w. such that for any w € (we, 00) there is a backward
bifurcation at Ro = 1, and for any w € [0,w.] there is a forward bifurcation at Ro = 1. In

case the above condition does not hold, then for any n and w there is a forward bifurcation
at Ro = 1.

Proof. If

O+p+0d)(0+ou+op)>o(l—0o)(u+y)(n+e),

0+ p+00) <W‘“> ot )r o)
2
W—a(u+v)¢Zu(9+ﬂ+‘7¢)+”"(”+7)>’

(O +pu+09)?—o(u+~)(1—0)
O +u+op)+o(p+7)

then it follows from (5.21) that backward bifurcation is not possible at Ry = 1, since the

> (1—o)p,

right-hand side of condition (5.13) is always greater than or equal to the left-hand side.

Next let us consider the case when

O+p+00)(0+opt+op) <o(l—o)(ut+y)(p+ o),

(O +p+09)?—o(p+7)(1—0)
O+p+op)+o(p+7)

We show that (I_Ta)w is monotone increasing in wj if so, then, following relation (5.21) and

2
the discussion afterwards, the formulas I((l(;;);(?) = 0 and lim,,, Igl(;?fj) = (1 —o)p imply

<(1—o)p.

that w. can be defined uniquely by
(1-owe  (0+p+0¢)*—o(ut+y)(l—0)d
K (p,m, we) O+p+od)+olpty)

and from the monotonicity it follows that the condition for the backward bifurcation (5.13)

is satisfied if and only if w > w,.

We obtain the derivative

i wy _ K — w%—f
K2
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which implies that % increases in w if and only if K — w%—f is positive. With our

assumption 1 — cu > 0, the computations

OK 1—cu+dn+w)++/(1—cu+dn+w))?+4ude(n + w)

K_waiw n 2ud
—wd<1+ 1—cpu+dn+w)+2uc )
2pd V(= cp+d(n+w))?+ 4ude(n + w)
_1—c,u+d77+ (1 —cp+d(n+w))?+ 4dude(n + w)
2pd 2udr/(1 — cpu+ d(n + w))2 + dude(n + w)
B wd(l —cp+d(n +w) + 2uc)
2udy\/(1 — cp+ d(n + w))? + 4dude(n + w)
_ 1—cu+dn n (I —cp+dn+w))(l—cu+dn)+ duden + 2udew >0
2pd 2ud\/(1 — cp +d(n +w))? + 4ude(n + w)
yield the result. O

With other words, for parameter values satisfying the assumption and condition of
Proposition 5.12, a unique critical value w. can be defined which works as a threshold
of w for the backward bifurcation: there is no backward bifurcation if w < w,, and once
w is large enough so that a backward bifurcation is established at Ro = 1, it can not
happen that for any larger values of w the system undergoes forward bifurcation again.
With certain conditions, such threshold also exists for 1 as we show it in the following

proposition.

Proposition 5.13. Assume that (0 + p+ 0¢)? > o(u+v)(1 — 0)¢ holds, and fix w. If w

is such that
(l-0)w _ (O+p+09)?—o(pt+y)(1—-0)¢
K(p,0,w) O+p+o9)+o(p+7)

then there exists n. > 0 such that there is a backward bifurcation at Rg = 1 for n < ne,

i

and the system undergoes a forward bifurcation for n > n.. If the above inequality does not

hold then there is a forward bifurcation at Rg = 1.

Proof. First we note that K (u,n,w) (defined in (5.20)) is an increasing function of n and

it attains its minimum at = 0. This implies that

(1-0)w < (1-0)w
K(p,m,w) = K(p, 0,w)

for all n, hence the condition for the backward bifurcation (5.13) cannot be satisfied if

(I-0w _(O+n+0p)—op+y)(l-0)¢
K(p,0,w) ~ O+p+op)+olp+y)
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(a) n=10,w = 1,6,...,96. (b) w=60,7=1,6,...,96.

Figure 5.4: Bifurcation diagrams for 20 different values of (a) w and (b) 7 in the case when

(O+pu+0p)? > o(pu+7)(1—0)p. The curves move to the left as the immigration parameter

increases. We let A(z) = %7~ and choose parameter values as (a) p =1, vy = 7.5, 0 = 0.5,

o =002 ¢=16c=01d=003 (b) p=15 v=11,0 =05, ¢ = 0.02, ¢ = 16,
c=1/15, d = 9/300.

(1—0)w
K(unw

On the other hand, K (u,n,w) takes arbitrary large values, and hence j converges

to zero monotonically as 7 increases, so if

(I-0)w _ (O+p+0p)*—o(p+y)(1—0)p
K(p,0,w) O+p+op)+o(p+)

)

then there is a unique 7. > 0 which satisfies

(1-ow (@+p+0¢)—o(u+v)1-0)¢

K (1, e, w) 0 +p+o¢)+olnty
and the monotonicity of K in 7 yields that for n < n. (n > n.) the condition for the
backward bifurcation (5.13) holds (does not hold). Thus it is clear that 7. is a threshold
for the existence of backward bifurcation. Note that if (6 + pu + 0¢)? = o(u+)(1 — 0)é

)

then n. = oo, i.e., for each value of n there is a backward bifurcation if w > 0. The proof

is complete. O

We illustrate Propositions 5.12 and 5.13 with Figure 5.4. With parameter values p = 1,
v="1756=0.5,0=0.02,¢=16,c=0.1,d = 0.03 and n = 10 used for Figure 5.4 (a), the
condition in Proposition 5.12 becomes 1.5288 < 2.8322. In case of Figure 5.4 (b), the pa-
rameters u = 1.5, v =11, 0 = 0.5, 0 = 0.02, ¢ = 16, c = 1/15, d = 9/300 and w = 60 give
el — 0.956928 and (ol =009 _ (569027, so the condition in Proposi-
tion 5.13 is satisfied. It is easy to check that the assumption (04 p+0¢)? > o(u+v)(1—0)¢

holds in both cases since (a) 3.3124 > 2.6656 and (b) 5.3824 > 3.92.

Proposition 5.10 states that for any values of 7 and w the condition (6 + p + 0¢)? <
o(p 4+ v)(1 — o)¢ is sufficient for the existence of a backward bifurcation at Ry = 1;



102 CHAPTER 5. BACKWARD BIFURCATION IN SIVS MODEL WITH IMMIGRATION

moreover we know from Proposition 5.11 that it is also necessary in the special case of
w = 0. We remark that backward bifurcation is possible for any n > 0 and w > 0, even if
O+p+09)?>o(u+)(1—0)¢. Let us choose n > 0 and w > 0 arbitrary, fix parameters
p, o, ¢, and choose 6 and v such that (0 + pu + 0¢)? = o(u +7v)(1 — 0)¢ holds. As now
the right-hand side of condition (5.13) is 0 and w, K > 0, there is a backward bifurcation,
moreover it is easy to see that the right-hand side is increasing in 6. Thus, due to the con-
tinuous dependence of the right-hand side on 6, there is an interval for 6 (with all the other
parameters fixed) where condition (5.13) still holds, though (0+pu+0¢)? > o(u+v)(1—0)g,

since the quadratic term increases in 6.

Next, we investigate how immigration deforms the bifurcation curve. Let us denote by
Bo the value of the transmission rate for which Ry = 1 is satisfied, using (5.8) it can be

obtained as

+0+¢)(u+
By = (p Aty (5.22)

K- (p+0+0¢)—(1—0)w
Proposition 5.14. It holds that 5y decreases in both w and .
Proof. Using (5.22), we see that [y decreases as 1 increases since

K
;(K-(u—i—@—i-a(ﬁ)—(l—a)w) = aan-(u—&-G—Faqﬁ) > 0.
On the other hand, By decreases in w if and only if
K
%(K~(u+0+o—¢) —(1-o)w) = Z—w-(u+9+a¢)—(1—a) > 0.
First, %—f > i since
1—cpu+dn+w)+2uc
VA = cp+dn+w)? +dpde(n +w) ~
oK 1 |+ 1—cu+d(n+w)+2uc >l
Ow 2\ (I —cu+d(n+w)? +dpde(y +w) )~ 4
second, from
0+ op>—puo,

M+0+U¢>:U’(1_O—)7
we have i > %. We conclude that

0K 1 1-—

7 (5.23)

ow p  p+60+09

and hence 3y decreases as w increases. ]
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We recall that endemic equilibria I 1 and .72 were defined as

I —B — VB2 - 4AC Ji —B+ B2 - 4AC
1= 2 = ;
2A

24 ’
with A, B and C given in (5.12). Obviously —B — v/BZ —4AC > 0 where I exists and
—B+v/B% = 4AC > 0 where I, exists.

Proposition 5.15. For the endemic equilibrium I it holds that a%fg, a%fg > 0, and the
inequalities %Iul, (%fl < 0 are satisfied for the endemic equilibrium Ii. The equilibrium

I =1, = % increases in both w and 7.

Proof. Since

0AC 0K
872_05(”+9+0¢)87w+05(1_0)7
0AC 0K
8777__0/8(”+0+0¢)3777’
we derive
D) 9B _4(—oB(u+0+09)2EK +68(1-0)) OB
B? —4AC — B) = == o ~
5 (VB2 —44C - B) BT TAC d
BB VB EAC) a0p((pt0+00) % (1 -0)
B VB2 —4AC VB2 — 4AC ’
2B98 — d(—0B(p+0+0¢) %L
8( B~ 4AC - B) = =1 o o) 0B
on 2V B2Z — 4AC on

P (B—-VB?—4AC) 208(n+0+00)5%
+ )
VB2 —4AC VB2 —4AC
moreover it follows from (5.23), g—f = —Jﬁ%—f < 0, 28 = —Gﬁ%—ls < 0 and B —

on
vVB?% —4AC < 0 that

% (\/32 —4AC — B) >0,

9
2 (VB 140 - B) >0,
Similarly, using B + v B2 — 4AC < 0 we get
oB 2 _
i(mﬂg): B <B+\/m)+205((M+9+0’¢)%§—(1—0))>0
Ouw VB? —44C VB 1AC )
9B (B+VB2—4AC)  20B(u+ 0+ 0¢) 2K
a(m+3):8’7< >+ Blu ¢)8n>0.
I VB2 —4AC VB2 — 4AC

We conclude that

I =
dw' ! 24 <0,
o) 2
5 — = B? -4AC + B
2[1— 877( ><0,
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furthermore
o, & (VBP—1AC-B)
= 24 >0,
o . &(VBT-1AC-B)
a—nIQ = oA > 0,
this is, the equilibrium L=1= % is increasing in both w and n since A is independent
of these parameters and g—f < 0, % < 0. ]

These results give us information about how the bifurcation curve changes when the
immigration parameters increase. If there is a forward bifurcation at Rg = 1, the curve
moves to the left since 5y decreases in 17 and w, and the curve expands because %f 2, 8%-7 9 >
0. In case there is a backward bifurcation at Rg = 1, By again moves to the left, and
%fl, %fl < 0 and %fg, 8%.72 > 0 imply that for each fixed S the two equilibria move
away from each other in the region where they coexist, moreover Is increases when it
is the only endemic equilibrium. The singular point of the bifurcation curve, where the
equilibrium is —B/2A, moves upward as 1 and w increase, this together with the above
described behavior of I; and I imply that the left-most equilibrium cannot move to the
right, or equivalently, the corresponding value of the transmission rate (. decreases if we
increase n and w. We give the last statement of the above discussion in the form of a

proposition. See Figures 5.3 and 5.4 for visual proof of the results of this section.

Proposition 5.16. In case there is a backward bifurcation at Rg = 1, B. decreases in both

w and n.

Actually, using (5.22), it is easy to see that [y converges to 0 as any of the immigra-
tion parameters approaches infinity: for any fixed w (), the carrying capacity K reaches
arbitrary large values if we increase n (w), moreover uK — w is positive by assumption,
hence

lm (K(p+0+0¢) — (1 —0o)w)

wWw—=00
= lim (K@ + 0¢) + ow + pK —w) = oo.
w—=00
The inequality £. < Bg implies that 5. also goes to 0 as w = oo or n — co. We can also
show that in the special case of w = 0, increasing 1 decreases the region where two endemic

equilibria exist. The equation (5.17) for . then reformulates as
BKo=x—U+2VUW
=o(u+7) = (0 +p+0¢) +2¢/~O0+p+0d)o(u+7) +o(y+u)(u+oé+0)
=o(u+7) = (0 +p+0¢) +2y/o(u+7)é(1 - o),
thus for By — 8. we have

o(p+0+¢)(nt+7)
(Bo = Be) Ko = == 0 —U(,u—i-’y—((9+M+U¢)+2\/U(,u+’y)¢(l—a)).
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The right-hand side is independent of  and K increases monotonically as n increases, so

the length of the interval (5., By) decreases as 1 increases.

In the light of the results of this section we conclude that, although SIVS models
without immigration can also exhibit backward bifurcation |7], incorporating the possibility
of the inflow of non-infectives may significantly influence the dynamics: under certain
conditions on the model parameters, increasing w, just as decreasing 7, can drive a system
with forward bifurcation into backward bifurcation and the existence of multiple endemic
equilibria. Furthermore, we showed that including immigration moves the left-most point of
the bifurcation curve to the left, which means that the larger the values of the immigration

parameters the smaller the threshold for the emergence of endemic equilibria.

5.7 Revisiting the three-dimensional system

Based on our results for system (5.6), we draw some conclusions on the global behavior
of the original model (5.4). Given that N(¢) converges, and substituting S(t) = N(t) —
I(t)—=V(t), (5.4), and (5.4)4 together can be considered as an asymptotically autonomous
system with limiting system (5.6). We use the theory from [44].

Theorem 5.17. All nonnegative solutions of (5.4) converge to an equilibrium. In partic-
ular, if Ro > 1, then the endemic equilibrium is globally asymptotically stable. If there is
a forward bifurcation for (5.6) and Ro < 1, or there is a backward bifurcation for (5.6)

and Ry < Re, then the disease free equilibrium is globally asymptotically stable.

Proof. Theorem 5.9 excluded periodic orbits in the limit system by a Dulac function, hence
we can apply Corollary 2.2. of [44] and conclude that all solutions of (5.4), — (5.4)5 con-
verge. As I(t),V(t) and N(t) converge, S(t) converges as well for system (5.4).

Now consider the case Ry > 1. Then the endemic equilibrium is globally asymptot-
ically stable for (5.4) (see Theorem 5.9), and its basin of attraction is the whole phase
space except the disease free equilibrium. We can proceed analogously as in (5.18) to
show that no positive solutions of (5.4), — (5.4); can converge to (0,V) when Rg > 1,
since N(t) > K — € holds for sufficiently large t. Thus, the w-limit set of any positive
solution of (5.4), — (5.4); intersects the basin of attraction of the endemic equilibrium in
the limit system, and then by Theorem 2.3 of [44] we conclude that the positive solutions

of (5.4), — (5.4)4 converge to the endemic equilibrium.

When the disease free is the unique equilibrium of (5.6), (i.e., when Ry < 1 in the

case of forward, or Ry < R. in the case of backward bifurcation), then it is globally
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asymptotically stable for (5.6) (see Theorem 5.9) with the basin of attraction being the
whole space, thus Theorem 2.3 of [44] ensures that the DFE is globally asymptotically
stable for (5.4), — (5.4); as well.

O

5.8 Conclusion

We have examined a dynamic model which describes the spread of an infectious disease in
a population divided into the classes of susceptible, infected and vaccinated individuals,
and took the possibility of immigration of non-infectives into account. Such an assump-
tion is reasonable if there is an entry screening of infected individuals, or if the disease
is so severe that it inhibits traveling. After obtaining some fundamental, but biologically
relevant properties of the model, we investigated the possible equilibria and gave an ex-
plicit condition for the existence of backward bifurcation at Ry = 1 in terms of the model
parameters. Our analysis showed that besides the disease free equilibrium — which always
exists — there is a unique positive fixed point for Rg > 1, moreover in case of a backward
bifurcation there exist two endemic equilibria on an interval to the left of Rg = 1. An
equilibrium is locally asymptotically stable if and only if it corresponds to a point on the
bifurcation curve where the curve is increasing, moreover it is also globally attracting if
Ro > 1.

We investigated how the structure of the bifurcation curve depends on 7 and w (the im-
migration parameter for susceptible and vaccinated individuals, respectively), when other
model parameters are fixed. As discussed in Propositions 5.10 and 5.12, two regions can be
characterized in the parameter space where for any values of the immigration parameters,
the system experiences a backward or forward bifurcation, respectively. However, under
certain conditions described in Propositions 5.12 and 5.13, modifying the value of w and n
has a significant effect on the dynamics: critical values w, and 7, can be defined such that
the bifurcation behavior at Rg = 1 changes from forward to backward when we increase
w through w, and/or we decrease 1 through 7.. On the other hand, Propositions 5.11 and
5.13 yield that in some cases w can be chosen so that, independently from the value of 7,

backward bifurcation is impossible.

We also showed that immigration decreases the value of the transmission rate for which
endemic equilibria emerge, furthermore increasing w and/or 7 moves the branches of the
bifurcation curve apart which implies that the stability region of the disease free equilibrium

shrinks (see Figures 5.3 and 5.4). Last, we wish to point out that, as it follows from the
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discussion after Proposition 5.13, backward bifurcation is possible for any values of w and
7, so when one’s aim is to mitigate the severity of an outbreak it is desirable to control
the values of other model parameters, for example, the vaccination rate in a way that the

scenario of backward bifurcation is never realized.
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Summary

In this Ph.D. dissertation we study the general form of nonautonomous functional differen-
tial equations where the delayed feedback function cannot be given explicitly by the system
variables, but it is defined via the solution of another system of differential equations. In
Chapter 2, we formulate the initial value problem as

2 (t) = Ft,z) = f(t,z(t)) + W(t,z(t — 1)), 21)

Lo = ¥,
where t,c e Rwitht > o, 2: R->R", f: RXxR" > R”and W: RxR"” - R"” forn € Z;.
For a fixed positive 7, we define the phase space C' = C([—,0],R™) as the Banach space of
continuous functions from [—7, 0] to R", equipped with the supremum norm. The segment
xy € C of the solution is defined by the relation () = x(t — ) for § € [—7,0], so
F: R x C - R"™ Moreover, ¢ € C gives the state of the system at initial time o. In this
work, a Lipschitz condition is formulated for any function F: R x R7 = R!, 4,1 € Z, on

each bounded subset of R x R7, as follows:

(Lip) For all a, b € R and M > 0, there is a K(a,b, M) > 0 such that:
[F(t,21) — F(t,22)li < Koy — 225, a <t <b, [aa]j, wa; < M.

We assume that the function f is continuous and satisfies (Lip) on each bounded subset
of R x R™. Furthermore, an initial value problem for systems of nonautonomous ordinary
differential equations is formulated as

y'(s) = g(s,y(s)), 2.2)

y(s0) = Ys,
where m € Z,, and sp € R and y. € R represent the initial time and the initial value,
respectively. Here s € R, s > sp and y: R — R™, moreover the function g: R xR"™ — R™ is
continuous on R x R™ and satisfies the Lipschitz condition (Lip) on each bounded subset of
R x R™. Standard arguments from the theory of ordinary differential equations guarantee
that system (2.2) has a unique solution, which we denote by y(s; so, y«), on the interval

[s0, So + ] for some positive . We make the additional assumption that:
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(%) For every sp and yx, the solution y(s; sg, ys«) of (2.2) exists for 7 units of time, i.e., on

[s0, S0 + 7.

We introduce two functions A: RxR"™ - R™ and k: RxR™ — R", both are continuous and
satisfy (Lip) on the corresponding sets by assumption. For simplicity, we use the notation
Yso,0(8) = y(8; S0, h(s0,v)) for the unique solution of (2.2) in the case y, = h(sp,v), v € R™.
Last, the delayed feedback function W: R x R™ — R" is defined as

W(s,v) = k(s,ys—rn(s)) = k(s,y(s;5 — 7, h(s — T,v))).

From this formulation it follows that W is determined via the dynamics of another system
of differential equations, given by (2.2). Henceforth, we refer to (2.1) as the general form

of functional differential equations with dynamically defined delayed term.

For the solution of system (2.1), we obtain the usual existence, uniqueness and contin-
uous dependence results by showing a Lipschitz condition for F. As it is illustrated in the
thesis by various biological applications, functional differential equations with dynamically
defined delayed feedback function may arise from the mathematical analysis of dynamic
models in life sciences. Thus, it is natural to consider some biologically relevant properties
of the initial value problem, like the nonnegativity of solutions or the stability of equilibria

of the autonomous system.

Functional differential equations have many applications in biological sciences. In the
dissertation, we propose some models from population dynamics and epidemiology, where
the delay terms in the model equations depend on the solution of another dynamical sys-
tem. First, a simple model for the growth of a single population with fixed period of
temporary separation is presented in Chapter 1. Then we investigate a class of delayed
disease transmission models in Chapters 3 and 4 to describe the propagation of epidemics
on transportation networks. Recent pandemics, like the 2002-2003 SARS epidemic or the
2009 A(HIN1) influenza outbreak illustrated the role of commercial aviation in the spatial
spread of infectious diseases. Based on the consideration that these diseases progress so
fast that any short delay might be significant, we incorporate into the model the time
needed to complete transportation between the regions, and use a delay differential system
to describe the spread of infection in the regions. Furthermore, we account for the fact
that some communicable diseases, such as tuberculosis, measles and influenza, have been
known to be transmissible during commercial flights, hence in the model formulation we
also consider the possible infections during travel. It follows that the inflow of individu-
als into a region upon completing a trip arises as a delayed feedback term in the model

equations, moreover this term is determined by another system which describes the disease
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dynamics during travel.

We introduce an SEAIR (susceptible-exposed—asymptomatic infected—infected—
recovered)-based model in Chapter 3 to investigate the spread of an epidemic in two
regions which are connected by transportation. Disease behavior during travel is modeled
by an age-structured system, where age is the time elapsed since the start of the travel.
Our model is in contrast to many existing epidemic models which assume that the speed of
disease spread between regions decreases as the distance between those regions increases.
These models are called “gravity-type” models, where the expression reflects the inverse
relationship of the speed of disease spread to distance. On the other hand, in our model
we take into consideration that the transmission rate of an infectious disease can be much
higher than usual when a large number of passengers are sharing the same cabin during
long distance travel. This implies that the longer the flight between two regions, the
more infections are expected. Thus, our model is of “antigravity-type” in principle. We
distinguish local residents from visitors in the model setup to account for differences in
mixing patterns and travel behaviors. After showing that the model is equivalent to a
twenty-dimensional system of autonomous differential equations of the form of (2.1), we
apply the results of Chapter 2 to our model. Then we present a mathematical procedure
for the calculation of the basic reproduction number. This method also allows us to obtain
stability results for the model by making use of the theory of cooperative and irreducible
systems for delay differential equations and ordinary differential equations. Our approach
of obtaining Rg is particularly designed for models with the delayed term determined via
the solution of another differential system. We parametrize our model for influenza and use
real demographic and air travel data for the numerical simulations. Three distinct origin—
destination pairs are considered to understand the role of the different characteristics of
the regions in the propagation of the disease, and to demonstrate the effect of possible
intervention strategies. The applicability of our approach is also illustrated as we fit

the model to the first wave of the 2009 A(H1N1) influenza pandemic in Canada and Mexico.

Our results for the SEAIR model highlight the significance of including travel time and
travel-related infection in the modeling of the spatial spread of infectious diseases: the
invasion of disease free regions is highly expedited by the elevated transmission potential
during transportation. To keep a region free of infection, the most efficient intervention
strategy is to control the outbreak at its source. However, screening travelers as they arrive
to their destination from affected areas is a potential intervention tool as well. Such an
entry screening procedure is considered in the simple epidemic model for two connected

regions we present in Chapter 4. Furthermore, we also propose an SIR (susceptible—
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infected-recovered) model for disease transmission in the population of individuals who
travel between r regions. In the multiregional model there are multiple delays, thus we

extend our framework elaborated in Chapter 2 to be able to study this system.

The dynamics of compartmental disease transmission models is often characterized by
the basic reproduction number, since this quantity determines the stability of the disease
free equilibrium. Forward transcritical bifurcation describes the usual situation, when the
infection free steady state is asymptotically stable when R is less than one, but when Ry
exceeds unity, stability is passed to a unique endemic equilibrium, which only exists for
Ro > 1. However, in some SIVS (susceptible-infected—vaccinated—susceptible) epidemic
models with imperfect vaccine, a different behavior has been observed; that is, two positive
steady states can coexist with the disease free equilibrium for some values of R less than
one. This phenomenon, called backward bifurcation, presents a scenario when the condi-
tion Rg < 1 does not ensure that the disease will be eradicated, since the stable positive

steady state makes it possible for the infection to persist for certain initial conditions.

In Chapter 5, we extend the simple SIVS vaccination model to two regions which are
connected by transportation, and focus our attention on the special case of one-directional
traveling. We assume that the inflow of non-infective travelers into a region is constant
over time, moreover infecteds do not travel. Our model is an extension of the original STVS
model as it incorporates the possibility of constant transport-related inflow (i.e., immigra-
tion) of susceptible and vaccinated individuals. After giving an explicit condition for the
existence of backward bifurcation and multiple endemic equilibria, we show global stability
results for the model, and examine how the structure of the bifurcation diagram depends
on the immigration parameters. We show that under certain conditions, increasing the
inflow of non-infectives may change the direction of bifurcation from forward to backward,
or vice versa. However, it is also possible to control other model parameters in a way that,
independently of the immigration parameters, the system exhibits a backward or forward

bifurcation, respectively.

The dissertation is based on one paper of the author, on two papers with co-author
Gergely Rost, and on one paper with co-authors Gergely Rost and Jianhong Wu. These

publications are the following:

e D. H. KNiPL AND G. ROST, Multiregional SIR model with infection during trans-
portation, Biomath 1 (2012), 1209255 http://dx.doi.org/10.11145/j .biomath.
2012.09.255


http://dx.doi.org/10.11145/j.biomath.2012.09.255
http://dx.doi.org/10.11145/j.biomath.2012.09.255
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e D. H. KNiprL, Fundamental properties of differential equations with dynamically de-

fined delayed feedback, Electron. J. Qual. Theory Differ. Equ. No. 17 (2013) pp. 1-18.
http://www.math.u-szeged.hu/ejqtde/p1883.pdf

e D. H. KnipL, G. ROST AND J. WU, Epidemic Spread and Variation of Peak
Times in Connected Regions Due to Travel-Related Infections — Dynamics of an
Antigravity-Type Delay Differential Model, STAM J. Appl. Dyn. Syst. 12(4) (2013)
pp. 1722—1762. http://epubs.siam.org/doi/abs/10.1137/130914127

e D. H. KNIPL AND G. ROST, Backward bifurcation in SIVS model with immigra-
tion of non-infectives, Biomath 2 (2013), 1312051 http://dx.doi.org/10.11145/
j.biomath.2013.12.051


http://www.math.u-szeged.hu/ejqtde/p1883.pdf
http://epubs.siam.org/doi/abs/10.1137/130914127
http://dx.doi.org/10.11145/j.biomath.2013.12.051
http://dx.doi.org/10.11145/j.biomath.2013.12.051
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Osszetoglalas

Ebben a Ph.D. értekezésben olyan nemautoném funkcionél-differencialegyenletekkel foglal-
kozunk, ahol a késleltetést tartalmazoé fliggvényt nem lehet a valtozo explicit fliggvényeként
megadni, hanem az dinamikus médon, egy masik differencidlegyenlet-rendszer megoldasan
keresztil van definiadlva. A 2. fejezetben a kovetkezd kezdetiérték-problémét definialjuk:

2 (t) = Ft,z) = f(t,z(t)) + W(t,z(t — 7)), 21)

Lo = ¥,
ahol t,0 € R, t > o, valamint valamely n € Z;-ra z: R - R"?, f: R x R® - R” és
W:RxR" - R" AC=C(-r,0],R") fazisteret a [—,0] intervallumrol R"-be képezd,
folytonos fiiggvények Banach-tereként adjuk meg a szupremumnorméval, ahol 7 régzitett
pozitiv konstans. A megoldas szegmensét z; € C-vel jeloljiik, melyre fennall az x,(0) =
x(t — 0) egyenlgség barmely 6 € [—7,0]-ra. Ekkor F: R x C' - R", tovabba ¢ € C jeldli a
rendszer allapotét a o kezdeti idépontban. Azt mondjuk, hogy valamely F: R x R7 — R
fiiggvény kielégiti a (Lip) Lipschitz-feltételt az R x R’ tér minden korlatos részhalmazéan

j és | pozitiv egészekre, ha fennall az alabbi:

(Lip) Barmely a, b € R és M > 0-ra létezik K (a,b, M) > 0 konstans, hogy
[F(t,x1) = F(t,x2)i < Koy — a2lj, a St <b, |alj, [w2]; < M.

Feltessziik, hogy f: RxR™ — R" folytonos és teljesiti (Lip) feltételt R x R™ minden korlatos
részhalmazan. Tekintjiik tovabba az alabbi, kdzonséges differencidlegyenletre vonatkozd
kezdetiérték-problémét:
y'(s) = g(s,y(s)), 22)
Y(s0) = Yx,
aholm € Zy, y: R - R™ és g: R x R™ — R™, tovabba s,sg € R, s > sg és y. € R™.
Feltessziik, hogy g folytonos R x R™-en és kielégiti (Lip) feltételt R x R™ minden korlatos
részhalmazan. A kozonséges differencidlegyenletek dltalanos elméletébdl kovetkezik, hogy
a (2.2) rendszernek létezik y(s; so, y«) egyértelmi megoldasa az [so, so + «] intervallumon
valamely o > O-ra, tovabba a megoldés folytonosan fiigg a kezdeti feltételektsl. A kdvetkezd

kiegészits feltételt tessziik:
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(%) A (2.2) rendszer y(s; so, y«) megoldasa minden sp-ra és y.-ra létezik legalabb 7 ideig,

tehat az [sg, sp + 7] intervallumon.

Bevezetjiik tovabba a h: R x R™ — R™ és k: R x R™ — R"™ folytonos fiiggvényeket, melyek
kielégitik a (Lip) feltételt. A W: R x R™ —» R” fliggvényt

W(s,v) = k(s,ys—rw(s)) = k(s,y(s;5 — 7, h(s — 7,0)))

modon definialjuk, ahol ys, (s) jeloli (2.2) megoldasat az y. = h(sg,v), v € R™ specialis
esetben. Mindezekbdl kovetkezik, hogy W, mint a (2.1) rendszerben a késleltetést tartal-
mazo6 fuggvény, a (2.2) differencialegyenlet-rendszer megoldasan keresztiil van meghatérozva.
Fennall tehat, hogy (2.1) olyan funkcional-differencialegyenletek altalanos alakjat irja le,

melyekben a késleltetett visszacsatolasi tagot dinamikus médon adjuk meg.

Az F fiiggvényre vonatkozo Lipschitz-feltétel bizonyitésaval nyerjiik az dltalanos 1étezési,
egyértelmiségi, és a megoldasnak a kezdeti értékektdl vald folytonos fliggésérdl szolo tételt
(2.1)-re. Ezen feliil néhany, a biologiai alkalmazéasok szempontjabol fontos eredményt is
igazolunk, melyek a megoldasok nemnegativitasaval illetve az autoném rendszer egyenstlyi

helyzeteinek stabilitasaval foglalkoznak.

A késleltetett differencidlegyenleteknek szamos természettudoményi és mérnoki alkal-
mazasa van. A doktori disszertacidban olyan populaciédinamikai illetve jarvanytani model-
leket vizsgalunk, melyekben a késleltetett visszacsatolési tag definidlasa egy masik rendszer
megoldasan keresztiil torténik. Az 1. fejezetben ismertetett egydimenzios modell egy popu-
lacio 1étszamanak idGbeni valtozasat koveti azzal a feltevéssel, hogy az egyedek valamely
rogzitett idére elszakadhatnak a populécié tébbi részétsl. A 3. és 4. fejezetekben olyan
késleltetett jarvanyterjedési modellekkel foglalkozunk, melyek légikozlekedéssel Gsszekap-
csolt régidkban irjak le a betegségek terjedését. Szamos torténelmi példa, tobbek kozott az
1918-1919-es spanyolnétha esete is illusztrilja, hogy orszaghatarok és 6ceanok sosem szab-
tak gatat fert6z6 betegségek terjedésének. A 2002-ben kitort SARS, majd a 2009-es HIN1
vildgjarvanyok vildgosan ramutattak, hogy a nemzetkozi légikozlekedési rendszer kulcs-
fontossagu szerepet jatszik a jarvanyok vilagmeéretid terjedésében. A modellalkotas soran
feltételezziik, hogy — tavoli teriiletekrsl 1évén szd — az utazas hossza nem elhanyagolhato,
és ugyanezen oknal fogva figyelembe vessziik azt a tényt is, miszerint a jarvanyterjedés
nem csak a szarazfoldon, hanem a repiil§utak alatt is zajlik. A régiokban egy késlel-
tetett differencidlegyenlet-rendszer irja le a betegség terjedését, mig a repiilsutak alatt
zajlo jarvanyterjedést kozonséges differencidlegyenletekkel modellezziik. Az utazéas befe-
jeztével az egyes régidkba érkezd emberek csoportja mint késleltetett visszacsatolasi tag

jelenik meg az egyenletrendszerben. Ezt a tagot csak az utazas kozbeni jarvanydinamika,
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vagyis az azt leird rendszer megoldasanak ismeretében lehetséges meghatarozni.

A disszertacio 3. fejezetében felallitunk egy SEAIR—alapu (S — fogékony, E — latens,
A — tlinetmentes fertézott, I — fert6zott tiinetekkel, R — felgyogyult) modellt, mellyel két,
légikozlekedéssel Gsszekapcsolt régidban modellezziik fertézé betegségek terjedését. Mivel a
populécio tagjai kozotti kapcesolati hidloézat nagy hatassal van a jarvanyterjedés sebességére,
az embereket nem csak a betegség fazisai, de regionélis hovatartozasuk szerint is megkiilon-
boztetjiik. A repiil6utak alatt zajlo jarvanyterjedést egy kor-strukturalt rendszer irja le,
ahol a kor az utazas megkezdése oOta eltelt id6t jelzi. Ha figyelembe vessziik, hogy a
repiil6gépek utasterének zsufoltsdga miatt a megfert6z6dés valoszintsége jelentésen na-
gyobb utazas alatt, mint dtlagos koriilmények kozott, akkor arra az érdekes kdvetkeztetésre
jutunk, hogy a jarvany leghamarabb a kitorés helyétsl tavoli teriiletekre terjed at. Ezért
modelliink jelent&sen kiilonbozik az tn. gravitacio-tipusi modellektdl, melyek azon a fel-
tevésen alapulnak, miszerint a jarvany terjedési sebessége két teriilet kozott forditottan
aranyos a régiok kozotti tavolsaggal (az elnevezés a sebesség és a tavolsag kozotti in-
verz kapcsolatra utal, mely a fizikai gravitacio esetében is tapasztalhato). Modelliinket
tehat — a fentiek okan — antigravitacié-tipustinak nevezziik. Megmutatjuk, hogy a modellt
leir6 huszdimenziés autoném funkcional-differencidlegyenlet rendszer zart alakban a (2.1)
rendszerként all el§, igy alkalmazhatjuk modelliinkre az altalanos kezdetiérték-problémara
nyert eredményeket. Bemutatunk tovabba egy eljarast, melyet az elemi reprodukcios szam
kiszdmitasara dolgoztunk ki. Maodszerlink alkalmazhatdé minden olyan rendszer eseté-
ben, melyben a késleltetett tag egy mésik rendszer megoldésan keresztiil van megadva.
Ezutan a kozonséges és késleltetett differencidlegyenletekre vonatkozo, kooperativ és irre-
ducibilis rendszerek elméletére tamaszkodva leirjuk a modell betegségmentes egyensilya-
nak stabilitasat Ro segitségével. A modellt a 2009-es A(HIN1) influenza pandémiahoz
parametrizaljuk, a szamitogépes szimuldcidkban valés demografiai és légikozlekedési ada-
tokat hasznalunk. A jarvanydinamikéat szamos, a régiok karakterisztikdjahoz kapcsolodo
tényezs is befolyasolja, igy a régiok paraméterezéséhez harom, egyméstol jelentGsen kiilon-
boz6 esetet tekintiink. Végiil modelliinket a kanadai és a mexikéi morbiditasi adatok

alapjan rekonstrualt jarvanygorbékhez illesztjiik.

Az SEAIR-modellre nyert eredményeink kivaloan illusztraljak az utazas kozbeni
jarvanydinamika figyelembevételének fontossagat: ramutattunk, hogy a repiilGutak alatt
jelenlevé megnovekedett fert6zési potencial jelentésen felgyorsitja a betegség terjedését.
A jarvany elleni védekezés leghatékonyabb forméja, ha mar a jarvanykitorés helyén
megprobaljak megakadalyozni a fertézés terjedését; ugyanakkor pandémias helyzetben

szamos orszag alkalmaz olyan prevencids stratégidkat, melyek a régioba érkezé fert&zott
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utazok elkiilonitésére iranyulnak. A disszertacio 4. fejezetében bemutatott SIR-tipusa (S
— fogékony, I — fert6zott, R — felgyogyult) kétrégios modellben feltessziik, hogy a régiokba
érkezok ilyen szilirésen esnek at. Ezt kdvetGen vizsgalunk egy maésik, szintén SIR-alapi
jarvanyterjedési modellt is, melyben a populécio tagjai r régié kozott utaznak. A modell
sziikségessé teszi a 2. fejezetben kidolgozott elmélet kiterjesztését tobb késleltetés esetére,

ugyanis a kiilonbo6zd régiéparok kozotti utazésok hossza eltérs lehet.

Az elemi reprodukciés szdm fontos szerepet jatszik a jarvanyterjedés dinamikajanak
vizsgalataban, mivel a rendszer betegségmentes egyensulyanak stabilitasa Ro-tol fiigg. A
legtobb modellben az un. forward transzkritikus bifurkacio irja le az egyensulyi helyzetek
lokalis stabilitasat. Eszerint Rg < 1-re a rendszernek csak egy, a betegségmentes egyensu-
lyi helyzete létezik, mely lokélisan aszimptotikusan stabil; ugyanakkor Rg = 1-ben meg-
jelenik egy stabil pozitiv egyensily, és a betegségmentes allapot instabilld valik. Egyes
modelleknél ugyanakkor masfajta bifurkacios viselkedés, az tn. backward bifurkaci6 esete
tapasztalhatoé: ekkor a reprodukciés szam valamely egynél kisebb értékeire a rendszernek
két pozitiv egyensiilya is van a betegségmentes allapot mellett. Ha az endemikus egyenstlyi
helyzetek valamelyike stabil, akkor — a forward bifurkéiciés modellek esetével ellentétben —

a jarvanyterjedés megfékezéséhez mar nem mindig elegends Ro-t egy alé szorftani.

A dolgozat 5. fejezetében felallitunk egy SIVS (S — fogékony, I — fert6zott, V — vakeinalt)
jarvanyterjedési modellt két régioban. Feltessziik, hogy a régiok kozotti utazéas egyirany,
valamint a fogékonyak és vakcinaltak konstans ratéval érkeznek, mig a fert&zottek nem
utaznak. Ezaltal egy olyan modellre jutunk, mely az altalanos SIVS-modellt altaldnositva
figyelembe veszi a nemfert6z6 egyedek bevandorlasanak lehetéségét. A modellparaméterek
fliggvényében pontosan meghatéirozzuk a backward illetve a forward bifurkaci6 fennallasé-
nak feltételét, majd a megoldasok globalis viselkedését is leirjuk. Ezt kivetkezSen vizs-
galjuk a bevandorlas hatasat a bifurkacios viselkedésen. Megadhatoak azok a paramétertar-
toméanyok, melyekben a bevandorlas nem véltoztatja meg a bifurkacié iranyat. Ugyanakkor
megmutatjuk, hogy bizonyos feltételek mellett a bevandorlési paraméterek novelésével a

bifurkacios viselkedés forwardrol backwardra, illetve forditva iranyba valtozik Rg = 1-nél.

A disszertacié a szerzd két, Rost Gergellyel kozosen irt dolgozatara, egy tovabbi,
Rost Gergely és Jianhong Wu tarsszerzékkel kozos publikidcidjara, valamint egy 6nélld

kozleményére épiil:

e D. H. KNniPL AND G. ROST, Multiregional SIR model with infection during trans-
portation, Biomath 1 (2012), 1209255 http://dx.doi.org/10.11145/j .biomath.
2012.09.255


http://dx.doi.org/10.11145/j.biomath.2012.09.255
http://dx.doi.org/10.11145/j.biomath.2012.09.255
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e D. H. KNiprL, Fundamental properties of differential equations with dynamically de-

fined delayed feedback, Electron. J. Qual. Theory Differ. Equ. No. 17 (2013) pp. 1-18.
http://www.math.u-szeged.hu/ejqtde/p1883.pdf

e D. H. KnipL, G. ROST AND J. WU, Epidemic Spread and Variation of Peak
Times in Connected Regions Due to Travel-Related Infections — Dynamics of an
Antigravity-Type Delay Differential Model, STAM J. Appl. Dyn. Syst. 12(4) (2013)
pp. 1722—1762. http://epubs.siam.org/doi/abs/10.1137/130914127

e D. H. KNIPL AND G. ROST, Backward bifurcation in SIVS model with immigra-
tion of non-infectives, Biomath 2 (2013), 1312051 http://dx.doi.org/10.11145/
j.biomath.2013.12.051


http://www.math.u-szeged.hu/ejqtde/p1883.pdf
http://epubs.siam.org/doi/abs/10.1137/130914127
http://dx.doi.org/10.11145/j.biomath.2013.12.051
http://dx.doi.org/10.11145/j.biomath.2013.12.051
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