
Evaluating optimization and reverse engineering techniques on
data-intensive systems

Csaba Nagy

Department of Software Engineering
University of Szeged

Supervisor: Dr. Tibor Gyimóthy

Summary of the Ph.D. thesis submitted for the degree of Doctor of Philosophy
of the University of Szeged

University of Szeged
Ph.D. School in Computer Science

December 2013
Szeged, Hungary





1 Introduction

At the beginning of the 21st century, information systems are not simple computer applica-
tions that we sometimes use at work, but large systems with complex architectures and ful-
filling important roles in our daily life. The purpose of such systems is to get the right information to
the right people at the right time in the right amount and in the right format [15].

In 1981, Pawlak published a paper reporting some of the activities of the Information Systems Group inWar-
saw [14]. Their information system was implemented for an agriculture library that had some 50,000 docu-
ments. Since then, information systems have evolved as data volumes have steadily increased. There are reports
on systems, like those in radio astronomy, where systems need to handle 138 PB (peta bytes) of data per day
[16]. Another example from the high-energy physics community, the Large Hadron Collider machine, gener-
ates 2 PB of data per secondwhen in operation [7]. These systems are usually referred to as data-intensive systems
[2, 10–12].

The big data which data-intensive systems work with is stored in a database, typically managed by a database
management system(DBMS),where it is structuredaccording to a schema. In relationalDBMSs(RDBMS), this
schemaconsists of data tableswith columnswhere the tables usually represent the current state of the population
of a business object and columns are its properties.

In order to support the maintenance tasks of these systems, several techniques have been developed to ana-
lyze the source code of applications or to analyze the underlying databases for the purpose of reverse engineering
tasks, like quality assurance and program comprehension. However, only a few techniques take into account the
special features of data-intensive systems (e.g. dependencies arising via database accesses). As Cleve et al. re-
marked in a study on data-intensive system evolution [3]: “…both the software and database engineering research
communities have addressed the problems of system evolution. Surprisingly, however, they’ve conducted very little re-
search into the intersection of these two fields, where software meets data.”

1.1 Goals of the Thesis

In this thesis, we describe studies carried out to analyze data-intensive applications via different reverse engi-
neering methods based on static analysis. These are methods for recovering the architecture of data-intensive
systems, a quality assurance methodology for applications developed in Magic, identifying input data related
coding issues and optimizing systems via local refactoring. With the proposed techniques we were able to an-
alyze large scale industrial projects like banking systems with over 4 million lines of code, and we successfully
retrieved architecture maps and identified quality issues of these systems.

Here, we seek answers to the following research questions:

RQ1: Can automated program analysis techniques recover implicit knowledge from data accesses to support
the architecture recovery of data-intensive applications?

RQ2: Canwe adapt automatic analysis techniques that were implemented for 3rd generation languages to a 4th
generation language likeMagic? If so, can static analysis support themigration ofMagic applicationswith
automated techniques?

RQ3: How can we utilize control flow and data flow analysis so as to be able to identify security issues based on
user-related input data?

RQ4: Can we use local refactoring algorithms in compilers to optimize the code size of generated binaries?

Our results have been grouped into 6 contributions divided into three main parts according to the research
topics. In the remaining part of the thesis summary, the following contribution points will be presented:

1



I Architecture recovery of legacy data-intensive systems

(a) Extracting architectural dependencies in data-intensive systems

(b) Case study of reverse engineering the architecture of a large banking system

II The world of Magic

(a) A reverse engineering framework for Magic applications

(b) Defining and evaluating complexity measures in Magic as a special 4th generation language

III Security and optimization

(a) Static security analysis based on input-related software faults

(b) Optimizing information systems: code factoring in GCC

1.2 Publications

Most of the research results presented in this thesis were published in proceedings of international conferences
and workshops or journals. Section 5.1 provides a list of selected peer-reviewed publications. Table 1.1 is a
summary of which publications cover which results of the thesis.

No. Contribution - short title Publications

I/a. Extracting architectural dependencies in data-intensive systems [23]
I/b. Case study of a large banking system [20, 25]

II/a. A reverse engineering framework for Magic [18, 24, 27]
II/b. Defining and evaluating complexity measures in Magic [26]

III/a. Static security analysis [21]
III/b. Optimizing information systems: Code factoring in GCC [19, 22]

Table 1.1: Relation between the thesis topics and the corresponding publications.

2 Architecture recovery of legacy data-intensive systems

In this part, we introduce the analysis techniques we developed for data-intensive systems
with database management systems in the center of their architecture.

First, we present amethod for extracting dependencies between source code elements and data tables in data-
intensive systems based on data accesses via embedded SQL queries (Create-Retrieve-Update-Delete, CRUD de-
pendencies) that we use to investigate safe relations, e.g. for impact analysis or architecture recovery. Next, we
describe a case study where we combine the previously introducedmethods as bottom-up techniques with top-
down techniques (interviews with the developers) for reverse engineering a large legacy data-intensive system
written in Oracle PL/SQL.

2



2.1 Extracting architectural dependencies in data-intensive systems

2.1.1 Extracting embedded SQL queries from source code

A typical way of communicatingwith anRDBMS is by using SQLqueries through a library such as JDBC.ORM
technologies likeHibernate are becoming popular too, but they also use SQL statements at a lower level . Hence,
most of the reverse engineering methods heavily rely on the extraction or capturing of SQL statements used to
communicate with the underlying RDBMS.

In our paper [24] we introduced an extraction technique for analyzing SQL statements embedded in the
source code of a special procedural language. The programming style of this language makes the whole system
strongly database dependent and it makes use of SQL queries common in the system. The SQL statements to
be executed are embedded as strings sent to specific library procedures and their results can be stored in given
variables. Thismethod is actually the same as that for procedural languages where embedded queries are sent to
the database via libraries like JDBC. This makes our method quite general and suitable for other languages too.

Theapproachwe implemented is basedon the simple ideaof substituting theunrecognizedquery fragments in
a string concatenationwith special substrings. For instance, it is possible to simply replace thename variablewith
a string ‘@@name@@’. If the SQL parser is able to handle this string as an identifier, then the received query
string will be a syntactically correct SQL command (see Figure 2.1). With this simple idea we need to locate
the library procedures sending SQL commands to the database in order to perform the string concatenation,
and the above-mentioned substitution of variable. Whenever the constructed string is considered syntactically
correct, it has the key characteristics of the executed SQL command.

name=readString();
sql="SELECT firstname , lastname " +

"FROM customers " +
"WHERE firstname " +
"LIKE('%" + name + "%')";

executeQuery(sql);

SELECT firstname , lastname
FROM customers
WHERE firstname

LIKE('%@@name@@%');

(a) (b)

Figure 2.1: Sample code of an (a) embedded SQL command (b) and its extracted form where the param-
eter of the LIKE is determined by a variable.

We noticed that in ForrásSQL, developers prefer to prepare statements as close to their execution place as
possible and they prefer to keep SQL keywords in separate string literals. So in most cases, it is possible to
substitute a variables with its last defined value within the same control block. In other cases the variable can be
replaced with the variable name, as described previously.

The technique has its limitations, but in the ForrásSQL context it worked reasonably well. An additional
benefit is that it scales well with large systems. With this technique we identified 7, 434 embedded SQL strings
(based on the specific SQL library procedure calls) in a 315 kLOC application and we successfully analyzed
6, 499 SQL statements, which is 87% of all the embedded SQL strings.

2.1.2 Dependencies via data accesses in data-intensive systems

An analysis of SQL queries can be carried out to discover dependencies in the software which arise through the
database. Such dependencies can help us track the flow of data or discover explicit or implicit relations among
source elements.

3



CRUD
Procedure

Customers

NewCustomer CarRentalCRUD
Table

Rentals

CRUD Table

Cars CarCrash

Address 
Modification

CRUD
Procedure

CRUD
Procedure

CRUD
Procedure

CheckCustomer
Credit

CheckCar
Available

CRUD
Procedure

CRUD
Procedure

CRUD
Procedure

CRUD
Procedure CRUD

Procedure

SEA/SEB

SEA/SEB

SEA/SEB

Figure 2.2: Typical CRUD and SEA/SEB relations between procedures and between tables.

It was shown earlier that CRUD matrices are useful tools for supporting program comprehension and qual-
ity assessment [1, 17]. In our paper [24], we described the application of a CRUD-based Usage Matrix for
dependency analysis among program elements (a sample graph representation of CRUD relations can be seen
in Figure 2.2). In the ForrásSQL system that we analyzed we identified relations among procedures based on
table or column accesses and compared these relations to dependencies recovered by SEA/SEB relations [6].
The results indicated that the disjoint parts of the relation sets of the two methods were similar in size, and that
their intersection was considerably smaller (about 3% of the union). Based on this empirical evaluation, we
concluded that neither of the relations was definitely better (safer and more precise) than the other; they were
simply different. Thus they should be applied together in situations where a safe result is sought in the context
of data-intensive systems.

2.1.3 Own contribution

Designing the SQL extraction algorithm and the relations among source code elements; performing the analysis
in the case study and evaluating the results was the work of the author. In addition, the major part of designing
the Transact SQL Schema and parsing Transact SQL code was the work of the author too, but designing and
implementing the full analysis was carried out as a joint work with co-authors of corresponding paper [23]. For
the analysis of ForrásSQL sources, we used the previously implemented ForrásSQL front-end and the analyzers
of the Columbus technology, extending SEA/SEB computation for ForrásSQL, which was implemented by the
author. Following our contribution, Liu et al. published a similar approach for systems written in PHP [8].

2.2 Case study of reverse engineering the architecture of a large banking system

In our case study, one of our industrial partners asked us to help them in solving maintenance issues of their
huge database system. They had a large Oracle PL/SQL system which had evolved over the years to a system
having a database dump with more than 4.1 MLOC (counting just the non-empty and non-comment lines of
code, excluding data insertions).

Applying our techniques, we reconstructed an architecturalmapof their system: we identifiedhigh-level com-
ponents and their related objects during interviews with members of the development team (they had strict
naming conventions), and used our previous technique (Section 2.1.2) to identify relations between compo-
nents (via call andCRUDdependencies). The final results indicated that each of the 26 logical component were
related to practically every other component (Figure 2.3). In another part of our analysis, we identified unused

4



Figure 2.3: Relations among components of a large data-intensive system that evolved in an ad-hoc man-
ner: almost all of the 26 components are related to practically all other component (names distorted).

data objects and objects placed in the wrong components (they logically belonged to other components).
Identified dependencies also supported the elimination of a huge component from the PL/SQL source base,

which they re-implemented in Java. With the help of our analysis, they were able to eliminate uncut relations of
theunused component. Besides identifying issues in thedesignof the architecture, using the static code checkers
and a clone detector we identified a number of coding issues that needed to be addressed.

2.2.1 Own contribution

To perform our analysis of the Oracle PL/SQL system, we extended the Columbus framework with an Oracle
front-end that is able to analyze PL/SQL code and Oracle SQL queries as well. The author’s own contribution
wasmainly in designing theOracle Schema and in implementing the parser. The author designed themethod of
retrieving the architecturemap of the target system and themethod for identifying uncut relations of an unused
component. The author carried out an analysis of the target system and discussed results with the developers.
The rest of the implementation and the research work was shared work with co-authors of a corresponding pub-
lications [20, 25].

3 Theworld ofMagic

Here, we describe how we applied the Columbus methodology to Magic, a fourth generation
language. We developed a framework for analyzing quality attributes of Magic applications and extracting
architectural dependencies outlined in the previous chapters.

First, we describe our technique for analyzing an application written in Magic by adapting a 3GL reverse en-
gineering methodology called the Columbus methodology. We show that 3GL analysis techniques (e.g. for
quality assurance or supporting migration) support the development in this environment as well. Then, we ex-
amine a new complexitymetric for theMagic language as during the adaptationwe realized that 3GL complexity
metrics did not fulfill the needs of experienced Magic developers.

3.1 A reverse engineering framework for Magic applications

Fourth generation languages are also referred to as very high level languages. A programmer who develops an
application in such a language does not need towrite ‘source code’, but he can programhis application at a higher

5



level of abstraction andhigher statement level, usuallywith thehelp of an applicationdevelopment environment.
Magic, a good example of a 4GL, was introduced by Magic Software Enterprises in the early 80’s as an inno-

vative technology to move from code generation to the use of an underlying meta model within an application
generator. It was invented for the development of business applications with a special development style that
is strongly database oriented. Most of the software elements are related to database entities: fields of records
can be simply reached via variables and a task (which is the nearest element we have to a procedure) is always
connected to a data table on which it performs operations. Hence, applications developed in Magic can also be
treated as data-intensive systems.

With our industrial partner, SZEGED Software Inc., we conducted research work in adapting the Columbus
methodology as a 3GL reverse engineering methodology to reverse engineering Magic applications. We inves-
tigated how to analyze the source code quality of a Magic application [24] and how to identify architectural
relations in such a system (e.g. CRUD relations, as used in the earlier PL/SQL system) [27].

Sample 
project

MagicAnalyzer

Project.msi

Magic2Metrics

MagicCheckGEN

MagicDuplicate
CodeFinder

Project metrics

Rule violations

Code clones

CMS

Database

Developer GUI

Admin GUI

BuildEngine

Figure 3.1: Columbus methodology adapted in the Magic environment.

We implemented the whole Columbus methodology for Magic starting from the parsing phases to the com-
putation of product metrics, the identification of coding issues and the extraction of architectural views of the
system (see Figure 3.1).

Metric Value

Number of Programs 2 761
Number of non-Remark Logic Lines 305 064
Total Number of Tasks 14 501
Total Number of Data Tables 786

Table 3.1: Main characteristics of the system in question.

Weshowed that existing techniques canbe adapted toMagic, butwith somedifferences: (1) quality attributes
need to be handled with caution, for example, as the complexity needs to be redefined; (2) the application
development environment stores information in its export file which could not be gathered from 3GL code

6



with a simple computation. For instance, in Magic there is no need to analyze embedded queries to retrieve
CRUD relations because data accesses are handled directly via specific variables and this information is readily
available in the export file.

Figure 3.2: Histogram showing the frequency distribution of LLOC metric values of tasks.

Figure 3.3: Program calls extended with menu accesses.

Thanks to our industrial partner, we had a chance to test our implementation and validate the results in an
‘in vivo’, industrial context by analyzing a large-scaleMagic application. In addition, we received direct feedback
fromexperiencedMagic developers. Table 3.1 shows samplemetrics of theMagic system thatwe analyzedwhile
Figure 3.2 and Figure 3.3 show a sample histogram of a selected metric and an architectural view respectively.

7



The reverse engineering framework served as a good basis for additional quality assurance tasks as well, e.g.
in a study we successfully automated the GUI testing of Magic applications based on UI information stored in
the constructed ASG [18].

3.1.1 Own contribution

The author’s contribution was mainly in designing and implementing the reverse engineering framework for
Magic. Although the parser which constructs the ASG was the work of the industrial partner, the author de-
signed the initial versions of the Magic Schema and the APIs to handle it. The author also defined the new
metrics for Magic and the different architectural views of Magic applications. The identified coding issues were
defined in cooperation with the industrial partner as most of the validation and testing tasks were performed
together. The author designed the automatic GUI testing tool published in the corresponding paper [18]. The
rest of the work is a shared work of authors of papers [24, 27] and the colleagues who supported these studies.

3.2 Defining and evaluating complexity measures in Magic as a special 4th generation lan-
guage

When we investigated the internal structure of Magic programs, we identified key aspects needed to define new
metrics and adapt some 3GLmetrics toMagic. The greatest challenge we facedwas the definition of complexity
metrics, where experienced developers found our first suggestions inappropriate and counterintuitive. Modi-
fying our measures, we got several experienced developers to participate in an experiment to evaluate different
approaches for applying complexity metrics.

We adapted two 3GL complexitymetrics toMagic (McCabe’s andHalstead’s complexity metrics) and, based
on the feedback of developers, we implemented a modified version of McCabe’s cyclomatic complexity (see
Definition 1). With the help of experienced Magic developers, we carried out an experiment to evaluate our
approaches and we found no significant correlation between developers ranking and our initial McCabe com-
plexity. In contrast, we found a strong correlation between the modified version of McCabe’s complexity the
developers’ rankings and between Halstead’s complexity and their rankings.

McCC(LU) = Number of decision points in LU+ 1
WLUT(T) =

∑
LU∈T

McCC(LU)

McCC (LU) = Number of decision points in LU +∑
TC∈LU

McCC (TC) + 1

McCC (T) =
∑

LU∈T
McCC (LU)

T: a Task in the Project

LU: a Logic Unit of a Task

TC: a called Task in LU

Def. 1: The definition of McCabe’s cyclomatic complexity for Logic Units (McCC), Weighted Logic Units
per Task (WLUT), and the modified McCabe’s cyclomatic complexity (McCC ).

Figure 3.4 shows the ranks ofMagic program based on their complexity measures. In the figure, the EC value
(Experiment Complexity) is based on the average rank given by developers, while HPV and HE are Halstead
complexity metrics.

8



2469 281 278 69 372 449 128 452 291 377

ProgramcId

WLUT

McCC2

HPV

HE

EC

R
a
n
k

12

10

8

6

4

2

0

Figure 3.4: The EC value (the average rank given by developers) compared with values got from the main
complexity metrics. (Weighted Logic Units per Task (WLUT), and the modified McCabe’s cyclomatic
complexity (McCC ), Halstead’s Program Volume (HPV) and Effort to implement (HE) metrics.)

3.2.1 Own contribution

The author’s work was mainly involved in defining the new metrics and conducting the experiment with the
developers, although the implementation of the complexity metrics was the work of co-authors of the corre-
sponding paper [26]. We consider the definition of themodified cyclomatic complexity a relevant contribution
of the experiment since we defined a new, understandable complexity measure for use by Magic developers.

4 Security and optimization

Now,wewill discuss analysis and transformationmethods for security andoptimization pur-
poses. These techniques are more general than the previous ones in the sense that they do not depend on a
data-centric architecture; so the results presented here can be applied to applications without databases as well.

First, we present static analysis techniques for applications that work with input data coming from external
sources (e.g. from user input or I/O operations). Then we discuss the effectiveness of local code factoring algo-
rithms implemented on different intermediate levels of GCC for optimizing the size of applications written in
C or C++.

4.1 Static security analysis based on input-related software faults

In our approach we focus on the input-related parts of the source code, since an attacker can usually take ad-
vantage of a security vulnerability by passing malformed input data to the application. If this data is not han-
dled correctly it can cause unexpected problems while the program is running. The path which the data travels
through can be tracked using dataflow analysis to determine the parts of the source code that involve user input.
Software faults can appear anywhere in the source code, but if a fault is somewhere along the path of input data
it can act as a “land mine” for a security vulnerability.

The main steps of our approach (Figure 4.1) are the following:

1. Find locations in the source code where data is read using a system call of an I/O operation. These calls
are marked as input points,

2. Get the set of program points involved in user input,

3. Get a list of dangerous functions using metrics,

4. Perform automatic fault detection to find vulnerabilities.

9



Source Code
Information 
Extraction

System 
Dependence 

Graph

Locate Input 
Points

Input Points
Calculate Input 

Paths
Input Paths

Calculate Input 
Coverage

Calculate Input 
Distance

Buffer Overrun 
Detection

Format 
Violation 
Detection

Dangerous 
Functions

Vulnerable 
Functions

Figure 4.1: An overview of our approach.

Name Occurrences

read() 55
fread() 12
fgets() 10
gg_read() 9
gethostname() 6
getpwuid() 2
fscanf() 1
getenv() 1
getpass() 1
char *argv[] 1

Function Lines Coverage (%)

yahoo_roomlist_destroy 12 83.33
aim_info_free 13 84.62
s5_sendconnect 22 77.27
purple_ntlm_gen_type1 35 77.14
gtk_imhtml_is_tag 91 76.92
jabber_buddy_resource_free 25 72.00
peer_oft_checksum_destroy 8 75.00
qq_get_conn_info 12 75.00
_copy_field 8 75.00
qq_group_free 8 75.00

(a) (b)

Table 4.1: (a) Input operations in Pidgin, (b) and the list of top ten input coverage values of functions.

We presented the results of applying our technique on open source software and described a case study on
Pidgin, a popular chat client that we analyzed. We found real faults in Pidgin and in other open source applica-
tions. Our approach is novel as it uses input coverage and distance metrics to provide developers with a list of
functions that are most likely to contain potential security faults. The Pidgin case study demonstrated the ef-
fectiveness of our metrics applied on an application with a total number of 7,173 functions and 229,825 LOCs.
Based on our measurements, just 10.56% of the code was found to be related directly to user input and 2,728
functions worked with input data. Some of these values can be seen in Table 4.1.

4.1.1 Own contribution

For the analysis of C and C++ code we used CodeSurfer, which is a product of GrammaTech Inc. The author’s
own contribution was mainly in designing the algorithms, implementing them as a CodeSurfer plug-in, and
evaluating them in the given case study. We consider the approach presented to be a relevant contribution in the
area of static security analysis as more studies cited our paper [21].

10



4.2 Optimizing information systems: code factoring in GCC

Here, we introduce new optimization algorithms implemented at different optimization levels ofGCC, the pop-
ular open source compiler. The algorithms are so-called code factoring algorithms, a class of useful optimization
techniques specially developed for code size reduction. Developers recognized the power of thesemethods and
nowadays several applications use these algorithms for optimization purposes (e.g. ‘The Squeeze Project’¹, one
of the first projects using this technique).

Figure 4.2: An overview of the implemented algorithms.

We implemented the given code factoring algorithms on the Tree-SSA and on the RTL levels as well, and for
the sequence abstraction algorithm we implemented an interprocedural version. Figure 4.2 shows the order of
our new passes.

The main idea behind local factoring (also called local code motion, code hoisting or code sinking) is quite
simple: since it often happens that basic blockswith commonpredecessors or successors contain the same state-
ments, it might be possible to move these statements to the parent or child blocks.

For instance, if thefirst statementsof anifnode’sthen andelseblocks are identically the same,wecaneasily
move them before the if node. With this shifting - called code hoisting - we can avoid unnecessary duplication
of statements in theCFG.This idea can be extended to othermore complicated cases as not only anifnode, but
a switch and a source codewith strange goto statementsmay contain identical instructions too. Furthermore,
it is possible to move the statements from the then or else blocks after the if node too. This is called code
sinking, which is only possible when there are no other statements that depend on the shifted ones in the same
block.
Sequence abstraction (also known as procedural abstraction) in contrast to local factoring works with whole

single-entry single-exit (SESE) code fragments, not just with single instructions. This technique is based on find-
ing identical regions of code that can be turned into procedures. After creating the newprocedure, we can simply
replace the identical regions with calls to the newly created subroutine. A similar technique can be applied to
supportmultiple-entry single-exit (MESE) code fragments as well.

The correctness of the implementation was checked, and the results weremeasured on different architectures
with GCC’s official Code-Size Benchmark Environment (CSiBE) as a real-world system (see Table 4.2). These
results showed that on the ARM architecture we could achieve a 61.53% maximum and 2.58% average extra
code-size saving compared to the ‘-Os’ flag of GCC.

4.2.1 Own contribution
The algorithms were designed based on the previous work published in [9]. The implementation of the sinking-
hoisting and the sequence abstraction algorithms on all optimization phases ofGCC is a sharedwork among the

¹http://www.cs.arizona.edu/projects/squeeze/

11



?
A
B

?
C
D

�
�	

@
@R

PPPPPPq

������)
�

�	
@
@R

E
F
G
H
?

I
F
J
?

F
K
?

?
A
F
B

?
C
F
D

�
�	

@
@R

PPPPPPq

������)
�

�	
@
@R

E
G
H
?

I
J
?

K
?

?
A

B

C
?

?

D

E

B

F
?

?
G

E

B

H
?

?
A

B

C
?

?

D

call

?
G
call

HHj ���
E

B

ret
HHj���

F
?

H
?

(a) (b) (c) (d)

Figure 4.3: Basic blocks with multiple common predecessors (a) before and (b) after local factoring. Ab-
straction of (c) instruction sequences of differing lengths to procedures using the strategy for abstracting
only the longest sequence (d). Identical letters denote identical sequences.

flags
i686-elf arm-elf

size avg. saving max. saving size avg. saving max. saving
(byte) (%) (%) (byte) (%) (%)

-Os 2900177 3636462

-Os -ftree-lfact -frtl-lfact 2892432 0.27 6.13 3627070 0.26 10.29
-Os -frtl-lfact 2894531 0.19 4.31 3632454 0.11 4.35
-Os -ftree-lfact 2897382 0.10 5.75 3630378 0.17 10.34

-Os -ftree-seqabstr -frtl-seqabstr 2855823 1.53 36.81 3580846 1.53 56.92
-Os -frtl-seqabstr 2856816 1.50 30.67 3599862 1.01 42.45
-Os -ftree-seqabstr 2888833 0.39 30.60 3610002 0.73 44.72

-Os -fipa-procabstr 2886632 0.47 56.32 3599042 1.03 59.29

all 2838348 2.13 57.05 3542506 2.58 61.53

Table 4.2: Average and maximum code-size saving results. Size is given in bytes and saving is the size
saving correlated to ’-Os’ in percentage (%).

author and the second author, Gábor Loki of the corresponding paper [22]. The author also carried out the per-
formance measurements and evaluated the results. In addition, the author did the initial work on transforming
the ASG of Columbus to the Tree intermediate language of GCC, published in [19].

5 Conclusions

This thesis discusses different techniques for analyzing data-intensive systems and automat-
ically performing transformations on them. Here, we summarize the contributions and conclude the
thesis by answering our research questions and elaborate on the main lessons learned.

12



5.1 Summary of the contributions

In general, the results presented showed that static analysis techniques are good tools for supporting thedevelop-
ment processes of data-intensive systems. The source code of a software system is its best documentation, hence
by analyzing the source code we can recover implicit information about the system that might remain hidden if
we used other approaches. We also showed that data accesses (e.g. via embedded SQLs) are good sources of
architectural information in data-intensive systems. The techniques presented were also applicable to systems
written in a special 4GL called Magic. In addition, we were able to identify security issues and automatically
perform transformations to optimize the codesize of a system.

We should add here, thatmost of the presented approaches had a real industrialmotivation, allowing us to val-
idate our methods in ‘in vivo’, industrial environment. Innovation projects sponsored by the European Union
also rely on the results of our work [24, 27]. In addition, the reverse engineering framework for Magic moti-
vated research studies for the National Scientific Students’ Associations Conference. These studies were later
presented at international conferences as well [4, 5, 13].

RQ1: Can automated program analysis techniques recover implicit knowledge from data ac-
cesses to support the architecture recovery of data-intensive applications? We introduced a
new approach for extracting dependencies in data-intensive systems based on data accesses via embedded SQL
queries (CRUD dependencies). The main idea was to analyze the program logic and the database components
together; hence we were able to recover relations among source elements and data components. We analyzed
a financial system written in ForrásSQL with embedded Transact SQL or MS SQL queries and compared the
results with Static ExecuteAfter/Before relations. The results show thatCRUD relations recovered new connec-
tions among architectural components that would have remained hidden using other approaches. We further
investigated the approach and studied a large system developed in Oracle PL/SQL.We performed a bottom-up
and top-down analysis on the system to recover themap of its architecture. For the bottom-up analysis, we used
a technique based on the CRUD relations, while for the top-down analysis we interviewed the developers.

We conclude that the automatic analysis of data accesses in data-intensive systems is a feasible approach for
recovering information from the source code whichmight otherwise have been hidden using other approaches.
Hence, these techniques provide a good basis for further investigation like quality assurance approaches, impact
analysis, architecture recovery and re-engineering.

RQ2: Can we adapt automatic analysis techniques that were implemented for 3rd generation
languages to a 4th generation language like Magic? If so, can static analysis support the mi-
grationofMagic applicationswith automated techniques? We introduce a novel approach for an-
alyzing applicationswritten inMagic. Here, we treat the export file of the application development environment
as the ‘source code’ of the application. This export file is rather a saved state of the development environment,
but it carries all the necessary information that can be used to support quality assurance ormigration tasks. With
it, wewere able to implement a reverse engineering framework based on theColumbusmethodology, amethod-
ology designed for reverse engineering applications written in C, C++ or Java, which are typical 3rd generation
languages. With the cooperation of our industrial partner we show that the implemented framework is helpful
in the development of Magic applications.

As regards the quality attributes of the application, we show that neither the Halstead complexity measures
nor McCabe’s complexity measure fit the complexity definition of experienced Magic developers; hence a new
complexity measure is defined here.

We also showed that via static analysis it is possible to gather implicit knowledge that is useful for supporting
themigration ofMagic applications from earlier versions ofMagic to later ones. With the help of our reverse en-
gineering framework we can recover CRUD relations that can support the redesign of the database, for example
by creating foreign keys which were not supported by previous versions of Magic.

13



RQ3: How can we utilize control flow and data flow analysis so as to be able to identify se-
curity issues based on user-related input data? We present a static analysis technique based on user-
related input data to identify buffer overflow errors in C applications. The technique follows the user input from
its entry point throughout the data-flow and control flow graph and warns the user if it reaches a error-prone
point without any bounce checking. We implemented our approach as a plugin to theGrammaTechCodeSurfer
tool. We tested and validated our technique on open source projects and we found faults in Pidgin and cyrus-
imapd as applications with about 200 kLoC.

RQ4: Can we use local refactoring algorithms in compilers to optimize the code size of gen-
erated binaries? We show that local code factoring algorithms are efficient algorithms for code size opti-
mization. We implemented these algorithms in different optimization phases of GCC andwe also implemented
hoisting and sinking algorithms on the RTL and Tree-SSA intermediate languages of GCC. The correctness of
the implementation was verified, and the results were measured on different architectures using GCC’s official
Code-Size Benchmark Environment (CSiBE) as a real-world system. These results showed that on the ARM
architecture we were able to achieve maximum and average extra code-size saving of 61.53% and 2.58% respec-
tively, compared with the ‘-Os’ flag of GCC.

Acknowledgments

First of all, I would like to express my gratitude to my supervisor, Dr. Tibor Gyimóthy, who gave me the op-
portunity to carry out this research study. Secondly, I would like to thank my article co-author and mentor,
Dr. Rudolf Ferenc, for offering me interesting and challenging problems while guiding my studies and helping
me. Also, I wish to thank David P. Curley for reviewing and correcting my work from a linguistic point of view.
My thanks also go to my colleagues and article co-authors, namely Spiros Mancoridis, Gábor Lóki, Dr. Árpád
Beszédes, Tamás Gergely, László Vidács, Tibor Bakota, János Pántos, Gabriella Kakuja-Tóth, Ferenc Fischer,
Péter Hegedűs, Judit Jász, Zoltán Sógor, Lajos Jenő Fülöp, István Siket, Péter Siket, Ákos Kiss, Ferenc Havasi,
Dániel Fritsi and Gábor Novák. Many thanks also to all the members of the department over the years.

An important part of the thesis deals with the Magic language. Most of this research work would not have
been possible without the cooperation of SZEGED Software Inc, our industrial partner. Special thanks to all
the colleagues at the company, particularly István Kovács, Ferenc Kocsis and Ferenc Smohai.

Last, but not least, none of this would have been possiblewithout the invaluable support ofmy family. I would
like to thank my parents, my sister and my brother for always being there and for supporting me.

Csaba Nagy, December 2013.

Bibliography

References

[1] Huib van den Brink, Rob van der Leek, and Joost Visser. Quality assessment for embedded SQL. In
Proceedings of the Seventh IEEE International Working Conference on Source Code Analysis andManipulation
(SCAM 2007), pages 163–170. IEEE Computer Society, 2007.

[2] Anthony Cleve. Program Analysis and Transformation for Data-Intensive System Evolution. PhD thesis,
University of Namur, October 2009.

[3] Anthony Cleve, Tom Mens, and Jean-Luc Hainaut. Data-intensive system evolution. IEEE Computer, 43
(8):110–112, August 2010.

14



[4] RichárdDévai, Judit Jász, CsabaNagy, andRudolf Ferenc. Designing and implementing control flowgraph
for magic 4th generation language. In Proceedings of the 13th Symposium on Programming Languages and
Software Tools (SPLST 2013), pages 200–214, Szeged, Hungary, August 26-27 2013.

[5] DánielFritsi, CsabaNagy,Rudolf Ferenc, andTiborGyimóthy. A layout independentGUI test automation
tool for applications developed in Magic/uniPaaS. In Proceedings of the 12th Symposium on Programming
Languages and Software Tools (SPLST 2011), pages 248–259, Tallinn, Estonia, Oct 4-7 2011.

[6] Judit Jász, Árpád Beszédes, Tibor Gyimóthy, and Václav Rajlich. StaticExecute After/Before as a Replace-
ment of Traditional Software Dependencies. In Proceedings of the 2008 IEEE International Conference on
Software Maintenance (ICSM 2008), pages 137–146. IEEE Computer Society, 2008.

[7] R. T. Kouzes, G. A. Anderson, S. T. Elbert, I Gorton, and D. K. Gracio. The changing paradigm of data-
intensive computing. IEEE Computer, 42(1):26–34, January 2009.

[8] Kaiping Liu, Hee Beng Kuan Tan, and Xu Chen. Extraction of attribute dependency graph from database
applications. In Proceedings of the 2011 18th Asia-Pacific Software Engineering Conference, pages 138–145.
IEEE Computer Society, 2011.

[9] Gábor Lóki, Ákos Kiss, Judit Jász, and Árpád Beszédes. Code factoring in GCC. In Proceedings of the 2004
GCCDevelopers’ Summit, pages 79–84, June 2004.

[10] C.A. Mattmann, D.J. Crichton, J.S. Hughes, S.C. Kelly, and M. Paul. Software architecture for large-scale,
distributed, data-intensive systems. In Proceedings of the FourthWorking IEEE/IFIP Conference on Software
Architecture (WICSA 2004), pages 255–264, 2004.

[11] ChrisMattmannandPaulRamirez. Acomparisonandevaluationof architecture recovery indata-intensive
systems using focus. Technical report, Computer ScienceDepartment, University of SouthernCalifornia,
2004.

[12] Chris A. Mattmann, Daniel J. Crichton, Andrew F. Hart, Cameron Goodale, J.Steven Hughes, Sean Kelly,
Luca Cinquini, ThomasH. Painter, Joseph Lazio, Duane Waliser, Nenad Medvidovic, Jinwon Kim, and
Peter Lean. Architecting data-intensive software systems. InHandbook of Data Intensive Computing, pages
25–57. Springer Science+Business Media, 2011.

[13] Gábor Novák, Csaba Nagy, and Rudolf Ferenc. A regression test selection technique for Magic systems.
In Proceedings of the 13th Symposium on Programming Languages and Software Tools (SPLST 2013), pages
76–89, Szeged, Hungary, August 26-27 2013.

[14] Z. Pawlak. Information systems theoretical foundations. Information Systems, 6(3):205 – 218, 1981.

[15] R. Kelly Rainer and Casey G. Cegielski. Introduction to Information Systems: Enabling and Transforming
Business. John Wiley & Sons, Inc., 4 edition, January 11 2012.

[16] H. Rottgering. Lofar, a new low frequency radio telescope. NewAstronomy Reviews, 47(4-5, High-redshift
radio galaxies - past, present and future):405–409, Septepmber 2003.

[17] A. VanDeursen andT. Kuipers. Rapid systemunderstanding: TwoCOBOL case studies. InProceedings of
the 6th InternationalWorkshop on ProgramComprehension (IWPC1998), page 90. IEEEComputer Society,
1998.

15



Corresponding publications of the Thesis

[18] Dániel Fritsi, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy. A methodology and framework for au-
tomatic layout independent GUI testing of applications developed in Magic xpa. In Proceedings of the
13th International Conference on Computational Science and Its Applications - ICCSA 2013 - Part II, pages
513–528, Ho Chi Minh City, Vietnam, June 24-27 2013. Springer.

[19] Csaba Nagy. Extension of GCC with a fully manageable reverse engineering front end. In Proceedings of
the 7th International Conference on Applied Informatics (ICAI 2007), January 28-31 2007. Eger, Hungary.

[20] CsabaNagy. Static analysis of data-intensive applications. InProceedings of the 17th EuropeanConference on
SoftwareMaintenance andReengineering (CSMR2013). IEEEComputer Society,March 5-8 2013. Genova,
Italy.

[21] Csaba Nagy and Spiros Mancoridis. Static security analysis based on input-related software faults. In
Proceedings of the 13thEuropeanConference on SoftwareMaintenance andReengineering (CSMR2009), pages
37–46, Fraunhofer IESE, Kaiserslautern, Germany, March 24-27 2009. IEEE Computer Society.

[22] Csaba Nagy, Gábor Lóki, Árpád Beszédes, and Tibor Gyimóthy. Code factoring in GCC on differ-
ent intermediate languages. ANNALES UNIVERSITATIS SCIENTIARUM BUDAPESTINENSIS DE
ROLANDO EOTVOS NOMINATAE Sectio Computatorica - TOMUS XXX, pages 79–96, 2009.

[23] Csaba Nagy, János Pántos, Tamás Gergely, and Árpád Beszédes. Towards a safe method for computing
dependencies in database-intensive systems. In Proceedings of the 14th European Conference on Software
Maintenance and Reengineering (CSMR 2010), pages 166–175, Madrid, Spain, March 15-18 2010. IEEE
Computer Society.

[24] Csaba Nagy, László Vidács, Rudolf Ferenc, Tibor Gyimóthy, Ferenc Kocsis, and István Kovács. MAGIS-
TER: Quality assurance ofMagic applications for software developers and end users. In Proceedings of the
26th IEEE International Conference on SoftwareMaintenance (ICSM2010), pages 1–6, Timisoara, Romania,
Sept 2010.

[25] CsabaNagy, Rudolf Ferenc, and Tibor Bakota. A true story of refactoring a largeOracle PL/SQL banking
system. InEuropean Software EngineeringConference and the ACMSIGSOFTSymposium on the Foundations
of Software Engineering (ESEC/FSE 2011), Szeged, Hungary, Sept 5-9 2011.

[26] CsabaNagy, László Vidács, Rudolf Ferenc, Tibor Gyimóthy, Ferenc Kocsis, and István Kovács. Complex-
ity measures in 4GL environment. In Proceedings of the 2011 International Conference on Computational
Science and Its Applications - Volume Part V, ICCSA’11, pages 293–309, Santander, Spain, June 20-23 2011.
Springer-Verlag.

[27] Csaba Nagy, László Vidács, Rudolf Ferenc, Tibor Gyimóthy, Ferenc Kocsis, and István Kovács. Solutions
for reverse engineering 4GL applications, recovering the design of a logistical wholesale system. In Pro-
ceedings of the 15th European Conference on Software Maintenance and Reengineering (CSMR 2011), pages
343 –346, Oldenburg, Germany, March 1-4 2011. IEEE Computer Society.

16


	Introduction
	Architecture recovery of legacy data-intensive systems
	The world of Magic
	Security and optimization
	Conclusions

