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INTRODUCTION 

Inflammatory reactions triggered by exogenous or endogenous insults are mainly propagated by 

intravascular events. After the induction of inflammation the activated polymorphonuclear (PMN) 

leukocytes and the increased production of reactive oxygen species (ROS), such as superoxide 

radical (O2
.-) or hydrogen peroxide (H2O2) play important roles in the process (Ward and Lentsch, 

1999). Phagocytic cells, including PMN leukocytes produce ROS and several other inflammatory 

mediators, which can directly induce vascular damage and influence the activation state of 

endothelial cells (Cerletti et al., 1995). An important feature of this process is inactivation of nitric 

oxide (NO), the most important vasodilator molecule. It has been shown that the reaction of O2
- with 

NO renders it biologically inactive, which per se promotes leukocyte adherence (Suzuki et al., 1989; 

1991), while the generated peroxynitrite mediates vascular phenomena such as platelet aggregation 

and platelet-leukocyte adhesion (Moncada, 1992).  

Cytokine signals are crucial in the inflammatory cascade by promoting the interactions of PMNs 

with endothelial cells through up-regulation of adhesion molecules, PMN degranulation, respiratory 

burst, lipid mediator synthesis (Baggiolini et al., 1994) and enhanced migration through the 

endothelium. Through these reactions the soluble mediators (TNF-α, IL-1β, IL-6) alter 

microvascular homeostasis (Dinarello, 1997; Feghali and Wright, 1997; Fortin et al., 2010; Wu et 

al., 2008) and blood flow, which have been associated with multiple organ dysfunction syndromes 

(Trzeciak et al., 2007). The inflammatory mediators regulate generation of each other, such as 

addition of NO augments TNF-α secretion from human PMNs (van Dervort et al., 1994) or 

peroxynitrite mediates IL-8 gene expression and IL-8 production in IL-1β- and TNF-α-stimulated 

human leukocytes (Zouki et al., 2001). 

Characteristics of the inflammation in the brain - the neuroinflammation 

Neuroinflammation occurs in various CNS pathologies, including ischaemia, stroke, infections, 

traumas, and neurodegenerative disorders (Kreutzberg, 1996; Messmer and Reynolds, 2005, Block 

and Hong, 2005; Frank-Cannon et al., 2009). Although the exact molecular and cellular components 

of neuroinflammation are still unknown, enhanced cholinergic activity (Tyagi et al., 2008; 2010) 

and activation of the astrocytes and microglia (Bouchard et al., 2007), play principal roles. 

Microglia are resident immune cells in the CNS (Sugama, 2009) and considered to be the 

macrophages of the parenchyma and primary components of the brain immune system (Barron, 

1995). In neuroinflammation, the activated microglia undergoes a change in morphology, and 

releases various potentially cytotoxic mediators, such as NO, TNF-α, IL-1β, prostaglandin E2, and 
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ROS. It is proposed that overproduction of these mediators is toxic to neurons and results in a self-

propagating vicious cycle leading to neuronal death (Cui et al., 2012).  

Characteristics of brain irradiation-induced inflammation 

 There are numerous potential mechanisms, and targets of irradiation-induced adverse reactions 

in the CNS, but it has been established experimentally that a coordinated pro-inflammatory response 

may play key roles in radiotherapy-associated tissue injury (Denham and Hauer-Jensen 2002). In 

this line, it has been shown that mast cell-derived histamine release and histamine receptor H3 

expression are involved in the development of brain oedema (Mohanty et al.. 1989; Shimada et al., 

2012). Moreover, the expressions of TNF-α and IL-1β genes are rapidly induced after irradiation 

(Hong et al., 1995, 1999; Chiang et al., 1997; McBride et al., 1997), and these cytokines have also 

been implicated in oedema formation in ischaemic and hypoxic injuries (Meistrell et al., 1997; 

Botchkina et al., 1997). It has further been demonstrated that the TNF-α output peaks after 2-8 h and 

has usually returned to the baseline by 24 h after irradiation (Daigle et al., 2001). The spread of pro-

inflammatory events is balanced by the release of anti-inflammatory cytokines such as IL-10, which 

downregulates TNF-α activity and inhibits long-term IL-6 production (Marshall et al., 1996; Huaux 

et al., 1999).  

It has been postulated that the major cause of the cognitive dysfunction after irradiation is the 

impairment of neurogenesis in the dentate subgranular zone of the hippocampus (Rola et al., 2004). 

Potentially neuroprotective drugs of the brain are therefore of great importance in order to enhance 

the radiation tolerance, and to improve quality of life of patients with radiotherapy.  

Phosphatidylcholine and L-alpha-glyceryphosphorylcholine 

Beneficial effects of dietary phospholipids have been known since the early 1900's in relation to 

different illnesses and symptoms, including inflammation. Phosphatidylcholine (PC) is ubiquitous 

membrane phospholipid, and a number of experimental and clinical studies have demonstrated that 

it alleviates the consequences of inflammation and ischaemia in different organs (Erős et al., 2009; 

Gera et al., 2007). PC is taken up by phagocytic cells, and it may accumulate in inflamed tissues 

(Cleland et al., 1979). On the other hand, the hydrolysis of PC by phospholipase D generates choline 

in cholinergic neurons (Blusztajn and Wurtman 1983), and this choline is used for synthesis of the 

principal vagal neurotransmitter, acetylcholine.  

 L-alpha-glyceryphosphorylcholine (GPC) is a water-soluble, deacylated PC intermediate which 

may be hydrolysed to choline and can possibly be used for the resynthesis of PC (Galazzini and 

Burg 2009). GPC has proved effective against the loss of the membrane function in CNS injuries 

(Amenta et al., 1994; Onischenko et al., 2008), and it was previously tested as centrally acting 
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parasympathomimetic drug in dementia disorders and acute cerebrovascular diseases (Parnetti et al., 

2007, De Jesus Moreno Moreno, 2003, Barbagallo Sangiorgi et al., 1994). After oral administration, 

GPC have been shown to cross the BBB and reach the central nervous system, where it is 

incorporated into the phospholipid fraction of the neuronal plasma membrane and microsomes 

(Tayebati et al., 2011).  

GOALS 

The main purpose of this thesis was to study and evaluate the degree of inflammatory activation 

in the brain after local, intracranial and peripheral insults, and to test new therapeutic possibilities 

via which to influence such events. We specifically focused on new, possible therapeutic ways 

which could be efficacious in mitigation the neuroinflammation process through their peripheral 

anti-inflammatory effects. 

Our first goal was to investigate and characterize the neuroinflammatory changes in the brain 

after peripheral inflammatory stimuli. With this aim, we used a small animal model of LPS-induced 

systemic inflammation to monitor inflammatory changes in the CNS and in the periphery, with 

special emphasis on GI reactions. 

We investigated the preventive potential of an oral PC regimen on the scope of LPS-induced 

peripheral cytokine production in association with the development of secondary neuroinflammatory 

complications. We also aimed at studying the changes in GI markers of inflammation in order to 

acquire comparative and tissue-specific information on the anti-inflammatory potential of dietary PC 

supplementation. 

We aimed to investigate whether the anti-inflammatory effects of the PC are linked to the fatty 

acid parts, or to the head group of the molecule. To this aim, the anti-inflammatory effects of GPC 

were characterized in a rat model of antigen-independent inflammation, in an equimolar dose with 

the effective dose of PC.  

Irradiation of the hippocampus was used to directly induce neuroinflammation in the CNS. Our 

aim was to investigate the immediate consequences of experimental radiotherapy not only in the 

CNS but also in the periphery because we hypothesized that the consequences of irradiation might 

include systemic effects if the opening of the BBB is bidirectional. We also aimed to investigate the 

effects of systemic GPC treatments on irradiation-induced inflammatory changes in the peripheral 

circulation and in the CNS. 

We also aimed to determine the late consequences of the irradiation-induced inflammation in a 

clinically-relevant time-frame. We examined the histopathological changes in the CNS, and the 

effects of systemic GPC therapy in a chronic animal model of brain irradiation. 
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MATERIALS AND METHODS 

Animals  

The experiments were performed on adult male Sprague-Dawley (SPRD) rats housed in plastic 

cages in a thermoneutral environment (21±2 °C) with a 12-h dark-light cycle. Food and water were 

provided ad libitum. The experimental protocol was approved by the Ethical Committee for the 

Protection of Animals in Scientific Research at the University of Szeged and followed the NIH 

guidelines for the care and use of laboratory animals and the Society for Neuroscience guidelines on 

Responsible Conduct Regarding Scientific Communication. The animals were randomly allocated 

into the study groups. 

LPS administration and PC treatment; experimental protocol I 

Group 1 (n = 36, 180-250 g) served as controls; the animals were injected with sterile saline and 

were nourished with standard laboratory chow. The animals in group 2 (n = 36) were kept on a 

standard laboratory diet for 5 days and then received a single i.p. dose of LPS (Escherichia coli 

O55:B5, 2 mg/kg body weight). This group was subsequently nourished with standard laboratory 

chow for 7 days. In group 3 (n = 36), the animals were fed with a special diet containing 1% PC 

(1,2-diacylglycero-3-phosphocholine) for 5 days prior to the administration of LPS, and thereafter 

during the 7-day observation period. After day 0, all animals received the thymidine analogue 

bromodeoxyuridine (BrdU, 50 mg/kg/day i.p.) daily for 7 days to label proliferating cells. The 

animals were sacrificed 3 h, 1 day, 3 days or 7 days after the administration of LPS. Tissue biopsies 

were taken from the hippocampus, the ascendant colon and the ileum, and blood samples were 

obtained from the inferior caval vein. 

GPC administration; experimental protocol II 

The animals were randomly allocated into four groups (n = 8 each, 250-300 g): a control, sham-

operated group, a group that participated in intestinal IR, and groups that took part in IR with GPC 

pretreatment (GPC + IR) or in IR with GPC post-treatment (IR + GPC) protocols. After midline 

laparotomy, the animals in groups IR, GPC + IR and IR + GPC were subjected to 45-min ischaemia 

by occlusion of the superior mesenteric artery (SMA) with an atraumatic vascular clamp. 45 min 

after the start of the ischaemic insult, the vascular clamp was removed and the intestine was 

reperfused. The SMA blood flow was measured continuously with an ultrasonic flowmeter placed 

around the SMA. The abdomen was temporarily closed and the intestine was reperfused for 180 

min. In the sham-operated control group, the animals were treated in an identical manner except that 

they did not undergo clamping of the artery. After 180 min of reperfusion, tissues were taken from 

the ileum to examine the tissue nitrotyrosine and O2
.- production and the XOR activity.  
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GPC (MW: 257.2) was administered i.v. in a dose of 16.56 mg kg-1 bw, as a 0.064 mM solution 

in 0.5 ml sterile saline. These dosage conditions were based on the data of previous investigations 

with PC. This dose was equimolar with the effective, anti-inflammatory dose of PC (MW: 785; 

0.064 mM, 50 mg kg-1 bw, i.v.) in rodents (Gera et al., 2007; Varga et al., 2006). The GPC pre- or 

post-treatment was applied once, either directly before the ischaemic period or immediately after the 

ischaemia, before the start of reperfusion.  

Short-term consequences of brain irradiation; experimental protocol III  

Group 1 (n = 6), which served as non-treated controls, received sterile saline (0.5 ml i.v.). CT-

based three-dimensional conformal treatment planning was performed with the XIO™ (CMS) 

treatment planning system. The hippocampus was delineated on each slice on CT images acquired in 

the treatment position. Two opposed isocentric lateral circle fields 1 cm in diameter were planned, 

resulting in a homogeneous dose distribution in the target. For the irradiation, the animals were laid 

on a special positioning scaffold (resembling a bunk-bed, 3 rats at a time). Group 2 (n = 6) and 

group 3 (n = 6) were subjected to cobalt 60 teletherapy of the hippocampus in both hemispheres: 40 

Gy (1 Gy/2.25 min), from two opposed lateral fields.  

Prior to the start of radiation, portal imaging with the gamma ray of the cobalt unit was 

performed for field verification. Additionally, group 3 received GPC (50 mg kg-1 bw, dissolved in 

0.5 ml sterile saline, i.v.) 5 min before the start of irradiation. Three h after the completion of 

irradiation, blood samples were obtained from the inferior vena cava to examine the plasma 

histamine, TNF-α, IL-6, IL-1β and IL-10 changes.  

Brain irradiation, long-term consequences; experimental protocol IV 

Male SPRD rats (180-220 g) were anaesthetized (4% chloral hydrate, 1 ml/100 g, i.p.) and 

placed in the prone position, using laser alignment. The planned dose was delivered as a single 

fraction, using a linear accelerator at a dose rate of 300-900 monitor units (MU)/min, with six 10-

mm diameter apertures in a 20-mm-thick Newton metal insert placed into the 15x15-cm electron 

applicator for the following groups of animals: a sham-irradiated control group (n = 6), an only 

GPC-treated group (n = 6), an irradiated group (n = 6), and a both GPC-treated and irradiated group 

(n = 6). Positioning to the beam was achieved with the laser optical system installed in the treatment 

room and the light field.  

Irradiation was carried out on 6 animals at the same time (described in detail by Hideghety et al., 

2013) at a dose rate of 300/900 MU/min under TV-chain control. Beginning from the day of 

irradiation, the rats received GPC (50 mg kg-1 bw, dissolved in 0.5 ml sterile saline, administered by 

gavage) or the vehicle at the same time every second day (on Mondays, Wednesdays and Fridays) 
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for 4 months. 120 days after the irradiation, the rats were deeply anaesthetized and perfused 

transcardially, and haematoxylin and eosin (H&E) staining was used for histological evaluation. 

Measurements 

Brain immunohistochemistry  

The hippocampus was examined for the expression of Ionized calcium-binding adapter molecule 1 

(Iba1), a characteristic marker for the microglia cell line. BrdU labelling and doublecortin (DCX) 

staining were used to visualize neuroprogenitor cells. For cell counting pictures were taken with a 

Zeiss AxioImager microscope. Pictures were recorded and evaluated by two investigators Iba1-

positive cells and cells with BrdU and DCX co-expression were counted in the CA3 and CA1 

regions of the dentate gyrus (DG), in a minimum of 130 fields of view in each animal.  

Brain and intestinal histopathology 

Rats were deeply anaesthetized with 4% chloral hydrate and perfused transcardially. The brains 

were dissected and fixed in paraformaldehyde for 1 day, before being cut into 6 equal pieces, which 

were then embedded in paraffin. Multiple sections were processed with H&E for histological 

evaluation. Sections were analysed under an Axio Imager.Z1 light microscope, and 

photomicrographs were taken with AxioCam MR5 camera equipment. Digital photos were analysed 

with the aid of Image-ProR Plus 6.1 software. Tissue samples from the ileum and colon were fixed 

in 4% formaldehyde solution, sectioned and stained with H&E. Evaluations were carried out by two 

experienced histopathologists, independently, with a semiquantitative method.  

Tissue xantine oxidoreductase (XOR) and myeloperoxidase (MPO) activity and nitrite/nitrate 

level measurements 

XOR is a prototypic O2
.--generating inflammatory enzyme. Hippocampal, colon and ileum 

tissue samples were kept on ice until homogenized in PB (pH = 7.4). The homogenate was loaded 

into centrifugal concentrator tubes and examined by fluorometric kinetic assay on the basis of the 

conversion of pterine to isoxanthopterine in the presence (total XOR) or absence (xanthine oxidase 

activity) of the electron acceptor methylene blue (Beckman et al., 1989). 

The MPO activity is directly related to the PMN granulocyte accumulation within inflamed 

tissues. MPO activities in colon, ileum and hippocampus biopsy samples were determined by the 

method of Kuebler et al. (1996). The MPO activities of the samples were referred to the protein 

content (Lowry et al., 1951). 

Tissue samples were collected from the ileum, colon and hippocampus and the levels of 

nitrite/nitrate, stable end-products of NO, were measured by the Griess reaction. This assay depends 
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on the enzymatic reduction of nitrate to nitrite, which is then converted into a coloured azo 

compound that can be detected spectrophotometrically at 540 nm (Moshage et al., 1995). 

Intestinal O2
.-
 production and nitrotyrosine levels 

The level of O2
.- production in freshly minced intestinal biopsy samples was assessed by the 

lucigenin-enhanced chemiluminescence assay of Ferdinandy et al. (2000). Free nitrotyrosine, as a 

marker of peroxynitrite generation, was measured by enzyme-linked immunosorbent assay. Small 

intestinal tissue samples were homogenized and centrifuged at 15000 g. The supernatants were 

collected and incubated overnight with anti-nitrotyrosine rabbit IgG and nitrotyrosine 

acetylcholinesterase tracer in precoated (mouse anti-rabbit IgG) microplates, followed by 

development with Ellman’s reagent. Nitrotyrosine content was normalized to the protein content of 

the small intestinal homogenate and expressed in ng mg-1. 

Measurement of plasma TNF-α, IL-1β, IL-6, IL-10 and histamine  

Blood samples (0.5 ml) were taken from the inferior vena cava into precooled EDTA-containing 

polypropylene tubes, centrifuged at 1000g for 20 min at 4 °C, and then stored at -70 °C until assay. 

Plasma TNF-α, IL-1β, IL-6 and IL-10 concentrations were determined by means of commercially 

available ELISA. The minimum detectable levels of rat TNF-α and IL-1β were < 5 pg/ml, that of rat 

IL-10 was < 10 pg/ml and the mean detectable dose of rat IL-6 was 21 pg/ml.  

Plasma histamine concentrations were determined by means of a commercially available 

enzyme-linked immunoassay. 

Haemodynamic measurements 

The MAP and SMA blood flow signals were monitored continuously and registered with a 

computerized data-acquisition system. The mesenteric vascular resistance (MVR) was calculated via 

the standard formula (MVR = (MAP - MVP) / SMA flow), where MVP is the mesenteric veinous 

pressure. 

Intravital video-microscopy  

The intravital orthogonal polarization spectral imaging technique was used for non-invasive 

visualization of the serosal microcirculation of the ileum 3-4 cm proximal from the coecum. The red 

blood cell velocity (RBCV, µm s-1) changes in the postcapillary venules were determined in three 

separate fields by means of a computer-assisted image analysis system. All microcirculatory 

evaluations were performed by one investigator. 

Statistical analysis 

Data analysis was performed with a statistical software packages or StatView 4.53 for Windows 

software. Due to the non-Gaussian data distribution, non-parametric methods were used. One-way 



10 

 

ANOVA and Fisher’s PLSD post hoc tests were used for the histology. Time-dependent differences 

from the baseline were assessed by Dunn’s method. Differences between groups were analysed with 

Kruskal-Wallis one-way ANOVA on ranks, followed by Dunn’s method for pairwise multiple 

comparison. In the Figures and Results, median values (M), 75th (p75) and 25th (p25) percentiles and 

mean ± S.E.M. are given. p<0.05 and p<0.001 were considered statistically significant.  

RESULTS 

Neurogenesis in the rat hippocampus after LPS injection 

Exposure to LPS decreased the neuroprogenitor cell number significantly (to zero, M=0) as 

compared with the control group (M:0.037; p25:0.0115; p75:0.0542). PC pretreatment prevented the 

decrease and resulted in a significantly higher number of neuroprogenitor cells (M:0.04; p25:0; 

p75:0.0588). The immunohistochemical analysis of the hippocampus showed that LPS treatment 

was accompanied by a statistically significantly higher number of microglia (M:2.2; p25:1.4; 

p75:3.6) than after the administration of saline alone (M:0.348; p25:0.263; p75:0.639). In the PC-

pretreated group, the cell number was significantly lower (M:0.716; p25:0.404; p75:1.489) and did 

not differ significantly from that observed in the control group. 

MPO and XOR activities in the colon, ileum and hippocampus after LPS injection 

There was a statistically non-significant tendency for the MPO activity in the colon to be higher 

in the LPS-treated group than in the controls, and we observed a similar increase in XOR level. The 

MPO and XOR activities in the PC-pretreated groups remained at the control level. In the ileum and 

the hippocampus, the activities did not change and we did not demonstrate any between-group 

differences. 

Plasma TNF-α and IL-6 concentrations after LPS injection 

The plasma TNF-α level at 3 h after the LPS administration (M:912.5; p25:615.6; p75:1022) 

was significantly higher than in the saline-treated group (M:0.9, p25:0.8 p75:1.0). The PC-enriched 

diet significantly reduced the LPS-induced inflammatory reaction (M:428.4; p25:394.7; p75:550.3). 

The values at later time points were not different from the baseline.  

The IL-6 concentrations were also significantly higher at 3 h after LPS exposure, though the 

levels declined thereafter. In this case there was no significant difference between the data for the 

LPS-treated group (M:4578.9; p25:3576.4; p75:4836.2) and those for the PC-pretreated group 

(M:5098.8; p25:4232.7; p75:5866.1). At later time points, the values did not differ from those for 

the control group (M:77.6; p25:14.5; p75:112.4). 

Tissue nitrite/nitrate levels in the hippocampus and ileum after LPS injection 



11 

 

In the hippocampus, a significantly elevated nitrite/nitrate level was found 3 h after LPS 

administration; later, differences were not detected. PC pretreatment did not influence this early 

difference. In the ileum, there was a significantly increased nitrite/nitrate level in the LPS-treated 

group as compared with the control group 3 h after the LPS administration and on day 1 of the 

experimental period. This elevation later decreased and by day 7 differences were not observed 

between the groups. 

Histology of the ileum and the colon after LPS injection 

The light microscopic evaluation demonstrated the development of a mild inflammatory 

reaction, with slight, but not significant tissue damage in the LPS-treated group, though the level of 

this injury did not differ markedly between the groups and was not influenced significantly by PC 

pretreatment.  

Mesenteric IR and haemodynamic changes 

There were no significant changes in the haemodynamic parameters during the experiment as 

compared with the baseline values in the sham-operated group. A decreasing tendency in MAP was 

found in all IR groups as compared wirh the sham-operated group (M:103.5; p25:97.53; p75:115.07) 

and it remained at this low level until the end of the experiment (IR group: M:88.04; p25:81.74; 

p75:93.65; IR + GPC: M:73.48; p25:67.5; p75:85.18). MAP was elevated in the GPC + IR group 

(M:92.81; p25:84.79; p75:100.82). There was no statistically significant difference in HR between 

the different groups during the experiment. 

In the IR group (M:19.61; p25:13.71; p75:26.38), there was a significant elevation in MVR 

relative to the control value (M:5.82; p25:4.4; p75:6.78) up to 225 min of the reperfusion. This 

parameter exhibited a pronounced reduction in the GPC + IR group (M:9.72; p25:8.06; p75:12.96) 

and a tendency to diminish in the IR + GPC group (M:10.32; p25:9.23; p75:11.61).  

After the ischaemia, the SMA flow was significantly reduced in the IR group (M:4.08; 

p25:3.24; p75:5.4) relative to the sham-operated group (M:14.52; p25:11.7; p75:17.99), but this 

difference was not observed in the IR + GPC group (M:6.67; p25:5.8; p75:7.56). Moreover, there 

was an unequivocal tendency for this parameter to increase in the GPC + IR group (M:7.53; 

p25:5.65; p75:9.14) as compared with the IR group.  

The RBCV of the serosa was examined as a quantitative marker of the ileal microcirculatory 

condition. The RBCV was significantly decreased in the IR group (M:660; p25:469.25; p75:706.5) 

as compared with the sham-operated group (M:939.67; p25:737.75; p75:1046.5). IR + GPC 

(M:1228.03; p25:1153.75; p75:1256) caused a significant elevation and normalized the IR-induced 
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reduction in RBCV by 15 min of the reperfusion period. An increasing tendency was seen in the 

GPC + IR group (M:966; p25:774.75; p75:1279.94). 

Biochemical parameters after intestinal IR and GPC treatments 

The ROS-producing capacity of the small intestinal biopsy samples did not change in the sham-

operated animals. By 15 min of reperfusion, there was a significant enhancement in the IR group 

(M:2019.45; p25:1814.52; p75:2349.35) relative to the baseline value and also the sham-operated 

group (M:1182.22; p25:1046.59; p75:1340.01). Both GPC + IR (M:958; p25:856.07; p75:1476.28) 

and IR + GPC treatment (M:1228.033; p25:839.1; p75:1568.12) resulted in an appreciable reduction 

in the O2
.-  level as compared with the IR group. This tendency was maintained until the end of the 

experiments. 

At the end of the experiments, we observed a significantly higher XOR activity in the IR 

animals (M:78.6; p25:67.74; p75:80.18) than in the sham-operated ones (M:41.78; p25:27.37; 

p75:55.97). The XOR activity was also significantly elevated in the GPC + IR group (M:78.06; 

p25:72.48; p75:84.51). In contrast, the XOR activity was significantly lower in the IR + GPC group 

(M:19.01; p25:14.28; p75:21.33) than in either the IR or the GPC + IR groups. The IR + GPC 

treatment proved highly effective against ROS-producing mechanisms. 

Nitrotyrosine formation is a marker of nitrosative stress within the tissues, and correlates with 

peroxynitrite production. IR (M:2.61; p25:2.12; p75:3.08) resulted in a significant increase in 

nitrotyrosine level relative to the control group (M:1.45; p25:1.34; p75:1.86) at the end of the 

experiment. In both the GPC + IR (M:1.32; p25:1.05; p75:1.66) and the IR + GPC group (M:1.54; 

p25:1.21; p75:1.57), however, this increase did not take place, and the nitrotyrosine content 

remained at the control level. 

Early effects of brain irradiation  

3 h after irradiation, the pro- and anti-inflammatory cytokine levels were increased significantly 

in the peripheral circulation. The irradiation of the rat hippocampus was accompanied by a 

significant plasma TNF-α level elevation (M:20.7; p25:18.7; p75:23.2) as compared with the control 

group (M:9.7; p25:9.3; p75:10.06). The IL-6 concentration was also significantly higher at 3 h after 

radiation exposure (M:347.2; p25:297.4; p75:422.3 vs saline treatment: M:289.6; p25:264.7; 

p75:323.9). In the case of the plasma IL-1β, no differences were observed between the control and 

the irradiated groups (control: M:126.5; p25:119.8; p75:129.9; irradiated: M:122.3; p25:116.7; 

p75:143.8). The IL-10 plasma level was significantly higher 3 h after the irradiation (M:90.7; 

p25:82.6; p75:102.1) than in the saline-treated control group (M:4.1; p25:1.2; p75:5.04). The 

hippocampus irradiation also resulted in a significant elevation (M:49.6; p25:44.3; p75:63.9) in 
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plasma histamine level as compared with the non-irradiated control group (M:23.9; p25:16; 

p75:33.1). 

Acute effects of peripheral GPC administration after brain irradiation 

The i.v. GPC treatment protocol reduced the increase in TNF-α level (M:12.8; p25:12.4; 

p75:13.6) significantly, and decreased the elevating tendency in IL-6 (M:333.2; p25:298.2; 

p75:345.5), the plasma level then not differing significantly from that for the control group. The 

level of plasma IL-1β did not differ significantly from that in the control or the irradiated groups 

(GPC-treated: M:132.7; p25:129.5; p75:137.8). GPC treatment likewise significantly reduced the 

irradiation-induced IL-10 reaction (M:19.5; p25:16.3; p75:22). Again, after the GPC treatment, the 

histamine concentration remained at the control level (M:25.3; p25:23.7; p75:28.7).  

Late effects of brain irradiation 

We examined the late histopathological consequences of hippocampus irradiation 4 months 

after the irradiation. Signs of necrosis, macrophage density and reactive gliosis were evaluated in the 

irradiated region of the brain after 40 Gy doses. The irradiated group displayed moderate necrosis 

that affected the grey and white matter. The density of the foamy macrophages and the grades of 

reactive astrogliosis were significantly elevated in the irradiated group as compared with the control 

animals.  

Late effects of GPC after brain irradiation 

The H&E-stained slides of the control, non-irradiated animals, and the non-irradiated 

hemisphere of the brain of the irradiated or GPC-treated animals exhibited no histopathological 

signs or pathological alterations. In irradiated hemispheres, the GPC treatment significantly 

decreased the irradiation-caused histopathological changes, and significantly attenuated the degree 

of the necrosis, macrophage density and reactive glisosis in the brain.  

DISCUSSION 

Our data provided experimental evidence for the significant inflammatory reaction in the CNS 

during the acute phase of peripheral LPS-induced inflammation, and also after brain irradiation. 

Furthermore, our result provided good evidence for the antiinflammatory and neuroprotective 

efficacies of PC and GPC treatments in these rodent models.  

The hippocampus is the site of the formation of long-term memory, allowing for the comparison 

of experiences and thereby determining the choice of an appropriate stress response (Akrout et al., 

2009). In this region, new neurons develop from proliferating progenitor cells (Gage, 2002) and 

mature into functional neurons (van Praag et al., 2002), contributing to cognitive functions such as 

learning and memory (Shors et al., 2001; Kempermann et al., 2004). Since proinflammatory 
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compounds, cytokines, NO and other mediators released by the immune cells negatively regulate 

adult neurogenesis in the dentate gyrus (Monje et al., 2003; Vallieres et al., 2002; Liu et al., 2006) it 

has been suggested that microglia activated by different types of injury signals may control the 

formation of new neurons.  

A single dose of LPS produced a significant neuroinflammatory reaction in the brain tissue, 

while the intestinal damage, mucosal MPO, XOR and NO changes (effector molecules downstream 

of the NF-κB activation) were less pronounced or transient. Collectively, these data underlined the 

relative susceptibility of the brain to inflammatory consequences of transient, seemingly innocuous 

peripheral stimuli. These data also support the notion that peripheral TNF-α production can play 

detrimental role in neural survival or differentiation in the hippocampus (Monje et al., 2003; Liu et 

al., 2005; Vezzani et al., 2002). Inflammatory mediators may influence the CNS through different 

pathways, passively through afferent nerve conduction, through the circumventricular organs (i.e. 

areas lacking the BBB), by activation of the brain endothelium, or by active transport (Banks, 2006; 

Teeling et al., 2007).  

Oral PC supplementation significantly decreased plasma TNF-α level as compared with that in 

the LPS-challenged animals and prevented the remote neuroinflammatory signs of LPS-induced 

endotoxemia. PC-enriched diet inhibited TNF-α production, but did not block LPS-induced IL-6 

production. These results suggest an immunomodulatory, protective role for both IL-6 and PC in the 

acute response to Gram-negative bacterial infection. PC is readily taken up by phagocytic cells 

(Cleland et al., 1979) and, accordingly, it may accumulate in inflamed tissues (Miranda et al., 2008). 

The choline component of PC may participate in a wide range of responses, including interference 

with the mechanism of activation of the PMN leukocytes (Monje et al., 2003), and this pathway may 

become important under inflammatory stress conditions.  

The design additionally allowed us to differentiate between direct and indirect effects of 

peripheral LPS and dietary PC treatments. The size of the PC molecule prevents its entry into the 

brain across the BBB, but an increased dietary PC uptake prior to the LPS challenge was associated 

with enhanced anti-inflammatory protection in the hippocampus and with significantly decreased 

plasma TNF-α concentrations. Thus, it is reasonable to suggest that the LPS-induced secondary 

peripheral inflammatory signals, including TNF-α, trespassed over the BBB, and orally administered 

PC or PC metabolites were able to interfere with the spread of inflammatory signalization at the 

periphery. 

Mesenteric ischaemia-reperfusion-induced inflammation and the effects of GPC 
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We used this IR setup to determine the anti-inflammatory effectiveness of GPC, a deacylated 

PC metabolite. More directly, we administered GPC in equimolar dose with the effective anti-

inflammatory PC doses in a mesenteric IR model, to determine which part of the PC molecule is 

anti-inflammatory, the polar or the fatty acid parts. Our results demonstrated, that intestinal IR 

decreased the MAP, the SMA flow and the intramural RBCV, and increased the MVR significantly. 

At the same time, the SOX, XOR and nitrotyrosine levels were elevated significantly in the small 

intestine. Overall, these data furnish evidence concerning the evolution of hypoxia/reoxygenation-

induced, antigen-independent inflammation. In contrast with this, GPC treatment stabilizes not only 

the RBCV in the intestinal wall, but the macrocirculation is also normalized. GPC administration 

exerted pronounced effects on the inflammatory process by lowering SOX production and the 

activity of XOR, a prototype of ROS-producing enzymes. This demonstrates indirectly that PC-

derived lipids do not participate in this action, and the data suggest that the active component is the 

choline head group. In this regard, GPC may possibly possess a membrane-protective effect, 

promoting regenerative processes or conserving the double-lipid layer, thereby preserving the 

original form and function of the cells. 

Brain irradiation-induced neuroinflammation and changes in the peripheral circulation 

We have developed a special technique for partial brain irradiation restricted to a well-defined 

area, including the hippocampus and corpus callosum, in one hemisphere in small animals, similarly 

to human brain tumour radiotherapy, as recommended by others (Kalm et al., 2013). The study 

design allowed us to differentiate between direct, local and distant, peripheral effects of brain 

irradiation. We observed for the first time that 3 hrs after brain irradiation inflammatory cytokine 

levels are significantly elevated at the periphery. This phenomenon can be explained if after 

irradiation a significant, local, pro-inflammatory response is activated in the brain, and subsequently 

the BBB is temporarily opened.  

IL-6 is a multifunctional pro-inflammatory cytokine that plays a role in the mediation of the 

inflammatory responses after total-body irradiation (Kishimoto, 2005), and recent studies have 

suggested that elevated levels of IL-6 protein expression may be responsible for the radiation-

induced inflammation in the brain (Marquette et al., 2003; Linard et al., 2003, 2004). Furthermore, it 

has also been reported that the exposure of rodents to total-body irradiation selectively activated NF-

κB and subsequently increased the mRNA expression of TNF-α, IL-1α, IL-1β and IL-6 in lymphoid 

tissues (Zhou et al., 2001).  

Histamine, mainly released by neurons and mast cells (Ruat et al., 1990) can play additional, 

roles in the formation of oedema in the rat brain.  
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The pro-inflammatory mediator release may be counteracted by increased IL-10 production, 

which downregulates TNF-α activity, inhibits long-term IL-6 production (Marshall et al., 1996; 

Huaux et al., 1999), blocks NF-κB activity, and is involved in the regulation of the JAK-STAT 

signaling pathway; thus, it can be considered to be an anti-inflammatory cytokine after irradiation 

brain injury (Ward et al., 2011). 

The protective mechanism of GPC in irradiation-induced CNS neuroinflamation 

GPC is water soluble, can rapidly deliver choline to the brain across the BBB (Parnetti et al., 

2007), thus it may be present in the irradiated area where TNF-α or ROS/RNS-mediated actions are 

expected. We hypothesized that a compound with anti-TNF-α effects inhibits the production of other 

proinfammatory citokines, and accordingly, the BBB remains intact. Indeed, the peripheral plasma 

levels of key inflammatory mediators were signficantly modulated by GPC administration.  

Distinct effects of GPC-treatment were clearly observed at different components of the reaction 

and in this respect a central mediatory role of TNF-α is proposed in the transmission of the 

intracranial inflammatory response to the periphery. However, another possibility to influence 

signals from the irradiated brain could be achieved through nerves communicating with the 

periphery. Indeed, Marquette and coworkers have demonstrated that IL-1β levels increased in the 

hypothalamus, thalamus and hippocampus, while TNF-α and IL-6 levels in the hypothalamus 6 hr 

after partial body irradiation (Marquette et al., 2003) and accordingly, it was concluded that the 

hypothalamus, hippocampus, thalamus and cortex react rapidly to peripheral irradiation by releasing 

pro-inflammatory mediators. Vagotomy before irradiation prevented these responses (Marquette et 

al., 2003). Along these lines it could be hypothesized that the vagus nerve and the cholinergic anti-

inflammatory system may be one of the descending pathways for rapid signalling with respect to 

irradiation.  

The stimulation of the α7 subunit of the nicotinic acetylcholine receptors (α7 nAChRs) could 

also contribute to the beneficial effects of GPC. It has been shown that dietary supplementation with 

choline results in selective increases in the density of α7 nAChRs in multiple brain regions (Guseva 

et al., 2006) and choline is a full agonist of α7 nAChRs (Alkondon et al., 1997). The action of 

choline as a direct-acting α7 nAChR agonist may improve the cognitive outcome as this receptor is 

expressed at high levels in the rodent hippocampus (Tribollet et al., 2004) and has previously been 

implicated in cognitive. 

 As a next step we have extended the observation time to detected histopathological signs of 

irradiation-caused chronic damage in the brain. It is recognized that after irradiation the 

oligodendrocytes and the white matter suffer necrosis (Shen et al., 2012; Valk and Dillon, 1991), 
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therefore we evaluated the degree of necrosis, macrophage density and reactive gliosis 4 months 

after radiotherapy. We have detected significant HP impairments in the brain, and the level of 

histopathological deterioration was ameliorated significantly by oral GPC treatment administered 

three days per week. These effects may be indicative of a previously unknown radio-neuroprotective 

action which could be of considerable therapeutic significance if reproduced in the clinical practice. 

 

SUMMARY OF NEW FINDINGS 

Peripheral LPS-induced inflammatory activation leads to microglia accumulation and decreased 

neurogenesis in the hippocampus. This supports previous findings that LPS can transiently open the 

BBB and the inflammatory signs can pass into the brain. 

The orally-administered PC interferes with the spread of inflammatory signalization at the 

periphery. PC supplementation did not reduce the overall extent of peripheral inflammatory 

activation, but reversed the negative effects on brain neurogenesis, directly by lowering circulating 

TNF-α concentrations, and indirectly by decreasing CNS microglia accumulation. 

GPC is anti-inflammatory in equimolar dose with the effective dose of PC. This finding 

provides indirect evidence that the anti-inflammatory effects of PC could be linked to a reaction 

involving the polar part of the molecule. 

Our data have provided evidence of the possibility of peripheral inflammatory activation after 

hippocampus irradiation through the production of mediators (TNF-α, IL-6, IL-10 and histamine) 

that escape from the irradiated brain. GPC treatment significantly reduced the irradiation-induced 

release of inflammatory mediators, thus GPC supplementation may provide protection against 

irradiation-caused peripheral pro-inflammatory activation. 

 We have developed an appropriate rodent model for the investigation of radiotherapy-induced 

histological changes in the hippocampus. Our data have provided experimental evidence for the 

long-term neuroinflammatory consequences of irradiation (necrosis, macrophage accumulation and 

reactive gliosis) and the potential for oral GPC treatment to exert a favorable influence on such 

events in the CNS. 



18 

 

ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to my supervisor, Professor Mihály Boros for his 

continuous support of my Ph.D. study and research, and for his patience, motivation, enthusiasm, 

and immense knowledge. His guidance has helped me throughout the research and the writing of 

this thesis. I owe especial thanks to Dr. József Kaszaki, for his personal guidance and for 

introducing me to experimental surgery. Without his continuous support, never-failing interest and 

optimistic attitude to the scientific problems, this Ph.D. study could hardly have been completed. My 

special thanks are due to all the technical staff at the Institute of Surgical Research for their skilful 

assistance. 

 I would like to thank Dr. Dénes Zádori for his guidance and for giving me an important 

scientific approach in my scientific student years. 

 I am especially grateful to the members of the Radiobiology Research Group, and especially to 

Dr. Katalin Hideghéty, for the excellent example she has provided as a successful, fantastic woman, 

scientist and doctor, to Imola Plangár and Rita Szabó for their friendship and for functioning as my 

second family here in Szeged. I very much appreciated their enthusiasm, intensity and continuous 

support. 

 I wish to thank my best friends, and particularly to Anita Battyányi, for helping me get through 

the difficult times, and for all the emotional support, entertainment and caring they provided.  

 I would like to thank my parents, for giving birth to me in the first place, for all their love and 

encouragement, and for supporting me spiritually throughout my life.  Lastly, but most importantly, 

I am very grateful to my sister, Szilvia, and my brother, Gyula, for their love and support. I could 

not live without them 

 I dedicate this thesis to my Mother. 

 

 

 

 

The thesis was supported by: TÁMOP-4.2.2.A-11/1/KONV-2012-0035; OTKA K104656 and 

TÁMOP-4.2.2.A-11/1/KONV-2012-0073. 


