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Chapter 1

Introduction

Differential equations have been in the focus of mathematical biology since the famous

work of Volterra. Dynamical models are powerful tools to describe various processes in

life sciences by applying rigorous analytical techniques. Simple models are often unable to

capture the rich variety of dynamics observed in biological phenomena, thus it is necessary

to consider complex systems for the modeling. There are numerous reasons to incorpo-

rate time delays into biological models: they can represent resource regeneration times,

maturation or incubation periods, reaction times, transport-related delays, or can simply

account for the time required for a process to complete. The inclusion of delayed terms into

differential equations brings us to the field of delay differential equations, where the deriva-

tive of the unknown function at a certain time is determined by the values of the function

at previous times. The vast majority of works in the mathematical literature focus on

model equations where the delayed feedback function is given explicitly (see, for instance,

the Mackey–Glass equation, Nicholson’s blowflies equation and Wright’s equation), while

others only require some particular properties (for instance, monotonicity or unimodular-

ity) of the feedback. In this work, we propose various models from population dynamics

and epidemiology where the delayed term in the corresponding system cannot be given ex-

plicitly by the model variables, but it depends on the solution of another differential system.

In this Ph.D. dissertation, initial value problems for differential equations with such

dynamically defined delayed feedback function will be considered. We propose a class of

models from mathematical biology where the population is distributed over several discrete

geographical regions, and show that the qualitative analysis of these models leads to the

study of such systems if mobility (e.g., migration of species or transportation of individuals)

between the regions is incorporated. Investigating the fundamental properties of the initial

value problem is an interesting mathematical challenge in itself, but more significantly, the

results obtained for the general system also enable us to gain more insight into the dynamics

1



2 CHAPTER 1. INTRODUCTION

of the biological applications. In particular, we will describe the spatial spread of infectious

diseases by formulating a series of mathematical models, each of which is equivalent to a

large system of differential equations with dynamically defined delayed terms. First, we

discuss a simple problem from mathematical biology.

A basic model from population dynamics

A simple model describing the growth of a single population with fixed period of temporary

separation is given by

ṅ(t) = b(n(t))− d(n(t))− q(n(t)) + V (n(t− τ)),

n0 = ϕ,
(1.1)

where t denotes time and functions b, d and q stand for recruitment, mortality and tem-

porary separation (e.g., migration). Let τ > 0 be the fixed duration of separation. We

define the phase space C+ as the nonnegative cone of C([−τ, 0],R), the Banach space of

continuous functions from [−τ, 0] to Rn equipped with the supremum norm. The notation

nt is used for the segment of the solution, where nt ∈ C+ and it holds that nt(θ) = n(t− θ)
for θ ∈ [−τ, 0]. Then, n0 = ϕ gives the initial state of the system for any ϕ ∈ C+.

We say that a function F : R � R satisfies the Lipschitz condition on each bounded subset of

R if for allM > 0 there is aK(M) > 0 such that the inequality |F (x1)−F (x2)| ≤ K|x1−x2|
holds whenever |x1|, |x2| ≤ M . We assume that b, d, q : R � R satisfy the Lipschitz prop-

erty on each bounded subset of R, which implies their continuity on R. Since b, d and q

denote the recruitment, mortality and separation functions, it should hold that they map

nonnegative values to nonnegative values.

The function V expresses the inflow of individuals arriving to the population at time

t after τ units of time of separation. For the precise definition of V , it is needed to

describe the growth of the separated population. We assume that individuals who left the

population due to separation in different times do not make contact to each other. Hence

for each time t∗, the evolution of the density of the separated population with respect to

the time elapsed since the beginning of separation is given by the following differential

equation, when separation started at time t∗:

d

dθ
m(θ; t∗) = bS(m(θ; t∗))− dS(m(θ; t∗)),

m(0; t∗) = q(n(t∗)),

(1.2)

where θ denotes the time elapsed since the beginning of separation, and functions bS and

dS stand for recruitment and mortality during separation. At θ = 0, the density of the

separated population is determined by the number of individuals who start separation at
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time t∗, hence the initial value for system (1.2) is given by m(0; t∗) = q(n(t∗)). We assume

that bS , dS : R � R satisfy the Lipschitz condition on each bounded subset of R, which
also yields that they are continuous on R. The Picard–Lindelöf theorem ([22]) ensures

that for any initial value m∗ there exists a unique solution y(θ; 0,m∗) of system (1.2) on

[0, α] for some α > 0. As separation lasts for τ units of time, it is reasonable to make the

additional assumption that the unique solution exists at least for τ units of time for every

m∗. This hypothesis can be fulfilled by some additional (however, biologically meaningful)

conditions on bS and dS ; for instance, if the functions are defined such that the solution

of (1.2) is bounded, then y(θ; 0,m∗) can be continued for all positive times. In order to

guarantee that nonnegative initial data give rise to nonnegative solutions of (1.2), we as-

sume that the inequality bS(0) − dS(0) ≥ 0 holds, and remark that this condition can be

satisfied with several reasonable choices of the recruitment and mortality functions.

Now we are in the position to define the delayed feedback function V in system (1.1).

Since the duration of separation is exactly τ units of time, the inflow of individuals arriving

to the population at t∗+ τ after separation is determined by the solution of (1.2) at θ = τ

with t∗ fixed. We hence define the feedback function V : R � R as V (v) = y(τ ; 0, q(v)).

By the formulation of the model, we obtain that the system describing the growth of the

population is connected to another system via a delayed feedback term. More precisely, for

the solution of system (1.1) at any time t, it is necessary to compute V which is determined

by the dynamics of system (1.2). Nevertheless, (1.2) takes the initial value from (1.1), and

thus evaluating V at n(t − τ) in system (1.1) results in a delayed term which cannot be

given explicitly, but through the solution of the differential system (1.2). Henceforth, a

system like (1.1) is referred to as a system of differential equations with dynamically defined

delayed feedback term.

Chapter 2 of the dissertation is devoted to the formulation of an initial value prob-

lem for nonautonomous functional differential equations with dynamically defined delayed

term. We investigate the fundamental properties of such systems. The general existence,

uniqueness and continuous dependence result will be derived, and we give conditions for

the nonnegativity of solutions. Furthermore, after determining the steady state solutions

of the autonomous system, we obtain the linearized equation about the equilibria. Before

proceeding to the general theory in Chapter 2, we present here a class of epidemic models

to further motivate the study of such systems. The model proposed above with temporary

separation will be revisited in Chapter 2.
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Epidemic models with travel-related infection

National boundaries have never prevented infectious diseases from reaching distant ter-

ritories; however, the speed at which an infectious agent can spread around the world

via the global network of human transportation has significantly increased during the re-

cent decades. Studying the role that the global airline transportation network plays in the

worldwide spread of infectious diseases has been in the focus of mathematical epidemiology

for a while, especially since the 2002–2003 SARS outbreak. Previous works on metapop-

ulation models for disease spread in connected regions were mostly concerned only with

the impact of the network structure and the volume of travel on the spatial dynamics (see

Arino [2], Arino and van den Driessche [3], Baroyan et al. [5], Ruan et al. [36], Rvachev

and Longini [37], Wang and Zhao [50] and the references therein). On the other hand, as

it was highlighted in the risk assessment guideline of the European CDC [16], on-board

transmission is a real threat for many infectious diseases, even during flights with a dura-

tion of less than eight hours.

The possibility that individuals may contract the disease while they travel was modeled

by Cui, Liu, Takeuchi and Saito [10, 29, 42] using a system of ordinary differential equations

based on the standard SIS (susceptible–infected–susceptible) epidemic model. While these

works were based on the consideration that travel times between the regions are negligible,

Liu et al. [28] incorporated the time needed to complete transportation into the model.

Though the length of intercontinental flights is only a fraction of a day, it is reasonable to

take into account any small delays if one’s aim is to consider rapidly progressing diseases

such as SARS and influenza. The SIS–type epidemic model proposed by Liu et al. [28]

was further investigated by Nakata [33] and Nakata and Röst [34] by describing the global

dynamics for an arbitrary n number of regions with different characteristics and general

travel networks.

The models in [28, 33, 34] provide a good basis to investigate the spread of an in-

fectious disease in regions which are connected by transportation. As a submodel, an

age-structured system can be constructed to incorporate the possibility of disease trans-

mission during travel, where age is the time elapsed since the start of the travel. Following

the assumption that transmitting the infection is possible on-board, the model setup leads

to a system of delay differential equations with delay representing travel time. The two

systems, describing the dynamics in the regions and during transportation, are intercon-

nected; initial values of the system for disease spread during travel depend on the state

of the system in the regions, while the inflow term of arrivals to the regions after being

in transportation for a fixed time arises as the solution of the subsystem for travel. If the
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subsystem can be solved analytically (this was the case for the age-structured SI model

used in [28, 33, 34]), then the system for disease spread in the regions decouple from the

subsystem. Recalling that initial data of the system during travel comes from the equations

for the regions, the inflow term of travelers completing a trip appears as a delayed feedback

term. On the other hand, in case of choosing SIR (susceptible–infected–recovered)-type

models as an epidemic building block when the subsystem does not admit a closed form

solution, the delayed term in the system for the regions cannot be expressed explicitly, but

is defined dynamically, via the solutions of another system.

Three different epidemic models will be formulated in the thesis for the spread of in-

fectious diseases in the population of individuals who travel between distant regions. In

Chapter 3 we introduce an SEAIR (susceptible–exposed–asymptomatic infected–infected–

recovered)-based model to properly describe the temporal evolution of an epidemic in two

regions of the world, which are connected by long distance travel such as intercontinental

flights. We incorporate the consideration that infected travelers not only carry the disease

from one place to another, but also infect some of their fellow passengers. This implies

that the epidemic spreads more rapidly to farther regions than to closer ones, since longer

flights provide more opportunity for infection. We use the phrase “antigravity model”

to express this special feature of our model. This notion originates from the fact that

the speed of disease propagation between regions is usually inversely proportional to the

distance between those territories, as regions closer to each other are typically more con-

nected; and this inverse relationship between speed and distance shows some analogy to

physical gravity. Our model also distinguishes local residents from visitors to incorporate

differences in individuals’ mixing behavior. We use our framework to model the spread of

influenza, one of the diseases that pose a threat of a global pandemic in modern times.

For the numerical simulations which are performed to model three hypothetical situations

with different characteristics for the regions, we use real demographic and air travel data.

The model is also applied to the first wave of the A(H1N1) 2009 pandemic influenza in

Mexico and Canada. One of the main challenges of this work is to compute the basic

reproduction number (R0), which gives the expected number of secondary infections gen-

erated by a single infected agent in a susceptible population. This quantity is of particular

importance in epidemic models as it works as a threshold for the stability of the disease

free steady state. To our knowledge, no general method has been published in the liter-

ature before to find R0 for the special type of systems considered in this Ph.D. dissertation.

The topic of investigating disease propagation in and between connected regions is fur-

ther elaborated in Chapter 4. We present two SIR-based epidemic models, one for the
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spread of infection between two regions with an entry screening procedure initiated for

travelers upon the arrival to a region, and another one with general incidence term in

multiple regions. Setting up the system of differential equations for the first model leads to

a situation when the dimension of the system for the disease spread in the regions differs

from the dimension of the age-structured system during travel. The framework established

in Chapter 2 for the general theory of systems with dynamically defined delayed feedback

term is extended for the multiregional model to the case of multiple delays.

Chapter 5 is devoted to the bifurcation analysis of some epidemic models where trav-

eling is considered. In particular, an SIVS (susceptible–infected–vaccinated–susceptible)-

based model will be investigated which exhibits the phenomenon of backward bifurcation,

this is, there is an interval for R0 to the left of one, where the disease free equilibrium co-

exists with two positive fixed points, typically one stable and one unstable. Such behavior

cannot be observed in the more common scenario of forward transcritical bifurcation, when

positive steady states only exist for R0 > 1. Backward bifurcation and the presence of a

stable endemic state for R0 < 1 have a significant epidemiological implication: the typical

requirement of decreasing the reproduction number below one is no longer sufficient for

effective epidemic control.

A number of mathematical models have been developed recently which deal with the

various causes of backward bifurcation (see the well-known results of Dushoff, Huang,

Castillo-Chavez, Hadeler and van den Driessche [15, 19, 20], and the work of Gumel [18]

which provides a thorough overview of the relevant literature.). A simple disease transmis-

sion model with vaccination of susceptible individuals has been considered by Kribs-Zaleta

and Velasco-Hernández in [26, 27], and later elaborated by Brauer in [7, 8], where one

reason for the emergence of positive fixed points for R0 < 1 is that vaccination does not

provide perfect protection against infection. We study an extension of this model as we in-

vestigate the effect of mobility on the dynamics by including the possibility of immigration

of susceptible and vaccinated individuals into the model. After showing global stability

results for the model, an explicit condition for the existence of backward bifurcation and

multiple endemic equilibria will be given. We also examine in detail how the structure of

the bifurcation diagram depends on the immigration.



Chapter 2

Differential equations with

dynamically defined delay term

The general form of systems of nonautonomous functional differential equations with dy-

namically defined delayed feedback function will be introduced. This work was motivated

by applications from population dynamics and epidemiology where the model setup leads

to a system of differential equations with the delay term defined via the solution of another

system of differential equations. We obtain the general existence, uniqueness and continu-

ous dependence result for the initial value problem by showing a Lipschitz property of the

dynamically defined delayed feedback function, and give conditions for the nonnegativity

of solutions. Steady-state solutions of the autonomous system will also be determined, and

we derive the linearized equation about the equilibria. We revisit the single population

model with fixed period of temporary separation, which has been introduced in Chapter

1, and obtain some basic properties of the model.

2.1 General formulation of the system

We consider the initial value problem for the nonautonomous functional differential equa-

tion
x′(t) = F(t, xt),

xσ = ϕ,
(2.1)

where x : R � Rn, n ∈ Z+, t, σ ∈ R and t ≥ σ. For τ > 0, we define our phase space C =

C([−τ, 0],Rn) as the Banach space of continuous functions from [−τ, 0] to Rn, equipped
with the usual supremum norm || · ||. Let ϕ ∈ C be the state of the system at σ. For the

segments of solutions, we use the notation xt ∈ C, where xt(θ) = x(t + θ) for θ ∈ [−τ, 0].

Let F : R×C � Rn and let F have the special form F(t, φ) = f(t, φ(0)) +W (t, φ(−τ)) for

φ ∈ C, f : R× Rn � Rn, W : R× Rn � Rn.

7
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In the sequel we use the notation |v|j for the Euclidean norm of any vector v ∈ Rj for

j ∈ Z+. For j = 1 we omit lower index 1 for simplicity. We define a Lipschitz condition

as follows. For j, l ∈ Z+, we say that a function F : R × Rj � Rl satisfies the Lipschitz

condition (Lip) on each bounded subset of R× Rj if:

(Lip) For all a, b ∈ R and M > 0, there is a K(a, b,M) > 0 such that:

|F (t, x1)− F (t, x2)|l ≤ K|x1 − x2|j , a ≤ t ≤ b, |x1|j , |x2|j ≤M.

We assume that f : R×Rn � Rn is continuous and satisfies (Lip) on each bounded subset

of R × Rn. For the definition of W , we make the following preparations. For any s0 ∈ R
and y∗ ∈ Rm, m ∈ Z+, we consider the initial value problem

y′(s) = g(s, y(s)),

y(s0) = y∗,
(2.2)

where y : R � Rm, s, s0 ∈ R, s ≥ s0, g : R × Rm � Rm, g is continuous on R × Rm and

satisfies the Lipschitz condition (Lip) on each bounded subset of R × Rm. The Picard–

Lindelöf theorem (see Chapter II, Theorem 1.1 and Chapter V, Theorem 2.1 in [22]) states

that, as g is continuous on a parallelepiped R : s0 ≤ s ≤ s0 + c, |y − y∗|m ≤ d with the

bound B for |g|m on R and g possesses the Lipschitz property (Lip), there exists a unique

solution y(s; s0, y∗) of (2.2) on the interval [s0, s0 + α] for α = αs0,y∗,c,d := min{c, dB}, and
the solution continuously depends on the initial data. We make the following additional

assumption:

(?) For every s0 and y∗, the solution y(s; s0, y∗) of (2.2) exists for τ units of time, i.e., on

[s0, s0 + τ ].

Remark 2.1. The reader may notice that (?) is equivalent to the following assumption:

For every s0 and y∗ the solution y(s; s0, y∗) exists for all s ≥ s0.

Remark 2.2. With assuming various conditions on g we can guarantee that (?) is fulfilled.

For instance, for any s0 ∈ R and L ∈ R+, we define the constant Lg = Lg(s0, L) as the

maximum of |g|m on the set [s0, s0 + τ ] × {v ∈ Rm : |v|m ≤ 2L} (continuous functions

attain their maximum on every compact set). Then the condition that for every s0 ∈ R
and L ∈ R+ the inequailty

τ ≤ L

Lg
(2.3)

holds immediately implies that (?) is satisfied. Indeed, for any s0 and y∗, choose c = τ ,

d = |y∗|m. Then the Picard–Lindelöf theorem guarantees the existence and uniqueness

of solution y(s; s0, y∗) on [s0, s0 + α] for α = min{τ, |y∗|mB }, where B is the bound for

|g|m on the parallelepiped s0 ≤ s ≤ s0 + τ, |y − y∗|m ≤ |y∗|m. Choosing L = |y∗|m, it
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follows from the definition of Lg(s0, L) that B ≤ Lg is satisfied, and using (2.3) we get

τ ≤ |y∗|m
Lg

≤ |y∗|m
B . We conclude that α = τ , hence the solution y(s; s0, y∗) exists on

[s0, s0 + τ ] and (?) is satisfied.

The less restrictive condition κ := infs0,L
L
Lg

> 0 implies the existence of the solution of

(2.2) on [s0, s0 + κ] for any s0. Then it follows that for any s0, the solution exists for all

s ≥ s0, which is equivalent to (?). If we assume that a global Lipschitz condition (gLip)

holds for g, that is, the Lipschitz constant for g in (Lip) can be chosen independently of

a, b and M , then for any s0 and y∗ the solution of (2.2) exists for all s ≥ s0, thus also for

τ units of time.

Now we are ready for the definition of W . For h : R × Rn � Rm, k : R × Rm � Rn,
let us assume that h and k are continuous and satisfy the Lipschitz condition (Lip). For

simplicity, we use the notation ys0,v(s) = y(s; s0, h(s0, v)) for the unique solution of system

(2.2) in the case y∗ = h(s0, v), v ∈ Rn. We define W : R× Rn � Rn as

W (s, v) = k(s, ys−τ,v(s)) = k(s, y(s; s− τ, h(s− τ, v))). (2.4)

2.2 Fundamental properties

Our goal is to prove the usual existence and uniqueness theorem for (2.1). First we obtain

the following simple results.

Proposition 2.3. F is continuous on R× C.

Proof. The Picard–Lindelöf theorem and (?) guarantee that for every s0, y∗, there exists

a unique solution of system (2.2) on the interval [s0, s0 + τ ] and the solution y(s; s0, y∗)

continuously depends on the initial data. Moreover, h and k are continuous which implies

the continuity of W . The function f is also continuous, hence we conclude that F is

continuous on R× C.

Proposition 2.4. For any c, d ∈ R such that c < d and for any L ∈ R+, there exists a

bound J = J(c, d, L) such that for any s0 ∈ [c, d] and for any y∗ ∈ Rm such that |y∗|m ≤ L,
the inequality

|y(s; s0, y∗)|m ≤ J

holds for s ∈ [s0, s0 + τ ].

Proof. The Picard–Lindelöf theorem and (?) guarantee that for every s0 ∈ R and y∗ ∈ Rm,
there exists a unique solution y(s; s0, y∗) of system (2.2) on the interval [s0, s0 + τ ], and

the solution continuously depends on the initial data. Thus, for any c, d ∈ R where c < d

and for any L ∈ R+, the solution y(s; s0, y∗), as a function of s, s0 and y∗, is continuous
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on the set {(s1, s2, v) : s1 ∈ [c, d+ τ ], s2 ∈ [c, d], s1 ≥ s2, |v|m ≤ L}. Continuous functions

map compact sets to compact sets, hence there exists a constant J(c, d, L) such that

|y(s; s0, y∗)|m ≤ J . The proof is complete.

Now we show that besides continuity, F also satisfies a Lipschitz condition on each

bounded subset of R× C:

(LipC) For all a, b ∈ R and M > 0, there is a K(a, b,M) > 0 such that:

|f(t, φ)− f(t, ψ)|n ≤ K||φ− ψ||, a ≤ t ≤ b, ||φ||, ||ψ|| ≤M.

Lemma 2.5. F satisfies the Lipschitz condition (LipC) on each bounded subset of R×C.

Proof. Fix constants a, b and M , a < b, M > 0. Our aim is to find K(a, b,M). Due to

the continuity of h, there exists a constant Lh(a, b,M) such that for any ||ψ|| ≤ M and

s0 ∈ [a − τ, b − τ ], the inequality |h(s0, ψ(−τ))|m ≤ Lh holds. By choosing c = a − τ ,
d = b − τ , L = Lh and y∗ = h(s0, ψ(−τ)) it follows from Proposition 2.4 that for any

s0 ∈ [a− τ, b− τ ], the inequality |ys0,ψ(−τ)(s)|m ≤ J(a, b, Lh) is satisfied for s ∈ [s0, s0 + τ ].

Let Kh = Kh(a, b,M) be the Lipschitz constant of h on the set [a − τ, b − τ ] × {v ∈
Rn : |v|n ≤M}, let Kg = Kg(a, b,M) be the Lipschitz constant of g on the set [a− τ, b]×
{v ∈ Rm : |v|m ≤ J} (note that J depends on a, b and M). For any ||φ||, ||ψ|| ≤ M

it holds that |φ(−τ)|n, |ψ(−τ)|n ≤ M . Since the solution of (2.2) can be expressed as

y(s; s0, y∗) = y∗ +
∫ s
s0
g(r, y(r; s0, y∗))dr, for any s0 ∈ [a− τ, b− τ ] we have

|ys0,φ(−τ)(s)− ys0,ψ(−τ)(s)|m =

∣∣∣∣h(s0, φ(−τ)) +

∫ s

s0

g(r, ys0,φ(−τ)(r)) dr

−
(
h(s0, ψ(−τ)) +

∫ s

s0

g(r, ys0,ψ(−τ)(r)) dr

)∣∣∣∣
m

≤ |h(s0, φ(−τ))− h(s0, ψ(−τ))|m

+

∫ s

s0

|g(r, ys0,φ(−τ)(r))− g(r, ys0,ψ(−τ)(r))|m dr

≤ Kh||φ− ψ||

+

∫ s

s0

Kg|ys0,φ(−τ)(r)− ys0,ψ(−τ)(r)|m dr

(2.5)

for s ∈ [s0, s0 + τ ]. For a given s0 ∈ [a− τ, b− τ ] we define

Γ(s) = |ys0,φ(−τ)(s)− ys0,ψ(−τ)(s)|m

for s ∈ [s0, s0 + τ ]. Then (2.5) gives

Γ(s) ≤ Kh||φ− ψ||+Kg

∫ s

s0

Γ(r) dr,
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and from Gronwall’s inequality we have that for any s0 ∈ [a− τ, b− τ ]

Γ(s) ≤ Kh||φ− ψ||eKg(s−s0) (2.6)

holds for s ∈ [s0, s0 + τ ].

For any t ∈ [a, b] it is satisfied that t − τ ∈ [a − τ, b − τ ], hence for s ∈ [t − τ, t] we
obtain

|yt−τ,φ(−τ)(s)− yt−τ,ψ(−τ)(s)|m ≤ Kh||φ− ψ||eKg(s−(t−τ)) (2.7)

as a special case of (2.6) with s0 = t− τ . The constant J = J(a, b, Lh) was defined as the

bound for |ys0,ψ(−τ)(s)|m for any s0 ∈ [a − τ, b − τ ], ||ψ|| ≤ M , s ∈ [s0, s0 + τ ]. For any

t ∈ [a, b] it follows that t − τ ∈ [a − τ, b − τ ], hence the inequality |yt−τ,ψ(−τ)(t)|m ≤ J

holds for any ||ψ|| ≤ M . Let Kk = Kk(a, b,M) be the Lipschitz constant of k on the set

[a, b]× {v ∈ Rm : |v|m ≤ J}. Then for any t ∈ [a, b] and ||φ||, ||ψ|| ≤M it is satisfied that

|φ(−τ)|n, |ψ(−τ)|n ≤M , so we arrive to the following inequality:

|W (t, φ(−τ))−W (t, ψ(−τ))|n = |k(t, yt−τ,φ(−τ)(t))− k(t, yt−τ,ψ(−τ)(t))|n

≤ Kk|yt−τ,φ(−τ)(t)− yt−τ,ψ(−τ)(t)|m

≤ KkKh||φ− ψ||eKgτ ,

where we used (5.24) and (2.7).

Finally, let Kf (a, b,M) be the Lipschitz constant of f on the set [a, b] × {v ∈ Rn :

|v|n ≤ M}. Then for any t ∈ [a, b] and for any ||φ||, ||ψ|| ≤ M it holds that |φ(0)|n,
|ψ(0)|n, |φ(−τ)|n, |ψ(−τ)|n ≤M , hence we get

|F(t, φ)−F(t, ψ)|n ≤ |f(t, φ(0))− f(t, ψ(0))|n + |W (t, φ(−τ))−W (t, ψ(−τ))|n

≤ Kf ||φ− ψ||+KkKh||φ− ψ||eKgτ ,

and it is clear that Kf (a, b,M) +Kk(a, b,M)Kh(a, b,M)eτKg(a,b,M) is a suitable choice for

K(a, b,M), the Lipschitz constant of F on the set [a, b]× {ψ ∈ C : ||ψ|| ≤M}.

We state the following simple remark.

Remark 2.6. If f , g, h and k satisfy a global Lipschitz condition (gLip), that is, if Kf ,

Kg, Kh andKk can be chosen independently of a, b andM in the definition of the Lipschitz

condition (Lip), then a global Lipschitz condition (gLipC) holds for F , i.e., there exists a

Lipschitz constant K of F which is independent of a, b and M .
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Now, as we have proved that F is continuous and satisfies the Lipschitz condition

(LipC), all conditions of Theorem 3.7 in [38] are satisfied. We arrive to the following

result.

Theorem 2.7. Let σ ∈ R, M > 0. There exists A > 0, depending only on M such

that if φ ∈ C = C([−τ, 0],Rn) satisfies ||φ|| ≤ M , then there exists a unique solution

x(t) = x(t;σ, φ) of (2.1), defined on [σ − τ, σ + A]. In addition, if K is the Lipschitz

constant for F corresponding to [σ, σ +A] and M, then

max
σ−τ≤η≤σ+A

|x(η;σ, φ)− x(η;σ, ψ)|n ≤ ||φ− ψ||eKA for any ||φ||, ||ψ|| ≤M.

Assuming stronger conditions on f , g, h and k, we arrive to a more general existence

result. We follow Remark 3.8 in [38].

Remark 2.8. If f , g, h and k satisfy condition (gLip), then condition (gLipC) arises for

F and we do not need to make any restrictions on A in Theorem 2.7. More precisely, its

statements hold for any A > 0. In this case, the solution exists for every t ≥ σ and the

inequality

||xt(φ)− xt(ψ)|| ≤ ||φ− ψ||eK(t−σ)

holds for all t ≥ σ.

Most functional differential equations that arise in population dynamics or epidemiol-

ogy deal only with nonnegative quantities. Therefore it is important to see what conditions

ensure that nonnegative initial data give rise to nonnegative solutions.

We reformulate (2.1) using the definition of F . Since F(t, xt) = f(t, x(t)) +W (t, x(t− τ)),

we consider the following system of differential equations, which is equivalent to (2.1):

x′(t) = f(t, x(t)) +W (t, x(t− τ)),

xσ = ϕ.
(2.8)

We claim that under reasonable assumptions, the solution of system (2.8) preserves non-

negativity for nonnegative initial data. Let us suppose that for each t ∈ R, h and k map

nonnegative vectors to nonnegative vectors. We also assume that for every i ∈ {1, . . . , n},
j ∈ {1, . . . ,m}, u ∈ Rn+, w ∈ Rm+ and t, s ∈ R, ui = 0 implies fi(t, u) ≥ 0 and wj = 0

implies gj(s, w) ≥ 0. Then for any nonnegative initial value, the solution of system (2.2) is

nonnegative, which implies that for every i ∈ {1, . . . , n}, v ∈ Rn+ and t ∈ R, the inequality

(k(t, y(t; t− τ, h(t− τ, v))))i = Wi(t, v) ≥ 0 holds. Hence fi(t, u) +Wi(t, v) ≥ 0 is satisfied

for u, v ∈ Rn+, ui = 0, t ∈ R, all conditions of Theorem 3.4 in [38] hold and we conclude

that nonnegative initial data give rise to nonnegative solutions of system (2.8). Clearly

systems (2.8) and (2.1) are equivalent, which implies that the result automatically holds

for system (2.1). We summarize our assumptions and their consequence.
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Proposition 2.9. Suppose that h : R × Rn � Rm and k : R × Rm � Rn map nonnegative

vectors to nonnegative vectors for each t ∈ R, moreover assume that

∀i, t,∀u ∈ Rn+ : ui = 0⇒ fi(t, u) ≥ 0,

∀j, s, ∀w ∈ Rm+ : wj = 0⇒ gj(s, w) ≥ 0.

Then for nonnegative initial data the solution of system (2.1) preserves nonnegativity, i.e.,

x(t) ≥ 0 for all t ≥ σ where it is defined.

2.3 The autonomous case

2.3.1 Basic properties

As a special case of system (2.1), we may derive similar results for the autonomous system.

Let x : R � Rn, y : R � Rm, t, s ∈ R, let f : Rn � Rn, g : Rm � Rm, h : Rn � Rm,
k : Rm � Rn. Let us assume that f, g, h and k satisfy the Lipschitz condition (Lip), which

can be stated as follows. For j, l ∈ Z+, we say that a function F : Rj � Rl satisfies the

Lipschitz condition (Lip) if for allM > 0 there is aK(M) > 0 such that for |x1|j , |x2|j ≤M
the inequality |F (x1) − F (x2)|l ≤ K|x1 − x2|j holds. There is no need to assume the

continuity for f, g, h and k, since these functions are independent of t and hence this

property follows from the Lipschitz condition (Lip). For τ > 0, let C = C([−τ, 0],Rn) be

the phase space, where C has been defined in Section 2.1. Then system (2.1) has the form

x′(t) = F(xt),

x0 = ϕ,
(2.9)

where t ≥ 0, ϕ ∈ C is the state of the system at t = 0, F : C � Rn and F has the special

form F(φ) = f(φ(0)) +W (φ(−τ)), φ ∈ C. For any y∗ ∈ Rm, system (2.2) turns into

y′(s) = g(y(s)),

y(0) = y∗,
(2.10)

where s ≥ 0. Similarly as in Section 2.1, the Picard–Lindelöf theorem guarantees the

existence and uniqueness of the solution of system (2.10) on [0, α] for some α > 0. We

make the following additional assumption:

(??) For every y∗, the solution y(s; 0, y∗) of (2.10) exists at least for τ units of time.

This is equivalent to the assumption that y(s; 0, y∗) exists on [0,∞) for every y∗, which

holds if g satisfies (gLip) (see Remark 2.2). We use the notation y0,v(s) = y(s; 0, h(v)) for

the unique solution of system (2.10) in the case y∗ = h(v), and we define W : Rn � Rn by

W (v) = k(y0,v(τ)) = k(y(τ ; 0, h(v))), (2.11)
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where v ∈ Rn. It is straightforward that the Lipschitz condition (LipC) and the continuity

of F hold, furthermore if we assume that f , g, h and k satisfy the global Lipschitz condition

(gLip), then we obtain that condition (gLipC) is satisfied for F (for the definitions of (gLip)

and (gLipC), see Remark 2.6). As an immediate consequence of Theorem 2.7, we state the

following corollary.

Corollary 2.10. Suppose that M > 0. There exists A > 0, depending only on M such

that if φ ∈ C satisfies ||φ|| ≤ M , then there exists a unique solution x(t) = x(t; 0, φ) of

(2.9), defined on [−τ,A]. In addition, if K is the Lipschitz constant for F corresponding

to M, then

max
−τ≤η≤A

|x(η; 0, φ)− x(η; 0, ψ)|n ≤ ||φ− ψ||eKA for any ||φ||, ||ψ|| ≤M.

The following remark arises automatically as the autonomous case of Remark 2.8.

Remark 2.11. If f , g, h and k satisfy the global Lipschitz condition (gLip), then we do

not need to make any restrictions on A in Corollary 2.10. More precisely, its statements

hold for all A > 0. In this case, the solution exists for all t ≥ 0 and the inequality

||xt(φ)− xt(ψ)|| ≤ ||φ− ψ||eKt

holds for all t ≥ 0.

Clearly we can adapt Proposition 2.9 to the autonomous system with similar conditions.

Corollary 2.12. Suppose that h : Rn � Rm and k : Rm � Rn map nonnegative vectors to

nonnegative vectors, moreover assume that

∀i,∀u ∈ Rn+ : ui = 0⇒ fi(u) ≥ 0,

∀j,∀w ∈ Rm+ : wj = 0⇒ gj(w) ≥ 0.

Then for nonnegative initial data the solution of system (2.9) preserves nonnegativity, i.e.,

x(t) ≥ 0 for all t ≥ 0 where it is defined.

2.3.2 Equilibria and linearization

Consider the nonlinear functional differential equation system (2.9)

x′(t) = F(xt),

where F(φ) = f(φ(0)) + W (φ(−τ)) for φ ∈ C. Then x(t) = x̄ ∈ Rn is a steady-state

solution of (2.9) if and only if F(ˆ̄x) = 0 holds, where ˆ̄x ∈ C is the constant function equal

to x̄. Suppose there exists such an equilibrium. We formulate the linearized system about

the equilibrium x̄ as

z′(t) = DF(ˆ̄x)zt, (2.12)
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where DF(ˆ̄x) : C � Rn is a bounded linear operator and z : R � Rn. Due to the special

form of F , (2.12) reformulates as

z′(t) = A1z(t) +A2z(t− τ),

where A1 = Df(x̄) ∈ Rn×n and A2 = DW (x̄) ∈ Rn×n.

Proposition 2.13. Suppose that g, h and k are continuously differentiable. Then the ma-

trix DW (x̄) can be represented with g, h and k as follows:

DW (x̄) = Dk(y(τ ; 0, h(x̄)))e
∫ τ
0 Dg(y(r;0,h(x̄))) drDh(x̄).

Proof. Theorem 3.3 in Chapter I in [21] states that as g has continuous first derivative, the

solution y(s; 0, y∗) of system (2.10) is continuously differentiable with respect to s and y∗
on its domain of definition. The matrix ∂y(s;0,y∗)

∂y∗
∈ Rm×m satisfies the linear variational

equation

Y ′(s) = Dg(y(s; 0, y∗))Y (s), (2.13)

where Y : R � Rm×m (we use slightly different notations from [21]) and ∂y(0;0,y∗)
∂y∗

= I,

where I denotes the identity. As from (2.13) it follows that Y (s) = e
∫ s
0 Dg(y(r;0,y∗)) drY (0),

for Y (0) = I we conclude that

∂y(τ ; 0, y∗)

∂y∗
= e

∫ τ
0 Dg(y(r;0,y∗)) dr (2.14)

holds for s = τ . From (2.11) we get that for v ∈ Rn,

DW (v) = Dk(y(τ ; 0, h(v)))
∂y(τ ; 0, h(v))

∂v

= Dk(y(τ ; 0, h(v)))
∂y(τ ; 0, h(v))

∂y∗
Dh(v),

(2.15)

hence from (2.14) and (2.15) we derive

DW (v) = Dk(y(τ ; 0, h(v)))e
∫ τ
0 Dg(y(r;0,h(v))) drDh(v). (2.16)

Finally, setting v = x̄ in (2.16), we arrive to the equality

DW (x̄) = Dk(y(τ ; 0, h(x̄)))e
∫ τ
0 Dg(y(r;0,h(x̄))) drDh(x̄).

Note that Dk(y(τ ; 0, h(x̄))) ∈ Rn×m, Dg(y(r; 0, h(x̄))) ∈ Rm×m and Dh(x̄) ∈ Rm×n, hence
the result of the matrix multiplication is indeedDW (x̄) ∈ Rn×n. The proof is complete.

It follows from (2.11) that x̄ satisfies the equation −f(x̄) = k(y(τ ; 0, h(x̄))). However,

x̄ being a steady-state solution of (2.9) does not necessarily imply that y(s, 0;h(x̄)) = h(x̄)
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holds for s ∈ [0, τ ], i.e., h(x̄) is an equilibrium of (2.10).

We say that x̄ ∈ Rn is a total equilibrium of systems (2.9) and (2.10) if x(t) = x̄ is a

steady-state solution of (2.9) and y(s) = h(x̄) is a steady-state solution of (2.10). The

equilibrium solution y(s) = ȳ, ȳ ∈ Rm of (2.10) satisfies the equation g(ȳ) = 0, and since

h(x̄) = ȳ and −f(x̄) = k(y(τ ; 0, h(x̄))) should hold for the total equilibrium, we conclude

that x̄ arises as the solution of the system

−f(x̄) = k(h(x̄)),

g(h(x̄)) = 0.
(2.17)

It follows from (2.17) that, in the special case when f and g are invertible functions,

the total equilibrium can be expressed as x̄ = f−1(−k(g−1(0))), moreover we also obtain

ȳ = h(f−1(−k(g−1(0)))).

We remark that if the functions g, h and k are continuously differentiable and x̄ is the

total equilibrium of systems (2.9) and (2.10), then it follows from Proposition 2.13 that

the matrix DW (x̄) has the form DW (x̄) = Dk(h(x̄))eτDg(h(x̄))Dh(x̄).

2.4 A model from population dynamics with temporary sep-

aration

We are now in the position to revisit the single population model described by system (1.1)

in the introduction, and obtain some basic properties for the model. First, for a given t∗ we

define y(s) = m(s; t∗) and let g(y) = bS(y) − dS(y), where y : [0, τ ] � R, g : R � R. Then

(2.10) is a compact form of the autonomous system (1.2). Furthermore, for h, k : R � R we

let h(v) = q(v), k(v) = v, moreover we define x : [0,∞) � R as x(t) = n(t) and f : R � R
as f(x) = b(x)− d(x)− q(x). Then it follows that system (1.1) can be written in a closed

form as the autonomous system (2.9).

Clearly, the functions f , g, h and k defined above satisfy the Lipschitz condition (Lip)

on each bounded subset of R, moreover (??) also holds by means of the assumption on the

solution of system (1.2). Hence F , defined as F(φ) = f(φ(0)) + W (φ(−τ)) for φ ∈ C+

satisfies the Lipschitz condition (LipC), so Corollary 2.10 states that system (1.1) has a

unique solution defined on [−τ,A] for some A > 0. By assuming that condition (gLip)

holds for b, d, q, bS and dS , we get that f , g, h and k satisfy the global Lipschitz condition

(gLip) and A = ∞. We have assumed in the model setup that q = h maps nonnegative

values to nonnegative values, which obviously holds for k as well, moreover we gave the

condition bS(0) − dS(0) ≥ 0. In addition, if we suppose that b(0) − d(0) − q(0) ≥ 0 is

satisfied (e.g., b(0) = d(0) = q(0) = 0 holds in many models), then Corollary 2.12 implies



2.4. A MODEL FROM POPULATION DYNAMICS WITH TEMPORARY SEPARATION 17

that for nonnegative initial data the solution of system (1.1) preserves nonnegativity, that

is, C+ is invariant. We summarize these results in the following theorem.

Theorem 2.14. System (1.1) has a unique nonnegative solution for nonnegative initial

values. Biologically reasonable conditions on the functions b, d, q, bS and dS ensure that

the solution exists on [−τ,∞).



Chapter 3

A delay model for the spread of

pandemics between connected

regions

National boundaries have never prevented infectious diseases from reaching distant terri-

tories. However, the speed at which an infectious agent can spread around the world via

the global airline transportation network has significantly increased during recent decades.

We introduce an SEAIR (susceptible–exposed–asymptomatic infected–infected–recovered)-

based model to investigate the spread of an infectious disease in two regions which are

connected by transportation. As a submodel, an age-structured system is constructed

to incorporate the possibility of disease transmission during travel, where age is the time

elapsed since the start of the travel. We show that the model is equivalent to a large system

of autonomous differential equations of the form considered in Chapter 2. After describing

fundamental, but biologically relevant properties of the system, we detail the calculation of

the basic reproduction number and obtain disease transmission dynamics results in terms

of R0. We parametrize our model for influenza, and use real demographic and air travel

data for the numerical simulations. To understand the role of the different characteristics

of the regions in the propagation of the disease, three distinct origin–destination pairs will

be considered. The model will also be fitted to the first wave of the influenza A(H1N1)

2009 pandemic in Mexico and Canada.

3.1 Introduction

The global network of human transportation has been playing a paramount role in the

spatial spread of infectious diseases. The high connectedness of distant territories by air

travel makes it possible for a disease to invade regions far away from the source faster than

18
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ever. Some infectious diseases, such as tuberculosis, measles and seasonal influenza, have

been known to be transmissible during commercial flights. The importance of the global

air travel network was highlighted in the 2002–2003 SARS outbreak (WHO [51]), and

clearly contributed to the global spread of the 2009 pandemic influenza A(H1N1) (Khan

et al. [25]). Therefore, mathematically describing the spread of infectious diseases on the

global human transportation network is of critical public health importance.

There are a few well-known studies which constructed and analyzed various metapop-

ulation models for disease spread in connecting regions (see Arino [2], Arino and van den

Driessche [3], Baroyan et al. [5], Ruan et al. [36], Rvachev and Longini [37], Wang and

Zhao [50] and the references therein). These studies focus mainly on the impact of spatial

dispersal of infected individuals from one region to another, and do not consider trans-

portation as a platform of disease dynamics. However, during long distance travel, such

as intercontinental flights, a single infected individual may infect several other passengers

during the flight (Wagner et al. [49], Technical Report of ECDC [16]), thus potentially

inducing multiple generating infections in the destination region. It is therefore desirable

to properly describe the spread of the disease via long distance travel, that incorporates

into the models the transmission dynamics during the travel.

Cui et al. [10] and Takeuchi et al. [42] modeled the possibility that individuals may

contract the disease while traveling by a system of ordinary differential equations based on

the standard SIS epidemic model. They discovered that the disease can persist in regions

connected by human transportation even if the infection died out in all regions in the

absence of travel. Liu et al. [28] noted that the previously proposed models [10, 29, 42]

implicitly used the assumption that the transportation between regions occurs instanta-

neously. For some diseases of major public health concern, such as SARS and influenza,

the progress of the disease is so fast that even a short delay (a fraction of a day) can be

significant. Based on such considerations, Liu et al. [28] introduced the time needed to

complete the travel into the SIS-type epidemic model and also the possible infections dur-

ing this time. Nakata [33] described the global dynamics of this system for two identical

regions in terms of the basic reproduction number. The model was later generalized by

Nakata and Röst [34] to the case of n regions with different characteristics and arbitrary

travel networks.

The purpose of this chapter is to formulate a model to properly describe the temporal

evolution of an epidemics in regions connected by long distance travel, such as interconti-

nental flights. The European Centre for Disease Prevention and Control (ECDC) developed
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a risk assessment guideline [16] for infectious diseases transmitted on aircrafts. Existing

studies confirmed that on-board transmission was possible in flights even with a duration of

less than eight hours. For most diseases which pose a threat of a global pandemic, an SIS-

type model is not adequate. For this reason, here we use the SEAIR (susceptible–exposed–

asymptomatic infected–infected–recovered) model as a basic epidemic model building block

in the regions and also during travel. The SIS model can be reduced to a logistic equation

and then can be solved analytically. This property was heavily used in the analysis done

in [28, 33, 34]. However, the lack of closed form solution causes substantial technical diffi-

culties in the analysis of SEAIR-type models, as will be shown in this paper.

More significantly, the aforementioned existing models did not distinguish local res-

idents from temporary visitors in the model setup. In reality, the large part of travels

are return trips, and not only the number of visitors, but also the average time that vis-

itors spend in the other region may significantly affect the speed of spatial spread of the

disease. If visitors spend more time in a region which is a hotspot of the disease, they

will more likely carry the disease back to their region of origin. In addition, visitors and

local residents may have very different contact rates and mixing patterns, for example if

the visitors are typically on holiday and stay in selected resorts and hotels. Hence in our

model we use different compartments for residents and visitors to capture this phenomenon.

Many multiregional epidemic models, specially the gravity type models, are based on

the assumption that the speed of the spread of epidemics between regions is inversely

proportional to the distance between those regions (see for example Tuite et al. [45] for

the recent cholera outbreak in Haiti). However, in case of air travel, the travel behavior

is different and can be just the opposite. First, the number of travelers does not depend

directly on the distance between regions, but determined by other, more important factors,

such as business and cultural relations, tourist attractions. Second, the transmission rate

of an infectious disease can be much higher than usual when a large number of passengers

are sharing the same cabin, and the longer the flight (which means the distance is larger

between regions), the greater number of infections can be expected (Wagner et al. [49]).

Hence air travel models we are proposing here is in principle “antigravity”.

3.2 Model description

We formulate a dynamical model describing the spread of an infectious disease in and be-

tween two regions, and also during travel from one region to the other. We divide the entire
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Variables

F rj Force of infection of residents in region j

F vj Force of infection of visitors in region j

F Tj,k Force of infection during travel from region j to region k

Srj , E
r
j , A

r
j , I

r
j , R

r
j Susceptible, exposed, asymptomatic, symptomatic

infected and recovered residents in region j

Svj , E
v
j , A

v
j , I

v
j , R

v
j Susceptible, exposed, asymptomatic, symptomatic

infected and recovered visitors in region j

N r
j , N

v
j , Nj Total population size of residents, visitors and

all individuals in region j

srj,k, e
r
j,k, a

r
j,k, i

r
j,k, r

r
j,k Density of susceptible, exposed, asymptomatic,

symptomatic infected and recovered individuals

during the travel from j to k (traveling to visit k)

svj,k, e
v
j,k, a

v
j,k, i

v
j,k, r

v
j,k Density of susceptible, exposed, asymptomatic,

symptomatic infected and recovered individuals during

the travel from j to k (returning to k from visiting j)

nrj,k, n
v
j,k, nj,k Total density of residents, visitors and

all individuals during the travel from j to k

Table 3.1: Variables of the SEAIR model (j, k ∈ {1,2}, j 6= k). In the table, “density”

means the density with respect to the time elapsed since the start of travel.

populations of the two regions into the disjoint classes Smj , Emj , Amj , I
m
j , Rmj , j ∈ {1, 2},

m ∈ {r, v}, where the letters S, E, A, I and R represent the compartments of susceptible,

exposed, asymptomatic infected, symptomatic infected and recovered individuals, respec-

tively. Lower index j ∈ {1, 2} specifies the current region, upper index m ∈ {r, v} denotes
the residential status of the individual in the current region (resident versus visitor). For

instance, Sv1 is the compartment of individuals who are susceptible for the disease and

staying in region 1 as a visitor (hence, they originally belong to region 2), members of Ar2
are those who are asymptomatic infected residents in region 2.

Let Smj (t), Emj (t), Amj (t), Imj (t), Rmj (t), j ∈ {1, 2}, m ∈ {r, v}, be the number of

individuals belonging to Smj , Emj , Amj , I
m
j , Rmj , respectively, at time t. The transmission

rate between an infected individual with residential status m and a susceptible individual

with residential status n in region j (j ∈ {1, 2},m, n ∈ {r, v}) is denoted by βm,nj . Let

F rj denote the force of infection (this is, the rate at which susceptible individuals acquire

the disease) of residents, and F vj the force of infection of visitors in region j. Model

parameter µE denotes the inverse of the incubation period, µA and µI are the recovery
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Key model parameters

Λj Recruitment rate in region j

drj , d
v
j Natural death rate of residents and visitors of region j

δ Disease-induced death rate

βm,nj Transmission rate between an infected individual

with residential status ‘m’ and a susceptible individual

with residential status ‘n’ in region j (m,n ∈ {r, v})
βT Transmission rate during the travel

αj Traveling rate of residents of region j to region k

γj Inverse of duration of visitors’ stay in region j

τ Duration of travel between the regions

p Probability of developing symptoms

ρ Reduction of infectiousness of asymptotic infecteds

µE , µ
T
E

Reciprocal of the length of the incubation period

in the regions and during the travel

µA , µ
T
A

Recovery rate of asymptomatic infecteds

in the regions and during the travel

µI , µ
T
I

Recovery rate of symptomatic infecteds

in the regions and during the travel

Table 3.2: Parameters of the SEAIR model (j, k ∈ {1,2}, j 6= k).

rates of asymptomatic and symptomatic infected individuals. Let ρ be the reduction

factor of infectiousness of asymptomatic infected individuals (we assume they are capable

of transmitting the disease, but generally with a lower rate than symptomatic infected

individuals). Let p denote the probability that an infected individual develops symptoms,

and let δ denote disease-induced mortality rate. We assume constant recruitment terms

Λj , while drj and d
v
j denote natural mortality rate of residents and visitors in region j. We

denote the travel rate of residents between region j and region k by αj and the rate visitors

of region j travel back to region k by γj , thus 1/γj is the average time visitors spend in

region j. For the total population of residents, visitors, and all individuals currently being

in region j at time t, we use the notations

N r
j (t) = Srj (t) + Erj (t) +Arj(t) + Irj (t) +Rrj(t),

Nv
j (t) = Svj (t) + Evj (t) +Avj (t) + Ivj (t) +Rvj (t),

Nj(t) = N r
j (t) +Nv

j (t).

(3.1)

We divide the population during travel into the classes smj,k, e
m
j,k, a

m
j,k, i

m
j,k, r

m
j,k. Letters

s, e, a, i, r denote susceptible, exposed, asymptomatic infected, symptomatically infected
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Figure 3.1: Color-coded flow chart of disease transmission and travel dynamics of the

SEAIR model. The disease transmission in the two regions is shown in two different

columns, the disease progresses vertically from the top to the bottom. Classes having the

same origins are marked by the same colors. Red corresponds to the classes originated from

region 1, blue represents classes of region 2. Arrows colored with the same colors indicate

how the disease progresses. Green dashed-dotted arrows represent traveling. Green solid

arrows show the dynamics of the pandemic during the course of the travel. The description

of the variables can be found in Table 3.1.
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and recovered travelers, respectively. Lower indices j, k ∈ {1, 2}, j 6= k, indicate that

individuals are traveling from region j to region k. Upper index m ∈ {r, v} determines

individuals’ residential status in the region they have just left: for instance, an individual

who is now being in rv1,2 is recovered, traveling from region 1 to region 2, was a visitor in

region 1, which means the individual originally belongs to region 2.

Let τ > 0 denote the average time required to complete a one-way trip. To describe

the disease dynamics during travel, we define smj,k(θ; t∗), e
m
j,k(θ; t∗), a

m
j,k(θ; t∗), i

m
j,k(θ; t∗),

rmj,k(θ; t∗), j, k ∈ {1, 2}, j 6= k, m ∈ {r, v}, as the density of individuals who started travel

at time t∗ and belong to classes smj,k, e
m
j,k, a

m
j,k, i

m
j,k, r

m
j,k with respect to θ, where θ ∈ [0, τ ]

denotes the time elapsed since the beginning of the travel. Let

nmj,k(θ; t∗) = smj,k(θ; t∗) + emj,k(θ; t∗) + amj,k(θ; t∗) + imj,k(θ; t∗) + rmj,k(θ; t∗), (3.2)

where j, k ∈ {1, 2}, j 6= k,m ∈ {r, v}, and let

nj,k(θ; t∗) = nrj,k(θ; t∗) + nvj,k(θ; t∗). (3.3)

Thus,
∫ θ1
θ2
nj,k(θ; t−θ) dθ is the number of individuals who left region j in the time interval

[t − θ1, t − θ2], where τ ≥ θ1 ≥ θ2 ≥ 0. In particular, for θ1 = τ and θ2 = 0, this gives

the total number of individuals who are in transition from region j to region k at time t.

We assume that infected individuals do not die during travel, hence nj,k(θ; t∗) = nj,k(0; t∗)

for all θ ∈ [0, τ ]. During the course of travel, infected individuals can transmit the disease

at the rate βT . We use the notations µT
E
, µT

A
, µT

I
for the inverse of the incubation pe-

riod and the recovery rates of asymptomatic and symptomatic infected individuals during

travel. Let F Tj,k denote the force of infection during travel from region j to region k. Then

smj,k(τ ; t − τ), emj,k(τ ; t − τ), amj,k(τ ; t − τ), imj,k(τ ; t − τ), rmj,k(τ ; t − τ) gives the inflow of

individuals arriving from region j to compartments Snk , E
n
k , A

n
k , I

n
k , R

n
k , j, k ∈ {1, 2},

j 6= k, m,n ∈ {r, v},m 6= n, respectively, at time t.

All variables and model parameters are listed in Tables 3.1 and 3.2. The flow chart of

the model is depicted in Figure 3.1. Based on the assumptions formulated above, we obtain

the following system of differential equations for the disease transmission in the regions:



3.2. MODEL DESCRIPTION 25



Ṡrj (t) = Λj − Srj (t)F rj (t)− (drj + αj)S
r
j (t) + svk,j(τ ; t− τ),

Ėrj (t) = Srj (t)F rj (t)− (drj + µE + αj)E
r
j (t) + evk,j(τ ; t− τ),

Ȧrj(t) = (1− p)µEE
r
j (t)− (drj + αj + µA)Arj(t) + avk,j(τ ; t− τ),

İrj (t) = pµEE
r
j (t)− (drj + αj + δ + µI)I

r
j (t) + ivk,j(τ ; t− τ),

Ṙrj(t) = µII
r
j (t) + µAA

r
j(t)− (drj + αj)R

r
j(t) + rvk,j(τ ; t− τ),

Ṡvj (t) = −Svj (t)F vj (t)− (dvj + γj)S
v
j (t) + srk,j(τ ; t− τ),

Ėvj (t) = Svj (t)F vj (t)− (dvj + µE + γj)E
v
j (t) + erk,j(τ ; t− τ),

Ȧvj (t) = (1− p)µEE
v
j (t)− (dvj + γj + µA)Avj (t) + ark,j(τ ; t− τ),

İvj (t) = pµEE
v
j (t)− (dvj + γj + δ + µI)I

v
j (t) + irk,j(τ ; t− τ),

Ṙvj (t) = µII
v
j (t) + µAA

v
j (t)− (dvj + γj)R

v
j (t) + rrk,j(τ ; t− τ),

(L)

where
F rj (t) =

1

Nj(t)

(
βrrj (Irj (t) + ρArj(t)) + βvrj (Ivj (t) + ρAvj (t))

)
,

F vj (t) =
1

Nj(t)

(
βrvj (Irj (t) + ρArj(t)) + βvvj (Ivj (t) + ρAvj (t))

)
.

For each given t∗, the following system (T ) describes the evolution of the densities

during the travel initiated at time t∗.

d

dθ
srj,k(θ; t∗) = −srj,k(θ; t∗)F Tj,k(θ; t∗),

d

dθ
erj,k(θ; t∗) = srj,k(θ; t∗)F

T
j,k(θ; t∗)− µTEe

r
j,k(θ; t∗),

d

dθ
arj,k(θ; t∗) = (1− p)µT

E
erj,k(θ; t∗)− µTAa

r
j,k(θ; t∗),

d

dθ
irj,k(θ; t∗) = pµT

E
erj,k(θ; t∗)− µTI i

r
j,k(θ; t∗),

d

dθ
rrj,k(θ; t∗) = µT

A
arj,k(θ; t∗) + µT

I
irj,k(θ; t∗),

d

dθ
svj,k(θ; t∗) = −svj,k(θ; t∗)F Tj,k(θ; t∗),

d

dθ
evj,k(θ; t∗) = svj,k(θ; t∗)F

T
j,k(θ; t∗)− µTEe

v
j,k(θ; t∗),

d

dθ
avj,k(θ; t∗) = (1− p)µT

E
evj,k(θ; t∗)− µTAa

v
j,k(θ; t∗),

d

dθ
ivj,k(θ; t∗) = pµT

E
evj,k(θ; t∗)− µTI i

v
j,k(θ; t∗),

d

dθ
rvj,k(θ; t∗) = µT

A
avj,k(θ; t∗) + µT

I
ivj,k(θ; t∗),

(T )
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where j, k ∈ {1, 2}, j 6= k, and

F Tj,k(θ; t∗) =
βT

nj,k(θ; t∗)
(irj,k(θ; t∗) + ivj,k(θ; t∗) + ρ(arj,k(θ; t∗) + avj,k(θ; t∗))),

nj,k(θ; t∗) = αj(S
r
j (t∗) + Erj (t∗) +Arj(t∗) + Irj (t∗) +Rrj(t∗))

+ γj(S
v
j (t∗) + Evj (t∗) +Avj (t∗) + Ivj (t∗) +Rvj (t∗))

= αjN
r
j (t∗) + γjN

v
j (t∗).

For θ = 0, the densities are determined by the rates at which individuals start their travels

from one region to the other at time t∗. Hence, the initial values for system (T ) at θ = 0

are given by 

srj,k(0; t∗) = αjS
r
j (t∗), svj,k(0; t∗) = γjS

v
j (t∗),

erj,k(0; t∗) = αjE
r
j (t∗), evj,k(0; t∗) = γjE

v
j (t∗),

arj,k(0; t∗) = αjA
r
j(t∗), avj,k(0; t∗) = γjA

v
j (t∗),

irj,k(0; t∗) = αjI
r
j (t∗), ivj,k(0; t∗) = γjI

v
j (t∗),

rrj,k(0; t∗) = αjR
r
j(t∗), rvj,k(0; t∗) = γjR

v
j (t∗)

(IVT )

for j, k ∈ {1, 2}, j 6= k.

Now we turn our attention to the terms smj,k(τ ; t − τ), emj,k(τ ; t − τ), amj,k(τ ; t − τ),

imj,k(τ ; t− τ), rmj,k(τ ; t− τ) in system (L), which are the densities of individuals arriving to

classes Snk , E
n
k , A

n
k , I

n
k , R

n
k , j, k ∈ {1, 2}, j 6= k, m,n ∈ {r, v},m 6= n, respectively, at time

t upon completing a one-way trip from region j. At time t, these terms are determined by

the solution of system (T ) with initial values (IVT ) for t∗ = t− τ at θ = τ :

(i) individuals who enter region k at time t are those who left region j at time t− τ ;

(ii) residents of region j become visitors of region k and vice versa (m 6= n) upon com-

pleting a one-way trip;

(iii) an individual may move to a different compartment during travel, for example a

susceptible resident who travels from region j may arrive as an infected visitor to

region k (j, k ∈ {1, 2}, j 6= k), as given by the dynamics of system (T ).

Next we specify initial values for system (L) at t = 0. Since travel takes τ units of

time to complete, arrivals to region j are determined by the state of region k (j, k ∈ {1, 2},
j 6= k) at t−τ , via the solution of systems (T ) and (IVT ). Thus, we set up initial functions

as follows:
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

Srj (u) = ϕrS,j(u), Svj (u) = ϕvS,j(u),

Erj (u) = ϕrE,j(u), Evj (u) = ϕvE,j(u),

Arj(u) = ϕrA,j(u), Avj (u) = ϕvA,j(u),

Irj (u) = ϕrI,j(u), Ivj (u) = ϕvI,j(u),

Rrj(u) = ϕrR,j(u), Rvj (u) = ϕvR,j(u),

(IVL)

where u ∈ [−τ, 0], and each ϕmK,j is a continuous function for j ∈ {1, 2},m ∈ {r, v},K ∈
{S,E,A, I,R}.

Note that systems (L) and (T ) are interconnected, in order to determine the dynamics

of the model, simultaneous solution of them is required. Considering the fact that disease

transmission is possible during travel, the solution of system (T ) at (τ ; t − τ) is required

for all t ≥ 0 to find the solution of (L). However, in order to obtain the solution of (T ) at

(τ ; t − τ), it is necessary to use the solution of (L) at t − τ , because (T ) takes the initial

conditions from (L). Hence, in order to describe the disease transmission in the regions, the

solution of another differential equation system is required at each time t, which has initial

values depending on the earlier state of the system on the regions. Thus (L) is a delay

differential system, where the delayed feedback is determined by a solution of a parallel

system of ordinary differential equations. In previous papers with travel delay, such as

[28, 33, 34], the authors used an SIS type system during travel, which was analytically

solvable, thus it was possible to express the delayed feedback explicitly. Unlike the SIS

model, the SEAIR model is not analytically solvable, therefore here we have to deal with

a system of functional differential equations, where the delay term is given only implicitly

via a solution of a nonlinear system of ordinary differential equations.

3.3 Basic properties of the model

In this section, we show that our model is equivalent to a system of nonlinear functional

differential equations where the delay term is defined dynamically, via the solution of an-

other system of differential equations. Then we also investigate some biologically relevant

properties of the system. Let

Xr
j =



Srj

Erj

Arj

Irj

Rrj


, Xv

j =



Svj

Evj

Avj

Ivj

Rvj


, yrj,k =



srj,k

erj,k

arj,k

irj,k

rrj,k


, yvj,k =



svj,k

evj,k

avj,k

ivj,k

rvj,k


,
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where j, k ∈ {1, 2}, j 6= k, then for

x =


Xr

1

Xv
1

Xr
2

Xv
2

 , y =


yv2,1

yr2,1

yv1,2

yr1,2


it holds that x : R+ � R20 and y : R+ × R+ � R20. For a given t∗ ∈ R+, we define the

system (T ∗) for y(·) = y(·; t∗) as

y′(θ) = g(y(θ)),

y(0) = y0,
(T ∗)

where θ ∈ R+, y0 ∈ R20, g : R20 � R20, and gi equals the right-hand side of the equation

for yi in system (T ) for each i ∈ {1, . . . , 20}; for instance,

g7(y) = βT
y6∑10
j=1 yj

(y4 + y9 + ρ(y3 + y8))− µT
E
y7.

Let y(θ; t∗, y0) denote the solution of the initial value problem (T ∗), defined for t∗. For

now let us assume that the solution exists and is unique for θ ∈ [0, τ ] for each y0, and we

will shortly detail the proof of this statement. By introducing

hi(v) =



γ2vi+15 if i = 1, . . . , 5,

α2vi+5 if i = 6, . . . , 10,

γ1vi−5 if i = 11, . . . , 15,

α1vi−15 if i = 16, . . . , 20,

we get that (T ∗) is a compact form of (T ) and (IVT ) with y0 = h(x(t∗)).

Furthermore, we define f , f : R20 � R20, where for each i ∈ {1, . . . , 20}, fi is given by

the right-hand side of the equation of xi in (L) without the inflow from travel; for instance,

f16(x) = − x16∑20
j=11 xj

(βrv2 (x14 + ρx13) + βvv2 (x19 + ρx18))− (dv2 + γ2)x16.

Finally we let W (v) = y(τ ; t− τ, h(v)), W : R20 � R20, and claim that our system (L) can

be written in a closed form as a system of functional differential equations

x′(t) = F(xt),

x0 = Φ,
(L∗)

where F(xt) = f(x(t)) + W (x(t − τ)), F : C+ � R20, with the phase space defined

as the nonnegative cone C+ = C([−τ, 0],R20
+ ) of the Banach space of continuous func-

tions from [−τ, 0] to R20, equipped with the supremum norm. Using the notations of
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(IVL), we also let Φ = (Φr
1,Φ

v
1,Φ

r
2,Φ

v
2)T , where Φr

j = (ϕrS,j , ϕ
r
E,j , ϕ

r
A,j , ϕ

r
I,j , ϕ

r
R,j)

T , Φv
j =

(ϕvS,j , ϕ
v
E,j , ϕ

v
A,j , ϕ

v
I,j , ϕ

v
R,j)

T , j ∈ {1, 2}.

Fundamental properties for functional differential equations with dynamically defined

delayed feedback term (elaborated in Chapter 2) guarantee that there exists a unique solu-

tion of the model equations. Both (L∗) and (T ∗) are autonomous, thus we refer to Section

2.3 of Chapter 2 to get that the general existence and uniqueness result holds for (L∗) if F
satisfies a global Lipschitz property (gLipC), in which case the solution exists on [0,∞).

In terms of the notations of Chapter 2, for n = 20, m = 20 and k : R20 � R20, k(v) = v,

systems (L∗) and (T ∗) can be obtained in compact forms as systems (2.9) and (2.10), and

we have seen that for (gLipC) to be fulfilled, it suffices to show a global Lipschitz prop-

erty (gLip) for f , g h and k (note that g satisfying (gLip) also implies that the solution

y(θ; t∗, y0) exists and is unique on the entire positive half line for every y0). It is not hard

to see that (gLip) holds for h and k, and shortly we will prove that f and g satisfy this

property as well.

First we state a proposition about the nonnegativity of solutions for system (L∗) by ap-

plying Corollary 2.12 from the general theory (the conditions in it clearly hold), moreover

we claim without proof that nonnegative initial data give rise to nonnegative solutions in

system (T ∗) (since it is a compact form of the system describing the evolution of densities

during travel, which is formulated as the standard SEAIR model). The equivalences of

systems (L) and (L∗), and systems (T ) and (T ∗) imply that the results obtained for (L∗)

and (T ∗) automatically hold for (L) and (T ), respectively. Henceforth, we formulate our

statements for systems (L) and (T ).

Proposition 3.1. For any Φ ∈ C+, the solution of system (L) is nonnegative where it

exists. System (T ) preserves nonnegativity for nonnegative initial values.

We arrive to the following lemma which proves that the global Lipschitz condition is

satisfied for f and g on the nonnegative cone of R20. With the use of Proposition 3.1 and

the theory in Section 2.3, this yields the existence and uniqueness of the solution of (L).

Lemma 3.2. Functions f and g, as defined for the SEAIR model, satisfy the global Lips-

chitz condition (gLip) on each bounded subset of R20
+ .

Proof. Due to the similarities in the definitions of f and g, here we prove the condition

only for one of them, e.g., for f . The function f : R20 � R20 possesses the global Lipschitz

condition (gLip) if there exists a Lipschitz constant K > 0 such that |f(z) − f(w)|20 ≤
K|z−w|20 holds for any z, w ∈ R20

+ (in the sequel we will use | · | to denote any Euclidean

vector norm for convenience). First we show that there exist constants K1, . . .K5 > 0,

such that inequalities |fi(z)−fi(w)| ≤ Ki|z−w|, i = 1, . . . , 5, hold; then we proceed as we
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argue that the formulas of f6, . . . , f10, f11, . . . , f15 and f16, . . . , f20 differ only in constants

from f1, . . . , f5 and henceforth K6, . . . ,K20 can be obtained similarly as K1, . . . ,K5. For

z, w ∈ R20
+ , z 6= 0, w 6= 0, it holds that

|f1(z)− f1(w)| =

∣∣∣∣∣Λ1 −
z1∑10
j=1 zj

(βrr1 (z4 + ρz3) + βvr1 (z9 + ρz8))− (dr1 + α1)z1

−Λ1 +
w1∑10
j=1wj

(βrr1 (w4 + ρw3) + βvr1 (w9 + ρw8)) + (dr1 + α1)w1

∣∣∣∣∣
≤ (dr1 + α1)|w1 − z1|+ βrr1

∣∣∣∣∣ w1w4∑10
j=1wj

+
ρw1w3∑10
j=1wj

− z1z4∑10
j=1 zj

− ρz1z3∑10
j=1 zj

∣∣∣∣∣+ βvr1

∣∣∣∣∣ w1w9∑10
j=1wj

+
ρw1w8∑10
j=1wj

− z1z9∑10
j=1 zj

− ρz1z8∑10
j=1 zj

∣∣∣∣∣ .
For an expression of the form

∣∣∣∣ a1a2∑10
j=1 aj

− b1b2∑10
j=1 bj

∣∣∣∣ (aj , bj ∈ R+), the following estimation

can be derived:∣∣∣∣∣ a1a2∑10
j=1 aj

− b1b2∑10
j=1 bj

∣∣∣∣∣ ≤
∣∣∣∣∣ a1a2∑10

j=1 aj
− a1b2∑10

j=1 aj

∣∣∣∣∣+

∣∣∣∣∣ a1b2∑10
j=1 aj

− a1b2∑10
j=1 bj

∣∣∣∣∣
+

∣∣∣∣∣ a1b2∑10
j=1 bj

− b1b2∑10
j=1 bj

∣∣∣∣∣
= |a2 − b2|

a1∑10
j=1 aj

+

∣∣∣∣∣∣
10∑
j=1

bj −
10∑
j=1

aj

∣∣∣∣∣∣ a1b2(∑10
j=1 aj

)(∑10
j=1 bj

)
+ |a1 − b1|

b2∑10
j=1 bj

≤ |a2 − b2|
a1∑10
j=1 aj

+ |a1 − b1|
b2∑10
j=1 bj

+
10∑
j=1

|bj − aj |
a1b2(∑10

j=1 aj

)(∑10
j=1 bj

)
≤ |a2 − b2|+ |a1 − b1|+

10∑
j=1

|bj − aj | ,

and we use that the inequality |wj−zj | ≤ |w−z| holds for each j ∈ {1, . . . , 10} to get that

|f1(z)− f1(w)| ≤ (dr1 + α1)|w1 − z1|+ βrr1 (12|w − z|+ 12ρ|w − z|)

+ βvr1 (12|w − z|+ 12ρ|w − z|)

≤ (dr1 + α1 + 12(1 + ρ)(βrr1 + βvr1 ))|w − z|.

By defining K1 = dr1 + α1 + 12(1 + ρ)(βrr1 + βvr1 ) we see that |f1(z)− f1(w)| ≤ K1|w − z|
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holds, furthermore one can derive that

|f2(z)− f2(w)| =

∣∣∣∣∣ z1∑10
j=1 zj

(βrr1 (z4 + ρz3) + βvr1 (z9 + ρz8))− (dr1 + µE + α1)z1

− w1∑10
j=1wj

(βrr1 (w4 + ρw3) + βvr1 (w9 + ρw8)) + (dr1 + µE + α1)w1

∣∣∣∣∣
≤ (dr1 + µE + α1 + 12(1 + ρ)(βrr1 + βvr1 ))|w − z|,

where dr1 + µE + α1 + 12(1 + ρ)(βrr1 + βvr1 ) is a suitable choice for K2 in |f2(z)− f2(w)| ≤
K2|w−z|. Clearly, by choosingK3 = (1−p)µE+dr1+µA+α1 andK4 = pµE+dr1+µI+δ+α1,

the inequalities

|f3(z)− f3(w)| = |(1− p)µEz2 − (dr1 + µA + α1)z3 − (1− p)µEw2 + (dr1 + µA + α1)w3|

≤ ((1− p)µE + dr1 + µA + α1)|w − z|,

|f4(z)− f4(w)| = |pµEz2 − (dr1 + µI + δ + α1)z4 − pµEw2 + (dr1 + µI + δ + α1)w4|

≤ (pµE + dr1 + µA + δ + α1)|w − z|,

yield |f3(z)−f3(w)| ≤ K3|w−z| and |f4(z)−f4(w)| ≤ K4|w−z|, and last |f5(z)−f5(w)| ≤
K5|w − z| arises from

|f5(z)− f5(w)| = |µAz3 + µIz4 − (dr1 + α1)z5 − µAw3 − µIw4 + (dr1 + α1)w5|

≤ (µA + µI + dr1 + α1)|w − z|

with K5 = µA + µI + dr1 + α1.

As pointed out earlier in the proof, the constantsK6, . . . ,K20 can be derived in a similar

way. To obtain K, the global Lipschitz constant for f , we simply let K =
√∑20

j=1(Ki)2.

The proof is complete.

We conclude that all conditions for the general existence and uniqueness theorem are

satisfied for the SEAIR model. As elaborated earlier, the solution exists for all positive

times.

Proposition 3.3. For any fixed t∗ and initial data, there exists a unique solution of system

(T) on [0,∞).

Theorem 3.4. For any initial data Φ ∈ C+, there exists a unique solution of system (L)

defined on [−τ,∞).

Next we turn our attention to steady-state solutions and long-term behavior in the

model. We define the disease free subspace Cdf+ as

Cdf+ = {Φ|Φ = (ϕrS,j , 0̂, 0̂, 0̂, ϕ
r
R,j , ϕ

v
S,j , 0̂, 0̂, 0̂, ϕ

v
R,j)

T } ⊂ C+,
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where 0̂ denotes the constant 0 function. If Φ ∈ Cdf+ , then

Erj (t) = Evj (t) = Arj(t) = Avj (t) = Irj (t) = Ivj (t) ≡ 0

for all t ≥ 0, hence the disease free subspace is positively invariant.

Proposition 3.5. In the disease free subspace Cdf+ there exists a unique positive equilibrium

of system (L) which is globally asymptotically stable in Cdf+ .

Proof. Using the definitions of N r
j and Nv

j in Section 3.2, for these variables we derive the

following differential equation system

Ṅ r
j (t) = Λj − (drj + αj)N

r
j (t) + γkN

v
k (t− τ),

Ṅv
j (t) = −(dvj + γj)N

v
j (t) + αkN

r
k (t− τ),

(3.4)

where j, k ∈ {1, 2}, j 6= k. One can find that the positive equilibrium (N̂ r
1 , N̂

v
1 , N̂

r
2 , N̂

v
2 ) is

given by 
N̂ r

1

N̂v
1

N̂ r
2

N̂v
2

 =


dr1 + α1 0 0 −γ2

0 dv1 + γ1 −α2 0

0 −γ2 dr2 + α2 0

−α2 0 0 dv2 + γ2


−1

Λ1

0

Λ2

0

 . (3.5)

Set M r
j (t) := N r

j (t) − N̂ r
j ,M

v
j (t) := Nv

j (t) − N̂v
j , j ∈ {1, 2}. We obtain the decoupled

linear systems
Ṁ r

1 (t) = −(dr1 + α1)M r
1 (t) + γ2M

v
2 (t− τ),

Ṁv
2 (t) = −(dv2 + γ2)Mv

2 (t) + α1M
r
1 (t− τ),

(3.6)

and
Ṁ r

2 (t) = −(dr2 + α2)M r
2 (t) + γ1M

v
1 (t− τ),

Ṁv
1 (t) = −(dv1 + γ1)Mv

1 (t) + α2M
r
2 (t− τ).

(3.7)

We apply the results of Suzuki and Matsunaga ([41]) to systems (3.6) and (3.7), where

criteria for the stability of the trivial solution in a class of linear differential equations has

been given. Since dr1, dv1, dr2, dv2 and α1, α2, γ1, γ2 are positive, moreover the inequalities

(dr1 + α1)(dv2 + γ2) > α1γ2 and (dr2 + α2)(dv1 + γ1) > α2γ1 are satisfied, condition (16) in

[41] holds. Thus, the zero solutions of systems (3.6) and (3.7) are asymptotically stable,

which implies that the positive equilibrium (N̂ r
1 , N̂

v
1 , N̂

r
2 , N̂

v
2 ) is asymptotically stable.

Since on the disease free subspace d
dθr

r
j,k(θ; t∗) = 0 and d

dθr
v
j,k(θ; t∗) = 0, from (IVT )

we obtain rvk,j(τ ; t−τ) = γkR
v
k(t−τ) and rrk,j(τ ; t−τ) = αkR

r
k(t−τ) for j, k ∈ {1, 2}, j 6= k.

Consider the following subsystem

Ṙrj(t) = −(drj + αj)R
r
j(t) + γkR

v
k(t− τ),

Ṙvj (t) = −(dvj + γj)R
v
j (t) + αkR

r
k(t− τ).
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With similar argument as for systems (3.6) and (3.7), we obtain that the equilibrium

(R̂r1, R̂
v
1, R̂

r
2, R̂

v
2) = (0, 0, 0, 0) is asymptotically stable. We conclude that Rrj(t), R

v
j (t) � 0

as t � ∞, j, k ∈ {1, 2}, j 6= k. In the disease free subspace, N r
j (t) = Srj (t) + Rrj(t) and

Nv
j (t) = Svj (t) +Rvj (t), j ∈ {1, 2}, thus Srj (t) � N̂ r

j and Svj (t) � N̂v
j as t �∞.

Henceforward, in the disease free subspace the solutions of (L) converge to the equilibrium

N̂ = (N̂ r
1 , 0, 0, 0, 0, N̂

v
1 , 0, 0, 0, 0, N̂

r
2 , 0, 0, 0, 0, N̂

v
2 , 0, 0, 0, 0)T .

As an immediate consequence of Propositions 3.1 and 3.5, we have that in the disease

free subspace the solutions of (L) are bounded.

Proposition 3.6. If δ = 0 then the total populations (N r
1 (t), Nv

1 (t), N r
2 (t), Nv

2 (t)) converge

to (N̂ r
1 , N̂

v
1 , N̂

r
2 , N̂

v
2 ), which is given by (3.5).

Proof. If δ = 0, then it is easy to see that N r
1 (t), Nv

1 (t), N r
2 (t), Nv

2 (t) satisfy system (3.4),

hence we obtain the same positive equilibrium (N̂ r
1 , N̂

v
1 , N̂

r
2 , N̂

v
2 ) which is globally asymp-

totically stable.

Proposition 3.7. Solutions of system (L) are bounded.

Proof. For any Φ ∈ C+, the system of N r
1 (t), Nv

1 (t), N r
2 (t), Nv

2 (t) becomes

Ṅ r
j (t) = Λj − (drj + αj)N

r
j (t)− δIrj (t) + γkN

v
k (t− τ),

Ṅv
j (t) = −(dvj + γj)N

v
j (t)− δIvj (t) + αkN

r
k (t− τ).

(3.8)

By Proposition 3.1, Nm
j (u), Imj (u), j ∈ {1, 2}, m ∈ {v, r}, are nonnegative, thus by a

standard comparison argument (see Theorem 4.1 in [23]), solutions of (3.8) are bounded

by the solutions of (3.4), which are convergent according to Proposition 3.5. Thus, we

conclude that N r
j (t) and Nv

j (t), j ∈ {1, 2}, are bounded. Since

0 ≤ Srj (t), Erj (t), Arj(t), I
r
j (t), Rrj(t) ≤ N r

j (t),

0 ≤ Svj (t), Evj (t), Avj (t), I
v
j (t), Rvj (t) ≤ Nv

j (t),

solutions of system (L) are bounded.

3.4 The basic reproduction number

The basic reproduction number (R0) is a central quantity in epidemiology as it determines

the average number of secondary infections caused by a typical infected individual during

the period of infectiousness, who was introduced into a completely susceptible population.

In Section 3.2 we introduced a dynamical model describing the temporal evolution of an

infectious disease in and between two regions connected by public transportation. This

section is devoted to the computation of the basic (global) reproduction number of the
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model. It is defined as the dominant eigenvalue of the next generation matrix (NGM), as

introduced in [11, 12]. First we apply some modifications on the model setup and calculate

the NGM. Then we show that the reproduction number works as a threshold quantity for

the stability of the disease free equilibrium of the system.

We define the local reproduction numbers as we consider our model in the absence of

travel. In this case the two regions are isolated, hence to obtain the (local) reproduction

number of region j, j ∈ {1, 2}, it suffices to follow a typical infected individual during the

infectious period in region j. Given that the probability of developing symptoms is p, the

reduction of infectiousness of asymptomatic infecteds is ρ, and the average length of the

infectious period in classes I and A is 1/µI and 1/µA , respectively, we arrive to the formula

RL,j = βrrj

(
p

µI
+ (1− p) ρ

µA

)
,

where βrrj is the transmission rate in region j. In case of isolated regions, the global repro-

duction number arises as the maximum of the local reproduction numbers. However, the

unlimited number of travels and the possibility of disease transmission during travel make

it very complicated to trace secondary cases if we incorporate air transportation.

In this section, we neglect the transition from exposed to infected, and from infected

to recovered classes during travel, i.e., we assume that µT
E

= µT
A

= µT
I

= 0. Although with

this limitation we ignore the possibility of going to the infected classes or to the recovered

compartment on the plane, this assumption also ensures that individuals do not undergo

multiple disease states during the same travel. For realistic values of the travel duration

τ it is quite unrealistic to expect that, for instance, someone who was susceptible before

travel arrives as recovered upon completing the travel. As shown below, this hypothesis

also allows us to calculate the basic reproduction number explicitly, and the most impor-

tant part of the transmission dynamics during travel, namely exposure of susceptibles to

the infection, is still fully considered in the modified model.

With the assumption that µT
E

= µT
A

= µT
I

= 0 and the notations

F Tj,k(θ; t∗) =
βT

nj,k(θ; t∗)
(irj,k(θ; t∗) + ivj,k(θ; t∗) + ρ(arj,k(θ; t∗) + avj,k(θ; t∗))),

nj,k(θ; t∗) =αjN
r
j (t∗) + γjN

v
j (t∗),
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our system (T ) becomes

d

dθ
srj,k(θ; t∗) = −srj,k(θ; t∗)F Tj,k(θ; t∗),

d

dθ
erj,k(θ; t∗) = srj,k(θ; t∗)F

T
j,k(θ; t∗),

d

dθ
arj,k(θ; t∗) =

d

dθ
irj,k(θ; t∗) =

d

dθ
rrj,k(θ; t∗) = 0,

d

dθ
svj,k(θ; t∗) = −svj,k(θ; t∗)F Tj,k(θ; t∗),

d

dθ
evj,k(θ; t∗) = svj,k(θ; t∗)F

T
j,k(θ; t∗),

d

dθ
avj,k(θ; t∗) =

d

dθ
ivj,k(θ; t∗) =

d

dθ
rvj,k(θ; t∗) = 0

(T’ )

where j, k ∈ {1, 2}, j 6= k. Using systems (T’ ) and (IVT ), we obtain the densities of

asymptomatic, symptomatic infected and recovered individuals during travel with respect

to θ as

arj,k(θ; t∗) = arj,k(0; t∗) = αjA
r
j(t∗), avj,k(θ; t∗) = avj,k(0; t∗) = γjA

v
j (t∗),

irj,k(θ; t∗) = irj,k(0; t∗) = αjI
r
j (t∗), ivj,k(θ; t∗) = ivj,k(0; t∗) = γjI

v
j (t∗),

rrj,k(θ; t∗) = rrj,k(0; t∗) = αjR
r
j(t∗), rvj,k(θ; t∗) = rvj,k(0; t∗) = γjR

v
j (t∗)

(3.9)

for all t∗, θ ∈ [0, τ ] and j, k ∈ {1, 2}, j 6= k. Then, using (3.9), the force of infection F Tj,k
can be obtained as

F Tj,k(θ; t∗) =βT
αjI

r
j (t∗) + γjI

v
j (t∗) + ρ(αjA

r
j(t∗) + γjA

v
j (t∗))

αjN r
j (t∗) + γjNv

j (t∗)
,

where θ ∈ [0, τ ] and j, k ∈ {1, 2}, j 6= k, and we can determine the density of susceptible

individuals during travel for θ ∈ [0, τ ], j, k ∈ {1, 2}, j 6= k as

srj,k(θ; t∗) = srj,k(0; t∗)e
−

∫ θ
0 F

T
j,k(ν,t∗)dν

= αjS
r
j (t∗)e

−θβT
αjI

r
j (t∗)+γjI

v
j (t∗)+ρ(αjA

r
j (t∗)+γjA

v
j (t∗))

αjN
r
j
(t∗)+γjNvj (t∗) ,

svj,k(θ; t∗) = svj,k(0; t∗)e
−

∫ θ
0 F

T
j,k(ν,t∗)dν

= γjS
v
j (t∗)e

−θβT
αjI

r
j (t∗)+γjI

v
j (t∗)+ρ(αjA

r
j (t∗)+γjA

v
j (t∗))

αjN
r
j
(t∗)+γjNvj (t∗) .

(3.10)

Last, using the definition of nmj,k(θ; t∗) (j, k ∈ {1, 2}, m ∈ {r, v}), we obtain the density of
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exposed individuals during travel as

erj,k(θ; t∗) = nrj,k(θ; t∗)− arj,k(θ; t∗)− irj,k(θ; t∗)− rrj,k(θ; t∗)− srj,k(θ; t∗)

= αjN
r
j (t∗)− αjArj(t∗)− αjIrj (t∗)− αjRrj(t∗)− srj,k(θ; t∗)

= αj

(
Srj (t∗)

(
1− e

−θβT
αjI

r
j (t∗)+γjI

v
j (t∗)+ρ(αjA

r
j (t∗)+γjA

v
j (t∗))

αjN
r
j
(t∗)+γjNvj (t∗)

)
+ Erj (t∗)

)
,

evj,k(θ; t∗) = nvj,k(θ; t∗)− avj,k(θ; t∗)− ivj,k(θ; t∗)− rvj,k(θ; t∗)− svj,k(θ; t∗)

= γjN
v
j (t∗)− γjAvj (t∗)− γjIvj (t∗)− γjRvj (t∗)− svj,k(θ; t∗)

= γj(S
v
j (t∗) + Evj (t∗))− γjSvj (t∗)e

−θβT
αjI

r
j (t∗)+γjI

v
j (t∗)+ρ(αjA

r
j (t∗)+γjA

v
j (t∗))

αjN
r
j
(t∗)+γjNvj (t∗) .

(3.11)

Choosing θ = τ and t∗ = t−τ , the inflow terms smj,k(τ ; t−τ), emj,k(τ ; t−τ), amj,k(τ ; t−τ),

imj,k(τ ; t − τ) and rmj,k(τ ; t − τ) (j, k ∈ {1, 2}, m ∈ {r, v}), determined in (3.9), (3.10) and

(3.11), arise as delay terms of Smj , Emj , Amj , I
m
j and Rmj .

Notation 3.8. In the sequel, we denote by (L′) the special case of (L) with the particular

inflow terms defined in (3.9), (3.10) and (3.11).

We use the notations of Section 3.3 and define W : R20 � R20 as W i equals the inflow

term of the right-hand side of the equation for xi in (L′). For instance,

W 1(v) = γ2v16e
−τβT α2v14+γ2v19+ρ(α2v13+γ2v18)

α2
∑15
j=11

vj+γ2
∑20
j=16

vj , W 18(v) = α1v3.

System (L′) can be written in the compact form of

x′(t) = F(x(t), x(t− τ)), (L̄)

where F(x(t), x(t − τ)) = f(x(t)) + W (x(t − τ)), F : R20 × R20 � R20. Now we focus on

system (L̄) and we detail the computation of the reproduction number.

Notice that the disease free equilibrium N̂ =
(
N̂ r

1 , 0, 0, 0, 0, N̂
v
1 , 0, 0, 0, 0, N̂

r
2 , 0, 0, 0, 0,

N̂v
2 , 0, 0, 0, 0

)
of system (L), defined in Section 3.3, is the unique positive equilibrium of (L̄)

in the disease free subspace. In the initial stage of the epidemic, we can assume that system

(L̄) is near the equilibrium N̂ and approximate the equations of classes Emj , A
m
j , I

m
j , j ∈

{1, 2},m ∈ {r, v}, with the linear system

z′(t) = Az(t) + Bz(t− τ), (3.12)

where z : R � R12, A,B ∈ R12×12 and A = Df(N̂), B = DW (N̂) hold. The matrices A
and B have the form

A =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 , B =


B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

 ,
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where Aj,k, Bj,k ∈ R3×3 for j, k ∈ {1, 2, 3, 4}, and Aj,k and Bj,k can be obtained as follows:

A11 =


−(µE + α1 + dr1) ρβrr1

N̂r
1

N̂r
1 +N̂v

1

βrr1
N̂r

1

N̂r
1 +N̂v

1

(1− p)µE −(µA + α1 + dr1) 0

pµE 0 −(µI + α1 + δ + dr1)

 ,

A12 =


0 ρβvr1

N̂r
1

N̂r
1 +N̂v

1

βvr1
N̂r

1

N̂r
1 +N̂v

1

0 0 0

0 0 0

 ,

and A1,3 = A1,4 = O, where we denote the matrix with 0-entries by O, moreover

B13 =


0

τβT ρα2γ2N̂v
2

α2N̂r
2 +γ2N̂v

2

τβTα2γ2N̂v
2

α2N̂r
2 +γ2N̂v

2

0 0 0

0 0 0

 , B14 =


γ2

τβT ργ22N̂
v
2

α2N̂r
2 +γ2N̂v

2

τβT γ22N̂
v
2

α2N̂r
2 +γ2N̂v

2

0 γ2 0

0 0 γ2

 ,

and B1,1 = B1,2 = O. The matrix elements Aj,k, Bj,k, j ∈ {2, 3, 4}, k ∈ {1, 2, 3, 4}, can be

derived similarly.

Next we decompose the matrix A + B as F − V, where F is the transmission part,

describing the production of new infections, and −V is the transition part, describing all

other changes in state (see [11, 47] for more details and some motivation for the decompo-

sition). We first determine what we call reproduction here, i.e., in what kind of situations

do new infections occur. We define two possible ways of reproduction:

(i) a susceptible moves to exposed class while being in a region;

(ii) an exposed individual, who was susceptible before travel, arrives to a region upon

completing a trip.

With this definition in mind, we obtain F ∈ R12×12 and V ∈ R12×12 as

F =


F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

 , V =


V11 V12 V13 V14

V21 V22 V23 V24

V31 V32 V33 V34

V41 V42 V43 V44

 ,

where Fj,k, Vj,k ∈ R3×3 (j, k ∈ {1, 2, 3, 4}). It is easy to see that

F11 =


0 ρβrr1

N̂r
1

N̂r
1 +N̂v

1

βrr1
N̂r

1

N̂r
1 +N̂v

1

0 0 0

0 0 0

 , F12 =


0 ρβvr1

N̂r
1

N̂r
1 +N̂v

1

βvr1
N̂r

1

N̂r
1 +N̂v

1

0 0 0

0 0 0

 ,
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F13 =


0

τβT ρα2γ2N̂v
2

α2N̂r
2 +γ2N̂v

2

τβTα2γ2N̂v
2

α2N̂r
2 +γ2N̂v

2

0 0 0

0 0 0

 , F14 =


0

τβT ργ22N̂
v
2

α2N̂r
2 +γ2N̂v

2

τβT γ22N̂
v
2

α2N̂r
2 +γ2N̂v

2

0 0 0

0 0 0

 ,

and the elements Fj,k, j ∈ {2, 3, 4}, k ∈ {1, 2, 3, 4} arise similarly. The elements of −V
represent rates at which individuals progress from one class to another:

V11 =


µE + α1 + dr1 0 0

−(1− p)µE µA + α1 + dr1 0

−pµE 0 µI + α1 + δ + dr1

 ,

V14 =


−γ2 0 0

0 −γ2 0

0 0 −γ2

 ,

while V1,2 = V1,3 = O, and the elements Vj,k, j ∈ {2, 3, 4}, k ∈ {1, 2, 3, 4}, can be obtained

similarly. Clearly F is a positive matrix, that is, all of its entries are non-negative, and it is

easy to check that −V is positive-off-diagonal, that is, all entries are non-negative except

possibly those on the diagonal. For a square matrix M we define the spectral bound s(M)

and the spectral radius ρ(M) by s(M) := sup{Re(λ) : λ ∈ σ(M)}, ρ(M) := sup{|λ| : λ ∈
σ(M)}, where σ(M) denotes the set of eigenvalues of M . One can show that s(−V) < 0,

this is equivalent to the statement that V is invertible and V−1 is a positive matrix (for the

proof of the equivalence, see, e.g., Lemma 6.12 in [11]). We state the following proposition.

Proposition 3.9. The zero solution of the linear delay differential equation

z′(t) = Az(t) + Bz(t− τ)

is asymptotically stable if ρ(FV−1) < 1 and unstable if ρ(FV−1) > 1.

Proof. The principal result of Section 5, Chapter 5 in [39] is that the stability of an

equilibrium of a cooperative and irreducible system of delay differential equations is the

same as for an associated system of cooperative ordinary differential equations. System

(3.12) is cooperative since A is positive-off-diagonal and B is a positive matrix. Every

column of B contains at least one non-zero element, which together with the irreducibility

of matrix A+ B implies that system (3.12) is irreducible. Corollary 5.2 in [39] states that

the zero solution of the linear delay differential equation (3.12) is asymptotically stable

(unstable) if and only if the zero solution of the linear ordinary differential equation

w′(t) = (A+ B)w(t) (3.13)

is asymptotically stable (unstable). We can reformulate (3.13) as

w′(t) = (F− V)w(t).
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We have seen that F is a positive matrix and −V is a positive-off-diagonal matrix with

s(−V) < 0. The stability of the zero steady state of w′(t) = (F−V)w(t) is determined by

the sign of s(F − V), which coincides with the sign of ρ(FV−1) − 1 (see Theorem A.1 in

[13]). The proof is complete.

The statement of Proposition 3.9 extends to the nonlinear system (L̄) by the principle

of linearized stability.

Proposition 3.10. The disease free equilibrium of system (L̄) is asymptotically stable if

ρ(FV−1) < 1 and unstable if ρ(FV−1) > 1.

After obtaining stability results for (L̄), a system of delay differential equations, we

consider the following associated system of ordinary differential equations

x′(t) = f(x(t)) +W (x(t)), (3.14)

where W was introduced previously in this section and for the definition of x and f , see

Section 3.3. The concept of the next generation matrix (NGM) of an epidemic model was

introduced in Diekmann et al. [12] (and elaborated in Chapter 5 [11]) as a matrix whose

elements give the number of newly infected individuals in specific categories. To obtain

this matrix, one considers the equations of the system that describe the production of

new infections and changes in state among infected individuals; in case of system (3.14),

this infected subsystem consists of the equations for Emj , Amj , I
m
j , j ∈ {1, 2}, m ∈ {r, v}.

Clearly N̂ works as the unique disease free equilibrium of (3.14), so we can linearize the

infected subsystem about the infection-free steady state and get

w′(t) = (A+ B)w(t) = (F− V)w(t). (3.15)

Diekmann et al. [13] refers to FV−1 ∈ R12×12 as KL, the next generation matrix for sys-

tem (3.14) with large domain. However, this matrix does not equal the next generation

matrix K of the ODE system (3.14), because the decomposition of A + B relates to the

expected offspring of individuals of any state and not just epidemiological newborns (new

infections). Since in the case of system (3.14), only states Er1 , Ev1 , Er2 and Ev2 are involved

in the action of the next generation matrix K, it is clear that K ∈ R4×4. The work [13]

claims that ρ(KL) = ρ(K) and it can be shown that the next generation matrix for (3.14)

can be obtained as K = (KL)1,4,7,10
1,4,7,10.

Next we determine the next generation matrix N and the reproduction number R0 for

the delay system (L̄), then we will show that N = K, i.e., the next generation matrix for

the delay system (L̄) equals the next generation matrix for the ODE system (3.14). This

result implies the following conclusion.
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Proposition 3.11. The disease free equilibrium of system (L̄) is asymptotically stable if

R0 < 1 and unstable if R0 > 1.

Proof. Since R0 is defined as the dominant eigenvalue of N (the existence of the dominant

eigenvalue is guaranteed by the Frobenius–Perron theorem), moreover KL = FV−1 and

ρ(KL) = ρ(K) hold, we obtain that R0 = ρ(FV−1). Then it follows from Proposition 3.10

that R0 works as a threshold quantity for the stability of the disease free equilibrium of

system (L̄).

3.4.1 The next generation matrix

We construct the next generation matrix N for system (L̄) as we divide all exposed in-

dividuals into four groups: residents of region 1 (Er1), visitors of region 1 (Ev1 ), residents

of region 2 (Er2) and visitors of region 2 (Ev2 ). We denote the number of new infections

among individuals of region k with residential status n generated by an exposed individual

of region j with residential status m by Rm,nj,k , where j, k ∈ {1, 2},m, n ∈ {r, v}. Then

N ∈ R4×4 has the form

N =


Rrr11 Rvr11 Rrr21 Rvr21

Rrv11 Rvv11 Rrv21 Rvv21

Rrr12 Rvr12 Rrr22 Rvr22

Rrv12 Rvv12 Rrv22 Rvv22

 .

We can obtain the elements ofN by biological reasoning, i.e., by following a typical infected

individual during the infectious period, and using our definition of reproduction. Here we

detail the calculation of two elements of N and then show that they equal the correspond-

ing elements of K, the next generation matrix of the associated system of ODEs (3.14).

Formulas for other elements – and hence the equalities (N )j,k = (K)j,k, j, k ∈ {1, 2, 3, 4} –
can be derived similarly.

First, let us consider the element Rrr11, namely the number of new infections in Er1

generated by an exposed resident of region 1 (a member of Er1). Since in the model setup

we addressed no restrictions on the number of travels an individual can start, we distinguish

two scenarios:

(A) After completing some even number of trips, the exposed individual turns infected

(member of class I or A) in region 1.

(B) After completing some odd number of trips, the exposed individual turns infected in

region 2.
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We calculate the probabilities of these events. First, the probability of turning infected

after (2n) trips, n = 0, 1, 2, . . . , is obtained as(
α1

α1 + µE + dr1

γ2

γ2 + µE + dv2

)n µE
α1 + µE + dr1

,

which implies that

P (A) =

∞∑
n=0

(
α1

α1 + µE + dr1

γ2

γ2 + µE + dv2

)n µE
α1 + µE + dr1

=
µE

α1 + µE + dr1

∞∑
n=0

(
α1

α1 + µE + dr1

γ2

γ2 + µE + dv2

)n
=

µE
α1 + µE + dr1

· 1

1− α1
α1+µ

E
+dr1

γ2
γ2+µ

E
+dv2

=
µE

α1 + µE + dr1
· (α1 + µE + dr1)(γ2 + µE + dv2)

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

=
µE (γ2 + µE + dv2)

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2
.

On the other hand, the probability of becoming infected after (2n+1) trips, n = 0, 1, 2, . . . ,

is (
α1

α1 + µE + dr1

)n+1( γ2

γ2 + µE + dv2

)n µE
µE + γ2 + dv2

,

hence we get the probability of case (B) by the calculations

P (B) =

∞∑
n=0

µE
µE + γ2 + dv2

α1

α1 + µE + dr1
·
(

α1

α1 + µE + dr1

γ2

γ2 + µE + dv2

)n
=

µE
µE + γ2 + dv2

· α1

α1 + µE + dr1

∞∑
n=0

(
α1

α1 + µE + dr1

γ2

γ2 + µE + dv2

)n
=

µE
µE + γ2 + dv2

· α1

α1 + µE + dr1
· 1

1− α1
α1+µ

E
+dr1

γ2
γ2+µ

E
+dv2

=
µE

µE + γ2 + dv2
· α1

α1 + µE + dr1
· (α1 + µE + dr1)(γ2 + µE + dv2)

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

=
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2
.

In case (A), an infected individual can transmit the disease in two ways:

(a1) as a member of class Ir1 (Ar1), i.e., the individual infects in region 1 after an even

number of completed trips (counted since the individual became infected), or

(a2) after an odd number of completed trips (counted since the individual became in-

fected), the individual is a member of class Iv2 (Av2); the individual leaves region 2

and infects during travel from region 2 to region 1.
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Similarly, in case (B), the two ways of disease transmission are as follows:

(b1) as a member of class Ir1 (Ar1), i.e., the individual infects in region 1 after an odd

number of completed trips (counted since the individual became infected), or

(b2) after an even number of completed trips (counted since the individual became in-

fected), the individual is a member of class Iv2 (Av2); the individual leaves region 2

and infects during travel from region 2 to region 1.

In case (a1), the expected duration of infection of an individual in class Ir1 after the (2n)th

trip (n = 0, 1, . . . ) is(
α1

α1 + µI + δ + dr1

γ2

γ2 + µI + δ + dv2

)n 1

α1 + µI + δ + dr1
,

we derive the total expected infection time in region 1 as
∞∑
n=0

(
α1

α1 + µI + δ + dr1

γ2

γ2 + µI + δ + dv2

)n 1

α1 + µI + δ + dr1

=
1

α1 + µI + δ + dr1

∞∑
n=0

(
α1

α1 + µI + δ + dr1

γ2

γ2 + µI + δ + dv2

)n
=

1

α1 + µI + δ + dr1
· 1

1− α1
α1+µ

I
+δ+dr1

γ2
γ2+µ

I
+δ+dv2

=
1

α1 + µI + δ + dr1
· (α1 + µI + δ + dr1)(γ2 + µI + δ + dr1)

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2

=
γ2 + µI + δ + dv2

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
.

Similar formula holds for individuals in class Ar1, so we obtain the number of new infections

in case (a1) as

p

(
µE (γ2 + µE + dv2)

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· γ2 + µI + δ + dv2
(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2

βrr1

N̂ r
1

N̂ r
1 + N̂v

1

)

+(1− p)

(
µE (γ2 + µE + dv2)

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· γ2 + µA + dv2
(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2

ρβrr1

N̂ r
1

N̂ r
1 + N̂v

1

)
.

We derive the number of new infections in case (a2) similarly. Since the probability of

being (symptomatic) infected just before the (2n+ 2)th trip (n = 0, 1, . . . ) is

α1

α1 + µI + δ + dr1

(
α1

α1 + µI + δ + dr1

γ2

γ2 + µI + δ + dv2

)n γ2

γ2 + µI + δ + dv2
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and the duration of infection during the (2n + 2)th trip is τ , we get the total expected

infection time of an individual of Iv1 as
∞∑
n=0

τ

(
α1

α1 + µI + δ + dr1

γ2

γ2 + µI + δ + dv2

)n+1

= τ
α1

α1 + µI + δ + dr1
· γ2

γ2 + µI + δ + dv2
· 1

1− α1
α1+µ

I
+δ+dr1

γ2
γ2+µ

I
+δ+dv2

= τ
α1

α1 + µI + δ + dr1
· γ2

γ2 + µI + δ + dv2
· (α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2

=
τα1γ2

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
.

This implies that the number of new infections in case (a2) is

p

(
µE (γ2 + µE + dv2)

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· α1γ2

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
τβT

γ2N̂
v
2

γ2N̂v
2 + α2N̂ r

2

)

+(1− p)

(
µE (γ2 + µE + dv2)

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· α1γ2

(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2
τρβT

γ2N̂
v
2

γ2N̂v
2 + α2N̂ r

2

)
.

Next, we go through the possible scenarios in case (B). In case (b1), the expected

duration of infection of an individual in class Iv1 after the (2n+ 1)th trip (n = 0, 1, . . . ) is

γ2

γ2 + µI + δ + dv2

(
α1

α1 + µI + δ + dr1

γ2

γ2 + µI + δ + dv2

)n 1

µI + α1 + δ + dr1
,

thus the total expected infection time can be obtained as

γ2

γ2 + µI + δ + dv2

∞∑
n=0

(
α1

α1 + µI + δ + dr1

γ2

γ2 + µI + δ + dv2

)n 1

α1 + µI + δ + dr1

=
γ2

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
,

and the number of new infections in case (b1) is

p

(
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· γ2

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
βrr1

N̂ r
1

N̂ r
1 + N̂v

1

)

+(1− p)

(
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· γ2

(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2
ρβrr1

N̂ r
1

N̂ r
1 + N̂v

1

)
.
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Similarly, the probability of being (symptomatic) infected just before the (2n + 1)th trip

(n = 0, 1, . . . ) in case (b2) is(
γ2

γ2 + µI + δ + dv2

α1

α1 + µI + δ + dr1

)n γ2

γ2 + µI + δ + dv2
,

moreover the duration of the infectious period during the (2n + 1)th trip is τ . Thus it

follows that the total expected infection time of a symptomatic infected individual in case

(b2) is
∞∑
n=0

τ

(
γ2

γ2 + µI + δ + dv2

α1

α1 + µI + δ + dr1

)n γ2

γ2 + µI + δ + dv2

=
τγ2(α1 + µI + δ + dr1)

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
,

and we obtain the number of new infections in case (b2) as

p

(
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· γ2(α1 + µI + δ + dr1)

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
τβT

γ2N̂
v
2

γ2N̂v
2 + α2N̂ r

2

)

+(1− p)

(
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· γ2(α1 + µA + dr1)

(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2
τρβT

γ2N̂
v
2

γ2N̂v
2 + α2N̂ r

2

)
.

We arrive at the formula for Rrr11 by summing the number of new infections in the different

cases.
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Rrr11 = p

(
µE

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· (γ2 + µE + dv2)(γ2 + µI + δ + dv2) + α1γ2

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
βrr1

N̂ r
1

N̂ r
1 + N̂v

1

+
µEα1γ2

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· γ2 + µE + dv2 + α1 + µI + δ + dr1
(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2

τβT
γ2N̂

v
2

γ2N̂v
2 + α2N̂ r

2

)

+ (1− p)

(
µE

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· (γ2 + µE + dv2)(γ2 + µA + dv2) + α1γ2

(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2
ρβrr1

N̂ r
1

N̂ r
1 + N̂v

1

+
µEα1γ2

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· γ2 + µE + dv2 + α1 + µA + dr1
(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2

τρβT
γ2N̂

v
2

γ2N̂v
2 + α2N̂ r

2

)
.

We detail the calculation of another element Rrv12, which is the number of new infections

in Ev2 originated from Er1 . We may define the two scenarios for the exposed-to-infected

transition as before, and thus the above calculated probabilities for events (A) and (B)

still hold.
P (A) =

µE (γ2 + µE + dv2)

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2
,

P (B) =
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2
.

Again, in each case different ways of disease transmission arise. In case (A), an infected

individual can transmit the disease as follows:

(a1) after an even number of completed trips (counted since the individual became in-

fected), the individual is a member of class Ir1 (Ar1); the individual leaves region 1

and infects during travel from region 1 to region 2, or

(a2) as a member of class Iv2 (Av2), i.e., the individual infects in region 2 after an odd

number of completed trips (counted since the individual became infected).

Similarly, in case (B), the individual can transmit the disease in one of the following ways:

(b1) after an odd number of completed trips (counted since the individual became in-

fected), the individual is a member of class Ir1 (Ar1); the individual leaves region 1

and infects during travel from region 1 to region 2, or
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(b2) as a member of class Iv2 (Av2), i.e., the individual infects in region 2 after an even

number of completed trips (counted since the individual became infected).

The total infection time in case (a1), (a2), (b1) and (b2) can be obtained with very similar

calculations as by the element Rrr11; that is, since the time of infection during travel is τ ,

the total infection time of a symptomatic infected individual in case (a1) and (b1) is

∞∑
n=0

τ

(
α1

α1 + µI + δ + dr1

γ2

γ2 + µI + δ + dv2

)n α1

α1 + µI + δ + dr1

=
τα1(γ2 + µI + δ + dv2)

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2

and
∞∑
n=0

τ
γ2

γ2 + µI + δ + dv2

(
γ2

γ2 + µI + δ + dv2

α1

α1 + µI + δ + dr1

)n α1

α1 + µI + δ + dr1

=
τα1γ2

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
,

respectively, the duration of infection in case (a2) and (b2) is

∞∑
n=0

(
α1

α1 + µI + δ + dr1

γ2

γ2 + µI + δ + dv2

)n α1

α1 + µI + δ + dr1
· 1

γ2 + µI + δ + dv2

=
α1

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2

and
∞∑
n=0

(
γ2

γ2 + µI + δ + dv2

α1

α1 + µI + δ + dr1

)n 1

γ2 + µI + δ + dv2

=
α1 + µI + δ + dr1

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
.

Thus, the number of new infections from cases (a1) and (b1) are determined by the formulas

p

(
µE (γ2 + µE + dv2)

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· α1(γ2 + µI + δ + dv2)

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
τβT

α1N̂
r
1

α1N̂ r
1 + γ1N̂v

1

)

+(1− p)

(
µE (γ2 + µE + dv2)

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· α1(γ2 + µA + dv2)

(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2
τρβT

α1N̂
r
1

α1N̂ r
1 + γ1N̂v

1

)
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and

p

(
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· α1γ2

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
τβT

α1N̂
r
1

γ1N̂v
1 + α1N̂ r

1

)

+(1− p)

(
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· α1γ2

(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2
τρβT

α1N̂
r
1

γ1N̂v
1 + α1N̂ r

1

)
.

We derive the number of new infections in cases (a2) and (b2) as

p

(
µE (γ2 + µE + dv2)

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· α1

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
βvv2

N̂v
2

N̂ r
2 + N̂v

2

)

+(1− p)

(
µE (γ2 + µE + dv2)

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· α1

(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2
ρβvv2

N̂v
2

N̂ r
2 + N̂v

2

)

and

p

(
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· α1 + µI + δ + dr1
(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2

βvv2

N̂v
2

N̂ r
2 + N̂v

2

)

+(1− p)

(
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· α1 + µA + dr1
(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2

ρβvv2

N̂v
2

N̂ r
2 + N̂v

2

)
.

We obtain the new infections in Ev2 generated by individuals in Er1 by the formula
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Rrv12 = p

(
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· (γ2 + µE + dv2)(γ2 + µI + δ + dv2) + α1γ2

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
τβT

α1N̂
r
1

γ1N̂v
1 + α1N̂ r

1

+
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· γ2 + µE + dv2 + α1 + µI + δ + dr1
(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2

βvv2

N̂v
2

N̂ r
2 + N̂v

2

)

+ (1− p)

(
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· (γ2 + µE + dv2)(γ2 + µA + dv2) + α1γ2

(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2
τρβT

α1N̂
r
1

α1N̂ r
1 + γ1N̂v

1

+
µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· γ2 + µE + dv2 + α1 + µA + dr1
(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2

ρβvv2

N̂v
2

N̂ r
2 + N̂v

2

)
.

The element R11
rv can be obtained very similarly as R11

rr (change Sr1 to Sv1 , change γ2S
v
2 to

α2S
r
2 , change βrr1 to βrv1 ). R12

rr is derived as one writes Sr2 instead of Sv2 , γ1S
v
1 instead of

α1S
r
1 and βvr2 instead of βvv2 in the formula of R12

rv. The elements of the second column can

be derived by using the elements of the first column and changing the first upper index of

the transmission rates from r to v (i.e., βvr1 instead of βrr1 etc). For an element Rm,nj,k of

the third or forth column one may consider Rm,nk,j , the corresponding element which is in

the first or second column, and change index 1 to 2 and index 2 to 1.

Now we show that K = N . The first element of the first row of K is obtained as the

scalar product of the first row of F and the first column of V−1. From earlier in this section

we obtain

(F)1,· =

(
0, ρβrr1

N̂ r
1

N̂ r
1 + N̂v

1

, βrr1

N̂ r
1

N̂ r
1 + N̂v

1

, 0, ρβvr1

N̂ r
1

N̂ r
1 + N̂v

1

, βvr1

N̂ r
1

N̂ r
1 + N̂v

1

, 0,

τβTρα2γ2N̂
v
2

α2N̂ r
2 + γ2N̂v

2

,
τβTα2γ2N̂

v
2

α2N̂ r
2 + γ2N̂v

2

, 0,
τβTργ2

2N̂
v
2

α2N̂ r
2 + γ2N̂v

2

,
τβTγ2

2N̂
v
2

α2N̂ r
2 + γ2N̂v

2

)
,
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(
V−1

)
·,1 =(

γ2 + µE + d2
v

(α1 + µE + d1
r)(γ2 + µE + d2

v)− α1γ2
,

(1− p)µE
(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· (γ2 + µE + dv2)(γ2 + µA + dv2) + α1γ2

(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2
,

pµE
(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2

· (γ2 + µE + dv2)(γ2 + µI + δ + dv2) + α1γ2

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2
,

0, 0, 0, 0, 0, 0,
α1

(α1 + µE + d1
r)(γ2 + µE + d2

v)− α1γ2
,

(1− p)µEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2
· γ2 + µE + dv2 + α1 + µA + dr1

(α1 + µA + dr1)(γ2 + µA + dv2)− α1γ2
,

pµEα1

(α1 + µE + dr1)(γ2 + µE + dv2)− α1γ2
· γ2 + µE + dv2 + α1 + µI + δ + dr1

(α1 + µI + δ + dr1)(γ2 + µI + δ + dv2)− α1γ2

)T
,

and the product indeed equals Rrr11. In order to obtain the first element of the forth row of

K, one needs to multiply the tenth row of F with the first column of V−1. The tenth row

of F is

(F)10,· =

(
0,

τβTρα2
1N̂

r
1

α1N̂ r
1 + γ1N̂v

1

,
τβTα2

1N̂
r
1

α1N̂ r
1 + γ1N̂v

1

, 0,
τβTρα1γ1N̂

r
1

α1N̂ r
1 + γ1N̂v

1

,
τβTα1γ1N̂

r
1

α1N̂ r
1 + γ1N̂v

1

,

0, ρβrv2

N̂v
2

N̂ r
2 + N̂v

2

, βrv2

N̂v
2

N̂ r
2 + N̂v

2

, 0, ρβvv2

N̂v
2

N̂ r
2 + N̂v

2

, βvv2

N̂v
2

N̂ r
2 + N̂v

2

)
,

the product indeed gives Rrv12. The equalities of the other 14 elements of K and N arise

similarly.

3.4.2 The dependence of R0 on key model parameters

Throughout this subsection we demonstrate how the reproduction number depends on vari-

ous key model parameters. We previously described the calculation of R0 as the dominant

eigenvalue of the next generation matrix. We obtained that each element of this 4 × 4

matrix is given by a complex formula of the model parameters, hence due to the com-

plicated structure, we do not present here analytic results but numerical simulations with

reasonable parameter values. We performed a systematic analysis to reveal the dependence

of R0 on several model parameters. We chose reasonable values for the parameters (see

Section 3.5 for plausible parameter ranges for influenza), population sizes and travel rates

(see [24]). In this subsection we assume that the two regions are symmetric in the popula-

tion sizes, travel rates and epidemiological characteristics. This assumption enables us to

focus on a better understanding of the role of the key parameters. The findings support

our intuitions about the dependence of the basic reproduction number on epidemiological
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Figure 3.2: The dependence of R0 on βT . Parameter values were chosen as RL,1 = 1.4,

RL,2 = 1.4, τ = 0.5, γ−1
1 = γ−1

2 = 7, µ−1
E

= 1.4, µ−1
I

= 3, µ−1
A

= 4.1, p = 0.6, ρ = 0.1.

parameters like the transmission rates and duration of infectious periods: increasing the

values of these parameters results in an increase of the value of the reproduction number.

However, we observed some unexpected behavior when examining R0 as a function of the

transmission rate during travel and the travel rate of visitors.

Figure 3.2 shows R0 as a function of βT when other model parameters are fixed and the

local reproduction numbers are set to 1.4. For βT < 30 the reproduction number settles

at around 1.4, however the function approaches a line with a strictly positive slope as we

further increase the parameter value. Numerical simulations proved that there is an eigen-

value of the NGM whose dependence on βT is almost linear. As the parameter value grows,

this eigenvalue dominates the one which is close to 1.4 for each value of βT . Next we set

βT = 40 and examine the effect of parameters γ1 and γ2 on the reproduction number. If we

ignore the time needed to complete a one-way trip, the value of these parameters does not

influence the value of R0 in the case of identical regions: if τ = 0 and the two regions are

symmetric in the population sizes and values of epidemiological parameters including the

local reproduction numbers, then R0 = RL,1 = RL,2 holds. However, for positive values of

τ we obtain some non-monotonic behavior of R0 as a function of the duration of visitors’

stay (reciprocal of γ1 and γ2) as shown in Figure 3.3. To understand this phenomenon

we examined how the elements of the next generation matrix depend on 1
γ1

and 1
γ2
. We

found that these parameters do not significantly influence most of the matrix elements if

one considers realistic parameter range (0 < 1
γ1
, 1
γ2
< 50 (days)). However, Rvr21, Rvv21 , Rvr12

and Rvv12 have similar non-monotonic shapes as obtained by the reproduction number.

See Figure 3.4 for the graph of four elements of the next generation matrix. The values

of Rrr11 and Rrr21 do not depend strongly on the length of visitors’ stay, as for real air traffic

data travel rates of residents are low, hence with high probability the exposed resident never
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Figure 3.3: The dependence ofR0 on 1
γ1

and 1
γ2

in the case of γ1 = γ2 and τ > 0. Parameter

values were chosen as RL,1 = 1.4, RL,2 = 1.4, τ = 0.5, βT = 40, µ−1
E

= 1.4, µ−1
I

= 3,

µ−1
A

= 4.1, p = 0.6, ρ = 0.1.
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Figure 3.4: The dependence of some elements of the next generation matrix on 1
γ1

and 1
γ2

in the case of γ1 = γ2 and τ > 0. Parameter values were chosen as RL,1 = 1.4, RL,2 = 1.4,

τ = 0.5, βT = 40, µ−1
E

= 1.4, µ−1
I

= 3, µ−1
A

= 4.1, p = 0.6, ρ = 0.1.

becomes a visitor. The longer visitors stay in the foreign region on average, the higher Rvr11

is (converges to RL,1 as 1
γ1

and 1
γ2

tend to infinity). The element Rvr21 defines the number

of new infections among residents of region 1 caused by a single exposed visitor of region

2. Following our definition of reproduction, Rvr21 counts new infections accrued while the

visitor was traveling to region 1 and while the visitor was staying there. If the duration

of visitors’ stay is short, the probability that a visitor leaves region 2 before finishing his
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Figure 3.5: The dependence of R0 on 1
γ1

and 1
γ2

in the case of γ1 = γ2 and τ = 0, i.e.,

we neglect the time required to complete a one-way trip. Parameter values were chosen as

RL,1 = 1.2, RL,2 = 1.6, τ = 0, µ−1
E

= 1.4, µ−1
I

= 3, µ−1
A

= 4.1, p = 0.6, ρ = 0.1.

exposed period is high, and as we neglected the possibility of moving to classes I or A

during travel, he will start his infectious period only in region 1. Choosing realistic values

for travel rates makes the chance of leaving region 1 small, thus for small values of 1
γ1

and
1
γ2
, Rvr21 approximately equals 1.4, the value of the local reproduction number RL,1. As

the length of visitors’ stay increases, the chances for the visitor to move to class I or A

before traveling back to region 1 rise. This results in the elevated number of newly infected

individuals due to increased transmission potential during travel. However, if the duration

of visitors’ stay is much longer, the probability that the visitor travels back to region 1

and gets into contact with residents there (in region 1) is low, hence the expected number

of such new infections is close to zero. The graphical interpretation of other elements

of the NGM can be explained similarly. We remark that the non-monotonic behavior

of the reproduction number as a function of the duration of visitors’ stay is observed in

the case of asymmetric regions as well. However, if we neglect the duration of travel

and assume different local reproduction numbers in the regions, the graph of R0 becomes

monotonically decreasing as shown in Figure 3.5. This shows that including travel-related

infections can fundamentally change the way the reproduction number depends on various

model parameters, and in the case of a non-monotone dependence on a parameter, one has

to be very careful when proposing control measures which change the given parameter.

3.4.3 R0 as the threshold quantity for epidemic outbreaks

The importance of parameter βT in the computation of the reproduction number has been

revealed in the previous subsection. However, it is not clear how the nonlinear dependence

of R0 on the transmission rate during travel is reflected on the epidemic curves or the

final epidemic size. We consider the hypothetical case when the two regions are symmetric

in the population sizes, travel rates and values of every model parameter except the local

reproduction numbers (RL,1 = RL,2 would result in identical epidemic curves). See Section



3.4. THE BASIC REPRODUCTION NUMBER 53

0 50 100 150 200 250 300 350
0

400

800

1200

1600

2000

2400

0.

0.1

0.2

0.3

0.4

0.5

0.6

time HdaysL

ca
se

s
pe

r
10

0.
00

0

at
ta

ck
ra

te
s

R0= 1.404
RL,1= 1.2 RL,2= 1.4
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Figure 3.6: Epidemic curves and attack rates of region 1 (red and red-dashed) and region 2

(orange and orange-dashed) for two values of βT when both the local reproduction numbers

are greater than 1. The increase in the value of βT significantly alters the value of R0, but

its effect on the epidemic curves only manifests in earlier peak times. Parameter values

were chosen as RL,1 = 1.2, RL,2 = 1.4, τ = 0.5, µ−1
E

= 1.4, µ−1
I

= 3, µ−1
A

= 4.1, p = 0.6,

ρ = 0.1, γ−1
1 = γ−1

2 = 7, α1 = 5 · 10−5, α2 = 5 · 10−5, N r
1 (0) = 3.4 · 107, N r

2 (0) = 3.4 · 107.

3.5 for realistic travel rates, population sizes and epidemiological parameters for influenza.

If both the regional reproduction numbers are greater than one, increasing βT does not

have a significant effect on the disease outbreak: although the curves peak earlier for larger

values of the parameter, peak sizes and attack rates (defined as the fraction of individuals

who have contracted the disease) remain similar in both regions. However, as illustrated in

Figure 3.6, the difference manifests in the value of the basic reproduction number: chang-

ing βT from 25 to 50 can increase R0 from 1.4 for 2 in this particular case.

There is no epidemic outbreak in the absence of travel if we assume that both regional

reproduction numbers are less than 1. In case of connected regions, minor outbreaks can

occur if the value of βT is set to ensure thatR0 exceeds one. However, further increasing βT

may result in long-continued outbreaks with small peak sizes but relatively high values of

the reproduction number and the attack rates, as indicated in Figure 3.7. These examples

clearly show that although – as we have proved it in Section 3.4 – R0 works as a threshold

regarding the stability of the disease free state (that is relevant to the initial growth of an

epidemic), it is not necessarily a good predictor for the entire course of the outbreak and

the attack rates.
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Figure 3.7: Epidemic curves and attack rates of region 1 (red and red-dashed) and region 2

(orange and orange-dashed) for two values of βT when both the local reproduction numbers

are below 1 but R0 > 1. The relatively high value of the reproduction number is reflected

in the size of the outbreak: the dashed curves show that for βT = 50 more than 40 % of

the populations of both region 1 and 2 has been infected by day 4500. Parameter values

were chosen as RL,1 = 0.9, RL,2 = 0.99, τ = 0.5, µ−1
E

= 1.4, µ−1
I

= 3, µ−1
A

= 4.1, p = 0.6,

ρ = 0.1, γ−1
1 = γ−1

2 = 7, α1 = 5 · 10−5, α2 = 5 · 10−5, N r
1 (0) = 3.4 · 107, N r

2 (0) = 3.4 · 107.

3.5 Parametrization for influenza

We parametrize our model for the 2009 A(H1N1) pandemic influenza. We ignore demogra-

phy and set parameters Λj , drj and d
v
j , j ∈ {1, 2}, equal to 0, moreover we also neglect the

possibility of disease induced mortality and let δ = 0. Several studies ([1, 4, 6, 9, 16, 30,

46, 48, 49] and the references therein) estimated the local reproduction number and values

of key epidemiological parameters for recent influenza pandemics. In Table 3.3 we give an

overview of the ranges of these parameters, and choose reasonable values from the ranges

for our simulations. Parameter βT , the transmission rate during travel is estimated to be

10–20, as [49] claims that the expected number of H1N1 infections caused by a single in-

fectious case varies between 5 and 10, considering transmission during an eleven-hour-long

flight.

In the model description, several parameters were introduced to characterize trans-

portation between the regions: travel rate of residents from their origin, duration of visitors’

stay, duration of travel. We determine the values of these parameters for specific cases: we

pick Canada to be region 1 (origin) and we consider three possible destinations as region 2

(for the destinations, see Section 3.6). We derive travel rates from [24], which provides the

annual volume of passengers toward Canada from several international sources. However,

neither records about travelers’ origin (Canadian resident or visitor of Canada), nor data
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Parameter Value for simulations Range from literature

Λj , dmj , δ 0

µ−1
E

1.4 (1–2.62) [4, 46, 48]

µ−1
I

3 (1.1–4.69) [4, 46, 48]

µ−1
A

4.1 (2.06–4.69) [30, 46]

ρ 0.1 (0–0.5) [1, 6, 30]

p 0.6 (0.5–0.75) [1, 9]

βT 15 (10–20) [16, 49]

RL 1.3, 1.4 (1.05–1.88) [4, 46, 48]

βm,nj calculated from RL
αj , γj , τ see specific cases

Table 3.3: Parameters for simulations (j ∈ {1, 2}, m,n ∈ {r, v}).

about the volume of passengers traveling in other directions are available in this study.

For many destinations available from Canada, the surveys of Statistics Canada [40] pro-

vide information about the ratio of the volume of foreign travelers to Canada and Canadian

travelers to the other region. We assume that all Canadian residents who leave Canada will

return sometimes later, therefore for a specific region 2, the ratio of the annual volume of

residents of this region traveling to Canada and Canadians returning home from the region

is explicitly given by the statistics. Thus, given the annual volume of all passengers from

a specific region 2 toward Canada, we can determine Ω2, the annual volume of residents of

region 2 traveling to Canada, and the annual volume of Canadian residents returning home

from region 2. We assume that this number equals Ω1, the annual volume of Canadian

passengers to region 2. The annual volume of passengers toward Canada and the ratio of

Canadian residents and residents of region 2 traveling between Canada and region 2 for

three origin–destination pairs can be found in Table 3.4.

We need α1 and α2, the traveling rates of Canadian residents and residents of region

2. In our simulations, we define the traveling rate of residents of region j at time t as

αj(t) =
Ωj
365

1
Nr
j (t) , j ∈ {1, 2} (the definition is slightly different in the case of the origin–

destination pair “Canada–Mexico”, see the corresponding subsection). Parameters γj and
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Origin–destination pair Khan et al. [24] Statistics Canada 2009 [40]

Canada – China 786569 9 : 5

Canada – UK 1203272 14 : 11

Canada – Mexico 655219 15 : 2

Table 3.4: Annual travel volumes and statistics for three origin–destination pairs. The

annual volumes of passengers toward Canada were derived from [24]. The statistics of [40]

provide the ratio of Canadian residents and residents of the other region (China / United

Kingdom / Mexico).

τ are determined for each specific origin–destination pair. Initial values are set as follows:

Srj (u) =

{
(1− 10−5)Mj if u = 0,

Mj if u < 0,

Svj (u) ≡ Ωk

365γj
,

Erj (u) =

{
10−5Mj if u = 0,

0 if u < 0,

whereMj denotes the population size of region j, and Evj (u) = Amj (u) = Imj (u) = Rmj (u) ≡
0 for u ∈ [−τ, 0], j, k ∈ {1, 2}, j 6= k, m ∈ {r, v}. We determine the transmission rates

βm,nj , j ∈ {1, 2}, m,n ∈ {r, v}, as follows. For each origin–destination pair of our model,

we denote the local reproduction number of region j (i.e., the reproduction number of the

region in the absence of travel) by RL,j . Several recent studies ([4, 46]) estimated the basic

reproduction number for regions which were affected by the 2009 H1N1 pandemic. For a

given RL,j , we can use the formula

RL,j = βj
Srj (0)

N r
j (0)

(
p

µI
+ (1− p) ρ

µA

)
to calculate βj . Assuming homogeneous mixing in the regions, we can set βrrj = βrvj =

βvrj = βvvj = βj . For the numerical simulations we set µT
E

= µT
A

= µT
I

= 0; as pointed out

in Section 3.4, this assumption allows us to obtain the inflow terms explicitly and also to

calculate the reproduction number.

3.6 Prototype origin–destination pairs

In this section, we present simulations for influenza using real demographic and air traffic

data. We set up three distinct scenarios for the origin–destination pairs: we choose Canada

to represent region 1 and consider three possible geographic locations for region 2: China,

Mexico and the United Kingdom. All these three countries are popular destinations of
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flights originated from Canada. We would like to emphasize that, although we used real

demographic and air travel data in the simulations and chose reasonable parameter values

from the ranges of Table 3.3, the epidemic curves depicted below do not need to match with

the 2009 A(H1N1) influenza pandemic data reported, since there were other factors which

are not considered in our model setting. The purpose of choosing such origin–destination

pairs for simulations was to illustrate our model for regions parametrized with different

values of the key model parameters. Nevertheless, we also present the data fitting results of

the model to the Canadian and Mexican morbidity data of the first wave of the pandemic,

since in the early stage these data were largely determined by the characteristics of the

two countries and the travel between them. Table 3.4 summarizes real air traffic data and

the ratios of Canadian residents traveling to region 2 and residents of region 2 traveling to

Canada for three origin–destination pairs.

3.6.1 Canada – China: The case of asymmetric populations

China, including Hong Kong generates the third largest volume of international passenger

traffic entering Canada: approximately 780000 air passengers initiate their trip from within

China’s borders. In aspect of global preparedness against worldwide spreading pandemics

China is of particular interest: its variability of poverty and wealth provides a platform

for the appearance of emerging infectious diseases (e.g., H5N1, SARS). The country’s high

connectivity with all parts of the world (it possesses the fifth largest international airport

in the world) clearly shows it’s significance in international spreading of the infection.

In the model construction we assumed that each individual of the population has equal

chances to travel. This generalization is definitely not fulfilled in a population of more than

1 billion with various social-economic background, hence here we use a somewhat smaller

population of potential travelers of China (150 million). The population size of Canada

is set to 34.461 million, we let τ = 0.5 (days) since we assume that a flight between the

regions takes approximately 12 hours. For the local reproduction numbers of Canada and

China, we pick RL,1 = 1.3 and RL,2 = 1.4. Parameters α1 and α2 were derived using

travel volumes as explained in Section 3.5, we choose γ1 = γ2 = 1
7 .

We present Figures 3.8 and 3.9 to demonstrate the role of the human transportation

system played in the spread of influenza. Assuming that initial outbreaks in Canada (red

curves) and China (blue curves) occurred independently, the effect of traveling on the

spread of the epidemic seems negligible, because the epidemic curves in case of separated

regions (Figure 3.8(a)) are very similar to the epidemic curves in case of connected regions

(Figure 3.8(b)). However, Figure 3.8(c) clearly shows the importance of incorporating



58 CHAPTER 3. SPREAD OF PANDEMICS BETWEEN CONNECTED REGIONS

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

time HdaysL

ca
se

s
pe

r
10

0.
00

0

R0= 1.40005
RL,1= 1.3 RL,2= 1.4

(a) Peak time in Canada: day 149, peak time

in China: day 125 in the case of regions con-

nected by air travel, independent outbreaks.
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(b) Peak time in Canada: day 152, peak time

in China: day 125 in the case of separated

regions, independent outbreaks.
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(c) Peak time in Canada: day 190, peak time

in China: day 125 in the case of regions con-

nected by air travel, initial cases only in China.

Figure 3.8: Epidemic curves of Canada (region 1, red) and China (region 2, blue). In case

of independent outbreaks in Canada and China, the effect of travel on the spread of the

pandemic is negligible. However, if we assume that the pandemic originates from China

and Canada is susceptible, then due to air transportation the infection invades the disease

free Canada, though with delayed peak time. For the simulations, we set RL,1 = 1.3,

RL,2 = 1.4, τ = 0.5, γ−1
1 = γ−1

2 = 7, βT = 15, µ−1
E

= 1.4, µ−1
I

= 3, µ−1
A

= 4.1, p = 0.6,

ρ = 0.1.

transportation into the model: if we assume that initial cases only appear in China and

Canada is completely susceptible, then the disease reaches Canada, obviously due to air

transportation. This scenario results in approximately the same peak size as if we assumed

initial outbreaks in both regions, although the peak time in Canada is delayed by almost 40

days. Analyzing the public reports of health agencies confirms that large delays between

peak times of connected regions are unrealistic when one considers pandemics where air

transportation was proved to play a key role in disease transmission (SARS 2002–2003,
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Figure 3.9: Epidemic curves of Canada (region 1, red) and China (region 2, blue) when

we ignore the possibility of disease transmission during travel and we assume that the

pandemic originates from China and Canada is susceptible. Peak time in Canada: day

220, peak time in China: day 125. For the simulations, we set RL,1 = 1.3, RL,2 = 1.4,

τ = 0.5, γ−1
1 = γ−1

2 = 7, βT = 15, µ−1
E

= 1.4, µ−1
I

= 3, µ−1
A

= 4.1, p = 0.6, ρ = 0.1.

A(H1N1)v influenza 2009). Figure 3.9 shows what happens if we ignore the possibility

of on-board disease transmission in the model. Comparing this result with Figure 3.8(c)

is of particular interest: if one incorporates disease dynamics during travel, the model

predicts the peak time of the invaded region to be 30 days earlier. As a concluding remark,

we wish to emphasize that, following these findings, simpler models that ignore travel-

related infections can seriously overestimate the time a region has for preparation before

the outbreak arrives.

3.6.2 Canada – United Kingdom: The symmetric case

The European Union generates almost one-fifth of all international traffic entering Canada.

Although the EU may be an unlikely source for the emergence of new or dangerous infec-

tious disease threats, it generates over 19 % of the world’s international traffic volume and

consequently should receive special consideration as an important potential location from

which infectious disease threats may enter Canada. Being the second leading international

source of passenger traffic entering Canada (6.6 %), the United Kingdom is an important

international traffic intersection.

Unlike the Canada–China and the Canada–Mexico origin–destination pairs, the Canada–

United Kingdom pair can be considered as the case of two symmetric regions. The popu-

lation sizes of the two countries have the same magnitude, moreover just like Canada, the

UK also possesses highly developed health care system and advanced intervention tech-

niques in disease control and prevention, hence we can assume that the local reproduction

numbers are similar. In the simulations we set the population size of the UK to be 62.262
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(a) Peak time in Canada: day 200, peak time

in the UK: day 153 when there are no reduc-

tion in travel volumes.
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(b) Peak time in Canada: day 240, peak time

in the UK: day 153 when there is a 90 % re-

duction in travel volumes.

Figure 3.10: Reducing travel volumes by 90 % between Canada (region 1, red) and the

UK (region 2, orange) results in a delay of the peak time in Canada by 40 days. We

assumed the initial number of infectious cases in Canada to be 0. For the simulations,

we set RL,1 = 1.3, RL,2 = 1.3, τ = 0.5, γ−1
1 = γ−1

2 = 7, βT = 15, µ−1
E

= 1.4, µ−1
I

= 3,

µ−1
A

= 4.1, p = 0.6, ρ = 0.1.

million, RL,1 = RL,2 = 1.3, γ1 = γ2 = 1
7 and τ = 0.5.

Reducing the number of flights to and from infected areas and screening out infected

individuals at their arrival to international airports are considered to be powerful tools when

one’s aim is to mitigate the severity of pandemic outbreaks. However, entry screening works

ineffectively on asymptomatic infected individuals, who – despite their reduced disease

transmissibility – can spread the infection after arrival. We examined the benefits of travel

restrictions on the spread of the pandemic in two symmetric regions. We found that in

the case of a single outbreak in the UK, the peak time of the outbreak in the originally

disease free Canada can be delayed by 40 days when we consider the hypothetical case of

90% limitation in the travel volumes between the two regions. See Figure 3.10, red and

orange curves show the number of symptomatic infected cases per 1000000 in Canada and

the UK, respectively.

3.6.3 Canada – Mexico: The case of asymmetric travel

Mexico is a potential source of threatening pandemics due to high population density,

poverty and limited health care resources on one side but high volume of international

traffic on the other side. The country generates the forth largest volume of international

passenger traffic entering Canada (approximately 655000 passengers, second largest volume

from any developing countries). A significantly large part of this traffic originates from re-
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(a) Peak time in Canada: day 195, peak time

in Mexico: day 123 when γ1 = 1
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(b) Peak time in Canada: day 230, peak time

in Mexico: day 123 when γ1 = 1
0.2

, γ2 = 1
0.2

.

Figure 3.11: In case of a single initial outbreak in Mexico (region 2, green), the outbreak in

Canada (region 1, red) can be delayed by 35 days if the average stay of visitors is reduced

from 15 days to five hours. For the simulations, we set RL,1 = 1.3, RL,2 = 1.4, τ = 0.25,

βT = 15, µ−1
E

= 1.4, µ−1
I

= 3, µ−1
A

= 4.1, p = 0.6, ρ = 0.1.

sort cities like Cancun (177000) and Puerto Vallarta (105000) between January and April,

as Canadians return home from winter vacations. However, Mexico City is a steady source

of inflowing air traffic throughout the year (190000). This asymmetric travel behavior may

cause very dissimilar epidemic courses if we consider outbreaks in different parts of the year.

In order to incorporate the phenomenon of this asymmetric travel behavior of passen-

gers traveling between Canada and Mexico, we divide the course of the year into two phases.

Between January and April (Phase I) the daily volume of Canadian residents traveling to

Mexico is significantly higher than during the other 8 months of the year (May–December,

Phase II). We denote the travel rates of Canadian residents toward Mexico in Phase I

and Phase II by αI1 and αII1 , respectively. Parameter Ω1 was introduced in Section 3.5 to

denote the annual volume of Canadians entering Mexico, and using the data of Table 3.4,

we obtain that Ω1 = 655000 15
15+2 . We define α1(t), the traveling rate of Canadian residents

toward Mexico at time t as follows: we assume that the passenger traffic from Canada to

resort cities like Cancun and Puerto Vallarta is due to Canadian residents only, who travel

to Mexico for vacation, and all travelers to these cities arrive to Mexico during the first

four months of the year. We denote the number of all residents of region 1 (Canada) at

time t by N r
1 (t). We get that

α1(t) = αII1 =
Ω1 − 177000− 105000

365

1

N r
1 (t)
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Figure 3.12: Epidemic curves of Canada (region 1, red, peak time: day 160) and Mexico

(region 2, green, peak time: day 117) when peak times were fitted to the real morbidity

data of the first wave of the 2009 H1N1 and day 0 corresponds to December the 31st 2008.

Travel rates arise from [24], historical peak times (day 117–123 in Mexico, day 155–162

in Canada) were derived from [32, 35, 52]. We set RL,1 = 1.38, RL,2 = 1.4, τ = 0.25,

γ−1
1 = γ−1

2 = 15, βT = 20, µ−1
E

= 1.4, µ−1
I

= 2.7, µ−1
A

= 4.1, p = 0.6, ρ = 0.1.

for t > 121, i.e., in Phase II and

α1(t) = αI1 = αII1 +
177000 + 105000

121

1

N r
1 (t)

for 0 ≤ t ≤ 121, where t = 0 corresponds to December 31, 2008.

As mentioned above, a significant part of the passenger traffic between Canada and

Mexico is due to Canadian vacationers who visit holiday resorts in the first four months of

the year. Although the news about an epidemic outbreak might not make people cancel

their vacation, it may affect the length of their stay in the affected area. We considered

two scenarios for the average length of visitors’ stay to reveal the importance of this time

period. Figure 3.11 shows that the smaller the value of parameters 1
γ1

and 1
γ2

is, the later

the pandemic hits Canada (red curve) if we assume that the first cases were identified in

Mexico (green curve). If visitors spend 15 days on average in the other region, the pandemic

peaks 35 days earlier in Canada than if we consider an 0.2 day-long (approximately five

hours, usual waiting time of transit passengers at airports) stay only. These results were

obtained using parameter values τ = 0.25, RL,1 = 1.3, RL,2 = 1.4 and the population size

of Mexico was set 112.323 million.

3.6.4 Fitting the model to the 2009 A(H1N1) pandemic

To illustrate the applicability of our approach, we fitted the model to the first wave of the

2009 A(H1N1)v pandemic in Canada and Mexico. For the simulation, we chose reasonable

values for epidemiological parameters from the ranges of Table 3.3, moreover we used real
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demographic and air traffic data of the Canada–Mexico origin–destination pair. Travel

rates were derived from [24], and we set τ = 0.25. According to the public reports of

the Mexican Social Security Institute [32], WHO Global Influenza Virological Surveillance

[52] and the Public Health Agency of Canada [35], the epidemic peaked around week 18

in Mexico and weeks 23–24 in Canada. If day 0 corresponds to December the 31st 2008,

then historical peak times are obtained around days 117–123 in Mexico and around days

155–162 in Canada. For the simulations, we estimated the local reproduction numbers to

ensure that the peak times of the epidemic curves fit the real morbidity data. The result

can be seen in Figure 3.12, where RL,1 = 1.38 and RL,2 = 1.4. These local reproduction

numbers match the results of [4, 46, 48].

We performed a systematic analysis to reveal the sensitivity to several key parameters.

The analysis showed the robustness of the presented fitting in parameters γ1, γ2, p and ρ,

although it turned out that the length of latency and infectious periods, the transmission

rate during travel and the local reproduction numbers strongly affect the peak times.

We wish to emphasize the utmost importance of incorporating disease dynamics during

transportation into our model. The discussion around Figures 3.8(c) and 3.9 in Section

3.6 clearly shows that ignoring the possibility of on-board disease transmission results in

delayed peak times, thus we could not have had a fitting as presented in Figure 3.12 if we

had neglected travel-related infections while keeping every other parameter fixed. To ensure

that the curve of Canada peaks around day 155–162 in the absence of travel infections, a

much higher value for the Canadian reproduction number RL,1 would be necessary, which

is unrealistic according to the above mentioned references.

3.7 Conclusion

Recent epidemics like the 2002–2003 SARS outbreak and the 2009 pandemic influenza

A(H1N1) exemplified the role of the global air transportation network played in the world-

wide spread of infectious diseases. The topic of epidemic spread due to human trans-

portation has recently been examined in several studies. The metapopulation models in

[2, 3, 36, 50] describe the spatial dispersal of infected individuals in connected regions, al-

though ignore the fact that long distance travel such as intercontinental flights provides a

platform for on-board transmission of the disease ([16, 49]). The studies [10, 28, 33, 34, 42]

account for the fact that, since the progress of the above mentioned diseases is fast, the

time needed for transportation between regions is not negligible. They consider the pos-

sibility of disease transmission during travel, although the standard SIS-type models used

in these works might not be suitable for modeling influenza or SARS.
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We introduced a dynamic model which describes the spread of an infectious disease in

and between two regions which are connected by transportation. In the model setup we

distinguished local residents from temporary visitors because they might have very differ-

ent contact rates, mixing patterns and travel behavior. We used the SEAIR model as a

basic epidemic building block in the regions and also during the travel, and we modeled

disease dynamics during travel by a system structured by travel time. We showed that our

model is equivalent to a system of nonlinear functional differential equations with dynam-

ically defined delayed feedback, and we examined the fundamental dynamic properties of

the system.

We detailed the computation of the basic reproduction number, which is a threshold

quantity for epidemic outbreaks, and discussed the dependence of R0 on several key model

parameters. The analysis demonstrates the importance of incorporating the phenomenon

of disease transmission during transportation: transmission rates during travel can be much

higher than under usual circumstances and our results show that βT may significantly alter

the value of R0. We parametrized our model for influenza and performed simulations with

real demographic and air traffic data. Three origin–destination pairs were introduced for

the regions to demonstrate the effect of changing the value of various key model param-

eters and addressing possible interventions. We showed the applicability of our approach

by fitting the model to the first wave of the 2009 A(H1N1) influenza pandemic in Canada

and Mexico.

Our results, in conjunction with recent studies [16, 28, 49], support that considering dis-

ease transmission during travel is of particular interest to model the spread of diseases with

fast progression. We demonstrated that simpler models which ignore on-board infections

can seriously overestimate the time a region has before the epidemic wave arrives.



Chapter 4

Epidemic models with

travel-related infection

In the introduction we presented a class of models for the spread of infectious diseases in

regions which are connected by means of long distance travel. The SEAIR-based model we

established and analyzed in Chapter 3 describes how the global airline network contributes

to the propagation of pandemics of the present age, like SARS or influenza. Our results

highlight the importance of including travel time and disease dynamics during travel in the

model: the invasion of disease free regions is highly expedited by the elevated transmission

potential during transportation. Intervention techniques like partial or full airport closure

are considered to be potential tools in epidemic prevention and control, as these strategies

are aimed to prevent a situation of multiple induced outbreaks generated by infected agents

who arrive from endemic regions. In this chapter, we further investigate the topic of

infection spread on travel networks as we consider a simple disease transmission model

in two connected regions with an entry screening procedure initiated for travelers upon

arrival to a region. We also formulate an epidemic model that describes the propagation

of a disease in a population of individuals who are distributed over an arbitrary r number

of regions, which are connected by a general transportation network. We will see that

the model setup leads to a system of autonomous equations with multiple delays, thus we

extend our framework elaborated in Chapter 2 to such systems. Instead of the typical

assumption of modeling disease transmission by standard incidence, we consider a general

infection term and give condition for the existence of solutions in the model.

4.1 An epidemic model with entry screening

We formulate a dynamic model describing the spread of an infectious disease in two regions,

and also during travel from one region to the other. We assume that the time required to

65
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Figure 4.1: Color-coded flow chart of disease transmission and travel dynamics of the SIRJ

model. The disease transmission in the two regions is shown in two different columns,

the disease progresses vertically from the top to the bottom (solid arrows). Green dashed

arrows represent traveling. Green solid arrows show the dynamics of the pandemic during

the course of the travel. The description of the variables can be found in Table 4.1.

complete travel between the regions is not negligible. We divide the entire populations of

the two regions into the disjoint classes S1, I1, R1, J1, S2, I2, R2 and J2. Lower index

denotes the current region, letters S and R represent the compartments of susceptible and

recovered individuals, respectively. We assume that individuals are traveling between the

regions and travelers are requested to undergo an entry screening procedure before enter-

ing a region after travel. The purpose of the examination is to detect travelers who are

infected with the disease and isolate them in order to minimize the chances of an infected

agent spreading the infection in a disease free region. Such interventions were proven to

have significant effect in mitigating the severity of epidemic outbreaks. Some individuals

who are infected with the disease get screened out upon arrival to a region, so they become

isolated and belong to class J . Others whose illness remains hidden by the examination,

and those who are sick but do not travel are in class I and we simply call them infecteds.

Let S1(t), I1(t), R1(t), J1(t), S2(t), I2(t), R2(t) and J2(t) be the number of individuals

belonging to S1, I1, R1, J1, S2, I2, R2 and J2, respectively, at time t. Susceptible, infected

and recovered individuals of region 1 travel to region 2 by travel rate α1. The travel rate

of individuals in classes S2, I2 and R2 from region 2 to region 1 is denoted by α2. Isolated

individuals are not allowed to travel, moreover we assume that they do not make contact

with individuals in other classes until they recover. Model parameters µ1 and µ2 represent
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Variables and key model parameters

S1, I1, R1, J1 Susceptible, infected, recovered and isolated individuals in region 1

S2, I2, R2, J2 Susceptible, infected, recovered and isolated individuals in region 2

s1, i1, r1 Density of susceptible, infected and recovered individuals

during the travel from region 2 to region 1

s2, i2, r2 Density of susceptible, infected and recovered individuals

during the travel from region 1 to region 2

β1, β2 Transmission rate in region 1 and in region 2

α1, α2 Traveling rate of individuals in region 1 and in region 2

µ1, µ2 Recovery rate of infected and isolated individuals

in region 1 and in region 2

p1, p2 Probability of screening out infected travelers

arriving to region 1 and to region 2

τ Duration of travel between the regions

βT Transmission rate during travel

µT Recovery rate during travel

Table 4.1: Variables and parameters of the SIRJ model. In the table, “density” means the

density with respect to the time elapsed since the start of travel.

the recovery rate of infected and isolated individuals in region 1 and region 2, we denote

the transmission rates in region 1 and region 2 by β1 and β2.

Let s1, i1, r1 and s2, i2, r2 denote the classes of susceptible, infected, recovered individ-

uals during the trip to region 1 and to region 2, respectively. The recovery rate of infecteds

in travel is µT , they transmit the disease by rate βT during the course of travel. Let τ > 0

denote the time required to complete a one-way trip, which is assumed to be fixed. To

describe the disease dynamics during the travel, for each t∗ we define s1(θ; t∗), i1(θ; t∗),

r1(θ; t∗), s2(θ; t∗), i2(θ; t∗) and r2(θ; t∗) as the density of individuals with respect to θ who

started travel at time t∗ and belong to classes s1, i1, r1, s2, i2 and r2, respectively, where

θ ∈ [0, τ ] denotes the time elapsed since the beginning of the trip. The total density of

individuals who started travel at t∗ is constant during the trip, that is,

s1(θ; t∗) + i1(θ; t∗) + r1(θ; t∗) = s1(0; t∗) + i1(0; t∗) + r1(0; t∗),

s2(θ; t∗) + i2(θ; t∗) + r2(θ; t∗) = s2(0; t∗) + i2(0; t∗) + r2(0; t∗)

for all θ ∈ [0, τ ]. By choosing θ = τ , t∗ = t − τ , the terms s1(τ ; t − τ), r1(τ ; t − τ)

and s2(τ ; t − τ), r2(τ ; t − τ) express the inflow of susceptible and recovered individuals

arriving to region 1 to compartments S1, R1, and to region 2 to compartments S2, R2,
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respectively, at time t. We assume that travelers undergo an examination upon the arrival

to region 1 and 2, which detects infection by infecteds with probability 0 < p1, p2 < 1.

This implies that the densities p1i1(τ ; t− τ) and p2i2(τ ; t− τ) determine individuals who

enter J1 and J2, respectively, at time t, since p1 and p2 are the probabilities that infected

travelers get screened out upon arrival. However, infected individuals enter classes I1 and

I2 with probabilities 1 − p1 and 1 − p2 upon completing a trip, hence (1 − p1)i1(τ ; t − τ)

and (1− p2)i2(τ ; t− τ) give the inflow to classes I1 and I2, respectively, at time t.

The flow chart of the model is depicted in Figure 4.1, see Table 4.1 for variables and key

model parameters. We obtain the following system of differential equations for the disease

spread in the regions, where disease transmission is modeled by standard incidence:

Ṡ1(t) = −β1
S1(t)I1(t)

S1(t) + I1(t) +R1(t)
− α1S1(t) + s1(τ ; t− τ),

İ1(t) = β1
S1(t)I1(t)

S1(t) + I1(t) +R1(t)
− µ1I1(t)− α1I1(t) + (1− p1)i1(τ ; t− τ),

Ṙ1(t) = µ1(I1(t) + J1(t))− α1R1(t) + r1(τ ; t− τ),

J̇1(t) = −µ1J1(t) + p1i1(τ ; t− τ),

Ṡ2(t) = −β2
S2(t)I2(t)

S2(t) + I2(t) +R2(t)
− α2S2(t) + s2(τ ; t− τ),

İ2(t) = β2
S2(t)I2(t)

S2(t) + I2(t) +R2(t)
− µ2I2(t)− α2I2(t) + (1− p2)i2(τ ; t− τ),

Ṙ2(t) = µ2(I2(t) + J2(t))− α2R2(t) + r2(τ ; t− τ),

J̇2(t) = −µ2J2(t) + p2i2(τ ; t− τ).

(4.1)

For each t∗, the following system describes the evolution of the densities during the travel

which started at time t∗:

d

dθ
s1(θ; t∗) = −βT s1(θ; t∗)i1(θ; t∗)

s1(θ; t∗) + i1(θ; t∗) + r1(θ; t∗)
,

d

dθ
i1(θ; t∗) = βT

s1(θ; t∗)i1(θ; t∗)

s1(θ; t∗) + i1(θ; t∗) + r1(θ; t∗)
− µT i1(θ; t∗),

d

dθ
r1(θ; t∗) = µT i1(θ; t∗),

d

dθ
s2(θ; t∗) = −βT s2(θ; t∗)i2(θ; t∗)

s2(θ; t∗) + i2(θ; t∗) + r2(θ; t∗)
,

d

dθ
i2(θ; t∗) = βT

s2(θ; t∗)i2(θ; t∗)

s2(θ; t∗) + i2(θ; t∗) + r2(θ; t∗)
− µT i2(θ; t∗),

d

dθ
r2(θ; t∗) = µT i2(θ; t∗),

(4.2)

where again we assume standard incidence for the disease transmission. Note that the

dimensions of systems (4.1) and (4.2) are different.
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For θ = 0, the densities are determined by the rates individuals start their travels from

one region to the other at time t∗. Hence, the initial values for system (4.2) at θ = 0 are

given by 
s1(0; t∗) = α2S2(t∗), s2(0; t∗) = α1S1(t∗),

i1(0; t∗) = α2I2(t∗), i2(0; t∗) = α1I1(t∗),

r1(0; t∗) = α2R2(t∗), r2(0; t∗) = α1R1(t∗).

(4.3)

Now we turn our attention to the terms s1(τ ; t − τ), (1 − p1)i1(τ ; t − τ), r1(τ ; t − τ),

p1i1(τ ; t − τ), s2(τ ; t − τ), (1 − p2)i2(τ ; t − τ), r2(τ ; t − τ) and p2i2(τ ; t − τ) in system

(4.1), which are the densities of individuals arriving to classes S1, I1, R1, J1, S2, I2, R2

and J2, respectively, at time t upon completing a one-way trip. At time t, these terms

are determined by the solution of system (4.2) with initial values (4.3) for t∗ = t − τ at

θ = τ . An individual may move to a different compartment during travel, for example

a susceptible individual who travels from region 1 may arrive as infected to region 2, as

given by the dynamics of system (4.2).

Next we specify initial values for system (4.1) at t = 0. Since a one-way trip takes τ

units of time to complete, arrivals to region 1 are determined by the state of classes S2, I2

and R2 at t − τ and vice versa, via the solution of systems (4.2) and (4.3). Thus, we set

up the initial functions as follows:

S1(u) = ϕS,1(u), S2(u) = ϕS,2(u),

I1(u) = ϕI,1(u), I2(u) = ϕI,2(u),

R1(u) = ϕR,1(u), R2(u) = ϕR,2(u),

J1(u) = ϕJ,1(u), J2(u) = ϕJ,2(u),

(4.4)

where u ∈ [−τ, 0] and ϕK,j is continuous for each j ∈ {1, 2},K ∈ {S, I,R, J}.

4.1.1 The compact form of the model

For a given t∗, we define y(θ) = (s1(θ; t∗), i1(θ; t∗), r1(θ; t∗), s2(θ; t∗), i2(θ; t∗), r2(θ; t∗))
T

and let g = (g1, g2, g3, g4, g5, g6)T , where y : [0, τ ] � R6 and g : R6 � R6. Function g

is defined as gj(y) equals the right-hand side of the equation for yj in system (4.2) for

j = 1, . . . , 6. For instance,

g5(y) = βT
y4y5

y4 + y5 + y6
− µT y5.

Then we find that for each fixed t∗, (2.10) is a compact form of (4.2) for m = 6, with

the initial value y∗ set as (4.3). To apply the results we have obtained in Chapter 2 for

the general system (2.10) it is necessary to prove that the conditions made in Section 2.3
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hold for the SIRJ model. We have seen that the benefit of showing the global Lipschitz

property (gLip) for g is twofold, since it guarantees the existence of the solution of (2.10)

on [0,∞), and trivially also yields that (Lip) holds for g. First we need a simple result

on the nonnegativity of solutions of (4.2), which is stated here without proof since it is

immediate from the equations. We remark, however, that existence of the solution follows

from the continuity of g, without assuming the Lipschitz property ([22]).

Proposition 4.1. For each fixed t∗, the solution of system (4.2) is nonnegative for non-

negative initial values, where it exists.

Proposition 4.2. Function g, as defined for the SIRJ model, satisfies the global Lipschitz

condition (gLip) on each bounded subset of R6
+. It follows that for each fixed t∗, there

exists a unique nonnegative solution of system (4.2) on [0,∞) for nonnegative initial data.

Proof. The function g : R6 � R6 possesses the global Lipschitz condition (gLip) if there

exists a Lipschitz constant Kg > 0 such that |g(z) − g(w)|6 ≤ Kg|z − w|6 holds for any

z, w ∈ R6
+, z 6= 0, w 6= 0. First, we show that there exists a (Kg)1 > 0 such that

|g1(z)− g1(w)| ≤ (Kg)1|z − w|6 (all norms will be denoted by | · | throughout the proof).

For z, w ∈ R6
+, z 6= 0, w 6= 0, it holds that

|g1(z)− g1(w)| =
∣∣∣∣−βT z1z2

z1 + z2 + z3
+ βT

w1w2

w1 + w2 + w3

∣∣∣∣
≤ βT

∣∣∣∣ w1w2

w1 + w2 + w3
− z1z2

z1 + z2 + z3

∣∣∣∣
= βT

∣∣∣∣ w1w2

w1 + w2 + w3
− w1z2

w1 + w2 + w3

+
w1z2

w1 + w2 + w3
− w1z2

w1 + z2 + w3
+

w1z2

w1 + z2 + w3
− w1z2

w1 + z2 + z3

+
w1z2

w1 + z2 + z3
− w1z2

z1 + z2 + z3
+

w1z2

z1 + z2 + z3
− z1z2

z1 + z2 + z3

∣∣∣∣
≤ βT

(∣∣∣∣ w1w2

w1 + w2 + w3
− w1z2

w1 + w2 + w3

∣∣∣∣
+

∣∣∣∣ w1z2

w1 + w2 + w3
− w1z2

w1 + z2 + w3

∣∣∣∣+

∣∣∣∣ w1z2

w1 + z2 + w3
− w1z2

w1 + z2 + z3

∣∣∣∣
+

∣∣∣∣ w1z2

w1 + z2 + z3
− w1z2

z1 + z2 + z3

∣∣∣∣+

∣∣∣∣ w1z2

z1 + z2 + z3
− z1z2

z1 + z2 + z3

∣∣∣∣
)
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= βT

(
|w2 − z2|

∣∣∣∣ w1

w1 + w2 + w3

∣∣∣∣+ |z2 − w2|
∣∣∣∣ w1z2

(w1 + w2 + w3)(w1 + z2 + w3)

∣∣∣∣
+ |z3 − w3|

∣∣∣∣ w1z2

(w1 + z2 + w3)(w1 + z2 + z3)

∣∣∣∣
+ |z1 − w1|

∣∣∣∣ w1z2

(w1 + z2 + z3)(z1 + z2 + z3)

∣∣∣∣+ |w1 − z1|
∣∣∣∣ z2

z1 + z2 + z3

∣∣∣∣
)

≤ βT (2|w2 − z2|+ |z3 − w3|+ 2|z1 − w1|)

≤ 5βT |w − z|,

where we used that the inequality a
a+b+c ≤ 1 holds for any (a, b, c) ∈ R3

+ \ {0}. We define

(Kg)1 = 5βT , and note that the same constant works for (Kg)4 in |g4(z) − g4(w)| ≤
(Kg)4|z − w| as

|g4(z)− g4(w)| =
∣∣∣∣−βT z5z6

z5 + z6 + z7
+ βT

w5w6

w5 + w6 + w7

∣∣∣∣
≤ (Kg)4|w − z|.

Furthermore, we derive

|g2(z)− g2(w)| =
∣∣∣∣βT z1z2

z1 + z2 + z3
− µT z2 − βT

w1w2

w1 + w2 + w3
+ µTw2

∣∣∣∣
≤ µT |w2 − z2|+ βT (2|w2 − z2|+ |z3 − w3|+ 2|w1 − z1|)

≤ (µT + 5βT )|w − z|,

where µT + 5βT is a suitable choice for (Kg)2, and it is clear that (Kg)5 = µT + 5βT

satisfies

|g5(z)− g5(w)| =
∣∣∣∣βT z4z5

z4 + z5 + z6
− µT z5 − βT

w4w5

w4 + w5 + w6
+ µTw5

∣∣∣∣
≤ (Kg)5|w − z|.

Last, by the computations

|f3(z)− f3(w)| = |µT z2 − µTw2|

≤ µT |w − z|,

|f6(z)− f6(w)| = |µT z4 − µTw4|

≤ µT |w − z|,

we arrive to (Kg)3 = µT and (Kg)6 = µT . To obtain the global Lipschitz constant for g,

we simply choose the squared sum of (Kg)1, . . . , (Kg)6. The proof is complete.

Now as the existence and uniqueness of the solutions of (4.2) has been proved on [0, τ ]

for each t∗, we get that the terms s1(τ ; t−τ), (1−p1)i1(τ ; t−τ), r1(τ ; t−τ), p1i1(τ ; t−τ),
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s2(τ ; t− τ), (1−p2)i2(τ ; t− τ), r2(τ ; t− τ) and p2i2(τ ; t− τ), representing inflow by means

of travel to the respective compartments in system (4.1), are well-defined. We proceed as

we let x(t) = (S1(t), I1(t), R1(t), J1(t), S2(t), I2(t), R2(t), J2(t))T for x : [0,∞) � R8 and

define f = (f1, f2, f3, f4, f5, f6, f7, f8)T , f : R8 � R8, as for each j ∈ {1, . . . , 8} fj(x) is the

right-hand side of the equation of xj in (4.1) without the inflow from travel; for instance,

f1(x) = −β1
x1x2

x1 + x2 + x3
− α1x1.

If we let 
h1(v) = α2v5, h4(v) = α1v1,

h2(v) = α2v6, h5(v) = α1v2,

h3(v) = α2v7, h6(v) = α1v3,

h = (h1, h2, h3, h4, h5, h6) : R8 � R6, and

k1(v) = v1, k5(v) = v4,

k2(v) = (1− p1)v2, k6(v) = (1− p2)v5,

k3(v) = v3, k7(v) = v6,

k4(v) = p1v2, k8(v) = p2v5,

k = (k1, k2, k3, k4, k5, k6, k7, k8) : R6 � R8, then our system (4.1) with initial conditions

(4.4) can be written in a closed form as (2.9) for n = 8. The feasible phase space is the

nonnegative cone C+ of C = C([−τ, 0],R8), the Banach space of continuous functions from

[−τ, 0] to R8 equipped with the supremum norm.

Our aim is to show that there exists a unique solution of system (4.1), moreover non-

negative initial data give rise to nonnegative solution. As (4.1) is equivalent to system

(2.9), we can use the framework established in Chapter 2, which yields that these results

can be obtained by checking certain conditions on f , g, h and k. Corollary 2.12 is applied

to get that solutions of system (4.1) preserve nonnegativity (where they exist), which also

ensures that it suffices to show the Lipschitz property for f only for nonnegative vectors.

Proposition 4.3. The solution of system (4.1) is nonnegative for nonnegative initial val-

ues, where it exists.

Proposition 4.4. Functions h and k, as defined for the SIRJ model, possess the global

Lipschitz property (gLip) on each bounded subset of R8
+ and R6

+, respectively. Function

f , as defined for the SIRJ model, satisfies the global Lipschitz condition (gLip) on each

bounded subset of R8
+.
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Proof. It immediately follows from the definitions that h and k possess the global Lips-

chitz condition (gLip), moreover minor modifications in the computations for the Lips-

chitz constant of g in the proof of Proposition 4.2 yield that the condition holds for f .

Indeed, the inequalities |fj(z) − fj(w)| ≤ (Kf )j |z − w|8, j = 1, . . . , 8, are satisfied if we

let (Kf )1 = 5β1 + α1, (Kf )2 = 5β1 + α1 + µ1, (Kf )3 = 2µ1 + α1, (Kf )4 = µ1 and

(Kf )5 = 5β2 +α2, (Kf )6 = 5β2 +α2 +µ2, (Kf )7 = 2µ2 +α2, (Kf )8 = µ2. Again, with Kf

defined as the squared sum of these constants we arrive to |f(z) − f(w)|8 ≤ Kf |z − w|8,
which proves the statement.

The necessary conditions for Corollary 2.10 are satisfied, thus using Remark 2.11 we

claim that there exists a unique solution of (4.1) on [−τ,∞) with initial conditions (4.4).

We recall that nonnegative initial data give rise to a nonnegative solution of (4.1), which

means that C+ is invariant.

Theorem 4.5. For nonnegative initial values system (4.1) has a unique nonnegative so-

lution, which exists on [−τ,∞).

4.2 Multiregional SIR model with general infection term

We consider an arbitrary r number of regions which are connected by transportation, and

present an SIR-based model which describes the spread of infection in and between the

regions. We will learn that the compact form of the corresponding system of functional

differential equations is similar, though not identical, to systems (2.9) and (2.10) intro-

duced in Chapter 2. Henceforth, we refer to the general framework where applicable, and

prove some analogous results in this chapter if the setting considerably differs from the one

established in Chapter 2.

We formulate a dynamical model describing the spread of an infectious disease in r

regions and also during travel from one region to another. We divide the entire populations

of the r regions into the disjoint classes Sj , Ij , Rj , j ∈ {1, . . . , r}, where Sj(t) Ij(t), Rj(t)
denote the number of susceptible, infected and recovered individuals, respectively, at time

t in region j, j ∈ {1, . . . , r}. For the total population in region j at time t, we use the

notation

Nj(t) = Sj(t) + Ij(t) +Rj(t).

The incidence in region j is denoted by Λj
(
Sj(t), Ij(t), Rj(t)

)
, model parameter µj repre-

sents the recovery rate of infected individuals in region j. We denote the travel rate from

region j to region k by αj,k for j, k ∈ {1, . . . , r}, j 6= k, and we let αj,j = 0.

Let sk,j , ik,j , rk,j denote susceptible, infected and recovered travelers, respectively, where
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Figure 4.2: Color-coded flow chart of disease transmission and travel dynamics of the

multiregional SIR model for r = 4 regions. The disease transmission in the regions is shown

in four blocks, arrows colored with the same colors indicate how the disease progresses.

Green dashed-dotted arrows represent traveling. Green solid arrows show the dynamics

of the pandemic during the course of the travel. The description of the variables can be

found in Table 4.2.

lower index-pair {k, j}, j, k ∈ {1, . . . , r}, j 6= k, indicates that individuals are traveling

from region k to region j. Let τk,j > 0 denote the time required to complete the travel

from region k to region j, which is assumed to be fixed. To describe the disease dynamics

during travel, for each t∗ we define sk,j(θ; t∗), ik,j(θ; t∗), rk,j(θ; t∗), j, k ∈ {1, . . . , r}, j 6= k,

as the density of individuals with respect to θ who started travel at time t∗ and belong

to class sk,j , ik,j , rk,j , respectively, where θ ∈ [0, τk,j ] denotes the time elapsed since the

beginning of the travel. Then sk,j(τk,j ; t− τk,j), ik,j(τk,j ; t− τk,j), rk,j(τk,j ; t− τk,j) express

the inflow of individuals arriving from region k to compartments Sj , Ij , Rj at time t. Let

nk,j(θ; t∗) = sk,j(θ; t∗) + ik,j(θ; t∗) + rk,j(θ; t∗)

denote the total density of individuals with respect to θ during the travel from region k

to j, where j, k ∈ {1, . . . , r} and j 6= k. The total density is constant during travel, i.e.,

nk,j(θ; t∗) = nk,j(0, t∗) for all θ ∈ [0, τk,j ]. During the course of travel from region k to j,

λTk,j (sk,j(θ; t∗), ik,j(θ; t∗), rk,j(θ; t∗)) describes the incidence, and we let µTk,j denote the
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Variables and key model parameters

Sj , Ij , Rj , Nj Susceptible, infected, recovered and all individuals in region j

sk,j , ik,j , rk,j , nk,j Density of susceptible, infected, recovered and all individuals

during the travel from region k to region j

Λj Incidence in region j

λTk,j Incidence during travel from region k to region j

µj Recovery rate of infected individuals in region j

µTk,j Recovery rate during travel from region k to region j

αj,k Travel rate from region j to region k

τk,j Duration of travel from region k to region j

Table 4.2: Variables and parameters of the multiregional SIR model (j, k ∈ {1, . . . , r},
j 6= k). In the table, “density” means the density with respect to the time elapsed since

the start of travel.

recovery rate.

For convenience, we define functions sj,j , ij,j , rj,j : R+×R+ � R as sj,j(θ; t∗) = ij,j(θ; t∗) =

rj,j(θ; t∗) ≡ 0, and constants τj,j = 0 for each j ∈ {1, . . . , r}. All variables and model

parameters are listed in Table 4.2, while Figure 4.2 depicts the flow chart of the model.

Based on the assumptions formulated above, we obtain the following system of differential

equations for the disease transmission in region j, j ∈ {1, . . . , r}:

Ṡj(t) = −Λj(·)−

(
r∑

k=1

αj,k

)
Sj(t) +

r∑
k=1

sk,j(τk,j ; t− τk,j),

İj(t) = Λj(·)−

(
r∑

k=1

αj,k

)
Ij(t)− µjIj(t) +

r∑
k=1

ik,j(τk,j ; t− τk,j),

Ṙj(t) = µjIj(t)−

(
r∑

k=1

αj,k

)
Rj(t) +

r∑
k=1

rk,j(τk,j ; t− τk,j).

(Lj)

For each j, k ∈ {1, . . . , n}, j 6= k, and for each t∗, the following system (Tk,j) describes the

evolution of the densities during the travel from region k to j which started at time t∗:

d

dθ
sk,j(θ; t∗) = −λTk,j(·),

d

dθ
ik,j(θ; t∗) = λTk,j(·)− µTk,jik,j(θ; t∗),

d

dθ
rk,j(θ; t∗) = µTk,jik,j(θ; t∗).

(Tk,j)

For sake of simplicity, in systems (Lj) and (Tk,j) we use the notations Λj(·) and λTk,j(·)
for the incidences, where these functions are meant to be evaluated at the respective

points. For θ = 0, the densities sk,j(θ; t∗), ik,j(θ; t∗), rk,j(θ; t∗) are determined by the rates
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individuals start their travels from region k to region j at time t∗. Hence, the initial values

for system (Tk,j) at θ = 0 are given by
sk,j(0; t∗) = αk,jSk(t∗),

ik,j(0; t∗) = αk,jIk(t∗),

rk,j(0; t∗) = αk,jRk(t∗).

(IV Tk,j)

Now we turn our attention to the terms sk,j(τk,j ; t−τk,j), ik,j(τk,j ; t−τk,j), rk,j(τk,j ; t−τk,j),
j, k ∈ {1, . . . , r}, j 6= k, in system (Lj), which give the inflow of individuals arriving to

classes Sj , Ij , Rj , respectively, at time t upon completing a trip from region k. At time t,

these terms are determined by the solution of system (Tk,j) at θ = τk,j with initial values

(IV Tk,j) for t∗ = t− τk,j , since individuals who left region k with rate αk,j at time t− τk,j
will enter region j at time t.

Next we specify initial values for system (Lj) at t = 0. Since for k ∈ {1, . . . , r}, k 6= j,

travel from region k to region j takes τk,j units of time to complete, arrivals to region j at

time t are determined by the state of the classes of region k at t− τk,j , via the solution of

system (Tk,j) and initial values (IV Tk,j). Thus, we set up initial values as follows:
Sj(u) = ϕS,j(u),

Ij(u) = ϕI,j(u),

Rj(u) = ϕR,j(u),

(IV Lj)

where u ∈ [−τ, 0] for τ := maxj,k∈{1,...,r} τk,j , moreover ϕS,j , ϕI,j and ϕR,j are continuous

functions for each j ∈ {1, . . . , r}.

4.2.1 The compact form of the model

For each j, k ∈ {1, . . . , r}, j 6= k and t∗ ≥ 0, we define y(θ) = yt∗k,j(θ) = (sk,j(θ; t∗),

ik,j(θ; t∗), rk,j(θ; t∗))
T and g = gk,j = (gS , gI , gR)T , where y : [0, τk,j ] � R3, g : R3 � R3

and
gS(y) = −λTk,j(y1, y2, y3),

gI(y) = λTk,j(y1, y2, y3)− µTk,jy2,

gR(y) = µTk,jy2.

Then for each j, k and t∗, system

y′(θ) = g(y(θ)),

y(0) = y0

(4.5)

is a compact form of system (Tk,j) with initial values (IV Tk,j) for y0 = (αk,jSk(t∗),

αk,jIk(t∗), αk,jRk(t∗))
T . The following theorem concerns with fundamental properties of
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the solution y(θ; 0, y0) of system (4.5). The statement is based on the Lipschitz condition

(Lip) which was defined in Chapter 2.

Theorem 4.6. Assume that λTk,j possesses the Lipschitz condition (Lip) for any j, k ∈
{1, . . . , r}, j 6= k, on each bounded subset of R3. Moreover, suppose that λTk,j(z1, z2, z3)

≥ 0 and λTk,j(0, z2, z3) = 0 hold for z1, z2, z3 ≥ 0. Then there exists a unique solution of

system (4.5) for θ ∈ [0,∞), which continuously depends on the initial data. Furthermore,

the inequality

0 ≤ y(θ; 0, y0) ≤
√

3 |y0|

holds componentwise, which means that solutions are bounded and remain nonnegative for

nonnegative initial data.

Proof. By the definition of g we get that g satisfies (Lip). The Lipschitz condition guar-

antees the existence of a unique solution, which continuously depends on the initial data

([22]). In the model setup we have seen that nk,j(θ; t∗) is constant for all θ in the maximal

interval of existence, moreover from the nonnegativity condition on λTk,j it follows that

nonnegative initial data give rise to nonnegative solution. Hence we obtain

0 ≤ nk,j(0; t∗) = nk,j(θ; t∗),

0 ≤ sk,j(0; t∗) + ik,j(0; t∗) + rk,j(0; t∗) = sk,j(θ; t∗) + ik,j(θ; t∗) + rk,j(θ; t∗)

= αk,j(Sk(t∗) + Ik(t∗) +Rk(t∗)),

0 ≤ sk,j(θ; t∗), ik,j(θ; t∗), rk,j(θ; t∗) ≤ αk,j(Sk(t∗) + Ik(t∗) +Rk(t∗)),

(4.6)

where we used (IV Tk,j). With the definitions of y and y0, (4.6) implies that the inequality

0 ≤
(
y(θ; 0, y0)

)
1
,
(
y(θ; 0, y0)

)
2
,
(
y(θ; 0, y0)

)
3
≤ (y0)1 + (y0)2 + (y0)3

≤
√

3

√
((y0)1)2 + ((y0)2)2 + ((y0)3)2

holds on the maximal interval of existence, where we used the arithmetic-quadratic mean

inequality. We conclude that the solution is bounded and thus exists for θ ∈ [0,∞).

For every j, k ∈ {1, . . . , r}, j 6= k, let hk,j : R3r � R3 be defined by hk,j = (hS,k,j , hI,k,j ,

hR,k,j)
T and

hS,k,j(v) = αk,jv3k−2,

hI,k,j(v) = αk,jv3k−1,

hR,k,j(v) = αk,jv3k.

The feasible phase space is the nonnegative cone C+ = C([−τ, 0],R3r
+ ) of the Banach

space of continuous functions from [−τ, 0] to R3r with the supremum norm. For φ ∈ C+,
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we use the notation yφ(−τk,j)(θ) = y(θ; 0, hk,j(φ(−τk,j))) ∈ R3. Furthermore, we define

Wk : C+ � R3r as 
(Wk(φ))3j−2

(Wk(φ))3j−1

(Wk(φ))3j

 =

yφ(−τk,j)(τk,j) if j 6= k,

0 if j = k,

j ∈ {1, . . . , r}. Let x(t) = (S1(t), I1(t), R1(t), . . . , Sr(t), Ir(t), Rr(t))
T for t ≥ 0, and

f = (fS,1, fI,1, fR,1, . . . , fS,r, fI,r, fR,r)
T with

fS,j(x) = −Λj(x3j−2, x3j−1, x3j)−

(
r∑

k=1

αj,k

)
x3j−2,

fI,j(x) = Λj(x3j−2, x3j−1, x3j)− µjx3j−1 −

(
r∑

k=1

αj,k

)
x3j−1,

fR,j(x) = µjx3j−1 −

(
r∑

k=1

αj,k

)
x3j

for j ∈ {1, . . . , r}. Clearly the union of systems (Lj) with initial conditions (IV Lj),

j ∈ {1, . . . , r}, can be written in a closed form as

x′(t) = f(x(t)) +

r∑
k=1

Wk(xt) =: F(xt),

x0 = Φ,

(4.7)

where x : R+ � R3r, f : R3r � R3r, F : C+ � R3r, and Φ ∈ C+ is defined as Φ :=

(ϕS,1, ϕI,1, ϕR,1, . . . , ϕS,n, ϕI,n, ϕR,n)T .

We note that the compact form of the multiregional model shows similarities with the

general systems (2.9) and (2.10) defined in Section 2.3, Chapter 2. Thus, it is reasonable

to expect that results on the existence, uniqueness and nonnegativity of the solution of this

model can be derived using analogous methods as in Chapter 2. These issues are detailed

in the next section.

4.2.2 Basic properties of the model

This section is devoted to the proof of the general existence and uniqueness result of system

(4.7), moreover we will show that, under reasonable conditions on the incidence functions,

solutions are nonnegative. First we prove that if we assume that Λj and λTk,j possess the

Lipschitz property (Lip), then F also satisfies the Lipschitz condition (LipC) which has

been defined in Chapter 2 for autonomous systems.
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Lemma 4.7. Suppose that for all j, k ∈ {1, . . . , r}, j 6= k, Λj and λTk,j possess the Lipschitz

property, moreover λTk,j(z1, z2, z3) ≥ 0 and λTk,j(0, z2, z3) = 0 hold for z1, z2, z3 ≥ 0. Then

F satisfies the Lipschitz condition on each bounded subset of C+.

Proof. We claim that for every M > 0 there exists a constant K = K(M) such that the

inequality |F(φ)−F(ψ)| ≤ K||φ− ψ|| holds for every φ, ψ ∈ C+ with ||φ||, ||ψ|| ≤M .

Fix indices j, k ∈ {1, . . . , r}, j 6= k. For ||ψ|| ≤ M it holds component-wise that

0 ≤ ψ(−τk,j) ≤ M , so due to the continuity of hk,j , there exists a constant Lhk,j(M)

such that 0 ≤ hk,j(ψ(−τk,j)) ≤ Lhk,j is satisfied component-wise. For y0 = hk,j(ψ(−τk,j))
Theorem 4.6 implies that there exists a Jk,j = Jk,j(L

h
k,j) = Jk,j(M) such that the inequal-

ity |yψ(−τk,j)(θ)| ≤ Jk,j holds for θ ∈ [0, τ ] (for instance, one can let Jk,j =
√

3Lhk,j).

The Lipschitz property of hk,j follows from its definition. We assumed that λTk,j is

Lipschitz continuous, this implies the Lipschitz continuity of g. Let Kh
k,j = Kh

k,j(M) be

the Lipschitz constant of hk,j on the set {v ∈ R3r : |v| ≤ M}, we denote the Lipschitz

constant of g = gk,j on the set {v ∈ R3 : |v| ≤ Jk,j} by Kg
k,j = Kg

k,j(J) = Kg
k,j(M). For

any ||φ||, ||ψ|| ≤ M , it holds that |φ(−τk,j)|, |ψ(−τk,j)| ≤ M . Since solutions of (4.5) can

be expressed as y(θ; 0, y0) = y0 +
∫ θ

0 g(y(u; 0, y0)) du, we have

∣∣∣yφ(−τk,j)(θ)− yψ(−τk,j)(θ)
∣∣∣ =

∣∣∣∣hk,j(φ(−τk,j)) +

∫ θ

0
g(yφ(−τk,j)(u)) du

−
(
hk,j(ψ(−τk,j)) +

∫ θ

0
g(yψ(−τk,j)(u)) du

)∣∣∣∣
≤ |hk,j(φ(−τk,j))− hk,j(ψ(−τk,j))|

+

∫ θ

0

∣∣∣g(yφ(−τk,j)(u))− g(yψ(−τk,j)(u))
∣∣∣ du

≤ Kh
k,j ||φ− ψ||+

∫ θ

0
Kg
k,j

∣∣∣yφ(−τk,j)(u)− yψ(−τk,j)(u)
∣∣∣ du

for θ ∈ [0, τ ]. By the definition

Γ(θ) =
∣∣∣yφ(−τk,j)(θ)− yψ(−τk,j)(θ)

∣∣∣
for θ ∈ [0, τ ], it follows that

Γ(θ) ≤ Kh
k,j ||φ− ψ||+Kg

k,j

∫ θ

0
Γ(u) du,

and using Gronwall’s inequality we derive

Γ(θ) ≤ Kh
k,j ||φ− ψ||e

Kg
k,jθ. (4.8)
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Applying the definition of Wk, we arrive to the inequality∣∣∣∣∣∣∣∣


(Wk(φ))3j−2

(Wk(φ))3j−1

(Wk(φ))3j

−


(Wk(ψ))3j−2

(Wk(ψ))3j−1

(Wk(ψ))3j


∣∣∣∣∣∣∣∣ =

∣∣∣yφ(−τk,j)(τk,j)− yψ(−τk,j)(τk,j)
∣∣∣

≤ Kh
k,je

Kg
k,jτk,j ||φ− ψ||,

where we used (4.8) at θ = τk,j . It follows that Wk satisfies the Lipschitz condition for any

k ∈ {1, . . . , r}, and KWk = KWk(M) =
√∑r

j=1
j 6=k

(
Kh
k,je

Kg
k,jτk,j

)2 is a suitable choice for the

Lipschitz constant.

Finally, the assumption that Λj is Lipschitz continuous for any j ∈ {1, . . . , r} implies

the Lipschitz continuity of f , so let Kf = Kf (M) be the Lipschitz constant of f on the

set {v ∈ R3r : |v| ≤M}. Then for any ||φ||, ||ψ|| ≤M it holds that |φ(0)|, |ψ(0)|, |φ(−τ)|,
|ψ(−τ)| ≤M , thus we arrive to

|F(φ)−F(ψ)| ≤ |f(φ(0))− f(ψ(0))|+
r∑

k=1

|Wk(φ)−Wk(ψ)|

≤ Kf ||φ− ψ||+
r∑

k=1

KWk ||φ− ψ||.

Hence Kf +
∑r

k=1

√∑r
j=1
j 6=k

(
Kh
k,je

Kg
k,jτk,j

)2 is a suitable choise for K, the Lipschitz constant

of F on the set {ψ ∈ C+ : ||ψ|| ≤M}.

Proposition 4.8. Assume that for any j, k ∈ {1, . . . , r}, j 6= k, Λj(z1, z2, z3) ≥ 0,

Λj(0, z2, z3) = 0, λTk,j(z1, z2, z3) ≥ 0 and λTk,j(0, z2, z3) = 0 hold for z1, z2, z3 ≥ 0. Then for

any Φ ∈ C+, the solution of system (4.7) is nonnegative, where it exists.

Proof. As proved in Theorem 4.6, solutions of system (4.5) are nonnegative. For each

k ∈ {1, . . . , r}, we define W k : R3r × · · · × R3r � R3r as
(W k(w1, . . . , wr))3j−2

(W k(w1, . . . , wr))3j−1

(W k(w1, . . . , wr))3j

 =

y(τk,j ; 0, hk,j(wj)) if j 6= k,

0 if j = k,

where j ∈ {1, . . . , r}, w1, . . . , wr ∈ R3r. Consider the following differential equation with

multiple discrete delays

x′(t) = f(x(t)) +

r∑
k=1

W k(x(t− τk,1), . . . , x(t− τk,r)),

x0 = Φ.

(4.9)
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It is not hard to see that (4.9) is equivalent to system (4.7), and we claim that the solution

of system (4.9) preserves nonnegativity. Similarly as in Chapter 2 we use Theorem 3.4 in

[38] which extends naturally to the case of multiple discrete delays, its conditions are clearly

satisfied: W k ≥ 0 holds by the nonnegativity of y(τk,j ; 0, hk,j(wj)), j, k ∈ {1, . . . , r}, j 6= k,

and the assumption on the Λj-s guarantees that fl(x) ≥ 0 is satisfied whenever x ∈ R3r
+ ,

xl = 0, l ∈ {1, . . . , 3r}. We conclude that for non-negative initial data the solution of

system (4.7) remains nonnegative, where it exists.

The assumptions of Lemma 4.7 and Proposition 4.8 on the incidences Λj(Sj(t), Ij(t),

Rj(t)) and λTk,j(sk,j(θ; t∗), ik,j(θ; t∗), rk,j(θ; t∗)) can be fulfilled by various choices on the

type of disease transmission. For instance, let βj > 0 be the transmission rate in region

j and let βTk,j > 0 denote the transmission rate during the travel from region k to j,

j, k ∈ {1, . . . , r}, j 6= k. If we define

Λj(z) = −βj
z1

z1 + z2 + z3
z2,

λTk,j(z) = −βTk,j
z1

z1 + z2 + z3
z2,

for z ∈ R3 \ {0} then Λj and λTk,j obtain the forms

Λj(Sj , Ij , Rj) = −βj
Sj
Nj

Ij ,

λTk,j(sk,j , ik,j , rk,j) = −βTk,j
sk,j
nk,j

ik,j ,
(4.10)

which is called standard incidence.

Theorem 4.9. With the incidences Λj and λTk,j defined in (4.10), there exists a unique

solution of system (4.7).

Proof. Similarly as in Chapter 2, we refer to Theorem 3.7 from [38] which states that the

autonomous functional differential equation of the general form x′(t) = F(xt) has a unique

solution if the condition (LipC), defined in Chapter 2, is satisfied for F . We showed in

Lemma 4.7 that the Lipschitz condition for F follows from the Lipschitz property of the

incidences and the nonnegativity condition on λTk,j . The latter clearly holds with (4.10),

hence it remains to prove that the incidences possess the Lipschitz property (Lip). As one

may observe, the definition of the Λj-s and λTk,j-s only differ in constant multipliers, hence

it is sufficient to prove the Lipschitz condition only for one of them, i.e., for Λ1. Moreover,

we prove this property only on the nonnegative cone R3
+, which is invariant under systems
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(4.5) and (4.7) (see Theorem 4.6, Proposition 4.8). For z, w ∈ R3
+, z 6= 0, w 6= 0, by

|Λ1(z)− Λ1(w)| =
∣∣∣∣−β1

z1z2

z1 + z2 + z3
+ β1

w1w2

w1 + w2 + w3

∣∣∣∣
≤ β1

(∣∣∣∣ w1w2

w1 + w2 + w3
− w1z2

w1 + w2 + w3

∣∣∣∣
+

∣∣∣∣ w1z2

w1 + w2 + w3
− w1z2

w1 + z2 + w3

∣∣∣∣+

∣∣∣∣ w1z2

w1 + z2 + w3
− w1z2

w1 + z2 + z3

∣∣∣∣
+

∣∣∣∣ w1z2

w1 + z2 + z3
− w1z2

z1 + z2 + z3

∣∣∣∣+

∣∣∣∣ w1z2

z1 + z2 + z3
− z1z2

z1 + z2 + z3

∣∣∣∣
)

= β1

(
|w2 − z2|

w1

w1 + w2 + w3
+ |z2 − w2|

w1z2

(w1 + w2 + w3)(w1 + z2 + w3)

+ |z3 − w3|
w1z2

(w1 + z2 + w3)(w1 + z2 + z3)

+ |z1 − w1|
w1z2

(w1 + z2 + z3)(z1 + z2 + z3)
+ |w1 − z1|

z2

z1 + z2 + z3

)
≤ β1 (2|w2 − z2|+ |z3 − w3|+ 2|z1 − w1|)

≤ 5β1|w − z|3

we obtain the Lipschitz constant K = 5β1, where we used that a
a+b+c ≤ 1 holds for any

a, b, c ≥ 0, (a, b, c) 6= (0, 0, 0).

Remark 4.10. It follows from the proof of Theorem 4.9 that the incidences Λj and λTk,j
defined in (4.10) also satisfy the global Lipschitz property, meaning that there is a Lipschitz

constant K which is independent of M . In this case, the solution of system (4.7) exists on

[0,∞).

Another natural choice for the incidences can be the following: for z = (z1, z2, z3) ∈ R3

and for j, k ∈ {1, . . . , r}, j 6= k, let

Λj(z) = −βjz1z2,

λTk,j(z) = −βTk,jz1z2,

which leads to the mass action-type disease transmission, therefore Λj and λTk,j have the

forms
Λj(Sj , Ij , Rj) = −βjSjIj ,

λTk,j(sk,j , ik,j , rk,j) = −βTk,jsk,jik,j .
(4.11)

Theorem 4.11. With incidences Λj and λTk,j defined in (4.11), there exists a unique

solution of system (4.7).
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Proof. Similarly as in Theorem 4.9, it suffices to show that Λj and λTk,j satisfy the Lipschitz

property, and we detail the proof only for Λ1 and consider the nonnegative subspace R3
+.

For any M > 0 and for any z, w ∈ R3
+ such that |z|3, |w|3 ≤M , we obtain

|Λ1(z)− Λ1(w)| = | − β1z1z2 + β1w1w2|

≤ β1|z1z2 − w1w2|

≤ β1|z1z2 − z1w2 + z1w2 − w1w2|

≤ β1(|z1z2 − z1w2|+ |z1w2 − w1w2|)

≤ β1(z1|z2 − w2|+ w2|z1 − w1|)

≤ 2Mβ1|w − z|3,

so we can choose K(M) = 2Mβ1.

Remark 4.12. Although the global Lipschitz property does not hold for Λj and λTk,j

defined in (4.11), the boundedness of the solution of (4.7) implies its existence on [0,∞).

Indeed, Proposition 4.8 yields nonnegativity, and it follows from the model equations that

solutions are bounded above by the total population of r regions N1(t)+ · · ·+Nr(t), which

is constant for all t ≥ 0 since demographic effects are not incorporated into the model.



Chapter 5

Backward bifurcation in SIVS

model with immigration of

non-infectives

This chapter investigates how travel-related inflow of individuals (e.g., immigration) af-

fects the bifurcation dynamics of an epidemic model in a single population. A simple

SIVS (susceptible–infected–vaccinated–susceptible) disease transmission model with im-

migration of susceptible and vaccinated individuals is considered, which may undergo two

different types of bifurcations, i.e., forward and backward transcritical bifurcations, when

the reproduction number equals unity. The difference between the two scenarios lies in the

number of positive (endemic) steady states of the model: in contrary to the case of forward

bifurcation when positive equilibria can only exist for R0 > 1, there are two endemic states

for some values of R0 less than one when the system exhibits backward bifurcation. After

giving an explicit condition for the existence of backward bifurcation and multiple endemic

equilibria, we show global stability results for the model and examine in detail how the

structure of the bifurcation diagram depends on the immigration.

5.1 Introduction

The basic reproduction number R0 is a central quantity in epidemiology, as it determines

the average number of secondary infections caused by a typical infected individual intro-

duced into a wholly susceptible population. In epidemic models describing the spread of

infectious diseases, the reproduction number works as a threshold quantity for the stability

of the disease free equilibrium. The usual situation is that for R0 < 1 the DFE is the

only equilibrium and it is asymptotically stable, but it loses its stability as R0 increases

through one, where a stable endemic equilibrium emerges, which depends continuously

84
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Figure 5.1: Schematic bifurcation diagrams.

on R0. Such transition of stability between the disease free equilibrium and the endemic

equilibrium is called forward bifurcation. However, it is possible to have a very different

situation at R0 = 1, as there might exist positive equilibria also for values of R0 less than

one. In this case we say that the model undergoes a backward bifurcation at R0 = 1,

when for values of R0 in an interval to the left of one, multiple positive equilibria coexist,

typically one unstable and one stable. The behavior in the change of stability is of par-

ticular interest from the perspective of controlling the epidemic: considering R0 > 1, in

order to eradicate the disease it is sufficient to decrease R0 to one if there is a forward

bifurcation at R0 = 1, however it is necessary to bring R0 well below one to eliminate the

infection in case of a backward bifurcation. This also implies that the qualitative behavior

of a model with backward bifurcation is more complicated than that of a model which

undergoes forward bifurcation at R0 = 1. In the latter case, the infection usually does not

persist if R0 < 1, although with backward bifurcation the presence of a stable endemic

equilibrium for R0 < 1 implies that, even for values of R0 less than one, the epidemic can

sustain itself if enough infected individuals are present. The phenomena of forward and

backward bifurcations are illustrated by the schematic bifurcation diagrams of Figure 5.1.

Backward bifurcation has been observed in several studies in the recent literature (for

an overview see, for instance, [18] and the references therein). The well-known works

[15, 19, 20] consider multi-group epidemic models with asymmetry between groups or

multiple interaction mechanisms. Some simple epidemic models of disease transmission in

a single population with vaccination of susceptible individuals are presented and analyzed

in [7, 8, 26, 27]. A basic model can be described by the following system of ordinary
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differential equations:

Ṡ(t) = Λ(N(t))− β(N(t))S(t)I(t)− (µ+ φ)S(t) + γI(t) + θV (t),

İ(t) = β(N(t))S(t)I(t) + σβ(N(t))V (t)I(t)− (µ+ γ)I(t),

V̇ (t) = φS(t)− σβ(N(t))V (t)I(t)− (µ+ θ)V (t),

(5.1)

where S(t), I(t), V (t) and N(t) denote the number of susceptible, infected, vaccinated in-

dividuals and the total population, respectively, at time t. Λ represents the birth function

into the susceptible class and µ is the natural death rate in each class. Disease transmis-

sion is modeled by the infection term β(N)SI, φ and γ stand for the vaccination rate of

susceptible individuals and the recovery rate of infected individuals. It is assumed that

vaccination loses effect at rate θ, moreover we include the parameter σ, 0 ≤ σ ≤ 1, to

incorporate that vaccination may reduce but not completely eliminate susceptibility to

infection. With certain conditions on the birth function Λ, system (5.1) can be reduced to

a two-dimensional system, of which a complete qualitative analysis including a condition

for the existence of backward bifurcation has been derived in [7].

We can extend model (5.1) by considering a population that resides in two regions

which are connected by transportation. Assuming it takes τ > 0 units of time to complete

the travel between the regions, a system of delay differential equations can be formulated

as

Ṡ1(t) = Λ1(N1(t))− β1(N1(t))S1(t)I1(t)− (µ1 + φ1)S1(t) + γ1I1(t) + θ1V1(t)

− αS1S1(t) + αS2S2(t− τ),

İ1(t) = β1(N1(t))S1(t)I1(t) + σ1β1(N1(t))V1(t)I1(t)− (µ1 + γ1)I1(t)

− αI1I1(t) + αI2I2(t− τ),

V̇1(t) = φ1S1(t)− σ1β1(N1(t))V1(t)I1(t)− (µ1 + θ1)V1(t)

− αV1 V1(t) + αV2 V2(t− τ),

(5.2a)

Ṡ2(t) = Λ2(N2(t))− β2(N2(t))S2(t)I2(t)− (µ2 + φ2)S2(t) + γ2I2(t) + θ2V2(t)

− αS2S2(t) + αS1S1(t− τ),

İ2(t) = β2(N2(t))S2(t)I2(t) + σ2β2(N2(t))V2(t)I2(t)− (µ2 + γ2)I2(t)

− αI2I2(t) + αI1I1(t− τ),

V̇2(t) = φ2S2(t)− σ2β2(N2(t))V2(t)I2(t)− (µ2 + θ2)V2(t)

− αV2 V2(t) + αV1 V1(t− τ)

(5.2b)

to describe the spread of an infectious disease in the two subpopulations with vaccination.

Lower indices 1 and 2 are introduced to label model compartments and parameters in region

1 and 2, respectively. We assume that susceptible, infected and recovered individuals of
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region j travel by rates αSj , α
I
j and αRj from region j to region k, where j, k ∈ {1, 2} and

j 6= k. In the special case when transportation is one-directional (for instance, there is

no connection from region 1 to region 2 and αS1 = 0, αI1 = 0 and αV1 = 0), the equations

of S2, I2 and R2 are independent of the other three equations in system (5.2a)–(5.2b). If

the subsystem (5.2b) attains a unique globally attracting equilibrium with limt�∞ S2(t) =

S∞2 , limt�∞ I2(t) = I∞2 and limt�∞ V2(t) = V∞2 , then it follows that system (5.2a) is

asymptotically autonomous with the limiting system

Ṡ1(t) = Λ1(N1(t))− β1(N1(t))S1(t)I1(t)− (µ1 + φ1)S1(t)

+ γ1I1(t) + θ1V1(t) + αS2S
∞
2 ,

İ1(t) = β1(N1(t))S1(t)I1(t) + σ1β1(N1(t))V1(t)I1(t)− (µ1 + γ1)I1(t) + αI2I
∞
2 ,

V̇1(t) = φ1S1(t)− σ1β1(N1(t))V1(t)I1(t)− (µ1 + θ1)V1(t) + αV2 V
∞

2 .

(5.3)

The aim of this chapter is to investigate system (5.3) with the additional assumption that

αI2 = 0. In this case, system (5.3) allows us to describe and analyze the spread of an

epidemic in a single population, where demographic effects – such as immigration of non-

infected individuals – are incorporated into the model. The assumption that there is no

inflow of infected individuals into the population is realistic if one considers a pandemic

situation when entry screening is applied as control policy upon the arrival of passengers

to a country. On the other hand, individuals who are showing symptoms like fever or are

in pain might decide not to travel anyway. The model we study generalizes the above

presented vaccination model (5.1) by incorporating the possibility of immigration, and we

investigate how immigration changes the bifurcation behavior.

5.2 Model description

A general vaccination model with immigration of non-infected individuals can be described

by the system

Ṡ(t) = Λ(N(t))− β(N(t))S(t)I(t)− (µ+ φ)S(t) + γI(t) + θV (t) + η,

İ(t) = β(N(t))S(t)I(t) + σβ(N(t))V (t)I(t)− (µ+ γ)I(t),

V̇ (t) = φS(t)− σβ(N(t))V (t)I(t)− (µ+ θ)V (t) + ω,

(5.4)

where we assume that immigration of susceptible and vaccinated individuals occurs with

constant rates η and ω, respectively. The other parameters of the model have been de-

scribed in Section 5.1 and are tabulated in Table 5.1, along with the model variables. For

the total population N(t) we obtain

Ṅ(t) = Λ(N(t))− µN(t) + η + ω. (5.5)

The proof of the following proposition is obvious and thus omitted.
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Variables and key model parameters

S, I, V , N Susceptible, infected, vaccinated and all individuals

Λ Birth function

µ Natural death rate

β Transmission rate

γ Recovery rate of infected individuals

φ Vaccination rate of susceptible individuals

θ Waining rate of vaccine

σ Reduction of susceptibility of vaccinated individuals

η, ω Immigration rate of susceptible and vaccinated individuals

Table 5.1: Variables and parameters of the SIVS model with immigration.

Proposition 5.1. If for the birth function Λ it holds that Λ(0) = 0, Λ′(0) > µ and there

exists an x∗ > 0 such that Λ′(x∗) < µ, moreover Λ′(x) > 0 and Λ′′(x) < 0 for all x > 0,

then for any η, ω ≥ 0 there exists a unique positive solution of Λ(x) = µx− η − ω.

The conditions of the last proposition on the birth function can be satisfied for various

definitions of Λ. An example of the birth function found in the literature is Λ(x) = x·b(x) =

x · 1
c+dx with c, d > 0 and c < 1

µ , where the function b(x) is known as the Beverton–Holt

function.

We define the population carrying capacity K = K(Λ, µ, η, ω) as the unique solution of

Λ(x) = µx− η − ω. Note that from Λ(K) = µK − η − ω it follows that µK − η − ω > 0.

We can rewrite equations (5.4)2 and (5.4)3 in terms of N(t), I(t) and V (t) using S(t) =

N(t) − I(t) − V (t) and consider this system as a system of non-autonomous differential

equations with non-autonomous term N(t), which is governed by system (5.5). Then, by

limt�∞N(t) = K we find that system (5.4) is asymptotically autonomous with the limiting

system
İ(t) = β(K − I(t)− (1− σ)V (t))I(t)− (µ+ γ)I(t),

V̇ (t) = φ(K − I(t))− σβV (t)I(t)− (µ+ θ + φ)V (t) + ω,
(5.6)

where β = β(K). In what follows we focus on the mathematical analysis of system (5.6),

then we use the theory of asymptotically autonomous systems [31, 43, 44] to obtain infor-

mation on the long-term behavior of solutions of (5.4).

5.3 Basic properties of the model

The existence and uniqueness of solutions of system (5.6) follows from fundamental results

for ODEs. Since K was defined as the carrying capacity of the population, it is biologically
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meaningful to assume that for the initial conditions of system (5.6) it is satisfied that

0 ≤ I(0), V (0), I(0) + V (0) ≤ K.

Proposition 5.2. If for initial values I(0) and V (0) it holds that 0 ≤ I(0), V (0), I(0) +

V (0) ≤ K, then 0 ≤ I(t), V (t), I(t) + V (t) ≤ K is satisfied for all t > 0.

Proof. If I(t) = 0 then İ(t) = 0, which yields that for nonnegative initial conditions I

never becomes negative. If V (t) = 0 when 0 ≤ I(t) ≤ K, then V̇ (t) ≥ ω ≥ 0, thus

solutions never cross the line V = 0 from the inside of the region R : 0 ≤ I, V, I + V ≤ K.

If I(t) + V (t) = K when I(t), V (t) ≥ 0, then summing (5.6)1 and (5.6)2 gives

İ(t) + V̇ (t) = −µK − γI(t)− θV (t) + ω,

which is negative since ω − µK is non-positive, thus I(t) + V (t) > K is impossible.

The disease free equilibrium of system (5.6) can be obtained as

V̄ =
φK + ω

µ+ θ + φ
.

In the initial stage of the epidemic, we can assume that system (5.6) is near the equilibrium

(0, V̄ ) and approximate the equation of class I with the linear equation

y(t) = (β(K − (1− σ)V̄ )− (µ+ γ))y(t), (5.7)

where y : R � R. The term β(K − (1 − σ)V̄ ) describes the production of new infections,

and µ + γ is the transition term describing changes in state, hence with the formula for

the disease free equilibrium V̄ , we can define the basic reproduction number as

R0 =
β(K − (1− σ)V̄ )

µ+ γ

=
β

µ+ γ

(
K · (µ+ θ + σφ)

µ+ θ + φ
− (1− σ)ω

µ+ θ + φ

)
.

(5.8)

The following proposition shows that R0 works as a threshold quantity for the stability of

the disease free equilibrium of system (5.6).

Proposition 5.3. The disease free equilibrium of system (5.6) is asymptotically stable if

R0 < 1 and unstable if R0 > 1.

Proof. The stability of the zero steady state of system (5.7) is determined by the sign of

β(K − (1 − σ)V̄ ) − (µ + γ), which coincides with the sign of R0 − 1. This means that

the zero solution of (5.7) is asymptotically stable if R0 < 1 and unstable if R0 > 1. This

statement extends to the nonlinear system (5.6) by the principle of linearized stability.
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5.4 Endemic equilibria

The problem of finding equilibrium (Î , V̂ ) for system (5.6) yields the two-dimensional

system
0 = β(K − Î − (1− σ)V̂ )Î − (µ+ γ)Î ,

0 = φ(K − Î)− σβV̂ Î − (µ+ θ + φ)V̂ + ω.
(5.9)

The existence of a unique disease free equilibrium has been proved, so now we focus on

finding endemic equilibria (Î , V̂ ) with Î > 0. From (5.9)1 we obtain the formula

V̂ =
β(K − Î)− (µ+ γ)

β(1− σ)
, (5.10)

then by substituting V̂ into (5.9)2 it follows from straightforward computations that

AÎ2 +BÎ + C = 0 (5.11)

should hold for Î, where

A = σβ,

B = (µ+ θ + σφ) + σ(µ+ γ)− σβK,

C =
(µ+ γ)(µ+ θ + φ)

β
− (µ+ θ + σφ)K + (1− σ)ω.

(5.12)

We note that βC = (1− R0)(γ+µ)(µ+φ+θ) and we characterize the number of solutions

of the equilibrium condition (5.11).

Proposition 5.4. If R0 > 1 then there exists a unique positive equilibrium Î =
−B+

√
B2−4AC
2A .

Proof. If C < 0, or equivalently, R0 > 1, then the equilibrium condition (5.11) has a

unique positive solution, which can be obtained as Î = −B+
√
B2−4AC
2A .

At R0 = 1 it holds that A > 0 and C = 0, so there exists a unique nonzero solution

Î = −B/A of (5.11), which is positive (and thus, biologically relevant) if and only if

B < 0. Let us now assume that B is negative at R0 = 1, which also implies that

B2−4AC = B2 > 0. Then there is a positive root of the equilibrium condition at R0 = 1,

and due to the continuous dependence of the coefficients A, B and C on β there must be

an interval to the left of R0 = 1 where B < 0 and B2 − 4AC > 0 still hold. Since C > 0

whenever R0 < 1, it follows that on this interval there exist exactly two positive solutions

of (5.11) and thus, two endemic equilibria of system (5.6). We denote these equilibria by

Ĭ1 =
−B −

√
B2 − 4AC

2A
, Ĭ2 =

−B +
√
B2 − 4AC

2A
,
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and with the aid of formula (5.10), we can derive the V̂ -components to get the equilibria

(Ĭ1, V̆1) and (Ĭ2, V̆2). With other words, if B < 0 when R0 = 1, then system (5.6) has

a backward bifurcation at R0 = 1, since besides the zero equilibrium and the positive

equilibrium Ĭ2 = −B+
√
B2−4AC
2A (which both exist for R0 > 1 as well), another positive

equilibrium emerges when R0 is passing through 1 from the right to the left.

Theorem 5.5. If the condition

(1− σ)ω

K
>

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
(5.13)

holds then there is a backward bifurcation at R0 = 1.

Proof. The condition for the backward bifurcation is that B < 0 when β satisfies R0 = 1.

This can be obtained as an explicit criterion of the parameters: as B < 0 yields

σβK > (µ+ θ + σφ) + σ(µ+ γ),

moreover from C = 0 we derive

βK =
(µ+ γ)(µ+ θ + φ)

(θ + µ+ σφ)− (1−σ)ω
K

,

we get

σ(µ+ γ)(µ+ θ + φ)

(θ + µ+ σφ)− (1−σ)ω
K

> (µ+ θ + σφ) + σ(µ+ γ),

σ(µ+ γ)(µ+ θ + φ)

(θ + µ+ σφ) + σ(µ+ γ)
> (θ + µ+ σφ)− (1− σ)ω

K
,

(1− σ)ω

K
> (θ + µ+ σφ)− σ(µ+ γ)(µ+ θ + φ)

(θ + µ+ σφ) + σ(µ+ γ)
,

(1− σ)ω

K
>

(θ + µ+ σφ)2

(θ + µ+ σφ) + σ(µ+ γ)
− σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
,

where we used that µK − ω > 0.

Theorem 5.6. If condition (5.13) does not hold, then system (5.6) undergoes a forward

bifurcation at R0 = 1. In this case there is no endemic equilibrium for R0 ∈ [0, 1].

Proof. We proceed similarly as in the proof of Theorem 5.5 to find that if

(1− σ)ω

K
≤ (θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
,

then B ≥ 0 when C = 0, or equivalently, when β is set to satisfy R0 = 1. For R0 < 1 it

holds that A,C > 0, moreover B is also positive because B is decreasing in β, these imply

that there is no endemic equilibrium on R0 ∈ [0, 1). At R0 = 1 the equilibrium condition

(5.11) becomes AÎ2 + BÎ = 0, and A > 0, B ≥ 0 give that (5.11) has only non-positive
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solutions. However, we know from Proposition 5.4 that there is a positive solution of (5.11)

for R0 > 1, thus we conclude that if the condition (5.13) does not hold, then system (5.6)

undergoes a forward bifurcation at R0 = 1, where a single endemic equilibrium emerges

when R0 exceeds 1.

If (5.13) is satisfied, then there is an interval to the left of R0 = 1 where there exist

positive equilibria. In what follows we determine the left endpoint of this interval. Let us

assume that there is a backward bifurcation at R0 = 1. We define

U = (θ + µ+ σφ)− (1− σ)ω

K
,

x =
(1− σ)ω

K
+ σ(µ+ γ),

W = −x+ σ
(γ + µ)(µ+ φ+ θ)

U
.

(5.14)

Note that x and U are positive since µK − ω > 0 by assumption. The condition for the

backward bifurcation can be obtained as

W > U, (5.15)

which also yields the positivity of W . We let

Rc =
x− U + 2

√
UW

(µ+ γ)σ
· U

µ+ θ + φ
(5.16)

and claim that it defines the critical value of the reproduction number for which there exist

endemic equilibria on the interval [Rc, 1].

Proposition 5.7. Assume that there is a backward bifurcation at R0 = 1. With Rc
defined in (5.16), only the disease free equilibrium exists if R0 < Rc, a positive equilibrium

emerges at R0 = Rc, and on (Rc, 1) there exist two distinct endemic equilibria. There

also exists a positive equilibrium at R0 = 1.

Proof. The last statement follows from the fact that at R0 = 1 (C = 0), the single non-zero

solution Î = −B
A of (5.11) is positive since B < 0. The necessary and sufficient conditions

B < 0 and B2 − 4AC > 0 for the existence of two positive distinct equilibria hold on an

interval to the left of R0 = 1. B = 0 automatically yields B2− 4AC < 0 if R0 < 1, hence

it is clear that the condition B2 − 4AC = 0 determines the value of R0 for which the

positive equilibria disappear. First, we derive the critical value βc of the transmission rate

from this equation, then substitute β = βc into the formula of R0 (5.8) to give the critical

value of the reproduction number. Using notations U, x and W introduced in (5.14), we
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reformulate B as B = U + x − σβK and C as C = (µ+γ)(µ+θ+φ)
β − UK. The condition

B2 − 4AC = 0 becomes

U2 + 2U(x− βKσ) + (x− βKσ)2 − 4σ(µ+ γ)(µ+ θ + φ) + 4σβKU

= U2 − 2U(x− βKσ) + (x− βKσ)2 + 4Ux− 4σ(µ+ γ)(µ+ θ + φ)

= U2 − 2U(x− βKσ) + (x− βKσ)2 − 4UW = 0,

so we obtain the roots

(x− βKσ)1,2 =
2U ±

√
4U2 − 4U2 + 16UW

2

= U ± 2
√
UW.

For the positive root (x− βKσ)2, we get B = U + (x− βKσ)2 > 0, but we require B < 0

thus we derive from x− βKσ = U − 2
√
UW that

βc =
x− U + 2

√
UW

Kσ
. (5.17)

Substituting βc into (5.8) gives

R0(βc) =
βc

µ+ γ

(
K(µ+ θ + σφ)

µ+ θ + φ
− (1− σ)ω

µ+ θ + φ

)
=
x− U + 2

√
UW

(µ+ γ)σ
· U

µ+ θ + φ
,

which is indeed equal to Rc defined in (5.16).

The condition R0 = 1 reformulates as σβK = W + x, so with the aid of (5.15) and

the computations

0 <
(√

U −
√
W
)2
,

2
√
UW < U +W,

x− U + 2
√
UW < W + x,

it is easy to verify that Rc < 1. The positivity of βc, and hence, the positivity of Rc fol-
lows from the fact that at β = βc it should hold that B < 0, which is only possible if β > 0.

We wish to draw the graph of Î as a function of β to obtain the bifurcation curve. By

implicitly differentiating the equilibrium condition (5.11) with respect to β, we get

(2AÎ +B)
dÎ

dβ
= −

(
dA

dβ
Î2 +

dB

dβ
Î +

dC

dβ

)
,

(2AÎ +B)
dÎ

dβ
= σÎ(K − Î) +

(γ + µ)(µ+ φ+ θ)

β2
.
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The positivity of the right-hand side follows fromK ≥ Î, which implies that the term 2AÎ+

B has the same sign as dÎ
dβ . If R0 > 1 then there exists the equilibrium Ĭ2 = −B+

√
B2−4AC
2A ,

and we obtain that 2AĬ2 +B > 0, hence for R0 > 1 the curve has positive slope. If there

is a backward bifurcation at R0 = 1, then on (Rc, 1) there exists two positive equilibria

Ĭ2 and Ĭ1 = −B−
√
B2−4AC
2A with Ĭ2 > Ĭ1, and since it holds that 2AĬ1 +B < 0, we conclude

that on (Rc, 1) the bifurcation curve has negative slope for the smaller endemic equilibrium

and positive slope for the larger one. As a matter of fact, the unstable equilibrium is a

saddle point, and thus the system experiences a saddle-node bifurcation.

5.5 Stability and global behavior

The stability of the disease free equilibrium has been examined in Section 5.3, so now we

derive local stability analysis of endemic equilibria. The Jacobian of the system (5.6) at

(Î , V̂ ) gives

J =

(
−βÎ −(1− σ)βÎ

−(φ+ σβV̂ ) −(µ+ θ + φ+ σβÎ)

)
,

where we used the identity β(K− Î−(1−σ)V̂ ) = µ+γ from (5.9), hence the characteristic

equation has the form

a2λ
2 + a1λ+ a0 = 0

with
a2 = 1,

a1 = βÎ + (µ+ θ + φ+ σβÎ),

a0 = βÎ(µ+ θ + φ+ σβÎ)− (1− σ)βÎ(φ+ σβV̂ ).

Theorem 5.8. The endemic equilibrium (Î , V̂ ) for which Î = Ĭ2 is locally asymptotically

stable where it exists: on R0 ∈ (1,∞), and also on R0 ∈ (Rc, 1] in case there is a backward

bifurcation at R0 = 1. The endemic equilibrium (Î , V̂ ) for which Î = Ĭ1 is unstable where

it exists: on R0 ∈ (Rc, 1) in case there is a backward bifurcation at R0 = 1.

Proof. The Routh–Hurwitz stability criterion (for a reference see, for example, [17]) states

that for all the solutions of the characteristic equation to have negative real parts, all

coefficients must have the same sign. Since a2 and a1 are positive, the sign of a0 determines

the stability. For that it holds that

a0 = βÎ(µ+ θ + φ+ σβÎ)− (1− σ)βÎ(φ+ σβV̂ )

= βÎ(µ+ θ + σφ+ 2σβÎ − σβ(Î + (1− σ)V̂ ),

so using −β(Î + (1− σ)V̂ ) = µ+ γ − βK we derive

a0 = βÎ(µ+ θ + σφ+ 2σβÎ + σ(µ+ γ − βK))

= βÎ(2AÎ +B).
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For R0 > 1 the only endemic equilibrium is Ĭ2 = −B+
√
B2−4AC
2A , for which 2AĬ2 + B > 0

holds and thus a0 > 0 yields its stability. If there is a backward bifurcation at R0 = 1,

then endemic equilibria exist on (Rc, 1] as well; here Ĭ2 is again stable for the same reason

as above, however Ĭ1 = −B−
√
B2−4AC
2A is unstable since a0 = βĬ1(AĬ1 +B) < 0.

With the next theorem we describe the global behavior of solutions of system (5.6).

Theorem 5.9. If there exists no endemic equilibrium, that is, if R0 < 1 in case of a

forward bifurcation and if R0 < Rc in case of a backward bifurcation, then every solution

converges to the disease free equilibrium. For R0 > 1, the unique endemic equilibrium is

globally attracting. If there is a backward bifurcation at R0 = 1 then on (Rc, 1) there is

no globally attracting equilibrium, though every solution approaches an equilibrium.

Proof. We first show that every solution of system (5.6) converges to an equilibrium. In

Section 5.3 we have proved that the region R : 0 ≤ I, V, I + V ≤ K is positively invariant

for the solutions of system (5.6). We take the C1 function ϕ(I, V ) = 1/I, which does not

change sign on R to show that system (5.6) has no periodic solutions lying entirely within

the region R. The computation
∂

∂I

β(K − I − (1− σ)V )I − (µ+ γ)I

I
+

∂

∂V

φ(K − I)− σβV I − (µ+ θ + φ)V + ω

I

= −β − σβ − µ+ θ + φ

I
< 0

yields the result by means of the Dulac criterion [14]. We use the well-known Poincaré–

Bendixson theorem to conclude that every solution of (5.6) approaches an equilibrium.

The first statement of the theorem immediately follows from the fact that every solution

of (5.6) approaches an equilibrium. If R0 > 1, then besides the disease free equilibrium,

which is unstable according to Theorem 5.8, there exists a single locally stable endemic

equilibrium Ĭ2. We show that no nontrivial solution can converge to the disease free

equilibrium.

If limt�∞ I(t) = 0 when I(0) > 0, then it follows from (5.6)2 that limt�∞ V (t) = φK+ω
µ+θ+φ .

Then for every ε > 0 there exists a t∗(ε) such that I(t) < ε and V (t) < φK+ω
µ+θ+φ + ε for

t > t∗. Using (5.6)1 we get

İ(t) ≥ β
(
K − ε− (1− σ)

(
φK + ω

µ+ θ + φ
+ ε

))
I(t)− (µ+ γ)I(t)

= β

(
K · (µ+ θ + σφ)

µ+ θ + φ
− (1− σ)ω

µ+ θ + φ

)
I(t) + (−2ε+ σε− (µ+ γ)) I(t)

(5.18)

for t > t∗, moreover R0 = β
µ+γ

(
K·(µ+θ+σφ)
µ+θ+φ − (1−σ)ω

µ+θ+φ

)
> 1 implies that there exists an ε1

small enough such that

β

(
K · (µ+ θ + σφ)

µ+ θ + φ
− (1− σ)ω

µ+ θ + φ

)
+ (−2ε1 + σε1 − (µ+ γ)) > 0.
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(a) Solutions of system (5.6).
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(b) Stream plot of system (5.6) on R : 0 ≤
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Figure 5.2: Solutions of system (5.6) in case there is a backward bifurcation at R0 = 1

and Rc < R0 < 1. We let Λ(x) = x
c+dx and choose parameter values as µ = 0.1, γ = 12,

θ = 0.5, σ = 0.2, φ = 16, c = 1, d = 1.8, β = 0.33, η = 5, ω = 5, which makes K = 153.6

and R0 = 0.95. Endemic equilibria (Ĭ1, V̆1) = (8.6, 135.4) and (Ĭ2, V̆2) = (50.7, 82.8) are

represented as (a) red-dashed and blue-dashed lines, (b) red and blue points, respectively.

On (b) the green point denotes the unique disease free equilibrium (0, 148.4). Solutions

with initial values (I(0), V (0)) = (9, 120) – red curve, (18, 130) – blue curve and (100, 50)

– black curve converge to (Ĭ2, V̆2), however for (I(0), V (0)) = (5, 140) the curve of I – here,

green – approaches the DFE.

With the choice of ε = ε1, the right-hand side of (5.18) is linear in I(t) with positive mul-

tiplier, which implies that I(t) increases for t∗(ε1) > t and thus, cannot converge to 0. We

conclude that no solution of (5.6) with positive initial conditions converges to the disease

free equilibrium, so the endemic equilibrium indeed attracts every solution.

If there is a backward bifurcation at R0 = 1, then besides the disease free equilibrium

there exist two endemic equilibra on (Rc, 1), one locally stable and one unstable (see again

Theorem 5.8). As the DFE is locally stable when R0 < 1, we experience bistability on

(Rc, 1), which implies the third statement of the theorem.

We present Figure 5.2 to illustrate the statements of this section. The values of the

model parameters were set to ensure that system (5.6) undergoes a backward bifurcation

at R0 = 1, moreover we chose the value of β such that there exist two endemic equilibria.

The plots of the figure support our results about the long-term behavior of solutions and

the local stability of equilibria; solutions starting near the unstable saddle point (Ĭ1, V̆1)
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(b) ω = 0, η = 10, 12, . . . , 48.

Figure 5.3: Bifurcation diagrams for 20 different values of (a) ω and (b) η in the case when

(θ + µ + σφ)2 < σ(µ + γ)(1 − σ)φ. Proposition 5.10 implies that for all η and ω there

is a backward bifurcation at R0 = 1. The curves move to the left as the immigration

parameter increases. We let Λ(x) = x
c+dx and choose parameter values as µ = 0.1, γ = 12,

θ = 0.5, σ = 0.2, φ = 16, c = 1, d = 1.8.

approach another equilibrium, however (Ĭ2, V̆2) seems to attract every solution with I(0) >

Ĭ1 for the particular set of parameter values indicated in the caption of the figure.

5.6 The influence of immigration on the backward bifurcation

In this section, we would like to investigate the effect of parameters η and ω on the

bifurcation curve. In Section 5.4 we gave the condition (5.13)

(1− σ)ω

K
>

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)

for the existence of backward bifurcation at R0 = 1; in what follows we analyze this

inequality in terms of the immigration parameters. We keep in mind that if there is no

backward bifurcation at R0 = 1, then there is forward bifurcation, i.e., there always exists

an endemic equilibrium for R0 > 1.

First, we present results about how the existence of backward bifurcation depends on

η and ω. The nonnegativity of ω and K immediately yields the following proposition.

Proposition 5.10. If (θ + µ + σφ)2 < σ(µ + γ)(1 − σ)φ, then for all η and ω there is a

backward bifurcation at R0 = 1.

The special case of ω = 0 automatically makes the left-hand side of inequality (5.13)

zero, hence in this case there is a backward bifurcation if and only if the right-hand side

is negative; note that the right-hand side is independent of η.
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Proposition 5.11. If ω = 0, then there is a backward bifurcation at R0 = 1 if and only

if (θ+ µ+ σφ)2 < σ(µ+ γ)(1− σ)φ. This also means that in this case η has absolutely no

effect on the direction of the bifurcation.

Figure 5.3 shows how the bifurcation curve deforms as we increase (a) ω and (b) η.

Parameter values µ = 0.1, γ = 12, θ = 0.5, σ = 0.2, φ = 16 were chosen so that the

condition (θ + µ+ σφ)2 < σ(µ+ γ)(1− σ)φ holds (14.44 < 30.976).

After all this, the following question arises naturally: is it possible to have backward

bifurcation at R0 = 1 if (θ + µ + σφ)2 ≥ σ(µ + γ)(1 − σ)φ, i.e., if the right-hand side of

condition (5.13) is nonnegative? Recall that if ω = 0 then (θ+µ+σφ)2 ≥ σ(µ+γ)(1−σ)φ

means forward bifurcation.

Note that the right-hand side of (5.13) is independent of η and ω; however, K depends on

both of these parameters, µ and the birth function Λ. As we did not define Λ explicitly

(in Section 5.2, we only gave conditions to ensure that for each η, ω ≥ 0 the population

carrying capacity K > 0 can be defined uniquely), it is not clear how the left-hand side of

(5.13) depends on the immigration parameters. In the sequel, we use the general form

Λ(x) =
x

c+ dx
(5.19)

for the birth function with parameters 0 < c < 1/µ and d > 0; it is not hard to see that

with this definition all the conditions made in Section 5.2 for Λ are satisfied. The carrying

capacity K(µ, η, ω) can be obtained as the solution of

Λ(x) = µx− η − ω,

which, with our above definition (5.19), gives the second-order equation

x2µd+ x(−1 + cµ− d(η + ω))− c(η + ω) =0.

The unique positive root yields K as

K(µ, η, ω) =
1− cµ+ d(η + ω)

2µd
+

√
(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

2µd
. (5.20)

Our assumption c < 1/µ implies 1− cµ > 0, hence

K

ω
=

1

2µd

(
1− cµ+ dη

ω
+ d +

√(
1− cµ+ dη

ω
+ d

)2

+
4µdcη

ω2
+

4µdc

ω


>

1

2µd

(
1− cµ+ dη

ω
+ d+

1− cµ+ dη

ω
+ d

)
>

1

2µd
2d =

1

µ
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and thus
(1− σ)ω

K
< (1− σ)µ. (5.21)

It also follows from the above computations that limω�∞
(1−σ)ω
K = (1− σ)µ, i.e., although

the left-hand side of (5.13) is always less than (1− σ)µ, the expression gets arbitrary close

to this limit as ω approaches ∞.

Next we fix every model parameter but η and ω and obtain two propositions as follows.

Proposition 5.12. Assume that (θ+µ+ σφ)2 ≥ σ(µ+ γ)(1− σ)φ holds. If the condition

(θ + µ+ σφ) (θ + σµ+ σφ) < σ(1− σ)(µ+ γ)(µ+ φ)

is satisfied, then for any η there is an ωc such that for any ω ∈ (ωc,∞) there is a backward

bifurcation at R0 = 1, and for any ω ∈ [0, ωc] there is a forward bifurcation at R0 = 1. In

case the above condition does not hold, then for any η and ω there is a forward bifurcation

at R0 = 1.

Proof. If

(θ + µ+ σφ) (θ + σµ+ σφ) ≥ σ(1− σ)(µ+ γ)(µ+ φ),

(θ + µ+ σφ)

(
θ + µ+ σφ

1− σ
− µ

)
≥ σ(µ+ γ)(µ+ φ),

(θ + µ+ σφ)2

1− σ
− σ(µ+ γ)φ ≥ µ(θ + µ+ σφ) + µσ(µ+ γ)),

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
≥ (1− σ)µ,

then it follows from (5.21) that backward bifurcation is not possible at R0 = 1, since the

right-hand side of condition (5.13) is always greater than or equal to the left-hand side.

Next let us consider the case when

(θ + µ+ σφ) (θ + σµ+ σφ) < σ(1− σ)(µ+ γ)(µ+ φ),

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
< (1− σ)µ.

We show that (1−σ)ω
K is monotone increasing in ω; if so, then, following relation (5.21) and

the discussion afterwards, the formulas (1−σ)·0
K(µ,η,0) = 0 and limω�∞

(1−σ)ω
K(µ,η,ω) = (1− σ)µ imply

that ωc can be defined uniquely by

(1− σ)ωc
K(µ, η, ωc)

=
(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
,

and from the monotonicity it follows that the condition for the backward bifurcation (5.13)

is satisfied if and only if ω > ωc.

We obtain the derivative
∂

∂ω

( ω
K

)
=
K − ω ∂K∂ω

K2
,
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which implies that (1−σ)ω
K increases in ω if and only if K − ω ∂K∂ω is positive. With our

assumption 1− cµ > 0, the computations

K − ω∂K
∂ω

=
1− cµ+ d(η + ω) +

√
(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

2µd

− ωd 1

2µd

(
1 +

1− cµ+ d(η + ω) + 2µc√
(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

)

=
1− cµ+ dη

2µd
+

(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

2µd
√

(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

− ωd(1− cµ+ d(η + ω) + 2µc)

2µd
√

(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

=
1− cµ+ dη

2µd
+

(1− cµ+ d(η + ω))(1− cµ+ dη) + 4µdcη + 2µdcω

2µd
√

(1− cµ+ d(η + ω))2 + 4µdc(η + ω)
> 0

yield the result.

With other words, for parameter values satisfying the assumption and condition of

Proposition 5.12, a unique critical value ωc can be defined which works as a threshold

of ω for the backward bifurcation: there is no backward bifurcation if ω ≤ ωc, and once

ω is large enough so that a backward bifurcation is established at R0 = 1, it can not

happen that for any larger values of ω the system undergoes forward bifurcation again.

With certain conditions, such threshold also exists for η as we show it in the following

proposition.

Proposition 5.13. Assume that (θ + µ+ σφ)2 ≥ σ(µ+ γ)(1− σ)φ holds, and fix ω. If ω

is such that
(1− σ)ω

K(µ, 0, ω)
>

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
,

then there exists ηc > 0 such that there is a backward bifurcation at R0 = 1 for η < ηc,

and the system undergoes a forward bifurcation for η ≥ ηc. If the above inequality does not

hold then there is a forward bifurcation at R0 = 1.

Proof. First we note that K(µ, η, ω) (defined in (5.20)) is an increasing function of η and

it attains its minimum at η = 0. This implies that

(1− σ)ω

K(µ, η, ω)
≤ (1− σ)ω

K(µ, 0, ω)

for all η, hence the condition for the backward bifurcation (5.13) cannot be satisfied if

(1− σ)ω

K(µ, 0, ω)
≤ (θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
.
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(a) η = 10, ω = 1, 6, . . . , 96.
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(b) ω = 60, η = 1, 6, . . . , 96.

Figure 5.4: Bifurcation diagrams for 20 different values of (a) ω and (b) η in the case when

(θ+µ+σφ)2 ≥ σ(µ+γ)(1−σ)φ. The curves move to the left as the immigration parameter

increases. We let Λ(x) = x
c+dx and choose parameter values as (a) µ = 1, γ = 7.5, θ = 0.5,

σ = 0.02, φ = 16, c = 0.1, d = 0.03, (b) µ = 1.5, γ = 11, θ = 0.5, σ = 0.02, φ = 16,

c = 1/15, d = 9/300.

On the other hand, K(µ, η, ω) takes arbitrary large values, and hence (1−σ)ω
K(µ,η,ω) converges

to zero monotonically as η increases, so if

(1− σ)ω

K(µ, 0, ω)
>

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
,

then there is a unique ηc > 0 which satisfies

(1− σ)ω

K(µ, ηc, ω)
=

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
,

and the monotonicity of K in η yields that for η < ηc (η ≥ ηc) the condition for the

backward bifurcation (5.13) holds (does not hold). Thus it is clear that ηc is a threshold

for the existence of backward bifurcation. Note that if (θ + µ+ σφ)2 = σ(µ+ γ)(1− σ)φ

then ηc = ∞, i.e., for each value of η there is a backward bifurcation if ω > 0. The proof

is complete.

We illustrate Propositions 5.12 and 5.13 with Figure 5.4. With parameter values µ = 1,

γ = 7.5, θ = 0.5, σ = 0.02, φ = 16, c = 0.1, d = 0.03 and η = 10 used for Figure 5.4 (a), the

condition in Proposition 5.12 becomes 1.5288 < 2.8322. In case of Figure 5.4 (b), the pa-

rameters µ = 1.5, γ = 11, θ = 0.5, σ = 0.02, φ = 16, c = 1/15, d = 9/300 and ω = 60 give
(1−σ)ω
K(µ,0,ω) = 0.956928 and (θ+µ+σφ)2−σ(µ+γ)(1−σ)φ

(θ+µ+σφ)+σ(µ+γ) = 0.569027, so the condition in Proposi-

tion 5.13 is satisfied. It is easy to check that the assumption (θ+µ+σφ)2 ≥ σ(µ+γ)(1−σ)φ

holds in both cases since (a) 3.3124 ≥ 2.6656 and (b) 5.3824 ≥ 3.92.

Proposition 5.10 states that for any values of η and ω the condition (θ + µ + σφ)2 <

σ(µ + γ)(1 − σ)φ is sufficient for the existence of a backward bifurcation at R0 = 1;
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moreover we know from Proposition 5.11 that it is also necessary in the special case of

ω = 0. We remark that backward bifurcation is possible for any η ≥ 0 and ω > 0, even if

(θ+µ+σφ)2 ≥ σ(µ+γ)(1−σ)φ. Let us choose η ≥ 0 and ω > 0 arbitrary, fix parameters

µ, σ, φ, and choose θ and γ such that (θ + µ + σφ)2 = σ(µ + γ)(1 − σ)φ holds. As now

the right-hand side of condition (5.13) is 0 and ω,K > 0, there is a backward bifurcation,

moreover it is easy to see that the right-hand side is increasing in θ. Thus, due to the con-

tinuous dependence of the right-hand side on θ, there is an interval for θ (with all the other

parameters fixed) where condition (5.13) still holds, though (θ+µ+σφ)2 > σ(µ+γ)(1−σ)φ,

since the quadratic term increases in θ.

Next, we investigate how immigration deforms the bifurcation curve. Let us denote by

β0 the value of the transmission rate for which R0 = 1 is satisfied, using (5.8) it can be

obtained as

β0 =
(µ+ θ + φ)(µ+ γ)

K · (µ+ θ + σφ)− (1− σ)ω
. (5.22)

Proposition 5.14. It holds that β0 decreases in both ω and η.

Proof. Using (5.22), we see that β0 decreases as η increases since

∂

∂η
(K · (µ+ θ + σφ)− (1− σ)ω) =

∂K

∂η
· (µ+ θ + σφ) > 0.

On the other hand, β0 decreases in ω if and only if

∂

∂ω
(K · (µ+ θ + σφ)− (1− σ)ω) =

∂K

∂ω
· (µ+ θ + σφ)− (1− σ) > 0.

First, ∂K∂ω > 1
µ since

1− cµ+ d(η + ω) + 2µc√
(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

> 1,

∂K

∂ω
=

1

2µ

(
1 +

1− cµ+ d(η + ω) + 2µc√
(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

)
>

1

µ
,

second, from
θ + σφ > −µσ,

µ+ θ + σφ > µ(1− σ),

we have 1
µ >

1−σ
µ+θ+σφ . We conclude that

∂K

∂ω
>

1

µ
>

1− σ
µ+ θ + σφ

(5.23)

and hence β0 decreases as ω increases.
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We recall that endemic equilibria Ĭ1 and Ĭ2 were defined as

Ĭ1 =
−B −

√
B2 − 4AC

2A
, Ĭ2 =

−B +
√
B2 − 4AC

2A
,

with A,B and C given in (5.12). Obviously −B −
√
B2 − 4AC > 0 where Ĭ1 exists and

−B +
√
B2 − 4AC > 0 where Ĭ2 exists.

Proposition 5.15. For the endemic equilibrium Ĭ2 it holds that ∂
∂ω Ĭ2,

∂
∂η Ĭ2 > 0, and the

inequalities ∂
∂ω Ĭ1,

∂
∂η Ĭ1 < 0 are satisfied for the endemic equilibrium Ĭ1. The equilibrium

Ĭ1 = Ĭ2 = −B
2A increases in both ω and η.

Proof. Since
∂AC

∂ω
= −σβ(µ+ θ + σφ)

∂K

∂ω
+ σβ(1− σ),

∂AC

∂η
= −σβ(µ+ θ + σφ)

∂K

∂η
,

we derive

∂

∂ω

(√
B2 − 4AC −B

)
=

2B ∂B
∂ω − 4(−σβ(µ+ θ + σφ)∂K∂ω + σβ(1− σ))

2
√
B2 − 4AC

− ∂B

∂ω
,

=

∂B
∂ω

(
B −

√
B2 − 4AC

)
√
B2 − 4AC

+
2σβ((µ+ θ + σφ)∂K∂ω − (1− σ))

√
B2 − 4AC

,

∂

∂η

(√
B2 − 4AC −B

)
=

2B ∂B
∂η − 4(−σβ(µ+ θ + σφ)∂K∂ω )

2
√
B2 − 4AC

− ∂B

∂η
,

=

∂B
∂η (B −

√
B2 − 4AC)

√
B2 − 4AC

+
2σβ(µ+ θ + σφ)∂K∂η√

B2 − 4AC
,

moreover it follows from (5.23), ∂B
∂ω = −σβ ∂K∂ω < 0, ∂B

∂η = −σβ ∂K∂η < 0 and B −
√
B2 − 4AC < 0 that

∂

∂ω

(√
B2 − 4AC −B

)
> 0,

∂

∂η

(√
B2 − 4AC −B

)
> 0.

Similarly, using B +
√
B2 − 4AC < 0 we get

∂

∂ω

(√
B2 − 4AC +B

)
=

∂B
∂ω

(
B +

√
B2 − 4AC

)
√
B2 − 4AC

+
2σβ((µ+ θ + σφ)∂K∂ω − (1− σ))

√
B2 − 4AC

> 0,

∂

∂η

(√
B2 − 4AC +B

)
=

∂B
∂η

(
B +

√
B2 − 4AC

)
√
B2 − 4AC

+
2σβ(µ+ θ + σφ)∂K∂η√

B2 − 4AC
> 0.

We conclude that

∂

∂ω
Ĭ1 =

− ∂
∂ω

(√
B2 − 4AC +B

)
2A

< 0,

∂

∂η
Ĭ1 =

− ∂
∂η

(√
B2 − 4AC +B

)
2A

< 0,
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furthermore

∂

∂ω
Ĭ2 =

∂
∂ω

(√
B2 − 4AC −B

)
2A

> 0,

∂

∂η
Ĭ2 =

∂
∂η

(√
B2 − 4AC −B

)
2A

> 0,

this is, the equilibrium Ĭ1 = Ĭ2 = −B
2A is increasing in both ω and η since A is independent

of these parameters and ∂B
∂ω < 0, ∂B∂η < 0.

These results give us information about how the bifurcation curve changes when the

immigration parameters increase. If there is a forward bifurcation at R0 = 1, the curve

moves to the left since β0 decreases in η and ω, and the curve expands because ∂
∂ω Ĭ2,

∂
∂η Ĭ2 >

0. In case there is a backward bifurcation at R0 = 1, β0 again moves to the left, and
∂
∂ω Ĭ1,

∂
∂η Ĭ1 < 0 and ∂

∂ω Ĭ2,
∂
∂η Ĭ2 > 0 imply that for each fixed β the two equilibria move

away from each other in the region where they coexist, moreover Ĭ2 increases when it

is the only endemic equilibrium. The singular point of the bifurcation curve, where the

equilibrium is −B/2A, moves upward as η and ω increase, this together with the above

described behavior of Ĭ1 and Ĭ2 imply that the left-most equilibrium cannot move to the

right, or equivalently, the corresponding value of the transmission rate βc decreases if we

increase η and ω. We give the last statement of the above discussion in the form of a

proposition. See Figures 5.3 and 5.4 for visual proof of the results of this section.

Proposition 5.16. In case there is a backward bifurcation at R0 = 1, βc decreases in both

ω and η.

Actually, using (5.22), it is easy to see that β0 converges to 0 as any of the immigra-

tion parameters approaches infinity: for any fixed ω (η), the carrying capacity K reaches

arbitrary large values if we increase η (ω), moreover µK − ω is positive by assumption,

hence
lim
ω�∞

(K(µ+ θ + σφ)− (1− σ)ω)

= lim
ω�∞

(K(θ + σφ) + σω + µK − ω) =∞.

The inequality βc < β0 implies that βc also goes to 0 as ω � ∞ or η � ∞. We can also

show that in the special case of ω = 0, increasing η decreases the region where two endemic

equilibria exist. The equation (5.17) for βc then reformulates as

βcKσ = x− U + 2
√
UW

= σ(µ+ γ)− (θ + µ+ σφ) + 2
√
−(θ + µ+ σφ)σ(µ+ γ) + σ(γ + µ)(µ+ φ+ θ)

= σ(µ+ γ)− (θ + µ+ σφ) + 2
√
σ(µ+ γ)φ(1− σ),

thus for β0 − βc we have

(β0 − βc)Kσ =
σ(µ+ θ + φ)(µ+ γ)

(µ+ θ + σφ)
− σ(µ+ γ −

(
(θ + µ+ σφ) + 2

√
σ(µ+ γ)φ(1− σ)

)
.
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The right-hand side is independent of η and K increases monotonically as η increases, so

the length of the interval (βc, β0) decreases as η increases.

In the light of the results of this section we conclude that, although SIVS models

without immigration can also exhibit backward bifurcation [7], incorporating the possibility

of the inflow of non-infectives may significantly influence the dynamics: under certain

conditions on the model parameters, increasing ω, just as decreasing η, can drive a system

with forward bifurcation into backward bifurcation and the existence of multiple endemic

equilibria. Furthermore, we showed that including immigration moves the left-most point of

the bifurcation curve to the left, which means that the larger the values of the immigration

parameters the smaller the threshold for the emergence of endemic equilibria.

5.7 Revisiting the three-dimensional system

Based on our results for system (5.6), we draw some conclusions on the global behavior

of the original model (5.4). Given that N(t) converges, and substituting S(t) = N(t) −
I(t)−V (t), (5.4)2 and (5.4)3 together can be considered as an asymptotically autonomous

system with limiting system (5.6). We use the theory from [44].

Theorem 5.17. All nonnegative solutions of (5.4) converge to an equilibrium. In partic-

ular, if R0 > 1, then the endemic equilibrium is globally asymptotically stable. If there is

a forward bifurcation for (5.6) and R0 ≤ 1, or there is a backward bifurcation for (5.6)

and R0 < Rc, then the disease free equilibrium is globally asymptotically stable.

Proof. Theorem 5.9 excluded periodic orbits in the limit system by a Dulac function, hence

we can apply Corollary 2.2. of [44] and conclude that all solutions of (5.4)2 − (5.4)3 con-

verge. As I(t),V (t) and N(t) converge, S(t) converges as well for system (5.4).

Now consider the case R0 > 1. Then the endemic equilibrium is globally asymptot-

ically stable for (5.4) (see Theorem 5.9), and its basin of attraction is the whole phase

space except the disease free equilibrium. We can proceed analogously as in (5.18) to

show that no positive solutions of (5.4)2 − (5.4)3 can converge to (0, V̄ ) when R0 > 1,

since N(t) > K − ε holds for sufficiently large t. Thus, the ω-limit set of any positive

solution of (5.4)2 − (5.4)3 intersects the basin of attraction of the endemic equilibrium in

the limit system, and then by Theorem 2.3 of [44] we conclude that the positive solutions

of (5.4)2 − (5.4)3 converge to the endemic equilibrium.

When the disease free is the unique equilibrium of (5.6), (i.e., when R0 ≤ 1 in the

case of forward, or R0 < Rc in the case of backward bifurcation), then it is globally
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asymptotically stable for (5.6) (see Theorem 5.9) with the basin of attraction being the

whole space, thus Theorem 2.3 of [44] ensures that the DFE is globally asymptotically

stable for (5.4)2 − (5.4)3 as well.

5.8 Conclusion

We have examined a dynamic model which describes the spread of an infectious disease in

a population divided into the classes of susceptible, infected and vaccinated individuals,

and took the possibility of immigration of non-infectives into account. Such an assump-

tion is reasonable if there is an entry screening of infected individuals, or if the disease

is so severe that it inhibits traveling. After obtaining some fundamental, but biologically

relevant properties of the model, we investigated the possible equilibria and gave an ex-

plicit condition for the existence of backward bifurcation at R0 = 1 in terms of the model

parameters. Our analysis showed that besides the disease free equilibrium – which always

exists – there is a unique positive fixed point for R0 > 1, moreover in case of a backward

bifurcation there exist two endemic equilibria on an interval to the left of R0 = 1. An

equilibrium is locally asymptotically stable if and only if it corresponds to a point on the

bifurcation curve where the curve is increasing, moreover it is also globally attracting if

R0 > 1.

We investigated how the structure of the bifurcation curve depends on η and ω (the im-

migration parameter for susceptible and vaccinated individuals, respectively), when other

model parameters are fixed. As discussed in Propositions 5.10 and 5.12, two regions can be

characterized in the parameter space where for any values of the immigration parameters,

the system experiences a backward or forward bifurcation, respectively. However, under

certain conditions described in Propositions 5.12 and 5.13, modifying the value of ω and η

has a significant effect on the dynamics: critical values ωc and ηc can be defined such that

the bifurcation behavior at R0 = 1 changes from forward to backward when we increase

ω through ωc and/or we decrease η through ηc. On the other hand, Propositions 5.11 and

5.13 yield that in some cases ω can be chosen so that, independently from the value of η,

backward bifurcation is impossible.

We also showed that immigration decreases the value of the transmission rate for which

endemic equilibria emerge, furthermore increasing ω and/or η moves the branches of the

bifurcation curve apart which implies that the stability region of the disease free equilibrium

shrinks (see Figures 5.3 and 5.4). Last, we wish to point out that, as it follows from the
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discussion after Proposition 5.13, backward bifurcation is possible for any values of ω and

η, so when one’s aim is to mitigate the severity of an outbreak it is desirable to control

the values of other model parameters, for example, the vaccination rate in a way that the

scenario of backward bifurcation is never realized.
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Summary

In this Ph.D. dissertation we study the general form of nonautonomous functional differen-

tial equations where the delayed feedback function cannot be given explicitly by the system

variables, but it is defined via the solution of another system of differential equations. In

Chapter 2, we formulate the initial value problem as

x′(t) = F(t, xt) = f(t, x(t)) +W (t, x(t− τ)),

xσ = ϕ,
(2.1)

where t, σ ∈ R with t ≥ σ, x : R � Rn, f : R×Rn � Rn and W : R×Rn � Rn for n ∈ Z+.

For a fixed positive τ , we define the phase space C = C([−τ, 0],Rn) as the Banach space of

continuous functions from [−τ, 0] to Rn, equipped with the supremum norm. The segment

xt ∈ C of the solution is defined by the relation xt(θ) = x(t − θ) for θ ∈ [−τ, 0], so

F : R × C � Rn. Moreover, ϕ ∈ C gives the state of the system at initial time σ. In this

work, a Lipschitz condition is formulated for any function F : R × Rj � Rl, j, l ∈ Z+, on

each bounded subset of R× Rj , as follows:

(Lip) For all a, b ∈ R and M > 0, there is a K(a, b,M) > 0 such that:

|F (t, x1)− F (t, x2)|l ≤ K|x1 − x2|j , a ≤ t ≤ b, |x1|j , |x2|j ≤M.

We assume that the function f is continuous and satisfies (Lip) on each bounded subset

of R× Rn. Furthermore, an initial value problem for systems of nonautonomous ordinary

differential equations is formulated as

y′(s) = g(s, y(s)),

y(s0) = y∗,
(2.2)

where m ∈ Z+, and s0 ∈ R and y∗ ∈ R represent the initial time and the initial value,

respectively. Here s ∈ R, s ≥ s0 and y : R � Rm, moreover the function g : R×Rm � Rm is

continuous on R×Rm and satisfies the Lipschitz condition (Lip) on each bounded subset of

R×Rm. Standard arguments from the theory of ordinary differential equations guarantee

that system (2.2) has a unique solution, which we denote by y(s; s0, y∗), on the interval

[s0, s0 + α] for some positive α. We make the additional assumption that:
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(?) For every s0 and y∗, the solution y(s; s0, y∗) of (2.2) exists for τ units of time, i.e., on

[s0, s0 + τ ].

We introduce two functions h : R×Rn � Rm and k : R×Rm � Rn, both are continuous and

satisfy (Lip) on the corresponding sets by assumption. For simplicity, we use the notation

ys0,v(s) = y(s; s0, h(s0, v)) for the unique solution of (2.2) in the case y∗ = h(s0, v), v ∈ Rn.
Last, the delayed feedback function W : R× Rn � Rn is defined as

W (s, v) = k(s, ys−τ,v(s)) = k(s, y(s; s− τ, h(s− τ, v))).

From this formulation it follows that W is determined via the dynamics of another system

of differential equations, given by (2.2). Henceforth, we refer to (2.1) as the general form

of functional differential equations with dynamically defined delayed term.

For the solution of system (2.1), we obtain the usual existence, uniqueness and contin-

uous dependence results by showing a Lipschitz condition for F . As it is illustrated in the

thesis by various biological applications, functional differential equations with dynamically

defined delayed feedback function may arise from the mathematical analysis of dynamic

models in life sciences. Thus, it is natural to consider some biologically relevant properties

of the initial value problem, like the nonnegativity of solutions or the stability of equilibria

of the autonomous system.

Functional differential equations have many applications in biological sciences. In the

dissertation, we propose some models from population dynamics and epidemiology, where

the delay terms in the model equations depend on the solution of another dynamical sys-

tem. First, a simple model for the growth of a single population with fixed period of

temporary separation is presented in Chapter 1. Then we investigate a class of delayed

disease transmission models in Chapters 3 and 4 to describe the propagation of epidemics

on transportation networks. Recent pandemics, like the 2002–2003 SARS epidemic or the

2009 A(H1N1) influenza outbreak illustrated the role of commercial aviation in the spatial

spread of infectious diseases. Based on the consideration that these diseases progress so

fast that any short delay might be significant, we incorporate into the model the time

needed to complete transportation between the regions, and use a delay differential system

to describe the spread of infection in the regions. Furthermore, we account for the fact

that some communicable diseases, such as tuberculosis, measles and influenza, have been

known to be transmissible during commercial flights, hence in the model formulation we

also consider the possible infections during travel. It follows that the inflow of individu-

als into a region upon completing a trip arises as a delayed feedback term in the model

equations, moreover this term is determined by another system which describes the disease
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dynamics during travel.

We introduce an SEAIR (susceptible–exposed–asymptomatic infected–infected–

recovered)-based model in Chapter 3 to investigate the spread of an epidemic in two

regions which are connected by transportation. Disease behavior during travel is modeled

by an age-structured system, where age is the time elapsed since the start of the travel.

Our model is in contrast to many existing epidemic models which assume that the speed of

disease spread between regions decreases as the distance between those regions increases.

These models are called “gravity-type” models, where the expression reflects the inverse

relationship of the speed of disease spread to distance. On the other hand, in our model

we take into consideration that the transmission rate of an infectious disease can be much

higher than usual when a large number of passengers are sharing the same cabin during

long distance travel. This implies that the longer the flight between two regions, the

more infections are expected. Thus, our model is of “antigravity-type” in principle. We

distinguish local residents from visitors in the model setup to account for differences in

mixing patterns and travel behaviors. After showing that the model is equivalent to a

twenty-dimensional system of autonomous differential equations of the form of (2.1), we

apply the results of Chapter 2 to our model. Then we present a mathematical procedure

for the calculation of the basic reproduction number. This method also allows us to obtain

stability results for the model by making use of the theory of cooperative and irreducible

systems for delay differential equations and ordinary differential equations. Our approach

of obtaining R0 is particularly designed for models with the delayed term determined via

the solution of another differential system. We parametrize our model for influenza and use

real demographic and air travel data for the numerical simulations. Three distinct origin–

destination pairs are considered to understand the role of the different characteristics of

the regions in the propagation of the disease, and to demonstrate the effect of possible

intervention strategies. The applicability of our approach is also illustrated as we fit

the model to the first wave of the 2009 A(H1N1) influenza pandemic in Canada and Mexico.

Our results for the SEAIR model highlight the significance of including travel time and

travel-related infection in the modeling of the spatial spread of infectious diseases: the

invasion of disease free regions is highly expedited by the elevated transmission potential

during transportation. To keep a region free of infection, the most efficient intervention

strategy is to control the outbreak at its source. However, screening travelers as they arrive

to their destination from affected areas is a potential intervention tool as well. Such an

entry screening procedure is considered in the simple epidemic model for two connected

regions we present in Chapter 4. Furthermore, we also propose an SIR (susceptible–
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infected–recovered) model for disease transmission in the population of individuals who

travel between r regions. In the multiregional model there are multiple delays, thus we

extend our framework elaborated in Chapter 2 to be able to study this system.

The dynamics of compartmental disease transmission models is often characterized by

the basic reproduction number, since this quantity determines the stability of the disease

free equilibrium. Forward transcritical bifurcation describes the usual situation, when the

infection free steady state is asymptotically stable when R0 is less than one, but when R0

exceeds unity, stability is passed to a unique endemic equilibrium, which only exists for

R0 > 1. However, in some SIVS (susceptible–infected–vaccinated–susceptible) epidemic

models with imperfect vaccine, a different behavior has been observed; that is, two positive

steady states can coexist with the disease free equilibrium for some values of R0 less than

one. This phenomenon, called backward bifurcation, presents a scenario when the condi-

tion R0 < 1 does not ensure that the disease will be eradicated, since the stable positive

steady state makes it possible for the infection to persist for certain initial conditions.

In Chapter 5, we extend the simple SIVS vaccination model to two regions which are

connected by transportation, and focus our attention on the special case of one-directional

traveling. We assume that the inflow of non-infective travelers into a region is constant

over time, moreover infecteds do not travel. Our model is an extension of the original SIVS

model as it incorporates the possibility of constant transport-related inflow (i.e., immigra-

tion) of susceptible and vaccinated individuals. After giving an explicit condition for the

existence of backward bifurcation and multiple endemic equilibria, we show global stability

results for the model, and examine how the structure of the bifurcation diagram depends

on the immigration parameters. We show that under certain conditions, increasing the

inflow of non-infectives may change the direction of bifurcation from forward to backward,

or vice versa. However, it is also possible to control other model parameters in a way that,

independently of the immigration parameters, the system exhibits a backward or forward

bifurcation, respectively.

The dissertation is based on one paper of the author, on two papers with co-author

Gergely Röst, and on one paper with co-authors Gergely Röst and Jianhong Wu. These

publications are the following:

• D. H. Knipl and G. Röst, Multiregional SIR model with infection during trans-

portation, Biomath 1 (2012), 1209255 http://dx.doi.org/10.11145/j.biomath.

2012.09.255

http://dx.doi.org/10.11145/j.biomath.2012.09.255
http://dx.doi.org/10.11145/j.biomath.2012.09.255
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• D. H. Knipl, Fundamental properties of differential equations with dynamically de-

fined delayed feedback, Electron. J. Qual. Theory Differ. Equ. No. 17 (2013) pp. 1–18.

http://www.math.u-szeged.hu/ejqtde/p1883.pdf

• D. H. Knipl, G. Röst and J. Wu, Epidemic Spread and Variation of Peak

Times in Connected Regions Due to Travel-Related Infections — Dynamics of an

Antigravity-Type Delay Differential Model, SIAM J. Appl. Dyn. Syst. 12(4) (2013)

pp. 1722—1762. http://epubs.siam.org/doi/abs/10.1137/130914127

• D. H. Knipl and G. Röst, Backward bifurcation in SIVS model with immigra-

tion of non-infectives, Biomath 2 (2013), 1312051 http://dx.doi.org/10.11145/

j.biomath.2013.12.051

http://www.math.u-szeged.hu/ejqtde/p1883.pdf
http://epubs.siam.org/doi/abs/10.1137/130914127
http://dx.doi.org/10.11145/j.biomath.2013.12.051
http://dx.doi.org/10.11145/j.biomath.2013.12.051
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Összefoglalás

Ebben a Ph.D. értekezésben olyan nemautonóm funkcionál-differenciálegyenletekkel foglal-

kozunk, ahol a késleltetést tartalmazó függvényt nem lehet a változó explicit függvényeként

megadni, hanem az dinamikus módon, egy másik differenciálegyenlet-rendszer megoldásán

keresztül van definiálva. A 2. fejezetben a következő kezdetiérték-problémát definiáljuk:

x′(t) = F(t, xt) = f(t, x(t)) +W (t, x(t− τ)),

xσ = ϕ,
(2.1)

ahol t, σ ∈ R, t ≥ σ, valamint valamely n ∈ Z+-ra x : R � Rn, f : R × Rn � Rn és

W : R × Rn � Rn. A C = C([−τ, 0],Rn) fázisteret a [−τ, 0] intervallumról Rn-be képező,

folytonos függvények Banach-tereként adjuk meg a szupremumnormával, ahol τ rögzített

pozitív konstans. A megoldás szegmensét xt ∈ C-vel jelöljük, melyre fennáll az xt(θ) =

x(t− θ) egyenlőség bármely θ ∈ [−τ, 0]-ra. Ekkor F : R× C � Rn, továbbá ϕ ∈ C jelöli a

rendszer állapotát a σ kezdeti időpontban. Azt mondjuk, hogy valamely F : R× Rj � Rl

függvény kielégíti a (Lip) Lipschitz-feltételt az R × Rj tér minden korlátos részhalmazán

j és l pozitív egészekre, ha fennáll az alábbi:

(Lip) Bármely a, b ∈ R és M > 0-ra létezik K(a, b,M) > 0 konstans, hogy

|F (t, x1)− F (t, x2)|l ≤ K|x1 − x2|j , a ≤ t ≤ b, |x1|j , |x2|j ≤M.

Feltesszük, hogy f : R×Rn � Rn folytonos és teljesíti (Lip) feltételt R×Rn minden korlátos

részhalmazán. Tekintjük továbbá az alábbi, közönséges differenciálegyenletre vonatkozó

kezdetiérték-problémát:
y′(s) = g(s, y(s)),

y(s0) = y∗,
(2.2)

ahol m ∈ Z+, y : R � Rm és g : R × Rm � Rm, továbbá s, s0 ∈ R, s ≥ s0 és y∗ ∈ Rm.
Feltesszük, hogy g folytonos R×Rm-en és kielégíti (Lip) feltételt R×Rm minden korlátos

részhalmazán. A közönséges differenciálegyenletek általános elméletéből következik, hogy

a (2.2) rendszernek létezik y(s; s0, y∗) egyértelmű megoldása az [s0, s0 + α] intervallumon

valamely α > 0-ra, továbbá a megoldás folytonosan függ a kezdeti feltételektől. A következő

kiegészítő feltételt tesszük:
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(?) A (2.2) rendszer y(s; s0, y∗) megoldása minden s0-ra és y∗-ra létezik legalább τ ideig,

tehát az [s0, s0 + τ ] intervallumon.

Bevezetjük továbbá a h : R×Rn � Rm és k : R×Rm � Rn folytonos függvényeket, melyek

kielégítik a (Lip) feltételt. A W : R× Rn � Rn függvényt

W (s, v) = k(s, ys−τ,v(s)) = k(s, y(s; s− τ, h(s− τ, v)))

módon definiáljuk, ahol ys0,v(s) jelöli (2.2) megoldását az y∗ = h(s0, v), v ∈ Rn speciális

esetben. Mindezekből következik, hogy W , mint a (2.1) rendszerben a késleltetést tartal-

mazó függvény, a (2.2) differenciálegyenlet-rendszer megoldásán keresztül van meghatározva.

Fennáll tehát, hogy (2.1) olyan funkcionál-differenciálegyenletek általános alakját írja le,

melyekben a késleltetett visszacsatolási tagot dinamikus módon adjuk meg.

Az F függvényre vonatkozó Lipschitz-feltétel bizonyításával nyerjük az általános létezési,

egyértelműségi, és a megoldásnak a kezdeti értékektől való folytonos függéséről szóló tételt

(2.1)-re. Ezen felül néhány, a biológiai alkalmazások szempontjából fontos eredményt is

igazolunk, melyek a megoldások nemnegativitásával illetve az autonóm rendszer egyensúlyi

helyzeteinek stabilitásával foglalkoznak.

A késleltetett differenciálegyenleteknek számos természettudományi és mérnöki alkal-

mazása van. A doktori disszertációban olyan populációdinamikai illetve járványtani model-

leket vizsgálunk, melyekben a késleltetett visszacsatolási tag definiálása egy másik rendszer

megoldásán keresztül történik. Az 1. fejezetben ismertetett egydimenziós modell egy popu-

láció létszámának időbeni változását követi azzal a feltevéssel, hogy az egyedek valamely

rögzített időre elszakadhatnak a populáció többi részétől. A 3. és 4. fejezetekben olyan

késleltetett járványterjedési modellekkel foglalkozunk, melyek légiközlekedéssel összekap-

csolt régiókban írják le a betegségek terjedését. Számos történelmi példa, többek között az

1918–1919-es spanyolnátha esete is illusztrálja, hogy országhatárok és óceánok sosem szab-

tak gátat fertőző betegségek terjedésének. A 2002-ben kitört SARS, majd a 2009-es H1N1

világjárványok világosan rámutattak, hogy a nemzetközi légiközlekedési rendszer kulcs-

fontosságú szerepet játszik a járványok világméretű terjedésében. A modellalkotás során

feltételezzük, hogy – távoli területekről lévén szó – az utazás hossza nem elhanyagolható,

és ugyanezen oknál fogva figyelembe vesszük azt a tényt is, miszerint a járványterjedés

nem csak a szárazföldön, hanem a repülőutak alatt is zajlik. A régiókban egy késlel-

tetett differenciálegyenlet-rendszer írja le a betegség terjedését, míg a repülőutak alatt

zajló járványterjedést közönséges differenciálegyenletekkel modellezzük. Az utazás befe-

jeztével az egyes régiókba érkező emberek csoportja mint késleltetett visszacsatolási tag

jelenik meg az egyenletrendszerben. Ezt a tagot csak az utazás közbeni járványdinamika,
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vagyis az azt leíró rendszer megoldásának ismeretében lehetséges meghatározni.

A disszertáció 3. fejezetében felállítunk egy SEAIR–alapú (S – fogékony, E – látens,

A – tünetmentes fertőzött, I – fertőzött tünetekkel, R – felgyógyult) modellt, mellyel két,

légiközlekedéssel összekapcsolt régióban modellezzük fertőző betegségek terjedését. Mivel a

populáció tagjai közötti kapcsolati hálózat nagy hatással van a járványterjedés sebességére,

az embereket nem csak a betegség fázisai, de regionális hovatartozásuk szerint is megkülön-

böztetjük. A repülőutak alatt zajló járványterjedést egy kor-strukturált rendszer írja le,

ahol a kor az utazás megkezdése óta eltelt időt jelzi. Ha figyelembe vesszük, hogy a

repülőgépek utasterének zsúfoltsága miatt a megfertőződés valószínűsége jelentősen na-

gyobb utazás alatt, mint átlagos körülmények között, akkor arra az érdekes következtetésre

jutunk, hogy a járvány leghamarabb a kitörés helyétől távoli területekre terjed át. Ezért

modellünk jelentősen különbözik az ún. gravitáció-típusú modellektől, melyek azon a fel-

tevésen alapulnak, miszerint a járvány terjedési sebessége két terület között fordítottan

arányos a régiók közötti távolsággal (az elnevezés a sebesség és a távolság közötti in-

verz kapcsolatra utal, mely a fizikai gravitáció esetében is tapasztalható). Modellünket

tehát – a fentiek okán – antigravitáció-típusúnak nevezzük. Megmutatjuk, hogy a modellt

leíró húszdimenziós autonóm funkcionál-differenciálegyenlet rendszer zárt alakban a (2.1)

rendszerként áll elő, így alkalmazhatjuk modellünkre az általános kezdetiérték-problémára

nyert eredményeket. Bemutatunk továbbá egy eljárást, melyet az elemi reprodukciós szám

kiszámítására dolgoztunk ki. Módszerünk alkalmazható minden olyan rendszer eseté-

ben, melyben a késleltetett tag egy másik rendszer megoldásán keresztül van megadva.

Ezután a közönséges és késleltetett differenciálegyenletekre vonatkozó, kooperatív és irre-

ducibilis rendszerek elméletére támaszkodva leírjuk a modell betegségmentes egyensúlyá-

nak stabilitását R0 segítségével. A modellt a 2009-es A(H1N1) influenza pandémiához

parametrizáljuk, a számítógépes szimulációkban valós demográfiai és légiközlekedési ada-

tokat használunk. A járványdinamikát számos, a régiók karakterisztikájához kapcsolódó

tényező is befolyásolja, így a régiók paraméterezéséhez három, egymástól jelentősen külön-

böző esetet tekintünk. Végül modellünket a kanadai és a mexikói morbiditási adatok

alapján rekonstruált járványgörbékhez illesztjük.

Az SEAIR–modellre nyert eredményeink kiválóan illusztrálják az utazás közbeni

járványdinamika figyelembevételének fontosságát: rámutattunk, hogy a repülőutak alatt

jelenlevő megnövekedett fertőzési potenciál jelentősen felgyorsítja a betegség terjedését.

A járvány elleni védekezés leghatékonyabb formája, ha már a járványkitörés helyén

megpróbálják megakadályozni a fertőzés terjedését; ugyanakkor pandémiás helyzetben

számos ország alkalmaz olyan prevenciós stratégiákat, melyek a régióba érkező fertőzött
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utazók elkülönítésére irányulnak. A disszertáció 4. fejezetében bemutatott SIR-típusú (S

– fogékony, I – fertőzött, R – felgyógyult) kétrégiós modellben feltesszük, hogy a régiókba

érkezők ilyen szűrésen esnek át. Ezt követően vizsgálunk egy másik, szintén SIR–alapú

járványterjedési modellt is, melyben a populáció tagjai r régió között utaznak. A modell

szükségessé teszi a 2. fejezetben kidolgozott elmélet kiterjesztését több késleltetés esetére,

ugyanis a különböző régiópárok közötti utazások hossza eltérő lehet.

Az elemi reprodukciós szám fontos szerepet játszik a járványterjedés dinamikájának

vizsgálatában, mivel a rendszer betegségmentes egyensúlyának stabilitása R0-tól függ. A

legtöbb modellben az ún. forward transzkritikus bifurkáció írja le az egyensúlyi helyzetek

lokális stabilitását. Eszerint R0 < 1-re a rendszernek csak egy, a betegségmentes egyensú-

lyi helyzete létezik, mely lokálisan aszimptotikusan stabil; ugyanakkor R0 = 1-ben meg-

jelenik egy stabil pozitív egyensúly, és a betegségmentes állapot instabillá válik. Egyes

modelleknél ugyanakkor másfajta bifurkációs viselkedés, az ún. backward bifurkáció esete

tapasztalható: ekkor a reprodukciós szám valamely egynél kisebb értékeire a rendszernek

két pozitív egyensúlya is van a betegségmentes állapot mellett. Ha az endemikus egyensúlyi

helyzetek valamelyike stabil, akkor – a forward bifurkációs modellek esetével ellentétben –

a járványterjedés megfékezéséhez már nem mindig elegendő R0-t egy alá szorítani.

A dolgozat 5. fejezetében felállítunk egy SIVS (S – fogékony, I – fertőzött, V – vakcinált)

járványterjedési modellt két régióban. Feltesszük, hogy a régiók közötti utazás egyirányú,

valamint a fogékonyak és vakcináltak konstans rátával érkeznek, míg a fertőzöttek nem

utaznak. Ezáltal egy olyan modellre jutunk, mely az általános SIVS-modellt általánosítva

figyelembe veszi a nemfertőző egyedek bevándorlásának lehetőségét. A modellparaméterek

függvényében pontosan meghatározzuk a backward illetve a forward bifurkáció fennállásá-

nak feltételét, majd a megoldások globális viselkedését is leírjuk. Ezt következően vizs-

gáljuk a bevándorlás hatását a bifurkációs viselkedésen. Megadhatóak azok a paramétertar-

tományok, melyekben a bevándorlás nem változtatja meg a bifurkáció irányát. Ugyanakkor

megmutatjuk, hogy bizonyos feltételek mellett a bevándorlási paraméterek növelésével a

bifurkációs viselkedés forwardról backwardra, illetve fordítva irányba változik R0 = 1-nél.

A disszertáció a szerző két, Röst Gergellyel közösen írt dolgozatára, egy további,

Röst Gergely és Jianhong Wu társszerzőkkel közös publikációjára, valamint egy önálló

közleményére épül:

• D. H. Knipl and G. Röst, Multiregional SIR model with infection during trans-

portation, Biomath 1 (2012), 1209255 http://dx.doi.org/10.11145/j.biomath.

2012.09.255

http://dx.doi.org/10.11145/j.biomath.2012.09.255
http://dx.doi.org/10.11145/j.biomath.2012.09.255
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• D. H. Knipl, Fundamental properties of differential equations with dynamically de-

fined delayed feedback, Electron. J. Qual. Theory Differ. Equ. No. 17 (2013) pp. 1–18.

http://www.math.u-szeged.hu/ejqtde/p1883.pdf

• D. H. Knipl, G. Röst and J. Wu, Epidemic Spread and Variation of Peak

Times in Connected Regions Due to Travel-Related Infections — Dynamics of an

Antigravity-Type Delay Differential Model, SIAM J. Appl. Dyn. Syst. 12(4) (2013)

pp. 1722—1762. http://epubs.siam.org/doi/abs/10.1137/130914127

• D. H. Knipl and G. Röst, Backward bifurcation in SIVS model with immigra-

tion of non-infectives, Biomath 2 (2013), 1312051 http://dx.doi.org/10.11145/

j.biomath.2013.12.051

http://www.math.u-szeged.hu/ejqtde/p1883.pdf
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