
Kódmásolatok karbantarthatóságra

gyakorolt

hatásainak kiértékelése

Ph.D. értekezés tézisei

Bakota Tibor

Témavezet®:

Dr. Gyimóthy Tibor

Informatika Doktori Iskola

Informatikai Tanszékcsoport

Szegedi Tudományegyetem

Szeged

2012





Bevezetés

A szoftverek mára életünk szerves részévé váltak. Nem csupán kényelmesebbé teszik mindennapjainkat,
hanem sokszor még az életünket is rájuk bízzuk. Az iparág robbanásszer¶ növekedése komoly kihívás
elé állítja a szoftverfejlesztéssel foglalkozó cégeket és szakembereket egyaránt. A piaci nyomás arra
kényszeríti az informatikai vezet®ket, hogy egyre gyorsabban és olcsóbban állítsák el® a különböz®
szoftver termékeket. A rövid távú célok elérése érdekében kötött kompromisszumok óhatatlanul is a
min®ség rovására mennek hosszú távon.

A forráskód másolása (klónozása) a termelékenység növelésének egyik legvitatottabb módja, mivel
rövid távon csökkenti ugyan a fejlesztés idejét, hosszú távon azonban a karbantartási költségek drasz-
tikus növekedéséhez vezethet. Az egyik legsúlyosabb érv a klónozással szemben, hogy amennyiben
valamely kódrészlet módosításra szorul, úgy valamennyi másolt szakasz ellen®rzésre és kiigazításra
szorul. Amennyiben a másolt szakaszok módosítását elmulasztják, a m¶ködés során hibák és logikai
inkonzisztenciák léphetnek fel. Ebb®l kifolyólag a kódmásolatokat általánosságban véve a forráskód
karbantarthatóság f® ellenségének szokás tekinteni. A valódi aggályok nem is a másolatok jelenlétéb®l
adódnak, hanem a forráskód evolúciójával összefüggésben merülnek fel. Annak el®segítése érdekében,
hogy a kódmásolatoknak a forráskód karbantarthatóságára gyakorolt hatásait elemezni tudjuk, kidol-
gozásra került egy eljárás, amely segítségével a kódmásolatok id®ben követhet®vé válnak az evolúció
során.

Megalapozott stratégiai döntések meghozatala szempontjából elengedhetetlen a forráskód karban-
tarthatóságának számszer¶sítése. A karbantarthatóság mérése a mai napig komoly kihívásnak számít
a szoftverfejlesztés ipari és akadémiai berkeiben egyaránt. A legf®bb nehézséget a formális de�níciók
hiánya, valamint a fogalmakban rejl® szubjektivitás okozza. Az ISO/IEC 9126 szabvány [11] ugyan
segítséget nyújt a karbantarthatóság fogalmának meghatározásához, azonban nem ad támpontot an-
nak standard módon történ® számszer¶sítéséhez. A kutatók � kihasználva a szabvány rugalmasságát
� több, a gyakorlatban alkalmazható karbantarthatósági modellt alkottak [10, 16, 4, 1]. A disszertá-
cióban egy új eljárást mutatunk be a forráskód-karbantarthatóság mérésére, amely több szempontból
is különbözik a világban jelenleg fellelhet® módszerekt®l, és amely azok több hiányosságára is megol-
dással szolgál. A kidolgozott eljárás megfelel®en kezeli a fogalmak szubjektív értelmezéséb®l adódó
problémákat, ugyanakkor az el®álló modell abszolút módon fejezi ki egy rendszer karbantarthatóságá-
nak mértékét.

A karbantarthatóság jelent®sége, a szoftver módosításának költségeivel összefüggésben mutat-
kozik meg. Munkánk során, kidolgoztunk egy közönséges di�erenciálegyenleteken alapuló, formális
matematikai modellt, amely a fejlesztési költségek és a forráskód-karbantarthatóság között fennálló
összefüggések leírására szolgál. Meg�gyelhet®, hogy bizonyos ésszer¶ feltételezések mellett a közöttük
fennálló viszony exponenciális is lehet.

Annak érdekében, hogy a kódmásolatok karbantarthatóságra gyakorolt hatását elemezzük, beve-
zetjük az ún. �clone smell�-ek fogalmát, amelyek a gyanús klón-evolúciós minták leírására szolgálnak.
A �clone smell�-ek felhasználásával lehet®ség nyílik a valóban veszélyesnek tekinthet® másolatok azo-
nosítására, és a klónok hatékony kezelésének megvalósítására. Az aggályos kódrészek listája nagyság-
rendekkel kevesebb elemet tartalmaz, mint amennyi egy rendszerben lév® másolatok száma, ezáltal
azok kézi kiértékelése is elvégezhet®.
A disszertáció az alábbi három f® tézispontot tartalmazza:

1



1. Valószín¶ségi forráskód-karbantarthatóság modell kifejlesztése.

2. Forráskód-karbantarthatóságon alapuló költség modell felállítása.

3. Klónok kiértékelése a forráskód-evolúció szempontjából.

A következ® fejezetekben röviden bemutatjuk a disszertációban kifejtett eredményeket, valamint hang-
súlyozzuk a szerz® önálló hozzájárulását az egyes tézisek vonatkozásában.

2



1. Valószín¶ségi forráskód-karbantarthatóság modell

A forráskód-karbantarthatóság mérésének kérdése mindig is központi jelent®ség¶ volt a szoftverfejlesz-
tés világában. Az alacsony szint¶ jellemz®k (forráskód-metrikák, kódolási szabálysértések, kódmásola-
tok) bizonyíthatóan befolyásolják egy szoftver forráskódjának karbantarthatóságát [9]. Kihívást jelent
viszont a karbantarthatóság szubjektivitásának és az egyes modellek hordozhatóságának kezelése [3].
Az általunk kidolgozott forráskód-karbantarthatóság modell a jelenleg létez® megközelítésekkel kap-
csolatos problémák többségére is megoldást nyújt.

Valószín¶ségi karbantarthatósági modellek kialakításának

elméleti háttere

Megközelítésünkben a különböz® szint¶ min®ség-jellemz®k és karakterisztikák között fennálló kap-
csolatot egy irányított körmentes grá�al ábrázoljuk, amelyet attribútum függ®ségi gráfnak (AFG)
nevezünk. A legalacsonyabb szinten fekv® (bejöv® éllel nem rendelkez®) csúcsokat érzékel®knek, a
többit pedig származtatott csúcsoknak nevezzük. A 2. ábrán egy példa AFG gráf látható.

Esetünkben az érzékel®k egyes forráskód metrikáknak feleltethet®k meg, amelyek értékei a for-
ráskód elemzésével közvetlenül számíthatók. Egy szoftver esetében minden metrika tekinthet® egy
véletlen változónak, amely valós számokat vehet fel értékként adott valószín¶ségekkel. Két különböz®
szoftvert tekintve, legyenek h1 (t) és h2 (t) ugyanazon metrikához tartozó véletlen változók s¶r¶-
ségfüggvényei. Ekkor az egyik rendszer másikhoz viszonyított relatív jóság értéke (az adott metrika
szerint), az alábbi módon de�niálható:

D (h1, h2) =

∫ ∞

−∞
(h1 (t)− h2 (t))ω (t) dt,

ahol ω (t) egy súlyfüggvény, amely a � jóság� fogalmát fejezi ki, azaz, hogy a vízszintes tengely mely
részein számítanak jobban a s¶r¶ségfüggvények közötti különbségek. A 1. ábra szemlélteti a fenti
képlet jelentését, vagyis, hogy a relatív jóság érték nem más, mint a két s¶r¶ségfüggvény közötti,
ω (t)-vel súlyozott, el®jeles terület.

1. ábra. S¶r¶ségfüggvények összehasonlítása

Rögzített h s¶r¶ségfüggvény esetén, D (h,_) szintén egy véletlen változó, amely független bár-
mely más rendszert®l, és amelyet a rendszer abszolút jóságának (vagy egyszer¶en jóságnak) nevezünk
(az adott rögzített metrika vonatkozásában). Ezen véletlen változó empirikus eloszlása közelíthet®

3



megfelel® számú, különböz® rendszerekhez tartozó s¶r¶ségfüggvényeknek a második paraméter he-
lyére történ® behelyettesítésével, azaz egy forráskód-metrika eloszlásokat tartalmazó ún. referencia
adatbázis felhasználásával. A véletlen változó fenti módon közelített s¶r¶ségfüggvényét jóság függ-
vénynek, a várható értékét pedig jóság értéknek nevezzük. A fenti módszert követve, minden érzékel®
esetén kiszámítható a hozzá tartozó jóság függvény.

Az AFG éleit illet®en, szakért®ket kérünk fel, hogy az egyes élekhez súlyokat rendeljenek, ta-
pasztalataik és érzéseik alapján, amelyek a függ®ségek mértékét hivatottak kifejezni. A súlyozás
oly módon történik, hogy minden származtatott csúcs esetén, a bejöv® éleken a súlyok összege
1 legyen. Következésképpen, minden származtatott csúcshoz egy többdimenziós véletlen változó
(Y⃗v =

(
Y 1
v , Y

2
v , . . . , Y

n
v

)
) feleltethet® meg, amely minden szavazó véleményét tartalmazza egyszerre.

Hasonlóan a származtatott csúcsok esetén is de�niálható egy jóság függvény az alábbiak szerint:

gv (t)=

∫
t= q⃗r⃗

q⃗=(q1, . . . , qn) ∈ ∆n−1

r⃗=(r1, . . . , rn) ∈ Cn

f⃗
Y⃗v
(q⃗) g1(r1). . .gn(rn) dr⃗dq⃗,

ahol f⃗
Y⃗v
(q⃗) a Y⃗v véletlen változó s¶r¶ségfüggvénye, g1, g2, . . . gn a bejöv® élek kiindulási csúcsaihoz

tartozó jóság függvények, ∆n−1 az (n− 1)-szimplex ℜn-ben, Cn pedig az n-dimenziós standard kocka
ℜn-ben.

A fenti képlet els® ránézésre ijeszt®nek t¶nhet, de valójában csak a klasszikus lineáris kombináción
alapuló aggregációs eljárások általánosításáról van szó. Ugyanis, amikor valószín¶ségekr®l beszélünk
az összes lehetséges (nem 0 valószín¶ség¶) kombinációt �gyelembe kell venni, és valószín¶séget ren-
delni az egyes kimenetekhez. Ezek után az egyes származtatott csúcsokhoz is megfeleltethet® egy-egy
jóság függvény. A származtatott csúcsoknak megfelel® jóság függvények kifejezik a fogalmak szub-
jektivitását (mivel minden, az élek súlyozásában résztvev® szakért® véleménye �gyelembe van véve),
és abszolút mértéket jelentenek, mivel a referencia adatbázisban szerepl® rendszerek biztosítják az
abszolút jóság véletlen változó megfelel® közelítését.

Forráskód-karbantarthatóság modell Java nyelvre

A módszer validációjának céljából, Java programozási nyelv esetében, kialakításra került egy konk-
rét attribútum függ®ségi gráf, amelyben az érzékel®ket a legelterjedtebb forráskód-jellemz®k alkotják:
forráskód metrikák [7], kódolási szabálysértések és kódmásolatok [5]. Az AFG végleges állapotának
kialakítása akadémiai és ipari szakért®k bevonásával, több iteráción keresztül valósult meg. További
iterációk során kialakult a gráf éleinek súlyozása, valamint a származtatott csúcsokhoz kapcsolódó
szavazat-eloszlások. A 2. ábra szemlélteti az így kapott attribútum függ®ségi gráfot. Ezzel pár-
huzamosan kialakításra került egy referencia adatbázis, amely száz nyílt és zárt forráskódú, Java
programozási nyelven íródott szoftver forráskódjának jellemz®it tartalmazza. A kialakított modellt
használtuk a forráskód-karbantarthatóság mérése céljából megalkotott módszerünk validálására.

Forráskód-karbantarthatóság modell validációja

A fentiekben kialakított karbantarthatósági modell validációját két, Java nyelven implementált szoft-
verrendszer esetében végeztük el. Az els® egy magyarországi cég által több éven át fejlesztett ipari

4



2. ábra. Az alacsony (fehér) és magas (fekete) szint¶ ISO/IEC 9126 szabványban de�niált karakte-
risztikák közötti kapcsolatokat leíró AFG

rendszer (System-1). A második a Szegedi Tudományegyetem Szoftverfejlesztés Tanszéke által fejlesz-
tett, RÉM névre keresztelt perzisztencia keretrendszer. Célunk a modell által szolgáltatott mér®számok
és az adott rendszer fejlesztésében résztvev® szakért®k véleményének ütköztetése volt. A fejleszt®k
tizes skálán osztályozták az általuk fejlesztett rendszer, ISO/IEC 9126 által de�niált karakterisztikáit
és karbantarthatóságát. A 1. táblázat összegzi a szavazatok normalizált átlagát mindkét rendszer
esetén (a zárójelben szerepl® értékek a modell által szolgáltatott jóság értékek).

Verzió Változtathatóság Stabilitás Elemezhet®ség Tesztelhet®ség Karbantarthatóság

REM v0.1
0.625 0.4 0.675 0.825 0.625

(0.7494) (0.7249) (0.7323) (0.7409) (0.7520)

REM v1.0
0.6 0.65 0.75 0.8 0.75

(0.7542) (0.7427) (0.7517) (0.7063) (0.7539)

REM v1.1
0.6 0.66 0.7 0.66 0.633

(0.7533) (0.7445) (0.7419) (0.6954) (0.7402)

REM v1.2
0.65 0.65 0.8 0.775 0.7

(0.7677) (0.7543) (0.7480) (0.7059) (0.7482)

Korreláció 0.71 0.9 0.81 0.74 0.53

System-1 v1.3
0.48 0.33 0.35 0.43 0.55

(0.4458) (0.4535) (0.4382) (0.4627) (0.4526)

System-1 v1.4
0.6 0.55 0.52 0.4 0.533

(0.4556) (0.4602) (0.4482) (0.4235) (0.4484)

System-1 v1.5
0.64 0.64 0.56 0.46 0.716

(0.4792) (0.4966) (0.4578) (0.4511) (0.4542)

Korreláció 0.87 0.81 0.94 0.61 0.77

1. táblázat. A szakért®i vélemények normalizált átlaga és a modell által számított karbantarthatóság
értékek

Az eredmények különbséget mutatnak a modell illetve a szakért®k által szolgáltatott mér®számok
között. Valójában a szakért®i vélemények is nagy szórást mutatnak, ami a tapasztalatbeli és tudásbeli
eltérésekb®l adódik. A táblázat kiemelt sorai a szakért®k és a modell által számított értékek közötti
korrelációt mutatják. A mindenhol pozitív, és viszonylag magas értékek arra utalnak, hogy a forráskód-

5



karbantarthatóság modell mutatóinak változása összecseng a fejleszt®k által elvárt elmozdulással.

Saját hozzájárulás

A szerz® a fejezetben bemutatott min®sít® modellhez a matematikai háttér kidolgozásával, a statisz-
tikai aggregáló algoritmusok kifejlesztésével járult hozzá. Ezenkívül részt vett a Java nyelv¶ modell
kialakításában és a validáció módszerének kidolgozásában. Valamint els®sorban a szerz®nek tulajdo-
níthatók a klasszikus metrika alapú modellek hordozhatóságával kapcsolatos eredmények.

6



2. Forráskód-karbantarthatóságon alapuló költség modell

A világban jelenleg fellelhet® költségbecsl® megoldások [6] els®sorban manuális szakért®i módszerek-
b®l [13], benchmark- [17] és modell alapú [17] megközelítésekb®l állnak. Az általunk kidolgozott
módszer egyszer¶ és ésszer¶ feltételezésekb®l kiindulva, azok matematikai formalizálása és megoldása
által eredményez egy költségbecsl® modellt, amelyet nyílt és zárt forráskódú szoftvereken ellen®riz-
tünk. A folytatásban bemutatásra kerül® modell a korábbiakban kifejtett forráskód-karbantarthatósági
modell eredményeit is felhasználja.

Formális matematikai modell a fejlesztési költségek és karbantarthatóság

kapcsolatának leírására

Költségbecsl® modellünk két egyszer¶ feltételezésen alapul:

1. A forráskódon végrehajtott bármilyen módosítás, amely nem kifejezetten annak javítását célozza
(pl. funkcionalitás hozzáadása) nem növeli annak karbantarthatóságát.

2. Kevésbé karbantartható szoftverek esetén a módosítások végrehajtása költségesebb.

Az els® feltételezés az alábbiak szerint formalizálható:

dM (t)

dt
= −qS (t)λ (t) (q ≥ 0) , (1)

azaz, a karbantarthatóság (M (t)) csökkenésének üteme egyenesen arányos a módosított sorok szá-
mával (S (t)λ (t)) bármely t id®pontban. A q állandót eróziós tényez®nek nevezzük, és azt fejezi ki,
hogy mekkora �kárt� (karbantarthatóság romlást) okoz egyetlen sor módosítása.

A második feltevés az alábbiak szerint írható fel:

dC (t)

dt
= k

S (t)λ (t)

M (t)
. (2)

A számláló a kódváltozás mértékét fejezi ki a t id®pontban. A képlet szerint a t id®pontban befektetett
költség (dC(t)dt ) kódváltozás formájában való hasznosulásának mértéke fordítottan arányos a forráskód
karbantarthatóságának mértékével a t id®pontban (M (t)).

A fenti egyenletrendszert megoldva, az alábbi eredményhez jutunk:

M (t1) = M (t0) e
− q

k
(C(t1)−C(t0)), (3)

amely szerint a rendszer karbantarthatósága a változtatás céljából befektetett költség függvényében
exponenciálisan csökken. Amíg k és C (t) értékek kiszámítása egyszer¶, addig a q állandó számsze-
r¶sítése nem triviális. Mivel azonban a karbantarthatóság mérésére az el®z® fejezetben bemutatott
eljárás segítségével lehet®ség nyílik, ezért a (3) képlet alapján a q állandó is könnyen számszer¶síthet®.

Amennyiben a költségbecsl® modell paraméterei ismertek, a jöv®beli fejlesztési költségek az alábbi
képlet szerint becsülhet®k:

C (t) = −k

q
ln

∣∣∣∣1− q

M (0)

∫ t

0

S (s)λ (s) ds

∣∣∣∣. (4)

7



Költségbecsl® modell validációja valós rendszereken

A fentiekben vázolt költségbecsl® modell validációját öt különböz®, Java nyelven íródott szoftverrend-
szer több verziójának elemzésével hajtottuk végre, az alábbi lépések szerint:

1. Mindegyik rendszer összes elemzett verziója esetén � felhasználva a korábban bemutatott kar-
bantarthatóság modellt � kiszámoltuk a megfelel® forráskód karbantarthatóságának mértékét [2].
Ezt az értéket a modellben szerepl® M (t) függvény értékének közelítéséhez használtuk.

2. Minden forráskód-verzió esetén kiszámoltuk a módosult sorok számát az el®z® verzióhoz képest.
Az így kapott értéket a modell S (t)λ (t) kifejezésének közelítésére használtuk.

3. A k és q állandók becslését a (2) és (3) képletek alapján számítottuk, valamely T0 > 0 id®pont-
ban, az alábbiak szerint:

k = C (T0)

(
1/

∫ T0

0

S (t)λ (t)

M (t)
dt

)
(5)

és

q = − k

C (T0)
ln

M (T0)

M (0)
. (6)

4. Ezek a becslések, mivel q és k állandók, érvényesnek tekinthet®k minden t > T0 esetén. Ebb®l
adódóan a (4) képlet segítségével becslések adhatók a jöv®beli fejlesztési költségekre vonatko-
zóan.

Az empirikus adatok elemzése során az alábbi következtetéseket vontuk le:

1. Általánosságban véve elmondható, hogy egy fejlesztés alatt álló szoftver karbantarthatósága az
id® során csökken.

2. Egy rendszer karbantarthatósági mértéke és a fejlesztési költségek alakulása nagy korrelációt
mutat a modell által becsült értékekkel, azaz egymással közel exponenciális kapcsolatban áll-
nak. Az 3. ábra szemlélteti a karbantarthatóság mértékének alakulását a fejlesztési költségek
függvényében a �System-1� rendszer esetén.

3. A bemutatott modell nagy pontossággal képes el®re jelezni a fejlesztések jöv®beli költségeit a
kódváltozás mértéke alapján. A (4) képlet felhasználásával a jöv®beli költségek, a karbantartha-
tóság várható alakulásának ismerete nélkül is becsülhet®k. A modell pontosabb eredményeket
szolgáltat, mint a klasszikus, lineáris regresszión alapuló megközelítések, amelyek nem veszik
�gyelembe a karbantarthatóság változását. Különösen a hosszútávú el®rejelzések esetén szem-
bet¶n®ek a különbségek, ami természetes, hiszen a karbantarthatóság változásának hatásai
els®sorban hosszabb id®szakot tekintve jelent®sek. A 4. ábra szemlélteti a modell el®rejelzési
pontosságát a klasszikus lineáris megoldásokhoz képest. Az x tengely az el®rejelzés tárgyát
képez® id® intervallum hosszát jelzi.

8



3. ábra. A karbantarthatóság (M (t)) alakulása a költség (C (t)) függvényében. Pirossal a mérési
eredmények, kékkel a modell által el®rejelzett értékek szerepelnek.

4. ábra. A modell el®rejelz® képessége, összehasonlítva a klasszikus lineáris regresszión alapuló meg-
oldásokkal.

Saját hozzájárulás

A szerz® saját hozzájárulása volt a formális matematikai háttér kidolgozása, valamint az empirikus
validáció módszerének kidolgozása.

9



3. Klónok kiértékelése a forráskód-evolúció szempontjából

A kódmásolatok sokak szerint a szoftver karbantarthatóságának legf®bb ellenségei. Ennek megfele-
l®en a korábban bemutatott forráskód-karbantarthatóság modellünkben is fontos szerepet játszanak.
A kódmásolatok evolúciójának id®beli követése elengedhetetlen a kódmásolatok karbantarthatóságra
gyakorolt hatásainak kiértékeléséhez.

Megoldás a kódmásolatok evolúciójának id®beli követésére

Megközelítésünkben a kódmásolatok, a szoftver egymást követ® verzióiban, egymástól függetlenül
kerülnek azonosításra, majd az így talált klónok egy heurisztikus eljárás segítségével kerülnek megfe-
leltetésre. Az evolúciós megfeleltetés a v1 forráskód verzióban szerepl® kódmásolatoknak egy parciális
és injektív leképezése a v2 verzióban szerepl® másolatok halmazára:

e : G ⊂ CIv1 → CIv2 .

Minden lehetséges klón pár esetén egy hasonlósági távolság érték kerül kiszámításra, amely az alábbi
összetev®kb®l kerül származtatásra:

F1 : A kódmásolat példányokat tartalmazó állományok nevei.

F2 : A kódmásolat példányok azonosításának sorrendje a klón osztályon belül.

F3 : Kódmásolat példányok egyedi azonosítói (amennyiben egyedi névvel rendelkez® forráskód elem-
mel esnek egybe).

F4 : A kódmásolat példányokat tartalmazó, egyedi névvel rendelkez® forráskód elem azonosítója.

F5 : Kódmásolat példányok relatív elhelyezkedése az ®ket tartalmazó forráskód elemen belül.

F6 : Kódmásolat példányok szöveges hasonlósága.

A szöveges jellemz®k (F1, F3, F4 és F6) esetében az ún. Levenshtein távolságfüggvényt [14]
vettük alapul, az F2 és F5 attribútumok esetében pedig egyedi hasonlósági mértéket határoztunk
meg. A fentieket felhasználva az alábbi származtatott hasonlósági távolságfüggvényt de�niálhatjuk:

D (Ci, Cj) =
{ ∑6

k=1 αkDk (Ci, Cj), if
∑6

k=1 αkDk (Ci, Cj) ≤ β

∞, különben
,

ahol α1, . . . , α6 és β paraméterek, amelyeket a továbbiakban bemutatásra kerül® optimalizációs algo-
ritmus segítségével határozunk meg. Amennyiben a paraméterek ismertek, az evolúciós megfeleltetés
kérdése visszavezethet® egy hozzárendelési feladatra, amely aMagyar módszer segítségével hatékonyan
megoldható.

A modell paramétereinek meghatározásához szimulált h¶tést alkalmaztunk. Minden rögzített para-
méter hozzárendelés esetén kiszámításra került az evolúciós megfeleltetés, és annak � jósága� egy el®re
de�niált mérték szerint. A 2. táblázat összegzi az algoritmus által meghatározott optimális paramé-
ter hozzárendelést, amely segítségével bármely két forráskód verzió esetén az evolúciós megfeleltetés
kiszámítható.

10



Paraméter Kezdeti Optimalizált Hozzájárulás mértéke
α1 0.4082 0.3122 14.2 %
α2 0.4082 0.6365 28.9 %
α3 0.4082 0.2066 9.4 %
α4 0.4082 0.4293 19.5 %
α5 0.4082 0.1101 5.0 %
α6 0.4082 0.5080 23.0 %
β 0.4082 0.0284

2. táblázat. A modell kezdeti és optimalizált súlyai

A táblázatból kiderül, hogy a megfeleltetésben a legfontosabb szerepet az F2 tulajdonság (kód-
másolat példány azonosításának sorrendje a klón osztályon belül) játssza. Ez a jellemz® a döntést
28.9%-ban befolyásolja, amíg a szöveges hasonlóság befolyásának mértéke 23%.

Klónok evolúciós mintáinak osztályozása

A folytatásban bevezetjük a �clone smell�-ek fogalmát, amely a másolatok különböz® gyanús evolúciós
mintáinak leírására szolgál, és amelyek alkalmas kiindulási pontot jelentenek további kézi vizsgálatok
elvégzésére. Két egymást követ® forráskód verziót tekintve az alábbi öt �clone smell� típust külön-
böztetjük meg:

1. Elt¶n® klón osztály (DCC) � olyan klón osztály, amely létezett a forráskód el®z® verziójában,
de a jelenlegiben már nem.

2. Megjelen® klón osztály (ACC) � olyan a klón osztály, amely nem létezett a forráskód el®z®
verziójában, de a jelenlegiben már igen.

3. Elt¶n® klón példány (DCI) � olyan klón példány, amely létezett az el®z® verzióban, de már nem
létezik, azonban az ®t korábban tartalmazó osztály még igen.

4. Megjelen® klón példány (ACI) � olyan jelenleg is létez® klón példány, amely nem létezett az
el®z® verzióban, de az ®t jelenleg tartalmazó osztály igen.

5. Mozgó klón példány (MCI) � olyan klón példány, amely egy másik osztály példánya lett.

A �clone smell�-eket a Mozilla Firefox [15] és a jEdit [12] rendszereken értékeltük ki, 295 illetve
84 egymást követ® forráskód verziót tekintve. Az azonosított találatokat kézzel értékeltük ki, hogy
megbizonyosodjunk a módszer hatékonyságáról és pontosságáról. A 3. és a 4. táblázatok összegzik a
Mozilla illetve a jEdit rendszerben azonosított �clone smell�-eket, és azok kiváltó okait. Az eredmények
alapján világossá vált, hogy a �clone smell�-ek hasznosak a karbantarthatóság javítása szempontjából
az alábbiak miatt:

• A módszer egy viszonylag rövid, manuálisan ellen®rizhet® listát eredményez azokról a kritikus
forráskód részekr®l, amelyek inkonzisztens módosulásokkal kapcsolatos veszélyeket rejthetnek.

• A �clone smell�-ek több mint fele inkonzisztens módosulásból adódik, ezért érdemesek lehetnek
további kézi elemzésre.

11



Cause DCC ACC DCI ACI MCI Σ

Konzisztens módosulások

C1: Minden példány törölve 26 26

C2: A példányok túl röviddé váltak 19 19

C3: Az állomány törölve 5 5

C4: Szándékos refactoring 3 3

C5: Minden példány új 51 51

C6: A példányok elég hosszúak lettek 3 3

Σ 53 54 107

Inkonzisztens módosulások

C7: Az osztály néhány példánya törölve 11 6 17

C8: Inkonzisztensen módosított példányok 38 21 14 7 13 93

C9: További új példányok jöttek létre 2 8 5 15

Σ 51 29 20 12 13 125

Σ 104 83 20 12 13 232

3. táblázat. A �clone smell�-ek kiváltó okai a Mozilla rendszer esetén

Cause DCC ACC DCI ACI MCI Σ

Konzisztens módosulások

C1: Minden példány törölve 0

C2: A példányok túl röviddé váltak 0

C3: Az állomány törölve 1 1

C4: Szándékos refactoring 3 3

C5: Minden példány új 9 9

C6: A példányok elég hosszúak lettek 1 1

Σ 4 10 14

Inkonzisztens módosulások

C7: Az osztály néhány példánya törölve 1 1

C8: Inkonzisztensen módosított példányok 12 8 1 21

C9: További új példányok jöttek létre 4 4

Σ 13 12 1 26

Σ 17 22 1 40

4. táblázat. A �clone smell�-ek kiváltó okai jEdit rendszer esetén

• Inkonzisztens módosulások gyakrabban el®fordulnak, mint konzisztens változtatások.

• A módszer segítségével inkonzisztens módosulásokból adódó kódolási problémákra is fény de-
rülhet.

A kódmásolatok és a csatoltság viszonya

A csatoltság a szoftver- vagy forráskód-komponensek közötti függ®ségek és kapcsolatok mértékének
kifejezésére szolgál. A forráskód elemek közötti magas csatoltság a karbantarthatóság szempontjá-
ból általánosságban hátrányosnak tekintend® [8]. Meglep® módon a kutatásaink arra utalnak, hogy
fordított a viszony a klónmásolatok és az osztályok közötti csatoltság mértéke között.

Esettanulmányunkban öt rendszert vizsgáltunk. Mindegyik esetben kiszámításra került a rend-
szer klónozottságának mértéke (CC), és két csatoltság mérték: az osztályok csatoltságának mértéke
(CBO), valamint a kimen® hívások száma (NOI). A CC metrika rendszer szinten adott, azonban a
CBO és a NOI mértékek esetében aggregáció végrehajtására volt szükség a rendszerszint¶ variánsok
el®állításához. A származtatott metrikákat CBO-index-nek illetve NOI-index-nek nevezzük.

A 3. táblázat alapján a csatoltság és a másolat metrikák között fordított viszony �gyelhet® meg,
ami azt jelenti, hogy a rendszer karbantarthatóságát az egyik szempontból javítva, az a másik szem-
pontból romolhat. A CBO és CC közötti korreláció -0.76, amíg a NOI és CC között -0.97. A fentiekb®l
adódik, hogy szemben azokkal az elképzelésekkel, amelyek szerint csupán a csatoltság metrikák alapján
becsülhet® egy rendszer karbantarthatósága, a modelleknek a csatoltságot és a másolatokat egyaránt
�gyelembe kell venniük. Ezen a ponton visszautalunk a 2. ábrán látható modellre, amely magá-

12



Rendszer A B C D E

CBO-index -8.85 -7.60 -6.15 -3.74 1.17
NOI-index -7.97 -4.67 -2.56 1.39
CC 32.7 16.9 11.44 9.94 7.47

5. táblázat. Az öt rendszer csatoltság és kódmásolat metrikái

ban foglalja az osztályok csatoltságának mértékét (CBO), a bejöv® hívások számát (NII), valamint a
kódmásolatok arányát (CC) is.

Saját hozzájárulás

A szerz® hozzájárulása a tézisponthoz az alábbiak szerint foglalható össze:

• A kódmásolatok id®beli követését megvalósító módszer kidolgozása.

• Az evolúciós megfeleltetés számításához szükséges optimalizációs és szimulációs algoritmusok
kifejlesztése.

• A �clone smell�-ek fogalmának bevezetése és de�niálása.

• �Clone smell�-ek kinyerését végz® algoritmusok és szoftver eszközök kifejlesztése.

• �Clone smell�-ek kinyerése két nagy rendszer egymást követ® verzióiból.

• A kinyert �clone smell�-ek kézi kiértékelése.

• Kódmásolatokat kinyer® eszköz kifejlesztése a csatoltsággal kapcsolatos kutatások el®segítésé-
hez.

13



Konklúziók

Bemutattunk egy módszert a forráskód karbantarthatóságának mérésére, amely több szempontból is
különbözik a korábbi megközelítésekt®l. A modellünk magában foglalja a szakért®i tudást, kezeli a
fogalmak szubjektivitásából adódó bizonytalanságot és ún. � jóság� függvényeket alkalmaz. Arra a
következtetésre jutottunk, hogy a modell által számított karbantarthatóság érték változása kifejezi
a fejlesztési tevékenységb®l adódó várakozást, azaz a fejlesztés során csökken, a karbantartás során
pedig növekszik ez az érték. A modell által számított értékek ugyan nem esnek egybe a fejleszt®k
által becsülttel, azonban a kett® közötti korreláció mégis viszonylag magasnak mondható.

A folytatásban bemutattunk egy közönséges di�erenciálegyenlet-rendszeren alapuló, a forráskód-
karbantarthatóság és a fejlesztési költségek viszonyának leírását el®segít® modellt. Az empirikus adatok
elemzése az alábbiakra mutatott rá:

• Egy fejlesztés alatt álló szoftver karbantarthatósága id®vel csökken.

• A forráskód-karbantarthatóság és a fejlesztési költségek közel exponenciális viszonyban vannak
egymással.

• A modell viszonylag nagy pontossággal képes el®rejelezni a jöv®beli fejlesztési költségeket a
kódváltozás becsült mértéke alapján.

Bemutattunk továbbá egy módszert a kódmásolatok id®beli követésére, és bevezettük az ún.
�clone smell�-ek fogalmát, amelyek segítségével azonosítani lehet a karbantarthatósági szempontból
valóban veszélyes másolatokat. A kiértékelés során, a �clone smell�-ek valóban hatékony kódmásolat-
menedzsment eszköznek bizonyultak.

A 6. táblázat összegzi, hogy mely publikációk, mely tézispontokhoz kapcsolódnak.

N o. [9] [3] [2] [21] [22] [23] [24] [25]
1. • • • • •
2. •
3. • •

6. táblázat. A tézispontok és a publikációk között fennálló kapcsolatok

14



Köszönetnyilvánítás

Els®sorban szeretném megköszönni mentoromnak, Dr. Gyimóthy Tibornak, hogy hasznos ötletekkel,
megjegyzésekkel és útmutatásokkal segítette kutatómunkámat. Köszönöm társszerz®mnek és szakmai
irányítómnak, Dr. Ferenc Rudolfnak hogy irányt mutatott, motivált és a helyes úton tartott, amikor
az szükségesnek bizonyult. Köszönet illeti továbbá munkatársaimat és társszerz®imet, Dr. Beszédes
Árpádot, Dr. Siket Istvánt, Dr. Fülöp Lajost, Dr. Jász Juditot, Siket Pétert, Heged¶s Pétert, Dr.
Schrettner Lajost, Dr. Gergely Tamást, Claudio Riva-t, Jianli Xu-t, Maarit Harsu-t, Kai Koskimies-
t, Tarja Systa-t, Körtvélyesi Pétert, Illés Lászlót, Ladányi Gergelyt, Gyalai Milán Imrét és Füleki
Dánielt. Szintén szeretném megköszönni publikációim névtelen bírálóinak, hogy hasznos javaslataikkal,
kritikáikkal és megjegyzéseikkel segítették munkám. Külön köszönet David P. Curleynek, hogy nyelvi
szempontból ellen®rizte és javította angol nyelven íródott disszertációmat.

Hálámat szeretném kifejezni szüleimnek, hogy megfelel® hátteret biztosítottak tanulmányaimhoz
és bátorítottak az úton, amikor szükségem volt rá. Végül, de nem utolsó sorban köszönöm szeretett
feleségemnek, Mónikának, hogy megért® és támogató volt oly sok éven át kutatásaim során.

Bakota Tibor, 2012

15



Hivatkozások

[1] Motoei Azuma. Software products evaluation system: quality models, metrics and processes -
international standards and japanese practice. Information and Software Technology, 38(3):145
� 154, 1996.

[2] T. Bakota, P. Hegedus, P. Kortvelyesi, R. Ferenc, and T. Gyimothy. A probabilistic software
quality model. In Software Maintenance (ICSM), 2011 27th IEEE International Conference on,
pages 243 �252, Sept. 2011.

[3] Tibor Bakota, Rudolf Ferenc, Tibor Gyimothy, Claudio Riva, and Jianli Xu. Towards portable
metrics-based models for software maintenance problems. Software Maintenance, IEEE Interna-
tional Conference on, 0:483�486, 2006.

[4] J. Bansiya and C.G. Davis. A Hierarchical Model for Object-Oriented Design Quality Assessment.
IEEE Transactions on Software Engineering, 28:4�17, 2002.

[5] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant'Anna, and Lorraine Bier. Clone
Detection Using Abstract Syntax Trees. In Proceedings of the International Conference on
Software Maintenance, ICSM '98, pages 368�377, Washington, DC, USA, 1998. IEEE Computer
Society.

[6] Barry Boehm, Chris Abts, and Sunita Chulani. Software development cost estimation approaches
- a survey. Annals of Software Engineering, 10:177�205, 2000. 10.1023/A:1018991717352.

[7] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object Oriented Design. IEEE Trans.
Softw. Eng., pages 476�493, June 1994.

[8] Tibor Gyimóthy, Rudolf Ferenc, and István Siket. Empirical Validation of Object-Oriented Metrics
on Open Source Software for Fault Prediction. IEEE Transactions on Software Engineering, pages
897�910, 2005.

[9] Péter Hegedus, Tibor Bakota, László Illés, Gergely Ladányi, Rudolf Ferenc, and Tibor Gyimóthy.
Source code metrics and maintainability: A case study. In Tai-hoon Kim, Hojjat Adeli, Haeng-kon
Kim, Heau-jo Kang, KyungJung Kim, Akingbehin Kiumi, and Byeong-Ho Kang, editors, Software
Engineering, Business Continuity, and Education, Volume 257 of Communications in Computer
and Information Science, pages 272�284. Springer Berlin Heidelberg, 2011.

[10] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measuring maintainability.
In Proceedings of the 6th International Conference on Quality of Information and Communications
Technology, QUATIC '07, pages 30�39, Washington, DC, USA, 2007. IEEE Computer Society.

[11] ISO/IEC. ISO/IEC 9126. Software engineering � Product quality. ISO/IEC, 2001.

[12] jEdit Homepage. http://www.jedit.org.

[13] M. Jorgensen, B. Boehm, and S. Rifkin. Software development e�ort estimation: Formal models
or expert judgment? Software, IEEE, 26(2):14 �19, March-April 2009.

[14] Levenshtein distance.
http://en.wikipedia.org/wiki/Levenshtein_distance.

[15] The Mozilla Firefox Homepage.
http://www.firefox.com.

16



[16] S. Muthanna, K. Ponnambalam, K. Kontogiannis, and B. Stacey. A maintainability model for
industrial software systems using design level metrics. In Proceedings of the Seventh Working
Conference on Reverse Engineering (WCRE'00), WCRE '00, pages 248�, Washington, DC, USA,
2000. IEEE Computer Society.

[17] K. Srinivasan and D. Fisher. Machine learning approaches to estimating software development
e�ort. Software Engineering, IEEE Transactions on, 21(2):126 �137, Feb 1995.

Felhasznált publikációk

[18] Péter Hegedus, Tibor Bakota, László Illés, Gergely Ladányi, Rudolf Ferenc, and Tibor Gyimóthy.
Source code metrics and maintainability: A case study. In Tai-hoon Kim, Hojjat Adeli, Haeng-kon
Kim, Heau-jo Kang, KyungJung Kim, Akingbehin Kiumi, and Byeong-Ho Kang, editors, Software
Engineering, Business Continuity, and Education, Volume 257 of Communications in Computer
and Information Science, pages 272�284. Springer Berlin Heidelberg, 2011.

[19] Tibor Bakota, Rudolf Ferenc, Tibor Gyimothy, Claudio Riva, and Jianli Xu. Towards portable
metrics-based models for software maintenance problems. Software Maintenance, IEEE Interna-
tional Conference on, 0:483�486, 2006.

[20] T. Bakota, P. Hegedus, P. Kortvelyesi, R. Ferenc, and T. Gyimothy. A probabilistic software
quality model. In Software Maintenance (ICSM), 2011 27th IEEE International Conference on,
pages 243 �252, Sept. 2011.

[21] T. Bakota, P. Hegedus, G. Ladányi, P. Kortvelyesi, R. Ferenc, and T. Gyimothy. A cost model
based on software maintainability. In 28th IEEE International Conference on Software Mainten-
ance (ICSM), 2012, page to appear, Sept. 2012.

[22] Tibor Bakota. Tracking the evolution of code clones. In Proceedings of the 37th international
conference on Current trends in theory and practice of computer science, SOFSEM'11, pages
86�98, Berlin, Heidelberg, 2011. Springer-Verlag.

[23] Tibor Bakota, Rudolf Ferenc, and Tibor Gyimothy. Clone smells in software evolution. Procee-
dings of the 23rd International Conference on Software Maintenance (ICSM 2007), pages 24�33,
2-5 Oct. 2007.

[24] Marit Harsu, Tibor Bakota, Siket István, Kai Koskimies, and Systä Tarja. Code clones: Good,
bad, or ugly? In Proceedings of 11th Symposium on Programming Languages and Software
Tools and 7th Nordic Workshop on Model Driven Software Engineering, 2009.

[25] Marit Harsu, Tibor Bakota, Siket István, Kai Koskimies, and Systä Tarja. Code clones: Good,
bad, or ugly? In Nordic Journal of Computing special issue dedicated to SPLST'09 and NW-
MODE'09, 2010.

17






























