
O ptim ization  M ethods on 
Em bedded System s

Ph.D . dissertation

by

Ferenc Havasi
Supervisor: Prof. T ibor G yim óthy

Submitted to the
Ph .D . School in C om puter Science

Department of Software Engineering 
Faculty of Science and Informatics 

University of Szeged

Szeged, 2013.



2



Preface

About the thesis
In life, I have always tried to create really useful things. At the Software 

Engineering Department, this led me to work on embedded systems, which I have 
been investigating for over a decade.

In the world of embedded systems the resources are usually quite limited, so in 
many areas optimization is very important. Really effective optimization cannot 
be achieved without scientific research. It gave me the motivation to achieve the 
results presented here and try to make it work in practice as well.

Acknowledgements
Firstly, I would like to thank my supervisor, Prof, Tibor Gyimóthy for his 

professional and personal support, as without him this thesis would not have been 
possible. Secondly, my thanks goes to my colleagues Dávid Tengeri, Zoltán Sógor, 
Miklós Kálmán and Tamás Gergely, Lastly, I would like to express my gratitude 
to my parents János and Margit, my sister Mónika, my companion Barbara, and 
my coach Márta,

Ferenc Havasi, December 2013.

3



4



Contents

Preface 3

Introduction 13

1 XML Semantic Extension and Compaction 17
1.1 Preliminaries .........................................................................................  17

1.1.1 X M L ............................................................................................  18
1.1.2 Attribute G ram m ars................................................................. 19
1.1.3 The relationship between XML and Attribute Grammars , , 22

1.2 XML Semantics Extension.................................................................... 23
1.2.1 Specifying semantics rules: The SEML Metalanguage , , , , 23

1.3 SEML description t y p e s ....................................................................... 26
1.3.1 The S-SEML description..........................................................  26
1.3.2 The L-SEML description..........................................................  27
1.3.3 Compacting /  Deeompaeting....................................................  27

1.4 SEMLTool: a eompaetor/deeompaetor for XML documents............  29
1.4.1 The Eeduee algorithm (compacting) .....................................  29
1.4.2 The Complete algorithm (deeompaeting)............................... 32

1.5 Learning SEML ru le s .............................................................................  32
1.5.1 The SEMLGenerator module’s learning a lg o rith m s............  33

1.6 Experimental r e s u l ts .............................................................................  38
1.6.1 A real-world ease study: C P P M L ...........................................  38
1.6.2 Compacting CPPML with SEML rules created by hand . . .  40
1.6.3 Compacting CPPML with machine learning SEML rules , , 41
1.6.4 Analyzing the Learning modules..............................................  42
1.6.5 Combining machine learning and manual rule generation , , 43
1.6.6 Eesouree requirements of the t o o l ...........................................  44

1.7 Eclated W o rk .........................................................................................  44
1.8 Summary ...............................................................................................  47

5



6 CONTENTS

2 Size optimization with ARM Code Compression 49
2.1 Background............................................................................................  50

2.1.1 Compression................................................................................  50
2.1.2 Compression m odel.................................................................... 51
2.1.3 Code compression....................................................................... 51
2.1.4 Decision t r e e s .............................................................................  52

2.2 Previous works ......................................................................................  53
2.2.1 Code compression methods.......................................................  53
2.2.2 Decision tree building................................................................. 54

2.3 ARMlib - ARM Code compression.......................................................  56
2.3.1 The parts of A R M lib................................................................. 56
2.3.2 Pre- and post-processing of the ARM code -  the tokenizer , 57
2.3.3 The m odel...................................................................................  58
2.3.4 The c o d e r ...................................................................................  59

2.4 An ARMlib im plem entation................................................................. 59
2.5 R esults.....................................................................................................  61

2.5.1 Size ............................................................................................  61
2.5.2 Speed .........................................................................................  62

2.6 Summary ...............................................................................................  62

3 Performance optimization with an Improved B +  Tree 65
3.1 How the flash memory works................................................................. 65
3.2 JFFS, JFFS2: flash file systems without flash in d e x ......................... 67
3.3 B+ t r e e ..................................................................................................  68
3.4 Wandering t r e e ......................................................................................  68
3.5 The TNC: an improved wandering t r e e ...............................................  69

3.5.1 Data structure of the T N C .......................................................  69
3.5.2 The TNC opera tions................................................................. 70

3.6 Power loss handling in the T N C ..........................................................  72
3.7 Experiments............................................................................................  73
3.8 Related W o rk .........................................................................................  76
3.9 Summary ...............................................................................................  76

Summary in English 79

Magyar nyelvű összefoglaló 83

A The DTD of SRML 87

B The XSD of SRML 89



CONTENTS 7

Bibliography 97



8 CONTENTS



List of Tables

1 Theses and publications ......................................................................  13

1.1 Analogy between AG and X M L ..........................................................  22
1.2 A synthesized learning table for Figure 1 . 1 7 .....................................  37
1.3 An inherited learning table for Figure 1 .1 7 ........................................  37
1.4 Compaction table using handwritten r u l e s ........................................  41
1.5 Comparison of machine learned and hand written r u le s ..................  42
1.6 Comparing learning m odules................................................................. 43
1.7 Combining machine learning and manual rule genera tion ...............  43
1.8 XMill compression for combined and manual com paction...............  44

3.1 Difference between NOR and NAND flash ........................................  66
3.2 The number of the flash operations (measured in terms of node size) 74
3.3 The effect of varying the TNC fa n o u t.................................................  75
3.4 The maximal TNC size as a function of tree f a n o u t ......................... 75

9



10 LIST OF TABLES



List of Figures

1 The Nokia N900 smart p h o n e .............................................................. 15

1.1 A possible XML form of the expression 3 * (2.5 + 4)...............................18
1.2 The DTD of the simple expression in Figure 1 .1 ............................... 18
1.3 XML document DOM t r e e .................................................................... 19
1.4 An example of calculating expressions using semantic ru le s ............  21
1.5 Attributed Derivation T ree .................................................................... 21
1.6 A simple Left-to-Eight evaluator............................................................ 22
1.7 (a) An inherited attribute (B.x) (b) A synthesized attribute (A.y) , 25
1.8 An SEML example for "type" attribute of the addexpr element , , 26
1.9 The Compaeting/Deeompaeting m e th o d ...........................................  28
1.10 The compacted XML of the expression..............................................  28
1.11 The structure of the implementation .................................................  30
1.12 Simple dependency................................................................................  32
1.13 Circular dependency .............................................................................  32
1.14 Learning SEML E u l e s ..........................................................................  33
1.15 (a)The two contexts of a Node (b)The statistical tree of the SEML-

C onstantE ule .........................................................................................  34
1.16 Examples of the Copy rules ................................................................. 36
1.17 An example of a decision tree in p u t ....................................................  37

2.1 A simple decision tree ..........................................................................  52
2.2 The structure of A EM lib....................................................................... 57
2.3 The improved compression of JFFS2 .................................................  60
2.4 Compressed s iz e s ...................................................................................  61
2.5 Boot tim es...............................................................................................  62

3.1 The wandering tree before and after insertion ..................................  69
3.2 The TNC data s tru c tu re ....................................................................... 70
3.3 The performance of TNC flash operations compared to those got

using the simple wandering algorithm .................................................  74
3.4 The maximal TNC size as a function of tree f a n o u t ......................... 75

11



12 LIST OF FIGURES



Introduction

Embedded systems are a combination of computer hardware and software, with a 
dedicated function within a larger mechanical or electrical system, often with hard 
performance constraints. These kinds of devices have more and more applications 
in today’s world. Cell phones, DVD players, MP3 players, GPS receivers, ear 
electronics and similar devices play an important role in our lives nowadays, A 
good indication of the penetration rate of embedded systems is that in 2002 only 
2% of the microprocessor were used in personal computers, and the rest (98%) in 
embedded systems, and since then even the rate has increased [42], The economic 
and social impact of this on societies will increase, and new results may have great 
practical significance.

One of the main features of these devices is that their resources are generally 
much more limited than the resources of personal computers. So optimizing the 
software components is always a priority. In this thesis, three key results are 
presented, namely one XML-related result and two flash file system optimizations.

Thesis Publication
1. XML Semantic Extension and Compaction [20|. [26|, [27|
2. Size Optimization with 

ARM Code Compression
[15]

3. Performance Optimization with an 
Improved B+ Tree

[19]

Table 1: Theses and publications

1. XML Semantic Extension and Compaction
XML is one of the most popular, general, and widely used document formats even 
on desktop computers and embedded systems. The number of applications capable 
of storing things in XML format is growing quite rapidly, and it has now become 
one of the de facto standards of structured text formats.

13



14 LIST OF FIGURES

XML uses elements and attributes to structure text information. An XML 
attribute has a name, and a value. Before our solution, there was no way to 
define semantic rules for their computation. To bridge this gap, we defined a new 
metalanguage called SEML (Semantics Rule Meta Language), where semantic 
computation rules can be defined for XML attributes.

Using SEML it is not necessary to store the computable XML attributes, so 
XML documents can be stored in a more compact format. Using our method as 
a preprocessor of the XMill XML compressor, we can improve its efficiency by 
9-26%, because our method can identify correlations that cannot be identified by 
the usual XML compressors.

We present our results in Chapter 1, which were published in [20], [26] and 
[27].

2. Size Optimization with ARM  Code Compression
Some years ago embedded systems had very limited storage resources in general. 
Nowadays, because of the low cost of flash chips, the relative importance of the 
size factor has decreased in the ease of multimedia devices, but in the ease of the 
functional devices it is still high.

One of the solutions available for handling size problems is compression. Be­
cause one of the most popular embedded system architectures is ARM, we designed 
a new ARM code compressor algorithm. It is a model-based compressor that uses 
decision tree as a model, and its coder is an arithmetic coder.

It was implemented in the JFFS2 file system, with an effective combination 
structure with the original compressor (zlib). We achieved a 13-19% size reduction 
compared to the original compressor, but the boot time doubled or quadrupled 
relative to the original.

The implementation of the transparent compression framework is now a part 
of the JFFS2 and the Linux kernel. The ARM code compressor was patented with 
US Patent number 6,917,315, [40]

We will present our results in Chapter 2, which were published in [15],

3. Performance Optimization with an Improved B +  Tree
Most mobile devices handle data files and store them on their own storage device. 
In most eases, this storage device is flash memory. On smart devices an operating 
system helps to run programs that use some kind of file system to store data. The 
data capacity, the response time (how much time is needed to load a program) 
and the boot time (how much time is needed to load all the necessary code and 
data after power up) of the device depend on the properties of the file system. All 
of these parameters are important from the viewpoint of device usability.



LIST OF FIGURES 15

The size of the flash ehips in embedded systems have dramatically increased. 
This led to the earlier flash file systems solutions (such 11s JFFS2 file system) 
being practically unusable in the ease of large flash ehips (over 512MB) because 
of its slowness and RAM consumption. Hence it was necessary to design a new 
flash file system, and it required new algorithms and data structures to make its 
performance more optimal and provide a power loss safe solution.

Our new result is an improved tree that was implemented in the UBIFS 
file system. It became a part of the Linux kernel, and it is used in the Xokia X900 
smart phone.

We present our results in Chapter 3, which were published in |19|,

Figure 1: The Xokia X900 smart phone



16 LIST OF FIGURES



Chapter 1

XML Semantic Extension and 
Compaction

These days XML is one of the most popular, general, and widely used document 
formats even on desktop computers, servers and embedded systems, or in com­
munication protocol among them. Applying a result we achieved here, XML hies 
can be stored more efficiently, which can be very useful especially in the ease of 
embedded systems or network applications.

We designed a new metalanguage called SEML (Semantic Rule Meta Language) 
that allows one to define a real XML attribute via semantic rules. These SEML 
rules describe how the value of an attribute can be calculated from the values of 
other attributes. They are quite similar to those of the semantic rules of Attribute 
Grammars [28], and can be used for compacting an XML document by removing 
computable attributes.

The generation of these SRML hies can be performed manually (if the relation­
ship between attributes is known) or via machine learning methods. The method 
looks for a relationship among the attributes and for patterns in them using speeihe 
rules.

During the testing of our implementation, the input XML hies were compacted 
to 70-80% of their original size, while maintaining further compressibility (e.g, the 
XMill XML compressor was able to compress this hie after hrst being compacted).

1.1 Prelim inaries

Here, we will talk about XML hies along with the necessary preliminaries for 
Attribute Grammars, Both will be needed to better understand what is discussed 
in later sections.

17



18 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

1.1.1 XML
The first concept that must be introduced is the XML format, A more thorough 
description of the XML documents can be found in [7] and [16], XML documents 
are very similar to htrril files, as they are both text-based. The components in both 
are called elements, which may contain further elements and/or text, or they may 
be left empty. Elements may have attributes like the html anchor tag a attribute 
of href elements in html files. In Figure 1.1, there is an example for storing a 
numeric expression in XML format. This example has an additional attribute 
called "type", which stores the type of the expression. The values can be int or 
real.
<expr> <multexpr op="mul" type="real">
<expr type="int"Xnum type="int">3</numX/expr>
<expr type="real">
<addexpr op="add" type="real">
<expr type="real"Xnum type="real">2.5</numX/expr>
<expr type="int"Xnum type="int">4</numX/expr>

</addexpr>
</expr>

</multexpr> </expr>

Figure 1,1: A possible XML form of the expression 3 * (2.5 + 4),

It is possible to define the syntactic form of XML files. This is achieved through 
a DTD (Document Type Definition) or XSD (XML Schema Definition) file.

During our research the DTD format was generally used, so we described our 
results using DTD,

A DTD file specifies the accepted format of the XML document. If an XML 
document uses a DTD, all elements and attributes in the XML document must 
conform to the syntactic validity of the DTD, The DTD of Figure 1.1 is listed in 
Figure 1.2.
<!ELEMENT num (#PCDATA) >

<!ATTLIST num type ( real | int )«REQUIRED >
<!ELEMENT expr ( num | multextr | addexpr ) >

<!ATTLIST expr type( real | int ) «IMPLIED >
<!ELEMENT multexpr ( expr , expr ) >

<!ATTLIST multexpr op ( mul |div ) «REQUIRED 
type ( real | int ) «IMPLIED >

<!ELEMENT addexpr ( expr , expr ) >
<!ATTLIST addexpr op ( add |sub ) «REQUIRED 

type ( real | int ) «IMPLIED >

Figure 1,2: The DTD of the simple expression in Figure 1.1

A DOM (Document Object Model) [43] tree is a tree containing all the tags 
and attributes of an XML document as leaves and nodes (Figure 1.3 is the DOM



1.1. PRELIMINARIES 19

tree of Figure 1.1). This DOM tree is used by the XML processing library for inter­
nal data representation, DOM is a platform- and language-independent interface 
that allows the dynamic accessing and updating of the content and structure of 
XML documents. When DOM tree parsing is used, it makes the XML document 
handling easier, but it requires more memory to accomplish this, since it creates 
a tree of the XML in the memory. This method is quite effective on smaller XML 
documents.

type=int
t  3 ) type=real op=add

type=real  ̂ 2.5 ) type=int  ̂ 4 J

Figure 1,3: XML document DOM tree

1.1.2 Attribute Grammars
Another key concept that should be mentioned is that of Attribute Grammars, 
Attribute Grammars are based on the context-free grammars. Context Free (CF) 
Grammars can be used to specify derivation rules for structured documents, A 
CF Grammar is a four tuple G = (N, T, S, P ) , where N is the set of nonterminal 
symbols, T is a set of terminal symbols, S is a start-symbol and P is a set of 
syntactic rules. It is required that on the left side of every rule only one nonterminal 
can be present. Given a grammar, a derivation tree can be generated based on 
a specific input. The grammar described below specifies the format of the simple 
numeric expression, shown in Figure 1.1.

N = { expr, multexpr, addexpr, num }
S = expr
T =-{"ADD" , "MUL" , INTNUM, REALNUM}
P :
(1) expr -> num
(2) expr -> multexpr



20 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

(3) expr -> addexpr
(4) addexpr -> expr "ADD" expr
(5) addexpr -> expr "SUB" expr
(6) multexpr -> expr "MUL" expr
(7) multexpr -> expr "DIV" expr
(8) num -> INTNUM
(9) num -> REALNUM

An Attribute Grammar contains a CF grammar, attributes and semantic rules. 
The precise definition of Attribute Grammars can be found in [28] [2], In this 
section, we will only mention those definitions which are required for a better 
understanding of later parts of the thesis.

An attribute grammar is a three tuple AG = (G, AD, R), where

1, G = (N, T, S, P ) is the underlying context-free grammar,

2, AD = (Attr, Inh, Syn) is a description of attributes. Each grammar symbol 
X  6 N  U T  has a set of attributes A ttr (X ), where A ttr (X ) can be partitioned 
into two disjoint subsets denoted by In h (X ) and S yn (X ), In h (X ) and 
S yn (X ) denote the inherited and synthesized attributes of X, respectively. 
We will denote the attribute a of the grammar symbol X  by X. a.

3, E orders a set of evaluation rules (called semantic rules) to each production
as follows: Let p: X p,0 . . .  X p,np be an arbitarv production of P, An attribute 
occurrence X p,k.a is said to be a de/med occurrence if a 6 Syn(Xp,k) and 
k=0, or a 6 Inh(X p,k) and k > 0, For each defining attribute occurrence 
there is exactly one rule in R(p) that determines how to compute the value of 
this attribute occurrence. The evaluation rule defining attribute occurrence 
X p,k.a has the form, Xp,k.a f  (Xp,kl.a\ i . . .  ,X p,km.am)-

The example in Figure 1-4 gives an AG for computing the type of a simple 
expression:

In the example, the "type" of addexpr is real if the first or the second expr has 
a real type; otherwise it is int.

If we supplement the derivation tree with the values of attribute occurrences, 
we get an attributed derivation tree.

Each attribute occurrence is calculated once and only once. The attributed 
derivation tree for the expression 3 * (2.5 + 4) is shown in Figure 1.5. The main 
task in AG is to calculate these attribute occurrences in the attributed derivation 
tree; and this process is called attribute evaluation. Of course, there are several 
ways of evaluating the attributed tree. In the case of a simple attribute grammar 
the occurrences can be evaluated in one Left-to-Right pass; however, there may 
be more complex grammars where more passes are required. The algorithm for a



1.1. PRELIMINARIES 21

(1) expr -> num
expr.type=nmn.type;

(2) expr -> multexpr
expr.type=multexpr.type;

(3) expr -> addexpr
expr.type=addexpr.type;

(4) addexpr -> expr "ADD" expr
addexpr.type=(expr[1].type=="real"||

expr[2].type=="real")? "real":"int";
(5) addexpr -> expr "SUB" expr

addexpr.type=(expr[1].type=="real"||
expr[2].type=="real")? "real":"int";

(6) multexpr -> expr "MUL" expr
multexpr.type=(expr[1].type=="real"||

expr [2].type=="real")? "real":"int";
(7) multexpr -> expr "DIV" expr

multexpr.type="real";
(8) num -> INTNUM

num.type = "int"
(9) num -> REALNUM

num.type = "real"

Figure 1,4: An example of calculating expressions using semantic rules

type=realexpr

multexprtype=real

type=intexpr

type=int
num

MUL expr

addexpr

type=real

type=real

expr ADD expr
type=int

num

2.5

type=real type=int
num

Figure 1.5: Attributed Derivation Tree

simple Left-to-Eight pass evaluator can be seen in Figure 1.6. This algorithm eval­
uates the inherited attributes of the root’s children recursively. When all inherited 
attributes have been evaluated, the synthesized attributes will be processed. 

Attribute grammars can be classified according to the evaluation method used. 
The S-Attributed Grammar contains only synthetized attributes, L-Attributed



22 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

function evaluate_L(node r) begin
children = left_to_right_list_of_children_of(r)
while not_empty(children)
begin

c = first(children) 
c_inh = inherited_attributes_of(c) 
evaluate_attributes(c_inh) 
evaluate_L(c);
remove_first_from_list(children) 

end
r_synth = synthetized_attributes_of(r) 
evaluate_attributes(r_synth)

end

Figure 1,6: A simple Left-to-Eight evaluator.

Grammars can be evaluated in a single Left-to-Right pass, while a more complex 
AG may need several Left-to-Right or Right-to-Left passes or even more compress 
passes to evaluate all of its attributes,

1.1.3 The relationship between XML and Attribute Gram­
mars

Examining the DOM tree and the attributed derivation tree in Figure 1.3 and 
Figure 1.5, it can be seen that XML documents are noticeably quite similar to 
attributed derivation trees. There is also a good analogy between AG and XML 
documents (see Table 1,1), In Attribute Grammars, the Nonterminals correspond 
to the elements in the XML document.

Attribute Grammars XML
nonterminal 
formal rules 

attribute speeiheation 
semantic functions

element
element speeiheation in DTD 
attribute speeiheation in DTD

Table 1,1: Analogy between AG and XML

Syntactic Rules are given as an element type declaration in the DTD of the 
XML hie. An attribute specification in the AG corresponds to an attribute list 
declaration in the DTD, However, there is an important concept in Attribute 
Grammars which has no XML counterpart, namely semantic rules. It might be 
useful to apply these semantic rules in the XML environment as well. This would 
be advantageous as the attribute instances and their values are stored directly in 
the XML document hies. If it were possible to dehne semantic rules, it would



1.2. XML SEMANTICS EXTENSION 23

be sufficient to store the rules that apply to specific attributes; then their correct 
values could be calculated. With this, it would then be possible to avoid having 
to store those attributes which could be calculated. In the future, the definition 
of semantic rules will be an integral part of XML document hies.

1.2 XML Semantics Extension
There are several possible approaches for defining semantic rules. One solution 
would be to use a DTD hie. The problem with this is that the DTD cannot be 
expanded to store the rules in a structured format. The other problem with the 
DTD hie is that the elements are dehned using regular expressions, making it 
rather hard to reference each item separately.

Another approach might be to introduce a new metalanguage that has its 
own parser. This is an ideal solution as it provides the freedom to add complex 
semantic rules. These semantic rules have to be stored somehow, since we are 
using an XML environment. Hence, it surely a sensible idea to store the semantic 
rules in an XML-based format as well,

1.2.1 Specifying semantics rules: The SRML Metalanguage
We will dehne a metalanguage called SRML (Semantics Rule Meta Language) to 
describe semantics rules, which has an XML-based format. The corresponding 
DTD of this language is listed in Appendix A, The XSD version of it can be found 
in Appendix B,

A DTD can be viewed as a formal grammar [36]: elements will be nonterminals 
and the descriptions of the element will be formal rules. Now we would like to 
dehne some semantics rules for these formal rules.

The meaning of the elements of SRML are:

semantics-rules : This is the root element of SRML,

rules-for : This element gathers together the semantics rules of a formal rule. In 
a DTD there is only one working description of an element so the formal rule 
is determined by that element, which is on the left of the formal rule. This 
is the root attribute of the rules-for element,

rule : This element describes a semantics rule. We have to specify which attribute 
of which element we are going to dehne in this semantics rule and its value in 
expr. If the value of the element is "srmbrooi", then we dehne an attribute 
of the root element.



24 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

expr : An expression can be a binary-expression (binary-op), an attribute, a di­
rectly defined value (data or no-data), a conditional expression (if-expr,if-all 
or if-any), a syntax-condition (if-element and position) or an external func­
tion call (extern-function).

if-elem ent : In a DTD element description one can specify a regular expression 
(with maybe +,*,?, etc, symbols). This element provides us with the possi­
bility of testing the actual form of the input. It contains two expr elements. 
As an expression, the value of the if-element is true or false depending on 
the following: the name of the first exprth child (element) in the actual rule 
equals the value of the second expr. The from attribute can specify which 
direction to operate. In other words, it is possible to take an index from the 
end without actually knowing how many children the parent has,

binary-op : This element is an ordinary binary expression,

position : Returns a 0-based index which identifies the current element’s position, 
taking into consideration the element attribute. Possible directions are as 
follows : begin, end. It is possible to use the srmhall identifier, in which ease 
the index returned will be the actual overall position in the DOM tree level. 
If an element name is specified then the returned index will be n, where the 
element has n — 1 predecessors or successors with the same element name,

a ttr ib u te  : The attribute is determined by its element, attrib, from and num 
attributes. In the actual rule, this is the numth element, where the name 
matches the value of the element (if it is "srmhany" it can be anything; 
if it is "srmhroot", then it is an attribute of the root) from the beginning, 
the current element or the ending. If the attribute does not exist it will be 
handled as no-data.

if-expr : This is an ordinary conditional expression. The first expression is the 
condition and it depends on whether if it is true (not zero) or not. The value 
of the if-expr will be the value of the second or third expression,

if-all : This is an iterated version of the previous if-expr expression. The first 
expr is computed for all matching attributes (each selected by element and 
attribute, which can take a concrete value or "srmhall)". We can refer to the 
value of this attribute using the element current-attribute. If the condition 
(first expr) is true for all matching attributes, the value of it is the value of 
the second expr; otherwise it is the third expr,

if-any : This is almost the same as the previous one except that it is sufficient 
that the condition be true for at least one matching attribute.



1.2. XML SEMANTICS EXTENSION 25

current-attribute : This is the loop variable of i f  any and if-all elements,

data : This element has no attribute and usually contains a number or a string,

no-data : This element means that this attribute cannot be computed -  it is 
often present in some branches of conditional expressions,

extern-function : This element makes an external function call handled by the 
implementation. It makes SRML easily extendable.

param : This describes a parameter of an external-function.

An SRML definition has to be consistent. This means that an attribute instance 
can only have one corresponding rule. In SRML, an attribute is either inherited 
(Figure 1.7(a)) or synthesized (Figure 1.7(h)) like that of Attribute Grammars; 
hence in the SRML language it is not permitted to have two separate rules for the 
same attribute.
<rules-for root="A">
<rule element="B" attrib="x">
<expr>
<attribute element="srml:root" attrib="x"/> 

</expr>
</rule>

</rules-for>

Rule: B.x = A.x

<rules-for root="A">
<rule element="srml:root" attrib="y"> 
<expr><binary-op op="add">
<attribute element="srml:root" attrib="x"/> 

</expr>
<expr><data>3</data></expr>
</binary-opX/expr>
</ruleX/rules-f or>

Rule: A .y = A .x+3

Figure 1,7: (a) An inherited attribute (B.x) (b) A synthesized attribute (A.y)

We will provide an example rule set to demonstrate the advantages of using 
the SRML language. The rule set in Figure 1.8 defines the same semantic rules as 
those stated in Figure l. f .  The example only covers the addexpr type calculation, 
as all other elements can be calculated using similar rules.

Now there are a few comments that should be made about Figure 1.8. The 
first is that the rule set is much bigger than that for AG rules. The reason is that 
this is already in an interpreted form, whereas the AG rules have to be interpreted 
first. Another thing that has to be explained is the "from" and "num" attributes 
in the <attribute/>  tag. Although the complete list of attributes is given above, 
we will explain these two attributes, as they are important for this example. The 
"from" attribute specifies which direction the attribute value is taken from, and 
"num" is the offset number. So the following term means that we are referring to 
the "type" attribute of the first expr element:

<attribute element="expr" from="begin" num="l" attrib="type"/>



26 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

AG rule:
(4) addexpr -> expr "ADD" expr
addexpr.type=(expr[1].type=="real"|| expr[2].type=="real")? "real":"int";

SRML rule:
<rules-for root="addexpr"> <rule element="srml:root" attrib="type">

<expr>
<if-expr>
<expr>

<binary-op op="or">
<expr>
<binary-op op=equal>

<expr><attribute element="expr" num="l" attrib="type" from="begin"/></expr> 
<exprXdata>real</data></expr>

</binary-op>
</expr>
<expr>
<binary-op op="equal">

<expr><attribute element="expr" num="2" attrib="type" from="begin"/x/expr> 
<exprXdata>real</data></expr>
</binary-op>
</expr>

</binary-op>
</expr>
<exprXdata>real</data></expr>
<expr><data>int</data></expr>
</if-expr>

</expr>
</rule> </rules-for>

Figure 1,8: An SRML example for "type" attribute of the addexpr element

1.3 SRML description types
As we mentioned in Section 1,1,2, the attribute grammars can be classified accord­
ing to the evaluation method employed [2],

By analogy we could introduce S-, L-, ASE-,,,, SRML descriptions. Here, we 
will only define S- and L-SRML descriptions.

Actually, there are only two relevant factors that we need to know in the SRML 
description to decide whether it is an S/L-SRML description. The first one is the 
set of defined attributes associated with the rules, while the second is the set of 
referenced (usable) attributes in these definitions,

1.3.1 The S-SRML description
S-attributed grammars are the simplest attribute grammars: they have only syn­
thesized attributes. As in XML, in SRML we do not distinguish between synthe­
sized attributes and inherited ones. In this environment we can define an S-SRML 
description, in analogy with S-attributed grammars:



1.3. SRML DESCRIPTION TYPES 27

definable attributes : For each rule we can only define the attributes of the 
(srmh)root nonterminal (the element that is on the left) because synthesized 
attributes are only definable in a rule if the root element contains them,

usable attributes in definitions : All attributes in this rule presume that there 
are no circular dependencies,

1.3.2 The L-SRML description
An L-attributed grammar can contain synthesized and inherited attributes, but 
the dependencies between them must be evaluated in one left-to-right pass. In the 
SRML environment it means the following:

definable attributes : All available attribute oeeurrenees, keeping consistency 
(see Section 1,2,1) in mind,

usable attributes in definitions : We use one left-to-right pass to evaluate the 
attributes. In a rule environment we first calculate the attributes of the 
children nonterminals, and after the attributes of the root nonterminal in 
a suitable order. An SRML description is called an L-SRML description if 
there is a suitable order in attributes which carries out the following: if there 
is an attribute reference in the definition of an attribute, then the value of 
referenced attribute has already been calculated.
To be more precise:

• In the definition of an attribute of the root there can be attributes of 
any children, or those attributes of the root that have been defined 
earlier in the SRML description,

• In the definition of an attribute of a child there can be attributes of any 
children which lie to the left of it, or are those attributes of the same 
child that have been defined earlier in the SRML description,

1.3.3 Compacting /  Decompacting
Using the evaluation methods outlined earlier it is now possible to describe how 
they can be used in the compaction of XML documents. Before going into detail 
on how the method is built up some definitions are needed for Figure 1.9.

The "Complete XML Document" refers to the document in its original size and 
form. The "Reduced XML Document" is the output of the compaction, which of 
course has a smaller size relative to the original. The "Semantic Rules" are the 
SRML rules used to compact and deeompaet the XML document. In Figure 1.9,



28 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

reduced 
XML document

Figure 1,9: The Compaeting/Deeompaeting method

it is clear that the decompacting (complete) procedure expands the document and 
recreates the original XML document.

The compacting (reduce) procedure does just the opposite. The input used is 
a complete XML document with an attached semantic rules hie. Every attribute 
which can be correctly calculated using the attached rules will be removed. This 
results in a reduced, compacted XML document. It is important to note that if 
the semantic rule for a given attribute does not give the correct value the attribute 
is not removed, thus maintaining the document’s integrity.

Now we apply the rule set described in Figure 1.8 to the input XML shown 
in Figure 1-4, also including the additional rules, which are very similar. The 
compacted XML can be seen in Figure 1.10.

<expr>
<multexpr op="mul">

<exprXnum type="int">3</num></expr>
<expr>

<addexpr op="add">
<expr><num type="real">2.5</numX/expr>
<expr><num type="int">4</num></expr>

</addexpr>
</expr>

</multexpr>
</expr>

Figure 1,10: The compacted XML of the expression

The size of this XML is considerably smaller than the size of the input (Figure 
1.1). The only "type" attribute that was kept was the num element’s "type" 
attribute. The reason was that, if we have the "type" of num, then we can calculate 
the expr "type". Once we have the expr "type" the addexpr and multexpr "type" 
attributes can be calculated as well. This is why there is no sense in storing all 
the types if only the num "type" is needed.

After the XML document has been compacted, it can then be compressed using 
a standard compressor like gzip or an XML compressor like XMill, An example of 
a compacted XML is shown in Figure 1.10.



1.4. SRMLTOOL: A COMPACTOR/DECOMPACTOR FOR XML DOCUMENTS29

The file containing the SRML description is an extension of the DTD, If the 
XML files were to be compressed instead of compacted this possibility would be 
lost. One can say that this method of compacting makes the XML format lose its 
self-describing ability, but the size reduction we gain by removing attributes and 
the fact that it still is readable by any XML viewer and can be further compressed 
by any XML compressor, makes this sacrifice worthwhile.

1.4 SRMLTool: a com pactor/decom pactor for XML 
docum ents

We implemented a tool for the compaction of XML documents. This tool uses 
SRML to store semantic rules, describing the attributes of the XML documents.
It means that the inputs of the tool are an XML document and an SRML file 
to define semantic (computation) rules for some attributes of the document. The 
output may be a reduced document (some attributes are removed) or a complete 
document (the missing attributes with corresponding rules have been calculated 
and restored). Figure 1.11 shows the modular structure of the tool.

The implementation uses a general evaluator. Currently, attribute oeeurrenees 
are evaluated depth first using Left-to-Right passes. This is a multipass algorithm 
where the algorithm described in Figure 1.6 is executed several times. During 
each pass a separate attribute oeeurrenee is evaluated. The implementation of the 
algorithm starts off by reading both the XML file and SRML file into separate 
DOM trees. This saves a lot of time on operations performed later. Then the 
XML DOM tree is processed using an inorder tree visit routine that examines 
every node and every attribute. The purpose of this examination is to find out 
which attributes have corresponding SRML rules. Unfortunately this approach 
has high resource requirements, A way of optimizing it is to allow only L-SRML 
rules (see Section 1.3.2) and use a SAX parser,

1.4.1 The Reduce algorithm (compacting)

This algorithm removes those attributes that can be correctly calculated using the 
SRML semantic rules. Every attribute can have only one rule in the SRML rule 
set. If there are more rules for the same attribute, the first one will be used. There 
is a possibility that the attribute cannot be correctly calculated, which means that 
the value of the attribute differs from the value given in the rule. In this ease 
the attribute will not be removed, since the value is different. During the im­
plementation of the Reduce (compacting) algorithm, the function of the Complete



30 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

Figure 1,11: The structure of the implementation

(deeompaeting) algorithm had to be considered. If there is a rule for a non-dehned1 
attribute it has to be marked somehow. If this is ignored, the Complete algorithm 
will insert a value for it and make the compaction/  decompaction process incon­
sistent, To remedy this problem, the srmhvar attribute is introduced into the 
compacted document. This attribute marks the name of those attributes that 
were not present in the original document. Consider, for example, the following 
SRML rule set:
<rules-for root="A">
<rule element="srml:root" attribute="x">
<exprXdata>100</dataX/expr>

</rule>
<rule element="srml:root" attribute="y">
<exprXdata>200</dataX/expr>

</rule>
</rules-for>

Suppose the input XML document is the following:
<calc>
<A x="100" y="200"/> 
<A x="99" y="200"/> 
<A x="88" y="201"/> 
<A/>

</calc>

When applying the rules to the input XML document, the result of compaction 
(Reduce) will be the following:
<calc>
<A/>
<A x="99"/>
<A x=n88n y=n201n/>
<A srml:var=" x y "/>

</calc>

1Non-defined attributes can occur if there are IMPLIED attributes in the XML file.



1.4. SRMLTOOL: A COMPACTOR/DECOMPACTOR FOR XML D0CUMENTS31

The example shows that in the hrst A element both x and y attributes were 
removed as their value matches the SRML rule value. In the second, only the 
y attribute could be removed since the x attribute had a different value. In the 
third A element, both x and y attributes were kept as their values differed from the 
SRML rule values. In the last A element a new attribute called srmhvar had to be 
inserted because the input XML document had neither attribute in this element. 
If the attributes had not been marked, then the deeompaeting would have added 
both attributes with the value mentioned in the SRML rules.

Our implementation can reduce XML documents even when there is a circular 
reference in the rules. For example if the rules A.x = B.x, B.x = C.x and 
C.x = A.x (Figure 1.13) are given there is an exact rule for each attribute, but 
only two of them can be deleted if it needs to be restored later. The following 
algorithm is used to remove the attributes (this algorithm can also resolve circular 
dependencies):

1, Create a dependency list (every attribute may have input and output depen­
dencies, the input dependencies being those attributes on which it depends 
and the output are those that depend on it. The dependencies are repre­
sented as edges)

2, If the list is empty, then goto 5, Look for an attribute that has no input or 
output edges. If there is one, then it can be deleted and removed from the 
list (since this can be restored using the rule hie), next goto 2, If there isn’t 
any list, goto 3,

3, Look for an attribute that has only output edges. This means that other 
attributes depend on this attribute (e.g: the A.x attribute in Figure 1.12). 
Delete this attribute and the output edges, remove it from the list, then goto 
2, If there isn’t one, goto 4, 4 5

4, Cheek for circular references. This is the last possible ease since if all the 
attributes remaining in the dependency list have both input and output edges 
it means that the attributes are transitively dependent on each other (Figure 
1.13). Select the hrst element in the list (this will serve as the basis for the 
circular reference). Keep this attribute and remove it from the list (keeping 
it means that it is added to a keep vector). Goto 2,

5, END

The algorithm always terminates since the dependency list is always emptied. 
The algorithm has a vector which contains those attributes that will not be re­
moved, Note, however, that this algorithm is not the most optimal solution, but 
it is reduction safe and the completion process can be performed without any loss.



32 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

Figure 1,12: Simple dependency

Figure 1,13: Circular dependency

1.4.2 The Complete algorithm (decompacting)
This algorithm restores the attributes which have corresponding SRML semantic 
rules. The attributes which were marked with the srmhvar attribute will not be 
restored (see Section 1.4-1). In contrast to the traditional evaluator where we 
define which attribute is evaluated in which pass our approach tries to evaluate 
every attribute oeeurrenee during each pass using an attribute oeeurrenee queue. 
As mentioned in Section 1-4, a DOM tree is built from the XML file. After this 
an inorder tree visitor is called to find out which attributes have corresponding 
SRML rules. If an attribute having an SRML rule is found it is stored in a vector 
that is later processed. This vector is used for deeompaeting, which is a two-stage 
operation. First a vector is created with those attributes having corresponding 
rules, then in stage two the vector elements are processed. This speeds up the 
deeompaeting since the DOM tree is visited only once. Afterwards tree pointers 
are used to access the nodes.

1.5 Learning SRML rules
In some eases the user does not know the relationship among the attributes of 
an XML document so therefore he cannot provide SRML rules. The input of the 
module is the XML document which needs to be analyzed. The output will be a set 
of rules optimized for the input which enable the compaction. The SRML Generator 
module is based on a framework system so that it can be expanded later with plug­
in algorithms. Every plug-in algorithm must fit a defined interface.

The process of learning is as follows: 1

1, Read the input XML file.



1.5. LEARNING SRML RULES 33

2, Enumerate the plug-in algorithms and execute them sequentially,

3, After a plug-in has finished, it marks those attributes for which it could find 
an SRML rule to in the DOM tree, making the next algorithm only process 
those attributes that have no rules,

4, If all the plug-ins have been executed, then write the output SRML rule hie; 
otherwise continue processing the XML hie.

Figure 1.14 shows the process of learning. The generated rules are eoneatenated 
one after each other, creating a single SRML rule hie at the end of the process.

Figure 1,14: Learning SRML Rules

SRML hies have other crucial uses apart from making the XML hies more 
compact. One of these is that SRML allows the user to discover relationships and 
dependencies among attributes, which may not have been seen by the user. In this 
ease of course, the SRML hie has to be created dynamically via machine learning 
and other statistical methods. The SRML hies created by machine learning can 
be used as an input to other systems such as decision-making systems, where the 
relationship between speeihe criteria is examined. It may be employed in Data 
Mining and other areas where relationships in large amounts of data are sought,

1.5.1 The SRMLGenerator m odule’s learning algorithms
The SRMLGenerator currently contains hve plug-in algorithms. These algorithms 
can be expanded with additional plug-in algorithms thanks to our framework sys­
tem, A new plug-in algorithm can be created simply by creating a class which 
conforms to the appropriate interface. The execution order of the plug-ins is cru­
cial, since the order dehnes the efficiency of the compaction and also the execution



34 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

time. During the testing phase we found the following order to be the most effective 
(an observation based on experiment):

1, SRMLCopyChildRule

2, SEMLCopyAttribEule

3, SRMLCopvParentRule

4, SRMLDeeisionTree

5, SRMLConstantRule

Below, we will describe each learning module in detail,

SRMLConstantRule

This is the simplest learning algorithm in the package. This algorithm uses sta­
tistical analysis to retrieve the number of attribute oeeurrenee values and then 
decides whether to make a rule for it. For instance this algorithm searches for 
B.x = 4 and A.B.x  =  4 type of rules. The difference between these two types is 
that the first is synthesized while the second is inherited (see Figure 1.15(a) ),

Figure 1,15: (a)The two contexts of a Node (b)The statistical tree of the SRML­
ConstantRule

The decision is based on whether the size of the new rule would be bigger than 
that of the size decrease achieved by removing the attributes. The tree in Figure 
1.15(b) is used in evaluations performed by the algorithm.

To get a clearer understanding of the tree, a brief explanation will be provided 
of how it is built. First the input XML hie is parsed and each attribute oeeur­
renee is examined. All oeeurrenees have two counters incremented in the tree: the



1.5. LEARNING SRML RULES 35

attribName.value of elementName (synthesized case) and one of parentElementName 
(inherited ease).

After this stage the exact benefit of generating SRML rules in a synthesized or 
inherited form can be calculated using the statistical tree created. The better one 
will be chosen (if a rule can be generated).

Copy Rules

These algorithms search for A.x = B .x  rules. The time and memory requirements 
of searching for this type of rule in one stage can be rather high. That is why 
the implementation was separated into three modules: SRMLCopyChildRule (x =
B.x) SRMLCopyAttribRule (x =  y) and SRML Copy Parent Rule (B.y = x). The 
implementation uses similar statistical trees as those mentioned above. Here, the 
algorithm determines whether the attribute was inherited or synthesized. Inherited 
attributes are handled by the SRML CopyParentRule module, whereas synthesized 
attributes are handled with the SRMLCopyChildRule and SRMLCopyAttribRule 
modules. In Figure 1.16, examples can be seen for each type. In the ease of (1), 
the book.firstsection is equal in value to the section.name, making this attribute a 
synthesized one. In (2), the word attribute of the book matches the total attribute, 
thus making it a synthesized attribute as well. In (3), section, author is the same 
as the book, author so it is an inherited attribute. In the example, there are parts 
where the attributes do not match. This is permitted since it is not obligatory 
that every attribute with the same name match,

SRMLDecisionTree

The SRMLDecisionTree plug-in is by far the most advanced of the currently im­
plemented algorithms. It makes use of a machine learning approach [34] in order 
to discover relationships and builds if-else decisions using a binary tree similar to 
the ID3 [37] algorithm. Next, we elaborate on how the SRMLDecisionTree plug-in 
actually works.

The algorithm first narrows the set of attributes for which rules need to be 
made. The criteria of this "narrowing" is that the given attribute must have at least 
two different values whose occurrences are dominant. The meaning of dominant 
in this ease is that the attribute value occurs frequently enough in the input, 
making it an excellent target for compaction. The operation of finding dominant 
attributes is performed though a function which can be altered. Currently the 
algorithm considers an attribute value dominant if the value occurrence exceeds 
5, Although we defined the dominance limit to 5, it does not necessarily mean 
that this is a hard limit. The dominance function can be replaced at will. If the 
number of dominant attribute values is less than two, it is not a problem since the



36 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

1. SRMLCopyChildRule XML: <book firstSection="Introduction"> 
<section name="Introduction" word="200"/>
<section name="Summary" word="400"/>

</book>

SRML:
<rules-for root="book">
<rule element="srml:root" attrib="firstSection"> 
<expr><attribute element="section" attrib="name"/x/expr> 

</rule>
</rules-for>

2. SRMLCopyAttribRule XML:
<book word="200" total="200">
<section word="200"/>

</book>

SRML:
<rules-for root="book">
<rule element="srml:root" attrib="word">
<expr><attribute element="srml :root" attrib="total"/x/expr> 

</rule>
</rules-for>

3. SRMLCopyParentRule XML:
<book author="James West">
<section author="James West" title="Introduction">
<section author="Mary Jones" title="Summary">

</book>

SRML:
<rules-for root="book">
<rule element="section" attrib="author">
<expr><attribute element="srml :root" attrib="author"/x/expr> 

</rule>
</rules-for>

Figure 1,16: Examples of the Copy rules

next plug-in algorithm (in this ease the SRMLConstantRule) will try to find a rule 
for the attribute. The reason why the attribute value number is limited to two is 
that with two different dominant values if-else branches can be created, which in 
turn allows a more optimal rule generation process.

We generate a learning table for each "narrowed" dominant attribute. To 
demonstrate how these tables are created and what their contents are, a simple 
example will be provided. The example creates a ear-pool database for ears. Each 
ear can have the following attributes: colour, eeode (colour code), doors, type. 
The XML format of the example is shown in Figure 1.17.

Based on the input XML hie described in Figure 1.17, two learning tables will 
be generated, assuming that there are enough dominant attributes. At this stage 
of the processing it is not known whether the attribute is synthesized or inherited,



1.5. LEARNING SRML RULES 37
<car-set num="100">
<car color="blue" ccode="5" doors="5" type="minivan"/>
<car color="red" ccode="3" doors="3" type="compact"/>
<car color="blue" ccode="5" doors="5" type="standard"/>
<car color="green" ccode="2" doors="5" type="standard"/> 
<car color="black" ccode="l" doors="3" type="convertible"/> 
<car color="blue" ccode="5" doors="3" type="compact"/>
<car color="green" ccode="2" doors="3" type="convertible"/>

</car-set>

Figure 1.17: An example of a decision tree input

so learning tables are generated for both contexts. For the synthesized ease (Table 
1.2) only one table is created, but for the inherited ease (Table 1.3) the number 
of tables depends on how many parents the attribute’s element had in the whole 
input hie.

.find [color] ccode doors type
blue 5 5 m inivan
red 3 3 com pact

green 2 5 stan d ard
black 1 3 convertible
blue 5 5 stan d ard
blue 5 3 com pact

green 2 3 convertible

Table 1.2: A synthesized learning table for Figure 1.17

.find[car.colour] car.ccode. 1 car.doors.l c a r .ty p e .l
blue 5 5 m inivan
red 3 3 com pact

green 2 5 stan d ard
black 1 3 convertible
blue 5 5 stan d ard
blue 5 3 com pact

green 2 3 convertible

Table 1.3: An inherited learning table for Figure 1.17

The headers of the columns are the names of the attributes which are present in 
the rule contexts (inherited, synthesized) of the current attribute. If an attribute 
occurs more than once in the rule contexts, a new column is appended for each 
new attribute oeeurrenee.

The number of rows depend on how many rule contexts there are that contain 
this attribute. The values of the fields are the values that the attribute takes in a



38 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

given context. If the attribute is not present in a context, the value is marked by 
a minus (-) sign.

The learning tables created by this algorithm can be used as inputs for external 
learning systems. The learning algorithm builds up a binary tree similar to that for 
the ID3 algorithm with a depth limit of 3, The reason why we use a binary tree is 
that the current specification of the SRML format only handles if-else statements 
and it would be rather difficult to code a multiple branch tree.

With every table, a new rule is learned for the given attribute. Next, the 
algorithm decides (based on the generated tree) whether to select the synthesized 
rule or some of the inherited rules or neither. This decision is made using the 
information stored in the leaves of the tree. This information helps the algorithm 
effectively decide how many attributes will be eliminated during compaction if 
the given rule is added to the rule set. The algorithm will select those rules that 
achieve the maximum compaction.

At the end of the algorithm, the SRML rules are generated from the selected 
trees and the appropriate attributes are marked in the input DOM tree. In the 
ease of Figure 1.17, the learned rule set will be a relationship between the ccode 
(numeric) and the colour (text) attribute,

NOTE: Every plug-in tries to make the optimal decision, the only factor that 
being currently not considered is the length of the srmhvar attribute. This is why 
in some eases the SRMLConstantRule increases the size of the compacted hie. The 
framework detects when a size increase occurs and does not execute the specific 
learning module.

1.6 Experim ental results
In the held of Software Engineering the XML representation is treated as a stan­
dard, so it is widely used (e.g, XMI based models). The testing of our implemen­
tation was done via CPPML [12], an XML exchange format that is used as an 
output of the Columbus Reverse Engineering package [39], However, this method 
can be applied to any XML domain without any major restrictions,

1.6.1 A real-world case study: CPPML
CPPML hies can be created from a CPP hie. Here, CPPML is a metalanguage 
capable of describing the structure of programs written in C++, Creating CPPML 
hies can be performed via the Columbus Reverse engineering package [39] (CPPML 
is XML-based),

To illustrate how CPPML stores a C ++ program, let us consider the following 
C ++ program:



1.6. EXPERIMENTAL RESULTS 39

class _guard : public std::map<std::string, _guard_info> 

public:void registerConstruction(const type_info & ti) 

(»this)[ti.name()]++ ;
>

>;

The CPPML form of the program could be the following:

<class id="id20097" name=n„guard" path="D:\SymbolTable\CANGuard.h" line="71" 
end-line="90" visibility="global" abstract="no"defined="yes" template="no" 
template-instance="no" class-type="class">

<function id="id20102" name="registerConstruction" path="D:\SymbolTable\CANGuard.h" 
line="75" end-line="76" visibility="public" const="no" virtual="no" pure-virtual="no" 
kind="normal" body-line="75" body-end-line="76" body-path="D:\SymbolTable\CANGuard.h"> 

<return-type>void</return-type>
<parameter id="id20106" name="ti" path="D:\SymbolTable\CANGuard.h" line="74" 
end-line="74" const="yes">

<type>type_info&amp;</type>
</parameter>

</function>

</class> ...

In the CPPML definition, a lot of attributes can be calculated or estimated 
using other attributes. One of these is the kind attribute, which stores the type of 
the function. This kind can be normal, a constructor or destructor. If the function 
name matches that of the class name, then it is a constructor; if the function name 
starts with a ~ , then it is a destructor.

Expressed in SRML form, this might look like the following:

<rules-for root="class">
<rule element="function" attrib="kind">

<expr>
<if-expr>

<expr>
<binary-op op="equal">

<exprXattribute attrib="name"/></expr>
<expr><attribute attrib="name" element="srml:root"/x/expr>

</binary-op>
</expr>
<expr><data>constructor</data></expr>
<expr>...</expr>

</if-expr>
</expr>

</rule>
</rules-for>

It is not necessary to provide precise rules, since the Compact algorithm will 
only remove those attributes that can be correctly calculated from the rules. Con­
sider the following estimation: 1

1, A function declaration starts and ends on the same line.



40 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

2, The implementation of a class’s function is usually in the same hie as the 
previous function’s implementation,

3, The parameters of a function are usually in the same hie, perhaps somewhere 
in the same line,

4, The visibility of the class members is normally the same as that for the 
previously dehned members.

Expressed in SRML form, these "estimated" SRML rules may look like the follow­
ing:

<rules-for root="function">
<rule element="parameter" attrib="end-line"> 

<exprXattribute attrib="line"/x/expr>
</rule>
<rule element="parameter" attrib="line">

<exprXattribute attrib="line" num="-l"/x/expr> 
</rule>
<rule element="parameter" attrib="path">

<expr><attribute attrib="path" num="-l"/x/expr> 
</rule>

</rules-for>

After running the compaction module, the following XML document is pro­
duced:

<class id="id20097" name="„guard" path=nD:\SymbolTable\CANGuard.hn line="71" 
end-line="90" visibility="global" abstract="no" defined="yes" template="no" 

template-instance="no" class-type="class">
<function id="id20102" name="registerConstruction" line="75" end-line="76" visibility="public" 
const="no" virtual="no" pure-virtual="no" kind="normal" body-path="D:\SymbolTable\CANGuard.h"> 
<return-type>void</return-type>
<parameter id="id20106" name="ti" line="74" const="yes">

<type>type_info&amp;</type>
</parameter>

</function>

</class>

Using the rules described above, it produced a compaction ratio of 68,9%, since 
the original fragment was 2,180 bytes and the compacted was 1,502 bytes. This 
ratio can be further improved with the introduction of new SRML rules.

1.6.2 Compacting CPPM L with SRML rules created by hand
We implemented the rules in SRML (mentioned in the previous section) and ap­
plied them to three different examples. These were:

symboltable (399KB): one of the source hies of the Columbus system



1.6. EXPERIMENTAL RESULTS 41

jikes (2233KB): the IBM Java compiler

appwiz (3546KB): a base application generated by Microsoft Visual Studio’s 
AppWizard

The results achieved using SEML hies created by hand are shown in Table i.% 
The input hies here were in CPPML form. The (C) bracket indicates that the 
compressors were applied to the compacted version of the XML hie.

File Sym bolTable Jikes A ppW iz
Original 399 321 2 233 824 3 547 297

gzip [ratio] 30 460 [7.62 %] 177 051 [7.92 %] 244 174 [6.68 %]
XM ill [ratio] 19 786 [4.95 %] 114 275 [5.11 %] 145 738 [4.10 %]

C om pacted  [ratio] 296 193 [74.10 %] 1 736 267 [77.70 %] 2 238 308 [63.10 %]
gzip(C) [ratio] 26 308 [6.58 %] 160 609 [7.18 %] 206 522 [5.82 %]

XM ill(C) [ratio] 18 008 [4.50 %] 108 458 [4.85 %] 134 217 [3.78 %]

Table 1,4: Compaction table using handwritten rules

Although the compaction ratio is smaller than that achieved by compression, 
when compaction and compression are combined, the method can improve the 
efficiency of the compressor. Applying XMill on the compacted SymbolTable led 
to an overall size reduction of about 10%, since XMill compressed the original 
SymbolTable to 19,786 bytes, whereas applying XMill after the hie had been com­
pacted resulted in a size of 18,008 bytes. This 10% efficiency increase can be very 
useful for embedded systems.

Manual rule generation isn’t a hard task for a domain expert who knows the 
system he wishes to apply the method to, since he knows the attributes and this 
can create the appropriate rule sets. Creating hand written rules for the CPPML 
environment took less than an hour,

1.6.3 Compacting CPPM L with machine learning SRML 
rules

In Table 1.5, & comparison is made between the efficiency of the machine learned 
and hand-generated SEML rules. The percentage scores shown in the Diff held 
show how big the difference was compared to the original hie size.

In some eases the compaction ratio achieved using SEML hies generated via 
machine learning can attain those of hand-generated SEML hies (e.g. Jikes). 
However, creating hand-generated rules requires time and effort, since the user 
needs to know the structure of the XML hie. The machine learning approach takes 
this burden off the user and generates rules automatically. These results can be 
improved by adding new plug-in algorithms into the SRML Generator module like



42 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

Filenam e M anual M achine Diff
Sym bolTable (399 321) 296 193 [74.10 %] 313 873 [78.60 %] 17 680 [4.42 %]

Jikes (2 233 824) 1 736 267 [77.70 %] 1 737 872 [77.79 %] 1 605 [0.07 %]
AppW iz (3 547 297) 2 238 308 [63.10 %] 2 589 526 [73.00 %] 351 218[9.90 %]

Table 1.5: Comparison of machine learned and hand written rules

those using advanced decision making systems, other types of statistical methods 
and concatenation parsers (which search for relationships among concatenated 
attribute values).

Using Machine Learning to generate rules can be costly, but it is suffieent to 
generate the rules once; then they can be reused over time for each XML hie in 
the given domain.

Since the execution order of the plug-ins really matters (an effective order was 
described in Section 1.5.1), this is why using the Copy rules (SRMLCopyChildRule, 
SRMLCopyAttribRule, SRMLCopyParentRule) seems initially to provide the op­
timal solution, which is an observation based on experiment. First, the copy rules 
are processed. The order of these is actually not important, but they offer simple 
relationships which cover more attribute occurrences. The reason why using the 
SRMLDecisionTree plug-in is applied before last is that it takes a long time to 
process large hies and it is specialized for more complex and speeihe occurrence 
discovery; and most attributes can be removed beforehand using other plug-ins. 
Using SRMLConstantRule at the end is useful, since it may remove constant oc­
currences that were left untouched by the previous plug-ins. In some eases it may 
be better to choose another order, but this needs to be examined further.

1.6.4 Analyzing the Learning modules
Here, we list the performance of each learning module in the sequence dehned in 
Section 1.5.1. A comparison is made by building up the rule set, adding one rule 
type at a time, then noting the compaction ratio it achieves in practice. This 
provides a good basis for future amendments. The results are shown in Table 1.6 
below. The sizes include the size of the generated SRML hie as well. The order 
used is listed in Section 1.5.1.

As is clear from the table, during the comparison SRMLConstantRule decreased 
the efficiency in Jikes and AppWiz compaction. The reason for this is that the 
current cost function does not take into account the ease where an attribute is 
absent in an element. In this ease the compactor has to mark this attribute 
with the srmhvar attribute (see section 1.4-1). If there were many "missing" 
attributes it is possible that the hie size might increase. The framework detects 
this and does not apply the given learning module. This in many eases is quite



1.6. EXPERIMENTAL RESULTS 43
M odule Sym bolTable Jikes AppW iz
original 399 321 2 233 824 3 547 297

1 359 964 [90%] 2 022 497 [90% ] 2 959 427 [83%]
1,2 351 999 [88%] 1 938 549 [86%] 2 889 183 [81%]

1,2,3 346 830 [86 %] 1 871 154 [83%] 2 753 721 [77%]
1,2,3,4 337 825 [84%] 1 737 872 [77%] 2 589 526 [73%]

1,2,3,4,5 313 873 [79%] 1 821 228 [82%] 2 773 946 [78%]

Table 1,6: Comparing learning modules

effective. The SRMLGenerator module saves the SRML hies -after each plugin 
has been executed- to separate temporary SRML hies. This is good for cheeking 
the efficiency of each plug-in. Here, this option can be disabled using a command 
line parameter.

1.6.5 Combining machine learning and manual rule gener­
ation

It is possible to combine machine learning and manual rule generation into a single 
rule set. This is useful when the user knows some relationships among attributes, 
but not all of them. The module accepts preliminary SRML hies as well, meaning 
that there are some rules in the hie but not all. This hie is processed and new 
rules are appended, making it more efficient. Below the efficiency of this method 
is shown in a table format.

File M anual M achine Com bined
Sym bolTable (399 321) 296 193 [74.17 %] 313 873 [78.60 %] 281 088 [70.40 %]

Jikes (2 233 822) 1 736 285 [77.72 %] 1 737 872 [77.79 %] 1 367 244 [61.20 %]
A ppW iz (3 547 297) 2 238 308 [63.09 %] 2 589 526 [73.00 %] 2 038 569 [57.46 %]

Table 1,7: Combining machine learning and manual rule generation

Table 1.7 shows that combining machine learning with manual rule generation 
is quite effective. When running XMill on the compacted XML created with the 
combined rules, an increased compression ratio can be achieved (see Table 1.8). 
When machine learning and manual rule generation are combined, the additional 
compressibility of the compacted document can be much as 26%, For example in 
Table 1.8 AppWiz was compacted to 145 738 bytes, which is 4,1% of the original 
document. If we hrst compact the XML using combined rules, then execute the 
XMill on it, the resulting hie size is 106 773 bytes, which is 3,01% of the original 
and the overall hie size decrease is 26,73% (this is the size difference between the 
manually generated then compressed and the combined generation and compressed



44 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

file). Since the whole system is based on a plug-in framework it can be readily 
extended with more efficient machine learning plug-ins.

File Original M anual Com bined
Sym bolTable 

399 321
19 786
4.95 %

18 008
4.50 % 
8.98 %

17 876 
4.47 % 
9.70 %

Jikes 
2 233 822

114 275 
5.11 %

108 458 
4.85 % 
5.09 %

92 102 
4.12 % 
19.40 %

A ppW iz 
3 547 297

145 738 
4.10 %

134 217 
3.78 % 
7.90 %

106 773 
3.01 % 

26.73 %

Table 1,8: XMill compression for combined and manual compaction

1.6.6 Resource requirements of the tool
For testing, a Linux environment was used on a PC (AMD Athlon XP 2500+ 
512MB DDR), The package requires about 200MB of memory since the DOM tree 
takes up a lot of space (this point was mentioned in Section 1.4). The AppWiz 
file was compacted in approximately 2 minutes and deeompaeted in 30 seconds. 
The execution time was long in the ease of machine learning (SRMLDecisionTree) 
since it had to generate lots of learning tables, which can be rather large at times. 
Depending on the complexity and level of recursion, the execution time ranged 
from 2 hours to 30 hours.

Although it is true that learning compacting rules is not very fast, once the rules 
are generated they can be used over and over again. It is also possible to create a 
more effective compacting implementation to increase the speed still further.

Trying to determine the running time of the method is not easy, and it can 
be only estimated. The decision tree learning algorithm used is a standard ID3 
algorithm. This algorithm is applied to every attribute that has at least two 
dominant values. The size of the learning table depends on all of the attribute 
occurrences and their environments. This is why it would be hard to categorize the 
running time into standard eubie/quadratie classes; however, it strongly depends 
on the input file size and the complexity of the relationships contained within.

1.7 Related Work
The first idea about adding semantics to XML documents was mentioned in [36], 
The authors furnished a method for transforming the element description of DTD 
into an EBNF Syntactic rule description. It introduced its own SRD (Semantics



1.7. RELATED WORK 45

Rule Definition) comprised of two parts: the first one describes the semantic at­
tributes2, while the second one gives a description of how to compute them, SRD is 
also XML-based, The main difference between the approach outlined in their arti­
cle and ours is that we provide semantic rules not just for newly defined attributes 
but also for real XML attributes. Our approach makes the SRML description an 
organic part of XML documents. This kind of semantic definition could offer a 
useful extension for XML techniques. We can also generate the SRML files using 
machine learning. Our SRML description also differs from the SRD description 
found in that article. In SRD, the attribute definition of elements with a +  or * 
sign is defined in a different way from the ordinary attribute definition and can only 
reference the attributes of the previous and subsequent elements. The references 
in our SRML description are more generic, and all expressions are XML-based,

We are not aware on any study on generating rules for XML files. We came 
across an article that generates rules for Attribute Grammars, which was intro­
duced in [17], The idea is to provide a way of learning attribute grammars. The 
learning problem of semantic rules is transformed into a propositional form. The 
hypothesis induced by a propositional learner is than transformed back into seman­
tic rules, AGLEARN was motivated by ILP learning and it can be summarized in 
the following steps:

i) The learning problem of the semantic rules is transformed into propositional 
form;

ii) A propositional learning method is applied to solve the problem in proposi­
tional form;

iii) The induced propositional hypothesis is transformed back into semantic 
rules;

This method is similar to ours as it learns and uses semantic rules based on 
examples as training data, but it is only effective on attributes with very small 
domains. In contrast to our method, it searches for precise rules that can use 
approximated rules as well.

The reason why these papers are cited here is that they in some way try to 
accomplish what our algorithm actually accomplishes. They mostly use seman­
tic relations, and some authors even define a separate language (XML based) to 
describe the operations. It should be emphasized that our algorithm is not a 
compressor, but a compactor. We do not wish to compare our algorithm with a 
compressor algorithm, but if we apply a compressor to the compacted document, 
then we can achieve better results than other standalone compressors. Further­
more, if we generate the SRML file for a group of specific XML documents then 
it is not necessary to generate SRML rules for each input XML document in that 
group. This makes its applicability more feasible.

2These are newly defined attributes which differ from those defined in XML files.



46 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION

Below, some compression algorithms are presented, since they can be combined 
with our approach, and make their overall compression more effective.

In [31], a Minimum Length Encoding algorithm is used. The algorithm operates 
in a breadth-first order, considering the children of each element from the root in 
turn. The encoding for the sequence of children of the element with name n in 
the document is based on how that sequence is parsed using the regular expression 
in the content model for n in the DTD, This algorithm employs a DTD-centered 
approach.

Another article that ought to be mentioned is [9], where the authors create 
a multi-channel access to XML documents. An XML query processor is used to 
accomplish the structural compression. Lossless and lossy semantic compressors 
are defined along with an XML-based language for describing possible associations 
between similar parts of documents and semantic compressors. The main idea is 
to process the XML document in such a way that elements can be regarded as 
tuples of a relation. These tuples are structured as a dataeube, with aggregate 
data on suitable dimension intervals. This is a relational approach that treats the 
XML attributes as relations (formal expressions). The drawback of it is that it 
has a lossy compression,

XMill [32] is an open source research prototype developed by the University of 
Pennsylvania and AT&T Labs, building on the gzip library to provide an XML- 
speeihe compressor. It uses a path encoder to support the selective application of 
type-specific (i.e, based on design knowledge of the source document) encoders to 
the data content. The data and content of the source document are compressed 
separately using redundancy compression. The idea is to transform the XML into 
three components: (1) elements and attributes (2) text, and (3) document struc­
ture, and then to pipe each of these components through existing text compressors. 
This is a compressor as well, mostly used by other algorithms. It also makes use 
of LZW as a compression algorithm.

The idea behind that given in [10] is to use multiplexed hierarchical PPM (pre­
diction by partial match) models to compress XML hies. The procedures detailed 
in the article may in some eases be better than XMill’s procedure. The reason is 
that XMill’s base transformation has drawbacks like precluding incremental com­
pressed document processing and requires user intervention to make it efficient. It 
mentions that MHM (multiplexed hierarchical modelling) can achieve a compres­
sion ratio up to 35% better than the other approaches, but it is rather slow.

Another interesting approach for XML compression is described in [41], This 
article describes how this tool can be used to execute queries against the com­
pressed XML document. It uses several compression methods like Meta-data 
compression, Enumerated-type Attribute Value compression, Homomorphic com­
pression, Using these techniques, it creates a semi-struetured Compressed XML



1.8. SUMMARY 47

document, which is binary, but retains query capabilities. It creates a frequency 
table and a symbol table, that are than passed on to the XGrind kernel. This 
approach is better then using completely binary chunks of data, as it can query 
the hie.

1.8 Sum mary
We introduced a semantics extension of XML and designed a metalanguage called 
SEML (Semantic Rule Meta Language) that can store the semantics definition of 
XML attributes.

We presented the most important application of the XML semantics extension: 
that of compaction. We also combined this compaction with general and XML 
specific compressors, and achieved a relative compression improvement of 20-30%,

We used simple machine learning method to create semantic rules automat­
ically, and also described how to combine an expert-generated SEML with an 
automatic machine learning procedure.

The basic idea behind the method and introducing the metalanguage and its 
main applications are my own results, which were published in [20], The compres­
sion application and the learning framework published in [26] are joint results with 
Miklós Kálmán, The XSD adaptation published in [27] is mostly the work of my 
co-author, Miklós Kálmán, Besides the compression, our method can also be used 
for semantic XML validation, which was also outlined in [27],



48 CHAPTER 1. XML SEMANTIC EXTENSION AND COMPACTION



Chapter 2

Size optimization with ARM Code 
Compression

Traditional embedded systems usually have a limited storage capacity. One of 
the simplest solutions for saving space is that of compression. One of the nicest 
ways of compression is that if the hie system itself has a transparent compression 
feature, then neither the users nor the developers have to deal with it.

The compressing hie systems usually use a general purpose compressor. Its 
compression ratio can be improved if we implement more apriori knowledge in the 
compressor. In the ease of embedded systems, a certain amount of space is used 
to store binary code. As one of the the most frequent architectures available is 
ARM, we decided to develop an ARM code compressor.

There are numerous compression methods presented in the literature, many of 
which are overviewed in a survey by Árpád Beszédes et al, [5], These methods 
usually can be divided into a model part and a coder part. Our method is also 
like this. Based on previous studies by C, W, Fraser [13] and M, Garofalakis et al, 
[14], we used special decision tree(s) as the model and an arithmetic coder [44] as 
the coder.

The implementation of our algorithm is called ARMlib, It was tested on real 
iPAQ handheld machines using JFFS2 hie system, JFFS2 [45] was especially de­
signed for hash devices and it uses a general purpose compressor called zlib (the 
compressor library of gzip) for transparent compression. We improved the com­
pression capabilities of JFFS2 to be able to use both ARMlib and zlib compressors. 
On a hie system image with size 25MB uncompressed, 1,7 - 2,6MB was saved based 
on the parameters of the algorithm. This means that the compressed image was 
12,6 - 19,4% smaller when ARMlib was used than the original (zlib-onlv) com­
pressed image; hence this amount of hash memory could be saved.

The drawback of ARMlib is its speed. The boot time of the iPAQ when ARMlib

49



50 CHAPTER 2. SIZE OPTIMIZATION WITH ARM CODE COMPRESSION

was used was 2-4 times the original boot time (when only zlib was used). However, 
the slower performance is not a nuisance for a regular user in general because users 
usually do not switch off the mobile devices, but only turn on the sleep or suspend 
mode; and the Linux kernel also uses a cache that is optimized for speeding up 
the regular use.

The main contributions of this chapter are the following. First, we introduce 
a decision tree based code compression method which combines Fraser’s idea of 
using decision trees as compression models [13] and the effective tree construction 
algorithm of Garofalakis et al, [14], which was originally intended for building 
trees for classification. We applied this method in a real environment [18]; namely 
the JFFS2 hie system in the Familiar Linux distribution was modified to use both 
zlib and our method on an iPAQ machine.

Our compression framework is now a the part of the official JFFS2 and Linux 
kernel. The compression algorithm itself is patented with US patent number 
6,917,315 [40] under the name of the authors.

2.1 Background
In this section, we will briefly overview what compression means and how it usually 
works, then we will briefly describe what decision trees are and do,

2.1.1 Compression

The term “compression” here is defined as in [5]: “storing data in a format that 
requires less space than usual”. In other words: represent some data in a form 
that is smaller than the original representation. The term “decompression” is the 
inverse of compression, thus restoring the data to its original form.

The theory behind compression is based on results of information theory. Be­
low, we will review some terms used in information theory.

We will define the input of a compression method as a sequence of input sym­
bols, These symbols may be the bits or bytes of the input as well as more complex 
entities. These entities are usually called tokens. The input sequence may contain 
values from a fixed set of symbols (token values). The basic idea behind most 
compression algorithms is to assign a code to each symbol in such a way that the 
sequence of the codes will be shorter than the sequence of the symbols.

Each symbol in the input has a probability value. By assigning a shorter code 
to a more frequent symbol and a longer code to a less frequent one, the overall size 
of the output sequence will be smaller than the original size of the input sequence. 
Most compression methods utilizes this idea to produce a smaller output sequence.



2.1. BACKGROUND 51

Formally: Let A = {a\,a2,...,aN} be a set of symbols. Let X  = x \ ,x 2, ...,xm 
be a sequence with Xj G A, (i = 1 ..m). Now, all a G A has a PX(a) > 0 probability 
in the sequence X, with Y.aeA PX (a) = 1-

Now, we can compute the information content of X, The less information is 
stored in X, the shorter the encoded sequence can be used to represent it. The 
information content can be measured by the entropy of X  using the following 
formula:

Ha ( X ) = -  53 Px (a)log2Px(a)
aeA

This formula gives the minimum average number of bits required to encode one 
symbol in the sequence X  If Ha (X) is multiplied by m, we get the theoretical 
minimum size (in bits) of the encoded sequence of X,

2.1.2 Compression model
The compression method can be separated into two parts: (1) gathering informa­
tion about the input sequence, and (2) assigning suitable codes to the tokens. The 
first component is called the modeller, while the second component is called the 
coder. The latter uses the model provided by the modeller during the code assign­
ing process. Most compression methods contain a separate modeller and coder, 
although these are usually hne-tuned together. Many modellers can be applied 
with the same coder and vice versa, so these two can be treated as separate topics 
of research.

The goal of the model is to provide a good probability distribution on the next 
token in the input: for each token value say what the chance of the event that 
the next token has the said value is. Modelling can mean almost anything: the 
simplest model is the probability distribution of the token values in the input, but 
the probability distribution provided by the model may vary from token to token. 
For example, the values provided by the model may depend on the value of the 
last token.

Coders can also come in different forms. There are coders that directly assign 
a codeword to each individual input token value (e, g, Huffman) and there are 
coders that assign a final codeword to a sequence of tokens (e, g, arithmetic). The 
decoder implements the inverse of the coder (it restores the tokens from the codes); 
however it uses the same model that was used by the coder,

2.1.3 Code compression
Code compression covers the compression of almost any form of a program, includ­
ing intermediate representation or binary program code but excluding source code 
(which is rather a special ease text compression than code compression). Although



52 CHAPTER 2. SIZE OPTIMIZATION WITH ARM CODE COMPRESSION

all these forms are considered “code”, there may be many differences between them. 
For instance, the IE code may be some kind of tree (e, g, AST - Abstract Syntax 
Tree), while the binary code is a sequence of machine instruction.

2.1.4 Decision trees
Decision trees are used for storing information about a set of objects. More pre­
cisely, decision trees are trees that provide some information about the target­
attribute of an object using some other attributes of it, A typical application is 
the classification of objects, where the object is placed into one of the given classes 
based on some properties (attributes) of the object, [37, 38]

In Figure 2,1, the objects are given by their attributes and assigned with a 
class (+ or —). The decision tree in this figure encodes this classification.

ATT#1 ATT#2 ATT#3 CLASS
1 A X +
2 A X -
3 B y +
3 C y +
2 B X -
3 B X -
1 A y +
1 C y -
2 A y -
1 B y -

1 2  3

A B C  x y

/ I \ / \
c+) ( - )  ( - )  ( - )  c+)

Figure 2,1: A simple decision tree

The tree contains an expression with attributes (predictors) in each of its in­
ternal nodes. Such an expression may be the attribute itself (as in the example) 
or a comparison of the attribute with one of its possible values or some more com­
plicated expressions. An outgoing edge is assigned to each of the possible results 
of the expression in the node. These edges always end in subtrees. In the leaves of 
the decision tree, information (target-attribute) is stored that corresponds to the 
decisions made on the path from the root to the actual leaf.

To extract information about an object (which is given by its attribute values) 
from a decision tree, first evaluate the decision in the root using the attribute 
values of the given object, then cheek the end of the edge assigned with the result. 
If there is a subtree then repeat the process on it. When a leaf is reached it will 
contain the required information.

Decision trees are mainly used because they can be built automatically. Tree 
construction algorithms require only a great number of examples (where the target-



2.2. PREVIOUS WORKS 53

attributes are also known) to automatically create a decision tree. The best known 
decision tree building algorithms are ID3 [37] and C4.5 [38],

2.2 Previous works
Next, previous studies on binary code compression and decision tree building are 
described, and their advantages and drawbacks are mentioned.

2.2.1 Code compression methods
Code compression is used for a variety of reasons. The goal may be the reduc­
tion in energy consumption, which may result in a smaller stored size and/or the 
smaller data size sent through the channels between hardware elements. Some­
times compression has no other reason than that of saving space, thus improving 
the capacity of the storage device.

Hence, we concentrate on binary code compression although we will borrow 
some concepts from other code compression techniques as well.

Benini et al. created a transparent compression method [4], where the com­
pressed code is decoded by a hardware unit between the memory and the CPU. 
The decoder unit is a simple table that contains the most frequent 255 codes, as­
signed to a bvte-long codeword. The 256th value is an escape character to state 
an uneoded instruction. The most frequent codes come from statistics and the 
codewords are assigned using the Minimal Hamming Distance.

Wolfe et al. described a block-based compression method usable on hardware 
with memory cache [3], The cache pages are stored in the memory in compressed 
form and decompressed into the cache when a cache miss occurs. The connection 
between the in-eaehe and real memory addresses is resolved using a Line Allocation 
Table (LAT). Many coders were tested, and a version of Huffman coding was 
recommended for use by the authors.

Breternitz and Smith enhanced the previous method [8] and eliminated the 
LAT. The memory addresses in the code was modified to contain a cache page ad­
dress and an offset of the target instruction. This solution created more problems, 
though, like when the program runs through a cache page boundary without a 
jump. (This was later solved by automatically generated jump instructions.) The 
best compression ratio they achieved was 0.56.

Laketsas et al. improved Wolfe’s method [30], They proposed the decomposi­
tion of RISC instructions into streams, thus the different parts of the instructions 
(e. g. operation code, target register) are encoded in different sequences. They also 
proposed arithmetic coding. Their models were Markov models and dictionaries. 
Their average compression ratios were 0.5 — 0.7.



54 CHAPTER 2. SIZE OPTIMIZATION WITH ARM CODE COMPRESSION

The work of Lefturgv et al, is similar to Wolfe’s solution [29], but they assign 
codewords not just to single instructions, but to instruction sequences too. The 
model used is a dictionary and the codewords have a fixed size. The CodePaek 
method of IBM [22] is similar to this, but is much more complicated. The 32 
bit-long instructions are divided into two 16 bit-long parts and then these are 
encoded with a variable-length coding. The decoder is also a hardware unit, but 
the software-based decoding was also investigated. The compression ratios for 
these methods were about 0.6,

The methods above are designed for hardware decompression. Their main 
task was to reduce the energy consumption of the embedded systems, hence the 
simplicity was more important than the greater compression ratio. Their models 
are usually based on the use of some kind of a dictionary. In our ease, the energy 
consumption is secondary, the decompression can be performed by software and 
the compression ratio is more important, so our model can be more complex.

In [13], Fraser created a model for code compression using machine learning 
methods. The coder and decoder are not the subject of his paper; he focused on 
finding the relevant statistical information existing in the code to be compressed 
and automatically extracting it,

Fraser worked on an intermediate representation (IR ) not on binary code. The 
information he extracted from this representation are probability distributions 
usable by his coder. He stored these distributions in the “leaves” of this decision 
tree-like model. To do this, predictors are required that describe the context 
of the actual token, Fraser used the last 10-20 token values before the actual 
token (so-called ’’Markov” predictors) as predictors, and some computed predictors 
like stack depth. He utilized a simple tree building algorithm to infer his model 
automatically. It gets a large number of internal representation code and builds 
the tree for this data set, Fraser reduced the size of the model making a DAG 
(directed acyclic graph) from the tree by merging similar leaves. The results gave 
0.19 compression ratio on IR code. But these results did not include the size of 
the model, which can be very large,

2.2.2 Decision tree building
Decision trees can be automatically generated on large and representative training 
data sets and hence are easy to use. One of the best known tree building algorithms 
is ID3 [37], It is based on entropy gain. Let X  be a set of objects, T is the target­
attribute, A is a non-target attribute. Let T  and A denote the set of target and 
non-target attribute values. Now define the probability PX(t) and set X A,a for all 
t G T and a G A as

\{x\x G X,T(x)  = t}\
\ X \  ’

p x  (t)



2.2. PREVIOUS WORKS 55

XA,a =  {x|x G X,  A(x) = a}.

Now the entropy gain of attribute A on the set of objects X  using the formula 
HS(X ) introduced in Section 2.1.1 is

EGa ( X ) =  |X |Ht (X ) -  £  ( |XA,a| Ht (XA,a) ).
a€ A

Tree building works as follows: a set of objects (X) whose attributes are known 
is assigned with the root; the best attribute (A) which produces the highest entropy 
gain (EGa(X)) is then selected; the set of objects is split into subsets based on 
the best attribute (XA,a) and each subset is assigned with a child of the root. The 
algorithm is then invoked for the children. If each attribute produces a negative 
entropy gain, the node becomes a leaf encoding information of the target attribute 
values of the objects.

One typical problem can be that of overfitting. If a tree trained on a noisy 
training set (that contains many errors) exactly fits the training set, then the 
value the tree gives will also contain errors. Two kinds of methods can solve this 
problem.

The first is applied during tree building. When a new node is examined whether 
to be expanded or not, some stopping criteria is cheeked. These may depend on 
various properties of the node and the assigned training set. If any of these criteria 
becomes true, the node is not expanded.

The other method is applied on the fully built tree. The subtrees are examined 
and replaced with leaves if necessary. This is called pruning. It gives a more 
accurate result than the previous method because all subtrees are well known 
during pruning, while in the previous method the subtrees are not known before 
the stopping decision. But it may happen that a big subtree is built first and then 
dropped during pruning.

An enhancement of ID3 algorithm is C4.5 [38], It contains a pruning algorithm 
that works on a rule-set derived from the tree. Each leave is represented by the 
decisions made in the tree from the root to that leaf, then these rules are merged 
and sorted, and the resulting rule list is used.

In [14] Garofalakis et al. introduced some methods for the effieent building of 
decision trees. Their trees are built for classifications, and used the MDL (Minimal 
Description Length) measure for pruning.

Their pruning method works on the tree. Let R  be the root of the (sub)tree to 
be pruned and Cieaf  be the MDL cost of a leaf that encodes the information of the 
training set assigned with R, The Cnode cost of the (sub)tree can be recursively 
computed. The pruning algorithm works as follows:



56 CHAPTER 2. SIZE OPTIMIZATION WITH ARM CODE COMPRESSION

Procedure Prune(R)
Cieaf := cost of a leaf at node R
Cnode : î€Children(R) P^UH(i(Ri) A

cost of encoding internal node R 
If Cieaf < Cnode Then

Replace the subtree rooted at R with a leaf
Return Cieaf 

Else
Return Cnode

In [14], two enhanced versions of this methods were described too. In the 
first, the size of the tree (number of nodes in it) can be maximized by replacing 
subtrees of the pruned tree with leaves using a dynamic programming method. 
In the second, the minimal precision of the tree can be set. This uses the above 
method after initially setting the bound on the tree size to 1, then increasing the 
bound by 1 until the precision of the tree reaches the required value. In this article 
a third method was also described that can use the bounds set for the tree size 
during the tree building phase (using the branch and bound technique).

2.3 ARM lib - ARM  Code compression
Here our compression method is described via ARMlib, which is a function library 
that contains functions for ARM binary code compression.

In ARMlib we use a decision tree as a model and an arithmetic coder [44] is 
used as a coder.

The building of the decision tree is based on the papers by C, W, Fraser [13] and 
M, Garofalakis et al, [14], which were adapted and optimized for ARM compression 
on real machines.

The tree building automatically optimizes the model for image size. Not only 
is the compression ratio minimized (because it would result in a very precise, but 
huge model), but also the size of the tree itself. These models provide a good 
performance (i, e, greatest compression) on code sequences that are similar to the 
code they were trained on.

By setting the parameters of the training, the efficiency and speed of the com­
pression can be varied.

2.3.1 The parts of ARMlib
ARMlib consists of 3 main parts:



2.3. ARMLIB - ARM CODE COMPRESSION 57

model generator module creates the model from a great number of example 
programs, which forms the training data set,

compressor module compresses binary ARM code using a previously generated 
model,

decompressor module decompresses the compressed code to binary ARM code 
using the model.

The tokenizer and detokenizer algorithms are also the part of the ARMlib, 
Tokenizer transforms the raw ARM binary code into the sequence of tokens usable 
by the modeller and coder, and detokenizer transforms the sequence of tokens into 
ARM binary codes after decompression. Figure 2,2 shows how the parts of the 
ARMlib work together.

Model Generatoj- Compressor Decompressor
 ̂ Training Data Set j ( Program Code D  ̂ Decompressed Code

________ I________ ________ I______ Î
Tokenizer Detokenizer

J I Î
Modeller Coder Decoder

1 f M  t 'Compressed Code ]
f Model )-----1

Figure 2,2: The structure of ARMlib

2.3.2 Pre- and post-processing of the ARM  code -  the tok­
enizer

The input of model generation, compression and the output of decompression are 
ARM binary code. The methods applied work on a sequence of tokens, so we need 
to transform the raw 32 bit-long ARM codes into tokens and the tokens back to 
ARM codes. These transformations are made by the tokenizer and detokenizer 
modules,

ARM instructions are 32 bit-long that would be too large for our decision tree 
building method, so we divided the instructions into more (and smaller) tokens. 
In ARMlib the instructions are split into 8 tokens, which are each 4 bits long, 
so the first step of model generation and compression is to create a sequence of 
tokens from the sequence of ARM instructions, which is performed by the tokenizer 
module. The last step of the decompression is to create the ARM instruction 
sequence from the token sequence, which is the task of the detokenizer.



58 CHAPTER 2. SIZE OPTIMIZATION WITH ARM CODE COMPRESSION

The 4 bit-long tokens were chosen for two reasons. The first one is mentioned 
above: it is small enough to build smart decision trees. The second reason is that 
the ARM instructions mostly consist of parts whose length in bits are a multiple 
of 4, Let us see a typical ARM instruction, and its 4 bit-long components:

COND INSH INSL 0P1R DEST 0P2H 0P2M 0P2L

Here COND is the condition parts, INSH and INSL are the code part, 0P1R is the 
first operand (register number), DEST is the destination register, 0P2H, 0P2M and 
0P2L are the second operands (with many possible meanings) of the instruction. 
For example, the code of the assembly statement "ADDLT R2,R4,R9,LSR #3" is

LT ADD R4 R2 LSR #3 R9
1011 0000 1000 0100 0010 0001 1010 1001
COND INSH INSL 0P1R DEST 0P2H 0P2M 0P2L

After taking lots of measurements we decided to reorder the tokens, and use 
the following order: INSL, INSH, 0P2M, 0P2H, 0P1R, DEST, 0P2L, COND. This helped 
to achieve a better compression ratio in model generation and compression. For 
instance, COND is much more predictable from INSL and INSH than INSL or INSH 
from COND,

The method can be easily applied on any architecture whose instructions have 
a fixed length. And if the bits of the instructions can be assigned into functional 
groups, the method might be as successful as in the ease of ARM,

2.3.3 The model
ARMlib uses special decision trees as a model.

It has 16 reduced predictors and 1 computed. The reduced ones are the last 16 
tokens (2 ARM instructions) before the actual token. The computed one identifies 
the order of the token in the actual ARM instruction (1-8), These predictors are 
very simple and fast to compute, which is good from a speed point of view, 

ARMlib can use two kinds of internal nodes (similar to ID3 and C4.5 trees):

multivalue decision node, which has as many children as the predictor (8 in the 
ease of the computed predictor, 16 otherwise)

binary decision node, which compares a predictor with one of its possible values. 
It is a less-than comparison, and the node has two children, namely one for 
the true result and one for the false result.



2.4. AN ARMLIB IMPLEMENTATION 59

To build the tree we used ID3 with an MDL (Minimal Description Length) 
measure. The MDL measure used by Garofalakis et al, [14] is not appropriate 
for building an optimal tree in our ease because the size of the compressed code 
and the size of stored version of the tree have to be minimized together. As 
computing these values precisely and efficiently was no easy task, we decided to 
use the following computational approximations:

• The full size of the tree can be computed, but in practice it is also compressed 
by a general purpose compressor (JFFS2 uses zlib). To estimate the stored 
size of the tree, we use a simple pre-dehned constant compression ratio of 
the general purpose compressor,

• The size of compressed code can be estimate by the sum of the entropies 
of the training sets associated with the leaves of the subtree. This is also a 
good approximation if the output of the coder is close to the entropy,

2.3.4 The coder
AEMlib uses arithmetic coder [44], The concept of the arithmetic coder is not 
to assign codewords, but assigns an interval between 0 and 1 to the tokens. It 
also assigns an interval to the sequence of tokens (which interval is computed from 
the intervals of the tokens). The codeword assigned to a sequence of tokens is a 
random number in the final interval stored with high precision enough for correct 
decoding.

Arithmetic coder produces a codeword whose length is very close to the entropy. 
Technically the halving of the size of the actual interval means one more bit in 
the codeword. This allows the arithmetic coder to virtually assign a fraction of a 
bit to a token whose probability is greater than 50% (while for example Huffman 
coder assigns at least 1 bit to each tokens regardless its probability),

2.4 An ARM lib im plem entation
ARMlib were tested in a real environment, on iPAQ handheld machines [23], These 
machines have StrongARM processors, 32MB of memory and 16MB of flash. The 
operating system used was Familiar Linux with a modified Journaling Flash File 
System 2 (JFFS2),

JFFS2 stores the files logically in fixed size (4K) blocks, and compresses these 
blocks in a transparent way when they are stored in the flash memory. It means 
that the user of the file system may not notice the compression, only that there is 
more space on the device, and the system slower a little. Originally JFFS2 used 
only a general purpose compressor called zlib, (See Figure 2,3a)



60 CHAPTER 2. SIZE OPTIMIZATION WITH ARM CODE COMPRESSION

File System 
Cache

Flash
Device

File System 
Cache

Flash
Device

a: Original b: Advanced

Figure 2,3: The improved compression of JFFS2

In our implementation (see Figure 2,3b), we replaced zlib by a compression 
framework. The method of the compression depends on the settings of the com­
pression framework. If it is set to optimize for size, then all compressors will be 
called, and the smallest result will be stored. Each compressed block of the hie 
system stores the information whose method it was encoded by, so decompression 
can be preformed by the appropriate compressor.

The whole use scenario is the following:

1, Model and hie system image generation on the host machine

(a) Process the hie structure of the system to generate the block (4Kb) as 
the normal hie system image generation method,

(b) Separate the blocks which contains ARM code. They will be the train­
ing set of the model generation,

(c) Build decision tree from the ARM blocks. This process has two param­
eters:
Type of the decision tree nodes may be a binary or multi-value 

tree - as described above.
The number of the decision trees : it means that the process can 

generate one or more decision trees with a randomly separated 
training set. Using more decision trees gives a different perfor­
mance, as we will see later on,

(d) Generate the hie system image. All blocks are compressed with both 
ARMlib and zlib, and the smaller variant is kept. The block stores the



2.5. RESULTS 61

identifier of the model it was eompressed with, if necessary (if there was 
more than one model). Model file blocks and the kernel (containing the 
algorithm of ARMlib) can only be eompressed with zlib,

2, Upload the file system image to the device. The bootloader (which only 
knows zlib) loads the kernel modules including ARMlib, At initialization 
the ARMlib loads its model file(s) into the memory, and it is ready for use,

3, Use the system: all blocks will decompress with the corresponding compres­
sor on the fly, the blocks of the new data or programs will be eompressed by 
both zlib and ARMlib, and the smaller variant is kept, as in the file system 
image generation phase.

2.5 Results
The test environment a handheld device namely iPAQ H3600, The modeller and 
the coder ran on a host machine, but coder and decoder functions were used on 
the iPAQ, This environment was used to test the practical usability of the method. 
The uncompressed size of the image of the iPAQ was 25MB,

2.5.1 Size

□ Image size
□ Model size In RAM

zlib only zlib + zlib + zlib + zlib +
ARMlib ARMlib ARMlib ARMlib 
with 1 with 1 with 7  with 7
binary multi- binary multi­

tree value trees value
tree trees

Figure 2,4: Compressed sizes

Different image sizes can be seen in Figure 2,4, The size reductions relative to 
the image eompressed with zlib only lie between 12,6% and 19,3%, Trees with 
binary nodes only are better than trees with multi-value decisions (because multi­
value nodes can be substituted with binary nodes, but not vice versa), A small



62 CHAPTER 2. SIZE OPTIMIZATION WITH ARM CODE COMPRESSION

increase in image size was observed when the one model was replaced by seven 
smaller models, which were trained on seven randomly separated distinct parts 
of the original training set. The results show that one tree is more effective in 
compression size (at least when the split of the data set is random) than the seven 
smaller models together, but the (de)compression speed is better for the seven 
models than for only one.

The same figure shows the sizes of the models in the memory. Binary models 
are smaller, and the seven smaller models require more memory in total.

2.5.2 Speed
The speed of the compression is worse than zlib’s own speed. Compression and 
decompression in ARMlib requires almost the same amount of time, but this makes 
decompression very slow relative to zlib (in zlib, decompression is 10 times faster 
than compression). Fortunately, Linux caches the hie system. This means that 
not all accesses to the block provoke compression or decompression, usually it is 
just the first and the last accesses. This improves the average speed of the hie 
system, and makes ARMliRs relative slowness almost undetectable to a regular 
user.

zlib only zlib + ARMlib zlib + ARMlib zlib + ARMlib zlib + ARMlib 
with 1 binary with 1 multi- with 7 binary with 7 multi­

tree value tree trees value trees

Figure 2.5: Boot times

The boot time is 2.3-3 times that of the original boot time (Figure 2.5), but 
considering the savings in size (12.6-19.3%) this seems to be a good compromise.

2.6 Sum m ary
Here, our goal was to create a code compression method which compresses ARM 
binary codes better than current algorithms do. We combined a method that used



2.6. SUMMARY 63

decision trees as the compression models [13] and an efficient tree building algo­
rithm [14], In addition, the tree building and pruning phases were also combined 
within the method. The method was intended for the ARM instruction set, but it 
can be applied to other instruction sets that satisfy a fixed set of requirements. 

The implementations of the functions of the method were collected in a library 
called ARMlib, which used an arithmetic coder [44], ARMlib was tested in the 
JFFS2 hie system [45] on iPAQ machines. This modified hie system [18] used either 
zlib or ARMlib compression on a block. The use of ARMlib reduced the image 
size by 12,6-19,3% depending on the parameters of tree building. The method can 
be used in situations when size is more important than speed.

The compression framework is now the part of the official Linux kernel. The 
compression algorithm is patented with US patent number 6,917,315,

The compression algorithm is a common result [15] with my eo-author, Tamás 
Gergely, The structure of the efficient method for integrating the algorithm into the 
Linux Kernel, and the implementation itself, are my own results. The authors of 
the corresponding US patent [40] are myself, Gergely Tamás and Árpád Beszédes, 
and its beneficiary is the Nokia Corporation,



64 CHAPTER 2. SIZE OPTIMIZATION WITH ARM CODE COMPRESSION



Chapter 3

Performance optimization with an 
Improved B+ Tree

One of the most important parameters of a multimedia mobile device is its per­
formance, Performance is a complex concept, but it is mostly related to speed, 
memory consumption and efficiency.

Here, we introduce a new data structure and algorithm designed for flash file 
systems that work more efficiently than the previous technical solutions. We be­
gin by introducing the workings of flash chips, then describe the previously most 
prevalent Linux flash file system, namely JFFS2, Its biggest weakness is its in­
dexing method: it stores the index in the RAM memory, not in the flash memory. 
This causes unnecessary memory consumption and performance penalties. Next, 
we introduce the new method in a step-by-step fashion, with an efficient combina­
tion of storing the index in memory and flash after taking factors like data security 
and performance into account.

This new solution was implemented in the UBIFS file system by our department 
in cooperation with Nokia, and it is now an official part of the Linux kernel.

3.1 How the flash memory works
Flash memory [6] is a non-volatile computer memory that can be electrically erased 
and reprogrammed. One of the biggest limitations of flash memory is that although 
it can be read or programmed one byte or word at a time in a random-access 
fashion, it must be erased one "block" at a time. The typical size of a "block" is 
8-256KB,

The two common types of flashes are NOR and NAND flash memories, whose 
basic properties are summarized in Table 3,1 [33],

One of the drawbacks of the flash system is that its erase block can be erased

65



66 CHAPTER 3. PERFORMANCE OPTIMIZATION WITH AN IMPROVED B TREE

NOR NAND

R ead/w rite size
Can read/write 

bytes individually
Can read/write 

only pages 
(page size can be 

512 or 2048 bytes)
I/O  speed Slow write, fast read Fast write, fast read

Erase Very slow Fast
XIP (Execute in Place) Yes No

Fault tolerance, detection No Yes
Price/size Relatively expensive Relatively cheap

Table 3,1: Difference between NOR and NAND flash

about 100,000 times, and afterwards the chip will be unstable. This is why most of 
the ordinary file systems (FAT, ext2/3, NTFS, etc.) are unusable on flash directly, 
because all of them have areas that are rarely rewritten (FAT, super block, etc,), 
and this area would soon be corrupted.

One of the most common solutions to balance the burden of the erase blocks is 
FTL (Flash Translation Layer) [24], which hides the physical erase blocks behind 
a layer. This layer uses a map to store data about what the corresponding physical 
erase block is for each logical number. Initially this map is identical, so for example 
logical block 5 is mapped to physical block 5, This layer also contains an erase 
counter for each block (how many times it was erased). If this counter reaches a 
high number (relative to the average), the system will exchange two erase blocks 
(using the map), selecting an erase block which has a relatively low strain. This 
method is used in most pen drives to keep the burden low. It works quite well 
in practice, but does not provide the optimal solution to performance problems. 
For instance, to overwrite just a few bytes (such as a pointer in a search tree), an 
entire erase block (~128KB) has to been erased and reprogrammed.

Accordingly, especially in the ease of root file systems, it is worthwhile using 
flash file systems which are designed specifically for flash devices. Now we will 
discuss Linux flash files systems (JFFS and JFFS2), which are freely available to 
everyone.



3.2. .H I S. JFFS2: FLASH FILE SYSTEMS WITHOUT FLASH INDEX 67

3.2 JFFS, JFFS2: flash file systems w ithout flash 
index

The basic idea behind JFFS [45] is quite simple: the hie system is just a eoneentrie 
journal. In essence, all of the modifications on the hie system are stored as a journal 
entry (node). When mounting, the system scans this journal and then replays the 
events in the memory, creating an index to register which hie is where. If the 
journal entries are such that the device is nearly full, the system performs the 
following steps:

• From the beginning of the used area copy all of the journal entries which are 
still valid, so the corresponding hie is not deleted or overwritten,

• Erase the emptied area (erase block), so the there will be new space to store 
the new journal entries.

This very simple approach eases the burden on the erase blocks, but it also has 
its drawbacks: 1 2

1, If a dirty (deleted or overwritten) data area is in the middle of the current 
journal area, to free it, it is necessary to copy half of the entire journal,

2, When mounting, it is necessary to scan the entire medium.

Problem 1 is solved by the new version of this hie system called JFFS2, It 
utilizes lists to register the dirty ratio of erase blocks, and if free space is required, 
it frees the dirty erase blocks (after moving the valid nodes to another place). 
There is a slight chance that it will free clean erase blocks as well, just to ease the 
burden, but this will rarely occur.

Problem 2 is only partially solved by JFFS2, It collects information via erase 
blocks needed when mounting, and it stores them at the end of the erase blocks, 
so only this needs to be scanned. Afterwards it attempts to minimize the size of 
the index in the RAM, However, the memory consumption and the mounting time 
are still linearly proportional to the size of the hash, and in practice over 512MB 
may be unusable, especially in the ease of large hies -  e.g, video hlms.

Because the root of this problem lies in the base data structures and operating 
method of the JFFS2, we should construct a new hie system to eliminate the linear 
dependency. To achieve this, it is necessary to store index information on the hash 
so as to avoid always having to rebuild it when mounting.



68 CHAPTER 3. PERFORMANCE OPTIMIZATION WITH AN IMPROVED B TREE

3.3 B +  tree
Most file systems employ search-trees to index the stored data, and the B+ tree 
[11] is a special search-tree with the following features:

• It stores reeords: r =  (k,d); k = key, d = data. The key is unique,

• Data is stored only in leaves, inner-nodes are only index-nodes,

• In an index-node there are x keys, and also x  + 1 pointers, each pointing to 
the corresponding subtree,

• The B+ tree has one main parameter, namely its order. If the order of a B+ 
is d, then for each index node there is a minimum of d keys, and a maximum 
of 2d keys, so there are a minimum of d + 1 pointers, and a maximum of 
2d + 1  pointers in the node,

• From the above, if a B+ tree stores n nodes, its height must not be greater 
than logd(n) + 1. The total cost of insertion and deletion is O(logd(n)).

This data structure is used by some database systems like PostgreSQL and 
MySQL, and file systems like ReiserFS, XFS, JF2 and NTFS, These file systems 
are based on the behaviour of real hard disks; that is, each block can be overwritten 
an unlimited number of times. Thus if there is a node insertion, only an update 
of the corresponding index node is needed at that location. Unfortunately it does 
not work well with flash storage devices, so it was found necessary to improve the 
flash-optimized version of the B+ tree.

3.4 W andering tree
A modified version of the B+ tree can be found in the LogFS file system [25], 
which is a flash file system for Linux, It is still in the development phase, and 
probably will be never finished because UBIFS offers a much better alternative. 
This B+ variant is called a wandering tree. The general workings of this tree can 
be seen in Figure 3,1,

Like the ordinary B+ tree algorithm, during a node insertion it is normally 
necessary to modify a pointer at just one index node. In the ease of flash memory 
the modification is costly, so this wandering algorithm writes out a new node 
instead of modifying the old one. If there is a new node, it is necessary to modify 
its parent as well, up to the root of the tree. It means that one node insertion 
(not counting the miscellaneous balancing) requires h new nodes, where h is the 
height of the tree. It also generates h dirty (obsolete) nodes, as well. Because h



3.5. THE TNC: AN IMPROVED WANDERING TREE 69

Figure 3,1: The wandering tree before and after insertion

is O(logd(n)), where n is the tree node number, the cost of this operand is still 
O (log ¿in)).

3.5 The TNC: an improved wandering tree
The above wandering tree algorithm still has performance issues because its insert 
method is inefficient: it requires logd(n) new nodes, and it also generates a number 
of garbage nodes.

To solve these problems we decided to improve this algorithm, which now works 
in the UBIFS hie system |1|, Due to its efficient caching technique it is able to 
collect node insertions and deletions in the memory, so fewer hash operations are 
required. At the same time, the method can ensure that if there is a sudden power 
loss (in the case of an embedded system this could happen at any time), there will 
be no data loss.

This new data structure and the algorithm are both called the TXC (Tree Xode 
Cache), It is a tree, which is partly in the hash memory, and partly in the 
memory (see Figure 3,2), Its operators are improved versions of those used in the 
wandering tree algorithm,

3.5.1 Data structure of the TNC
When TXC is not in use (e.g. the hie system is not mounted), all the data is 
stored in the hash memory, in the ordinary B ^ tree format.

When in use, some index nodes of the tree are loaded into the memory. The 
caching works in such a way that the following statement is always true : if an 
index node is in the RAM memory, its children may also be in the memory, or in 
the hash memory. But if the index node is not in the memory, all of its children 
are in the hash memory.

If an index node is in the memory, the following items are stored in it:

• Flag clean: it tells us whether it has been modified or not.



70 CHAPTER 3. PERFORMANCE OPTIMIZATION WITH AN IMPROVED B+ TREE

M E M O R Y

□ □ □ OTT

Figure 3,2: The TXC data structure

• The address of th e  flash area w here th e  node was read from. (In
the ease of being eliminated from the memory, and it was not modified, this 
address will be registered in its parent -  in the memory. If it was modified, 
a new node will be written out, and the old location will be marked as 
garbage.)

• Po in ters to  its children. Each pointer stores information about whether 
the child is on the flash or has been read into memory,

3.5.2 The TNC operations
Using the data structures above, the following operators can be defined:

Search (read): 1 2 3 4

1, Read the root node of the tree into the memory, then point to it using the 
pointer p,

2, If p is the desired node, return with the value of p,

3, Find at nodep the corresponding child (sub tree), where the desired node is,

4, If the child obtained is in the memory, set pointer p to it, and jump to point
2 .



3.5. THE TNC: AN IMPROVED WANDERING TREE 71

5, The child is in the flash memory, so read this into memory, Mark this child 
in p as a memory node,

6, Set pointer p to this child, and jump to point 2,

Clean-eaehe elean-up (e.g, in the ease of low memory):

1, Look for an index-node in the memory which has not yet been modified, 
and for which all of its children are in the flash memory. If there is no such 
index-node, then exit,

2, Set the pointers in the identified node’s parent to the original flash address 
of the node, and free it in the memory,

3, Jump to point 1, if more memory elean-up is needed.

Insert (write):

1, Write out the data as a leaf node immediately, UBIFS writes them out to 
the BUD area1, which is specially reserved for leaf nodes, just to make it 
easier to recover when necessary,

2, Read (search) all of the nodes into memory that need to be modified using 
the B+ algorithm, (In most eases it is just one index node.)

3, Apply the B+ tree modifications in the memory,

4, Mark all modified nodes as dirty.

In the method described above node insertions can be collected, and we can 
apply them together with significantly lower flash overheads.

Commit (Dirtv-eaehe elean-up):

1, Look for a dirty index node that has no dirty child. If found, call it node n,

2, Write out a new node n onto the flash, including its children’s flash addresses,

3, Mark the place dirty where the node n was previously located, and update 
the flash pointer in the memory representation of the node to the new flash 
address,

Where are two kinds of data erase block in UBIFS, namely the BUD erase block and the 
non-BUD erase block. UBIFS stores only the leaf nodes in the BUD erase blocks, while all other 
types of data nodes are stored in non-BUD erase blocks.



72 CHAPTER 3. PERFORMANCE OPTIMIZATION WITH AN IMPROVED B TREE

4, Mark the parent of node n as dirty (if it is not the root node), and mark 
node n as clean,

5, Jump to point 1 until there is a dirty node.

Deletion:

1, Read (search) all of the nodes into memory that need to be modified using 
the B+ algorithm, (In most eases it is just one index node.)

2, Apply the B+ tree modifications in the memory,

3, Mark all modified nodes as dirty,

3.6 Power loss handling in the TNC
In the ease of power loss, the information stored in the memory is lost. To prevent 
this from happening, UBIFS combines TNC with a journal, where the following 
information is stored:

• A journal entry with a pointer to new BUD erase blocks, BUD erase blocks 
in UBIFS are reserved areas for leaf nodes. If the BUD area is full, a new 
free erase block will be reserved for this purpose,

• Delete an entry after each node deletion,

• A journal entry after each commit with a list of still active BUD areas.

In the event of power loss, the correct TNC tree can be recovered by performing 
the following steps:

1, Start with the tree stored on flash,

2, Look for the last commit entry in the journal. All of the events that occurred 
from that point have to be scanned, 3

3, All of the node insertions stored in the BUD areas marked in the journal, 
and all of the deletion nodes stored in the journal have to be replayed in the 
memory.



3.7. EXPERIMENTS 73

3.7 Experim ents
Measuring file system performance objectively is not a simple task, because it de­
pends on many factors like the architecture behaviour and caching of the operating 
system. To avoid these strong dependencies, we decided to measure just the most 
important factor of the flash file system performance, namely the size of flash I/O 
operands to evaluate different TNC configurations and examine their properties 
using the UBIFS implementation.

The method applied was the following: we unpacked the source of Linux ker­
nel version 2,6,31,4 onto a clean 512MB file system, and deleted data using the 
commands below. During the test, the system counted how many flash operands 
(in terms of node size) were made with and without TNC,

mount /mnt/flash 
mkdir /mnt/flash/linuxl
tar xfz linux-2.6.31.4.tar.gz /mnt/flash/linuxl 
rm -rf /mnt/flash/linuxl 
umount /mnt/flash

We measured the performance using different TNC configurations, A TNC 
configuration has the following parameters:

TNC buffer size : The maximum size of the memory buffer that the TNC uses 
to cache. If it is full, it calls commit and shrink operands.

Shrink ratio : In the ease of shrink, the shrink operand will be called until this 
percentage of the TNC nodes is freed.

Fanout : B+ tree fanout number: the maximum number of children of a tree 
node, (2d, where d is the order of the B+ tree.)

Table 3,2 and Figure 3,3 show the results of measuring the flash performance 
when the TNC buffer size and shrink ratio were varied. As can be seen, the TNC 
saves 98,2-99,4% of the flash operands. Increasing the TNC size, more of the flash 
operations are saved, but varying the shrink ratio has no noticeable effect here. 

Table 3,3 shows what happens if we change the fanout value of the tree. The 
number of TNC nodes decreases, but the size of a TNC node increases because a 
TNC node contains more pointers and keys. The size of the flash operations is the 
product of these two factors, and it has a minimum fanout value of 32,

In the remaining tests we took different samples from the source code of Linux 
kernel version 2,6,31,4, Table 3,4 and Figure 3,4 tell us the maximal TNC size 
(setting no limit) when the fanout is varied, and the size of the I/O operands (size 
of the "file-set" above) as well.



74 CHAPTER 3. PERFORMANCE OPTIMIZATION WITH AN IMPROVED B TREE

Max, 
TNC size

Without
TNC

With
TNC

Shrink
Ratio

With TNC /  
without TNC

5000 2161091 38298 25 % 1.77 %
10000 2211627 31623 25 % 1.43 %
15000 2191395 24632 25 % 1.12 %
20000 2244013 20010 25 % 0.89 %
25000 2192044 12492 25 % 0.57 %
5000 2163769 36273 50 % 1.68 %
10000 2250872 31570 50 % 1.40 %
15000 2225334 22583 50 % 1.01 %
20000 2225334 20002 50 % 0.92 %
25000 2183596 12457 50 % 0.57 %
5000 2215993 36759 75 % 1.66 %
10000 2290769 32578 75 % 1.42 %
15000 2244385 29956 75 % 1.33 %
20000 2238633 20002 75 % 0.89 %
25000 2205709 12958 75 % 0.59 %

Table 3,2: The number of the flash operations (measured in terms of node size)

Node limit in TNC

Figure 3,3: The performance of TNC flash operations compared to those got using 
the simple wandering algorithm

It is a great help to know how it behaves, especially if we want to use this 
technique in an embedded system where the system performance and the maximal



3.7. EXPERIMENTS 75

Fanout
Without 
TNC in 
nodes

With 
TNC in 
nodes

Max TNC 
in

nodes

TNC
node
size

Max TNC 
in 

MB

Flash 
ops 

in MB
4 1134784 48392 64801 176 10.88 8.12
8 2168308 12405 23189 304 6.72 3.6
16 1304212 3577 9662 560 5.16 1.91
32 1024363 1317 4669 1072 4.77 1.35
64 1140118 3420 3671 2096 7.34 2.35
128 767005 1245 1586 4144 6.27 3.35
256 930236 1641 980 8240 7.7 4.35

Table 3,3: The effect of varying the TNC fanout

I/O Size (MB) \  Fanout 8 16 32 64
50 3302 1456 703 351
100 6364 2818 1355 671
200 12925 4620 2224 1106
400 23518 8978 4282 2861
600 43320 18426 8846 5840
800 44948 22070 12273 8527

Table 3,4: The maximal TNC size as a function of tree fanout

Figure 3,4: The maximal TNC size as a function of tree fanout



76 CHAPTER 3. PERFORMANCE OPTIMIZATION WITH AN IMPROVED B TREE

memory use of the file system are both of crucial importance.

3.8 Related Work
The authors of [35] outlined a method that had a similar goal to ours, namely 
to optimize the B+ tree update on a flash drive. The method collects all the 
changes in the memory (in LUP = lazy-update-pool), and after it has filled up, 
data nodes are written out in groups. It also saves flash operations, but unlike 
our method, using LUP means a lower read speed because, before searching in 
the tree, it always has to scan the LUP, In the ease of TNC, there is usually 
a higher read speed because the nodes (at least the modified ones) are in the 
memory. Our method is power-loss safe, but the authors of [1] do not discuss 
what happens when the information is stored in the LUP, The advantage of their 
method is the following: the node modifications can be grouped more freely (not 
just sequentially), so it may be easier (and require less memory) to close the tree 
operations intersecting the same tree area.

The goal outlined in [46] is also a B+ tree optimization on a flash memory. It 
collects as well any changes made in the memory and stores them in the “Reser­
vation Buffer”, It is filled up and these changes are written out and grouped by 
a “Commit Policy” into flash as an “Index Unit”, It makes use of another data 
structure called the “Node Translation Table” to describe which node has to be 
transformed by which Index Unit, To search in the tree, it is necessary to scan 
both the Node Transaction Table and the Index Units,

The method described in [21] is essentially an improved version of that de­
scribed in [46], Instead of the simple “Reservation buffer”, it utilizes the “Index 
Buffer”, which monitors the tree modifications and if any intersect the same node, 
it closes them or, where possible, deletes them. In the ease of commit, it collects 
data concerning the units belonging to the same nodes, and writes them out to 
one page.

3.9 Sum mary
Here, the author sought to improve the wandering tree algorithm used by flash file 
systems so as to make it more efficient and save over 98% of the flash operands. It 
has a power-loss safe variant, and it has a much better performance than a simple 
wandering tree.

The new generation of the Linux flash file system (UBIFS) uses this algorithm 
and data structure, and allows one to use a flash file system efficiently on 512MB or 
larger flash chips. This implementation is now part of the Linux kernel mainline,



3.9. SUMMARY 77

and is used in the Nokia N900 smart phone.
These results are my own results, and were published in [19],



78 CHAPTER 3. PERFORMANCE OPTIMIZATION WITH AN IMPROVED B TREE



Summary in English

Cell phones, DVD players, MP3 players, GPS receivers, ear electronics and similar 
devices nowadays have an important role in our lives. One of the main features 
of these devices is that their resources are generally much more limited than the 
resources of the personal computers. So optimizing the software components is 
always a priority.

In this thesis, three corresponding results are presented, namely one XML- 
related result and two flash file system optimizations.

1. XML semantics extension and compaction
The XML (extensible Markup Language) is one of the most widely used structured 
file formats. With a practical application of our results, XML files can be stored 
in a more compact form, which can especially be useful in embedded systems and 
network applications.

The main idea behind our results is based on an analogy between XML docu­
ments and attribute grammars, namely the pair of the AG non-terminal symbols 
in XML is XML elements, while the rules of the AG formal grammars are related 
to the XML element specifications in DTD/XSD, Attributes can also be defined in 
both environments, but there is no way one can define semantic rules in an XML 
environment. To bridge this gap, we defined a new metalanguage called SEML, 
where semantic computation rules can be defined for XML attributes.

Two basic operations were defined in our method. The reduce operation re­
moves the attribute oeeurrenees from the XML file, which are calculated using the 
rules defined in SEML, It then produces a compacted version of the XML file. The 
task of the complete operation is just the opposite. Semantic functions of SEML 
can come from two sources: it may be produced by an expert, or by applying 
machine learning algorithms. The two methods can be also combined so that the 
learning algorithm can use the rules produced by an expert as a starting point.

This compaction technique can also be used to improve XML file compression 
since a compressor algorithm will be more effective if more correlations can be 
recognized in the compressed files. Owing to this, an XML compressor (such as

79



80 CHAPTER 3. PERFORMANCE OPTIMIZATION WITH AN IMPROVED B TREE

XMill) can generally achieve better compression ratios on compressing XML files 
than a general purpose compressor like gzip. However, even XML-speeifie com­
pressors cannot detect the semantic relationships among XML attributes. Hence 
if we compact an XML file before the compression, it will produce better results 
compared to compressing it with an XML compressor alone.

Our procedure was tested on CPPML files that were intended to store C++ 
source files in an XML format. The compaction rate we achieved was between 
57-79%, We later improved the efficiency of the compression of XMill XML com­
pressor program by 9-26%,

The results are presented in [20], [26], and [27],

2. Size O ptim ization w ith ARM  Code Compression

One of the key limited resources of embedded systems is that of storage. One of 
the simplest solutions for saving space is that of compression. One of the nicest 
ways of compression is transparent compression integrated in the file system. This 
is because neither the user nor the application developer need worry about the 
compression and the decompression itself, JFFS2 has this kind of compression 
capability, which is one of the most commonly used Linux flash file systems, JFFS2 
uses zlib as a compressor, which is a general purpose compressor.

In the case of embedded systems one of the biggest large-scale data types is 
that of executable code. One of the most popular embedded architectures is ARM, 
Due to this, our study focused on developing an ARM code compressor that could 
also be combined with currently available solutions.

Our algorithm is a model-based compression that uses a decision tree model to 
predict the probability distribution of the next token. This probability distribution 
is used by an arithmetic coder for encoding and decoding.

Our algorithm builds a decision tree, improving its method to achieve a better 
compression ratio for ARM codes: the tokens were chosen by knowing the structure 
of ARM instructions; during the tree building we used MDL-based heuristics as 
the stopping criteria and we also considered combining it with a general purpose 
compressor; we investigated different kinds of tree building to get a suitable speed- 
size ratio for the system.

Besides the development of the new code compression algorithm, we also de­
vised the structure of an efficient implementation. This solution replaces the origi­
nal zlib compressor in JFFS2 with a compression framework that can be configured 
to choose the best compression ratio: it calls all the available compressors (zlib 
and our ARM code compressor) and chooses the smallest result in the case of each 
block.



3.9. SUMMARY 81

The results got using this combined solution meant that a better ratio of 12,6­
19,3% could be achieved than that was the original zlib-only solution. The draw­
back of using this method is speed reduction. In practice, where it is the most 
noticeable by the user, is the boot time: it is increased from 27 seconds to 61-82 
seconds.

Our results were published in [15], The implemented framework became an 
official part of the JFFS2 hie system and the Linux kernel. The compression 
algorithm is patented with US patent number 6,917,315 [40],

3. Perform ance O ptim ization w ith Improved B +  
Tree
The majority of embedded systems use a hash chip as a storage device because 
of its low power consumption and robustness (it has no moving parts). For these 
applications, where efficient data storage is necessary with a read-write mode, hie 
systems are used to store data.

Applying traditional hie systems on hash devices is not a straightforward pro­
cess because most traditional hie systems are designed for hard drives, and hash 
chips have different properties. Because of this, traditional hie systems are not 
usable directly on hash chips, except with the help of bridging middleware (e.g, 
FTL); but it carries a performance penalty,

A more efficient solution could be that of hie systems which are specially de­
signed for hash drives. One of the most popular Linux-based hash hie system was 
the second version of JFFS called JFFS2, This hie system, as intended, only stores 
the index information in the memory, which is built at mount time by scanning the 
entire hash device. If the hash size is over 512MB, JFFS2 is practically unusable, 
due to its slowness and high memory consumption.

Because the problem in JFFS2 was so fundamental, it was necessary to design 
a new hie system. Like many hie systems, we also decided to use a B+ tree to 
store index information. In LogFS, the original B+ tree algorithm was modihed 
to handle hash chips, and we improved it so as to produce a really usable solution 
(called the TNC) that the following properties:

• Its data structure and algorithm handle the data stored on the hash and in 
the memory as well,

• To achieve a better performance, the method merges tree operations and 
also does caching,

• Its memory consumption can be restricted, and adapted to the actual amount 
of the free memory.



82 CHAPTER 3. PERFORMANCE OPTIMIZATION WITH AN IMPROVED B TREE

• It tolerates power loss very well. This is very important in the ease of battery- 
based devices.

Using the TNC, 98,2-99,4% of the flash operations can be saved compared to 
that using the B+ tree algorithm of LogFS,

Our results were published in [19], The TNC has become an official part of 
UBIFS and the Linux kernel, and it was used in the Nokia N900 smartphone.



Magyar nyelvű összefoglaló

A beágyazott rendszerek életünk egyre több területén körülvesznek bennünket 
mobiltelefonok, DVD lejátszók, mp3 lejátszók, GPS vevők, autó elektronikai és 
épületgépészeti vezérlő eszközök, háztartási eszközök egész sora formájában. Tech­
nikai szempontból az egyik fő sajátosságuk, hogy erőforrásaik általában sokkal 
szűkebbek, mint egy személyi számítógépé, így az optimalizáeió a rájuk fejlesztett 
szoftverek esetében kiemelt fontosságú,

A dolgozat három beágyazott rendszerekkel kapcsolatos eredményemet mutatja 
be, egy XML-lel és két flash fájlrendszerrel kapcsolatosat.

1. XML szem antikus kiterjesztés és töm örítés
Az XML (eXtensible Markup Language) az egyik legelterjedtebb strukturált szöveges 
fájlformátum, A dolgozatban leírt eredmények egyik gyakorlati alkalmazásával az 
XML fájlok kisebb helyen tárolhatóak el, ami különösen a beágyazott rendszerek 
és a hálózati alkalmazások területén hasznos.

Az eredmény alapgondolata az XML dokumentumok és az attribútumnyelv­
tanok analógiáján alapul: ami az attribútum nyelvtanoknál a nemterminális sz­
imbólum, az XML környezetben az "element", a formális nyelvtan szabályainak 
pedig a DTD/XSD-ben lévő element speeiűkáeió felel meg. Attribútumok ugyanc­
sak deűniálhatók mindkét környezetben, viszont azok szemantikus kiszámításának 
leírására alkalmas szemantikus függvénynek XML környezetben nincsen megfelelője. 
Ezt a hiányt töltöttük be azzal, hogy megalkottuk az SEML-nek elnevezett metanyel- 
vet, amellyel deűniálhatók az attribútumok kiszámítási módjai, DTD környezetben 
az SEML külön XML alapú fájlban tárolható, XSD környezetben pedig magába 
az XSD-be is beleilleszthető, annak appinfo részébe.

Módszerünkben két alapműveletet definiáltunk: a reduce művelet az XML fájl­
ból eltávolítja azokat az attribútumokat, amelyek az SEML szabályai alapján 
helyesen kiszámíthatóak, így az XML dokumentum kompaktált változatát képes 
előállítani, míg a complete művelet ennek a fordítottja. Az SEML-ben lévő sze­
mantikus függvényekben leírt összefüggések két forrásból származhatnak: vagy az

83



84 CHAPTER 3. PERFORMANCE OPTIMIZATION WITH AN IMPROVED B TREE

adott fájl formátumát ismerő szakértők állítják elő, vagy gépi tanulási algoritmu­
sokkal fedezhetőek fel a nem ismert összefüggések egy-egy adott XML dokumentum 
vagy dokumentum halmaz esetében, A két módszer kombinálható olyan módon, 
hogy a tanuló algoritmusnak kiindulásként odaadjuk a szakértői szabályokat, ame­
lyeket az tovább bővíthet,

A kompaktálás használható az XML fájl tömörítésének javítására is, ugya­
nis a tömörítő programok annál hatékonyabbak, minél több összefüggést tudnak 
felismerni a tömörítendő fájlokban. Ez az oka annak, hogy a kifejezetten XML- 
re specializált tömörítőprogramok (mint amilyen az XMill) jobb tömörítési arányt 
érnek el XML fájlok tömörítésekor, mint az általános célú tömörítők (mint például 
a gzip). Ugyanakkor az XML speeiűkus tömörítők sem képesek fölismerni azokat a 
szemantikus összefüggéseket, amelyek az XML attribútumai között vannak, amire 
a mi módszerünk viszont képes, így, ha tömörítés előtt az általunk kifejlesztett 
módszerrel az XML fájlt kompaktáljuk, majd azt tömörítjük, akkor jobb ered­
ményt fogunk elérni, mintha csak egyszerűen tömörítenénk.

Módszerünket a CPPML fájlformátumon próbáltuk ki, amely C ++ programok 
XML reprezentációjára lett kifejlesztve. Az elért kompaktálási arány 57-79% 
között mozog, A tömörítés hatékonyságának javítását pedig az XMill XML tömörítőpro­
grammal próbáltuk ki olyan módon, hogy tömörítés előtt az XML állományt kom- 
paktáltuk. Az így keletkezett tömörített állomány 9-26%-kai kisebb méretű lett, 
mintha csak tömörítettük volna.

Eredményeinket a [20], [26] és [27]-ben publikáltuk.

2. ARM  kód töm örítésen alapuló flash fájlrendszer 
helykihasználási optimalizáeió
A beágyazott rendszerek szűk erőforrásai közül az egyik a háttértár, A háttértár 
méretének kérdésében az egyik lehetséges megoldás a tömörítés, A tömörítési 
módok közül is az egyik legkényelmesebb a fájlrendszerbe illesztett transzparens 
tömörítés, amelynek köszönhetően se a felhasználónak, se az egyes alkalmazá­
sok fejlesztőinek nem kell foglalkoznia a be- és kitömörítéssel. Ilyen tömörítési 
képességgel rendelkezik a JFFS2 is, amely az egyik legszélesebb körben használt 
Linuxos flash fájlrendszer, A JFFS2 tömörítő algoritmusként a zlib általános célú 
tömörítőt használja, ahogy a UNIX/Linux alatt rendkívül népszerű gzip tömörítő 
program is.

Mivel a beágyazott rendszerek esetében az egyik legnagyobb arányú speciális 
"adatfajta" a futtatható kód, és ezek közül pedig az egyik legnépszerűbb architek­
túra az AEM, ezért kutatási területként azt céloztuk meg, hogy hogyan lehet 
hatékony ARM kódtömörítőt fejleszteni, és olyan módon implementálni, hogy az



3.9. SUMMARY 85

jól kombinálható legyen a jelenlegi megoldásokkal,
A kidolgozott algoritmusunk egy modell alapú tömörítő, amely modellként dön­

tési fát használ, azért, hogy a következő tokén valószínűségeloszlását megjósolja. 
Ezt a valószínűségeloszlást felhasználva aritmetikai kódoló segítésével hajtjuk végre 
a kódolást/dekódolást.

Algoritmusunk döntési fát épít, amelynek módját az A HM gépikód tömörítésére 
optimalizáltuk, A tokeneket úgy választottuk meg a A HM utasítások szerkezetének 
ismeretében, hogy azokból hatékonyan lehessen döntési fa modellt építeni; a modell 
építését MDL alapú megállási heurisztika alapúvá tettük, és figyelembe vettük 
annak általános célú tömörítővel való gyakorlati kombinálását; a modell építést 
többféle módon valósítottuk meg, ami lehetővé teszi azt, hogy az adott rendszerre 
optimális sebesség/méret arányt kiválaszthassuk,

A tömörítő algoritmus kidolgozása mellett kidolgoztuk annak hatékony gyako­
rlati implementálási elvét is. Megoldásunk az eredeti zlib tömörítőt a JFFS2 fájl­
rendszerben kicseréli egy tömörítési keretrendszerrel, amelynek működési módja 
konűgurálható, és beállítható úgy, hogy a blokkok tömörítésekor hívja meg az 
összes elérhető tömörítőalgoritmust, és azzal tároltatja el, amely a legkisebb ered­
ményt szolgáltatta. Minden tömörített blokk mellé eltárolja azt is, hogy melyik 
algoritmussal lett betömörítve, így a kitömörítéskor tudni fogja melyikkel kell dol­
goznia.

Ezzel a kombinált megoldással elért eredmények segítségével egy átlagos fájl­
rendszer image esetében 12,6-19,3%-kal jobb arányt tudtunk elérni az eredeti, csak 
zlib-et használó megoldáshoz képest, A módszer használatának legnagyobb há­
tulütője a sebesség csökkenés, A gyakorlatban ennek mértékét leginkább a boot 
(bekapcsolási) idő növekedése tükrözi, amely 27 másodpercről 61-82 másodpercre 
növekszik.

Eredményeinket a [15]-ben publikáltuk, A megvalósított keretrendszer a JFFS2 
fájlrendszer és a Linux Kernel hivatalos része lett, A tömörítési algoritmus a 
6,917,315-os számú USA szabadalommal [40] lett levédve.

3. Továbbfejlesztett B +  fa alapú flash fájlrendszer 
teljesítm ényjavítás
A beágyazott rendszerek túlnyomó többsége flash ehipet használ háttértárként, 
alacsony fogyasztása és robosztussága miatt (nincs benne mozgó alkatrész). Azokon 
az alkalmazási területeken, ahol az adatok hatékony tárolása is szükséges mó­
dosítási lehetőséggel, ott az adatok tárolására fájlrendszert használnak,

A legtöbb fájlrendszert azonban hagyományos adathordozókra, azaz merevle­
mezekre tervezték, viszont a flash ehipek néhány tulajdonságukban jelentősen



86 CHAPTER 3. PERFORMANCE OPTIMIZATION WITH AN IMPROVED B TREE

különböznek a merevlemezektől. Ezek miatt a legtöbb hagyományos fájlrendszer 
közvetlenül nem használható rajtuk, hanem csak áthidaló köztes réteg (pl, FTL) 
segítségével. Ez viszont teljesítményromlással jár.

Erre jelentenek hatékonyabb megoldást azok a fájlrendszerek, amelyek kife­
jezetten flash háttértárakra készültek. Az egyik legelterjedtebb Linux alapú flash 
fájlrendszer a JFFS második verziója, a már említett JFFS2 volt. Ez a fájlrendszer 
azonban (alapgondolatából kiindulóan) kizárólag a memóriában tárolja index in­
formációit, amit felcsatoláskor a teljes flash átnézésével épít föl. Ez 512MB fölötti 
flash méret esetén gyakorlatilag használhatatlan, lassúsága és memóriaigénye mi­
att.

Mivel a gond a fájlrendszer alapjaiban volt, ezt megoldani csak új fájlrendszer 
tervezésével volt lehetséges. Tervezéskor felhasználtuk a LogFS fájlrendszerben 
lévő flashre adoptált B+ fa adatszerkezetét, a wandering tree-t, kijavítottuk annak 
gyengeségeit, illetve továbbfejlesztettük, egy, a gyakorlatban is valóban használ­
ható algoritmussá, amelyet TNC-nek elneveztünk el. Főbb tulajdonságai:

• Az adatszerkezet és a hozzá kapcsolódó algoritmus magában foglalja mind a 
flash-en, mind a memóriában lévő adatokat és azok kezelését,

• A teljesítmény-javítást fa műveletek összevonása mellett eaehe-eléssel is elősegíti,

• Szükséges memóriaigénye korlátozható, illetve képes alkalmazkodni az éppen 
szabad memóriamennyiséghez,

• Jól tűri a beágyazott rendszereknél bármikor előfordulható hirtelen áramki­
maradást,

A TNC használatának segítségével a wandering tree-hez képest a teszt környezetben 
a flash műveletek 98,2-99,4%-a megspórolható volt.

Eredményeink a [19]-ben kerültek publikálásra, A TNC az UBIFS és a Linux 
kernel hivatalos részévé vált, illetve felhasználásra került a Nokia N900 okostele­
fonban is.



Appendix A

The DTD of SRML

<¡ELEMENT semantic-rules ( rules-for* ) >
<!ELEMENT rules-for ( rule* ) >
<!ATTLIST rules-for root NMTOKEN #REQUIRED>
<!ELEMENT rule ( expr ) >
<!ATTLIST rule element NMTOKEN «REQUIRED 

attrib NMTOKEN «REQUIRED
>
<!ELEMENT expr ( binary-op I attribute I data I

no-data I if-element I if-expr | 
if-all I if-any | current-attribute 
position | external-function ) >

<!ELEMENT binary-op ( expr, expr) >
<!ATTLIST binary-op op (add I sub I mul I div | exp

not-equal I less I greater | 
xor | and I nor | contains I 
begins-with | ends-with )

>
<!ELEMENT attribute EMPTY>
<¡ATTLIST attribute element NMTOKEN

num NMTOKEN
from ( begin | current I end )
attrib NMTOKEN

>
<!ELEMENT if-element ( expr, expr)>
<!ATTLIST if-element from ( begin | end ) "begin">
<!ELEMENT position EMPTY>
<¡ATTLIST position element NMTOKEN

from ( begin | end )
>

I equal I 
or |
concat I 
«REQUIRED

"srml:this" 
" 0 "

"current"
«REQUIRED

"srml:all" 
"begin"

87



APPENDIX A. THE DTD OF SRML

<!ELEMENT if-all ( expr, expr, expr)> <!-- cond, if, else -->
<!ATTLIST if-all element NMTOKEN "srml:all"

attrib NMTOKEN "srml:all"
>
<!ELEMENT if-any ( expr, expr, expr)> <!-- cond, if, else -->
<¡ATTLIST if-any element NMTOKEN "srml:all"

attrib NMTOKEN "srml:all"
>
<¡ELEMENT current-attribute EMPTY>
<¡ELEMENT if-expr (expr , expr , expr ) >

<!-- condition , if, else -->
<!ELEMENT data (#PCDATA) >
<!ELEMENT no-data EMPTY>
<!ELEMENT extern-function (param)*>
<!ATTLIST extern-function name NMTOKEN #REQUIRED>
<!ELEMENT param (expr)>



Appendix B

The XSD of SRML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="srml-def">
<xs:complexType>

<xs:sequence>
<xs:element ref="database" min0ccurs="0" maxOccurs="l" />

<xs:element ref="rules-for" minOccurs="l" maxOccurs="unbounded" /> 
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="database">
<xs:complexType>

<xs:sequence>
<xs:choice>

<xs:element ref="tables" minOccurs="l" maxOccurs="unbounded" />
<xs:element ref="references" minOccurs="l" maxOccurs="unbounded" /> 

</xs:choice>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="tables">
<xs:complexType>

<xs:sequence>
<xs:choice>

<xs:element name="table" minOccurs="l" maxOccurs="unbounded">
<xs:complexType>

89

http://www.w3.org/2001/XMLSchema


90 APPENDIX B. THE XSD OF SRML

<xs¡attribute name="name" type="xs:string" />
<xs¡attribute name="key" type="xs:string" />

</xs:complexType>
</xs:element>

</xs:choice>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="references">
<xs:complexType>

<xs:sequence>
<xs:choice>

<xs:element name="reference" minOccurs="l" maxOccurs="unbounded"> 
<xs:complexType>

<xs:attribute name="root" type="xs:string" />
<xs:attribute name="root_key" type="xs:string" />
<xs:attribute name="child" type="xs:string" />
<xs:attribute name="child_key" type="xs:string" />

</xs:complexType>
</xs:element>

</xs:choice>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="rules-for">
<xs:complexType>

<xs:sequence>
<xs:choice>

<xs:element ref="rule-def" minOccurs="l" maxOccurs="unbounded" /> 
</xs:choice>

</xs:sequence>
<xs:attribute name="root" type="xs:string" />
<xs:attribute name="key" type="xs:string" use="optional" />

</xs:complexType>
</xs:element>

<xs:element name="rule-def"> 
<xs:complexType>



91

<xs:sequence>
<xs¡element ref="rule-instance" minOccurs="l" maxOccurs="unbounded" /> 

</xs:sequence>
<xs:attribute name="name" type="xs: string" use="required" />
<xs¡attribute name="mode" default="validate" use="optional"> 

<xs:simpleType>
<xs¡restriction base="xs:string">

<xs:enumeration value="validate" />
<xs:enumeration value="correct" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs¡attribute name="match" default="any" use="optional">

<xs:simpleType>
<xs¡restriction base="xs:string">

<xs:enumeration value="any" />
<xs:enumeration value="all" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs¡attribute name="key" type="xs: string" use="optional" />

</xs:complexType>
</xs:element>

<xs: element name="rule-instance">
<xs:complexType>

<xs:sequence>
<xs:element name="validation-error" type="xs: string" />
<xs:element name="expr" type="ExprType" minOccurs="l" 

maxOccurs="unbounded" />
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:complexType name="ExprType">
<xs:choice>

<xs¡element ref="binary-op" minOccurs="l" maxOccurs="l" />
<xs¡element ref="attribute" minOccurs="l" maxOccurs="l" />
<xs:element name="data" type="xs: string" minOccurs="l" 

maxOccurs="l" />
<xs¡element name="no-data" minOccurs="l" maxOccurs="l" 

type="xs: string" />
<xs¡element ref="if-element" minOccurs="l" maxOccurs="l" />



92 APPENDIX B. THE XSD OF SRML

<xs:element ref="if-all" minOccurs="l" maxOccurs="l" /> 
<xs:element ref="if-any" minOccurs="l" maxOccurs="l" /> 
<xs:element ref="if-expr" minOccurs="l" maxOccurs="l" />
<xs:element name="current-attribute" minOccurs="l" 

maxOccurs="l" type="xs: string" />
<xs:element name="position" minOccurs="l" maxOccurs="l">

<xs:complexType>
<xs: attribute name="element" type="BinaryOpTypes" />
<xs: attribute name="from" default="begin">

<xs:simpleType>
<xs: restriction base="xs:string">

<xs¡enumeration value="begin" />
<xs¡enumeration value="current" />
<xs¡enumeration value="end" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>
<xs:element name="instance-value" minOccurs="l" maxOccurs="l" /> 
<xs:element name="count-children" minOccurs="l" maxOccurs="l"> 

<xs:complexType>
<xs:attribute name="name" type="xs: string" />
<xs: attribute name="key" type="xs: string" />

</xs:complexType>
</xs:element>
<xs:element name="count-siblings" minOccurs="l" maxOccurs="l"> 

<xs:complexType>
<xs:attribute name="name" type="xs: string" />
<xs: attribute name="key" type="xs: string" />

</xs:complexType>
</xs:element>
<xs:element name="reg-eval" minOccurs="l" maxOccurs="l" 

type="xs: string" />
<xs:element name="value-ref" minOccurs="l" maxOccurs="l">

<xs:complexType>
<xs:attribute name="path" type="xs: string" />

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

<xs:element name="binary-op">



93

<xs:complexType>
<xs:sequence>

<xs:element name="expr" min0ccurs="2" max0ccurs="2" 
type="ExprType" />

</xs:sequence>
<xs: attribute name="op" type="BinaryOpTypes" use="required" />

</xs:complexType>
</xs:element>

<xs:element name="attribute">
<xs:complexType>

<xs: attribute name="element" type="BinaryOpTypes" use="required" /> 
<xs: attribute name="num" type="xs: integer" default="0" />
<xs¡attribute name="from" default="begin">

<xs:simpleType>
<xs¡restriction base="xs:string">

<xs:enumeration value="begin" />
<xs:enumeration value="current" />
<xs:enumeration value="end" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs¡attribute name="attrib" type="xs: string" use="required" />

</xs:complexType>
</xs:element>

<xs:element name="if-element">
<xs:complexType>

<xs:sequence>
<xs:element name="expr" min0ccurs="2" max0ccurs="2" 

type="ExprType" />
</xs:sequence>
<xs¡attribute name="from" default="begin">

<xs:simpleType>
<xs¡restriction base="xs:token">

<xs:enumeration value="begin" />
<xs:enumeration value="end" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>



94 APPENDIX B. THE XSD OF SRML

</xs:element>

<xs:element name="if-all">
<xs:complexType>

<xs:sequence>
<xs:element name="expr" min0ccurs="3" max0ccurs="3" 

type="ExprType" />
</xs:sequence>
<xs¡attribute name="element" type="xs:string" default="srml:all" /> 
<xs¡attribute name="attrib" type="xs:string" default="srml:all" /> 

</xs:complexType>
</xs:element>

<xs:element name="if-any">
<xs:complexType>

<xs:sequence>
<xs:element name="expr" min0ccurs="3" max0ccurs="3" 

type="ExprType" />
</xs:sequence>
<xs¡attribute name="element" type="xs:string" default="srml:all" /> 
<xs¡attribute name="attrib" type="xs:string" default="srml:all" /> 

</xs:complexType>
</xs:element>

<xs:element name="if-expr">
<xs:complexType>

<xs:sequence>
<xs:element name="expr" min0ccurs="3" max0ccurs="3" 

type="ExprType" />
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:simpleType name="BinaryOpTypes">
<xs: restriction base="xs:string">

<xs¡enumeration value="add" />
<xs¡enumeration value="sub" />
<xs¡enumeration value="mul" />
<xs¡enumeration value="div" />
<xs¡enumeration value="exp" />
<xs¡enumeration value="equal" />
<xs¡enumeration value="not-equal" />



95

<xs¡enumeration 
<xs:enumeration 
<xs:enumeration 
<xs:enumeration 
<xs:enumeration 
<xs:enumeration 
<xs:enumeration 
<xs:enumeration 
<xs:enumeration 
<xs:enumeration 
<xs:enumeration 

</xs:restriction> 
</xs:simpleType> 

</xs:schema>

value="less" /> 
value="greater" /> 
value="or" /> 
value="xor" /> 
value="and" /> 
value="nor" /> 
value="contains" /> 
value="concat" /> 
value="begins-with" /> 
value="ends-with" /> 
value="equal-rounded" />



96 APPENDIX B. THE XSD OF SRML



Bibliography

[1] UBIFS website, http://www.linux-mtd.infradead.org/doc/ubifs.html.

[2] H, Alblas. Introduction to attribute grammars. Springer Veriag, In Proc. of 
SAGA (H. Alblas and B.Melichar eds.) LNCS, 545:1-16, 1991,

[3] E, Benes, S.M. Nowiek, and A, Wolfe, A fast asynchronous huffman decoder 
for eompressed-eode embedded processors. In Advanced Research in Asyn­
chronous Circuits and Systems, 1998. Proceedings. 1998 Fourth International 
Symposium on, pages 43 -56, mar-2 apr 1998,

[4] Luca Benini, Alberto Macii, Enrico Macii, and Massimo Poneino, Selective 
instruction compression for memory energy reduction in embedded systems. 
In Proceedings of the 1999 international symposium on Low power electronics 
and design, ISLPED ’99, pages 206-211, New York, NY, USA, 1999, ACM,

[5] Árpád Beszédes, Rudolf Ferenc, Tibor Gyimóthy, André Dolene, and Kon- 
sta Karsisto, Survey of code-size reduction methods, ACM Comput. Surv., 
35(3):223-267, September 2003.

[6] R, Bez, E, Camerlenghi, A, Modelli, and A, Visconti, Introduction to flash 
memory. Proceedings of the IEEE, 91(4):489-502, April 2003.

[7] T, Bray, J, Paoli, and C, Sperberg-MacQueen. Extendable markup language, 
http://www.w3.org/tr/ree-xml, 1998,

[8] Jr, Breternitz, M, and R, Smith, Enhanced compression techniques to sim­
plify program decompression and execution. In Computer Design: VLSI in 
Computers and Processors, 1997. ICCD ’97. Proceedings., 1997 IEEE Inter­
national Conference on, pages 170 -176, Oct 1997,

[9] Mario Cannataro, Gianluea Carelli, Andrea Pugliese, and Domenico Saeea, 
Semantic lossy compression of XML data. In Knowledge Representation Meets 
Databases, 2001,

97

http://www.linux-mtd.infradead.org/doc/ubifs.html
http://www.w3.org/tr/ree-xml


98 BIBLIOGRAPHY

[10] J, Cheney, Compressing XML with multiplexed hierarchical PPM models. In 
Data Compression Conference, 2001. Proceedings. DCC 2001., pages 163-172, 
2001.

[11] Douglas Comer, Ubiquitous B-Tree. ACM Comput. Surv., 11(2);121 137, 
1979.

[12] E, Ferenc, S.E, Sim, E.C, Holt, E, Kosehke, and T, Gyimothy, Towards 
a standard schema for e/e++. In Reverse Engineering, 2001. Proceedings. 
Eighth Working Conference on, pages 49 -58, 2001,

[13] Christopher W, Fraser, Automatic inference of models for statistical code 
compression, SIGPLAN Not., 34(5):242-246, May 1999,

[14] Minos Garofalakis, Dongjoon Hvun, Eajeev Eastogi, and Kvuseok Shim, Ef­
ficient algorithms for constructing decision trees with constraints. In Pro­
ceedings of the sixth ACM SIGKDD international conference on Knowledge 
discovery and data mining, KDD ’00, pages 335-339, New York, NY, USA, 
2000. ACM.

[15] T, Gergelv, F, Havasi, and T, Gyimothy, Binary code compression based on 
decision trees. Proceedings of the Estonian Academy of Sciences Engineering, 
ll(4):269-285, 2005.

[16] Charles F, Goldfarb and Paul Preseod, XML Handbook with CD-ROM. Pren­
tice Hall PTE, Upper Saddle River. NJ, USA, 4th edition, 2001,

[17] T, Gyimothy and T, Horvath, Learning semantic functions of attribute gram­
mars, Nordic Journal of Computing, 4(3) :287 302, Fall 1997,

[18] F, Havasi, Increasing compression performance of block based file systems. 
Conference of PhD Students in Computer Science, Szeged, 2004,

[19] F, Havasi, An improved B+ tree for flash file systems. In SOFSEM 2011: The­
ory and Practice of Computer Science: 37th Conference on Current Trends 
in Theory and Practice of Computer Scienece, LNCS 65f3, pages 297-307, 
2011.

[20] Ferenc Havasi, XML semantics extension, Acta Cybernetica, 15(2) :509 528, 
2002.

[21] Ha-Joo Song Hvun-Seob Lee, Sangwon Park and Dong-Ho Lee, An efficient 
buffer management scheme for implementing a B-Tree on NAND flash mem­
ory, Embedded Software and Systems, pages 181-192, 2007,



BIBLIOGRAPHY 99

[22] IBM, Codepack: Powerpc code compression utility user’s manual version 3.0.,
1998.

[23] HP Ine, ipaq h3000 pocket pe reference guide,
http://h200005.www2.hp.com/bc/docs/support/UCR/SupportManual/TPM_177711- 
00VTPM_177711-001.pdf.

[24] Intel, Understanding the flash translation layer (FTP) specification. Technical 
report, Intel Corporation, 1998,

[25] Robert Mertens Jörn Engel, Logfs - finally a sealable flash file system, CSCI 
390 Spring 2008 Senior Seminar,

[26] M, Kálmán, F, Havasi, and T, Gyimóthy. Compacting XML documents. 
Information and Software Technology (Impact Factor 1.522), 48(2):90 -  106,
2006.

[27] Miklós Kálmán and Ferenc Havasi, Enhanced XML validation using SRML, 
International Journal of Web & Semantic Technology (IJWesT), 4(4):1 -  18,
2013.

[28] D, E, Knuth, Semantics of Context-Free Languages, volume 2, pages 127-145, 
Springer-Verlag, New York, 1968,

[29] C, Lefurgy, E, Pieeininni, and T, Mudge, Reducing code size with run-time 
decompression. In High-Performance Computer Architecture, 2000. HPCA-6. 
Proceedings. Sixth International Symposium on, pages 218 -228, 2000,

[30] Haris Lekatsas, Jörg Henkel, and Wayne Wolf, Code compression for low 
power embedded system design. In Proceedings of the 37th Annual Design 
Automation Conference, DAC ’00, pages 294-299, New York, NY, USA, 2000.
ACM.

[31] Mark Levene and Peter Wood, XML structure compression, 2nd International 
Workshop on Web Dynamics, Honolulu, Hawaii, 7th May 2002,

[32] Hartmut Liefke and Dan Sueiu, XMill: an efficient compressor for XML data,
SIGMOD Rec., 29(2):153-164, May 2000.

[33] M-Svstems, Two technologies compared: NOR vs, NAND - white paper.
Technical report, M-Svstems Corporation, 2003,

[34] T, Mitchell, Machine Learning. McGraw-Hill, 1997,

http://h200005.www2.hp.com/bc/docs/support/UCR/SupportManual/TPM_177711-00VTPM_177711-001.pdf
http://h200005.www2.hp.com/bc/docs/support/UCR/SupportManual/TPM_177711-00VTPM_177711-001.pdf


100 BIBLIOGRAPHY

[35] Sai Tung On, Haibo Hu, Yu Li, and Jianliang Xu, Lazy-update B+-Tree for 
flash devices. Mobile Data Management, IEEE International Conference on 
Mobile Data Management, pages 323-328, 2009,

[36] G, Psaila and S, Crespi-Reghizzi, Adding Semantics to XML, In D, Parigot 
and M, Mernik, editors, Second Workshop on Attribute Grammars and their 
Applications, WAGA’99, pages 113-132, Amsterdam, The Netherlands, 1999, 
INRIA roequeneourt,

[37] J, R, Quinlan, Induction of decision trees. Machine Learning, 1:81-106, 1986,

[38] J, R, Quinlan, C f.5: Programs for machine learning. Morgan Kaufmann, 
1993.

[39] Á, Beszédes-Á, Kiss M, Tarkiainen R, Ferenc, F, Magyar, Tool for reverse 
engineering large object oriented software, SPLST, pages 16-27, June 2001,

[40] Á, Beszedés T, Gergely, F, Havasi, Model based code compression, US patent 
number 6,917,315, 2003.

[41] P.M, Tolani and J.R, Haritsa, XGrind: a querv-friendly XML compressor. 
In Data Engineering, 2002. Proceedings. 18th International Conference on, 
pages 225-234, 2002.

[42] J, Turley, The two percent solution. Embedded Systems Design, 2002,

[43] W3C, DOM standard, http://www.w3.org/DOM/,

[44] Ian H, Witten, Radford M, Neal, and John G, Cleary, Arithmetic coding for 
data compression, Commun. ACM, 30(6):520-540, June 1987,

[45] David Woodhouse, JFFS: The journalling flash file system. In Proceedings of 
the Ottawa Linux Symposium, pages 177-182, 2001,

[46] Chin-Hsien Wu, Tei-Wei Kuo, and Li Ping Chang, An efficient B-Tree layer 
implementation for flash-memory storage systems, ACM Trans. Embed. Corn- 
put. Syst., 6(3):19, 2007.

http://www.w3.org/DOM/

