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Notation and Abbreviation

A, B, C, L Bold upper case letters: matrices with ai,j , bi,j , ci,j
and li,j elements

b, x, y Bold lower case letters: column vectors with bi, xi,

yi elements

e Bold lower case letter e: Vector with all ei elements

equal to 1

0 Bold digit zero: vector with all elements equal to 0

·T Transpose of a matrix or vector

〈·, ·〉 Inner product of two vectors

‖ · ‖2 Euclidean norm of a vector

Rank(A) Rank of the matrix A

λmax(A) Maximal eigenvalue of the matrix A

Z180 Set of integers modulo 180

Φ = {φ0, φ1, . . . , φc} Set of pixel intensities with an ordering φ0 < φ1 <

. . . < φc

rx,y Pearson’s correlation coefficient between x and y

H(z) Entropy of the z random variable

TΦ(x) Thresholding of the elements of x vector into the

Φ intensity set (see (1.9))

Random(Ω) Random element of the Ω set with uniform distri-

bution

S(p, α) Equiangular angle set, with p projection count,

and α starting angle (see (2.2))

RME(x∗, x̂) Relative Mean Error [36, 41, 43] of the x̂ recon-

struction with the x∗ expected ideal result

N4(i) 4-neighbourhood of the pixel with i index

v
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ARM Algebraic Reconstruction Method [70, 71]

SIRT Simultaneous Iterative Reconstruction Technique

[70, 71]

TSIRT Thresholded Simultaneous Iterative Reconstruc-

tion Technique

DART Discrete Algebraic Reconstruction Technique [11,

12]

DC Reconstruction algorithm based on D.C. program-

ming [55]

SA Simulated Annealing [50]
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Introduction

Tomography is a technique for discovering (or reconstructing) the inner structure

of objects from their projections, without the destruction of the objects themselves.

It is a widely used tool in various applications, like medical diagnostics [36, 43],

crystallography [1], non-destructive testing of materials [16, 20, 40], geology, etc.

[26].

In transmission tomography [33, 39] a projection is taken by exposing the object

of study to some penetrating radiation on one side, and measuring the energy of

the transmitted beams at different points on the other side. In this way, one can

calculate the attenuation of the energy of the radiation, and deduce the absorption

properties of the object on the paths of the beams. If the projections are gathered

from a sufficient number of directions (which might mean hundreds of projections),

one can reconstruct the material properties at different parts of the object.

Discrete Tomography [34, 35] is a special case, where we assume that the ex-

amined object consists of only a few materials with known absorption coefficients.

This extra information can be used to drastically reduce the number of projections

required for the reconstructions, and by this to minimize the cost or unwanted

effects of the projection acquisition process. Moreover, in Binary Tomography we

assume that the object is made of a single homogeneous material.

This thesis is a summary of the Author’s research in the field of discrete tomog-

raphy. The central concept of this work was to examine the information content

of projections, and to study what kind of information is stored in the projection

data and how this information determines the reconstruction of objects. This ex-

amination of the information content of projections is useful for developing more

reliable and robust methods for discrete tomography, and can lead to entirely new

approaches to the reconstruction problem.

The structure of the dissertation is as follows. First, Chapter 1 gives some

preliminary knowledge that will later be needed for the description of the results.

This chapter does not contain any new contribution, but summarizes the previous

results of the field, describes the formulation later used in the thesis, and provides

some mathematical tools which will be essential for the evaluation of the results.

Then, Chapters 2, 3 and 4 give a detailed description of the results. Each

1



2 Contents

chapter will hold findings of one thesis point of the dissertation. Although the

results are connected, the chapters are written to be self contained, therefore,

each of them is understandable without the other thesis points. In case of the

dependence, a summary of the most important knowledge and a reference to the

other chapters will be given.

Starting the sequence of the new contributions, Chapter 2 examines the direction-

dependency problem arising in the field of Binary Tomography. In a previous work

[52], it was briefly shown that the accuracy of the reconstruction can rely on the

directions to take projections with, when only a few projections are available. For a

more exhaustive investigation of the phenomena, we implemented an experimental

test environment, and examined various aspects of this problem. We found that

projections of an object taken from different directions can carry entirely different

information content. This phenomenon also affects the accuracy of the reconstruc-

tions, and some projection sets can lead to much better reconstructions then others.

Furthermore, we showed that one can improve the accuracy of the reconstruction

only by choosing better directions for the projection acquisition and proposed new

projection selection strategies, which can be used in practical applications of Non-

Destructive Testing of industrial parts, when a blueprint of the examined object is

also available.

Building the test environment for the direction-dependency problem required

the examination and implementation of various reconstruction algorithms. Based

on this experience, we developed a new reconstruction algorithm that is described in

Chapter 3. This algorithm performs the reconstruction as an energy minimization

task. An energy function was designed, that formulates the discrete reconstruction

problem, and a deterministic energy minimization process was developed, that

is capable of giving a good approximation of the optimal solution of the energy

function. The method was validated in a set of experimental tests by comparing

its performance to other reconstruction algorithms from the literature.

Also, based on previous experience we noticed that in many cases of discrete

tomography, some parts of the reconstructions are highly accurate, while recon-

struction algorithms tend to miss other parts. This indicated, that the information

contained in the projections determines the different areas of the object to differ-

ent levels. Some parts are well determined by the projections, and can be reliably

reconstructed, while other areas are more uncertain due to the lack of information.

In Chapter 4, we give a new description of this phenomena in binary tomography,

and based on the algorithm of Chapter 3, we propose a method that can approx-

imate the local uncertainties of the reconstructions, i.e., it can reveal how reliable

each part of the reconstruction will be based on the projection data. In addition,

we provide a formula for combining the local uncertainties into a global measure,
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that can describe and grade the information content of the whole projection set.

This method was validated in set of experimental tests as well. Finally, we give

some possible applications, where the usage of the uncertainty measures can help to

determine the reliability of a reconstruction, to improve the projection acquisition

process, or to improve the performance of certain reconstruction algorithms.





Chapter 1

Preliminaries

1.1 Formulation of the discrete reconstruction task

In the dissertation, the described methods and results will be presented for the

two-dimensional case of discrete tomography. However, the methodology can be

extended to higher dimensions in a simple and straightforward way.

Assume, that there is a given object with an unknown interior structure to

reconstruct. The attenuation coefficients of the material in a two-dimensional cross-

section of this unknown object are represented by the f : R2 7→ R function. The

projections of the unknown f are given by the Radon-transform as line integrals

of f

[Rf ](α, t) =
∫ ∞

−∞

f(t cos(α)− q sin(α), t sin(α) + q cos(α)) dq . (1.1)

In (1.1), an (α, t) pair determines a line in the two dimensional space, by giving

its direction and distance from the origin respectively, and q is the parameter for

positioning on the line. The parameters of the projection lines are illustrated in

Figure 1.1. We use a parallel beam projection geometry, where a projection is

defined by a set of line integrals taken with the same α angle. An example of a

projection is given in Figure 1.2.

With the above formalism, the mathematical description of the reconstruction

problem can be defined as follows.

Problem: Reconstruction

Input: A set Θ ⊆ ([0◦, 180◦)× R) of parameters determining projection

lines, and [Rf ](α, t) projection values for each (α, t) ∈ Θ.

Task: Find an f ′ : R
2 7→ R such that [Rf ′](α, t) = [Rf ](α, t) for each

(α, t) ∈ Θ.

Conversely, given a set of measured projection values, the task is to find a

function that has the desired projections. Mathematically, this problem has a

5
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t

q

α

projection line

Figure 1.1: Illustration of the parameters of a projection line.

Object of

study

Projection

Figure 1.2: Illustration of a projection of an object.



1.1 Formulation of the discrete reconstruction task 7

unique solution, and the Radon-transform of any f function is invertible if all the

possible projection values are available, i.e., Θ = ([0◦, 180◦)× R) [69].

However, in practice one cannot apply the theoretical inversion formula directly,

and in a computerized context a simplification of the model is necessary. We will

use a discretized, grid based model for reconstructing finitely many values which

can be handled computationally. Also, one can only gain a limited number of

projection values to reconstruct the object from.

In the sequel, we will assume that the function f has a bounded support, i.e.,

f(u, v) = 0 , (u, v) /∈
[

−n
2
,
n

2

)2

(1.2)

for a proper n constant. We will also assume, that f takes a constant value on each

unit square-shaped area determined by the two-dimensional integer lattice, that is

f(u+ a, v + b) = f(u+ c, v + d) , ∀u, v ∈ Z , ∀a, b, c, d ∈ [0, 1) . (1.3)

This way, the problem is transformed to the reconstruction of an n by n sized image.

Note, that with this definition the pixels cover the whole n×n sized reconstructed

area without overlapping.

In addition, we will also assume that the projections consist of a finite set of

parallel projection lines placed at uniform distances from each other, and from any

direction the whole width of the image is covered by the projection lines. Using

(1.1), this is maintained by the choice

t ∈
{

k + 1/2

∣

∣

∣

∣

k ∈ Z ,
−n√
2
≤ (k + 1/2) <

n√
2

}

. (1.4)

This way one can maintain a projection geometry, where all the pixels are covered

by projection lines from any possible directions, and there are no projection lines

which run at borders of neighbouring pixels.

Using this finite grid-based model given with all the above restrictions, the

reconstruction problem can be reformulated as a system of linear equations

Ax = b , A ∈ R
m×n2

, x ∈ R
n2

, b ∈ R
m , (1.5)

where

• x is the vector of all n2 unknown image pixels,

• b is the vector of all m measured projection values,

• A describes the projection geometry with all aj,i elements giving the length

of the line segment of the j-th projection line through the i-th pixel



8 Preliminaries

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16 Source

Detector

xj

bi

bi+1

ai,j

ai+1,j

Figure 1.3: Representation of the ordering of the pixels and the parallel beam
geometry.

as illustrated in Figure 1.3. From this reformulation, a new grid based version of

the reconstruction problem can be defined, that will be referred to as Continuous

Reconstruction.

Problem: Continuous Reconstruction

Input: A ∈ R
m×n2

projection coefficient matrix, and b ∈ R
m vector of

projection values.

Task: Find an x ∈ R
n2

reconstruction such that Ax = b.

In case of discrete tomography a new restriction can be made, and we can

assume that the reconstructed pixels can only take values from a Φ = {φ0, . . . , φc}
finite set of intensities.

Problem: Discrete Reconstruction

Input: A ∈ Rm×n2
projection coefficient matrix, b ∈ Rm vector of projec-

tion values, and Φ = {φ0, . . . , φc}.
Task: Find an x ∈ Φn2

discrete reconstruction such that Ax = b.

In the Discrete Reconstruction problem, we will also assume that there

is an ordering between elements of the Φ set of intensities, and φ0 < φ1 < . . . < φc.

Also, without the loss of generality, we can make the restriction that the possible

intensities are between 0, and 1, i.e.,

φi ∈ [0, 1] , ∀ i ∈ {0, . . . , c} . (1.6)

and their range is stretched to fill the whole [0, 1] interval

φ0 = 0 , φc = 1 . (1.7)

Finally, note that as a special case, with the Φ = {0, 1} choice, we arrive to the

problem of Binary Reconstruction.
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Problem: Binary Reconstruction

Input: A ∈ Rm×n2
projection coefficient matrix, and b ∈ Rm vector of

projection values.

Task: Find an x ∈ {0, 1}n2
binary reconstruction such that Ax = b.

1.2 Reconstruction algorithms for tomography

With the above formalism, a computerized reconstruction method has to solve the

Continuous Reconstruction or the Discrete Reconstruction problem.

Various techniques have been proposed for such purposes.

Theoretically, the Continuous Reconstruction problem has a unique so-

lution if and only if

Rank(A) = n2 = m , (1.8)

i.e., if the equation system is consistent, and the A matrix is invertible. Unfortu-

nately, in many applications this is not the case. It is possible, that the conditions of

the projection acquisition process do not allow us to make enough projections that

determine the result. In this case, there will be a continuum number of solutions

on a hyperplane of (n2 − Rank(A)) dimensions.

On the other hand, most projection acquisition methods are not perfect, and

the measured projection values can be distorted by measurement errors, which

can lead to an inconsistent equation system. In this case, there might not be any

feasible solutions at all, or even if there is a solution, it might not be the desired

picture of the examined object.

Finally, if we try to solve the equation system (1.5) we will notice, that it

has a huge extension since it holds as much variables as the number of pixels on

the reconstructed image. Although the A matrix is extremely sparse, and can be

computationally handled, its inverse is likely to hold too many entries to be stored

in a reasonably-sized memory. Therefore, direct equation system solvers are mostly

not applicable.

Various techniques have been proposed to overcome the above problems, most

of which apply iterative processes for approximating the solution of the equation

system [3, 37, 57, 58, 70, 71]. These methods can cope with the large number of

equations and variables, and can maintain a solution even if it is not unique, or

approximate an auxiliary result if the system of equations is inconsistent.

On the other hand, the Discrete Reconstruction problem – and many

subclasses as well – is proved to be NP hard if the number of projections is more

than two [29]. Also, because of the large size of the problem one cannot hope to

gain exact solutions with efficient algorithms.



10 Preliminaries

To overcome the complexity problem different approaches have been examined

in the field. Some of them study non-NP-hard subclasses of the reconstruction

problem, and provide efficient methods for these special cases [4, 18, 23, 24, 42].

Another area of research concentrates on designing heuristic methods for giving

approximate solutions of the general Discrete Reconstruction problem, with

different approaches. Some techniques introduce post-processing steps for the dis-

cretization of the result of a continuous reconstruction algorithm [13, 14, 15]. Other

approaches introduce steering mechanisms into the process of continuous recon-

struction methods to gain discrete results [11, 12, 19, 32, 48], or reformulate the

problem as an energy minimization task, and approximate the solution with some

stochastic [6, 7, 8, 16, 30, 41, 51, 52, 68], or deterministic [44, 45, 55, 56, 67, 68]

optimization strategy.

Moreover, the difficulties described at the Continuous Reconstruction

problem – i.e., the possible inconsistency of the projections, and the non-uniqueness

of the results – can still be present in the discrete case, which makes an even bigger

need for approximate solutions capable of handling inconsistent and incomplete

projection data. In the following, we will describe some of these reconstruction

algorithms, which will be used for validation and comparison purposes later in

Chapters 2, 3, and 4.

In the algorithms, the Thresholding operation [31] of an x vector of image pixels,

to the Φ = {φ0, . . . , φc} intensity set will be defined as

(TΦ(x))i =











φ0, if xi < (φ0 + φ1)/2 ,

φj, if (φj−1 + φj)/2 ≤ xi < (φj + φj+1)/2 , j ∈ {2, . . . , c− 1}
φc, if (φc−1 + φc)/2 ≤ xi .

(1.9)

1.2.1 Discrete Algebraic Reconstruction Technique

The Discrete Algebraic Reconstruction Technique (DART) [11], is a method for

the general case of the Discrete Reconstruction problem, that is based on an

iterated thresholding of continuous reconstructions. This algorithm starts out by

producing a continuous reconstruction using an algebraic reconstruction method

[70, 71]. Then, in each iteration it applies a thresholding on the continuous re-

sult, and proceeds with another continuous reconstruction, performed only on the

boundary pixels of the thresholded image. In this way, the process gains a fast but

not highly accurate initial solution with a thresholding of a continuous reconstruc-

tion, and slowly transforms the object boundary to reach a highly accurate result.

The formal description of the algorithm is given in Algorithm 1.

Note, that the algebraic reconstruction method used for obtaining the con-
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Algorithm 1 Discrete Algebraic Reconstruction Technique

Input: A projection matrix; b expected projection values; x(0) initial solution; Φ
set of possible intensities; k∆ iteration window size of the stopping criteria; kmax

maximal iteration count

1: Compute a starting reconstruction x(0) using an algebraic reconstruction
method

2: k ← 0
3: repeat

4: k ← k + 1
5: Compute a segmented image s(k) = TΦ(x(k−1)) by thresholding x(k−1)

6: Compute I(k) set of non-boundary pixels of s(k)

7: for all i ∈ 1, . . . , n2 do

8: y
(k)
i ←

{

s
(k)
i , if i ∈ I(k) ,

x
(k−1)
i , otherwise .

9: end for

10: Using y(k) as starting solution, compute a continuous reconstruction x(k)

while keeping the pixels in I(k) fixed
11: Apply a smoothing operation to the pixels that are not in I(k)

12: until s(k) = s(k−k∆) or k > kmax

13: return the segmented image TΦ(x(k))

tinuous reconstructions, and the smoothing operation between the iterations are

parameters of the algorithm, which will be defined later with the context of usage.

1.2.2 Simultaneous Iterative Reconstruction Technique

As mentioned above there is a wide range of Algebraic Reconstruction Methods

(ARM) [3, 70, 71] for continuous reconstruction. One such algorithm is the Simul-

taneous Iterative Reconstruction Technique (SIRT) [57, 70, 71]. It is an iterative

process for solving the linear equation system formulating the Continuous Re-

construction problem. Basically, the process of the SIRT starts with an initial

starting guess. Then, iteratively in each step it produces the projections of the cur-

rent intermediate solution, calculates their difference from the expected projections,

and updates the pixel values based on the back-projected errors of the projections.

With the notation of Section 1.1, the formal description of this method is given in

Algorithm 2.

We will also use the thresholded variant of this method that is Algorithm 2

followed by a thresholding, and call this as Thresholded Simultaneous Iterative

Reconstruction Technique (TSIRT).
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Algorithm 2 Simultaneous Iterative Reconstruction Technique

Input: A projection matrix; b expected projection values; x(0) initial solution; ǫ
step size bound; kmax maximal iteration count

1: k ← 0
2: repeat

3: v(k) ← (Ax(k) − b)
4: for all i ∈ 1, . . . , n2 do

5: x
(k+1)
i ← x

(k)
i − 1

∑m
j=1 aji

m
∑

j=1

ajiv
(k)
j

∑n
l=1 ajl

6: end for

7: k ← k + 1
8: until ‖x(k+1) − x(k)‖22 < ǫ or k > kmax

9: return x(k)

1.2.3 Binary reconstruction by energy minimization with

D.C. programming

The algorithm described in [55] performs the binary reconstruction by reformulat-

ing the task into an optimization problem. It is based on minimizing an energy

function of the form

Jγ,µ(x) =
1

2
‖Ax−b‖22+

γ

2

n2
∑

i=1

∑

j∈N4(i)

(xi−xj)
2−µ1

2
〈x,x−e〉 , x ∈ [0, 1]n

2

, (1.10)

that is a formulation of the Discrete Reconstruction problem.

This function is constructed of three terms. The first ‖Ax−b‖22 term of (1.10) is

a so called projection correctness term, and takes its minima at the reconstructions

satisfying the projections. If the equation system is consistent, the ‖Ax−b‖22 will

take a value of 0 at the correct solutions. If the consistency is not maintained due

to some measurement errors, then solutions providing the smallest square error will

give minimal values.

The second term, with N4(i) denoting the set of pixels 4-adjacent to the i-th

pixel, is a smoothness prior aimed to steer the reconstructions to somewhat smooth

results containing compact regions. It is multiplied with a constant γ that can be

used to set the weight of this smoothness prior.

The third term stands for forcing binary results, and takes its minima at bi-

nary values of x ∈ {0, 1}n2
. It is also weighted with a µ parameter that controls

the strength of the binarity prior. With the right µ weight, the Jγ,µ(x) function

gives a faithful formalization of the Discrete Reconstruction problem. It

can be proved that for each A, b, and γ values there exists a µ∗ bound such that
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minimizing the energy function (1.10) with a µ ≥ µ∗, is equivalent to minimizing

K(x) := 1

2
‖Ax− b‖22 +

γ

2

n2
∑

i=1

∑

j∈N4(i)

(xi − xj)
2 , x ∈ {0, 1}n2

, (1.11)

that is the Discrete Reconstruction problem in the Φ = {0, 1} binary case,

with an additional smoothness prior.

The reconstruction algorithm in [55] applies D.C. programming [38] (a method

for minimizing the difference of convex functions) to find an approximate solution

of (1.10). We will refer to this algorithm as DC.

Informally, the concept of this algorithm is as follows. At the beginning of the

optimization process, the discretizing term is disabled by setting the parameter

µ = 0. In that way, we get to a convex (moreover quadratic) optimization problem,

that can easily be solved with a subgradient method [17, 22]. After finding the first

initial continuous solution, we iteratively start to increase the µ weight and in each

iteration we find an approximate solution of the resulting energy function starting

from the result of the previous iteration step. At the end – when the strength of

the discretizing term reaches the µ ≥ µ∗ limit – we arrive to a discrete result, that

is an approximate solution of the original problem.

In the formal description of this algorithm, we will change the form of the

smoothness term, and define a matrix L, such that

xTLx =
n2
∑

i=1

∑

j∈N4(i)

(xi − xj)
2 . (1.12)

Furthermore, λmax(A
TA+γL) denotes an upper bound of the (ATA+γL) matrix.

The pseudo-code of the process is given in Algorithm 3.

1.3 Tools used for evaluating results

In this section, we will describe some numerical tools which will be used later in the

thesis for evaluating the robustness of reconstruction algorithms, and comparing

the different methods.

A common approach of evaluating the accuracy of an algorithm is to perform

reconstructions of objects with known ground truth expected result. An easy way

to do this is to take a set of software phantoms, simulate their projections com-

putationally, and perform reconstructions from the simulated projection sets. For

such evaluations one needs a set of software phantoms and a numeric measurement

of the reconstruction error.



14 Preliminaries

Algorithm 3 Reconstruction by D.C. programming.

Input: A projection matrix; b expected projection values; x(0) initial state; µ∆

strengthening step of the binarizing term; γ weight of the smoothness term; ǫin,
ǫout stopping criteria

1: µ← 0
2: λ← λmax(A

TA+ γL)
3: repeat

4: repeat

5: x̂ = x

6: y← [(λ+ µ)I− (ATA+ γL)]x− (1
2
µe−ATb)

7: xi ←







0, if yi < 0,
yi, if 0 ≤ yi ≤ 1,
1, if 1 < yi.

8: until ‖x̂− x‖22 < ǫin
9: µ← µ+ µ∆

10: until maxi∈{1,...,n2}(min(xi, 1− xi)) < ǫout

We gathered such a phantom database, by collecting test images from various

sources. Some phantoms were used for testing reconstruction algorithms in previous

studies [11, 68], and some come from the 2-D image database of the IAPR Technical

Committee on DISCRETE GEOMETRY (TC18) [73]. All of the images had the

same size of 256 by 256 pixels. The test images are collected in Appendix C.

For the evaluation of the data, we used two types of numerical measures, which

are given below.

1.3.1 Measuring the error of reconstructions

Assume, that we have a software phantom, with a known x∗ vector of pixel val-

ues. Also assume, that we produced the b projections of x∗, and performed a

reconstruction algorithm that resulted in an x̂ output.

The Relative Mean Error (RME) measurement defines the error of the recon-

struction with the formula

RME(x∗, x̂) =

∑

i |x∗
i − x̂i|

∑

i ⌈x∗
i ⌉

. (1.13)

The RME value describes a reconstruction by giving the difference of the re-

constructed pixels, compared to a predefined expected result. It is also normalized

by the
∑

i ⌈x∗
i ⌉ value, which – with our assumption of Section 1.1, that is, φj ∈ [0, 1]

for all elements of the Φ = {φ0, . . . , φc} – gives the number of non-zero pixels of

the image, to scale the error measurement. The final value is a number that gives

the ratio of the amount of error compared to the area of the object to be recon-

structed. Values of 0 will correspond to perfect reconstructions, and higher values
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denote higher error. With an RME of 1 the error of the reconstruction equals to

the size of the object.

Although, normalizing with the object area instead of the size of the recon-

structed volume can lead to RME values greater than 1, this way the error mea-

surement of the reconstruction will not be sensitive to scaling, or zero padding of

the reconstructed volume, which gives a good ground for comparison.

1.3.2 Pearson’s correlation coefficient

In the evaluation of the methods in Chapter 3 and Chapter 4 we will also need

a tool for comparing the correlation between values in measurement vectors. For

this purpose we used the Pearson’s correlation coefficient [54]. Assuming that there

are two vectors x and y of observations to compare, the correlation coefficient is

calculated with the formula

rx,y =

∑n2

i=1 (xi − x̄)(yi − ȳ)
√

∑n2

i=1 (xi − x̄)2
√

∑n2

i=1 (yi − ȳ)2
, (1.14)

where x̄ and ȳ are the expected values in the vectors x and y.

This coefficient is capable of measuring linear correspondence between the el-

ements of two data vectors. It takes a value close to 1 or −1 if there is a strict

linear correspondence between the same position of x and y, and shifts towards 0

if the correlation of the data is weaker. If there is no linear correspondence at all

rx,y will take a value of 0.

The rx,y expression will be useful for measuring the correlation between se-

quences of observations such as reconstructions performed under the same condi-

tions.

1.4 Modelling measurement errors in the recon-

structions

In practical applications, the projection data is usually corrupted by some type

of distortion of the projection values, or random noise. For modelling this phe-

nomenon in the tests, we used additive Gaussian noise for the distortion of the

data. This was done by taking the projection values, and adding a random number

to them from a Gaussian distribution with a 0 mean and a specified σ standard

deviation. With the different settings of σ, we could introduce noise of different

level to the projection data.

Although, the projection acquisition techniques used for transmission tomog-
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raphy are usually affected by Poisson-, rather than additive Gaussian noise, we

still used the latter one for several reasons. In real-world applications the level

of projection noise relies on many conditions, such as the characteristics of the

radiation used for the projection acquisition, the beam strength, the properties of

the material in the object, background noise, etc., most of which is dealt with in

preprocessing steps [16, 27, 40, 49]. Unfortunately, this makes the lifelike mod-

elling of the noise extremely complicated, and highly application specific. For this

reason, we have chosen to use an additive Gaussian noise model instead, which is

a common technique for modelling distortions of the projections in transmission

tomography [20, 27, 49, 68]. This way we could keep the formulation simpler, and

did not lose the generality of the results because of adjusting them to one specific

field of application.



Chapter 2

Direction-Dependency in Discrete

Tomography

2.1 Introduction

With discrete tomography one can reconstruct the inner structure of an image

from only a few (say, up to 2-10) projections. In this case, the low number of

projections give a great freedom in choosing the projection directions to work with

(see, Figure 2.1 for an illustration).

In a previous work [52], the authors briefly showed, that this freedom on the

choice of projections can influence the accuracy of the reconstruction, and one can

get different results from different projection sets. In this chapter we will give an

extension of the previous experiments, that was aimed to discover deeper explana-

tion of this direction-dependency of reconstructions. The aim was to determine if a

better choice of projections can yield a significant improvement of the reconstructed

results, and if there are regularities which make this phenomenon predictable and

exploitable.

Figure 2.1: Some possible projection directions with low projection numbers. (Red
dashed lines indicate the directions of the projection beams.)

17



18 Direction-Dependency in Discrete Tomography

Such studies are motivated by practical applications. In many fields using

discrete and binary tomography, there are limitations on the number of projections,

because the projection acquisition can have a high cost, or can damage the object

of study. In these cases, we could benefit from lowering the number of required

projections, or increasing the accuracy of the reconstructions by only improving

the projection acquisition with some smart projection selection strategies.

2.2 Angle selection strategies

The direction-dependency problem was examined experimentally. We have set up

a test frame-set, in which we could perform a large number of reconstructions. For

the tests, we took the 22 binary phantoms of Appendix C, produced their projection

sets containing the same numbers of projections, but different projection directions,

and performed reconstructions from these simulated data sets to see if the choice

of projection directions itself can influence the accuracy of the reconstructions, and

if we could improve the reconstruction only by finding better directions.

The applied projection selection strategies are described below. The methods

rely on the ground truth reconstruction and try to improve the projections using

the original image as a basis. In the sequel, a projection set will be determined by

a set of angles

S = {α1, α2, . . . , αp} , (2.1)

giving the direction of the projection lines in (1.1).

2.2.1 Equiangular projection sets

First of all, we used equiangular projection sets, which are determined by a special

set of angles. Such sets are generated by dividing the half circle into equal partitions

and placing a p number of projection angles on it. With this, an equiangular

projection angle set has basically two parameters, a p number of projections, and

an α0 starting angle. Formally, the set of S(p, α0) projection angles can be given

in the form

S(p, α0) =

{

α0 + i
180◦

p

∣

∣

∣

∣

i = 0, . . . , p− 1

}

. (2.2)

An illustration of the projection angles is shown in Figure 2.2.

Furthermore, we will use group of equiangular projection angle sets determined

by integer starting angles as

S(p) =

{

S(p, α0)

∣

∣

∣

∣

α0 ∈
{

0◦, . . . ,

⌈

180◦

p
− 1◦

⌉}}

. (2.3)
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α
180

◦

4

180
◦

4

180
◦

4
180

◦

4

Figure 2.2: Example of the equiangular projection angle sets (angle set S(4, α)).

Best angle to add

Possible angles to check

α1 α1 α1

α2 α2

α3

Figure 2.3: Steps of the Greedy projection selection strategy.

The S(p) gives a well-defined series of projection angles on which we could examine

the effects of the rotation of the object in the scanner. In the sequel, we will also

highlight two elements of these sets, and for each image and p projection count,

we will refer to the element of S(p) leading to the best and worst reconstruction as

EquiAng-B, and EquiAng-W, respectively.

2.2.2 Angle insertion by greedy angle testing

The second angle selection strategy uses a heuristic approach for building up good

non-equiangular projection sets. The method starts from an empty set of pro-

jections. Then, the process iteratively tests a set of possible next projections, to

determine which projection causes the biggest improvement in the reconstruction

if added to the projection set. This best projection is then added to the current

set of projections. The formal description of this angle selection strategy is given

in Algorithm 4, and the process is illustrated in Figure 2.3. This angle selection

algorithm will later be referred to as Greedy.

As a result, we get an increasing list of projections each element adding the



20 Direction-Dependency in Discrete Tomography

Algorithm 4 Greedy angle selection (Greedy)
Input: x∗ vector of image pixel values, p ≥ 2 maximal number of angles;
Output: S set of projection angles.

1: S ← ∅
2: k ← 0
3: repeat

4: η ←∞
5: for each α ∈ {0, 1, . . . , 180}\S do

6: Let x̂ be the reconstruction from the projection set with (S ∪ {α}) angles
7: if RME(x∗, x̂) < η then

8: α∗ ← α
9: η ← RME(x∗, x̂)

10: end if

11: S ← S ∪ {α∗}
12: end for

13: k ← k + 1
14: until k = p
15: return S

locally best choice to the previous ones. The reconstructions from the projec-

tion sets provided by this algorithm can then be compared to the results of the

equiangular reconstructions, to see how much improvement can be reached when

non-equiangular projection sets are also allowed.

2.2.3 Altering angles by simulated annealing

Another method for choosing non-equiangular angle sets was based on the opti-

mization of the error of the reconstruction by Simulated Annealing (SA) [50]. SA

is a stochastic optimization technique, that starts with an arbitrary initial solution

of an optimization problem, and iteratively improves the results by making small

changes of the current guess, and accepts the modification based on the change of

the optimized energy function. It is capable of finding the optimal solution of any

optimization problem with a probability of 1, if the proper parameter setting is

used. If we define the search space on the possible projection angle sets and the

energy function as the RME values of the corresponding reconstructions, we get a

method, that seeks the optimal projection angle set by improving an initial guess.

For each p projection number, our SA based angle selection process starts with

an equiangular projection set. Then, it iteratively chooses a projection with an α

angle, and it exchanges this projection with another one. The angle of the new

projection will be taken from the

Nβ(α) = {δ | δ ∈ Z180 , |δ − α| ≤ β} (2.4)
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range of integer angles differing at most in β degrees from the original α. If the

resulting projection set leads to a better reconstruction, then we accept it. If the

reconstruction from the new projection set is worse, then we accept or reject the

change with a probability based on the change of accuracy.

The formal description of this method is given in Algorithm 5, and an illustra-

tion can be seen in Figure 2.4. The algorithm uses the Random(Ω) notation for a

function that returns a random element of the Ω set, with a uniform distribution.

We will refer to this angle selection strategy as AltAng, in the sequel.

Algorithm 5 SA angle selection (AltAng)
Input: x∗ vector of image pixel values; p ≥ 2 number of projections; β angle
neighborhood; T0 starting temperature; 0 < h < 1 temperature cooling factor;
kmax maximal iteration count
Output: S set of projection angles.

1: S ← S(p, 0◦)
2: T ← T0

3: x̂← reconstruction from the S set
4: k ← 0
5: repeat

6: α← Random(S) {choose a random elemnt of the angle set}
7: α′ ← Random(Nβ(α) \ S)
8: S ′ ← S \ {α} ∪ {α′}
9: x′ ← reconstruction from the S ′ set

10: ∆RME ← RME(x∗,x′)−RME(x∗, x̂)
11: ξ ← Random([0, 1])
12: if ξ > exp(−∆RME

T
) then

13: S ← S ′

14: x̂← x′

15: end if

16: T ← T · h
17: k ← k + 1
18: until k = kmax

19: return S

If the parameters of this process are properly set, one can find – or at least

approximate – the optimal projection set. In this work, we have fine-tuned the

parameters of the algorithm empirically, and used the values T0 = 0.02, h = 0.95,

β = (180◦/p − 5◦), and kmax = 200. The final angle set for each image, and

projection number was selected as the best of five consecutive runs of the process.

With these parameters the algorithm is not guaranteed to give optimal solutions,

but provides acceptably results in reasonable time.
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α chosen angle to change

Angle neighborhood
α
′ new angle

accepted with

probability

exp
(

−

∆RME

T

)

Figure 2.4: A step of the AltAng angle selection algorithm.

a) b) c)

d) e) f)

Figure 2.5: Sample of the software phantoms used for testing the direction-
dependency.

2.3 Test environment

In the tests, we used the 22 binary phantom images of the image database in Ap-

pendix C, and reconstructed them from different sets of their projections. For a

later reference, some highlighted images are provided in Figure 2.5. The reconstruc-

tions were performed by three reconstruction algorithms under different conditions,

i.e., varying projection counts, distortions of the projection data, etc..

2.3.1 Reconstruction algorithms and parameters

We performed reconstructions from each projection set with the TSIRT, DC and

DART reconstruction algorithms that were described in detail in Section 1.2. The
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parameters of the reconstruction algorithms were set empirically, tuned to gain the

best reconstructions possible.

In case of the TSIRT algorithm, the parameters were set as ǫ = 0.01 and

kmax = 1000. With the DART algorithm, the continuous reconstructions were

performed by 10 iterations of the SIRT, and the smoothing operation between the

consecutive steps were calculated with a convolution [31] operation. The smoothing

kernel was defined as

K =







1/16 1/16 1/16

1/16 1/2 1/16

1/16 1/16 1/16






.

The stopping criteria of the algorithm was defined by using the parameters k∆ = 10,

and kmax = 500. In case of the DC algorithm, we used the parameters µ∆ = 0.1,

γ = 0.25, ǫin = 0.1 and ǫout = 0.01.

2.3.2 Noise on the projection data

We performed reconstructions both from perfect, noiseless projections and data

corrupted with three different levels of Gaussian random noise described in Sec-

tion 1.4. The levels of the noise was set to three different σ ∈ {0.5; 1.5; 5.0} standard

deviations. Given that an average projection value of the test images were about

40, the magnitude of the noise compared to the data was about 1.25%, 3.75% and

12.55%.

2.3.3 Implementation

We had to perform a large number of reconstructions for a valid experimental

analysis, which required highly efficient implementation of the reconstruction algo-

rithms. Previous studies indicated that the mentioned reconstruction algorithms

are suitable for highly parallel implementation [47], therefore we developed the

code in C++ with GPU acceleration using the Nvidia CUDA SDK [72]. With this

implementation, we performed more than 200 000 reconstructions in about 200

hours on a single PC containing an Intel Q9500 CPU, and an Nvidia Geforce 250

GPU.

2.4 Results

This section summarizes the most important findings of our experiments on the

direction-dependency of reconstructions.
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2.4.1 Equiangular projection sets

First, we wanted to determine if the reconstructions could be improved by finding

better projection angles. In the first set of software tests we used only the DC

reconstruction algorithm and the equiangular projection sets. In this way, we

could determine if the reconstruction depends on the orientation of the object of

study in the scanner.

We produced different equiangular projection sets of the phantoms with pro-

jection numbers ranging from 2 to 16. With each projection number, projection

sets were taken with different starting angles. The starting angles were integer

numbers in degrees ranging from 0◦ to
⌈

180◦

p
− 1◦

⌉

. This gave a total number of

431 projection sets for each phantom.

For the evaluation of the data, we computed the RME value of each reconstruc-

tion and compared the results belonging to the same phantom image and projection

number, but taken from different projection angle sets, that is, we compared the

results belonging to the S(p) projection direction sets for each image. We also de-

fined a measurement of the rotation-dependency, that can describe how dependent

an object is to the choice of the α starting angle.

Let RAlg(x
∗, p, α) denote the reconstruction of the x∗ expected image from the

projection set determined by the angles of S(p, α), reconstructed by a given Alg

reconstruction algorithm (such as the ones described in Section 1.2). For example

RDC(x
∗, 4, 0◦) denotes the reconstruction of an x∗ phantom performed with the

DC algorithm using the projection set containing 4 equiangular projections with a

0◦ starting angle. Let

RAlg(x
∗, p) =

{

RAlg(x
∗, p, α)

∣

∣

∣

∣

α ∈
{

0◦, . . . ,

⌈

180◦

p
− 1◦

⌉}}

(2.5)

be the set of all reconstructions of the same phantom, performed with the same

Alg reconstruction algorithm, from the same p number of projections but with all

possible integer starting angles.

With the previous notation the direction-dependency measurement can be given

as

Dσ
Alg(x

∗, p) =
(

Emax
Alg (x∗, p)−Emin

Alg (x
∗, p)

)

· exp
(

−
(Emin

Alg (x
∗, p))2

σ2

)

, (2.6)

where

Emin
Alg (x

∗, p) = min {RME(x∗,y) | y ∈ RAlg(x
∗, p)} , (2.7)

and

Emax
Alg (x∗, p) = max {RME(x∗,y) | y ∈ RAlg(x

∗, p)} . (2.8)
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Results for Figure 2.5a Results for Figure 2.5b

Results for Figure 2.5c

Figure 2.6: Direction-dependency graphs of three phantoms, according to the num-
ber of projections. Higher values indicate that the phantom is more dependent on
the choice of projections.

By this direction-dependency measurement, we could find projection setups

(phantom image, projection number pairs) which were the most sensitive to the

choice of projection angles. The Dσ
Alg(x

∗, p) takes two factors into account. First of

all, it measures how big the difference can be between the reconstructions of the best

and worst considered projection sets. Also, it is multiplied with a constant com-

puted from the accuracy of the best reconstruction by a Gaussian function. This

will result in high direction-dependency values, if one can get good reconstructions

with the right projection sets, and highly inaccurate results if the projection sets

are not well chosen. On the other hand, if there is no big difference in the results

or there is a relatively big difference, but both the best and worst reconstructions

contain an unacceptably high amount of error – higher then the σ parameter of

(2.6) – then the direction-dependency will be low.

After performing the reconstructions, we used the Dσ
Alg(x

∗, p) measurement of

(2.6) to find the projection setups which were the most sensitive to the rotation.

For this, we set the σ = 0.05 parameter – that tolerates approximately 5 percent

error in the reconstructions – and tested each RAlg(x
∗, p) set of reconstructions.

Some such results can be seen in Figure 2.6.

The results showed that all the phantom images – including all the binary

phantoms of Appendix C – were dependent on the choice of projections, some for

higher, some for lower degree. In overall, the direction-dependency curves had 2 to 3
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Results for Figure 2.5a Results for Figure 2.5b

Results for Figure 2.5c

Figure 2.7: Minimal and maximal RME values of reconstructed phantoms accord-
ing to the number of projections.

peak values at each phantom, at consecutive projection numbers. This phenomena

can be explained by taking a look at the minimal and maximal RME values of

the best and worst reconstructions for each RDC(x
∗, p) set, that are depicted in

Figure 2.7.

Looking at the curves on Figure 2.7 one can note, that there is a significant gap

between the accuracy of the best and worst reconstructions for most projection

numbers. From the viewpoint of the direction-dependency measurement, we can

see that the best reconstruction reaches an almost zero RME value from lower num-

ber of projections than the worst reconstructions. Since the direction-dependency

measurement is constructed and parametrized to find such set-ups (where an al-

most perfect and an unacceptably useless reconstruction can either be found from

projection sets containing the same numbers of projections) it takes the highest

values around these projection counts.

Also, more projections usually provide more information in the reconstruc-

tion algorithm to work with, and most of the best-worst RME plots showed

monotonously descending curves. This is the reason why there were adjacent peaks

on the curves of the direction-dependency measure in Figure 2.6.

Finally, the high direction-dependency values, and large gaps in the best-worst

RME curves show that the reconstruction can highly rely on the choice of projec-

tions, and one can improve the accuracy of the results only by finding the proper

projections. This can also be seen in Figure 2.8 where we gave some examples
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original phantom best reconstruction worst reconstruction

original phantom best reconstruction worst reconstruction

Figure 2.8: Two examples presenting the differences of the reconstructions per-
formed from different projection sets containing four projections.

of reconstructions performed from projection sets containing the same number of

projections, but taken with different starting angles.

We also plotted the RME values of each reconstruction in the RDC(x
∗, p) sets

according to the starting angle. By doing so, we could track the accuracy of the

reconstructions when applying small changes of the directions of the projections.

Such diagrams can be seen in Figure 2.9.

The first thing to notice on the diagrams of Figure 2.9 is that the curves are

relatively smooth. This indicates, that projections close to each other hold sim-

ilar information, and the reconstructed results will be similar in accuracy. Also,

this correlates with another tendency, that by increasing the number of projections

the direction-dependency of the reconstruction is decreasing. In the equiangular

case, by increasing the number of projections the angle difference between consec-

utive projection directions becomes smaller. This way, the freedom in choosing the

projections will be smaller because projections close to each other provide similar

information. This also means that one should only expect a significant direction-

dependency in the reconstructions, with relatively simple objects, which can be

reconstructed from only few projections.

Furthermore, note that for each phantom image and projection number, the

direction-dependency characteristics were different, and the best reconstructions

were gained from different projection sets as well. Finally, although only a sample

of the results were presented here, the conclusions described above were general in

all the tests.
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RME values from 2 projections RME values from 4 projections

RME values from 6 projections

Figure 2.9: RME values of the reconstructions of the phantom of Figure 2.5a
according to the starting angle, from projection sets containing different numbers
of projections. The phantom was reconstructed by the DC algorithm.

2.4.2 Non-equiangular projection sets

In a further test, we performed reconstructions with the Greedy and AltAng non-

equiangular angle selection strategies described in Section 2.2. The main aim of this

work was to determine if further improvement can be reached in the reconstructions

by extending the freedom of the projection directions.

Naturally, there is a much bigger set of possibilities in this case, since we do

not only choose the direction of one starting angle, but the directions of each

projection. Here, even when considering only integer angles between 0◦ and 179◦

the number of angle sets is
(

180
p

)

for each p projection counts. This also makes an

exhaustive search impossible to carry out since, even with only 4 projections, the

possible choices would define 42 296 805 projection sets. This is the reason why

we used the non-equiangular projection selection strategies of Section 2.2, and we

only tried to improve the results of the S(p, 0◦) equiangular projection set by using

non-equiangular projections.

If using non-equiangular projection sets can bring further improvement to the

reconstruction, then it should turn out simply by comparing the RME values on the

reconstruction of the different phantom images. Some such results are summarized

in Table 2.1. Furthermore, Figure 2.10 provides some diagrams of the performance

of the projection selection strategies according to the number of projections.
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Table 2.1: RME of the reconstructions produced from the projection sets given
by the four angle selection strategies. Reconstructions were performed by the DC
algorithm. Equiang-W, and EquiAng-B denotes, respectively, the result of the
worst and best equiangular projection sets. The best results in each column are
highlighted in bold.

Proj.Num. 2 3 4 5 6 7 8 9 10 11

Figure 2.5a

EquiAng-W 1.263 0.690 0.427 0.306 0.058 0 0 0 0 0

EquiAng-B 0.382 0.375 0.001 0 0 0 0 0 0 0

Greedy 1.346 0.328 0.065 0 0 0 0 0 0 0

AltAng 0.336 0.044 0.000 0 0 0 0 0 0 0

Figure 2.5b

EquiAng-W 0.370 0.315 0.265 0.046 0.000 0 0 0 0 0

EquiAng-B 0.230 0.138 0.032 0 0 0 0 0 0 0

Greedy 0.248 0.108 0.026 0 0 0 0 0 0 0

AltAng 0.252 0.039 0.003 0 0 0 0 0 0 0

Figure 2.5c

EquiAng-W 1.111 0.924 0.893 0.663 0.551 0.488 0.390 0.284 0.214 0.145

EquiAng-B 0.795 0.725 0.515 0.444 0.336 0.352 0.273 0.165 0.064 0.041

Greedy 0.744 0.591 0.451 0.374 0.293 0.209 0.154 0.106 0.032 0

AltAng 0.738 0.572 0.436 0.347 0.276 0.188 0.087 0.056 0.012 0

Figure 2.5d

EquiAng-W 1.208 0.812 0.569 0.326 0.061 0.000 0 0 0 0

EquiAng-B 0.934 0.693 0.469 0.169 0.000 0 0 0 0 0

Greedy 0.852 0.591 0.466 0.258 0.038 0 0 0 0 0

AltAng 0.852 0.584 0.411 0.113 0.001 0 0 0 0 0

Figure 2.5e

EquiAng-W 1.320 0.883 0.345 0.102 0.025 0.000 0 0 0 0

EquiAng-B 0.562 0.148 0.114 0.005 0.000 0 0 0 0 0

Greedy 0.486 0.108 0.034 0.001 0 0 0 0 0 0

AltAng 0.457 0.088 0.010 0.000 0 0 0 0 0 0

Figure 2.5f

EquiAng-W 0.866 0.667 0.448 0.186 0.000 0.000 0 0 0 0

EquiAng-B 0.548 0.169 0.050 0.000 0 0 0 0 0 0

Greedy 0.576 0.153 0.012 0 0 0 0 0 0 0

AltAng 0.533 0.101 0.001 0 0 0 0 0 0 0
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Results for Figure 2.5a Results for Figure 2.5c

Results for Figure 2.5d

Figure 2.10: RME values of the reconstructions of three phantoms in Figure 2.5
with the angle sets provided by the four different angle selection algorithms.

Based on the results, we can draw the consequence that using non-equiangular

projection sets yield further improvement in the quality of the reconstructions, in

the test cases. This kind of improvement is also clearly visible on the reconstructed

images (see, e.g., Figure 2.11). Like in the case of equiangular projection sets this

phenomena strongly relies on the image reconstructed. For some images a great

improvement was reached if the projection directions were properly chosen, for

others the difference was not so significant.

In the comparison of the angle selection methods we found, that the worst

results always came from the worst equiangular projection sets, which was expected,

since this method was only included as a base for comparison. We could usually

get much better results by fine-tuning the directions and searching for the best

equiangular projections.

In case of the non-equiangular projection sets, the Greedy method usually pro-

duced better results than the equiangular projections, but its process included

unchangeable decisions when adding projection angles, that made it likely to get

stuck in a local minima. The AltAng method on the other hand did not have this

weakness, and usually resulted in the best projection set.
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Figure 2.11: Reconstructions of the phantom in Figure 2.5f with S(4, 0◦), S(4, 19◦),
and S = 〈29◦, 57◦, 80◦, 160◦〉 projection sets, from left to right, respectively. Red
dashed lines indicate the directions of the projections, images below are the corre-
sponding reconstructions.

2.4.3 Different reconstruction algorithms

We also compared the results of different reconstruction algorithms, to investigate

whether the direction-dependency of objects is independent from the applied re-

construction algorithm. If it is so, then the direction-dependency is likely to be a

property coming from the information content of the projections themselves.

We produced different S(p, α) equiangular projection sets of the binary phantom

images, and performed reconstructions by three different reconstruction algorithms,

which were the TSIRT, DC, and DART described in Section 1.2. Again, the p

number of projections in the projection sets ranged between 2 and 16 for each

phantom image, and integer α starting angles were used from 0◦ to
⌈

180◦

p
− 1◦

⌉

.

We first plotted the RME values belonging to each phantom and projection

number according to the starting angle, and compared the diagrams belonging to

the three different reconstruction algorithms. Some such diagrams can be seen in

Figure 2.12. On most diagrams like those of Figure 2.12 the slopes of the curves

belonging to the different reconstruction algorithms, were similar which indicates

that there is a correspondence between the results of the reconstruction algorithms.

In addition, we found that the curves of the TSIRT and DC algorithms were

relatively smooth. On the other hand, the curves belonging to the DART algorithm

showed drastic changes of the RME values even for a 1◦ modifications of the

projection angles. This indicates that the DART algorithm is more sensitive to

the projection set-up than the other two methods. We also found that the DART
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RME values from 2 projections RME values from 4 projections

RME values from 6 projections

Figure 2.12: RME curves of the three reconstruction algorithms on the phantom
of Figure 2.5a, with three different projection numbers.

algorithm had the biggest ranges in the corresponding RME values for most of the

phantom images and most of the projection numbers. This meant that usually the

DART gave the best results, when the proper projection set was found, but also

for the same phantom and projection number it produced the worst results with

the wrong projection sets. This indicates that, although the DART can perform

better than the other algorithms, it is also more dependent on the choice of the

projections.

For another evaluation of the data, we compared the RME values by the Pear-

son’s correlation coefficient (1.14). In this case, x and y data vectors of the rx,y

correlation coefficient contained all the RME values belonging to one phantom

and reconstruction algorithm (including all projection counts, and starting angles).

These results are summarized in Table 2.2.

Most of the entries of Table 2.2 contain values close to one, which indicates

a correspondence between the results of the reconstruction algorithms. The same

consequence can be drawn if we plot the points given by the corresponding RME

value pairs of the different reconstructions, as it can be seen in Figure 2.13. Most

points of the diagrams are close to the diagonal, that indicates a correlation between

the results of the algorithms. This indicates that the projection angle dependency

is likely to be a property of the projection sets themselves, meaning that some

projections hold more information than others and yield better reconstructions.

The only exception was in case of the Phantom 11 that neither the TSIRT nor
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Table 2.2: Correlation between the direction-dependency characteristics of the
TSIRT, DC, and DART algorithms, tested on 22 phantom images.

TSIRT↔DC TSIRT↔DART DC↔DART
Phantom 1 0.94 0.95 0.98
Phantom 2 0.93 0.91 0.98
Phantom 3 0.89 0.91 0.98
Phantom 4 0.76 0.74 1.00
Phantom 5 0.85 0.86 1.00
Phantom 6 0.95 0.95 1.00
Phantom 7 0.83 0.81 0.98
Phantom 8 0.91 0.84 0.98
Phantom 9 0.87 0.79 0.98
Phantom 10 0.98 0.96 0.99
Phantom 11 n/a n/a n/a
Phantom 12 1.00 0.98 0.98
Phantom 13 1.00 0.98 0.98
Phantom 14 0.84 0.80 0.99
Phantom 15 0.83 0.81 0.97
Phantom 16 0.92 0.90 0.99
Phantom 17 0.83 0.80 1.00
Phantom 18 0.89 0.83 0.97
Phantom 19 0.92 0.91 0.99
Phantom 20 0.93 0.94 0.99
Phantom 21 0.96 0.93 0.98
Phantom 22 0.90 0.86 0.98

the DART algorithm could reconstruct. This image contains only small objects

which the SIRT algorithm and the first continuous reconstruction of the DART

could not detect at all, therefore the thresholded results were empty images. In

this case the provided data was not suitable for the comparison.

2.4.4 Distortion of the projection data

For simulating the errors of projection acquisition techniques we performed ex-

perimental tests with projection data distorted by random noise. We again used

equiangular projections corrupted by additive Gaussian noise described in Sec-

tion 1.4. In addition to the noise free case we added noise of three different strength

to the data, which were determined by setting the σ deviance of the noise to the

σ ∈ {0.5; 1.5; 5.0} values. In this case the tests were only performed with the DC

algorithm. This was sufficient since previous results indicated that the direction-

dependency of different reconstruction algorithms are similar.

We again plotted the RME values of the reconstructions of each phantom image

and projection number according to the starting angle. The goal was to compare
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Comparison of the results of the TSIRT and DC algorithms

Comparison of the results of the TSIRT and DART algorithms

Comparison of the results of the DC and DART algorithms

Figure 2.13: Correlation between the RME values of different reconstruction algo-
rithms on the same projection sets. Point coordinates are determined by the RME
values of the results of two corresponding reconstructions. The diagrams present
data for all the phantom images.
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RME values from 2 projections RME values from 4 projections

RME values from 6 projections

Figure 2.14: RME plots from the noisy projection data. Reconstructions of the
phantom of Figure 2.5a were performed by the DC algorithm with equiangular
projections sets containing 2, 4, and 6 projections.

the curves belonging to the different noise levels, and examine how the addition of

noise changes the characteristics of the direction-dependency. Some such diagrams

can be seen in Figure 2.14. As expected, we found that the noise in the projections

resulted in reconstructions of lower accuracy. We also found, that this degradation

of accuracy was uniform with all the projections belonging to the same phantom

image, projection number and noise level. Compared to the noiseless case, this

had the effect of shifting upwards the curves of the diagrams of Figure 2.14. Thus,

we can say that the added noise in the projections did not change the direction-

dependency characteristics of the phantoms in the test cases. Projection directions

leading to better reconstructions than others in the noiseless case, were also found

to be better when the projection values were affected by random noise.

We found the same when we compared the results by the correlation coefficient.

These results can be found in Table 2.3 where we calculated the correlation be-

tween the reconstructions in the noise-free case and the results coming from the

noisy projections, for each phantom image separately. The point pairs examined

by the correlation coefficient are plotted in Figure 2.15. All the entries of Table 2.3

are close to 1, and the points of Figure 2.15 are placed along the diagonal, which in-

dicates a linear correspondence between the results gained from the projection sets

affected by different levels of noise. Thus, the direction-dependency characteristics

of objects remain similar when the projections are affected by random noise.



36 Direction-Dependency in Discrete Tomography

Table 2.3: Correlation between the direction-dependency characteristics of recon-
structions with different levels of noise, and slightly modified objects, tested on
22 phantom images. The first three columns show results for the noise affected
projections, the final column gives the statistics for the altered phantoms.

σ = 0.5 σ = 1.5 σ = 5.0 Altered
Phantom 1 1.000 0.999 0.999 0.999
Phantom 2 1.000 1.000 1.000 0.998
Phantom 3 1.000 0.998 0.998 0.998
Phantom 4 1.000 0.999 0.999 0.988
Phantom 5 1.000 0.999 0.999 0.973
Phantom 6 1.000 1.000 1.000 0.999
Phantom 7 0.999 0.999 0.999 0.964
Phantom 8 1.000 1.000 1.000 0.991
Phantom 9 1.000 1.000 1.000 0.997
Phantom 10 1.000 0.998 0.998 0.997
Phantom 11 0.998 0.979 0.979 0.994
Phantom 12 1.000 0.999 0.999 0.997
Phantom 13 1.000 0.998 0.998 0.995
Phantom 14 1.000 0.999 0.999 0.996
Phantom 15 1.000 0.999 0.999 0.993
Phantom 16 1.000 0.999 0.999 0.999
Phantom 17 1.000 1.000 1.000 0.994
Phantom 18 1.000 0.998 0.998 0.997
Phantom 19 1.000 0.999 0.999 0.998
Phantom 20 0.999 0.999 0.999 0.997
Phantom 21 0.996 0.996 0.996 1.000
Phantom 22 1.000 0.997 0.997 0.999
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Comparison of the results from the noise free projections,
and projections affected by noise of 0.5 strength

Comparison of the results from the noise free projections,
and projections affected by noise of 1.5 strength

Comparison of the results from the noise free projections,
and projections affected by noise of 5.0 strength

Figure 2.15: Correlation between the RME values of different reconstruction al-
gorithms on the same projection sets. Points coordinates are determined by the
RME values of the results of two corresponding reconstructions. The diagrams
hold data for all the phantom images.



38 Direction-Dependency in Discrete Tomography

Figure 2.16: Some of the altered software phantoms used for testing. Original
images can be seen in the top row, and their modified versions are in the bottom
row.

2.4.5 Small distortions of the reconstructed objects

We also performed tests with slightly modified phantom images, which were in-

tended to simulate the case when the object of study undergoes structural damage.

These images were produced by introducing small, few-pixel modifications of the

original phantoms, for simulating fractures and bubbles in the material. Some of

these modified phantoms can be found in Figure 2.16.

First, we compared the results of the original and altered phantoms by compar-

ing the RME value plots according to the starting angles of equiangular projection

sets. Some of these plots are shown in Figure 2.17. Second, we paired up the RME

values gained from projection sets taken from the same directions but the differ-

ent (original and altered) versions of the phantoms, and calculated the correlation

coefficient (1.14) between the resulted point sets. The results can be found in

Figure 2.17, while Figure 2.18 visualises the point cloud itself.

We found that the small modifications of the object did not bring considerable

changes to the direction-dependency characteristics of the objects. Direction sets

leading to better reconstructions with the original phantom, lead to better results

with the altered phantoms as well. This means that slightly distorted objects

have the same – or at least similar – ideal projection directions as original objects,

and this phenomenon can be exploited in the examination of objects by discrete

tomography.

Finally, we should note that the above results were only tested for small modifi-

cations of the phantoms. In this case the extension of the changes was 4-5% of the
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RME values from 2 projections RME values from 4 projections

RME values from 6 projections

Figure 2.17: RME plots for the reconstruction of the altered phantoms according to
the starting angle. Reconstructions of the phantom of Figure 2.5a were performed
by the DC algorithm with equiangular projections sets containing 2, 4, and 6
projections.

Figure 2.18: Correspondence between the RME values of reconstructions of the
original, and the slightly modified phantoms. Points coordinates are determined by
the RME values of the results of two corresponding reconstructions. The diagrams
hold data for all the 22 binary phantom images.
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Figure 2.19: Rotation invariant phantom.

size of the object. If the distortion of the object is bigger, then the change in the

direction-dependency characteristic will get more significant, and after a certain

point one can arrive to an entirely different object with different ideal projection

directions.

2.4.6 Rotation invariant images

The test data of the above examinations also showed small regularities in the

direction-dependencies, which were not caused by the shape of the objects. We

found that some of the projection angles lead to slightly better results then ex-

pected, in a large number of reconstructions. For this reason, we also decided to

examine the direction-dependency of an object that ought to be rotation invariant.

We constructed the phantom of Figure 2.19 that is a rasterized image of a ring

with a disk inside. The centre of the disk and the ring are placed into the middle of

the image. With an infinite resolution, this phantom should be rotation invariant.

However, this is not the case, since we produced this image in a resolution of

256× 256 pixels.

If an object is rotation invariant then all its equiangular projection sets should

lead to the same results. Therefore, we produced the equiangular projection sets

of the phantom of Figure 2.19, and for each number of projections simply plotted

the RME values according to the number of projections. Two such diagrams can

be seen in Figure 2.20.

Examining the curves of Figure 2.20 one can observe an interesting phenomenon.

The curves show, that the reconstruction of the phantom from different directions

are of different quality. It is clear, that even this phantom is for some degree

dependent on the choice of projections, however it was designed to be rotation

invariant.

The explanation of this can be found in the formulation of the reconstruction

problem. The reconstruction algorithms assume that the object to be reconstructed
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RME values from 2 projections RME values from 3 projections

Figure 2.20: RME value plots of the rotation invariant phantom according to the
starting angle.

is represented on a discrete image on the two-dimensional integer lattice. Also, the

projection values are determined as the integrals of the image along straight lines.

As we rotate the projection sets around the phantom images, we get different

projection coefficient matrices, containing different values. These slightly different

projection matrices hold different information of the projection geometry, therefore

we will get different results.

In an extreme case of this discretized, grid based representation of the images

one can even formulate projection geometries those make the exact reconstruction

possible from only one projection. Although, the problem is not so drastic in the

currently applied model, it still brings false information to the projection data due

to a side effect of using a discrete model.

The strength of this phenomenon was the most notable with an extremely low

number of (2 to 3) projections, but even in this case it was negligible compared

to the direction-dependency of other objects that keeps the previous results valid.

Later, as we increased the number of projections this effect of the discretization

became more and more negligible. Still, reconstruction algorithms which minimize

this effect and are not influenced by false data coming from the projection geometry

used, might be of use in practical applications, and development of such methods

is already present in the literature (see, e.g., [53]).

2.5 Possible applications

The direction-dependency of objects can also be taken into consideration in prac-

tical applications for implementing better, and more robust reconstruction proce-

dures. In industry, there is often a need to get information about the interior of ob-

jects (industrial parts) in a non-destructive way, i.e., without damaging the object

itself. This process is called non-destructive testing (NDT). In these applications

the information about the object is usually collected by transmission tomography

using X-rays or neutron rays to form the projections. Since the acquisition of such
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projections can be very expensive and time-consuming, it is important to keep the

number of projections as low as possible. If the object is made of homogeneous

material then one approach to achieve this is to apply binary tomography for the

reconstruction [1, 16, 40].

A frequent task in NDT is to determine the differences between the studied ob-

ject and a given blueprint image. One places the object into the scanner, forms its

projections from a few directions, and applies a (binary) reconstruction method to

obtain an image from the object. Finally, the difference between the blueprint and

the reconstructed image is measured according to an arbitrary similarity metric.

Since the blueprint is available in advance, we can simulate its projections in arbi-

trary directions, and seek the ideal projection directions with the EquiAng, Greedy,

or AltAng projection selection strategies in order to characterize the blueprint im-

age from the viewpoint of direction-dependency. This information turns out to be

essentially useful in several scenarios of NDT.

If there is a reference mark on both the benchmark and the studied object, then

it is possible to place this latter one with a rotation of arbitrary known degree into

the scanner. From the ideal projection angles of the blueprint, we know when the

best reconstruction quality can be achieved – we simply have to seek the minimum

of the RME values of the simulated projection sets. This determines how (i.e., in

which direction) to place the test object into the scanner to have the most accu-

rate reconstruction from the available number of projections. Since the difference

between RME values of projection sets taken form similar angles is small, it is

sufficient to place the object with only an approximately exact orientation as the

minimal RME value suggests. Also, from the experiments of Section 2.4.4 and

Section 2.4.5 we know that the noise on the projections, or the small distortions of

the object will not considerably change the directions of the ideal projections.

On the other hand, if there is no mark on the studied object, then it might be

placed with an unknown rotation into the scanner. Again, from the dependency

function of the blueprint image we can predict how sensitive our test will be to this

rotation. In addition, from the worst equiangular reconstructions of the blueprint

we can deduce how many projections are needed to keep the maximal error ac-

ceptably low, i.e., to be sure that the effect of rotation will be eliminated. If it

is impossible to acquire so many projections, then from the minimal error we can

estimate the quality of the best reconstruction possible from the given number of

projections. This information can also be used to check whether a reconstruction

algorithm is suitable for the given industrial test. If the error of the best recon-

struction is still high, then we might classify perfect objects as damaged ones and

vice versa.
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2.6 Summary

We performed a series of tests to examine the direction-dependency of binary re-

constructions. In the case of using equiangular projections we revealed that the

rotation of the objects of study influences the quality of reconstructed results, and

one can get better reconstructions by finding the right orientation of the object. We

also observed that further improvement can be reached by using non-equiangular

projection sets which can be aligned to the geometric properties of the objects more

accurately.

Further examinations showed, that the direction-dependency is the property of

the objects of study themselves, which can be taken into account when designing

the observation of objects. We found that the directions of the ideal projections

are independent from the reconstruction algorithm used, and the distortions of the

projection data. Furthermore, similar objects have similar direction-dependency

characteristics, i.e., the projections with the same directions would result in outputs

of similar quality, and also projections with angles close to each other hold similar

information content for the reconstruction.

All these properties described above make the direction-dependency of objects

a consistent phenomenon which can be exploited in practical applications for min-

imizing the number of required projections, or increasing the accuracy of recon-

structions is discrete tomography.

The findings of this research have been published in two conference proceed-

ings [59, 60], and two journal papers [61, 62]. Also, based on these results, a new

research direction arose in the field of discrete tomography, called In-Situ tomog-

raphy, where the projection angles are adjusted to the object of study during the

data acquisition, without a blueprint image [10]. Finally, up to date, there have

been three independent references to the findings of the results [21, 28, 46].





Chapter 3

An Energy Minimization

Reconstruction Algorithm for

Multivalued Discrete Tomography

3.1 Introduction

Discrete reconstruction algorithms have to cope with various difficulties of tomog-

raphy. The reconstruction problem commonly requires the restoration of the struc-

ture of an object from incomplete projection data, possibly affected by errors com-

ing from the discrete formulations of the reconstruction problem and stochastic

noise affecting the projection acquisition process. Also, the general case of discrete

tomography is proved to be NP-hard, and efficient algorithms providing perfect

results can only be defined for some special cases [2, 18, 23, 24, 25, 29].

There is a variety of different approaches to overcome these problems. Some

methods provide heuristic strategies for discretizing the results of continuous re-

constructions [11, 12, 48], some other techniques reformulate the task as an opti-

mization problem that can be solved by different meta-heuristics [6, 7, 8, 44]. In

this chapter we describe a reconstruction algorithm, that we developed for the gen-

eral case of DT, and that can perform the reconstruction by minimizing a suitably

constructed energy function.

The basic idea behind this method is based on the DC algorithm of Section 1.2.3.

Unfortunately, the DC method is only capable of reconstructing binary images, and

the aim was to provide a more general algorithm for multivalued discrete tomog-

raphy, that is not restricted to the binary case, and can compete with the current

cutting-edge reconstruction algorithms in the literature. For this, we made signif-

icant modifications to the original concept of the DC algorithm. We provided a

new energy function that can handle more than two intensities in the reconstruc-

45
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tion, and we also designed a novel optimization strategy that can approximate a

reconstruction by an adaptive weighting in a gradient descend process.

3.2 The proposed method

The algorithm uses the algebraic formulation of the reconstruction problem de-

scribed in Section 1.1. Here, the task is equivalent to solving a system of equations

in a discrete domain

Ax = b, A ∈ R
n2×m, x ∈ Φn2

, b ∈ R
m , (3.1)

where Φ = {φ0, . . . , φc} is a set of possible intensities on the reconstruction such

that φ0 < φ1 < . . . < φc, and φ0 = 0 and φc = 1.

Based on the equation system, we formulated the task as the minimization of

an energy function which has its global minima in the correct reconstructions.

3.2.1 The energy function

Using the above notation the energy function can be written as the sum of two

terms

E(x) = f(x) + µ · g(x) , x ∈ [φ0, φc]
n2

, (3.2)

where f(x) is a function formulating the Continuous Reconstruction prob-

lem, and g(x) is a discreteness prior weighted with a µ constant.

In more detail, the first function has a form

f(x) =
1

2
· ‖Ax− b‖22 +

γ

2
· xTLx , (3.3)

with L being a matrix such that

xTLx =

n2
∑

i=1

∑

j∈N4(i)

(xi − xj)
2 (3.4)

and N4(i) giving the set of pixel indexes 4-adjacent with the i-th pixel. Informally,

f(x) consists of an ‖Ax − b‖22 projection correctness (or data fidelity) term, and

an xTLx smoothness prior, that is lower if the reconstructed image contains larger

homogeneous regions.

The second, µ · g(x), term of (3.2) is a formulation of the discreteness, which

propagates solutions containing values only from the Φ predefined set of intensities.

Here, µ ≥ 0 is a constant weight that can be used to balance between the two

separate parts of the energy function, and g(x) is constructed to take its minimal
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Figure 3.1: Example of the gp(z) one-variable discretization function with intensity
values Φ = {0, 0.25, 0.5, 1}.

g(x) = 0 values at discrete solutions (i.e., when x ∈ Φn2
) and higher positive values

otherwise. The g(x) discretizing function is given in the form

g(x) =
n2
∑

i=1

gp(xi) , (3.5)

where gp is a one-variable function composed of a set of forth-grade polynomial

functions, defined over the intervals of Φ in the way

gp(z) =

{

[(z−φj−1)·(z−φj)]
2

2·(φj−φj−1)2
, if z ∈ [φj−1, φj] for each j ∈ {1, . . . , c} ,

undefined, otherwise.

An illustration of a gp function can be seen in Figure 3.1. Informally, this

discretization function assigns a small energy to each pixel if its value in the re-

construction is close to an element of Φ, and a higher energy (increasing with the

distance) otherwise.

3.2.2 The optimization process

The optimization process in the proposed method is based on breaking the energy

function (3.2) into two parts, and prioritizing between them. The first part is

given by the term f(x) defined in (3.3), i.e., the two terms responsible for projection

correctness and smoothness. The other part is provided by the µ·g(x) discretization

term.

The formal description of the algorithm uses the following notations.

• A, b, x, n, and Φ are, respectively, the projection matrix, the vector of pro-

jection values, the vector of image pixels, the number of rows and columns on

the image, and the set of expected pixel intensities, as defined in Section 1.1,
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• ∂g

∂xi

∣

∣

x=x(k) denotes the partial derivative of the discretization term with respect

to the variable xi, i.e., the i-th pixel of the reconstructed image, evaluated at

the x(k) position,

∂g

∂xi

∣

∣

∣

∣

x=x(k)

=
(xi − φj−1)(xi − φj)(2 · xi − φj−1 − φj)

(φj − φj−1)2
, if xi ∈ [φj−1, φj] ,

(3.6)

• G0,σ(z) is an unnormalized Gaussian function with 0 mean and σ deviance,

that is

G0,σ(z) = e
−
(

z2

2·σ2

)

, (3.7)

• γ ≥ 0, µ ≥ 0, and σ ≥ 0 are predefined constants controlling in the energy

function, respectively, the weight of the smoothness term, the weight of the

discretization term, and the deviance of the Gaussian function applying the

adaptive weighting of the discretization,

• λ is an upper bound of the largest eigenvalue of the matrix (ATA+ γL),

• L is a matrix representing the smoothness prior as described in (3.4). Note,

that the Lx multiplication of the x vector of pixel values with the L matrix is

equivalent to the application of a discrete Laplace operator [31] in the image,

i.e., the convolution with the kernel

K =







0 −2 0

−2 8 −2
0 −2 0






.

For obtaining the result, the optimization method uses an adaptive and auto-

matic pixel-based weighting of the discretization term. The detailed description of

the algorithm is given in Algorithm 6. This algorithm will be referred to as MLEM.

The optimization process establishes a connection between the two parts of the

energy function (i.e., the formulation of the continuous reconstruction problem,

and the discretization term), and assumes that the first part has a higher priority.

The first consideration will be to find a reconstruction that satisfies the projections,

while keeping in mind to look for a discrete result, if possible.

Structurally, the algorithm is based on optimizing the energy function with a

projected subgradient method, while applying an automatic weighting between the

two terms of the energy function. In each iteration step of the optimization process,

one can calculate the gradient of the ‖Ax(k) − b‖22 projection correctness term in

the energy function by computing the AT(Ax(k) − b) vector. For each pixel, this

vector explicitly contains an estimation of correctness of the pixel in the current
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Algorithm 6 MultiLevel Energy-Minimization algorithm for DT

Input: A projection matrix; b expected projection values; x(0) initial state;
γ, µ, σ ≥ 0 predefined constants; Φ list of expected intensities; ǫ step size bound;
kmax maximal iteration count.

1: λ← λmax(A
TA+ α · L)

{calculate an upper bound for the eigenvalues of (ATA+ α · L)}
2: k ← 0
3: repeat

4: v← AT(Ax(k) − b)
{calcuate the gradient of the projection correctness term}

5: w← Lx(k) {calcuate the gradient of the smoothness term}
6: for each i ∈ {1, 2, . . . , n2} do

7: y
(k+1)
i ← x

(k)
i −

vi+γ·wi+µ·G0,σ(vi)·
∂g
∂xi

∣

∣

x=x
(k)

λ+µ

8: x
(k+1)
i ←











θ0, if y(k+1)
i < φ0,

y
(k+1)
i , if φ0 ≤ y

(k+1)
i ≤ φc,

θc, if φc < y
(k+1)
i .

9: end for

10: k ← k + 1
11: until ‖x(k+1) − x(k)‖22 < ǫ or k > kmax

12: Apply a thresholding and output TΦ(x(k)) to gain fully discrete results.

state according to the projections (the greater this value is the more responsible

the pixel is for causing incorrect projections). By applying a Gaussian function

on these values we can get a weight, that is smaller when the corresponding pixel

needs further adjustments, and greater if the projection rays connected to that

specific pixel are more or less satisfied. Weighting the discretization with this value

calculated from the gradient of the projection correctness, leads to an automatic

adjustment of the discretizing term for each pixel, omitting it when the projections

are not satisfied, and slowly increasing its effect as the pixel values get closer to an

acceptable reconstruction.

In practice, this means that the method starts with an arbitrary initial state,

and first approximates a continuous reconstruction based on the given set of pro-

jections. Later, as the projections of the intermediate image get closer to the

described vectors, the automatic weighting of the discretizing term begins to in-

crease for each pixel. Thus, the pixels will be slowly steered towards discrete values

of Φ. The maximal strength of the discretizing term, and the speed at which the

discretizing term gets strengthened during the process, are controlled by the µ and

σ parameters, respectively.

Note, that it is possible that the process will get stuck in a local minimum

of the energy function. In this case the iteration will stop in a semi-continuous

solution, where some pixels are properly discretized, and the rest of them are left
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a) b) c)

Figure 3.2: Some of the software phantoms used for testing. a) a binary image; b)
a multivalued image from [11]; c) the well-known Shepp-Logan head phantom (see,
e.g., page 53 of [39]).

continuous because the projection correctness did not allow a full discretization.

Thus, after the optimization process, the discretization is completed by applying a

segmentation to the final iteration state x(k), to gain a fully discrete reconstruction

result. This is done by simply using the TΦ(x(k)) thresholding operation (1.9).

3.3 Experimental results

We conducted experiments to compare the proposed method to other reconstruc-

tion algorithms defined in Section 1.2. On one hand, on binary images, we per-

formed experiments with the DC algorithm, to see how the performance of the

original and the new algorithms are related to each other. Unfortunately, due to

the limitations of the DC algorithm (as it is not suited for multivalued discrete

tomography), we could only do this evaluation for binary images. Also, we ran

tests with the DART in order to compare the reconstruction of multivalued images

with.

We performed the evaluations by using the 25 phantom images of Appendix C.

Three highlighted phantoms can be seen in Figure 3.2. The reconstructions were

performed from projection sets containing 2 to 18 projections, distributed equian-

gularly on the half circle. Assuming that the projection with 0◦ angle corresponds

to the vertical rays, these equiangular projection sets (in accordance with the no-

tation of (2.2)) can be defined for each p number of projections with the angle

set

S(p, 0◦) =

{

0◦ + i · 180
◦

p

∣

∣

∣

∣

i = 0, . . . , p− 1

}

. (3.8)

In the tests, the parameters of the DART and DC algorithms were mostly set

from the literature, with slight adjustments to assure the best performance of all the

methods. The parameters of the DC algorithm were µ∆ = 0.1, γ = 2.5, ǫin = 0.1

and ǫout = 0.01.
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Results for Figure 3.2a Results for Figure 3.2b

Results for Figure 3.2c

Figure 3.3: RME values of the compared DC, DART, and MLEM reconstruction
algorithms, plotted according to the number of projections.

With the DART, 10 iterations of the SIRT were used for producing the con-

tinuous reconstructions, we applied the same smoothing kernel as described in

Section 2.3, and used the stopping criteria k∆ = 10, and kmax = 500.

For the MLEM method, γ = 2.5, µ = 20, σ = 1, ǫ = 0.001, kmax = 5000 values

were used and in the x0 initial solution all the x0
i positions were set to the same

value in the middle of the range of possible intensities (i.e., x0
i = (φc − φ0)/2, for

all i ∈ {1, ..., n2}). With these parameter settings we experimentally found the

algorithm to be convergent in all the test cases.

We implemented all three algorithms in C++ with GPU acceleration using the

Nvidia CUDA C sdk. The computation was performed on a PC, with an Intel

Q9500 CPU, and an Nvidia Geforce GTS250 GPU.

The reconstructed results were compared visually, and by using the Relative

Mean Error (RME) measurement defined in (1.13). Also, we measured the com-

putation times of the algorithms in each case. Some of the numerical results can be

seen in Table 3.1, while Figure 3.3 shows the same data graphically in diagrams,

and Figure 3.4 and Figure 3.5 give some examples of the reconstructed results.

The given data is only a representative sample from the tests, but the findings are

general for all the results.

Based on the results, we deduced the following. In case of using very few pro-
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Table 3.1: Reconstruction error and computation time of the compared algorithms,
reconstructing the phantoms of Figure 3.2. The error measurement is calculated by
the RME value, and the computational time is given in seconds. Reconstructions
of the DC algorithm could only be performed on binary test images. In each row,
the best result is highlighted in bold.

Figure 3.2a
DC DART MLEM

P. Num. RME Time (s) RME Time (s) RME Time (s)
2 0.907 12.1 0.856 6.6 1.074 10.1
3 0.220 12.4 0.529 5.4 0.308 11.2
4 0.012 13.6 0.449 8.0 0.224 11.8
5 0.003 12.5 0.299 9.5 0.079 12.7
6 0.002 8.1 0.002 2.7 0.008 7.6
9 0.002 6.5 0.000 0.8 0.003 4.6
12 0.000 7.2 0.000 0.9 0.001 4.8
15 0.000 8.7 0.000 1.2 0.001 5.8
18 0.000 8.7 0.000 0.9 0.001 5.8

Figure 3.2b
DC DART MLEM

P. Num. RME Time (s) RME Time (s) RME Time (s)
2 - - 0.629 6.7 0.527 10.4
3 - - 0.451 8.0 0.419 11.4
4 - - 0.434 8.6 0.354 12.2
5 - - 0.364 9.4 0.264 13.2
6 - - 0.270 10.2 0.116 13.8
9 - - 0.007 4.5 0.019 15.6
12 - - 0.004 14.9 0.010 11.6
15 - - 0.003 2.3 0.008 11.6
18 - - 0.001 21.3 0.006 10.9

Figure 3.2c
DC DART MLEM

P. Num. RME Time (s) RME Time (s) RME Time (s)
2 - - 0.844 6.7 0.857 9.3
3 - - 0.773 8.2 0.825 6.0
4 - - 0.753 8.8 0.810 8.0
5 - - 0.733 9.7 0.742 10.2
6 - - 0.741 10.2 0.700 12.7
9 - - 0.570 12.6 0.468 14.7
12 - - 0.339 14.5 0.248 11.4
15 - - 0.220 18.0 0.163 8.6
18 - - 0.157 20.8 0.140 8.0
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DC DART MLEM
5 projections 5 projections 5 projections

DC DART MLEM
6 projections 6 projections 6 projections

Figure 3.4: Reconstructions of a binary phantom (Figure 3.2a), produced by the
DC, DART, and MLEM algorithms, from projection sets containing different num-
bers of projections.

jections (i.e., 2-3 projections for simple images like the phantoms of Figure 3.2a-b,

and up to 5-6 projections for more complex ones like Figure 3.2c), there was ob-

viously not enough information for accurate reconstructions. Usually, the DART

produced the best results, but this seems to be irrelevant since the reconstruction

error is unacceptably high.

When increasing the number of projections, the amount of information in the

data was also increasing and the results provided by the algorithms began to im-

prove as well. The results of the optimization based algorithms (DC and MLEM)

improved faster with an increasing number of projections. Therefore, these two

algorithms gave accurate reconstructions from fewer projections than the DART

(see, Table 3.1). Later, when there were even more projections with more than

sufficient information for an accurate reconstruction, again the DART provided

the best results, by performing slightly better than the other two methods.

Comparing the energy minimization based methods, on binary images the DC

algorithm worked better than the MLEM. The DC algorithm is specialized for

binary tomography, and aims a full binarization in the optimization process. The

drawback is that the original DC algorithm is not capable of performing multivalued

discrete tomography at all.

On the other hand, the proposed method needs a different approach for having
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Original phantom # projections DART MLEM

6

9

15

18

Figure 3.5: Reconstructions of multivalued phantoms (Figure 3.2b-c) produced
by the DART and MLEM algorithms, from projection sets containing different
numbers of projections.
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a) b) c)

Figure 3.6: Continuous results of the MLEM algorithm, without the final threshol-
ding. The images a), b) and c) were reconstructed from 5, 6, and 15 projections,
respectively.

the generality to be able to reconstruct multivalued images, and it only makes an

approximate discretization. This means that in a later state of the energy mini-

mization process – without the final thresholding – the output is a semi-discrete,

semi-continuous result. This intermediate result is produced by taking into account

that we are looking for a discrete solution, but it still contains some uncertainty of

the values (some of the examples of such results can be seen in Figure 3.6). This

kind of soft discretization is necessary for the multivalued reconstruction in our

method, but it reduces the accuracy of the algorithm on binary images.

In addition, we also performed tests by distorting the projection data with the

additive Gaussian random noise described in Section 1.4. As before, we applied

the noise levels set by σ ∈ {0.5, 1.5, 5.0} values which meant 1.25%, 3.75% and

12.5% noise strengths compared to the projection data. We compared the results

of the three reconstruction algorithms by plotting the RME values according to

the number of projections. The MLEM reconstruction method proved to be ro-

bust in the tests against noise-affected projection data. In case of low projection

counts, with an increasing strength of noise we found that the MLEM algorithm

provided much better results than the other two methods. The robustness might

be explained by the proposed optimization process and discretizing function. As

mentioned above, the MLEM performs a soft discretization and at the end of the

optimization process the pixel values are allowed to take continuous results. This

soft discretization allows the pixel values to absorb a small degree of noise and thus

projection errors do not have to accumulate in falsely classified pixels. Also, at the

end of the process the pixel values are thresholded, and the absorbed noise will not

show up in the final reconstruction. A sample of the resulted diagrams can be seen

in Figure 3.7.

Although, with a high projection count (which meant much more projections

than it was necessary for an accurate reconstruction) the optimization-based algo-

rithms – the DC and the MLEM – gave slightly worse results, while the DART
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Results of Figure 3.2a Results for Figure 3.2b

with noise level σ = 0.5 with noise level σ = 0.5

Results of Figure 3.2a Results for Figure 3.2b

with noise level σ = 1.5 with noise level σ = 1.5

Results of Figure 3.2a Results for Figure 3.2b

with noise level σ = 5.0 with noise level σ = 5.0

Figure 3.7: RME values of reconstruction algorithms from projection data affected
by noise, plotted according to the number of projections.
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could reach further small improvements of the quality.

Finally, regarding the computational time of the algorithms, we found that

depending on the conditions of the reconstruction and the image processed, one

or another algorithm gave results faster than the other ones. Still, in general, the

time requirements showed to be similar.

In summary, the performance of the algorithms were similar in the tests. All

three methods can yield highly accurate reconstructions. Nevertheless, we found

that the DC and MLEM methods gave slightly better results when the reconstruc-

tions were performed from a low number of projections, and the proposed MLEM

method proved to be highly robust against noise in the projections. On the other

hand, the results of DART were better in case of using a higher number of projec-

tions. This diversity makes all the algorithms valuable.

3.4 Summary

We proposed a new algorithm for multivalued discrete tomography, that is based

on the minimization of a suitably constructed energy function. We compared this

method to two existing reconstruction algorithms from the literature by performing

experimental tests on a set of software phantoms. The results show that, in the

case of multivalued discrete tomography, the proposed method finds an accurate

result from less projections than the other tested algorithms, and it is highly robust

when the projection data is affected by a random noise. Therefore, it should be

considered as a useful reconstruction technique.

Also note, that the proposed optimization process did not exploit the fact that

the energy function is constructed for discrete reconstruction problems, and it could

be used as a meta-heuristic in different cases of optimization.

The results of this chapter were published in two conference proceedings [63, 64].





Chapter 4

Local and Global Uncertainty in

Binary Reconstructions

4.1 Introduction

In many cases of binary tomography, the amount of projection data can be insuffi-

cient for an accurate reconstruction. This kind of incomplete information makes it

essential to have methods capable of assessing and evaluating the projection data

from the viewpoint of completeness and reliability. In [9] the authors gave an upper

bound on the variability of binary reconstructions from a given projection set, that

determines a bound for the expected accuracy of the reconstructed results.

Here, we give a probabilistic description of the uncertainty problem in the field

of binary tomography, and provide a method that can approximate the local uncer-

tainty map in binary reconstructions. By this method, one can gain information on

how the projection data determines each part of the reconstructed image separately,

and estimate the expected accuracy of the reconstructed parts. This measurement

is currently unique in the literature, as to the best of our knowledge related work

only exist for measuring the overall reliability of reconstructions.

We also introduce a formula to summarize the local uncertainties into a global

measure, that describes the overall information content of a projection set. Finally,

we provide an experimental validation of the described methods, and give some

possible applications.

4.2 The uncertainty problem

As before, we will use the algebraic formulation of the Binary Reconstruction

problem defined in Section 1.1, and assume that the object to be reconstructed is

represented on an n× n sized image, and the task can be represented by a system

59
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of equations

Ax = b, A ∈ R
n2×m, x ∈ {0, 1}n2

, b ∈ R
m . (4.1)

From a mathematical point of view, the above formulation of the Binary Re-

construction problem defines a search space of n2 dimensions (a dimensionality

that equals to the number of pixels). In this search space, the correct reconstruc-

tions lie in the intersection of anH hyperplane determined by the Ax = b equation

system, and a B = {0, 1}n2
set of binary points.

Assume, that only the – yet unknown – original image of the object of study

is accepted as a correct solution. If the projections do not determine a unique

reconstruction, then the correct result can be regarded as a random element of the

set of reconstructions with the correct projections. In this way, each binary point

of x ∈ B can be assigned a

P (x |A,b) (4.2)

probability of that reconstruction being the correct one. Furthermore, it is possible

to calculate for each i-th pixel, the probability of that pixel taking a value 1 or 0

in the correct solution, as

P (xi = 1 |A,b) =
∑

y∈B

yi=1

P (y |A,b) , (4.3)

and

P (xi = 0 |A,b) = 1− P (xi = 1 |A,b) . (4.4)

Also, the entropy on each pixel can be determined as

H(xi) =− P (xi = 0 |A,b) · log2(P (xi = 0 |A,b))−
− P (xi = 1 |A,b) · log2(P (xi = 1 |A,b)) , (4.5)

which will be regarded as the measurement of the uncertainty of the pixel. This

measure is independent from the object of study itself and it only corresponds

to the information content in the projections. The pixels with a high entropy

are ambiguous, and their values cannot be determined for certain, based on the

projections.

The above measures can be calculated for all the pixels of the whole recon-

structed image as well. The probabilities of (4.3) give a probability map showing

for each pixel the likelihood of that pixel to take a value of 1, and the values of (4.5)

provide an uncertainty map describing the local uncertainty of the reconstruction.

In the ideal case, the calculation of the probability-, and uncertainty-maps

would be straightforward. The elements of the (H ∩ B) intersection should have

a P (x |A,b) probability inversely proportional to the size of (H ∩ B) – i.e., the
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number of binary reconstructions satisfying the projections – and all other elements

of (B \ H) have a probability of 0, that is,

P (x |A,b) =

{

1
|H∩B|

, if x ∈ (H ∩ B),
0, otherwise.

(4.6)

In this case, the probability and uncertainty maps could be determined by directly

applying (4.3), (4.4), and (4.5). Unfortunately, the exponential size of the B binary

search space makes a direct approach impossible.

In practice, the task is even more complex. Binary reconstructions are per-

formed by heuristic algorithms which only approximate one element of the set of

solutions. This means that they can output results, which are placed only close to

the H hyperplane. Naturally, the closer a solution is to H (i.e., the better it sat-

isfies the projections) the higher its probability should be. Therefore, P (x |A,b)

should correspond to the chance for the reconstruction algorithms to find a specific

x solution.

This task is still too complex to be solved. However, it is possible to use a

heuristic method to estimate the likelihood, that an algorithm should assign a 0

or 1 value to a pixel, and thus to approximate the uncertainty map. In the next

section we will provide one such algorithm for approximating the probabilities of

(4.3), and by this to approximate the local uncertainties of reconstructions.

4.3 Approximating local uncertainty in binary re-

constructions

In Chapter 3, we described an algorithm for discrete tomography, that is capable

of reconstructing images by minimizing an energy function. With some minor

modifications, this method is also capable of approximating the pixel uncertainties

of binary reconstructions, by producing a “least binary” result.

This modified algorithm minimizes an energy function of the form

E(x) = 1

2
‖Ax− b‖22 + µ · g(x) . (4.7)

where A, b and x are as defined in Section 1.1, g(x) is a function holding informa-

tion on the discreteness of the reconstruction, and µ is the weight of the discreteness

prior. Here, the first ‖Ax − b‖22 term is a data fidelity, or projection correctness

term, which takes its minima where the solution satisfies the projections, i.e., at

the (H ∩ B) intersections.

The g(x) is a term representing some information on the discreteness of the
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problem. In similar optimization based reconstruction methods (like the ones in

[55, 63], and the MLEM algorithm of Chapter 3), this is a discretizing term tak-

ing its minimal values in discrete points. Here, we would rather call this term

a discreteness prior and emphasize, that it is not necessary to propagate discrete

solutions with it. In fact, with the different choice of g(x) one can reach different

effects on the result, and gain different kinds of extra information from the recon-

structions. The formal description of the modified optimization process is given in

Algorithm 7.

Algorithm 7 Energy-Minimization Algorithm for Discrete Tomography
Input: A projection matrix; b expected projection values; x0 initial state; µ, σ ≥ 0
predefined constants; ǫ step size bound; kmax maximal iteration count.

1: λ← an upper bound for the largest eigenvalue of the (ATA) matrix.
2: λ← λmax(A

TA) {calculate an upper bound for the eigenvalues of (ATA)}
3: k ← 0
4: repeat

5: v ← AT(Ax(k) − b)
{calculate the gradient of the projection correctness term}

6: for each i ∈ {1, 2, . . . , n2} do

7: y
(k+1)
i ← x

(k)
i −

vi+µ·G0,σ(vi)·
∂g
∂xi

∣

∣

x=x
(k)

λ+µ

8: xk+1
i ←











0, if y(k+1)
i < 0,

y
(k+1)
i , if 0 ≤ y

(k+1)
i ≤ 1,

1, if 1 < y
(k+1)
i .

9: end for

10: k ← k + 1
11: until ‖x(k+1) − x(k)‖22 < ǫ or k > kmax

The optimization process of this algorithm is based on a gradient method with

an automatic weighting between the projection correctness term, and the discrete-

ness prior. In each iteration step, the current state is moved towards the gradient

descent of E(x) while weighting the ∂g

∂xi

∣

∣

x=x(k) gradient step of the discretizing term

based on the projection correctness. If a pixel lies on projection lines with cor-

rect projection values, then we give a bigger strength to the discreteness prior of

that specific pixel. If a pixel lies on projection rays with incorrect values then its

discreteness prior is weakened, or even disabled. As a consequence, we get an al-

gorithm that aims to find a solution that satisfies the discreteness prior, but above

all aims for maintaining the projection correctness. The basic concept of this algo-

rithm is the same as of Algorithm 6, but the smoothness prior was omitted here,

and we changed the discreteness prior as well.

Using the probabilistic concept of Section 4.2 and Algorithm 7, we define a

method for approximating the pixel uncertainties in binary tomography. In case

of binary tomography, we are looking for results satisfying the given projections
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such that the result should be taken from the binary domain. Trying to find a

reconstruction that has the correct projections, but in which the pixel values are

the farthest away from the {0, 1} set, we can measure how easy it is to change the

pixel values. If a pixel value can easily be changed, then that pixel is evenly likely

to be 0 or 1 in the final result. With this concept, we can measure the variability of

pixels from only the projections, even without any prior knowledge of the original

object.

By the framework of Algorithm 7 this can be done by setting a discreteness

prior that discourages close-to-binary results. One such prior can be given by the

function

g(x) =
1

2
·
∥

∥

∥

∥

x− 1

2
e

∥

∥

∥

∥

2

2

, (4.8)

where e stands for a vector with all n2 positions having a value of 1.

When the least binary result x is available, calculating the entropy

H(xi) = −(xi · log2(xi) + (1− xi) · log2(1− xi)) , (4.9)

for each pixel value, should approximate the values of the uncertainty map.

Finally, note that – although the projection correctness term has a higher pri-

ority in the algorithm than the discreteness prior – the process uses a weighting

between the two terms of the energy function, and in the end, the acquired solu-

tion is not guaranteed to strictly satisfy the projections, it rather just approximates

them.

4.4 Validation of the results

For the validation of the proposed method, we performed a set of simulation exper-

iments. We produced projection sets of the binary phantom images of Appendix C

and calculated the local uncertainties belonging to the generated projection data.

We also needed another method for measuring the local uncertainties of the

reconstructions to compare the proposed algorithm with. Unfortunately, we could

not find any reference to such algorithms in the literature. Therefore, we have cho-

sen to perform a random sampling of the set of possible solutions, and statistically

approximate the probabilities given in (4.2).

4.4.1 Stochastic approximation of pixel uncertainties

For the random sampling of the search space, we made several reconstructions from

the same projection data with a randomized reconstruction algorithm. That way
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we could get random elements of the space of possible reconstructions and gain

statistics on the pixel intensities.

The randomized reconstructions were performed by a Simulated Annealing

based method that is the slightly modified version of the algorithm described in

[68]. It performs the reconstruction by minimizing an energy function of the form

C(x) = ‖Ax− b‖ , x ∈ {0, 1}n2

(4.10)

with Simulated Annealing [50]. The pseudo code of this method is given in Algo-

rithm 8.

Algorithm 8 Reconstruction algorithm based on Simulated Annealing
Input: A projection matrix; b expected projection values; Tstart, Tmin starting and
minimum temperatures; Tfactor multiplicative constant for reducing temperature;
Robjective bound for stopping criteria based on the ratio of the final and starting
energy function values

1: x← (0, . . . , 0)T {set an initial state}
2: T ← Tstart {set the starting temperature}
3: Cstart ← Cold ← ‖Ax− b‖22 {calculate the energy of the starting state}
4: repeat

5: for i = 0 to n2 do

6: j ← Random({1, . . . , n2}) {choose a random position j in the vector x}
7: x̃← x {make a copy of the current state}
8: x̃j ← (1− xj) {alter the intensity of the randomly chosen pixel}
9: Cnew ← ‖Ax̃− b‖22 {calculate the energy after the modification}

10: z ← Random([0, 1]) {generate a random number from the [0, 1] interval
with uniform distribution}

11: ∆C ← (Cnew − Cold) {calculate the change of the energy}
12: if ∆C < 0 or exp(−∆C/T ) > z then

13: x ← x̃ {accept the new state with a probability based on the energy
change and temperature}

14: Cold = Cnew

15: end if

16: end for

17: T ← T · Tfactor {lower the temperature}
18: until T ≤ Tmin or (Cnew/Cstart) ≤ Robjective

Due to the stochastic nature of this process, each output of Algorithm 8 is

a random element of the solution space. Reconstructions better satisfying the

projections will have a higher probability to be found and these probabilities should

correspond to (4.2). Therefore, running this algorithm many times gives a faithful

sampling of the search space, and averaging the pixel values would approximate

the desired probabilities.
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a) b) c)

d) e) f)

Figure 4.1: Highlighted software phantoms used for testing the uncertainty mea-
sure.

4.4.2 Test environment

In the evaluation our uncertainty measure we took 22 binary phantom images from

Appendix C, produced their projection sets with different numbers of projections,

and computed the pixel uncertainties with Algorithms 7 and 8. Some highlighted

images can be seen in Figure 4.1.

For performing the computation, the parameters of Algorithm 7 were set em-

pirically. We used the initial x0 = (0.5, . . . , 0.5)T vector in the beginning of the

optimization, and chose the values µ = 1 σ = 0.25, ǫ = 0.001, and kmax = 500.

For the Simulated Annealing based method, we used the parameter settings as

described in [68], except that we did not apply a smoothness regularization term

in the process. More exactly, the parameter values were Tstart = 4.0, Tmin = 10−14,

Tfactor = 0.97, Robjective = 10−5. Moreover, for each given projection set we av-

eraged the outputs of a 100 runs of the optimization process to approximate the

probability maps explained in Section 4.2.

The implementation of Algorithm 7 was coded in C++ with GPU acceleration

with the Nvidia CUDA SDK. Algorithm 8 on the other hand was not suited for

parallel implementation and GPU acceleration, and it was coded in MATLAB.

For comparing the outputs of Algorithms 7 and 8, the average pixel difference

was used

P(x,y) = 1

n2

n2
∑

i=1

|xi − yi| , (4.11)
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that is a measure for the difference of two images x and y, and takes values between

0 and 1. If the two images are identical, then P(x,y) takes a value of 0, and this

value increases es the difference between the two images is getting more and more

significant.

4.5 Results for local uncertainties

At the end of the optimization process of Algorithm 7, and after averaging 100

results of Algorithm 8, we got continuous reconstructions approximating the prob-

ability maps. A representative sample of these images is given in Figure 4.2. Sec-

ond, when applying (4.9) to the pixels of the approximated probability maps, we

got uncertainty maps of the reconstructions, showing for each pixel its vagueness

with the given projection data. Samples of the uncertainty maps are shown in

Figure 4.3.

We used the average pixel difference (4.11) to compare each probability map

provided by Algorithm 7 to the corresponding probability map of Algorithm 8, and

likewise for the uncertainty maps of the two methods. Some of these evaluations

can be seen in Table 4.1.

The results show that there is a strong correspondence between the two types

of uncertainty measures. For the pairs of probability and uncertainty maps the

P(x,y) values consistently showed small difference between the results of the two

algorithms and took values close to 0. This is in accordance with the samples of

Figure 4.2 and Figure 4.3 as the corresponding image pairs show no significant

differences. Although we only showed a sample of the results, the same tendency

could be observed for the rest of the test images as well.

Regarding the time requirements of the methods, the proposed algorithm took

about 10-20 seconds for measuring each uncertainty map on a PC with an Intel

Q9500 CPU, accelerated by an Nvidia GTX250 GPU. On the other hand, the

simulated annealing based algorithm was not suitable for GPU acceleration and

running it 100 times (with the same configuration) for measuring probabilities took

about 2 days for each image and projection number. Thus, the entire evaluation

process took several months on a cluster of computers.

As a conclusion we stress, that the proposed method is capable of acceptably

approximating the local uncertainties of reconstructions in a reasonable time. One

could also use the Simulated Annealing based random sampling of the space of

reconstructions, but the high computation time requirement of this method makes

it impractical in real applications and we also used it for validation purposes only.
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Original image # projections
Probability map

from Algorithm 7 from Algorithm 8

4

5

5

6

6

9

Figure 4.2: Reconstruction of images, containing pixel probabilities. White areas
should with high probability take the intensity value 1, black areas are with high
probability 0 in the reconstructions, while intensity values belonging to grey areas
are not determined by the projections.
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Original image # projections
Uncertainty map

from Algorithm 7 from Algorithm 8

4

5

5

6

6

9

Figure 4.3: Uncertainty maps of projection sets. Dark areas are determined by the
projections, while brighter areas are not, and hold uncertainty.
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Table 4.1: Average pixel difference between the probability- and uncertainty- maps
given by the two uncertainty measurement methods.

Difference between the probability maps
# projs. Fig. 4.1a Fig. 4.1b Fig. 4.1c Fig. 4.1d Fig. 4.1e Fig. 4.1f

2 0.021 0.033 0.034 0.005 0.026 0.035
3 0.020 0.038 0.040 0.007 0.030 0.035
4 0.016 0.022 0.032 0.005 0.024 0.033
5 0.018 0.026 0.035 0.005 0.024 0.035
6 0.014 0.019 0.033 0.004 0.018 0.034
9 0.007 0.013 0.033 0.003 0.015 0.032
12 0.005 0.008 0.025 0.003 0.007 0.029
15 0.004 0.006 0.027 0.002 0.006 0.029
18 0.003 0.005 0.021 0.001 0.005 0.029

Difference between the uncertainty maps
# projs. Fig. 4.1a Fig. 4.1b Fig. 4.1c Fig. 4.1d Fig. 4.1e Fig. 4.1f

2 0.038 0.088 0.069 0.017 0.047 0.057
3 0.053 0.095 0.084 0.030 0.072 0.059
4 0.046 0.065 0.073 0.017 0.059 0.064
5 0.049 0.078 0.076 0.019 0.067 0.066
6 0.046 0.066 0.082 0.015 0.061 0.069
9 0.030 0.051 0.088 0.012 0.053 0.070
12 0.022 0.040 0.080 0.013 0.033 0.071
15 0.016 0.030 0.088 0.009 0.026 0.074
18 0.013 0.021 0.076 0.007 0.020 0.077

4.6 Measuring global uncertainty of binary recon-

structions

With the summation of the pixel values of the local uncertainty maps, one can

also get a global description of the uncertainty of the whole reconstruction. For

this purpose, we defined a formula with the normalized sum of the pixels of the

uncertainty map

U(x) =
∑n

i=1H(xi)
1
p

∑m
j=1 bj

, (4.12)

where p is the number of projections, and H(xi) is the uncertainty of the i-th pixel,

and bj is the j-th projection value.

This measurement takes the pixel uncertainties, adds them up, and normalizes

the sum with the approximated number of non-zero values on the original image.

In the ideal case the sum of the projection values for each projection would contain

the number of ones in the original image. Due to the pixel-based representation
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of the image, the projection data can hold rounding and representation errors,

therefore we took the average of the projection value sums for the normalization.

For the validation of the global measurement we performed an experimental

test by reconstructing the binary software phantoms in Appendix C from their

different projection sets, and compared the accuracy of the resulted reconstructions

with the global uncertainty measurement. If the global uncertainty measurement is

correct, then projection sets with smaller uncertainty should lead to smaller error

when an actual reconstruction is performed, and there is a connection between the

uncertainty of a projection set and the actual reconstruction.

4.6.1 Compared reconstruction algorithms

In the experiments we used the TSIRT, DC, and DART algorithms to compare the

global uncertainty measure with. The parameters of the reconstruction algorithms

were set empirically to similar values as in the previous chapters.

In case of the TSIRT algorithm, we used the ǫ = 0.01, and kmax = 1000

stopping parameters. With the DART algorithm, the continuous reconstruction

were performed by 10 iterations of the SIRT, and the smoothing operation between

the steps were calculated with a convolution with the kernel

K =







1/16 1/16 1/16

1/16 1/2 1/16

1/16 1/16 1/16






,

and we applied the parameter values k∆ = 10 and kmax = 500. In case of the DC

algorithm, we used the parameters µ∆ = 0.1, γ = 0.25, ǫin = 0.1 and ǫout = 0.01.

4.6.2 Test data

For each phantom image, we produced equiangular projection sets with projection

numbers ranging from 2 to 18, and for each projection number we used integer

starting angles between 0◦ and ⌈180◦/p− 1◦⌉. Similar experiments were performed

in Chapter 2 to test the direction-dependency of binary tomographic reconstruction

algorithms. We used these projection sets, because previous results indicated that

their information content varies on a wide interval, that can be used for checking

the uncertainty measure. Also, the previous works (see, Chapter 2 and [5]) showed

that there is a strong correspondence between the accuracy of the reconstructed

results and the information content of projections, that made this type of tests

justifiable.

After performing the reconstructions with the three algorithms described above,
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Results from 3 projections

Results from 4 projections

Figure 4.4: RME value, and uncertainty plots of the reconstructions of the phan-
tom in Figure 4.1d. Each curve shows measurements for a specific algorithm,
computed from projection sets with the same number of projections, but different
starting angles.

we needed to measure the accuracy of the results. For this purpose, we used the

Relative Mean Error (RME) measurement (1.13).

4.6.3 Results

We compared the results in different ways. First, for each projection set of the

same phantom image having the same number of projections but different starting

angles, we plotted diagrams that showed the reconstruction errors and uncertainty

measures with respect to the change of the starting angle. The same approach

was used in Chapter 2 to examine if there is a correlation between the results of

different reconstruction algorithms. Some of the plots can be seen in Figure 4.4.

If there is a correspondence between the global uncertainty measure and the

reconstructions, then the curves of the diagrams of Figure 4.4 should have similar

slopes. The curves show that, indeed, this is the case which indicates that the
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uncertainty measure is in accordance with the accuracy of the results.

With the interpretation of the results, we should also note, that the global

uncertainty measure and the reconstructions provide different types of information

about the projection data. The global uncertainty measure, on one hand, is an over-

all description of the information content of the projections which is independent

of the reconstruction of the object, and can be calculated without any knowledge

about the original object. Reconstruction algorithms, on the other hand, choose

only one possible image among the ones satisfying the projections. This can be

the original image but images differing form the original one to a high degree are

also possible to be chosen, with a probability depending on the parameters of the

algorithm. Therefore, a large number of reconstructions is necessary to draw a

connection between the global uncertainty measure, and the RME value.

We also evaluated the correspondence between the results by numerical tools.

We took the global uncertainty measures given for the projection sets of each

phantom image, paired them up with the RME values of the reconstructions from

the different algorithms, and calculated the rx,y correlation coefficients (1.14) for

the given data vector pairs. The results are summarized in Table 4.2.

Most of the entries in Table 4.2 are close to 1, which indicates that the global

uncertainty measure was correct in the test cases, and describes the information

content of the projections. The only outlier is Phantom 15 that the SIRT algorithm

was not able to reconstruct in most cases, therefore we could not get enough data

for a proper statistical analysis.

4.7 Possible applications

With the uncertainty maps, one can gain useful additional information on the

projection set and the reliability of the reconstructions. This information can be

used in several ways for aiding the reconstructions in practical applications of binary

tomography.

4.7.1 Using the local uncertainty map in DART reconstruc-

tions

The uncertainty map and the probability map together give prior knowledge of the

pixels. Pixels with a low uncertainty are well determined and their values can easily

be read from the probability maps. Pixels with high uncertainty, on the other hand,

are not well determined and some additional information or prior knowledge about

the object is needed to reconstruct them. With this idea in mind, the uncertainty

maps can be used to highlight the areas of the image that need more consideration
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Table 4.2: Correlation between our Global Uncertainty (GU) measure and the
accuracies of reconstruction algorithms (TSIRT, DC, DART), tested on the 22
binary phantom images of Appendix C. Each column shows correlation between
the Global Uncertainty and one algorithm.

GU↔TSIRT GU↔DC GU↔DART
Phantom 1 0.93 0.99 0.96
Phantom 2 0.82 0.99 0.99
Phantom 3 0.93 0.98 0.99
Phantom 4 0.89 0.99 0.98
Phantom 5 0.89 0.97 0.97
Phantom 6 0.88 0.94 0.89
Phantom 7 0.89 0.99 0.98
Phantom 8 0.93 0.98 0.95
Phantom 9 0.94 0.99 0.99
Phantom 10 0.98 0.99 0.98
Phantom 11 0.95 0.97 0.98
Phantom 12 0.98 0.91 0.88
Phantom 13 0.90 0.99 0.96
Phantom 14 0.87 0.91 0.90
Phantom 15 0.35 0.96 1.00
Phantom 16 0.96 0.94 0.90
Phantom 17 0.90 0.91 0.84
Phantom 18 0.91 0.98 0.98
Phantom 19 0.93 0.98 0.96
Phantom 20 0.89 0.95 0.94
Phantom 21 0.94 0.97 0.96
Phantom 22 0.82 0.95 0.97

in the reconstruction, and neglect parts which are precisely determined. This might

be used to improve both the accuracy and speed of reconstruction algorithms.

For example, the DART algorithm (defined in Section 1.2.1) uses an iterated

thresholding of continuous reconstructions, by fixing the inner pixels of the objects,

and adjusting the boundaries. Coming from the concept of the algorithm, the

DART has difficulties in finding small holes in large homogeneous areas of objects,

or small objects in large empty areas. An improved version of the DART tries to

overcome this problem by stochastic modifications [12], but the uncertainty map

could also be used to highlight the problematic areas of the image, and improve

the results.

Based on this argument, we implemented an uncertainty aided binary version of

the DART algorithm, which also takes the local uncertainty map into account. We

simply defined an extra parameter ν that will refer to a number of DART iterations.

Then, in every k-th iteration of the process, we determine the set of pixel indices

which have an uncertainty greater than a bound U(xk
i ) >

k
ν

and do not threshold
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these pixels. As a consequence, we get a method that postpones the thresholding

of pixels having higher uncertainties, and as the process advances, is increases the

limit on the uncertainty. Finally, after the iteration count reaches ν, the process

will be equivalent with the original DART algorithm, but the previous process is

likely to have found the small areas which caused difficulties. This modification

itself is sufficient to gain an improved DART algorithm that does not have the

weakness of the original one and can cope with small areas in the reconstruction.

The detailed description of this method is given in Algorithm 9.

Algorithm 9 Binary Uncertainty aided Discrete Algebraic Reconstruction Tech-
nique (BU-DART)

Input: A projection matrix; b expected projection values; x(0) initial solution;
k∆ iteration window size of the stopping criteria; kmax maximal iteration count; ν
uncertainty threshold

1: Compute a starting reconstruction x(0) using an algebraic reconstruction
method

2: Compute the uncertainty H(xi) of each xi pixel based on the b projection data
3: k ← 0
4: repeat

5: k ← k + 1
6: Compute a thresholded image s(k) = TΦ(x(k−1))
7: Compute I(k) set of non-boundary pixels of s(k)

8: Compute J (k) =
{

i | U(xi) > 1− k
ν

}

index set of uncertain pixels
9: for all i ∈ {1, . . . , n2} do

10: y
(k)
i ←

{

s
(k)
i , if i ∈ (I(k) \ J (k)),

x
(k−1)
i , otherwise.

11: end for

12: Using y(k) as a starting solution, compute a continuous reconstruction x(k)

while keeping the pixels in (I(k) \ J (k)) fixed
13: Apply a smoothing operation to the pixels that are not in (I(k) \ J (k))
14: until s(k) = s(k−k∆) or k > kmax

15: return the segmented image TΦ(x(k−1))

Some examples with this modified DART algorithm can be found in Figure 4.5,

showing that using the uncertainty map really did improve the performance of the

DART algorithm in the binary case.

4.7.2 Verifying the results of reconstructions

Another possible application arises from the field of non-destructive testing of ob-

jects. Here, discrete (or binary) tomography is used to determine the inner struc-

ture of industrial objects looking for defects in the material (e.g., fractures and

bubbles). In this case, the uncertainty maps can be used together with the results

of a binary reconstruction algorithm to check the accuracy at the critical parts
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Original phantom DART result Uncertainty Map Modified DART

Original phantom DART result Uncertainty Map Modified DART

Figure 4.5: Results of the Binary Uncertainty aided DART preformed on the phan-
tom of Figure 4.1

Original Phantom Reconstruction Uncertainty map

Figure 4.6: Example of a highly inaccurate reconstruction and its uncertainty map.
Results indicate, that further projections are needed for the reconstruction to make
a decision about the object.

of the object and rule out false detections. Also, if taking further projections is

possible, the uncertainty map can show that further information is needed for the

proper evaluation of the object. An example can be found in Figure 4.6.

4.7.3 Blueprint-based projection selection

In Chapter 2 we showed, that the choice of projection directions can greatly influ-

ence the accuracy of the reconstructed results. Some projection sets contain more

information than others, thus one can assure more precise results by using better

projection angles.

In section Section 2.5 we also proposed, that if a blueprint of the object is

available, it can be used to choose the best projection directions to improve the

accuracy of the results. One only has to simulate the possible projection set of the

blueprint, perform reconstructions and choose the directions that lead to the best
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result.

In Section 4.6 we showed, that the global uncertainty measure describes the

information content of the projections, that correlates with the accuracy of the

reconstructions. We also argue, that the global uncertainty measure gives a more

reliable description of the set of possible reconstructions, since it gives us informa-

tion on the whole search space, not only one of its elements. Therefore, it could be

used for choosing the projection angles in binary tomography.

In addition, the local uncertainty measures can be summarized not only for all

the pixels, but for a smaller area of the reconstructed image as well. In this way,

one can get a measure of the reliability of the reconstruction at specific parts of

the object of study, and maximize the accuracy at specific regions of interest.

4.8 Summary

We gave a practical description of the data uncertainty problem of binary tomogra-

phy, and provided a measure, that can approximate the local and global uncertain-

ties of the reconstructed image. Given the projections of homogeneous objects, we

described a method to approximate the likelihood of each pixel of the reconstructed

image to take a value of 0 or 1. With this method, one can approximate the un-

certainty at each pixel, get a picture of the information content of a projection set,

and measure how it determines each part of a reconstructed image.

We also provided a formula for summarizing the local, pixel-based uncertainties

into a global measure, that can determine the overall quality of a given set of

projections. For the evaluation of the proposed methods, we performed computed

experiments on a set of phantom images.

The information on the uncertainty in a projection set can be useful in practical

applications to measure the accuracy and reliability of the reconstructed results,

and also to improve reconstruction methods. We also explained how this informa-

tion can improve the DART reconstruction algorithm in the binary case.

The findings of this thesis were in part published in a conference proceedings

[65], and are submitted as a journal paper [66].



Chapter 5

Final Conclusions

This dissertation gives a summary of the Author’s research in the field of discrete

tomography. The results are gathered around the examination of the information

content of projections, and aim to describe different aspects of how the projection

data connects to the accuracy of reconstructions.

First we have shown, that the quality of binary reconstructions can strongly rely

on the choice of directions used in the projection acquisitions. We found that some

projection sets have higher information content which leads to better reconstruc-

tions. We have also shown that this direction-dependency phenomenon comes from

the information content of the projections and it is only slightly influenced by the

applied reconstruction algorithm, or distortions of the data. Thus, it is predictable

and can be exploited in the discrete reconstruction of objects for improving the

accuracy of the results.

We also proposed the MLEM reconstruction algorithm for the general case of

discrete tomography that solves the reconstruction problem by minimizing an en-

ergy function. We defined a function that has its minima corresponding to accurate

discrete reconstructions, and designed an optimization scheme for minimizing this

energy function. For the validation of the results we performed experimental tests

and compared the MLEM method to other state-of-the-art reconstruction algo-

rithms. We found that the proposed method could compete with other algorithms

in both the speed of the computation, and the accuracy of the results. Further-

more, we found that it is highly robust when the projection data is affected by

random noise.

Finally, with the modification of the MLEM reconstruction algorithm, we pro-

posed a method that can approximate the local uncertainties in binary reconstruc-

tions caused by the lack of information in the projection data. With this method,

one can reveal which parts of the object can be reliably reconstructed based on the

given projection data, and assess the reconstructions. We also defined a formula

that combines the local uncertainties of the reconstructions into one global measure
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that can describe the information content of the projections. With the aid of this

measure, it is possible to predict the expected error of a reconstruction from only

the projection data. Finally, we validated the local, and global uncertainty mea-

sures in a variety of software tests, and proposed some of their possible applications

as well.



Appendix A

Summary in English

Transmission tomography is a tool-set for reconstructing the inner structure of

objects from so-called projections, which are data that can be gathered from the

outside, without any destruction of the objects themselves. In transmission tomog-

raphy the projection acquisition process consists of exposing the object of study to

some electromagnetic or particle radiation at one side, and measuring the energy

loss of the beams at different points on the other side. This data provides infor-

mation on the absorption property of the object at the paths of the beams. If the

projections are gathered from enough directions, one can reconstruct the material

properties at different regions of the object.

In case of discrete tomography we assume, that the examined object consists

of only a few materials with known absorption properties. This extra information

can be used to drastically reduce the number of projections required for the recon-

structions, and by this to minimize the cost or unwanted affects of the projection

acquisition process. Still, there might be serious limitations in the number of pro-

jections which do not allow the acquisition of a sufficiently large projection set.

In this case, the incomplete projection data can make an accurate reconstruction

extremely hard to carry out.

The dissertation is a summary of the Author’s research in the field of discrete

tomography. The central concept of the work was to examine the information

content of projections, and try to understand different aspects, of what kind of

information the projection data holds, and how this information determines the

discrete reconstruction of objects. This better understanding of the information

content of projections is essential for developing more reliable and robust methods

for discrete tomography, and can lead to entirely new approaches of the problem.
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Key points of the thesis

The findings of the research can be divided into three thesis groups. Table A.1

gives the connection between the results and the publications of the Author.

In the first thesis group, I examine the direction-dependency in binary tomo-

graphic reconstructions. The results were published in two conference proceedings

[59, 60], and two journal papers [61, 62].

I/1. I designed an experimental test environment for examining the correspon-

dence between the quality of a binary reconstruction and the choice of di-

rections to take projections with. I have shown, that the quality of binary

reconstructions strongly rely on the choice of directions used in the projec-

tion acquisitions. I found that some projection sets have higher information

content leading to better reconstructions.

I/2. I gave various projection selection strategies for improving the projection

angles, and thus enhance the accuracy of the reconstruction, when a blueprint

of the object is available.

I/3. I have also shown that the direction-dependency phenomenon is caused by

the different information content of the different projections and it is only

slightly influenced by the choice of the reconstruction algorithm, or the dis-

tortions of the data. Based on this observation, I concluded that the direction-

dependency is a predictable phenomenon that can be exploited in the non-

destructive testing of objects.

In the second thesis group I give a new reconstruction algorithm for the gen-

eral case of discrete tomography. The results were published in two conference

proceedings [63, 64].

II/1. I developed a new reconstruction algorithm for the general case of discrete

tomography. This algorithm reformulates the reconstruction problem into

the minimization of an energy function. I defined a function that has its

minima corresponding to accurate discrete reconstructions, and designed a

novel optimization scheme for minimizing this energy function. I validated

the performance of the proposed method in experimental tests and compared

it to other state-of-the-art reconstruction algorithms. I found that the pro-

posed method could compete with other algorithms in both the speed of the

computation, and the accuracy of the results. Moreover, I found that it is

highly robust when the projection data is affected by random noise.



81

In the third thesis group, I gave measures for the local and global uncertainty

in binary reconstructions. The results of this thesis were in part published in a

conference proceedings [65], and are submitted as a journal paper [66].

III/1. I provided a probability based formulation of the uncertainty of pixels in

binary reconstructions, i.e., which ascertains how the projection data deter-

mines each pixel of a reconstructed image. I gave a method that is capable

of approximating the local uncertainty maps of the reconstructions on an

acceptable level, and validated the results in experimental studies.

III/2. I gave a formula that can summarize the local uncertainties into a global

measure, that describes the overall uncertainty in the projections and predicts

the expected error of a reconstruction.

III/3. I also described how the uncertainty measure can be used to improve the per-

formance of the DART reconstruction algorithm, and to aid the examination

processes using binary tomography.

[59] [60] [61] [62] [63] [64] [65] [66]
I/1. •
I/2. •
I/3. • •
II/1. • •
III/1. • •
III/2. •
III/3. •

Table A.1: The connection between the thesis points and the Author’s publications.
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Appendix B

Summary in Hungarian

A tomográfia egy széleskörű eszköztár tárgyak belső szerkezetének vetületekből

történő nem-roncsoló vizsgálatához. A transzmissziós tomográfiában a vetületkép-

zéshez általában a vizsgált tárgyat egy oldalról valamilyen áthatoló sugárzásnak

teszik ki, és mérik a különböző irányokban áthaladó sugarak gyengülését. Az így

begyűjtött adatokból következtetni lehet a tárgy adott belső pontjain elhelyezkedő

anyagok elnyelődési együtthatóira, és így az anyagi jellemzőkre.

A diszkrét tomográfia területén feltesszük továbbá, hogy a vizsgált tárgy csak

néhány ismert anyagból állhat. Ezzel ez előzetes információval elérhető, hogy a

rekonstrukcióhoz csekély számú vetület is elegendő legyen. Bizonyos esetekben

viszont így is előfordulhat, hogy a kinyerhető vetületekre vonatkozó korlátozások

nem teszik lehetővé a rekonstrukcióhoz elegendő vetületi adat begyűjtését. Ilyen

esetekben szükség lehet a vetületi adatok új megközelítéssel történő vizsgálatára.

Jelen értekezés a Szerző diszkrét tomográfiában végzett munkásságát foglalja

össze. A kutatás fő célja a vetületi adatok információtartalmának és az adatok

szerkezetének vizsgálata volt, amely véleményem szerint elengedhetetlen a rekonst-

rukcióban használható hatékony új technikák kifejlesztéséhez, és új területeket nyit-

hat a kutatásban.

Az eredmények tézisszerű összefoglalása

Az értekezés eredményei három csoportba sorolhatók. Az eredmények és a kapcso-

lódó publikációk viszonyát a B.1 táblázat foglalja össze.

Az első téziscsoport a vetületi irányfüggőség problémájával foglalkozok a bináris

rekonstrukciókban. A téziscsoport eredményei két konferencia kiadványban [59, 60],

illetve két folyóirat publikációban [61, 62] jelentek meg.

I/1. Megterveztem egy keretrendszert, amellyel különböző szempontok alapján

vizsgálható a kapcsolat a diszkrét rekonstrukció minősége és a rekonstruk-
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cióhoz felhasznált vetületek irányai között. Megmutattam, hogy a vetületek

képzéséhez felhasznált irányok megválasztása nagyban befolyásolja a rekonst-

rukció eredményét. Azt találtam, hogy egyes vetülethalmazok jobb rekonst-

ruált eredményekhez vezetnek, mint mások.

I/2. Több új vetületi irányválasztó stratégiát javasoltam, amelyek képesek javítani

a rekonstrukcióban felhasznált vetületek irányain, amennyiben rendelkezésre

áll a vizsgált tárgy egy tervrajza.

I/3. Ugyancsak megmutattam, hogy a vetületi irányfüggőség a különböző vetüle-

tek eltérő információtartalmából fakad, és független a rekonstrukcióhoz hasz-

nált algoritmus megválasztásától, illetve a vetületi adatok torzulásától, így

egy kiszámítható és következetes jelenség, ami kihasználható a rekonstruk-

ciós módszerek pontosságának javításában.

A második téziscsoportban egy új rekonstrukciós algoritmust javaslok a diszkrét

tomográfia többszintű esetére. A téziscsoport eredményei két konferencia kiadvány-

ban [63, 64] jelentek meg.

II/1. Kifejlesztettem egy rekonstrukciós algoritmust a diszkrét rekonstrukció ál-

talános esetére, amely egy energiafüggvény minimalizálásával képes tárgyak

szerkezetének rekonstrukcióját elvégezni. Az algoritmus helyességét tesztek-

kel igazoltam azáltal, hogy a működését a szakirodalomban fellelhető rekonst-

rukciós módszerekkel hasonlítottam össze. A vizsgálatok alapján a javasolt

algoritmus mind sebességben, mind pedig az eredmény pontosságában fel-

veszi a versenyt a jelenleg használatos más rekonstrukciós algoritmusokkal.

Az eredmények alapján ugyancsak igazolást nyert, hogy a javasolt módszer

rendkívül jól viselkedik zajos vetületi adatok használata esetén.

A harmadik téziscsoport a bináris rekonstrukciók lokális és globális bizonytalan-

ságait taglalja. Az eredmények egy része egy konferencia kiadványban [65] került

publikálásra, továbbá benyújtásra került egy folyóirat cikk [66] is.

III/1. Bevezettem egy valószínűségen alapuló módszert a bináris rekonstrukciókban

eredményül kapott képpontok bizonytalanságának jellemzésére, amely meg-

adja, hogy az egyes pixelek milyen mértékig vannak meghatározva a vetületi

adatok által. Ugyancsak adtam egy módszert, amellyel a gyakorlatban is

közelíteni lehet a képpont bizonytalanságokat.

III/2. Megadtam egy formulát, amellyel a képpontokra felírt lokális bizonytalansá-

gok összegezhetőek egy globális mértékké, amely képes előre vetíteni a re-

konstrukciók várható hibáját.
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III/3. Végül leírtam, hogy a bizonytalansági mértékek miképpen használhatóak fel

a DART rekonstrukciós algoritmus működésének javítására, illetve a bináris

tomográfiát alkalmazó vizsgálati technikák fejlesztésére.

[59] [60] [61] [62] [63] [64] [65] [66]
I/1. •
I/2. •
I/3. • •
II/1. • •
III/1. • •
III/2. •
III/3. •

B.1. táblázat. A tézispontok és a Szerző publikációinak kapcsolata.
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Appendix C

Full database of the phantom images

The test images were gathered from different sources, and characterized different

shapes. Some phantoms were used for testing reconstruction algorithms in previous

studies [11, 68], and some come from the TC18 2-D image database [73]. All of the

images had the same size of 256 by 256 pixels.

Phantom 1 Phantom 2 Phantom 3

Phantom 4 Phantom 5 Phantom 6

Figure C.1: Binary phantom images (part 1).
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Phantom 7 Phantom 8 Phantom 9

Phantom 10 Phantom 11 Phantom 12

Phantom 13 Phantom 14 Phantom 15

Phantom 16 Phantom 17 Phantom 18

Figure C.2: Binary phantom images (part 2).
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Phantom 19 Phantom 20 Phantom 21

Phantom 22

Figure C.3: Binary phantom images (part 3).

Phantom 23 Phantom 24 Phantom 25

Figure C.4: Multivalued phantom images.
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