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Introduction

The concept of modular lattices is as old as that of lattices itself. Both are due
to Richard Dedekind, although there were others, e.g., Charles S. Pierce or Ernst
Schroder, who also found the concept of lattices, cf. also the Foreword of George

Grétzer [42]. A lattice is said to be modular if it satisfies the following identity:

v (ya(zvz))=(zvy)a(zvz).

Dedekind showed around 1900 that the submodules of a module form a modular
lattice with respect to set inclusion. Many other algebraic structures are closely
related to modular lattices: both normal subgroups of groups and ideals of rings
form modular lattices; distributive lattices (thus also Boolean algebras) are special
modular lattices. Later, it turned out that, in addition to algebra, modular lattices
appear in other areas of mathematics as well, such as geometry and combinatorics.

The first nontrivial result for modular lattices was proved by R. Dedekind [31] as
well, who found the free modular lattice on three generators, which has 28 elements.
Comparing this with a result of Garrett Birkhoff, see ,e.g., [8], which proves that
the free lattice on three generators is infinite, one can think that modular lattices
are less complicated structures than lattices itself. However, the situation is just
the opposite. Birkhoff also showed that the free modular lattice on four generators
is already infinite. Furthermore this comparison becomes more interesting if we
consider the respective word problems. Philip M. Whitman [85, 86] proved that the
word problem for any free lattice is solvable, that is, there is an algorithm which
can decide for arbitrary lattice terms p and ¢ whether p = ¢ holds identically in
all lattices. (Note that Thoralf Skolem gave a much more effective algorithm more
than 20 years earlier, but it was forgotten till Stan Burris found it, see Freese,
Jezek, Nation [37, page 14] for details.) In view of Whitman’s result, it is quite
astonishing that the word problem for free modular lattices is unsolvable, which was

independently proved by George Hutchinson [57] and Leonard M. Lipshitz [66].
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Later, Ralph Freese [35] improved Hutchinson’s and Lipshitz’s result by showing
that the word problem is unsolvable even for the free modular lattice on five gener-
ators. One can derive easily from Dedekind’s result that the word problem for the
free modular lattice on three generators is solvable. Thus Christian Herrmann [51]
reached the lower bound when he proved that the word problem for the free mod-
ular lattice on four generators is unsolvable. Therefore, many of the computations
in modular lattices with at least four variables need particular ideas; they are not
automatic at all.

In Chapter 1, we introduce the concept of von Neumann frames, which is the
basic concept of coordinatization theory, one of the deepest and most amazing part of
modular lattice theory. After introducing frames and recalling the most important
examples and lemmas, we define the concept of product frames, which is due to
Géabor Czédli [18]. He used product frames in connection with fractal lattices,
cf. [18]. Finally we present a theorem that shows that modular lattices with product
frames and matrix rings are closely related. This part is based on a joint paper with
Czédli [27].

One of the most fruitful generalization of modularity is the so-called semimodu-
larity. A lattice is said to be (upper) semimodular if it satisfies the following Horn
formula

T<Y=>TVzZIYVvz.

In contrast to modular lattices, the class of semimodular lattices cannot be char-
acterized by identities. In the preface of his book titled Semimodular Lattices, Man-
fred Stern [79] attributes the abstract concept of semimodularity to Birkhoff [8]. He
also mentions that classically semimodular lattices came from closure operators that
satisfies the nowadays usually called Steinitz-Mac Lane Exchange Property, cf. [79,
page ix, 2 and 40]. One of the most important class of semimodular lattices that
was systematically studied at first is the class of geometric lattices, which are semi-
modular, atomistic algebraic lattices, cf. Birkhoff [8, Chapter IV] and Crawley and
Dilworth [13, Chapter 14]. Since one can think of finite geometric lattices as (sim-
ple) matroids, it is not surprising that the theory of semimodular lattices has been
developing simultaneously with matroid theory since the beginning, cf. the Preface
of Stern [79].

The dual concept of semimodularity, called lower semimodularity, has also a
strong connection to certain closure operators that satisfies the so-called Antiex-

change Property. An important class of lower semimodular lattices, the class of
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meet distributive lattices, was introduced by Robert P. Dilworth under the name
of (lower) locally distributive lattices. The corresponding combinatorial objects are
convex geometries and their combinatorial duals, the antimatroids.

One can say that semimodular lattices provide a bridge between lattice theory
and combinatorics. For getting a better picture about them, we refer to the already
mentioned book of Stern, who offers his work as “a supplement to certain aspects
to vol. 26 (Theory of Matroids), vol. 29 (Combinatorial Geometries), and vol. 40
(Matroid Applications) of Encyclopedia of Mathematics and its Applications”.

It seems that the research of semimodular lattices have recently come again into
focus of several lattice theorists. Let us pick out some of the latest results. We
already mentioned that the normal subgroups of a group form a modular lattice.
By a classical result of Helmut Wielandt [88], subnormal subgroups of a group
form a (lower) semimodular lattice. Lattice theoretic formulation of the classical
Jordan-Hélder theorem for groups is well-known, cf. Rotman [76, Theorem 5.12]
and Grétzer [41, Theorem 1 in Section IV.2]. It is less-known that the original
theorem follows from the lattice theoretic one. Grétzer and James Bryant Nation
[47] pointed out that there is a stronger version for semimodular lattices. Using their
technique, Czédli and E. Tamds Schmidt [24] strengthened these Jordan-Hélder
theorems both for groups and semimodular lattices. For more details, see also
Grétzer [41, Section V.2].

On the other hand, it is worth mentioning that several new results have ap-
peared recently about some geometric aspects of semimodular lattices; only to refer
to planar semimodular lattices, see Grétzer and Edward Knapp [44, 45, 46] and
Czédli and Schmidt [25, 26], or to semimodular lattices that can be “represented” in
higher dimensional spaces, see the web site of Schmidt (http://www.math.bme.hu/
~schmidt/) for more details. As for convex geometries, there has been some recent
improvement as well, see, e.g., the papers of Adaricheva, Gorbunov, Tumanov and
Czédli [2, 1, 19].

In Chapter 2, we deal with lattice embeddings into geometric lattices, which also
have nice consequences for semimodular lattices. After that we formulate a classical
result of Dilworth [13, Theorem 14.1] and its generalization by Gratzer and Emil W.
Kiss [43] for finite lattices, we present our extension of Grétzer and Kiss’ theorem
for some class of infinite lattices. This part is based on [78§].

Congruence lattices of algebras play a central role in universal algebra. Many

lattice theorists have also studied congruence lattices and congruence lattice vari-
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eties, only to mention Bjarni Jénsson, Gritzer or Schmidt, cf. je.g., [64] and [48].
This concept was generalized by Ivan Chajda [11], who dealt with algebras with a
constant operation symbol in their type. He studied lattices formed by those classes
of congruences that contains the constant.

In Chapter 3, we return to modularity. After defining the concept of a Mal’cev
condition, we show that a classical result of Alan Day [28], which says that congru-
ence modular varieties can be defined by a Mal’cev condition, can be generalized for
lattices observed by Chajda. This part is based on [77].



Chapter 1
Von Neumann frames

Von Neumann normalized frames, frames shortly, are due to von Neumann [69].
Although he worked in lattice theory just for two years between 1935 and 1937,
many lattice theorists, including Grétzer [41, p. 292], say that his results belong to
the deepest part of lattice theory. For instance, Birkhoff, the founder and pioneer
of universal algebra and lattice theory, wrote in a paper [7] about him: “John
von Neumann’s brilliant mind blazed over lattice theory like a meteor.” Also, it was
Birkhoff who turned von Neumann’s attention to lattice theory. Then von Neumann
began to think that he could probably use lattice theory as a tool. At that time he
was trying to find an appropriate concept of space for modern physics. In contrast
to the usual concept of dimension, where the dimension function has a discrete range
(0,1,2,...), he was looking for a dimension function with a continuous range. In
full extent, his work was published much later, see [69]. It is centered around the
concept of continuous geometries, which are special complemented modular lattices.

On his way to continuous geometries, von Neumann introduced the concept of
frames, and he used them to extend the classical Veblen-Young coordinatization
theorem of projective spaces [82, 83| to arbitrary complemented modular lattices
with frames. Note that the best known method for the classical coordinatization
is “von Staudt’s algebra of throws”, cf. Grétzer [42, p. 384]. As a first step, von
Neumann associated a ring, the so-called coordinate ring, with each frame. It turned
out that in case of a complemented modular lattice with a frame, the coordinate ring
satisfies some additional property, which is nowadays called von Neumann reqularity.
It is worth mentioning that this property has proved to be particularly useful. The

theory of von Neumann regular rings has become an independent discipline later.



CHAPTER 1. VON NEUMANN FRAMES 6

Since there is a one to one correspondence between modular geometric lattices
and projective spaces, many properties, including Desargues’ theorem, can be formu-
lated in the language of lattices, see, e.g., Gratzer [42, Section V.5]. Von Neumann’s
work exemplifies that lattice theory can be helpful to handle geometric problems
in a more elegant and compact way. Analogous applications of lattice theory were
given later by others. For example, Jénsson [60] provided lattice identities that hold
in a modular geometric lattice if and only if Desargues’ theorem holds in the asso-
ciated projective space. Note that there exists a similar characterization of Pappus’
theorem, see Day [29]. For more examples, see Jénsson [62] or Takéch [80].

Although von Neumann considered a complemented modular lattice L of length
n > 4, his construction of the coordinate ring (without coordinatization) extends to
arbitrary modular lattices without complementation, see Artmann [3] and Freese [34],
and even to n =3 if L is Arguesian, see Day and Pickering [30].

A concept equivalent to frames is that of Huhn diamonds, see Huhn [54]. Since
distributive lattices played a central role already in the beginning of lattice theory,
cf. Gréitzer [42, p. xix], Huhn’s original purpose was to generalize the distributive
law. He also wanted to find generalizations for many well known theorems and ap-
plications of distributive lattices. His new identity, called n-distributivity, proved to
be a particularly fruitful generalization of distributivity. While distributive lattices
among modular lattices are characterized by excluding M3’s (Birkhoff’s criteria), in
case of n-distributive lattices, M3’s are replaced by Huhn diamonds, see Remark 1.2
for more details. Huhn diamonds are connected to many interesting theorems, for in-
stance, Huhn proved with them that the automorphism group of a finitely presented
modular lattice can be infinite, see [55].

Frames and Huhn diamonds are used in the proof of several deep results showing
how complicated modular lattices are, only to mention Freese [34], Huhn [55], and
Hutchinson [58]. Frames or Huhn diamonds were also used in the theory of congru-
ence varieties, see Hutchinson and Czédli [59], Czédli [17], and Freese, Herrmann
and Huhn [36]; and in commutator theory, see Freese and McKenzie [38, Chapter
XI11].

Dealing with quasi-fractal generated non-distributive modular lattice varieties,
Czédli [18] introduced the concept of product frames. This chapter is based on a
joint work with Czédli [27]. We show that product frames are closely related to
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matrices. Namely, the coordinate ring of the so-called outer frame of a product
frame is a matrix ring over the coordinate ring of the so-called inner frame of the

product frame, see Theorem 1.7.

Overview of the chapter

Finally, let us give a short overview of this chapter. In Section 1.1 we give an
introduction to coordinatization theory. In Section 1.2 we introduce the concept
of product frames and prove some lemmas. In Section 1.3 we prove our result on
product frames and give some further comments.

Note that in coordinatization theory, the lattice operations join and meet are
traditionally denoted by + and - (mostly juxtaposition) such that meets take prece-
dence over joins. In this chapter we follow this tradition. As a general convention for
the whole chapter, the indices we use will be positive integers, so ¢ < n is understood

as 1 <7< n.

1.1 Basic definitions and notions

For definition, let 2 <'m, let L be a nontrivial modular lattice with 0 and 1, and let
a=(ay,...,ay) e L™ and ¢=(c2,...,c1m) € L™ 1. We say that (d,¢) = (a1, .., an,
€12, .., C1m) 18 a spanning m-frame (or a frame of order m) of L, if ay # a3 and the

following equations hold for all j <m and 2 <k <m:
Z a; = 1, a; Z a; = 0,
i<m i<m, i#j (1_1)

a1+ Cip = Qg + C1; = Q1 + Ay, aiciy = agcry = 0.
Notice that if (a@,c) is a spanning m-frame, then
the a; are the distinct atoms of a Boolean sublattice 2™, (1.2)

and {ai, cix, ar} generates an M3 with bottom 0 = 0y, for £ € {2,...,m}. In
particular, a frame of order two is simply an M3 with 0pz, =0y and 1y, =1y,.

By the order of the frame we mean m. If (d,¢) is a spanning m-frame of a
principal ideal of L, then we will call it a frame in L. Note that von Neumann [69,
page 19] calls ¢y the axis of perspectivity between the intervals [0,a;] and [0, a],

and we will shortly call ¢y, as the azis of (ay, ar)-perspectivity.
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Given an m-frame (d, ¢), we define ¢ = ¢q for 2 <k <n, and for 1, j, k distinct,
let cjr = (c1; + c1x)(a; + a;). From now on, a frame is always understood in this
extended sense: ¢ includes all the ¢;j, @ # 7, ¢,7 < m. Then, according to Lemma 5.3

in von Neumann [69, page 118] (see also Freese [33]), for i, j, k distinct we have
Cik = Cri = (Cij + Cjk)(az' + CLk),
a; + Cij = aj + cij = a; + aj, (1.3)
aicij = CLjCij = aiaj = 0

This means that the index 1 has no longer a special role.

a,={(0,0,0),(1,0,0)}
a,={(0,0,0),(0,1,0)}
a,={(0,0,0),(0,0,1)}
¢,,={(0,0,0),(1,1,0)}
¢,={(0,0,0),(1,0,1)}
¢,={(0,0,0),(0,1,1)}

Figure 1.1: Sub(Z3) and its canonical 3-frame

Example 1.1 (Canonical m-frame). Let K be a ring with 1. Let v; denote the
vector (0,...,0,1,0,...,0) € K™ (1 at the ith position). Letting a, = Kv; and
¢;; = K(v; —v;), we obtain a spanning m-frame of the submodule lattice Sub(K™),
where K™ is, say, a left module over K in the usual way. This frame is called the

canonical m-frame of Sub(K™). For m =3 and K = Z,, see Figure 1.1.

This example shows that, sometimes, to unify some definitions or arguments,
it is reasonable to allow the formal definition of a trivial axis c; = 0, i < m; this
convention makes formula (1.3) valid also for k € {i,j}. However, according to

tradition, the trivial axes do not belong to the frame.

Remark 1.2 (Huhn diamonds). One of many concepts closely related to n-frames

is the so-called m-diamond, cf. Herrmann and Huhn [53]. Let 1 < m, let L be a
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nontrivial modular lattice, and let @ = (aq,...,a,41) € L™ and be L. We say that
(d,b) is an m-diamond if the a; are the distinct atoms of a Boolean sublattice 2m*1
and b is a relative complement of each atom in [ajas,a; + -+ + ayyy1]. This concept
was introduced by Huhn [54], cf. also Freese [34].

If L is a nontrivial modular lattice with 0, and (a@,b) = (a4, ..., am,b) isan (m—-1)-
diamond in a modular lattice such that ajas = 0 then (a@,c) = (G, c12,...,C1,) IS an
m-frame, where ¢;; = (a1 + a;)b. Conversely if (@,¢) = (ai,...,am,C12,...,C1pn) I8

an m-frame then (d,b) is an (m - 1)-diamond, where b = ¢j5 + -+ + ¢y, cf. [53] and
[34]. This connection between frames and diamonds allows us to define the canonical
m-diamond. For m =2 and K = Zs, see Figure 1.2.

As a generalization of distributivity, Huhn defined a modular lattice to be n-

distributive iff it satisfies the following identity:

n

n n
v Ny = /\(xv/\yl)
=0 j=0" =0
1#])
Since 1-distributivity gives back the distributive law and 1-diamonds generates M3,
Birkhoft’s criteria says that a modular lattice is distributive if and only if it does
not contain a 1-diamond. Huhn showed that a modular lattice is n-distributive if

and only if it does not contain an n-diamond, see [54] for more details.

a,={(0,0,0),(1,0,0)}
a,={(0,0,0),(0,1,0)}
a,={(0,0,0),(0,0,1)}
b ={(0,0,0),(1,1,0),(1,0,1),(0,1,1)}

Figure 1.2: The canonical 2-diamond of Sub(Z3)

In the sequel, assume that L is a modular lattice, and either m > 4, or m = 3
and L is Arguesian. Next, we define the coordinate ring of (a,¢) in two, slightly

different ways. For p,q,r € {1,...,m} distinct, consider the following projectivities:

R(fg) [O,Cbp + al]] - [OvaT +a¢]]7 T = (.%‘ + Cpr)(a'r + aq)7

(1.4)

R(29):[0,ap + ag] > [0,a,+ a,], 2+ (@ +cqr)(ay + ar);
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these are almost the original notations, see von Neumann [69] and Freese [33], the
only difference is that we write R rather than P. They are lattice isomorphisms

between the indicated principal ideals. For i, j,k € {1,...,m} distinct, let

R(i,j) = R(ai,a;) ={r e L:x+a; =a; +aj, xa; =0},
T ®ijr Y = (Cli“‘aj)((ilf"‘ak)(cik-"aj) +yR(,i§)) and (1.5)
T ®uk Y = (a +aj)(93R(§i) +yR(,Z;)) for x,y € R(i, j).

Then the operations @;;, and ®;;; do not depend on the choice of k, and this
definition turns R(i,j) into a ring. Moreover, R(i,j) = R(i’, ') for every i’ # j', see
von Neumann [69] or Herrmann [52]. (Notice that von Neumann uses the opposite
multiplication.) This R(i,j) is called the coordinate ring of the frame.

While the above definition seems to be the frequently used one, see Herrmann [52],
our needs are better served by von Neumann’s original definition, which is more
complicated but carries much more information. Following Freese [33], for 4, j, k, h €

{1,...,m} pairwise distinct, let

R(33) = R(:3) o R(:7):

We always compose mappings from left to right, that is, x(R(;;) o R(:i)) =
([ER(;;))R(ZZ) Now, the notation R(;i) makes sense whenever i # 7 and k # h;
notice that R(z;) is the identical mapping.

Next, we consider two small categories. The first one, Ci(a,c), consists of the
pairs (i,7), i # j and 4, j < m, as objects, and for any two (not necessarily distinct)
objects (i,7) and (k,h), there is exactly one (i,7) = (k,h) morphism. The second
category, Cy(d,c), consists of the coordinate rings R(i,j) of our frame, i # j, as
objects, and all ring isomorphisms among them, as morphism. For a morphism
(i,7) = (k,h) in the first category, let R send this morphism to the mapping R( ,i {L)
Of course, for an object (i,7) in Ci(a,¢), R sends (i,7) to R(i,j). The crucial point

is captured in the following lemma.

Lemma 1.3 (von Neumann [69], Day and Pickering [30]). R is a functor from the
category Cy(a,¢) to the category Cy(a,c).

Proof. The notion of categories came to existence only after von Neumann’s fun-
damental work in lattice theory, recorded later in [69]. Hence it is not useless to
give some hints how to extract the above lemma from [69]. If m > 4, then it follows

from pages 119-123 that R is functor, see also Freese [33]. Although von Neumann
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does not consider R(i,j) a ring in itself, it is implicit in [69] that the R(,]) are
ring isomorphisms. (This becomes a bit more explicit in Freese [33]. With slightly
different notation, it is fully explicit in Theorem 2.2 of Herrmann [52].) If m = 3,

then the lemma follows from Lemma (4.1) of Day and Pickering [30]. O

By an L-number (related to the frame (a,¢)) von Neumann means a system
(x4 :4,5 <m, i+ j) of elements such that % € R(i,j) and QZ”R(;i) = xkh for all
i#jand k # h. (Because there will be lattice entries later, here we use superscripts
rather than von Neumann’s subscripts.) Clearly, for every (7,7), i # j, each L-

number z is determined by its (,j)th component z%. Conversely,

Lemma 1.4 (page 130 of [69], see also Lemma 2.1 in [33]). If u € R(i,j), then there

is a unique L-number x such that 2% = u.

Let R* be the set of L-numbers related to (a,¢). Von Neumann made R* into a
ring (R*, ® g+, ®p+) such that R* - R(i, j), z ~ z¥ is a ring isomorphism for every i #
j. (Of course, von Neumann defined (R*, ®g~, ®g+) first, and later others, including
Herrmann [52], transferred the ring structure of R* to R(i,j) by the bijection R* —
R(i,j), x —» x%.)

According to Lemma 1.4 and the previous paragraph, we can perform compu-
tations with L-numbers componentwise, and it is sufficient to consider only one
component. For w € R(i,j), let w* € R* denote the unique L-number in R* such
that (w*)¥ = w. However, we usually make no difference between w and w*.

To help the reader to understand our calculations in modular lattices while we

save a lot of space, the following notations will be in effect. We use

i f Lj

to indicate that formula (i), some basic property of frames, or Lemma j is used,
respectively. In many cases, =f means the same as =13, When an application of
the modular law uses the relation x < z then, beside using =™, x resp. z will be

underlined resp. doubly underlined. For example,

(z+y)(z+z)=""z+y(z+2).

The use of the shearing identity (see Gréatzer [42, Theorem 347]) is indicated by =*

and underlining the subterm “sheared”:

z(y+2)=° z(y(z +2) +2).
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Even in some other cases, subterms worth noticing are also underlined. If z; >

Zo...xy for some easy reason, then we write
T1Ty ... Tk

to indicate that this expression is considered as x5 ...xy. In other words, overlined

meetands will be omitted in the next step. Combining our notations like

_m,1.2]1.3
- )

we can simultaneously refer to properties like modularity, formulas and lemmas.
Formulas, like (1.2), will also be used for the product frame, whose definition comes

in the next section.

1.2 The product frame

In this section, we recall the concept of product frame from Czedli [18]. In order
to get a detailed picture about product frames, we quote not only the lemmas but
also their proofs from [18]. From now on, the general assumption throughout the
chapter is that n > 2, L is a modular lattice, and either m > 4, or m = 3 and L
is Arguesian. Let (d,¢) be a spanning m-frame of L, and let (4,?) be a spanning
n-frame of [0,a;] < L. We define a spanning mn frame as follows. For i,j < n and
p,q <m, let

b = (u; + c1p)ayp, di? = (v1; + crg(uy + ag) ) (ug + b%) (1.6)

Let b denote the vector of all the b? such that b} is the first component. Let d denote
the vector of all the d}g such that (q,7) # (1,1).

Lemma 1.5 (Czédli [18, Theorem 1(A)]). (b, d) is a spanning mn-frame of L, where

d}‘; plays the role of the azis of (by, bf)-perspectivity.

We say that (b,d) is the product frame of (d,é) and (i,), while (d,¢) resp.
(u,v) will be called the outer resp. inner frame.
Before we prove the previous lemma, we need some preparations. First, let us

reformulate (1.6) without relying on trivial axes and providing simpler expressions



CHAPTER 1. VON NEUMANN FRAMES 13

for some particular values of indices:

bl =u; fori<n,
b = (u; +cyp)a, fori<mnand 2<p<m,
dh] = (uy +ag)cy for2<g<m, (1.7)
dﬂ=v1j for 2<j<n,

di‘;. = (’Ulj +c1q(u; +aq))(u1 +b7) for2<j<nand2<g<m.

Second, for k < n, define

BY= > . (1.8)

i<n, ik
Now, (1.1) together with the isomorphism theorem of modular lattices (cf. Grétzer
[42, Theorem 348]) yield that the map ¢,:[0,a1] - [0,a,], z = (z + c1p)a, is an
isomorphism. Therefore formulas (1.7) together with (1.8) and the definition of the
inner frame give

a, =y b =By +b, for k<n. (1.9)

i<n

Proof of Lemma 1.5. From (1.9) we conclude
> b= a1
p<m i<n p<m

Further, for ¢ <n and p <m,

oY u=(X SueB) =

j<n,qg<m q<m j<n
(2,9)#(p,7) a#p
(X ag+ BY)=1WBY = (6B ), = 0p, = 0.

qsm, q#p

This ends the proof of the first two equations of (1.1). Now, we have to show that

if j<n,g<m,(q,7) # (1,1) then {b%,d}?,b?} generates an M3 with bottom 0.

If ¢ =1 and j > 1, then, by the definition of the inner frame, {b%,b},d}}} =17

{u1,v1;,u;} generates an Mz with bottom 0. If ¢ > 2 and j = 1 then we have to show

that {b},d1%,b7} =17 {uy, (w1 + ag)eig, (ur + c1g)a,} generates an My with bottom 0.

Indeed, we have
U + (ur +ag)cig = (u1 + ag) (ur + cig),
uy + (ug + crg)ag =" (ur + c1g) (u1 + ag),

(ur +ag)cig + (ur + c1g)ag =" (ug + Clq)(%-i‘ (w1 +ag)erg) =™

(u1 + c1q) (ur + ag)(ag + c1q) = (u1 + c1g)(ur + ag) (a1 + ag),
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while the meet of any two is 0, since uyc14 < ajcyy =0, ura, < aja, = 0 and ¢14a, =F 0.

From now on, let 2 < j <n and 2 < ¢ < m. We have to show that {b}, di;’,bq

{uy, (vlj +c1g(uj + aq))(ul +0%), (uj + c14)a,} generates an Mz with bottom 0. The
meets are obtained easily:
b4 =" uyb? <M ayag =10,
bldlq = ul(vlj +c1q(uj + aq))(ul +09) = Fuguyj =10,

d};’bg 7 (v1j + c1g(uj +ag)) (us + )b =t T (v + e1g(us +ag) ) (s + c1q)aq =

(vlj(uj +C1q) + C1g(uy + aq))aq =m
(u; + clq)(vlj +crg(u; + aq))aq =sf (u; + c14)v1504 =f 0.

The next task is to show that each of the three elements is below the join of the

other two. Clearly,

dy? <My + b7 =T by + b
Further,
dlq +bq (vlj +c14(uy +aq))(u1+bq)+bq =m

(uy + b;l.)(vlj + b;l. +c1q(uj + aq)) =

(u1 + b?)(vlj +(u) + crg)ag + erg(uy + aq)) -

(uy +0] )(Uly+<uy+aq)((“J+01Q)aq ):

(uq + b? )(1)1] + (u; + ag) (uj + c1q) (ag + clq))

(uy + b(j]‘)(vlj (1 + aq)(uj + c1q) (a1 + aq)) (w1 +b5) (015 + uy) >Ny =170y,
and finally,
bl + dlq u1 + (vlj +cpg(uj + aq))(ul + bq) =m
(’LLl + b?)(ul + U1j + Clq(uj + Clq)) =f (Ul + b(;)(ul +ﬁ+ clq(uj + (Zq)) =
(ug + bq)(ul + (uj + c1q) (u; + aq)) > bq(m + (u; + c1g) (u; + aq)) =7 bj. O
Note that one can define d’;? for “arbitrary” ¢,7,p,q as we defined ¢;; for “ar-
bitrary” 4,7 in Section 1.1. We also mentioned that frames are understood in an
extended sense: d includes all the d75, i,j <n, p,g <m, (p,i) # (¢,7). Note that

d? ;1. are the axis of (b}, bf)-perspectivity. (To comply with forthcoming notations, we

suggest to read the indices of b7 downwards, ”pi”, and column-wise for dp 27 piqj5”.)
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The following lemma follows easily from the fact that the elements b} = u; and
dﬁ = v1; determine both the coordinate ring of the inner frame and the coordinate

ring of the product frame, cf. the comments after (1.5).

Lemma 1.6 (Czédli [18]). If n >4, orn > 3 and L is Arguesian, then (b,d) and

(4,9) have isomorphic coordinate rings.

In sense of the previous lemma, the same notation can be used for the rings
associated to the product frame and the inner frame. From now on,
S* = (S*,®g+ ®g+) is the coordinate ring of (b, (1), and (1.10)
M, (S5™) = (M,(S7), ®um,, ®n,) is the n x n matrix ring over S*. '
This makes sense, since mn > 4.
Analogously to Lemma 1.3, the product frame gives rise to a functor and the
S (’Z’ ‘;) = S(b,b}) coordinate rings. The previous notations tailored to the product

frame are as follows:

S(??)z{xeL:ajb?:O, z + 07 = b + b1},

S ):S(15) = S(5) @ (@ v d) (@ + 1)), (1.11)
S(im):S5) = S(k) a e (o df) (] +by).

(Since we have agreed in reading the indices of, say, d% column-wise, the space-
saving entries ¢j and rk in S (Z fi), rather than ? and ;, should not be confusing.)

Let us agree that, unless otherwise stated, the superscripts of b and d belong
to {1,...,m}, while all their subscripts to {1,...,n}. For example, if df;l. occurs
in a formula, then p,q < m and i, < n, and also (p,i) # (q,7), are automatically
stipulated. Similarly, the subscripts of a and ¢ are automatically in {1,...,m}.
This convention allows us, say, to write Y, a; instead of ;' a; without causing
any ambiguity. Let us also agree that, unless otherwise stated, we understand our
formulas with universally quantified indices, that is, for all meaningful values for the

occurring indices.

Finally, we need one more formula:
Cpg =, db?. (1.12)

First, we prove

ey = d;l. (1.13)
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As a preparation, we show that
(vli+clq(ui+aq))(ui+aq) < g (1.14)

Indeed, (vi; +c1q(u; + ag) ) (u; + ag) =" vi;(u; + ag) + c1g(w; + ag) = c14(u; +aq), which

gives formula (1.14). For 2 <i <n, we have

d;‘f = (d}i + d}‘f)(b} +bl) =t7 (@+ (vli + c1q(u; + aq))(ul + bf))(ul +07) ="

(Uli + clq(u,- + aq))(vli + U+ bf)(uz + bg) =f
(Uli + clq(ui + aq))(u1 +u; + bf)(uz + bg) =17
(Uu +crg(u; + aq))(% + (u; + Clq)aq) ="

(Uli + c1q(u + aq))(ui +c1q) (U + ag).

Hence

Sdl= ¥ (i) =T

i<n 2<i<n

2; (M + (Uli +c1q(u; + aq))(ui + 1) (u; + aq)) =m

2; (u; + clq)((ul + aq)g + (vh- +c1q(u; + aq))(ui + aq))

> (u+ clq)clq(ul +a,+ (Uu +c1g(ui +ag) ) (u; + aq)) =
2<i<n - _

_ml.14

m

> clq<u1 + (u; + aq)(aq + vy + cg(u; + aq))) =m
2<i<n - —

2; c1q(u1 + (u; + aq)(vu + (ag + c1g) (u; + aq))) _f

2; 01q(U1 + (u; + ag)(v1i + (a1 +ag) (u; + &q))) f

Z c1g(ur +u; + ag) = crg(ug +ug + ag) + Z c1g(ug +u; +ag) ="
2<i<n — 3<i<n

clq(ul +tug+ag+ Y. cig(ug +u; + aq)) =
3<i<n

clq(ul tup+ Y (aq +epg(uy +uy + aq))) =
3<igsn T —_—

m

C1q<U1 +Ug + Z (aq + clq)(ul +u; + aq)) _f
3<i<n

clq<u1 +us+ Y (ar+ag)(ur +u; + aq)) =
3<i<n

cg(uy +ug + -+ +up + ay) =f cig(ar + ag) = ¢
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This proves (1.13). Now, for p,q # 1, we have
a7 = (@22 )0 ) <
(D air+ S di ) (S0 + 2 b) =141 (e + 1) (ap + ag) = g
J J J

J

This and formula (1.13) give that

P9 < cpy. (1.15)

Hence

ag+ A= S Y= S+ )

i

Z(bf"'bg) = beszb? =19 ap + aq :faq"'cpq'

This together with a,c,, = 0 and formula (1.15) show that ), d”? and ¢,, are com-

parable complements of a, in [0, a, + a,], whence modularity yields (1.12).

1.3 The ring of an outer von Neumann frame
In this section we prove the following theorem.
Theorem 1.7.

(a) Let L be a lattice with 0,1 € L, and let m,n € N with n >2. Assume that

L is modular and m > 4. (1.16)
Let (a1,...,am,C12,...,C1m) be a spanning von Neumann m-frame of L and
(u1, ..., Up,V12,...,01,) be a spanning von Neumann n-frame of the interval
[0,a1]. Let R* denote the coordinate ring of (ai,...,am,C12,...,C1m). Then

there is a ring S* such that R* is isomorphic to the ring of all n x n matrices

over S*. If

n >4, (1.17)

then we can choose S* as the coordinate ring of (U1, ..., Up, V12, .., V1p).
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(b) The previous part of the theorem remains valid if (1.16) and (1.17) are replaced

by
L is Arguesian and m > 3 (1.18)
and
n> 3, (1.19)
respectively.

Notice that Arguesian lattices are necessarily modular. If m = 2, then R* =
R(1,2) ={x € L:xay =0 and z +ay = a; + as}, see (1.5) and Subsection 1.3.1, is just
a set, not a ring. If L is not Arguesian and m = 3, then R* is not necessarily a ring.
Hence the theorem does not make sense if m =2, or m =3 and L is not Arguesian.

Nevertheless, the forthcoming proof still shows that
Remark 1.8. Lemma 1.10 holds even for m = 2,3, provided L is modular.

Next, we give an example to enlighten Theorem 1.7; for n > 4, the details can be
checked based on Theorems 11.4.2 and 11.14.1 of von Neumann [69].

Example 1.9. Let R be the ring of all n x n matrices over a field S. Consider the
canonical m-frame, with R instead of K, defined in Example 1.1. The coordinate
ring R* of this m-frame is isomorphic to R. Remember from Example 1.1 that
a; = R(E,0,...,0) e Sub(R™), where E is the unit matrix in R. Hence the interval
[0,a;] in Sub(R™) is isomorphic to the lattice of all left ideals of R. The lattice of
these left ideals is known to be isomorphic to the subspace lattice Sub(S™) of the
vector space S™. Fix an appropriate isomorphism; it sends the canonical n-frame
of Sub(S™) to a spanning n-frame (uy,...,uy,,v12,...,01,) of [0,a;]. Clearly, the
coordinate ring S* of this n-frame is isomorphic to S. Hence R* is isomorphic to

the ring of all n x n matrices over S*.

While Sub(R™) is coordinatizable by its construction in Example 1.9, it is worth
pointing out that L in Theorem 1.7 is not coordinatizable in general. Although some
ideas of the proof have been extracted from Example 1.9, Linear Algebra in itself
seems to be inadequate to prove Theorem 1.7. (Even if it was an adequate tool,
modular lattice theory would probably offer a more elegant treatment, see the last
paragraph of Section 2 in [18].) Notice that Herrmann [52] reduces many problems
of frame generated modular lattices to Linear Algebra, but our L is not frame-

generated in general by evident cardinality reasons.
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1.3.1 A pair of reciprocal mappings

For i,j < n, we define a mapping ¢;;: R* — S* as follows. We identify R* with
R(1,2) = R(ay, az). So we define zyp;; for z € R(1,2), and, without over-complicating
our formulas with writing z*, we understand z*;; as xy;;. Similarly, we define the
value zp;; in S ( ; ;) but we understand it as (z¢g;;)* € S* without making a notational
distinction between xy;; and (zp;;)*. Finally, we will put these ¢;; together in the
natural way to obtain a mapping ¢: R* - M,,(S*): the (i,j)th entry of the matrix
x¢ is defined as xy;;. So, the definition of ¢ is completed by

viji R(1,2) > S(}?), x> x5 = (z+ B2) (b} +b?). (1.20)

(We will prove soon that ¢;; maps R(1,2) into S(}?))

In the reverse direction, we will rely on the possibility offered by L-numbers
even more: distinct entries of a matrix in M, (S*) will be represented with their
components of different positions. Let (e;; : ¢,7 <n) be a matrix over S*, that is, an
element of M, (S*). The truth is that e;; belongs to S*. However, we identify e;
with its component belonging to S (1?), and, again, we do this without notational
difference between e;; and its corresponding component in S (1?) Introduce the

notation
Eu=) e
i

With this convention, we define
an(S*) —>R*, (eij:i,jgn)HH(E*k+B,§). (121)
k

We will prove soon that [, (E.x + B?) belongs to R(1,2), which is identified with
R*.
Next, we formulate an evident consequence of modularity:

R(i,j) and S(7?) are antichains in L. (1.22)
Indeed, if, say, we had = <y and z,y € R(i,7), then z and y would be comparable
complements of a;, a contradiction. We will often have to prove that two elements
of R(i,j) or S(??) are equal; then (1.22) reduces this task to showing that the two
elements are comparable.

The rest of this subsection is devoted to the following lemma.

Lemma 1.10. ¢ and ¢ are bijections, and they are inverse mappings of each other.
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Before proving this lemma, two preliminary statements are necessary.

Lemma 1.11. Let j <m, and suppose that, for all i€ {1,....m}~{j}, w; € R{i, 7).
Then a;Y;.; w; =0.

J

Proof. Let I denote the induction hypothesis “if [{i : w; # a;}| < k, then a; ¥,.; w; =
0”. Then I clearly holds by (1.2), and I,,,_; is our target.

Assume I;,_; for an arbitrary k < m. We will refer to it with the notation =%,
We want to show [;. By symmetry, we can assume that j = m and w; # a; holds

only for ¢ < k. Then

;) Wi = Ay (W1 + -+ + Wit + Ayt + -+ + Qg1 + W)
i*j

=5 am((wl Hoet Whoy + Ayt o+ At) (Wh + Q) + wk)
=15 am((w1 o Whoy + Qa1 o+ A1) (A + Q) + wk)
=5 G (W + 0+ Wiy + gy + 7 + Qe ) + W)

< (@1 + Ay + oo+ Qg + Qg + Qpat + 0+ Qe ) Qg + W)

=12 q,wy, =15 0.

]

The following easy statement on elements of a modular lattice belongs to the

folklore; it also occurs as (1) in Huhn [56].

Lemma 1.12. If f; < g; for alli# j, 1,5 <k, then

Hgi + Zfi = H(gz + fi)-

i<k i<k i<k

Proof of Lemma 1.10. Let [1,(E.,+B?) from (1.21) be denoted by e, and remember
that e;; € S< 1 3) We have to show that e € R(1,2). Let us compute:

ase = [[(az(E.r, + BE)) =" [ (a2 Bux + BZ) = T[((¥2 + B})E.x + B})
k. - k k —

= [1((0}(E.x + BY) + B})E.\, + B}).
k

Focusing on the last underlined subterm, observe that the summands e;, of F,j
belong to S(ii), and the summands b7, j # k, of B} belong to S(?i) Hence,
applying Lemma 1.11 to the product frame, we conclude that b2 (E.; + Bf) = 0.

Therefore,

ase = [[(BRE.. + BY) =[[ Bf ='* 0. (1.23)
k k
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Next, we compute
az+e =" 30+ [[(Eu + BY) =22 [[(Eur + B + b;,)
% K K
=19 H Z(ejk +b2 +ay) =11 H Z(bj1 + b2+ ay)
k j k J

=19 T](a1 + az) = ar + as.
%

This and (1.23) imply e € R(1,2). Hence ¢ maps into R*, as desired.
Next, let x € R(1,2). To show that ¢ maps into M, (S*), we have to show that
ij = vpi; = (x + B ) (b} +b7) belongs to S(; 3) This follows easily, since

wiib5 = (z+ B2) (b} +b)b7 =° (z(b2 + B?) + B2)b?
=19 (wap + B)b? ="° B2b3 ='0, and

zij+ 03 = (x+ B) (b} +?) +b_§=m (bi +b2) (2 + B + 1))

=" (b +07) (@ + ag) =" (bf +b3) (a1 + az) =" b + b3
Next, we show that ¢ o) is the identical mapping. Let x € R(1,2). Then

z(potp) = (zp)¥ = (zpi; 11, <n)ip
=120 (2 +BH(bf +b2) i, 5 <n)
=2 TTyk, where y, = B + Y (z + B})(b; +b7).
) 5

Observe that it suffices to show that z <y, for all k£ < n, since then (1.22) implies

x =y. Let us compute:

)

219N w(b) +ag) = z(b] +az) + ) x(bf +ay)

2<1

Y = Yy (B + (z+ BE) (bl +b7)) =" > (x + B)(b; + b;. + B})

=m x(b} +as+ Y x(b; + az)) = WJF m(b%u:ag)))

2<i 2<i

—m x(b% + > (az +z) (b} + ag)) . x(b% + > (az +ay) (b} + a2)>

2<i 2<i

=19 x(b% + > (b} + aQ)) = x(a2 +) bzl) =19 2(ag +ay) =49 x.
2<1 A

Hence x <y, as requested, and ¢ o 1) is the identical mapping.
Next, to show that ¢ o ¢ is the identical mapping, let e;; € S( 13) for 7,5 <n, and
denote (e : 4,5 <n)y = [1,(E.x+ B?) by e. We have already shown that e € R(1,2),
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see (1.21), and ew;; = (e + B7)(bj +b3) € S(i?), see (1.20). Since e;; < b} + % by
(1.11), e;5 < e+ BJZ. would imply e;; < ep;;, and we could derive e;; = ep;; by (1.22).
So, it suffices to show that e;; <e + B?. Let us compute:

e+B,72:B,72+I;[(E*k+B£):B_]z'l'(E*j"'B?)H(E*k-FB%)

k+j

— (B + BY(X 0+ TT(Bu+ BY))

k+j k+j

S (E+ B [[(Ba+ B+ 07) =" (B + B2 [ Do (en + by, + a2)

kij k#:j h
=M (B + B[]0y + b +az) =2 (B + B2 [ [(a1 + az).
k+j h k+j

Since a; + ag M9 b} + b? >11l e, and E,; > e;;, the above calculation shows that

eij < e+ B3. This completes the proof of Lemma 1.10. O

1.3.2 Addition and further lemmas

Lemma 1.13. ¢ and, therefore, 1 are additive.

Proof. Let z,y € R(1,2), z = 7 @193 y, 7' = 2y = (v + BI)(b; +b3), ¥ = yypij =

(y+ B2)(b; +b37) and 2’ = 25 = (2 + B2)(b; +b7). It suffices to show that, in S(i?),
123

/ I — A~/ .
we have x @,y =2 Let us compute:

2 @27y = (bf + b)) (2 + b)) () +0) +y'S (45 2))

iji 3i 25

= (b} + bf)((x’ + bf’)(dif’ +0%) + (Y + dlf’)(bf’ + b?)) (1.24)

On the other hand,

2= (z+B)(b} +17)

b} + b?)((al +a2)((z +as)(cr3 +as) +yR(33)) + 392)

by + b?)((g)((fﬁ +az)(cis +ag) + (y + c13) (as + az)) +3_32)
=" (bf + b)) (a1 + as)((w + ag) (crs + as) + (y + c13) (a3 + a5) + BY)

= (b} + b?)((x +az)(ci3 +as) +B_]2+ (y +c13)(as + as) +B_]2)

=m (bz1 + b?)((x + sz +az)(ciz+ag) + (y+ sz_ +c13)(as + ag)). (1.25)

(
(
(

Now, we can see that the subterms obtained in (1.24) are less than or equal to the
corresponding subterms obtained in (1.25). Indeed, 2’/ < 2 + B} and y' < y + B
by definitions, and b} < a3, b? < a and d;; < c13 by (1.15). Hence (1.22) yields
'@l oy = o, O

YK
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Lemma 1.14. bé. + i = b;? + ¢, and B;'. = B]’? + Ci.

Proof. Tt suffices to deal only with the first equation: bj. + ¢y, =115 b;'. + d;’; +cy =t

" ,
bg? + d;j +cip =V DL + O

Lemma 1.15. Assume that x,y € S(ii) Then SCR( } g) = a:S( 13 35) and, similarly,
12 1lu 2v

yR(y5) = yS(3u2v)'

Proof. 1f i, 7,k < m are pairwise distinct, then we have

cjk(a; +ay) =° Cjk(ai(cjk +ag) + ak) (1.26)

_13 _1.2 _1.3
= cjk(a,-(aj + ak) + ak) = CikQy = 0.

The outer projectivities R(}g) and R(ég) are lattice isomorphisms that send the
interval [0,a; + as] onto [0,a; + a3z] and [0, a3 + as], respectively. Since S(ii) c

[0, a; + az] is defined in the terminology of lattices and

b}LR( } g) = (b + co3)(ay + az) =™ bl + coz(ay +az) =" b},
bgR( ! 3) = (b + c23) (a1 + az) =" (b_i + coz)(ay + ag) =120 b2,
bviR(zla ;) = (b, + c13) (a3 + ag) ="' (@ +c13)(as +ag) =120 b3,
boR(53) = (0] +c13)(as + ag) =20 b},
we conclude that these outer projectivities send (the support set of) S(ii) onto
S ( ii’) and S (ii), respectively. Lattice terms are monotone, so we obtain
wS(quan) = (v +d20) (bl +b3) <V (2 + ca3) (a1 +ag) = 2R(13). (1.27)

We have seen that both sides of (1.27) belong to S(?), whence they are equal in

virtue of (1.22). The other equation of the lemma follows the same way. ]

1.3.3 Multiplication

By an almost zero matriz we mean a matrix in which all but possibly one entries
are zero. We say that v, defined in (1.21), preserves the multiplication of almost
zero matrices, if (E ®y, F)¢ = (Ev) ®g+ (F) holds for all almost zero matrices
E F € M,(S*).

Lemma 1.16. If ¢ is additive and preserves the multiplication of almost zero ma-

trices, then it 1s a ring homomorphism.
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Proof. Since each matrix in M, (S*) is a sum of almost zero matrices, the lemma

follows trivially by ring distributivity. O]

Next, we introduce some notations, which will be permanent in the rest of the
chapter. Let E = (e;; : 1,7 <n) € M,(S*) and F' = (f;; : 4,5 <n) € M,(S*) be two
almost zero matrices. According to the earlier convention and keeping in mind that
b} is the zero of the ring S ( 1 3), this means that there are indices p, q,r, s, fixed from

now on, such that

JZ::epqES([l)z), €ij :bzles(13> for (lvj)i(p7q)7

L L (1.28)
yi=fre€S(12),  fu=breS(L7) for (k,h) £(r,s).

Let G = (gi5:1,j <n) = E ®y, F. By definitions, including the everyday’s definition

of a product matrix, we have

gij = by, the zero of S(i?), ifg#ror (i,5) + (p,s); (1.29)
gps = 05(125) @55 ¥5(1p50): = (1.30)

where o and 8 are arbitrary, provided (1,p) # («a, 5) # (2,s). We also define
e:=FEv, f:=F¢, and, differently, g:=e ®93 f.

The plan is to show that gy = G, that is, gy;; = ¢;; for all ¢,j < n, since this is
equivalent to G = g. To prepare a formula for the gy;;, we need the following

technical lemma.

Lemma 1.17. For all j <n, we have

B+ (y+ B!+ B2)[[(a1 + BY) =y + B} + B, (1.31)
k+s

B+ (x+By+B)[[(a1+B}) =ax+ B, + B} (1.32)
k+q

Proof. 1t suffices to show (1.31), since it implies (1.32) by replacing (y,r,s,j) with
(z,p,q,7r). Let u denote the left hand side of (1.31). If j = s, then

w= B2+ (y+ B+ B)[[(ar + BY) =" (y + B} + B;)(B; +T](ar + Bg))

k«j k+j
M2 (y+ B+ B2) [ (a1 + BR+07) =" (y+ B} + B2) [ [ (a1 + az)
k+j kg

_1.9,15 1, p2
= y+ B, +Bj.
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If j + s, then

u:B_?+(y+B,}+B§)(a1+BJ2) [] (a1 +By)

k+j,s

=" (ap + BJQ)(BJ2 +(y+ B} + B?) H (a1 +B}%))

k+j,s

= (ar+ B (62 + Y b2+ (y+ BL+ B2) [T (o + BY))

k+j,s k+j,s
=L112 (q) + B?)(y + B! + B2 + b? a,+ B2+ b2
7 T s s k k

k+j,s

=19 (a1 + sz)(y+ B! +as +§) H (a1 +az)

k+j,s
1.11,1.9 2\(7——") =19 p1 1 2 2
= (a1 + Bj)(ar +az) = B, + b, + b + B;

_111 np1 2 2 _19 1 2
=" B, +y+b;+Bj="y+B, +B;

Lemma 1.18. For every t,j <n, we have

gpij = (b} + b?)(B; + sz + B3 +xS(i§§g) +yS(;: 3;))

Proof. Firstly, we express e and, to obtain f, we replace (x,p,q) with (y,r,s):

e=Ey =12 H(E*k +Bi) = (Eu + Bg) H(E*k + B?)
k

k+q

L2819 (34 B1 4+ B2) [ (ax + BY);

k+q

f=@=+Br+B)[[(ar+ By).

k+s

We need some auxiliary equations:

B]2 + fR(il,)g) =14 B_]2+ (f + 613)(0,3 + ag) =m ((l3 + CLQ)(BJZ + f + 013)

_1.34 (a3 + a2)(013 + BJ? +(y+ B!+ Bsz) H(Ch + Bz))

k+s

=131 (CL3 + CLQ)(Clg +y+ Bi + BJQ)
=L1.14 (a3 + ag)(clg +y+ B_? + BJQ)

=" B} + (az+az)(cis+y+ B;), and

(1.33)

(1.34)

(1.35)
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BE + eR(}g) =1'4B;§+ (6 +023)(CL1 + CL3) =" (CLl +CL3)(B§ +e+ 023)

=L1.14 (a1 + ag)(ng + BE + 6)

=133 (g + a3)(023 + B2+ (v + B; + Bg) H(m + Bi))

k+q

=132 ((11 + CL3)(CQg + T+ B; + B72')

=" B, + (a1 + a3)(co3 + x + B}). (1.36)
Armed with the previous equations, we obtain
9Pij =120 (bzl + bjz)(g + 332)
=15 (1 4+ 62)(B2 + (ast @) (eR(}3) + FR(33)))
=" (b +b7) (a1 + a2) (BF + eR(} 5) + FR(55))
=135 (bF +02)(eR(}2) + B2 + (a3 + az) (c13 + y + B?
e J 13 T J
=136 (bl + 02)(BL + (a1 + as)(cos + & + B?) + (ag + as) (c13 + y + B2
? J p _r J

=LL14 (pl 4 b?)(B; + (a1 +as)(cos + o +B_§) +(as+as)(ciz +y+ sz))

=" (b} +b2) (B + B2 + (a1 + as)(cos + ) + B? + (a3 + a2)(c13 + y))
e b?)(B; + B2+ Bl +aR(13)+ yR(:l,)g)),
whence Lemma 1.18 follows by Lemma 1.15. [
Lemma 1.19. v preserves the multiplication of almost zero matrices.

Proof. Keep the previous notations, and let

m':z:ES(poq)eS(m), y’::yS(lms)eS(M). (1.37)

1p 3¢ pq 3r 2s rs
We know from Lemma 1.18 that
gpij = (b +03)(By+ B: + B} + 2’ +/'). (1.38)

According to (1.29), our first goal is to show that gy;; = b} whenever ¢ # r or
(i,7) # (p,s). Notice that if

bi <B)+ B+ B2+a' +y, (1.39)
then gp;; = b} follows from (1.22), so we can aim at (1.39). Since z’ € S(;i) and
y' e S(??), (1.3) and (1.11) provide us with the following computation rules:

a#q=— Bi+a'>b), (1.40)
B#s=> Bi+y 20 (1.41)
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We can assume that ¢ = p, since otherwise b; < B} gives (1.39). If r # ¢, then
B} + 2" 2140 bl yields (1.39) again. Hence we assume that ¢ = 7. If j # s, then
B2 +y' 241 b} together with b} + 2" = b3 + 2’ 211 bl yields (1.39) once more.
Therefore, we can assume that j = s.

Now, our task is restricted to the case i = p, ¢ = r, j = s. Substituting these

indices into (1.38) and computing:

gpps = (by +V2) (B + B2 + B2 + 2’ + /')
> (b +02) (2" +y") =15 (by +b2) (2S00 ) +yS (5 50)

1p 3r 3r 2s
13 1 2) (52 (0 2) +uS( 2)S(2E)
S5 as(T) o120 yS( ) 19 g
Hence (1.22) yields that g,s = gps, indeed. H

Proof of Theorem 1.7. Lemmas 1.10, 1.13, 1.16 and 1.19. [



Chapter 2
Isometrical embeddings

In this chapter we focus on lattice embeddings. They have been heavily studied
since the beginning of lattice theory. The first important result was published by
Birkhoff [6] in 1935. He proved that every partition lattice is embeddable into the
lattice of subgroups of some group. Later, in 1946, Whitman [87] showed that every
lattice is embeddable into a partition lattice. These two results together imply that
every lattice is embeddable into the lattice of subgroups of some group. These em-
beddings have considerable consequences; for example, there is no nontrivial lattice
identity that holds in all partition lattices or in all subgroup lattices.

Perhaps the best-known proof for Whitman’s theorem is due to Jénsson [60].
However, both in Whitman’s and Jénsson’s proofs, the constructed partition lattices
are much bigger than the original ones, for instance, they are infinite even for finite
lattices. The question whether a finite lattice is embeddable into a finite partition
lattice arose already in Whitman [87]. He conjectured that this question had a
positive answer.

Partition lattices belong to a larger class of lattices; they are geometric lattices.
A finite geometric lattice is an atomistic semimodular lattice. The first step towards
Whitman’s conjecture was a result of Finkbeiner [32]. He proved that every finite
lattice can be embedded into a finite semimodular lattice. His construction is based
on two steps. On the one hand, he showed that every finite lattice that has a so-
called pseudo rank function can be embedded into a finite semimodular lattice. On
the other hand, he pointed out that every finite lattice has a pseudo rank function.
His embedding “preserves” the pseudorank function; that is, if L is embedded into
S, say L <SS, and p denotes the pseudorank function of L, and h denotes the height

function of S then p and h coincide on L. Note that Finkbeiner credits his proof as

28
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an unpublished result of Dilworth. The second step towards Whitman’s conjecture
was a result of Dilworth, which was published later in Crawley and Dilworth [13].
He showed that every finite lattice can be embedded into a finite geometric lattice.
The last step was made by Pudldk and Tuma [74, 75], who showed in 1977 that
Whitman’s conjecture is true.

Although Finkbeiner did not manage to prove Whitman’s conjecture, his proof
drew attention to embeddings that preserve pseudo rank functions. Such embed-
dings are called isometrical. In 1986, blending the results of Finkbeiner and Dil-
worth, Gréitzer and Kiss [43] showed that every finite lattice with a pseudorank
function has an isometrical embedding into a finite geometric lattice, see also The-
orem 2.3. The question whether a finite lattice with a pseudorank function has
an isometrical embedding into a partition lattice is still open. Gratzer and Kiss’
theorem has a straightforward corollary for semimodular lattices. Given a finite
semimodular lattice, its height function is a pseudorank function, and an isometri-
cal embedding (with respect to the height function) is an embedding that preserves
the height of each element. It is equivalent to the condition that the embedding
preserves the covering relation. Such embeddings are called cover-preserving. Now,
Gratzer and Kiss’ theorem implies that every finite semimodular lattice has a cover-
preserving embedding into a finite geometric lattice, see also Corollary 2.4. Note that
this corollary together with Finkbeiner’s result imply Gratzer and Kiss’ theorem.

Finkbeiner, Gratzer and Kiss focused on finite lattices. The question arises
naturally whether their results can be generalized for infinite lattices. Czédli and
Schmidt [23] proved that the corollary of Gritzer and Kiss’ theorem can be extended
for semimodular lattices of finite length. In [78] we managed to show that Grétzer
and Kiss’ theorem can also be extended for lattices of finite length, moreover, it
can be extended for a larger class of lattices that we called finite height generated

lattices.

Overview of the chapter

In Section 2.1, as a motivation, we recall some basic examples and prove the corollary
of Grétzer and Kiss’ theorem, see Corollary 2.4. The construction is due to Wild [89],
who noticed that the technique used by Finkbeiner and Dilworth is actually matroid
theory. He also noticed that their construction gives a different proof for the corollary

of Gratzer and Kiss’ theorem. In Section 2.2, we introduce the notion of finite height



CHAPTER 2. ISOMETRICAL EMBEDDINGS 30

generated lattices and prove that they can be embedded isometrically into geometric

lattices, see Theorem 2.8.

Notation for the chapter

Given a set S, we define a collection £ of subsets of S to be a complete lattice of
subsets of S if @, S € L and L is closed under arbitrary intersection, cf. Crawley
and Dilworth [13, Chapter 14]. That is, £ is a complete meet-subsemilattice of the
powersetlattice (29;M,U). Note that a collection of subsets of S is closed under
arbitrary intersection iff it is the lattice of closed sets of S with respect to an appro-
priate closure operator, see , e.g., Burris and Sankappanavar [9]. We will use this
concept if we want to emphasize that the lattice £ comes from a closure operator. If
S is finite, we usually drop the adjective “complete” and say L is a lattice of subsets.

We will use n resp. u for set theoretical intersection resp. union and A, v for
lattice operations. Sometimes, for example, if we have a complete lattice of subsets,
A will coincide with n. In these cases, we will usually use n in order to emphasize
this coincidence. Let (a] resp. [a) denote the principal ideal resp. filter generated
by a. For the sake of simplicity, sometimes we will write x instead of {z}, e.g., Xuzx
instead of X u {z}, if it is clear that X denotes a set and x denotes an element.
X —Y will denote the set theoretical difference of X and Y.

2.1 Motivation: the finite case

Throughout this section let L denote a finite lattice. A map p:L - N={0,1,...} is
called a pseudorank function if

(i) it preserves 0, i.e., p(0) =0,

(ii) it is strictly monotone, i.e., a < b implies p(a) < p(b), and

(iii) it is submodular, i.e., p(a Ab) +p(a v b) < p(a) + p(b).

Example 2.1. Define h: L. - N to be the height function on L, that is, for a € L,
h(a) is the mazimum of lengths of chains in [0,a]. Now, if L is semimodular, that
is a < b implies av c<bvc for all a,b,c € L, then h is a pseudorank function on L,
see, e.g., Gratzer [42, Theorem 375].

Example 2.2. Every finite lattice has a pseudorank function, cf. Crawley and Dil-
worth [13, Lemma 14.1.A] and Finkbeiner [32]. Let us recall Finkbeiner’s exam-
ple. Let p be the map p: L — N, a + 2h(1) — 2h(1)-r(a) where h denotes the height
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function of L. Then p is a pseudorank function. Indeed, h(0) = 0 implies that
p(0) = 2h() — 2h(1)-h(0) = 2n(1) — 2h(1) = (, which shows that p preserves 0. If
a < b then h(a) < h(b) implies p(a) = 2M1) — 2h(1)=h(a) < 2h(1) — 2h(1)-h(b) = which
shows that p is strictly monotone. Now, to prove the submodularity, let a,b € L.
If a <bora>bthen p(anb)+plavb)=p(a)+p(b) trivially holds. Assume
that a|b. Then a,b < a v b, hence 2/(1)-h(a) 2h(1)-h(b) < 2h(1)-h(avb) /9 This implies
oh(1)=h(a) 4 9h(1)~h(b) _ 9h(1)~h(avb) < () < 2h(1)~h(arb) Therefore

oh(1)=h(a) | 9h(1)=h(b) ¢ 9h(1)=h(arb) , oh(1)=h(avb)

The required p(a Ab) + p(a v b) < p(a) + p(b) follows immediately, which shows that

p is submodular.

Figure 2.1: Finkbeiner’s (left) and another pseudorank function on Nj

Given a finite lattice L with a pseudorank function p, an embedding ¢ of L into
a finite semimodular lattice S is called isometrical, if p = h o o, where h denotes the
height function of S, cf. Grétzer and Kiss [43]. Since h is a pseudorank function of
S, one can think of an isometrical embedding as “a lattice embedding that preserves
the pseudorank function”. Observe that if L is semimodular and p is the height
function of L then the embedding ¢ of L into S is isometrical if and only if it
preserves the covering relation, i.e., a < b implies p(a) < ¢(b) for all a,b € L. Indeed,
if L is semimodular then L satisfies the Jordan-Holder Chain Condition, see, e.g.,

Grétzer [42, Theorem 374] or Stern [79, Theorem 1.9.1], hence maximal chains of
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intervals have the same length. It implies that, for any a < b, a < b iff p(b) =
p(a) + 1. Since S is semimodular, the same holds for S and h. Now, assume that
¢ is isometrical and let a < b. Then h(p(b)) = p(b) = p(a) + 1 = h(p(a)) + 1, hence
o(a) < @(b), which implies that ¢ is cover-preserving. On the other hand, if ¢ is
cover-preserving then it is isometrical, since the covering relation determines the
height function, and the Jordan-Holder Chain Condition holds in S.

Recall that a finite geometric lattice is an atomistic, semimodular lattice, see,

e.g., Gritzer [42]. In this section, we focus on the following two results.

Theorem 2.3 (Gritzer and Kiss [43, Theorem 3|). Every finite lattice with a pseu-

dorank function can be embedded isometrically into a geometric lattice.

Corollary 2.4 (Gréatzer and Kiss [43, Lemma 17]). Every finite semimodular lattice

has a cover-preserving embedding into a geometric lattice.

We will show Wild’s construction [89, Theorem 4], which proves Corollary 2.4 and
helps better understand the proof of Theorem 2.8. We do not prove Theorem 2.3,
since its proof can be obtained from Wild’s construction, but it is more complicated,
and the main goal of this section is to give some motivation for the next one. On the
other hand, both Theorem 2.3 and Corollary 2.4 are special cases of Theorem 2.8

and Corollary 2.9. Before the proof, we need some elementary matroid theory.

2.1.1 Matroids

Matroids are finite structures. This concept is closely related to both linear algebra
and graph theory. For example, given a finite subset S of vectors in a vector space,
the linearly independent subsets of S form the “independent sets” of a matroid. On
the other hand, given the edge set E of a finite graph, the subsets of E that are
circuits in the graph form the “circuits” (or “minimal dependent sets”) of a matroid.
These two examples show that one can think of matroids as a generalization of vector
spaces and graphs.

A characteristic feature of matroids is that they can be defined in many different
ways: via independent sets, circuits, rank functions, and closure operators. To a
certain extent, this property is responsible for the fact that matroid theory can be
applied in many different ways. We need only the definition via rank functions and

closure operators. For a detailed introduction to matroid theory, see, e.g., Oxley [71].
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Given a finite set S, the map r:2% - N is defined to be the rank function of a

matroid if for any A, B < S,

(R1) 0<r(A) <|A];

(R2) Ac B implies r(A) < r(B);

(R3) r(AuB)+r(AnB)<r(A)+r(B).

In this case we say that the pair (S,r) forms a matroid. If S is a finite subset
of vectors and A ¢ S then the linear algebraic rank of A (the maximal number of
linearly independent vectors in A) defines a rank function of a matroid. If S is
the edge set of a finite graph then the map, which maps to each subset A € S the
maximal number of edges in A whose set contains no circuits, is a rank function of
a matroid.

Given a finite set S, the map cl: 25 — 25 is a closure operator of a matroid if for
any A,Bc S and a,be S,

(CL1) Accl(A);

(CL2) Ac B implies cl(A) c cl(B);

(CL3) cl(cl(A)) =cl(A);

(CL4) becl(Aua)-cl(A) implies a € cl(AuUb).

In this case we say that the pair (S5,cl) forms a matroid. A map is called
extensive, monotone and idempotent, if it satisfies the first, second, and the third
identity, respectively. The first three properties ensure that cl is a closure operator.

The last property is the so-called Exchange Property.

Lemma 2.5.
(i) If (S,r) forms a matroid then the map CL(r):2%5 - 25 A {be S:r(A) =
r(Aub)} is a closure operator of a matroid.
(i) If (S,cl) forms a matroid then the set of closed sets forms a geometric lattice
La. Moreover, if h denotes the height function of L then the map R(cl):2% —»
N, A~ h(cl(A)) is the rank function of a matroid.
(iii) R(CL(r)) =7 and CL(R(cl)) = cl.

Proof. (i) Assume that (S,r) forms a matroid. The fact that cl is extensive follows
from the definition. To prove that cl is monotone and idempotent, we need the

following property. For any Ac Bc S and a€ S,
r(Aua) =r(A) implies r(Bua) =r(B). (2.1)

If a € B then r(Bua) =r(B) obviously holds. If a ¢ B then (R2) and (R3) implies
r(B) <r(Bua) =r(AuBua) <r(Aua)+r(B)-r((Aua)nB) =r(A)+r(B)-r(A) =
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r(B). Notice that (2.1) implies immediately that cl is monotone. To show that cl is
idempotent, observe that, for any A € S, cl(A) < cl(cl(A)), since cl is extensive. To
establish the reverse direction, we need the following property. For any A ¢ S and
ay,...,ag €cl(A),

r(Aua;u---uag) =r(A). (2.2)

We argue by induction on k. If £ =1 then (2.2) holds by the definition of cl. Assume
that (2.2) holds for 1 < k <n and let k = n+1. Then, using the induction assumption
and (2.1) for A, B = Au{ay,...,a,} and a = a1, we obtain (2.2) for k = n + 1.
Thus, by induction, (2.2) holds. Since S is finite, it follows immediately from (2.2)
that

r(cl(A)) =r(A). (2.3)

Hence for any a € cl(cl(A)), we have r(Aua) < r(cl(A)ua) =r(cl(A)) =r(A) <
r(Aua). Therefore a € cl(A), which implies that cl(cl(A)) c cl(A).
We saw that cl is a closure operator. To prove that cl satisfies the Exchange

Property, we need the following fact. For any Ac S and a € S,
r(A)<r(Aua) <r(A)+r(a)-r(Ana) <r(A) +1. (2.4)

Now, suppose that b € cl(Aua)—cl(A) for some A ¢ S and a,b € S. Then r(Auaub) =
r(Aua) and r(Aub) # r(A). From the last inequality and (2.4), we deduce that
r(Aub) =r(A)+1. Thus r(Auaub) =r(Auva) =r(A)+1=r(Aub), hence
aecl(Aub).

(ii) Assume that (5, cl) forms a matroid. The closed sets trivially form a lattice: if
A,Be€ L, then AAB=AnB e Ly and AvB =cl(AuB) =N(C € Ly: AuB c ). Since
the sets cl(a) (a € S) are atoms in L, and, for any A e Ly, A=U(cl(a):a € A), the
lattice L is atomistic. To show that it is semimodular, let A, B,C' € L., A< B. We
have to show that AvC < Bv (. Picking any be B— A, A < B implies cl(Aub) = B.
This yields B ¢ cl(Aubu ). Thus we have AvC =cl(AuC) ccl(Aubu(C) =
cl(BuC) = BvC. Now, the Exchange Property implies that there is not any closed
sets between cl(AuC) and cl(Aubu C), that is, cl(AuC) <cl(AubuC).

Let r be the map defined in (ii). Then (R1) and (R2) hold by definition. To prove
(R3), let A, B cS. Then the definition of r and the fact that h is the height function
of a geometric lattice imply 7(Au B) +r(An B) = h(cl(Au B)) + h(cl(An B)) <
h(cl(A) vcl(B)) +h(cl(A) ncl(B)) < h(cl(A)) + h(cl(B)) =r(A) +r(B).

(iii) If (S,r) is a matroid then Lepy is a geometric lattice and r and the

height function of Ley,,) coincide on the closed sets. This together with (2.3) yield
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R(CL(r)) =r. Let (S,cl) be a matroid and A € S. Then A € L if and only if for
any a €S- A, R(cl)(Aua) = h(cl(Aua)) > h(cl(A)), where h denotes the height
function of L.. This implies that the closed sets with respect to cl and the closed
sets with respect to CL(R(cl)) are the same. Thus cl = CL(R(cl)). O

2.1.2 Embeddings with matroids

Now, we are in position to show Wild’s embedding with matroids [89, Theorem 4],
which proves Corollary 2.4.

Recall that every finite lattice is isomorphic to a lattice of subsets. Moreover, the
base set can be chosen to be the set of nonzero join-irreducible elements of L. An
element a € L is join irreducible if for all x,y € L, a = x vy implies a = x or a =y, see,
e.g., Gratzer [42, Section 1.6]. Let J(L) denote the set of nonzero join-irreducible
elements of L. For any element a € J(L), let ay denote its unique lower cover. For
xel,let $x = (x]nJ(L). Then the set {$z:x € L} forms a closure system and
the corresponding lattice of subsets £ is isomorphic to L. Indeed, L - L, x ~ §x
defines an isomorphism. Assume that L = £ is semimodular and let h denote the

height function of L.

Lemma 2.6 (Wild [89, Lemma 3] and Welsh [84, Theorem 2 of Chapter 8)). The
map r:27(L) - N, A » min{h($x) + |A - Sx|:x € L} defines a rank function of a

matroid.

Proof. 1t is straightforward that r satisfies (R1) and (R2). To check (R3), observe
that for any A, B, X,Y c J(L),

|[A-X|+|B-Y|>|[(AuB)-(XuY)|+|(AnB)- (X nY)]|,
hence
r(A) +r(B) =min{h(3x) +|A-sa[+h(iy) +[B - 3yl}
>min{h({x Vv iy)+
z,yeL

+h(fznsy) +[(AuB)-((zuiy)[+|(AnB)-(zniy)l}

>min{h({x Vv iy)+
x,yeL

+h(zniy)+|[(AuB) - (Szviy)l+|(AnB)-(Szniy)l}
>r(AuB)+r(AnB). O
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Notice that the last proof uses the fact that L is semimodular, since h must be a
pseudorank function. Otherwise the map r would not be necessarily a rank function

of a matroid.

Lemma 2.7. Let r be the rank function of the previous lemma and let cl = CL(r).
Then, for any x € L, r($x) =h($z) and cl($z) = $z.

Proof. To show the first part of the lemma, observe that for any x,y € L

e -yl =tz -Qaniy)l>h($z)-h(szniy) > h(iz) - h(3y), (2:5)

hence

h($x)=h(sx)+|sx - sxl
2r(3o) =min{h(sy) +[do - 3ylt 2 h(Gy) + M x) - h(iy) = h(iz).
To show the second part of the lemma, it is enough to prove that for any x € L and
aeJ(L)-$x,r($xua)>r(sz). Let xe L and ae J(L) - $x. Observe that for any
yel,
h(Yzviy)-h(3y) <S4y,

hence
r($a) <h($e)+1<min{h($eviy) +|(zva) - (S v iy)l)
=minth(by) + (h(Ezviy) -h(y) +|(zva) - Gaviy)l)
<min{h($y) +[ie -ty +|Grua) - Gz viy)l}
<min{h(sy) +|(szva) =3y} =r(zva). O

Proof of Corollary 2.4. Assume that L is a finite semimodular lattice. Let us iden-
tify L with the lattice £ defined above, and let h be its height function. By Lemma
2.6 and 2.5(ii), we can define r, cl, and L. Then L is a geometric lattice, whose
height function is the restriction of r to it. We show that L is a cover-preserving
sublattice of L, that is, £ is a sublattice of £, and two elements cover each other
in L iff they cover each other in £,. By Lemma 2.7, £ ¢ L., and for any x € L,
r($x) = h($z), which yields that £ is a meet-subsemilattice of £, and two elements
cover each other in L iff they cover each other in L.

To show that £ is also a join-subsemilattice of L, let $a Vv ¢ b denote the join of

two elements in L. It means that $av $b=cl($ausb). We show

Savib=3(avd) (2.6)
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by induction on h(a) + h(b). If h(a) + h(b) < 1 then (2.6) holds trivially. Assume
that k& > 1 and (2.6) holds if h(a) + h(b) < k. Let a,b € L such that h(a) + h(b) =
k. We may assume that h(a) > 0 and @ has a lower cover ¢ < a. Then, by the
semimodularity, cvb <avb. If cvb=avb then, by the induction hypothesis,
saveb<y(avb)=3(cvb)=$cvib<saveb. If cvb<avb then, by the induction
hypothesis, $av $b=$av (scvib)=39avi(cvb). Observe that $a ¢ §(cvb), and
§$(cvb) < $(avb), since L is a meet-subsemilattice of L. and (¢ (avb)) =h(avb) =
h(evb)+1=r($(cvb))+1. Thus yavib=$avi(cvb)=3(avb). O

Figure 2.2: The cover-preserving embedding of L (left) into G (right)

Before we turn to the general case, let us show an example. Let L be the six
element lattice of Figure 2.2. It is a modular lattice, thus it is also semimodular.
We want to use Wild’s construction to find a cover-preserving embedding of L into
a geometric lattice. Now, J(L) = {a,b,c,d}, and the corresponding lattice of subsets
is £ = {@,{d},{a,d},{b,d},{c,d},{a,b,c,d}}. One can easily check that the rank

function r, which is defined in Lemma 2.6, is:

r(A) | A

0 %]

1 {a}, {b}, {c}, {d}

2 {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}

3 {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, {a,b,c,d}
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Using Lemma 2.5, one can determine the closure operator cl = CL(r). Indeed, every
subset is closed except the three-element subsets. The corresponding geometric

lattice is

G ={2,{a},{b},{c},{d} {a,b},{a,c}, {a,d}, {b,c}, {b, d}, {c,d}, {a,b,c,d}},

see Figure 2.2.

2.2 The general case

The matroid theoretical approach of Section 2.1 helps us understand the general
proof. However, instead of using the toolkit of (infinite) matroid theory, we gener-
alize the concepts of rank function and closure operator of a matroid. Thus we do
not mention any possible concept of an infinite matroid. It seems less complicated,
since the theory of infinite matroids is much more difficult than the theory of finite
ones. Indeed, even the definition of infinite matroids is not clear, since there are
various reasonable ways to define them, see Oxley [70, 72].

First, we need to generalize the concept of pseudorank function. For any semi-
modular lattice, we want the height function to be a pseudorank function, cf. Ex-
ample 2.1. Given a lattice L with a lower bound 0, the height of an element
a € L is defined to be the supremum of lengths of chains in [0,a]. Let a func-
tion p: L - N, = {0,1,...,00} be called a pseudorank function if it has the following
properties:

(i) p(0) =0;

(ii) a <bimplies p(a) < p(b) for all a,b e L;

(iii) a < b implies p(a) < p(b) for all a,b € L of finite height;

(iv) p(anb)+plavd)<p(a)+p(b) for all a,be L;

(v) p(a) < oo iff a is of finite height.
Note that if L is finite, the new definition of pseudorank function coincides the old
one. It is an easy consequence of the Jordan-Holder Chain Condition, see, e.g.,
Stern [79, Theorem 1.9.1], that in any semimodular lattice, the elements of finite
height form a sublattice. Indeed, let S be a semimodular lattice with 0 and let
x,y € S be elements of finite height, say h(x),h(y) < co. Then any maximal chain
of [0,z Ay] can be extended to a maximal chain of [0, x], whose lengths are at most
h(x), hence h(x Ay) < co. On the other hand, if 0 < 2y < -+ < 2} = z is a maximal

chain of [0,z] then, by the semimodularity, y < x;Vy <--- <z vy =xVyisa
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maximal chain of [y,z v y]. Together with a maximal chain of [0,y], it shows that
[0, 2 vy] contains a finite maximal chain. Now, the Jordan-Ho6lder Chain Condition
implies that all maximal chains of [0,z v y] are finite, moreover, they have the
same length, hence h(x Vv y) < co. This shows that in any semimodular lattice, the
elements of finite height form a sublattice. Hence the height function of an arbitrary
semimodular lattice is a pseudorank function.

Again, for a lattice L with a pseudorank function p, an embedding ¢ of L into a
semimodular lattice S is called isometrical, if p = h o o, where h denotes the height
function of S. Recall that a geometric lattice is an atomistic, semimodular algebraic
lattice, see, e.g., Grétzer [42].

To formulate the general statements corresponding to Theorem 2.3 and Corol-
lary 2.4, we need the concept of a finite height generated lattice. A lattice is said
to be finite height generated if it is complete and every element is the join of some
elements of finite height. Note that lattices of finite length are finite height gener-
ated. To show a finite height generated lattice that is not of finite length, consider,

for instance, N,, with the usual ordering.

Theorem 2.8. FEvery finite height generated algebraic lattice with a pseudorank

function can be embedded isometrically into a geometric lattice.

Corollary 2.9. FEvery finite height generated semimodular algebraic lattice has a

cover-preserving embedding into a geometric lattice.

2.2.1 Basic concepts and lemmas

We say that a pseudorank function r on a complete lattice £ of subsets of S is a

rank function if
r(A)-r(B)<|A-B| forall A, B e L of finite height. (2.7)

Note that this concept differs from that of rank function of a matroid. However, they
are very close to each other. Notice that if B = @ then (2.7) and (R1) are similar.
Also note that if S is finite, our rank function on a complete lattice of subsets of S
is a strictly increasing rank function in sense of P. Crawley and R.P. Dilworth [13].

For every finite height generated lattice with a pseudorank function, we are going
to construct a complete lattice of subsets, which is isomorphic to the lattice and on
which the pseudorank function becomes a rank function. Note that our construction
is an extension of that of P. Crawley and R.P. Dilworth [13, Lemma 14.1.B].
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For the rest of this subsection, let us fix a finite height generated lattice L with
a pseudorank function p. Note that join-irreducible elements are defined the same
way in general as we did in the finite case, cf. Grétzer [42, Section 1.6]. Let J ¢ J(L)
denote the set of nonzero join-irreducible elements of finite height. Recall that, for
f € J, fo denotes the unique lower cover of f. The set J is a poset with respect to
the restriction of the partial ordering of L. Since L is finite height generated, the
set {(a]nJ:a € L} of order-ideals of J forms a complete lattice of subsets that is
isomorphic to L. However, (2.7) does not necessarily hold. To avoid this problem,
we need sufficiently many elements in the ground set of the required complete lattice
of subsets.

Let {X:f € J} be a collection of pairwise disjoint sets such that | X| = p(f) -
p(fo). Set S = U(Xs:f € J). For each a € L, define ya = U(Xy:f € J, f < a).
Then $0=9, $1 =5 and (A A) =N(sa:a e A) for all Ac L. Consequently, the
collection £ = {$a:a € L} forms a complete lattice of subsets of S. Since L is finite
height generated, the map ¢:L - L,a = $a is an isomorphism. For each a € L,
define r($a) = p(a).

Lemma 2.10. The above defined r is a rank function on L with p=1rop.

Proof. Certainly, r is a pseudorank function. This fact will be used hereafter without

further reference. To prove (2.7), observe that it suffices to show, that
r(sa)—r(sb) <|sa-3b| forall a,be L,a>0b of finite height. (2.8)

Indeed, if (2.8) holds then for any ¢,d € L of finite height, we have r($c) —r($d) <
r(se)-r(sengd)<|sc—(senid) and $c-($ensd) =se—3d.

We prove (2.8) by induction on h(a), where h denotes the height function of L.
Let a,be L,a >b be arbitrary elements of finite height. The case h(a) =0 is trivial.
Suppose that h(a) > 0.

If a = b then (2.8) holds trivially. If a > b and a is join-irreducible then b = a¢ and
(2.8) holds by definition. If @ > b and a is not join-irreducible then there exists an
element f € J such that a=bv f and f < a. Using the induction hypothesis and the
submodularity of r, we obtain r(ya)-r($b) <r($ f)-r(sbny f) <[ f-(3bn§ f)| <
[$a—§b|.

If a >b and a # b then there is an element ¢ € L such that b < ¢ < a. Hence
the induction hypothesis and the previous paragraph yields r($a) - r($b) =r($a) -
r(se)+r(se)—r(sb) <|sa—-$cf+|sc—3b=|sa-$b). O
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Observe that if L is semimodular and p is the height function of L then | X =1
for all f e J. Thus X; can be chosen to be {f} and S = J. Besides, if L is also
finite then ¢ a denotes exactly the same set here and in Section 2.1. Consequently,
the corresponding (complete) lattices of subsets coincide as well.

Let F' ¢ L denote the set of elements of finite height. Since L has a pseudorank

function, F'is a sublattice. Notice that
for any finite A € S there is x € I’ such that A c §z. (2.9)
For each z € F', we define r, to be the map
72 > N={0,1,...}, Armin{r(sy)+[(Ansz)-$yl:yeF}.

Observe that the above definition is an extension of the one in Lemma 2.6. Given
a set A c S and an element x € F', we say that y € F' represents r,(A) if r,(A) =
r($y)+|(An$z) - $y|. Some important properties of r,, can be found in the following

statements. Some of them might be familiar from Lemmas 2.6 and 2.7.

Lemma 2.11.
(i) rz(A) =min{r(sy)+|[(Ansx) - Syl:ye[0,2]} for all Ac S.
(i) 0<r(A) =ry(Angz) <min{|AnSx|,r(sx)} for all AcS.
(iii) A< B implies r,(A) <7, (B) for all A,BcS.
) r5(A) =7, (A) for all Ac S and x,y € F satisfying AC yxniy.
(v) If x>y then r.($y) =r($y) for all z,y € F.

(iv

Proof. The first four statements follow easily from the definition. To prove (v), let
z >y be elements of F. By (iv) and (ii), we have r,($y) = m,(3y) < r(3y). To
prove the opposite direction, let u € F' represent r,($y). Then by (2.7), we obtain
ry(by) =rQu) + by —Sul2r(Gu) +r(Sy) -r(fu) =r(Sy). O

Lemma 2.12. Let Ac B< S and x € F. Suppose that u € F represents r,(A) and
v € F represents r,(B). Then u A v represents r,(A) and u v v represents r,(B),
that s

re(A)=r(funiv)+|(Anfz)-(yuniv)| and (2.10)
ro(B)=r(Suviv)+|(Bniz)-($uviv)|. (2.11)
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Proof. First, we need some elementary calculations.

(Ansz)—(Sunsv)=[(Ansx) —Sul+|(Anszniu) - Sv|<

<|(Ansz)=Sul+|[(Bnyzniu)-sv|=

=|(Ansz)=Sul+[(Bniz)-sv|-|[(Bnix)-(uugv)|<
<|(Ansz)=Sul+|(Bnsz)—Sv|-|[(Bnyx) - ($uv sv)|.

Now, using the definition of r,, the submodularity of r and the above calculations,

we obtain the following inequalities

ro(A) <r(Sunsv)+|(Ansz) - (funiv)| <
<r(su)+r(sv)—r(uviv)+|(Ansz) - (funiv)| <
<r(Su)+r(sv)-r(suviv)+
+H(Anyz) - Jul+|(Bnix) - vl -[(Bniz) - (Juviv)|=
=12(A) +1o(B) —r(uviv) - |(Bniz) - (Fuviv)| <re(A4).

Therefore the above inequalities are equalities. Thus the underlined part is zero,
which gives (2.11), while (2.10) is the first inequality. O

Corollary 2.13. For any A € S and x € F, there exists a smallest and a largest

element in [0,x] that represents r,(A).

Lemma 2.14. Let Ac S and a € S. Ifr,(Aua) = ry(A) and y € F represents
r:(Aua) then the following hold:

(i) y also represents r,(A) and

(i) a¢ sz oracly.

Proof. r.(Aua) =r(sy)+|((Aua)niz)-Syl2r(Sy)+|(Ansz) -yl > 1. (A) =
r.(Aua) implies that y also represents r,(A) and |((Aua)nsx)-Sy| = |(Ansz)-Sy|.
Hence a ¢ $z or a e jy. O

Lemma 2.15. Let Ac S and B={be S:r,(Aub)=r,(A)}. Then r,(B)=r,(A).

Proof. By the monotonicity of r,, that is Lemma 2.11(iii), we know that r,(A) <
r.(B). By Corollary 2.13, there exists a largest element y € [0,x] that represents
r.(A). Let b e B— A be an arbitrary element. Let z € [0,z] represent r,(A ub).
Then Lemma 2.14(i) implies that z represents r,(A), and Lemma 2.14(ii) implies
that b ¢ ¢ or be $z. We also have § z € ¢y, because y is the largest element that
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represents 7,(A). Hence b ¢ $x or be §y. Consequently, (B - A)n ¢z < ¢y, which
yields that

r2(A)=r(y) +|[(Ansx) -yl =r(Sy) +[(Bnz) - syl > r.(B). O

We saw in Section 2.1 that finite geometric lattices and closure operators of
matroids are closely related. In general, let cl: S — S be a closure operator. We say
that cl is algebraic, if for any set A € S and any element a € cl(A) there is a finite
subset Ay € A such that a € cl(Ag). The Exchange Property is defined the same way
in general as we did in the finite case. Now, for an algebraic closure operator that
satisfies the Exchange Property, the lattice of closed sets forms a geometric lattice.
Indeed, it is algebraic, since the closure operator is algebraic. It is atomistic, since
the Exchange Property ensures that closures of one element sets are atoms, and
every closed set is the join of the closures of its one element subsets. Finally, the
semimodularity follows from the Exchange Property.

Although we do not use it, let us mention the fact that every geometric lattice
can be obtained from an appropriate algebraic closure operator that satisfies the
Exchange Property, see, e.g., Gritzer [42, Section V.3].

Using r,., we define two kinds of closure operators on S: cl, for each x € F' and

cl. Namely, for any A c F,

cl,(A)={aeS:ry,(Aua)=r,(A) forall ye Fn[x)},
cl(A) = J{cl,(A):y e F}.

Notice that
cl(A) ccly(A) if z<y. (2.12)

Lemma 2.16. The functions cl,:2% - 25/ A cl,(A) and cl:25 - 29 A — cl(A)

are algebraic closure operators. Moreover, cl satisfies the Exchange Property.

Proof. The extensivity of cl, is immediate from the definition. To prove the mono-
tonicity, let A ¢ B ¢ S. By the definition of cl,, it is enough to prove that
ry(Bua) =r,(B) for all a € cl,(A) and all y € F'n[z). Suppose indirectly that
there are elements a € cl,(A) and y € F n[z) such that r,(Bua) > r,(B). Then
ry(Bua)=r,(B)+1. By Corollary 2.13, there exists a smallest element u € [0, y]
that represents r,(Aua). Let v € [0,y] represent r,(B). Then v also represents
ry(Bua), thus a € $y and a ¢ $v must hold. Using Lemma 2.12 for Aua ¢ Bua,

we obtain that u A v represents r,(Aua). Then u < uAv gives $u € yv. By
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Lemma 2.14(ii) for r,(Aua) and u, we have that a ¢ $y or a € $u C $v, which
contradicts the fact that a € $y and a ¢ $v. Consequently, cl, is monotone.

To prove that cl, is idempotent, let A ¢ S. For any y € F n[z), we have
Accl,(A)cB,={beS:r,(Aub) =r,(A)}. By Lemma 2.15 and the monotonicity
of r,, we also have r,(A) = r,(cl,(A)) = r,(B,). Now, for any a € cl,(cl,(4)) and
any y € F'n[z),

ry(A) <ry,(Aua) <ry(cl,(A)uva)=ry,(c,(A4)) =r,(A).

Hence a € cl,(A) and cl,(cl,(A)) ¢ cl,(A). The other direction follows immediately
from the extensivity of cl,. Consequently, cl, is idempotent. We conclude that cl,
is a closure operator.

To prove that cl, is algebraic, let A< S and a € cl,(A). Let y = A{z € Fn[z):ace
$z}. By (2.9), we obtain y € F'. First, let Ay € An$y be a finite subset such that
ry(Ap) is maximal. Then r,(Ap) =7,(A). Indeed, the maximality of r,(Ap) implies
that r,(Agub) =1,(Ap) for all be A. Using Lemma 2.15 for B={be S:r,(Ayub) =
ry(Ao)}, we obtain r,(Ag) = r,(B). Therefore r,(A4y) = r,(A) = r,(B) by the
monotonicity of r,. Now, we have r,(Ay) <r,(Agua)<r,(Ava)=r,(A)=r,(A),
hence r,(Agua) =7,(Ap). Finally, let z€ F'n[z). If a ¢ ¢z then r,(Ag) =r.(Agua)
trivially holds. If a € § z then y < z by the definition of y. Using Lemma 2.11(iv)
for Agua c $y C §z, we obtain 7,(A4y) = 1,(Ao) = ry(Agua) = r.(Ap U a). Hence
a € cl,(Ag). We conclude that cl, is an algebraic closure operator.

The extensivity and monotonicity of cl follow immediately from those of cl,.
To prove the idempotency of cl, let A ¢ S and suppose that a € cl(cl(A)). By
definition, a € cl,(cl(A)) for some x € F'. Since cl, is algebraic, there is a finite subset
Ap ¢ cl(A) such that a € cl,(Ap). By (2.12) and the definition of cl, Ay ¢ cl,(A)
for some y € F'. By (2.12) and the monotonicity and idempotency of cl,, we have
a € cly(cly(A)) < clpvy(clivy(A)) = clpvy(A) € cl(A). Hence cl(cl(A)) € cl(A). The
other direction follows immediately from the extensivity of cl. Consequently, cl is a
closure operator. It is algebraic since cl, is algebraic for all x € F.

To prove that cl satisfies the Exchange Property, let A ¢ S and a,b € S such
that a € cl(Aub) —cl(A). Since cl is algebraic, there is a finite subset Ay € A such
that a € cl(Agub) — cl(Ag). Hence a € cl,(Agub) - cl.(Ap) for some = € F. By
(2.9) and (2.12), we can assume that Agu{a,b} ¢ $x. By the definition of cl,, there
are u,v € F'n[x) such that r,(Agua) = r,(Ag) +1 and r,(Agud) = r,(Ap) + 1,
since a,b ¢ cl,(Ap). Using this and Lemma 2.11(iv) for Agu {a,b} € $ =, we obtain
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that r,(Apua) = ry(Agub) = r,(Ag) +1 for all y € F'n[z). The assumption
a € cly(Apub) implies r,(Ap U {a,b}) = r,(Agub) = 1r,(Agua) for all y € Fn[z).
Now, becl,(Agua) c cl(Aua) follows immediately. Hence cl satisfies the Exchange

Property. [

2.2.2 The main proofs

Before the proof of Theorem 2.8, we need a short technical lemma about finite height

generated algebraic lattices.

Lemma 2.17. If L is a finite height generated algebraic lattice and the elements
of finite height form a sublattice then its elements of finite height are exactly its

compact elements.

Proof. Suppose that a € L is compact. Then a =/ B for some elements B € L of
finite height, because L is finite height generated. Since a is compact, there is a
finite By € B with a = \VV By. Hence a is of finite height. Now, suppose that b € L
is of finite height. Then b = \V A for some compact elements A ¢ L, because L is
algebraic. Since b is of finite height, there is a finite Ay ¢ A with b=\ Ag. Hence b

is compact. 0

Proof of Theorem 2.8. Given a finite height generated algebraic lattice L with a
pseudorank function p, define £ and r as we did in Subsection 2.2.1. We will also
use S for the ground set of £ and F' € L for the set of elements of finite height. Recall
that F' is a sublattice, since L has a pseudorank function. Denote L the complete
lattice of subsets that corresponds to the closure operator cl. By Lemma 2.16, L is
a geometric lattice. It is enough to prove that £ is a sublattice of £ such that r and
the height function of L coincide on £. Then @: L - L, x — $x is an isometrical
embedding.

First, we show that £ ¢ L. Let x € L and a € S—§ x. Suppose, for a contradiction,
that a € cl($ ). Then, by definition, there is a y € F' with a € cl,($z). By (2.9) and
(2.12), we can assume that a € $y. Notice that a € cl,($z) implies that r,($xUa) =
ry($z). Let z € F represent r,($x ua). Then Lemma 2.14(ii) and a € $y implies
that a € $z. Since a € $z—¢x, we have {2z # $xn iz =§(x Az), hence Az < z.
However, ($xniy)-$(xAnz)=((zniy)-(xniz)=(Gxniy)-$z=(({zu
a) N $y)—3$z. Since r is strictly monotone for elements of finite height, we obtain

that ry(32) <r($(xaz))+|Sxzniy)-s(xaz)|<r(iz)+|Szniy) -s(xAz)| =
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r(sz) +|(($zuva)niy) —$z =r,($xuUa), which contradicts r,($z) = r,($z U a).
This proves that ¢z € L, and £ ¢ L. Moreover, the meet operation both on £ and
L is the intersection, therefore £ is a meet-subsemilattice of L.

To prove that £ is a sublattice of L., observe that the join of two elements
$x,3y € L in the larger lattice L is cl($x U $y). Since cl($z U $y) € (zVvy), it is
enough to show that cl($xusy) 2 ¢ (xvy). Let a e (xVvy). By definition, it means
that a € X, for some be Jn (zvy]. Since L is finite height generated, z =\ X and
y=VY for some X, Y c F. By Lemma 2.17, b is compact, hence b <\ Xy Vv VY for
some finite Xy € X, Yo €Y. Let 2o =V Xg and yg = V Yy. By Lemma 2.17, zq, 90 € F.
Now, b < g V1 implies a € § (29 Vyp). In order to prove that a € cl($z U $y), it is
enough to show that a € cl($zo U $yo). We prove that a € clyvy, ($ 20U $yo), which

yields a € cl($ 2o U $9). As a preparation for this, we show that

r.($xoU yo) =7.($ (2o Vo)) for all ze FnlzgVyg). (2.13)

Since r,($x9) = r($xo) by Lemma 2.11(v), xy represents r,($xo). Similarly, yo
represents r,($yo). Assume that zy represents r,($xo U $yp). Using Lemma 2.12
twice for $ 29 € $ 29U $yo and $yo € $x9U $yp, we obtain that xg Vv yy Vv 2o represents
r.($ 20U $yo). However, $ 20U S0 S $ (2o VYoV 20), hence 7, ($ 20U $90) = r($ (zo Vv
YoV 20)) +|(($ 2oV L yo) N 2) = § (2o VYoV 20)| = 7($ (X0 VYoV 20)). On the other hand,
$20U S0 € ¥ (2o v yo), which implies 7. ($ 10 U $y0) <7($ (o vV yo)) + |[(($ 20U $70) N
$2) =34 (xo v yo)| =7(3(zovyo)) <7(8(zoVyoV20)). Together with r(§ (zo v yo Vv
20)) = 1.($ 2o U $yo), we obtain that r,($xoU $yo) =7(8 (o vV yo)). Lemma 2.11(v)
yields that 7($ (zo v yo)) = r.($ (2o V yo)), which finishes the proof of (2.13). Now,
§ToUSYo S ¢xoUSyoUa C § (o VYyp), the monotonicity of r, and (2.13) implies that
r.($xoUusyoua) =r,($x0Uyo) for all z € FnlxzgVvyy). Hence a € clygyy, ($ 20U o).
We conclude that £ is a sublattice of L.

To prove that the embedding is isometrical, we have to show that r($z) = h($x)
for all x € L, where h denotes the height function of £.. By the definition of finite
height generated lattices, it suffices to prove that r(¢x) = h($x) for all z € F. We
use induction on the height of z € F. If x =0 then 7($0) =0 =h($0).

Suppose that 0 < z < y and r($2) = h($x). Since r is a rank function on
L, we have a set A = {ay,...,ar_1,ar} € Sy - $x with k = r($y) - r($x) distinct
elements. Let Ag= ¢z and A; = §zxua;u---uaq; for all ie{1,... k}. Assume that
ze Fnly). Clearly, r,(A;) <r($x) +i. By Lemma 2.11(v), r.($2) = r($z). Hence

r.(A;) <r.($x)+i. The opposite direction is also true. Suppose, for a contradiction,
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that r,(A;) <r($x) +1i for some i € {1,...,k}. Let i be minimal for this property,
that is 7,(A;) <r($x) +i and r,(A;1) =r($x) +i—1. Note that such ¢ exists, since
r.(Ap) =r($z). Then, by the monotonicity of 7., r.(A;) =r(sx) +i—-1=7r.(A;-1).
Let u; represent r,(A;). Applying Lemma 2.14(ii) for r,(A;) and u;, we obtain that
a; € $uy;, since a; € $y € $z. Notice that = represents r,($x) by Lemma 2.11(v).
Using Lemma 2.12 for § = € A;, we obtain that = vu; represents r,(A;). We conclude
from $x c A; € Yy, x <y,a; € $u; and the construction of S and £ that x v u; > y.

Now, we have

r(ye) +i>r.(A) =r(S(evw)) +[(Ainiz) - (zvuw)| =
=r($(zvu)) 2r(Sy) =r(Se) +k2r(z) +i,
which is a contradiction. Therefore
r.(A;) =r.($x)+iforallie{l,....k} and all z € F n[y). (2.14)

Hence for every f € F', we have that r,(A;_1) # 7, (A4;) for z = f vy, which shows that
a; ¢ cly(A;-y) for all f e F, that is a; ¢ cl(A;—1). This gives that cl(A;1) # cl(4;).
Clearly, Cl(Ai,l) < Cl(Ai,l U CLi) = CI(AZ) Thus

s =cl(Ag) <cl(Ay) < <cl(Ag). (2.15)

We know from (2.14) and the definition of k that r,(Ay) =7.($y) for all z € F'n[y).
Since 7, is monotone, r,(Ay) = 7,(Ar U b) for all b e $y— Aj. Hence b € cl,(Ay) C
cl(Ag) for all b € gy — Ag, and we obtain that $y <€ cl(Ax). This, together with
Aj € $y, yields that cl(Ax) = $y. Consequently, we conclude from (2.15), the
semimodularity of L. and the induction hypothesis that h($y) = h($x)+k=7(sz)+

k=r(by). O

Proof of Corollary 2.9. Let L be a finite height generated semimodular algebraic
lattice. Consider the height function hy: L — N,. We conclude from Theorem 2.8
that L has an isometrical embedding v into a geometric lattice G with respect to hy.
Assume that z <y in L and choose a minimal element f of finite height in (y] - (z].
Let g be a lower cover of f. Then x = xvg and y = zv f. Now, ¥(f) covers
¥(g), since ha(P(f)) —ha(¥(g)) =ho(f)—hr(g) =1, where hg denotes the height
function of G. Hence the semimodularity of G implies that (y) = ¥(x) v ¢ (f)
covers (x) = ¥(x) vp(g). Therefore 9 is cover-preserving. O

Remark 2.18. If L is of finite length, the construction of L. becomes more simple:

we need only 7 since cl = cl;. Note that in this case r; is a rank function on L.
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2.2.3 Examples

Let L; be the five element lattice of Figure 2.3. It is not semimodular. Although
Example 2.2 gives a pseudorank function L; - N, 0~ 0, r —» 4, s » 6, t = 4 and
1+~ 7, one can easily find a “nicer” one, which has smaller values. Let p be the map
p:L - N, p(0) =0, p(r) =2, p(s) =2, p(t) =1 and p(1) = 3. It is a pseudorank

function. See also Figure 2.1.

Figure 2.3: The isometrical embedding of L; (left) into G (right)

We want to embed L; isometrically into a geometric lattice. Notice that the
nonzero join-irreducible elements are r, s and ¢. Since p(r) — p(ro) = 2 and p(s) —
p(s0) = p(t) = plto) = 1, |X,] = 2 and |X,| = [Xi| = 1. Let X, = {a,b}, X, = {c} and
X ={d}. Thus S ={a,b,c,d}. Considering Remark 2.18, it is enough to calculate

1.

r(A) | A

0 %]

1 {a}, {b}, {c}, {d}

2 {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}

3 {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, {a,b,c,d}
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Now, one can easily determine cl = cl;. Indeed, every subset is closed, except the

three element subsets. The corresponding geometric lattice is

Gy ={a,{a}, {0}, {c}, {d},{a,b},{a,c},{a, d},{b,c},{b,d}, {c, d}, {a,b,c,d}},

see in Figure 2.3.

Let Ly = N with the usual ordering, see Figure 2.4. We want to embed L, into
a geometric lattice. Although it is not a finite height generated lattice, it can be
extended to a finite height generated lattice N = [0,00) < N, which is also an
algebraic lattice. Indeed, the elements of N are exactly the compact elements of N,

and oo = \/ N.

0®

Figure 2.4: The isometrical embedding of Ly (left) into Gy (right)

Let p denote the height function of N, which is a pseudorank function, since N,
is semimodular. Notice that the nonzero join irreducible elements of finite height
are N—{0}. Since p is the height function, it is also a rank function, cf. (2.7). Thus
S can be chosen to be N - {0}. Observe that for any x € N, $z = (0,z], and any
AcS ry,(A)=|Anx|. Forany aeS—A, if z >a then r,(Aua)=|(Aua)niz|=
((Ansx)ual>|Ansx|=r.(A). Hence, cl,(A) = A. This implies that cl(A) = A for
every subset A € S. The corresponding geometric lattice Gy is the Boolean lattice

of all subsets of S, see Figure 2.4.



Chapter 3
Mal’cev conditions

The classic theorem of Mal'cev [67] states that the congruences of any algebra of a
variety V permute if and only if there is a ternary term p such that V satisfies the

following identities:
p(r,y,y) =2 and p(z,z,y) = y.

Jénsson [63] and Day [28] proved similar results for distributivity and modularity.
These results led to the concept of Mal’cev(-type) conditions, see Grétzer [40]. Us-
ing Gratzer’s concept, Jénsson’s resp. Day’s result says that the class of congruence
distributive resp. congruence modular varieties can be defined by a Mal’cev condi-
tion, cf. Theorem 3.1 and 3.2. Later, beside the concept of Mal’cev condition, two
similar concepts appeared, the strong and weak Mal’cev conditions, cf. Taylor [81].

After Mal’cev’s, Jonsson’s and Day’s results, many classes of varieties have
proved to be definable by (strong/weak) Mal'cev conditions. Both permutability
and distributivity have some generalizations, the so-called n-permutability and n-
distributivity. Hagemann and Mitschke [50] characterized n-permutability (n > 2)
by a strong Mal’cev condition. On the other hand, n-distributivity, which was intro-
duced by Huhn [54], turned out to be equivalent with distributivity in congruence
varieties, cf. Nation [68]. Thus Jonsson’s result [63] also characterizes congruence
n-distributivity by a Mal’cev condition. Let us mention here that distributivity and
n-distributivity are not equivalent in general. Distributivity implies n-distributivity,
but, e.g., M3 is an n-distributive lattice that is not distributive (if n > 2), cf. Re-
mark 1.2.

As for congruence modularity, Gumm [49] improved Day’s result and found a
Mal’cev condition for congruence modularity that contains ternary terms, see also
Lakser, Taylor and Tschantz [65]. Then Czédli and Horvéth [21] proved that every

50
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lattice identity that implies modularity in congruence varieties can be characterized
by a Mal’cev condition. Their proof is heavily based on one of their former paper
with Radeleczki [22]. Note that it is still an open problem whether all congruence
lattice identities can be characterized by a Mal’cev condition. On the other hand,
Wille [90] and Pixley [73] showed that every congruence lattice identity can be
characterized by a weak Mal’cev condition.

In connection with Mal’cev conditions, we consider important to mention that
Csakany was the first person from Szeged, who dealt with Mal’cev condition, for
example, one of his results is the characterization of regular varieties by a Mal’'cev
condition [14]. He also wrote his thesis for the doctor of science degree about Mal’cev
conditions and their applications [15].

Nowadays, Mal’cev conditions, especially Jénsson’s, Day’s and Gumm’s terms,
are frequently used in universal algebra and related areas such as CSP, cf., e.g.,
Barto and Kozik [4, 5].

Observe that, in case of groups, rings and modules, congruences are determined
by normal subgroups, ideals and submodules. Although one congruence class does
not usually determine the whole congruence, these examples show that given an
algebra with a constant operation symbol ¢, the congruence class that contains
¢ can play a special role. To recall a related concept from Chajda [11], let A :
p(x1,...,2,) < q(xq,...,2,) be a lattice identity, and let V be a variety with a
constant operation symbol 0 in its type. We say that A holds for the congruences
of V at 0 if for every A € V and for all congruences aq,...,a, of A, we have
[0]p(aa,...,an) € [0]g(cq,. .. ,ay). In particular, if A is oy A (e vV ag) < (ag Aag) v
(a1 A ag) resp. (ag Vag) A(agvas) <arVv(azA(arVvas)), then we say that V is
congruence distributive resp. congruence modular at 0.

This concept is not as trivial as it may seem. For example, while the variety & of
meet semilattices with 0 is congruence distributive at 0, the dual of the distributive
law does not hold for congruences of S at 0, see Example 3.9.

Returning to Mal’cev conditions, Chajda [11] has given a Mal’cev condition
characterizing congruence distributivity at 0, and Czédli [16] has pointed out that
the satisfaction of A for congruences at 0 can always be characterized by a weak
Mal’cev condition. (This is particularly useful when each congruence « is determined
by [0]a, see the comment following Prop. 2 in Czédli [16].) Later, Chajda and
Halas [12] took some steps towards characterizing congruence modularity at 0. Then

we gave a Mal'cev condition in [77] that characterizes congruence modularity at
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0. Note that Jonsson’s and Day’s characterization of congruence distributivity and
congruence modularity follows from the characterization of congruence distributivity

and congruence modularity at 0, c¢f. Remark 3.6.

Overview of the chapter

In Section 3.1 we recall the precise definition of Mal’cev conditions, and we formulate
Jonsson’s and Day’s results. In Section 3.2 we show Chajda’s characterization of
congruence distributivity at 0 and our characterization of congruence modularity

at 0. We close this section with some examples and concluding remarks.

Notation for the chapter

Throughout this chapter, algebras are typeset in bold capital letters, e.g., A, their
underlying sets are typeset in capital letters, e.g., A, and varieties are typeset in
calligraphy letters, e.g., V. For a given algebra A €V and elements a,b e A, ©(a,b)

denotes the smallest congruence of A that contains (a,b).

3.1 Definition of a Mal’cev condition

A class K of varieties is defined by a strong Mal’cev condition iff there exist polyno-
mial symbols py, ..., pr and a finite set X of equations in py, ..., px such that a variety
V of type 7 belongs to K if and only if each polynomial symbol can be associated
with a term of type 7 such that the equations of ¥ become identities that hold in V.
The classical result of Mal’cev says that the class of congruence permutable varieties
is definable by a strong Mal’cev condition.

A class K of varieties is defined by a Mal’cev condition iff there exists a sequence
K; (i € N) of classes such that each K; is defined by a strong Mal’cev condition,
K; ¢ K;y; for all 7 € N, and K = U2, K;. The following two theorems show the
two most known examples of classes defined by a Mal’cev condition: the class of

congruence distributive resp. congruence modular varieties.

Theorem 3.1 (J6nsson [63, Theorem 2.1]). For a variety V of algebras, the following
conditions are equivalent:

(i) V is congruence distributive, that is Con A is distributive for all A € V;
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(i) there is a natural number n and a sequence of terms Dy, D1, ..., D, in three

variables such that V' satisfies the following identities:

Dy(x,y,z) =z and D,(x,y,2) = z; (D1)
Di(z,y,x) =x for all i; (D2)
Di(x,2,2) = Diy1(x, 2, 2) for i odd; (D3)
Di(x,x,z) = Diy1(z,x, 2) for i even. (D4)

Theorem 3.2 (Day [28, Theorem 1]). For a wvariety V of algebras, the following
conditions are equivalent:

(1) V is congruence modular, that is Con A is modular for all A € V;

(ii) there is a natural number n and a sequence of terms My, My, ..., M, in four

variables such that V satisfies the following identities

My(z,y, z,w) =z and m,(z,y, z,w) = w; (M1)
M;(z,y,y,x) =x for all i; (M2)
Mi(z,y,y,w) = M (z,y,y,w) for i odd; (M3)
M;(z,z,w,w) = M1 (x, 2, w,w) for i even. (M4)

Note that the terms D; resp. M; are usually called Jénsson terms resp. Day
terms.

Finally, a class K of varieties is defined by a weak Mal’cev condition iff there
exists a sequence K; (7 € N) of classes such that each K; is defined by a Mal'cev
condition and K = N, K.

3.2 Congruences of algebras with constants

Recall that congruences of a given variety }V with a constant satisfy the identity
Aip(xy,...,x,) < q(oq,...,x,) at 0 iff for every A € V and for all congruences
aq,...,a, of A; we have [0]p(ay,...,a,) € [0]g¢(aq,...,a,). Notice that if the
congruences of V satisfy A then they satisfy A at 0, too. Chajda [11] pointed out
that some slight modification of Jénsson’s proof of Theorem 3.1 gives a Mal'cev

condition for congruence distributivity at 0.

Theorem 3.3 (Chajda [11, Theorem 1]). For a variety V of algebras with a constant

0, the following conditions are equivalent:
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(i) Con A is distributive at 0 for all A € V;
(i) there is a natural number n and there are binary terms d; (i = 0,...,n) such

that V satisfies the following identities:

do(z,y) =0 and dn(2,y) = y; (d1)
d;(x,0) =0 for all i; (d2)
di(z,x) = diy1(z, 1) for i odd; (d3)
d;(0,y) =d;+1(0,7) for i even. (d4)

Instead of a proof, we only note that the terms d;(x,y) are obtained from the
Jénsson terms: d;(z,y) = D;(0,z,y). Chajda and Halas [12] observed that in vari-
eties that are congruence modular at 0 the terms m;(x,y, z) = M;(0, z,y, z) obtained
from the Day terms must hold. However, they did not manage to prove that these
terms also characterize congruence modularity at 0. In the next theorem we show

that an appropriate modification of Day’s proof of Theorem 3.2 works.

Theorem 3.4. For a variety V of algebras with a constant 0, the following conditions
are equivalent:

(i) Con A is modular at O for all A €V;

(i) there is a natural number n and there are ternary terms m; (i =0,...,n) such

that V satisfies the following identities:

mo(x,y,2) =0 and my(z,y,2) = z; (m1)
mi(x,x,0) =0 for all i; (m2)
mi(z,x,2) =mi(z,x,2) for i odd; (m3)
m;i(0,z,2) =m;1(0,2,2) for i even. (m4)

For a fixed algebra A, congruences 3,7 € Con A and integer k > 0, let Ay =
Ar(A, B,7) denote the relation fovyo---ovyo 3 with 2k + 1 factors. Notice that Ay
is reflexive, symmetric and it is compatible with the operations of A. Such relations

are called tolerances, cf. Chajda [10]. Before the proof we need the following lemma.

Lemma 3.5. Suppose that we have the ternary terms m; given above. Letl us fix
an algebra A €V, congruences o, 3,7 € Con A and elements a,d € A. If o > ,
(0,a) € (anfB) vy and for some integer k >0, (a,d) € anAy then (0,d) € (aAf) V.

Proof. We prove the lemma by induction over k. The lemma is trivially true for

k = 0. Suppose that the lemma is true for some integer k£ > 0 and let (0,a) € (aAf) vy
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and (a,d) € anAg1. We have to prove that (0,d) € (anfB)vy. As (a,d) e anAyyy =
an (Agovyo ), there exist elements b, c € A such that

alALb, bvyc, cpd.

Define e; = m;(b,c,d) for i < n. We show (by induction over i) that (0,e;) €
(anB) vy fori<n. Then by (ml), we have (0,d) = (0,e,) € (& A B) vy. By (ml),
we have ey = 0, hence (0,¢eq) € (aw A ) v~y is obvious. Suppose that for some i < n,
we have (0,¢;) € (A 8) vy. We show that (0,e;41) € (e AS) V7.

For arbitrary j <mn, by (m2), we have

e; =mj(b,c,d) Ay m;(a,d,d);
e; =m;(b,c,d) ym;(b,b,a) (anB)vym;(b,b,0)=
=m;(0,0,0) (anB)vym;(a,a,a) am;i(a,d,d).

Since v < (A B) vy < a, we have
e; anApmj(a,d,d). (3.1)
For i even, by (m4), we have
mi(a,d,d) (anB)vym;(0,d,d) =
mi+1(0,d,d) (a A B)vymyq(a,d,d). (3.2)

By the induction hypothesis over i, we have (0,¢;) € (aen5) vy. Using the induction
hypothesis over k for (3.1) with j =i, we obtain (0,m;(a,d,d)) € (a A ) v~y. Then
by (3.2), we have (0,m;,1(a,d,d)) € (an3) v~y. Using the induction hypothesis over
k for (3.1) with j =i+ 1, we obtain (0,e;,1) € (a A B) v 7.

For i odd, by (m3), we have

e; =m;(b,c,d) vy mi(b,b,d) =m;1(b,b,d) v miy1(b,c,d) = €41

By the induction hypothesis over i, we have (0,¢;) € (a A ) vy, hence we obtain
(0,€i01) € (A B) V. [

Proof of Theorem 3.4. (1)=(ii). Let F = Fy,(z,y, z) denote the V-free algebra over
{x,y,z}. The variety V is closed under forming subalgebras and direct products,

therefore V contains F. We define congruence relations on F by

a=0(z,y)vO(0,z), [=000,2)vO(y,z), ~v=06(x,y).
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By (i), we have z € [0]JaA (Bv7y) = [0](aAB) vy, which means (0,2) € (aeAf)vy. Tt

follows that there is a natural number n and there are ternary terms m; (i =0,...,n)
such that
mo(x,y,z) =0 and m,(z,y,2) = 2; (3.3)
mi(x,y,2) anBmyq(z,y,2) for ¢ even; (3.4)
mi(x,y,2) v mi(z,y,2) for 7 odd. (3.5)

As F is a V-free algebra with free generators x, y and z, Equation (3.3) proves (ml).
Equation (m2), (m3) and (m4) also follow from (3.3), (3.4) and (3.5). For example,
to prove (m2), let us consider the homomorphism ¢ defined by xy =z, yp = x and

2 =0. Both A § and «y are contained by ker ¢, hence (3.4) and (3.5) imply

m;(x,x,0) =m;(zp,yp, 2p) = mi(z,y,2)e
= mi+l($7 Y, Z)(,O = mi+l($gpa Yy, ZSO)

= mi+1(x7 z, 0)

for all 4. Using (ml), this proves (m2). Similar arguments prove (m3) and (m4).
The details are left to the reader.
(ii)=(i). For any A €V and «a, 8,7 € Con A, an (V) =UppanAg. Hence, using

Lemma 3.5 for a = 0, we obtain (i). O

Remark 3.6. Since both Chajda’s resp. our proof is heavily based on Jénsson’s
resp. Day’s original ones, it is not surprising that Theorem 3.3 resp. Theorem 3.4
imply the nontrivial direction (ii)=>(i) of Theorem 3.1 resp. Theorem 3.2. Indeed,
let V be a variety of algebras of type 7. Let us extend 7 with a (new) constant
operator 0 and let 7y denote the extended type. For any algebra A €) and for any
element a € A, let A, denote the algebra of type 7y, where 0o = a. Let V, be the
variety of algebras of type 7y generated by all algebras of the form A,. If Ty, ..., T,
are Jonsson resp. Day terms over V then Ty,...,T, are Jonsson resp. Day terms
over Vy, too. Now, substitute 0 for the first variable of T; to obtain ¢;. Then we can
apply either Theorem 3.3 or Theorem 3.4 to the terms ty,...,t,, which implies that

the original variety V is congruence distributive resp. congruence modular.

Remark 3.7. Congruence distributivity at 0 obviously implies congruence modu-
larity at 0. Note that the converse is not true: congruence modularity at 0 is in

fact a weaker concept than congruence distributivity at 0. Indeed, in the variety
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of groups, congruences are determined by normal subgroups, hence congruences of
groups satisfy any identity A iff they satisfy A at 0. Therefore the variety of groups

is congruence modular at 0 but it is not congruence distributive at 0.

Example 3.8. Let Gy denote the variety of idempotent groupoids with zero (idem-
potent groupoids that have a constant operation symbol 0 satisfying Ox = 20 = 0).
Then

e (G is both congruence distributive and modular at 0, but

e (y is neither congruence distributive nor modular in the usual sense.

To show that G, is congruence distributive at 0 use Theorem 3.3 with n =2 and

do(ﬂf,y) :07 dl(xay) =Ty, dg(l’,y) =Y.

Congruence modularity at 0 follows from congruence distributivity at 0, but for the

sake of completeness, note that it also follows from Theorem 3.4 with n = 3 and

mo(z,y,2) =0, mi(z,y,2) =x2

m2($7y>z)=yZ, mg(fl?,y,Z) =z.

To verify the second part, observe that the variety S of meet semilattices with 0 is a
subvariety of Gy, and recall from Freese and Nation [39] that S satisfies no nontrivial

congruence lattice identity.

0 0 0

Figure 3.1: The meet semilattice S € § and its congruences

Example 3.9 (Czédli [16]). We have just seen that S is congruence distributive

at 0. The following semilattice shows that the dual of the distributive law does not
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hold for congruences of § at 0. Consider the seven element semilattice S depicted in

Figure 3.1 and its congruences «, 8 and « corresponding to the following partitions.

a: {{a,b,a/\b,a/\c,b/\c,O},{c}},
B: {{a,c,a/\c},{b},{a/\b,b/\c,O}},
v: {{a},{anc,anb,0},{bc,brc}}.

Then [0](aVv B)A(avy)=SgS~{c}=[0]av (B A7), which shows that the dual
of the distributive law fails for congruences of S at 0.

The core of this counterexample is the fact that [0](®v¥) = [0]PU[0] ¥ need not
hold for all congruences ® and ¥. On the other hand, [0](®A¥) = [0]®N[0]¥ holds
for all congruences ® and W. This yields that the dual of the distributive law implies
distributivity for congruences at 0. Indeed, assume that the dual of the distributive

law holds for congruences of a variety V, and let A €V and «a, 3,7 € Con A. Then

((anB)vy)
0Jan ((avy)Aa(Bv7))

0Jan ((anpB)vy)=[0]an(0

]
0Jan[0]((avy)Aa(Bvy)) =]

Figure 3.2: The meet semilattice T € S and its congruences
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Remark 3.10. One may feel that there is a hope to combine Theorem 3.4 with the
result of Czédli and Horvath [21]. However, this seems difficult, since [21] is based
on the following fact, see Czédli and Horvéth [20] and [21]: for any two tolerances in
a congruence modular variety, the transitive closure commutes with the intersection;
in their notation ®* n W* = (& N ¥)*. For varieties that are congruence modular at 0,
the analogous statement, [0]®* n U = [0](P n ¥)*, is not true. Indeed, consider the
seven element meet semilattice T € S depicted in Figure 3.2, and the congruences

a, B, 7, 0 and k represented by the following partitions.

a: {{a},{c}, {f},{0,e},{b,d}}, B:{{0,d, f},{a,b}. {c,e}},
v {{a} {6} {d}. {0. e} {c. 1}, 0:{{0,d, f}.{b. e}, {a.c}},
K: {{a},T\ {a}}.
Then ® =aofoa and W ="0do~ are tolerances of T. Since 0«0 d abf a and

0700 f~cda, we have (0,a) € * nW¥*. On the other hand, ® n ¥ c k yields that
(0,a) ¢ (PN W)*.



Summary

In my doctoral dissertation, three problems of modular and semimodular lattices are
studied. Modularity and semimodularity are two closely related concepts of lattice
theory. Indeed, the concept of semimodularity is proved to be the most useful
generalization of modularity. The class of semimodular lattices contains properly
the class (variety) of modular lattices. However, if a lattice is of finite length and
both itself and its dual are semimodular then it is also modular. The three chapters
of my dissertation are based on the papers [27, 78] and [77].

In the first chapter, we are dealing with a problem of coordinatization theory,
one of the oldest and deepest part of lattice theory. In the first section, we introduce
the concept of a von Neumann frame and mention a related concept called Huhn
diamond. Without any proof, we recall some basic results of coordinatization theory,
which are used later in the chapter. In the second section, we define the concept
of a product frame and some related concepts: the outer and inner frames. These
concepts are due to Gabor Czédli. In the third section, we prove a joint result with
Gébor Czédli, which says that the coordinate ring associated to the outer frame is
the matrix ring of the coordinate ring associated to the product frame, see [27].

In the second chapter, we study isometrical embeddings of lattices with pseu-
dorank functions into geometric lattices. This problem has a close connection to
semimodular lattices. First of all, geometric lattices form the best known class of
semimodular lattices. On the other hand, if L is a semimodular lattice then its
height function is a pseudorank function, and the isometrical embedding of L pre-
serves the height of each element, moreover it also preserves the covering relation
under some necessary conditions. In the first section, we recall a proof of Marcel
Wild [89], which shows that every finite semimodular lattice has a cover-preserving
embedding into a geometric lattice. This argument is a motivation for the second

section, where we prove a generalization of an embedding result of George Grétzer
and Emil W. Kiss [43], see [78].

60
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In the third chapter, we are dealing with Mal’cev conditions, which play a central
role in universal algebra. We characterize a generalization of congruence modularity
by a Mal’cev condition. Assume that the type of an algebra A has a constant
operation symbol 0. Then those classes of congruences of A that contain 0 form a
lattice with respect to set inclusion. In contrast to, e.g., groups or rings, this lattice
differs from the congruence lattice in general. Similarly to congruence modularity,
we call A congruence modular at 0, if the above defined lattice is modular. Proving
the conjecture of Ivan Chajda, we show that congruence modularity at 0 can be
characterized by a Mal’cev condition, see [77].

To understand the dissertation, we assume basic knowledge of lattice theory and
universal algebra, but the reader is also directed to Grétzer [42] and Burris and
Sankappanavar [9]. We define any deeper concept that occurs in the dissertation,
but the reader also can find some references to them.

Now, we recall the major results of the dissertation chapter by chapter.

Von Neumann frames

For definition, let 2 <'m, let L be a nontrivial modular lattice with 0 and 1, and let
i=(ay,...,am) € L™ and ¢ = (c1a,...,c1m) € L™ 1. We say that (d,¢) = (ay,...,an,
C12,- -, C1m) 18 a spanning m-frame (or a frame of order m) of L, if a; # ay and the
following equations hold for all j <m and 2 <k <m:

Zaizl, a; Z a; =0,

i<m i<, i)

aj] + C1 = a + C1p = ay + ag, a1C1g = ApClg = 0.

Let us mention here that in coordinatization theory, the lattice operations join and
meet are traditionally denoted by + and - (mostly juxtaposition) such that meets
take precedence over joins.

To understand the concept of von Neumann frames better, let us consider the fol-
lowing example. Let K be aring with 1. Let v; denote the vector (0,...,0,1,0,...,0)
e K™ (1 at the i¢th position). Letting a; = Kv; and ¢1; = K (v1-v;), we obtain a span-
ning m-frame of the submodule lattice Sub(K™), where K™ is, say, a left module
over K in the usual way. This frame is called the canonical m-frame of Sub(K™).

We also need the concept of a coordinate ring. If m >4 and (a,¢) = (ay, ..., an,
C12,---,C1m) 18 a spanning m-frame of L then one can define addition and multipli-

cation on the set R(1,2) ={x € L:x+as=a; +ay, xay=0} such that R(1,2) forms
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a ring with a unit. This ring is called the coordinate ring of (a,¢). Note that the

ring construction also works if m =3 and L is Arguesian.

Now, we are in position to formulate the main result of the first chapter.

Theorem ([27, Theorem 1.1]).

(a)

Let L be a lattice with 0,1 € L, and let m,n € N with n > 2. Assume that

L is modular and m > 4. (al)
Let (a,¢) = (a1,...,am,C12,--.,C1m) be a spanning von Neumann m-frame of
L and (1,9) = (uq,...,Up,V12,...,V1,) be a spanning von Neumann n-frame

of the interval [0,a,]. Let R* denote the coordinate ring of (a,¢). Then there
is a ring S* such that R* is isomorphic to the ring of all n x n matrices over
S*. If

n >4, (a2)

then we can choose S* as the coordinate ring of (1, 7v).

The previous part of the theorem remains valid if (al) and (a2) are replaced

by
L is Arguesian and m >3 (b1)
and
n>3, (b2)
respectively.

We could formulate the theorem without recalling the concepts of a product

frame and the corresponding outer and inner frames. However, it is worth mention-

ing here that S* is the coordinate ring associated to the product frame that occurs

in the proof of the theorem. While (a,¢) and (4, v) are the corresponding outer and

inner frames, respectively.

Isometrical embeddings

Given a lattice L with a lower bound 0, a function p: L - N, = {0,1,..., 00} is called

a pseudorank function if it has the following properties:

(i) p(0) =0;
(ii) a < b implies p(a) < p(b) for all a,be L;
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(iii) a < b implies p(a) < p(b) for all a,b € L of finite height;

(iv) p(anb)+plavd)<pla)+p(b) for all a,be L;

(v) p(a) < oo iff a is of finite height.
In case of finite lattices, this definition coincide that of Finkbeiner [32] and Stern [79].
It is an easy consequence of the Jordan-Holder Chain Condition that the height
function of any semimodular lattice is a pseudorank function.

Consider a lattice L with a lower bound 0, a pseudorank function p: . - N, and
a geometric lattice G whose height function is denoted by h. Then L is embeddable
isometrically into G iff there is a lattice embedding ¢: L - G such that p = ho ¢,
cf. Gréatzer and Kiss [43].

We need one more concept in order to formulate the main result of this chapter,
which generalizes a result of Gritzer and Kiss [43]. A lattice is said to be finite
height generated iff it is complete and every element is the join of some elements of
finite height. Note that lattices of finite length are finite height generated. To show
a finite height generated lattice that is not of finite length, consider, for instance,

Ne with the usual ordering.

Theorem ([78, Theorem 1)). Every finite height generated algebraic lattice with a

pseudorank function can be embedded isometrically into a geometric lattice.

This theorem has a straidforward corollary for semimodular lattices. A lattice

embedding is said to be cover-preserving iff it preserves the covering relation.

Corollary ([78, Corollary 2]). Every finite height generated semimodular algebraic

lattice has a cover-preserving embedding into a geometric lattice.

Mal’cev conditions

Let V be a variety that has a constant operation symbol 0 in its type. We say that
V is congruence modular at 0 iff for every algebra A €V and for all congruences
a, 3 and v of A, we have [0]JaVv (BA (avy))=[0](avB)A(avy), cf. Chajda [11]
and Chajda and Halas [12]. Notice that congruence modularity implies congruence
modularity at 0, for instance, any group or ring variety is congruence modular at 0,
since it is congruence modular. However, the converse is not true.

The main result of the third chapter characterizes congruence modularity at 0
by a Mal’cev condition. A similar result for congruence modularity was published

by Day [28]. Note that our proof is heavily based on that of Day.
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Theorem ([77, Theorem 1]). For a variety V of algebras with a constant 0, the
following conditions are equivalent:

(i) Con A is modular at O for all A €V;

(i) there is a natural number n and there are ternary terms m; (i =0,...,n) such

that V satisfies the following identities:

mo(x,y,2) =0 and my(z,y,2) = z; (m1)
m;(z,z,0) =0 for all i; (m2)
mi(z,x,2) =mi(z,x,2) for i odd; (m3)
mi(0,z,2) =m;1(0,2,2) for i even. (m4)



Osszefoglal6

Doktori értekezésem a modularis és féligmodularis halok témakdrének egy-egy prob-
lémajaval foglalkozik. Mar a neveik alapjan is sejthetd, hogy a két emlitett halo-
tulajdonsag szoros kapcsolatban all egymassal. A féligmodularitas a modularitasnak
az egyik legismertebb &altaldanositasa. Modularis halék mindig féligmodularisak,
valamint — mivel a modularitas ondudlis tulajdonsag — modularis halok dualisa is
féligmoduléris. Erdemes megjegyezni, hogy véges magassagu halok esetén a fenti
észrevétel megfordithato: ha egy véges magassagu halo és dudlisa is féligmodularis,
akkor moduldris. Az értekezés harom fejezete rendre az [27, 78] és [77] dolgozatok
eredményein alapul.

Az els6 fejezetben a moduléris halok egyik legrégebbi és legmélyebb témakorével,
a Neumann-féle koordinatazaselmélettel foglalkozom. A fejezet els6 részében beve-
zetem a Neumann-féle keret fogalmat és roviden kitérek az ezzel ekvivalens Huhn-
gyémant fogalmara. Bizonyitas nélkiil hivatkozom a témakor azon eredményeire,
amelyekre a fejezetben késébb sziikségem lesz. A fejezet masodik részében a Czédli
Gabor altal definialt szorzatkeret, valamint a hozza tartozo kiilsé és belso keret
fogalmat ismertetem. A fejezet harmadik részében a Czédli Géborral kozos ered-
ményiinket bizonyitom, mely szerint a kiilso kerethez tartozé koordinatagytirii a
szorzatkerethez tartozé koordinatagytirt feletti matrixgytird [27].

A masodik fejezetben pszeudorang fiiggvénnyel rendelkez6 hélék geometriai ha-
l6kba torténé izometrikus beagyazasaval foglalkozom. Ez tobb ponton is szervesen
kotodik a féligmodularis halok témakoréhez. Egyrészt a geometriai haldk a féligmo-
dularis halok egyik legismertebb részosztalya. Masrészt ha a fent emlitett beagyazas
soran tetszoleges hald helyett féligmodulédris halét vesziink, valamint a pszeudo-
rang fliggvényt a (féligmoduldris) hélé magassagfiiggvényének vélasztjuk, akkor
az erre vonatkozé izometrikus bedgyazas olyan halébeagyazas, ami megorzi a ma-
gassagfliggvényt, sot, bizonyos feltételek mellett a fedés relacidt is. A fejezetben

Gritzer Gyorgy és Kiss Emil [43] véges hélokra vonatkozd izometrikus bedgyazasat

65
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altalanositom algebrai halok egy ,,szép” osztalyara. A fejezet elsé részében Marcel
Wild [89] matroidokkal torténé fedésérzé bedgyazdsa taldlhaté véges féligmodularis
halokra, ami motivaciot ad az altalanos eset bizonyitasdhoz, amit a fejezet masodik
részében kozlok [78].

A harmadik fejezetben Mal'cev feltételekkel foglalkozom. Algebrak kongruen-
ciahédléinak szamos tulajdonsagara sziletett Mal'cev feltétel. A fejezetben a kong-
ruencia-modularitas egy altalanositasara mutatok Mal’cev feltételt. Olyan algebrak
esetén, amiknek a tipusaban a csoportokhoz vagy a gytiriikh6z hasonldéan szerepel
konstans miiveleti jel, az adott konstanst tartalmazé kongruenciaosztalyok halot
alkotnak. Ellentétben a csoportokkal és gytriikkel, altalanos esetben a konstanst
tartalmazd kongruenciaosztaly nem feltétleniil hatarozza meg a teljes kongruenciat,
és a konstanst tartalmazé kongruenciaosztalyok haldja nem feltétleniil egyezik meg
a kongruenciahaloval. A kongruencia-modularitdashoz hasonlé fogalom definialhato
ebben az esetben is, amit 0-nél vett kongruencia-modularitdsnak hivunk. Ivan
Chajda sejtését igazolva megmutatom, hogy a 0-nal vett kongruencia-modularitds
jellemezheté Mal'cev feltétellel [77].

Az értekezés megértéséhez elegenddek a haléelmélet és az univerzélis algebra
alapfogalmai, amelyek mindegyike el6fordul az egyetemi tanulmanyok soran, de meg-
talalhato Grétzer [42], valamint Burris és Sankappanavar [9] konyveiben is. Minden
egyéb fogalmat, melynek ismeretét elére nem feltételeztem, az értekezésben kiilon
definidltam és hivatkozassal lattam el.

A kovetkezOkben fejezetenként roviden ismertetem az értekezésben talalhato

eredményeimet.

Neumann-féle keretek

Rogzitsiink egy L korlatos modularis hélot és egy m > 2 egész szamot, tovabba
legyen @ = (ay,...,a,) € L™ és é = (¢12,...,¢1m) € L™ Azt mondjuk, hogy
(a,¢) = (a1,--.,Qm, C12,...,C1m) az L hal6 feszité m-kerete, ha a; # as és minden
j<m és 2 <k <m indexre teljesiilnek az alabbi Osszefliggések:

Zaizl, a; Z a; =0,

i<m i<m, itj

ay +Cig = Qi + C1p = G1 + ag, aiciy = aicii = 0.

Ezen a ponton érdemes megjegyezni, hogy a koordinatazaselméletben a halomiive-

leteket (v és A) hagyomdanyosan rendre 6sszeadés (+) és szorzas (+) jeloli.
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Ahhoz, hogy a Neumann-féle keretek fogalmat jobban megértsiik, tekintsiik a
kovetkezo példat. Legyen K egységelemes gytirti. Ekkor rogzitett m > 2 egész szamra
K™ tekinthet6 K feletti baloldali modulusnak. Jeldlje v; a (0,...,0,1,0,...,0) e K™
vektort, ahol az 1 az i-edik koordinataban szerepel. Konnyen ellenorizhetd, hogy a
K™ (baloldali) részmodulusai altal alkotott (korldtos, moduléris) haléban az a; =
Kv; és ¢1; = K(v1 —v;) elemek feszité m-keretet alkotnak. Ezt a keretet nevezik
kanonikus m-keretnek.

A késobbiekben sziikségiink lesz még a koordinatagytiri fogalmara. Ha m > 4
és (a,¢) = (a1,...,am, C12,-..,C1m) az L moduldris halé feszité m-kerete, akkor az
R(1,2) ={x € L:x+ay =a; +as, xas =0} halmazon definidlhat6 egy Osszeadas és
egy szorzas miivelet, melyre nézve R(1,2) egységelemes gylirtit alkot. Ezt nevezziik
az (a,c¢) keret koordindtagyiirijének. Mindez akkor is érvényben marad, ha m = 3
és L Désargues-féle.

A fent felsorolt fogalmak segitségével mar megfogalmazhatd az értekezés elso

fejezetének f6 eredménye.
Tétel (|27, Theorem 1.1]).

(a) Legyen L korldtos hdld, és leqgyenek m,n > 2 egész szamok. Teqyiik fel, hogy

L moduldris és m > 4. (al)
Legyen (a,c) = (a1,...,am,C12,- -, C1m) az L hdld feszité m-kerete és (i,v) =
(U1, vy Up,V12,..-,01,) @ [0,a1] intervallum feszité n-kerete. Jelolje R* az

(a,¢) kerethez tartozo koordindtagytrit. Ekkor létezik olyan S* gyird, amire

R* izomorf az S* feletti (n x n)-es matrizok gyirijével. Ha
n >4, (a2)
akkor S* wdlaszthaté az (u,0) kerethez tartozd koordindtagydrinek.

(b) A tétel elézb része érvényben marad akkor is, ha az (al) és (a2) feltételeket

rendre a kovetkezokre cseréljik
L Désarques-féle és m > 3, (b1)

valamint

n>3. (b2)
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Bar a tétel megfogalmazéasahoz nem sziikséges ismerni a mar emlitett szorzatkeret
valamint a kiils6 és belso keret fogalmat, jegyezziik meg, hogy a tételben szereplo
(d@,¢) m-keretet nevezziik kiilsé, az (i, ) n-keretet pedig belsd keretnek. Erdemes
azt is megemliteni a szorzatkeret tényleges definiciéja nélkil, hogy az S* gytri

lényegében a szorzatkerethez tartozo koordinatagytrtit jeloli.

Izometrikus beagyazasok

Adott L alulrdl korlatos hals esetén a p: L > N, ={0,1,..., 00} fliggvényt pszeudo-
rang fligguénynek nevezziik, ha teljesiilnek ré az alabbi feltételek:
(i) p(0) =0;

(ii) minden a < b elemre p(a) < p(b);

(iii) minden a < b véges magassagu elemre p(a) < p(b);

(iv) p(anb)+p(avd)<p(a)+p(b) minden a,b elemre és

(v) p(a) < oo pontosan akkor teljesiil, ha a véges magassdgui elem.
A fenti definici6 véges halok esetén megegyezik Finkbeiner [32] valamint Stern [79]
definiciéjaval. Vegyiik észre, hogy ha L féligmodularis, akkor a Jordan—Holder-
lancfeltétel kozvetlen kovetkezménye, hogy a magassagfiiggvény teljesiti a fenti fel-
tételeket, ezért pszeudorang fiiggvény.

Legyen adott egy (alulrdl korlatos) L hald, egy p: L - N, pszeudorang fliggvény
és egy G geometriai halo, melynek magassigfiiggvényét jelolje h. Azt mondjuk,
hogy L izometrikusan bedgyazhato G-be, ha létezik olyan ¢: L - G beagyazdas, amire
p = h oy teljesiil, vo. Grétzer és Kiss [43].

Ahhoz, hogy megfogalmazzuk az értekezés masodik fejezetének {6 eredményét,
amely Grétzer és Kiss [43] véges haldkra vonatkozé hasonlé eredményét dltalanositja,
szitkségiink van még egy fogalomra. Egy teljes hdlét nevezziink majdnem alacsony-
nak, ha minden eleme el6all véges magassagu elemek egyesitéseként. Példaul N, a

szokasos rendezésre nézve majdnem alacsony.

Tétel ([78, Theorem 1]). Minden majdnem alacsony pszeudorang figgvénnyel ren-

delkezo algebrar halo bedgyazhato izometrikusan eqy geometriai hdloba.

Az €l6z6 tételnek megfogalmazhaté féligmodularis halokra egy kozvetlen kovet-

kezménye. Nevezziink egy halobedgyazést fedésdrzonek, ha megorzi a fedés relaciot.

Kovetkezmény ([78, Corollary 2]). Minden magjdnem alacsony féligmoduldrs al-

gebrai hdlonak Iétezik fedésdrzd bedagyazdsa eqy geometriai hdloba.
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Mal’cev feltételek

Legyen V olyan varietas, aminek a tipusaban szerepel a 0 konstans mitveleti jel.
Ekkor azt mondjuk, hogy V kongruencia-moduldris a 0-ndl, ha tetszdleges A € V
algebra barmely «, 5 és v kongruencidjara teljesiil a kovetkezd Osszefiiggés: [0]a v
(BAa(avy))=[0](avp)A(avy), vo. Chajda [11] valamint Chajda és Halas [12].
Jegyezziik meg, hogy a kongruencia-modularitasbél kovetkezik a kongruencia-modu-
laritas a 0-nal, példaul barmilyen csoport- vagy gytrivarietds mindig kongruencia-
moduléaris a 0-nal, hiszen kongruencia-modularis. Ezzel szemben a kongruencia-
modularitas nem feltétlentil kovetkezik a 0-ndal vett kongruencia-modularitasbol.
Az értekezés harmadik fejezetének f6 eredménye Day [28] kongruencia-modula-
ritasra vonatkozé eredményének megfeleléjeként a 0-nal vett kongruencia-modulari-

tast jellemzi Mal'cev feltétellel.

Tétel ([77, Theorem 1]). Legyen V olyan varietds, aminek a tipusdban szerepel a 0
konstans miwveleti jel. Ekkor az alabbi dallitasok ekvivalensek:

(i) V kongruencia-moduldris a 0-ndl;

(i) létezik n természetes szam és léteznek m; (i = 0,...,n) hdromvdltozds kife-

jezések gy, hogy V-ben teljesilnek az alabbi azonossagok:

mo(z,y,2) =0 és my(x,y,2) = z; (m1)
m;(z,2,0) =0 minden i indexre; (m2)
mi(x,x,2) =my(x,x, 2) minden pdratlan i indexre; (m3)
m;(0,2,2) =m1(0, 2, 2) minden pdros i indexre. (m4)
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