
University of Szeged
Department of Computer Algorithms and Artificial

Intelligence

Online lookahead on parameter learning
algorithms for data acknowledgment and

scheduling problems

Summary of the Ph.D. thesis

by

Tamás Németh

Thesis advisor
Csanád Imreh, Ph. D.

University of Szeged
Ph.D. School in Computer Science

Szeged
2013

-

1 Introduction

We are dealing with online optimisation problems where we only know
of a partial input and have to make decisions based on the information we
already have, without knowledge of further data.

We cannot expect from an algorithm like this to provide us with the
optimal solution like one that is supplied by algorithms that possess the
whole information. The algorithms that have complete knowledge of the
input are called offline algorithms.

There are two essential methods of investigating the effectiveness of
online algorithms. One of them is the analysis of the average case. In
this case, we need to assume some kind of probability distribution of the
possible inputs, while investigating the expected value of the objective
function on the distribution.

Another approach to this problem is the worst case analysis, which is
called competitive analysis. In this case, we compare the objective function
value of the solution provided by the online algorithm with the optimal
offline objective function value.

In what follows, we denote the value of the objective function of an
arbitrary ALG online algorithm on the I input by ALG(I). The value of
the optimal offline objective function of the I input is OPT (I). Using this
system of notations, we may define the competitiveness on minimisation
problem as follows: the ALG algorithm is C-competitive if ALG(I) ≤
C · OPT (I) is true for all input I. The competitive ratio of an algorithm
is the smallest C number, on which the algorithm is C-competitive.

2 The acknowledgement problem

Here we summarise our results on the competitive ratio on the algo-
rithms for the lookahead version of the data acknowledgement problem,
presented in [7].

In the communication of a computer network the information is sent
by packets. If the communication channel is not completely safe then
the arrival of the packets must be acknowledged. The TCP implemen-
tations are also using acknowledgement of the packets (see [12]). In the
data acknowledgement problem we try to determine the time of sending

1

acknowledgements. One acknowledgement can acknowledge many packets
but waiting for long time can cause the resending of the packets and that
results the congestion of the network. On the other hand sending imme-
diately an acknowledgement about the arrival of each packet would cause
again the congestion of the network.

In the mathematical model of the problem input is the list of the ar-
rival times a1, . . . , an of the packets. We also denote the packets by their
arrival time. The decision maker has to determine when to send acknowl-
edgements, these times are denoted by t1, . . . , tk. We consider the objective
function γk+ (1−γ)

∑k
j=1 Lj , where k is the number of the sent acknowl-

edgements and Lj is the extra latency belonging to the acknowledgement
tj and γ ∈ (0, 1) is a constant. We consider two different cases. We obtain
the objective function fmax if Lj = maxtj−1<ai≤tj (tj − ai), the maximal
delay collected by j-th acknowledgement. We obtain the objective func-
tion fsum if Lj =

∑
tj−1<ai≤tj (tj − ai), the sum of the delays collected by

the j-th acknowledgement.
We consider a semi-online model with time lookahead c, where at time

t the decision maker knows the arrival times of the packets already arrived
and also knows the arrival times of the packets arriving in the time interval
(t, t+c]. When c < γ/(1−γ) we define an extended version of the alarming
algorithm developed in [6]. This time lookahead alarming algorithm (TLA
in short) works as follows.

In the case of function fmax at the arrival time aj an alarm is set
for time aj + γ/(1 − γ) − c. If the packet aj+1 arrives before the alarm
or we can see aj+1 at time aj + γ/(1 − γ) − c in the lookahead interval
(aj + γ/(1 − γ) − c, aj + γ/(1 − γ)] then we postpone the alarm to the
time aj+1 + γ/(1 − γ) − c. In the opposite case (no packet arrives in
the time interval (aj , aj + γ/(1− γ)]) an acknowledgement is sent at time
aj + γ/(1− γ)− c which acknowledges all of the unacknowledged packets.

In the case of function fsum at the arrival time aj an alarm is set for
time aj + ej where ej = (γ/(1− γ)−

∑
ai∈σj

(aj − ai))/|σj |. If the packet
aj+1 arrives before the time max{aj , aj +ej−c} or we can see aj+1 at this
time in the lookahead interval, then we move to aj+1 and reset the alarm.
In the opposite case (no packet arrives in the time interval (aj , aj +ej]) an
acknowledgement is sent at time max{aj , aj + ej − c} which acknowledges
all of the unacknowledged packets.

We summarise our results about this algorithms in Thesis 1 below.

2

Thesis 1

Theorem 1 TLA is max{1, 2− 1−γ
γ c}-competitive in the fmax model.

Theorem 2 No semi-online algorithm in the fmax model with lookahead
c may have smaller competitive ratio than max{1, 2− 1−γ

γ c}.

Theorem 3 The competitive ratio of TLA is 2 for arbitrary c in the fsum
model.

In the case when c > γ/(1 − γ) we can achieve smaller competitive
ratio than 2 by the following algorithm. We present the Lookahead In-
terval Planning Algorithm (LIP in short). The algorithm partitions the
packets into blocks and for each block determines the acknowledgments
based on an offline optimal solution. The block always starts at the first
unacknowledged packet. First the algorithm examines whether there ex-
ist packets ai, ai+1 in the c length lookahead interval with the property
ai+1 − ai > γ/(1− γ). If there exists such pair, then the block is ended at
the first such ai, otherwise the block has length c. Then LIP calculates the
optimal solution of the offline acknowledgement problem for the packets
in the block, it can use one of the algorithms which solves the offline prob-
lem (such algorithm is presented in [6]) and sends the acknowledgements
according to this solution and considers the next block.

We collect our results about the fsum model in Thesis 2.

Thesis 2

Theorem 4 LIP is 1 + γ
(1−γ)c -competitive in the fsum model.

Theorem 5 No online algorithm with lookahead c > γ/(1−γ) in the fsum
model may have smaller competitive ratio than 1 + Ω(1/c2).

Theorem 6 No online algorithm with lookahead c ≤ γ/(1−γ) in the fsum
model can have smaller competitive ratio than 2γ/(c(1− γ) + γ).

3 Parameter learning algorithms for the on-
line data acknowledgment problem

In this part we present a new online algorithm and a new lookahead
semi-online algorithm for the data acknowledgement problem with the

3

fsum objective which has better performance in average case than the algo-
rithms known from the literature. We published the results about these al-
gorithms in [8, 9]. The algorithm works in stages and for each stage it uses
an alarming or a TLA algorithm to acknowledge the packets. First, we de-
fine the subclass of the alarming algorithms which can be used. For a pos-
itive parameter p, we can define an algorithm Alarmp as follows. Alarmp

uses the value ej = (pγ/(1−γ)−
∑
ai∈σj

(aj −ai))/|σj | for each j. This ej
implies that if no new packet arrives then sending an acknowledgment at
time aj +ej has a latency cost of

∑
ai∈σj

(aj−ai))+ |σj | ·ej = p ·γ/(1−γ).
We should mention that Alarm1 is the 2-competitive algorithm defined
in [6]. We can extend TLA into TLAp in the same way in the lookahead
model

The new parameter learning algorithms depend on two parameters,
namely r and q. LearnAlarm solves the online problem and uses Alarmp

as a subroutine, LearnTLA solves the lookahead problem and uses the
lookahead algorithm TLAp as subroutine. The algorithm itself can be
described as follows.

Algorithm Learnalarm(r,q)/LearnTLA(r,q)

• Stage 1 Use the Alarm1/TLA1 algorithm to acknowledge the first r
packets. Go on to Stage 2.

• Stage j (j > 1)

– Let Ij represent the input containing the last r · q packets. If
fewer packets have arrived, then Ij contains all of them.

– Use the SimpleOpt algorithm to determine the value p which
minimizes the cost among the algorithms Alarmp/TLAp on in-
put Ij . Denote this value by p∗.

– Use the Alarmp∗/TLAp∗ algorithm to acknowledge the next r
packets and go on to Stage j + 1.

We proved that the optimal value of p is such that some of the ac-
knowledgments are sent exactly at the arrival time of a packet. Based on
this observation we developed the SimpleOpt algorithm which checks only
those values which satisfy this property.

The SimpleOpt Algorithm

• Initialization: Let p∗ = 1 and Z =∞

4

• Search: For each 1 ≤ i < j ≤ n do

– Let s :=
∑j
k=i(aj − ai), and let p = (1− γ)s/γ.

– For p, execute Alarmp/TLAp on the input, denote the number
of acknowledgments by k,

– If kγ(1 + p) < Z, then p∗ := p and Z := kγ(1 + p)

• Return p∗

We evaluated the efficiency of the new parameter learning algorithm
via an experimental analysis. Based on the results we could draw the
following set of conclusions:

• Both algorithm Learnalarm(r,q) and LearnTLA(r,q) gave significantly
better results on the tests than best competitive algorithms from the
literature.

• Our second observation is that the tests clearly show that in con-
trast to the competitive analyis the lookahead property and also the
parameter learning can bring about a significant improvement in the
average efficiency of the Alarm algorithm.

• Thirdly we see that the new algorithm is sensitive to the parameter
settings. A careful parameter setting yields an additional decrease
in the ALG/OPT ratio. The best setting of the parameters de-
pends on the input, but we can conclude some general rule. It seems
that choosing a medium learning sequence gives better results than
a smaller one or a larger one.

We summarise these results in Thesis 3.

Thesis 3
We developed new online algorithms, one for the solution of the online

data acknowledgement and one for the online data acknowledgement with
lookahead problems which are based on parameter learning. We proved by
an empirical analysis that the new algorithms give significantly better re-
sults in the average case than the best known algorithms for these problems.

5

4 Parameter learning online algorithm for mul-
tiprocessor scheduling with rejection

Here we present a new algorithm for the scheduling with rejection prob-
lem. These results are published in [10]. The problem of scheduling with
rejection is defined in [2]. In this model, it is possible to reject the jobs.
The jobs are characterised by a processing time pj and a penalty wj . The
goal is to minimise the makespan of the schedule for the accepted jobs plus
the sum of the penalties of the rejected jobs. One basic idea in scheduling
with rejection is to compare the penalty and the load (processing time
divided by the number of machines) of the job, and reject the job in the
case when the penalty is smaller. This algorithm is called Greedy. In [2] a
2.618-competitive algorithm called RTP is defined. It is a refined version
of Greedy, it also rejects some large jobs with wj > pj/m, these jobs are
collected in set R. We can define this algorithm as follows.

Algorithm RTP(α)

• 1. Initialization. Let R := ∅.

• 2. When job j arrives

– (i) If wj ≤ pj
m , then reject.

– (ii) Let r =
∑
i∈R wi + wj . If r ≤ α · pj , then reject job j, and

set R = R ∪ {j}.
– (iii) Otherwise, accept j and schedule it by LIST

Proposition 1 RTP is (3 +
√

(5))/2 competitive, with parameter α =

(
√

(5)− 1)/2

Proposition 2 There exists no online algorithm that is β-competitive for
some constant β < (3 +

√
5)/2 and for all m.

These propositions show that RTP is optimal in the sense that it has
the smallest possible competitive ratio. But it often happens that some
algorithms with worse competitive ratio has better performance in the
average case [1].

Parameter learning algorithm

We present a new algorithm PAROLE (Parameter Online Learning)
which tries to learn the best parameter during its execution. The algorithm

6

works in phases, after each phase it chooses a new parameter based on the
known part of the input. First we define a frame algorithm which uses the
selection of the new parameter as a subrutin, then we define the subrutin
which finds the new parameter. We defined the phases by the number of
arriving jobs, the phase is finished after 250 jobs.

Algorithm PAROLE (PHASE i)

• At the beginning of phase i, use algorithm CHOOSE to find a new
parameter αi.

• Perform RTP (αi) on the arrived part of the input. Change set R.

• Use RTP (αi) for the jobs arriving during the phase.

It is a straightforward idea to use the value αi where the costRTP (αi)(I)

is minimal for the known part of input. We think so that it is NP-hard to
find this value thus we used the following sampling algorithm to find the
new value of the parameter. The algorithm uses the previous value of the
parameter denoted by α∗.

Algorithm CHOOSE

• Generate one element from the intervals [(i−1)/10, i/10] by uniform
distribution for i = 1, . . . , 10. Denote this set by S1. Consider the
value α from S1 where RTP (α) has the smallest cost on I. Denote
it by ᾱ.

• Generate one element from the intervals [α?−i/100, α?−(i−1)/100],
[α? + (i− 1)/100, α? + i/100], [ᾱ− i/100, ᾱ− (i− 1)/100], [ᾱ+ (i−
1)/100, ᾱ + i/100] for i = 1, . . . 10 by uniform distribution. Denote
the set of the generated elements by S2. Return the value α from
S2 ∪ {α∗} ∪ {ᾱ} where RTP (α) has the smallest cost on I.

The basic idea of CHOOSE is to select a good parameter value. We
investigate the neighbourhoods of two candidates, one is the previous value
of the parameter and a further one is a new value ᾱ which is the best
among several candidates selected independently on the previous value of
the parameter.

We compared PAROLE, Greedy and RTP both on randomly generated
and on real data. All algorithms gave similar results, but PAROLE had

7

always the best or the second best performance. We summarise these
results in Thesis 4.

Thesis 4
We developed a new online algorithm for the solution of the scheduling

with rejection problem called PAROLE. We proved by an empirical analysis
that the new algorithms give similar results in the average case as the
best known algorithms for this problem, but it never gave the worst results
among the algorithms used in the tests.

5 Online data clustering algorithms in an RTLS
system

In this part we present the results on online data clustering algorithms
in an RTLS system which are published in [11]. Real time location systems
(RTLS) promise to deliver high precision positions of objects.

A local locating infrastructure is using Angle of Arrival (AoA) and
Round-Trip-Time (RTT) measurements to determine the position of ob-
jects [4, 5] . In this system the objects are equipped with tags based on the
in-house-developed Wireless Smart Item platform (WISMIT). These tags
periodically broadcast a radio signal to the infrastructure nodes denoting
the beginning of a locating cycle. We will refer to this as a burst. The
radio signal carries also user data, aside from tag identification informa-
tion: an incremental number identifying the burst, referred to as burst-id
later on, is also included. A set of infrastructure nodes in proximity of
the tag consisting of WISMIT anchors capable of RTT measurements and
of Goniometers capable of both RTT and AoA measurements receive this
broadcast and initiate location data acquisition for this tag. The measured
parameters form a so called burst data set which is at first only available
distributed on the infrastructure nodes. The clustering algorithm has to
determine when to forward the data to the positioning server.

The clustering algorithm can not simply wait for the arrival of all ele-
ments of the burst data set, it needs a more sophisticated technique. Thus
the goal of the algorithm is to decide when to pass the collected data to the
position calculation. There are two contradicting objectives which should
be satisfied. First, the positioning server should receive all the available
data from the infrastructure nodes. Moreover the system is not allowed
to wait a long time for the incoming data, since the delay decreases the
relevance of the determined position. A fairly-good position is better than

8

a position too late. We present an integrated objective function which con-
siders these goals, and defines this clustering problem as a maximisation
problem.

To define the objective function we use the following notations. For
each positioning time pj and infrastructure node k let ejk = 1 if node k
sends data into the positioning calculation, otherwise let ejk = 0.
Let

rj =
n

max
i=1
{Rcpt(xi)|xi ∈ B′j}.

Now we can define the following objective function, which we have to
maximise:

f =

b∑
j=1

m∑
k=1

ejkwk − c
b∑
j=1

(pj − rj).

The No Waiting Time Algorithm (NWT in short) sends the first data
element for each burst id into the positioning server immediately after it
arrives.

The Constant Waiting Time algorithm (CWT) waits time d after the
arrival of the first data element for each burst id before sending the data to
the location server, if the difference among the arrivals of the data elements
with the same burst id (the length of the burst) cannot be greater than a
given value d.

We summarise the results on the competitive ratios in Thesis 5.

Thesis 5

Theorem 7 There exists no algorithm which has smaller competitive ratio

than
∑m

k=1
wk

w1
≥ m.

Theorem 8 The competitive ratio of NWT is
∑m

k=1
wk

w1
.

Theorem 9 If the difference among the arrivals of the data elements with
the same burst id (the length of the burst) cannot be greater than a given
value d, and w1

c > d, there exists no algorithm which has smaller compet-

itive ratio than min{ w1

w1−c·d ,

∑n

k=1
wk

w1
}.

Theorem 10 The competitive ratio of CWT is w1

w1−c·d . if the difference
among the arrivals of the data elements with the same burst id (the length
of the burst) cannot be greater than a given value d.

9

Corollary 1 In the case when the difference among the arrivals of the
data elements with the same burst id (the length of the burst) cannot be
greater than a given value d, CWT achieves the smallest possible com-

petitive ratio if w1

w1−c·d ≤
∑m

k=1
wi

w1
, otherwise NWT achieves the smallest

possible competitive ratio.

We also introduce an algorithm (VWT) trying to get knowledge about
d, and present an empirical analysis which compares the algorithms in the
average case.

Algorithm VWT uses the following rules to send data to the positioning
server:

• If the actual time is S(j) +W and DS(j) is not closed then the al-
gorithm closes set DS(j). It notes that its closing time is S(j) +W ,
and it sends the data to the positioning server. Furthermore let
PD(j) = max{0,minMEM−1

a=0 {pj−a − rj−a} − INC} be the minimal
possible decrease amount for W , respecting also INC security time,
so that the data of the last MEM bursts would have been left com-
plete. So if PD(j) ≥ DEC, then W is decreased by PD(j).

• If DS(j) collects the data at time t from all of the infrastructure
nodes the algorithm closes set DS(j). It notes that its closing time
is t, and it sends the data to the positioning server. Note that this
might happen only in the case when t ≤ S(j) + W . A possible
decrease of W can also happen analogue to the first point.

The algorithm uses the following rules to handle the received data xi.

• If an xi which belongs to burst j arrives at time t and DS(j) is
not closed, then it extends it with the new data element, and checks
whether it is the last missing infrastructure node.

• If DS(j) is already closed with closing time at rj then W := t −
S(j) + INC.

We analysed the algorithms in the simulation system of the Fraunhofer
Institute and the tests show that this new algorithm has significantly better
performance than the algorithms with the smallest possible competitive
ratio. This is summarised Thesis 6.

Thesis 6

10

We developed a new online algorithm for the solution of an online clus-
tering problem in the location system. We proved by an empirical analysis
that this new algorithm gives better results in the average case then the
algorithms with the smallest possible competitive ratio.

References

[1] Albers, S. and Schröder, B. An Experimental Study of Online
Scheduling Algorithms. ACM Journal of Experimental Algorithms,
article 3, 2002.

[2] Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J. and
Stougie, L. Multiprocessor scheduling with rejection, SIAM Jour-
nal on Discrete Mathematics, 13:64–78, 2000.

[3] A. Borodin, R. El-Yaniv, Online Computation and Competitive Anal-
ysis Cambridge University Press, 1998.

[4] M. Brugger, T. Christ, F. Kemeth, S. Nagy, M. Schaefer, M.M.
Pietrzyk, The FMCW technology-based indoor localization system,
Proceedings of Ubiquitous Positioning Indoor Navigation and Loca-
tion Based Service (UPINLBS), Helsinki, Finnland, 2010 pp. 1–6.

[5] M. Brugger, F. Kemeth, Locating rate adaptation by evaluating move-
ment specific parameters, Proceedings of 2010 NASA/ESA Confer-
ence on Adaptive Hardware and Systems (AHS), Anaheim, USA, 2010
pp. 127–133.

[6] D. R. Dooly, S. A. Goldman, S. D. Scott: On-line analysis of the TCP
acknowledgment delay problem. J. ACM 48(2) 243–273, 2001.

[7] Cs. Imreh, T. Németh, On time lookahead algorithms for the online
data acknowledgement problem in 32nd International Symposium on
Mathematical Foundations of Computer Science, LNCS 4708, Cesky
Krumlov, 2007, pp. 288-297.

[8] Cs. Imreh and T. Németh, Parameter learning algorithm for the online
data acknowledgment problem, Optim. Methods Softw., 26, 3 (2011)
397–404.

[9] T. Németh, B. Gyekiczki, Cs. Imreh, Parameter Learning in Looka-
head Online Algorithms for Data Acknowledgment, IEEE Interna-
tional Symposium on Logistics and Industrial Informatics, 2011

11

[10] T. Németh and Cs. Imreh, Parameter learning online algorithm
for multiprocessor scheduling with rejection, Acta Cybernetica 19(1)
(2009), pp. 125–133.

[11] T. Németh, S. Nagy, Cs. Imreh Online data clustering algorithms in
an RTLS system Acta Universitatis Sapientiae, Informatica, 5, 1
(2013) 5-15.

[12] W. R. Stevens, TCP/IP Illustrated, Volume I. The protocols, Addison
Wesley, Reading, 1994

12

