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1 Introduction

Tomography is a technique for reconstructing and examining the inner structure of objects from
their projections, without the destruction of the objects themselves. It is a widely used tool in
various applications, like medical diagnostics, crystallography, non-destructing testing of mate-
rials, geology, etc.

In transmission tomography [7, 11] a projection is taken by exposing the object of study to
some penetrating radiation on one side, and measuring the energy of the transmitted beams at
different points on the other side, as illustrated in Figure 1. In this way, one can calculate the
attenuation of the energy, and deduce the absorption properties of the object on the paths of the
beams. If the projections are gathered from enough directions (which might mean hundreds of
projections), one can reconstruct the material properties at arbitrary positions of the object.

Object of

study

Projection

Figure 1: Illustration of a projection of an object.

In discrete tomography [8, 9], we assume that the examined object consists of only a few
known materials. This extra information can be used to drastically reduce the number of projec-
tions required for the reconstructions, and by this to minimize the cost, or unwanted damaging
effects of the projection acquisition process. Moreover, in binary tomography we assume that the
reconstructed image contains only two intensity levels, one for the homogeneous material and
another one for the empty space between.

The thesis is a summary of the Author’s research in the field of discrete tomography. The
central concept of this work was to examine the information content of projections, and try
to understand what kind of information the projection data holds, and how this information
determines the reconstruction of objects. This analysis of the information content of projections
is essential for developing more reliable and robust methods for discrete tomography, and can
lead to entirely new approaches to the reconstruction problem.

2 Formulation of the discrete reconstruction problem

We use the algebraic formulation of binary tomography (see, e.g., chapter 7 of [11]), and assume
that the object to be reconstructed is represented on a two dimensional discrete image of size
n × n. Also, we assume a parallel beam projection geometry where each projection value is
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Figure 2: Representation of the ordering of the pixels and the parallel beam geometry.

calculated by the weighted sum of the pixel values of the image intersecting with the projection
line. With these assumptions the discrete reconstruction problem can be written in a form of a
linear equation

Ax = b , x ∈ Φn2

, (1)

where

• x is the vector of all n2 unknown image pixels,

• b is the vector of all m measured projection values,

• A is a projection coefficient matrix of size m× n2, that describes the projection geometry
by all aij elements representing the length of the intersection of the i-th projection line
through the j-th pixel,

• and Φ = {φ0, φ1, . . . , φc} is the set of the possible intensities (assuming that φ0 < φ1 <
. . . < φc),

as illustrated in Figure 2. With the above formulation, one can acquire a solution to the recon-
struction problem by solving (1).

3 Direction-dependency in discrete tomography

With discrete tomography, one can reconstruct the inner structure of an image even from only
few (say, up to 2-10) projections. In this case, the low number of projections provides a big
variety for choosing their directions (see, Figure 3 for an illustration).

In a previous work [15], the authors briefly showed, that this freedom of the choice of pro-
jections can influence the accuracy of the reconstruction. We gave an extension of the former
experiments for the further investigation of the direction-dependency of reconstructions. The aim
was to determine if a better choice of projections can significantly improve the quality of the
reconstructed results, and if there are regularities which make this phenomenon predictable.

Such studies are motivated by practical problems. In many applications of discrete and binary
tomography, there are limitations on the number of available projections, because the projection
acquisition process can have a high cost, or can damage the object of study. Therefore, we
could benefit from reducing the number of required projections, or increasing the accuracy of
the reconstructions by only improving the projection acquisition process by proper projection
selection strategies.
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Figure 3: Some possible projection directions with low projection numbers. Dashed lines indicate
the directions of the projection beams.

3.1 Experimental studies

We implemented a test frameset in which it was possible to examine the direction-dependency
phenomenon in the binary case of discrete tomography. In the experiments we produced pro-
jection sets of 22 binary phantom images from several different direction sets, and reconstructed
the phantoms from the simulated projection data. Then, we compared the results of the same
phantom, produced from projection sets having the same projection counts, but different projec-
tion directions. In this way, we could determine if the choice of projection directions influenced
the accuracy of the reconstructed results.

3.1.1 Direction-dependency with equiangular projection sets

First of all, reconstructions were performed from equiangular projection sets, in which case the
angles of the projections were determined by a p projection count and an α0 starting angle as

S(p, α0) =

{

α0 + i
180◦

p

∣

∣

∣

∣

i = 0, . . . , p− 1

}

. (2)

We reconstructed the phantoms from different S(p, α0) projection sets with p ranging between 2

and 18, and integer α0 starting angles from 0◦ to
⌈

180◦

p
− 1◦

⌉

. These experiments simulated the

rotation of an examined object in a scanner.
We also designed a direction-dependency measurement for the equiangular case, with which

we could find extreme cases of the direction-dependency, i.e., when an object could be perfectly
reconstructed from a certain number of projections, if the projection angles were well chosen,
but one could also get highly inaccurate results from the same amount of projections taken from
other directions. This direction-dependency measurement has the form

Dσ
Alg(x

∗, p) =
(

Emax
Alg (x∗, p)− Emin

Alg (x
∗, p)

)

· exp

(

−
(Emin

Alg (x
∗, p))2

σ2

)

, (3)

where Emin
Alg (x

∗, p) and Emax
Alg (x∗, p) are, respectively, the measured error (expressed as Relative

Mean Error [10]) of the best and worst reconstruction of the x∗ image with a given p projection
count, but varying α0 starting angle, when the reconstruction is performed by a chosen Alg
reconstruction algorithm.
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Figure 4: Example reconstructions of phantoms with the same number of four projections but
different projection directions.

We found that the reconstructed results can highly depend on the choice of projections, and
one can get entirely different results only by changing the orientation of the object in the scanner.
Two examples for the direction-dependency can be seen in Figure 4.

3.1.2 Direction-dependency with non-equiangular projection sets

After the equiangular studies, we examined if further improvement of the accuracy could be
reached by allowing arbitrary projection angles. We defined two non-equiangular projection
selection strategies for improving the angles.

One such strategy was a greedy projection insertion. This method starts from an empty set
of projections. Then, it iteratively tests a set of candidate projections, and adds the one to the
current projection set, that yields the biggest improvement in the reconstruction.

Another non-equiangular strategy was based on simulated annealing [14], that is a random-
ized optimization meta-heuristic. In this approach, we started from the predefined S(p, 0◦)
equiangular projection set for each image and projection number, and minimized the error of the
reconstructed image by altering the projection angles with simulated annealing.

Based on the experiments, we found that further improvement of the results is achievable
by not only optimizing the orientation of the object, but choosing each projection direction
individually. An example is shown in Figure 5.

3.1.3 Direction-dependency with changing conditions of the reconstructions

We also studied the direction-dependency of objects under different conditions, by reconstructing
the image with different algorithms, and by investigating the effects of projection noise, and
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Figure 5: Reconstructions of a phantom with S(4, 0◦), S(4, 19◦), and S = {29◦, 57◦, 80◦, 160◦}
projection sets, from left to right, respectively. Dashed lines indicate the directions of the pro-
jections, images below are the corresponding reconstructions.

the small modifications of the object. The aim was to find out if the direction-dependency
characteristics of an object is consistent under different conditions, i.e., if the optimal projection
angles are not affected by the parameters of the reconstruction, and the distortions of the data. If
it is so, then the direction-dependency phenomenon can be explained by the information content
of the projections themselves, and it might be exploited in practical applications.

First, we examined the usage of different reconstruction algorithms. This, again, was done
by reconstructing the phantom images from various sets of projections with three reconstruction
algorithms, a thresholded Simultaneous Iterative Reconstruction Technique (SIRT – see Chapter
7 of [11]), the Discrete Algebraic Reconstruction Technique (DART [2]) and a reconstruction
technique based on energy minimization with D.C. programming (that will be referred to as DC
[24]). We compared the accuracy of the outputs of the different methods to see if the projec-
tion sets producing better results with one algorithm also lead to better results with another
reconstruction technique. We found that the basic tendencies were the same with all three re-
construction algorithms, and the same projection directions lead to optimal results, regardless of
the applied reconstruction technique. This indicates that the direction-dependency is a property
of the objects themselves, and originates from the different information content of the different
projections, which is independent from the reconstruction algorithm used.

We also examined the effects of noise on the projection data. We distorted the projection
values with additive Gaussian noise of different magnitude. According to the results, the noise
did not change the relation between the accuracies of the reconstructions of an object gained from
different projection sets. The same projections gave optimal results regardless of the strength of
the noise on the data.

Finally, we performed experiments to see if slight modifications of the objects of study change
the direction-dependency of the objects. We constructed slightly altered versions of the phantoms
simulating fractures and bubbles in the material. We found that such small changes of the object
did not change the accuracy of the reconstructions and the same directions proved to be optimal
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as for the original, distortion free phantoms.
As a summary, we can say that the reconstructions of objects might significantly be improved

only by finding the optimal directions for the projections. Moreover, this phenomenon originates
from the information content of the projections themselves, and it is independent from the
applied reconstruction algorithm. The angles of the optimal projections remain consistent if the
projection data is corrupted by measurement error, or in case the object slightly changes. These
regularities of the direction-dependency makes it exploitable in real applications.

The results of this thesis group were published in two conference proceedings [16, 17] and two
journals [18, 19]. Up to the date of the release of the dissertation, there were three independent
citations to the results [4, 6, 13].

4 Energy minimization reconstruction algorithm for mul-

tivalued discrete tomography

Discrete reconstruction algorithms have to cope with various difficulties of tomography. The
reconstruction problem commonly requires the restoration of the structure of an object from
incomplete projection data, possibly affected by errors coming from the discrete formulations
of the reconstruction problem and stochastic noise affecting the projection acquisition process.
Also, the general case of discrete tomography is proved to be NP-hard, and efficient algorithms
providing perfect results can only be defined for some special cases [3, 5]. There is a variety
of different approaches to overcome these problems. Some methods provide heuristic strategies
for discretizing the results of continuous reconstructions (see, e.g., [2]), some other techniques
reformulate the task as an optimization problem that can be solved by different meta-heuristics
[1, 12].

We describe a reconstruction algorithm, that we developed for the general case of DT, and
that can perform the reconstruction by minimizing a suitably constructed energy function. The
basic idea behind this method is based on the DC algorithm [24]. Unfortunately, the DC method
is only capable of reconstructing binary images, and the aim was to provide a more general
algorithm for multivalued discrete tomography, that is not restricted to the binary case, and can
compete with the current cutting-edge reconstruction algorithms in the literature.

4.1 The energy function of the algorithm

The energy function is designed to take its minima at solutions of the discrete reconstruction
problem. It can be given in the form

Eµ(x) := f(x) + µ · g(x) , x ∈ [φ0, φc]
n2

, (4)

where f(x) is a function formalising a continuous reconstruction problem, and µ · g(x) is a term
formulating the discreteness prior. In more detail, the first term is

f(x) =
1

2
· ‖Ax− b‖22 +

α

2
xTLx (5)

where the ‖Ax − b‖22 is a projection correctness term, that measures the difference between
the expected projections and the projections of the x solution. It also contains the α

2
xTLx

smoothness prior, where L is a matrix such that

xTLx =
n2
∑

i=1

∑

j∈N4(i)

(xi − xj)
2 (6)
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Figure 6: Example of the gp(z) one-variable discretization function with intensity values Φ =
{0, 0.25, 0.5, 1}.

and N4(i) denotes the set of pixel indexes 4-adjacent to the i-th pixel. By this term, one can
use an additional smoothness prior with an α weight that will prefer final results with large
homogeneous areas on them.

Furthermore, the g(x) discretizing term of the energy function of (4) is written as the sum
of one-variable discreteness terms on the pixels in the reconstructed image

g(x) =
n2
∑

i=1

gp(xi) , i ∈ {1, 2, . . . , n2} , (7)

where each gp function is given as the composition of fourth grade polynomials over the intervals
of the Φ set of expected intensities as

gp(z) =

{

[(z−φj−1)·(z−φj)]
2

2·(φj−φj−1)2
, if z ∈ [φj−1, φj] for each j ∈ {1, . . . , c},

undefined, otherwise.

The gp function is illustrated in Figure 6. This discretization function assigns a small value to
each pixel if its intensity in the reconstruction is close to an element of Φ and higher values
(increasing with the distance) otherwise.

4.2 The optimization process

We also defined a new optimization process for minimizing the Eµ(x) energy function. The basic
idea is to make a distinction between the parts of the energy function and to assume that the
projection correctness has a higher priority.

On this base, the algorithm optimizes the energy function with a simple projected subgradient
method, while applying an automatic weighting between the two terms of the energy function. In
each iteration step of the optimization process, one can calculate the gradient of the ‖Ax− b‖22
projection correctness term in the energy function, by computing the AT(Ax − b) vector. For
each pixel, this vector explicitly contains an estimation of its correctness in the current solution,
according to the projections. If the gradient on a pixel is big in absolute value, then that pixel
lies on incorrect projection beams, and its value should be modified. The magnitude of the
gradient will correspond to the correctness of the related projections. If we apply a Gaussian
function on these values we can get a weight, that is lower when the corresponding pixel needs
further adjustments, and higher if the projection rays hitting that specific pixel are more or less
satisfied. By weighting the discretization with this value calculated from the gradient of the
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projection correctness, one can apply an automatic adjustment of the discretizing term for each
pixel, omitting it when the projections are not satisfied, and slowly increasing its effect as the
pixel values are getting closer and closer to an acceptable reconstruction.

In practice, this means that the method starts with an arbitrary initial solution, and first
approximates a continuous reconstruction based on the given set of projections. Later, when
the projections of the intermediate reconstruction are approaching the required ones, the weight
of the discretizing term begins to increase for each pixel, and the pixels will be slowly steered
towards discrete values of Φ. The formal description of the method is given in Algorithm 1.
The algorithm uses the TΦ(x) notation for the thresholding of the x vector into the Φ set of
intensities, defined as

(TΦ(x))i =







φ0, if xi < (φ0 + φ1)/2 ,
φj , if (φj−1 + φj)/2 ≤ xi < (φj + φj+1)/2 , j ∈ {2, . . . , c− 1}
φc, if (φc−1 + φc)/2 ≤ xi .

(8)

Algorithm 1 Energy-Minimization Algorithm for Multivalued DT

Input: A projection matrix; b expected projection values; x(0) initial state; γ, µ, σ ≥ 0 prede-
fined constants; Φ list of expected intensities; ǫ step size bound; kmax maximal iteration count.

1: λ← an upper bound for the largest eigenvalue of the (ATA+ α · L) matrix.
2: k ← 0
3: repeat

4: v← AT(Ax(k) − b)
5: w← Lx(k)

6: for each i ∈ {1, 2, . . . , n2} do

7: y
(k+1)
i ← x

(k)
i −

vi+γ·wi+µ·G0,σ(vi)·
∂g
∂xi

∣

∣

x=x
(k)

λ+µ

8: x
(k+1)
i ←











θ0, if y
(k+1)
i < φ0,

y
(k+1)
i , if φ0 ≤ y

(k+1)
i ≤ φc,

θc, if φc < y
(k+1)
i .

9: end for

10: k ← k + 1
11: until ‖x(k+1) − x(k)‖22 < ǫ or k > kmax

12: Apply a thresholding and output TΦ(x
(k)) to gain fully discrete results.

4.3 Results

We also validated the performance of the proposed reconstruction algorithm by comparing it
to other techniques from the literature. We performed experimental tests on a set of software
phantoms by reconstructing them with the proposed method, and also, two other techniques,
the DART [2] and DC [24] algorithms, mentioned above.

We found that the proposed method consistently gave the best results when it reconstructed
multivalued images (i.e., phantoms containing at least 3 intensity levels) from a low number of
projections. In other cases, however, the new method did not always have the best performance,
but still, the accuracy of its results were only slightly behind the ones of the other two methods.
When using projection data affected by random noise, the proposed method, again, performed
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better than the other two algorithms, and proved to be highly robust against projection noise.
Nevertheless, the time requirement of our method was on the same scale as the other two tech-
niques. With all the above findings, we can say that the proposed method is a vital alternative
for the discrete reconstruction of objects.

The results of this thesis point were published in two conference proceedings [20, 21].

5 Local and global uncertainty in binary reconstructions

Although one can perform binary tomographic reconstructions of objects from a low number of
projections, limitations on the projection count might be too strict even for binary tomography.
We developed a method, to measure the information content of the projections, and discover the
local uncertainties of binary reconstructions, i.e., to what degree the projection data determines
each pixel of the reconstruction.

5.1 Measuring local uncertainties in reconstructions

The uncertainty in the incomplete and insufficient projection data puts the binary reconstruction
task into a probabilistic context. In this case, the projection data usually do not determine the
results entirely, and there are many possible reconstructions satisfying the projections. On the
other hand, we can assume, that only the – yet unknown – original image of the object of
study is accepted as a correct solution, that can be regarded as a random element of the set of
reconstructions with the correct projections. In this way, each binary point of x ∈ {0, 1}n

2
(i.e.,

each binary reconstruction) can be assigned a

P (x |A,b) (9)

probability of being correct. Naturally, the more a reconstruction satisfies the b projections
the higher its probability should be. From the probabilities of the reconstructions, we can also
calculate for each pixel the probability that the pixel takes a value of 1 by

P (xi = 1 |A,b) =
∑

y∈{0,1}n
2

yi=1

P (y |A,b) . (10)

Similarly, P (xi = 0 |A,b) = 1 − P (xi = 1 |A,b) can also be calculated. As a further step, one
can calculate the entropy

H(xi) =− P (xi = 0 |A,b) · log2(P (xi = 0 |A,b))−

− P (xi = 1 |A,b) · log2(P (xi = 1 |A,b)) , (11)

and describe the uncertainty of each pixel in the reconstruction. This value is based only on
the parameters of the projections and the information content of the measured projection data.
Pixels with high entropy are ambiguous, and one cannot hope to get a reliable reconstruction
of them without additional information. The projections simply do not hold enough data, to
determine these pixels. Although the model is clear, the direct measurement of the probabilities is
unfortunately impossible to carry out, due to the exponential number of possible reconstructions.
On the other hand, these values can be approximated by using heuristic methods.

In binary tomography, we are looking for results satisfying the given projections which are
taken from the binary domain. If we try to find a reconstruction that has the correct projections,
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Figure 7: Uncertainty maps of projection sets. Dark areas are determined by the projections,
while brighter areas are not, and hold uncertainty.

but in which the pixel values are the farthest away from the {0, 1} set, we can measure how easy
it is to change the pixel values. If the value of a pixel is easy to be pushed towards 0.5, then that
pixel is evenly likely to take 0 or 1 in the final result. With this concept, we can measure the
variability of pixels from only the projections, even if we have no prior knowledge of the original
object.

By the framework of Algorithm 1 this can be done by setting a discreteness prior that dis-
courages binary results. One such prior can be given by the function

g(x) =
1

2
·

∥

∥

∥

∥

x−
1

2
· e

∥

∥

∥

∥

2

2

, (12)

where e stands for a vector with all n2 positions having a value of 1. When the resulting x is
computed, calculating the entropy

H(xi) = −(xi · log2(xi) + (1− xi) · log2(1− xi)) (13)

for each pixel value would approximate the values of the uncertainty map given in (11).
For validating this method, we performed an experimental test on a set of software phantoms.

We took a set of 22 binary phantom images, produced their projection sets, and performed a
random sampling on the space of possible reconstructions. This provided a statistics on the
probability on the pixel intensities in the reconstructions, and also the uncertainty of the pixels.
This statistical data was then compared to our proposed local uncertainty measure. An example
of the outputs of the two methods can be seen in Figure 7. The results indicated that the local
uncertainty measure, indeed, describes the uncertainty of the pixels.
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5.2 Global uncertainty in binary tomography

The local uncertainties can also be summarized into a global measurement that describes the
information content of the whole projection set. This can be done by the formula

U(x) =

∑n
i=1H(xi)

1
p

∑m
j=1 bj

. (14)

This measurement sums up the H(xi) pixel uncertainties in the local uncertainty measurement,
and normalizes this sum with the approximated number of non-zero values on the original image.
In the ideal case, the sum of the projection values for each projection would contain the number
of ones of the original image to reconstruct. In a practical application, however, the measured
data can hold rounding errors, therefore we normalized with the average value of the cumulated
projection values of the projections.

We validated the global uncertainty measure empirically by reconstructing a set of software
phantoms from their different projection sets, and compared the results with the proposed mea-
surement. If the global uncertainty measurement is correct, then projection sets with smaller
uncertainty should lead to less error when an actual reconstruction is performed, and a connec-
tion would be visible between the uncertainty of a projection set and the actual reconstruction.
The results indicated that, indeed, this is the case, and the global uncertainty measurement
describes the overall information content of the projections.

5.3 Applications and results

We also proposed different possible applications of the local and global uncertainty measurements.
First of all, the local measurement can be used to aid reconstruction algorithms like the DART,
to highlight the problematic parts of the objects. The process of the DART is based on deforming
and fine-tuning the boundary of an initial reconstruction. Coming from the nature of the process,
this method has difficulties in finding small formations (i.e., bubbles in the material) if they are
far from an edge of the initial solution. We designed a modified version of the DART that uses
the uncertainty maps for finding problematic areas of the reconstructed image, and rules out the
weakness of the original DART.

Furthermore, the global uncertainty measure can be used to grade the overall quality of the
reconstruction, and the local uncertainty can highlight the possible falsely reconstructed parts of
the results. This can be used to detect false reconstructions and, by this, to aid a decision process
based on the binary reconstructions. On the other hand, the global uncertainty describes the
information content and the reliability of the projection set, therefore it can be used for finding
ideal projection angles in the non-destructive testing of objects, when a blueprint of the object
of study is available (i.e., finding projections which lead to less uncertainty).

The results of this thesis group are published in one conference proceedings [22]. A further
submitted journal paper [23] is currently under review.

Summary of the author’s contributions

The findings of the research can be divided into three thesis groups. Table 1 gives the connection
between the results and the publications of the Author.
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In the first thesis group, I examined the direction-dependency in binary tomographic recon-
structions. The results were published in two conference proceedings [16, 17], and two journal
papers [18, 19].

I/1. I designed an experimental test environment for examining the correspondence between the
quality of a binary reconstruction and the choice of projection directions. I showed, that
the quality of binary reconstructions strongly rely on the choice of directions used in the
projection acquisition. I found that some projection sets have higher information content
leading to better reconstructions.

I/2. I gave various projection selection strategies for improving the projection angles, and thus
to enhance the accuracy of the reconstruction, when a blueprint of the object is available.

I/3. I showed that the direction-dependency phenomenon is caused by the different information
content of the different projections and it is only slightly influenced by the choice of the
reconstruction algorithm, or the distortions of the data. Based on this observation, I
concluded that the direction-dependency is a predictable phenomenon that can be exploited
in the non-destructive testing of objects.

In the second thesis group, I gave a new reconstruction algorithm for the general case of
discrete tomography. The results were published in two conference proceedings [20, 21].

II/1. I developed a new reconstruction algorithm for the general case of discrete tomography.
This algorithm reformulates the reconstruction problem into the minimization of an energy
function. I defined a function that has its minima corresponding to accurate discrete recon-
structions, and designed a novel optimization scheme for minimizing this energy function.
I validated the performance of the proposed method in experimental tests and compared
it to other state-of-the-art reconstruction algorithms. I found that the proposed method
could compete with other algorithms in both the speed of the computation, and the accu-
racy of the results. Moreover, I found that it is highly robust when the projection data is
affected by random noise.

In the third thesis group, I gave measures for the local and global uncertainty in binary
reconstructions. The results were in part published in a conference proceedings [22], and are
submitted as a journal paper [23].

III/1. I provided a probability based formulation of the uncertainty of pixels in binary reconstruc-
tions, i.e., which ascertains how the projection data determines each pixel of a reconstructed
image. I gave a method that is capable of approximating the local uncertainty maps of the
reconstructions on an acceptable level, and validated the results in experimental studies.

III/2. I gave a formula that can summarize the local uncertainties into a global measure, that
describes the overall uncertainty in the projections and predicts the expected error of a
reconstruction.

III/3. I also described how the uncertainty measure can be used to improve the performance of
the DART reconstruction algorithm, and to aid the examination processes using binary
tomography.
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[16] [17] [18] [19] [20] [21] [22] [23]
I/1. •
I/2. •
I/3. • •
II/1. • •
III/1. • •
III/2. •
III/3. •

Table 1: The connection between the thesis points and the Author’s publications
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