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A bstract

In my Ph. D, thesis I was conducting statical and dynamical investigations with 
models based on the two dimensional Ising model, I studied the phases of the 
Random Field Ising Model (EFIM) analyzing geometric properties of macros­
copic clusters at zero temperature, I also quested for nonequillibrium dynamic 
properties of the two dimensional Ising model, when the initial states are prepared 
specificly.

The two-state spins of the EFIM sit on sites of a square lattice. Beside the 
homogene hrst-neighbour pair-wise interaction of energy J, there is also a local 
magnetic held of random strength and direction with average strength of H and 
spread of A. In this parameter field of J-T-H-D there is a phase, where domains 
with fractal properties appear, I studied systems at zero temperature and with 
no external held (H =  0), residing at the ground state. The specific samples 
were generated and analyzed with a computer. For each sample I generated 
external helds using pseudo random number generators, and then obtained the 
matching ground state using methods of eombinatorieal optimization, I pointed 
out, that domains in this model and domains emerging in the critical standard 
percolation are geometrically similar, I also demonstrated that the domain size 
distribution and the geometric correlation scale well, as well as the later is also 
conform invariant.

The dynamics of the Ising model is realized by the Glauber model. For each 
unit of time every single spin has one opportunity on average to change, accor­
ding to local energy ambience and temperature. In equillibrium processes the 
value of the order parameter converges to the equillibrium value in a monoto­
nie way. Under critical temperature, this process becomes time scale free, and 
magnetization decays with a polynomial function with an exponent z, that is 
called the (equillibrium) dynamic exponent. If the system is started from high 
temperature with small positive magnetization, and then quenched to the critical 
point, magnetization starts to increase with the (nonequillibrium) exponent 9 for 
a specific time scale, which can become macroscopic for a small enough starting 
value, I was curious, if specifically preparing the initial state would influence the 
nonequillibrium, or even the equillibrium process,

I prepared the necessary initial states, and conducted the dynamic simulations 
using computer software, I implemented the Heat Bath algorvthm to simulate
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the relaxation. The initial states were chosen from samples in critical state of two 
dimensional models, I used ground states from the Random Fiels Ising model 
with percolating clusters, as well as critical states from Baxter-Wti (three-spin 
interaction on a triangle graph) and Turban models (two spin in one, and three or 
four spin interaction in the other direction of the square lattice), Nonequillibrium 
behaviour was triggered by sudden change in the interaction and temperature, I 
observed, that depending on the universality class of the model, critical behaviour 
can change. Starting from the ground states of the EFIM also introduces a 
reentering type change in the course of the magnetization.

Geom etrical clusters of the RFIM

The Lenz-Ising model is probably the oldest and most simple non-trivial model 
for cooperative behaviour which shows spontaneous symmetry breaking. Most 
homogene systems can be treated in an algebraic manner, however real-list sys­
tems scarcely include translation invariance even on local scale. The two simplest 
models to rule out this symmetry is the Random Bond Ising Ferromagnet Model 
(RBIFM), where neighbours have bonds of random energy, and the Random Fiels 
Ising Model (RFIM), where a random local held is introduced to each spin.

Some physical examples on the later, the one I will be invesstigating. The 
FexZni-xF2 is a dilluted antiferromagnet. Its model can be mapped exactly 
onto the RFIM, however, A more direct example is the Rb2CoxMgl — xF4, that is 
described by the two dimensional RFIM, Interactions in this material is highly ani­
sotropic: it consists of parallel layers. Interaction within these layers are strong, 
however in between there are far weaker. Here, it can also be observed, how the 
random held dims the phase transition of the two dimensional Ising system.

Since its seminal discussion by Imrv and Ma [5] in 1975, this model is under inten­
sive investigation both experimentally and theoretically. The frustration caused 
by the random held can be observed even at lower temperatures. The direction 
of the random held is incidental, neighbouring spins cannot decide wether to stay 
parallel, or to adjust to the held. In lower dimensions this effect is so decisive, 
that any small randomness in the held will break the ferromagnetic order even at 
zero temperature. In three dimensions the ferromagnetic phase is present, howe­
ver the order of phase transition depends on the type of the distribution of the 
random held. Small huetuations in the random held are always relevant in this
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system.

According to investigations conducted by Seppala and Alava, in the two dimensio­
nal Eandon Fiels Ising model there are two phases in the parameter held assigned 
by the external held, H, and the random held strength spread A[6]. For small 
values of A, there are percolating clusters present in the system, whos linear size 
matches that of the system, however their mass is effectively zero. For A being 
large enough, clusters shrink to a hnite size. The percolating boundary separating 
the two phases is symmetric on the sign of the external held.

For hnite system sizes and values of A small enough, the sample can become 
homogene. The critical system size, where the ferromagnetic order is broken, is 
called break-up length. For hxed random held strength spread, the corresponding 
break-up length scale is always present in the system.

The present percolation transition can be approached by different manners. You 
can vary the external held, H, while keeping random held strength A constant, 
or you can vary A, while keeping the external held off. The first ease has been 
thoroughly investigated, I was performing mv studies with H =  0,

Actual investigations were realized with computer programs, in two steps. First, 
samples with specific linear size L, and random field strength spread A, and no 
external held were calculated at zero temperature, minimising energy. For each 
sample the speeihed random held was generated from pseudo random numbers. 
The minimum energy ground state was calculated utilizing the maximum how - 
minimum cut algorvthm, a well known tool in eombinatorieal optimization[7], I 
generated and analyzed 10000 independent samples for everv pair of L and A, 
Lack of computational resources limited the maximum system size to 256, The 
second step, analyzing the samples, was separated, as the generation of samples 
was highly demanding in computation time. Generator programs created hies for 
each parameter sets, that contained generated samples. Analyzing programs read 
and processed these hies.

In a certain regime of A, the largest clusters emerging are fractals, I served 
their properties measuring the domain size distribution, R(m, L), and geometric 
correlation function, G(r,L). R(m, L) measures the fraction of clusters having a 
mass (number of spins) m in a system of linear size L, as for G(r, L) measures the 
probability of two spins r cells apart belonging to the same cluster in a system of 
linear size L, I also verified the conformal properties of the geometric correlation
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function with the logarythmic transformation mapping onto a periodic strip.

In this work I have reached the following results [1]:

J /a  In the percolation phase the largest clusters are fractals. The fractal dimen­
sion of df =  1.89(2) is consistent with df =  91/48 of standard percolation. 
So the percolating clusters of the two dimensional random hels Ising mo­
del and the clusters evolving in two dimensional percolations are similar in 
geometry,

J /b  In the percolating phase the cluster-mass distribution function scales as 
R(m, L) =  m-TR(m /Ldf), where t  = 2/df, For smaller clusters (m C  Ldf) 
the scaling function is constant, R(m /Ldf) ~  O(1), and there is a sudden 
cutoff at m ^  Ldf, The largest clusters of size Ldf are fractals of dimension 
df =  1.89(2). This is in good agreement with the extracted values of t  = 
1.055(3).

J / c  I studied the geometric properties of clusters using the geometric correlation 
function. It shows an algebraic decay, G(r) ~  rn in the percolating phase, 
with an exponent n =  2(d — df) =  5/24, There is a finite size scaling, 
G(r,L) =  rnG(r, L), where G(r, L) ~  O(1), for 1 C  r C  L, This region 
fits an polynomial decay with the exponent n =  5/24, I also studied the 
probability of the farthest spins belonging to the same cluster, G(L) = 
G(L/2, L), In the percolating phase G(L) scales as G(L) =  L-nG(L/£), 
having G(L/£) ~  exp [—L/2£], Using the extracted values of £(A) I was 
able to determine, that the correlation length diverges at a certain value 
of the random field strength spread, Ac =  1.65. In the vicinity of Ac 
the correlation length, £, diverges as ~  |A — Ac|-V, with the exponent 
v =  1.98(5), I argued that the correlation length depends on the critical 
external field of percolation, Hp, as £ ~  H- v . Here the governing exponent 
has a value of u =  0.97(5), This value coincides with the second thermal 
exponent of tricritical percolation,

J / d  I investigated the conform properties of the geometric correlation function, 
so I studied its behaviour in the strip geometry obtained with logarithmic 
transformation, I concluded, that the finite correlation length, £, and the 
strip width, Lw is connected by the formula £ =  Lw/nn, where n is the ex­
ponent of the decay of the original geometric correlation function. Herewith 
I proved the conform invariance of the geometric correlation.
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Nonequillibrium  processes

Understanding cooperative behaviour in far from equillibrium processes is one of 
the most intriguing challenges in present research. We can even discover such 
systems in our every day life, like living biological organisms, or the meteorology 
of the atmosphere are examples, where local behaviour, random fluctuations, or 
more complicated mieroproeesses keep the system in a far from equillibrium state. 
The most widely known physical example is the glass, which if cooled suddenly 
below certain critical temperature, crystallisation process slows down in such an 
immerse way, that traps the material in a far from equillibrium state[8]. The fluid 
properties of the liquid surface in a scope of centuries. This ageing is reversible 
opposed to biological ageing.

The general method to observe nonequillibrium behaviour of the Ising model is to 
suddenly cool the system from high temperature to the Curie point. This method 
is called quench[9], Issuing the quench to a ferromagnetic ordered state will dis­
solve the ordering, and geometries eharaeteristie to the critical temperature will 
appear in time. The magnetization as order parameter will change monotoniely. 
In this ease we can speak of an equillibrium process. However for macroscopic 
system this is a slow process: correlations decay in a polynomial manner. This 
phenomen is called critical slowdown. The exponent of the decaying polynom is 
the critical exponent characterizing the equillibrium process.

Quenching from high temperature will start local ordering. The total magne­
tization is zero, however its value can vary greatly in small subsystems due to 
local fluctuations, so pair interactions will cause ordering on an increasing length 
scale, forming clusters, which are units consisting of neighbourghing parallel spins. 
This coarsening continues up to macroscopic length scales, which is followed by 
the equillibrium process. If there is a small, positive magnetization present in the 
initial state, its value will increase for the duration of the nonequillibrium regime 
at a scale free slope determined by an independent exponent, 9, that is called 
nonequillibrium exponent.

Studying nonequillibrium properties you seek the change in the corresponding ex­
ponents, Starting from disordered state, and quenching to the Curie temperature 
the course of the magnetization is described by M (t) ~  Mjt0, where t is the time 
elapsed, Mj is the initial magnetization, and 9 is the independent nonequillib­
rium exponent. One time step is considered L2 number of spin flips, that is each
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particle has the chance to flip once per time step on average. Non equillibrium 
coarsening is limited by the equillibrium processes taking place inside the evolving 
clusters within a limited time frame, t0, This time scale scales with the initial 
magnetization (t0 simM~z/x\  where x  =  Oz + fi/v  is the anomal dimension of 
the magnetization).

Besides magnetization I also measured the autocorrelation function, I checked, 
how the initial state correlates to later states. This function deeaves as A(s,t) ~  
(t/s )-A/z after the quench. The critical exponent A can be expressed using O: 
A =  2 — Oz, where 2 is the actual dimension. It is to be noted, that you can only 
see clear nonequillibrium effects in the autocorrelation, if the initial magnetization 
is zero.

Nonequillibrium  relaxation starting  from the RFIM  
ground sta te

It is still an open question, how the initial state can influence nonequillibrium re­
laxation, RFIM ground states with very small or very large random field strength 
spread are similar to equillibrium samples of the original Ising model at low and 
high temperatures. So adjusting the random field strength, we can observe a 
transition from the nonequillibrium to the equillibrium process. There are also 
ground states with the largest clusters being fractals, so we can also check, if these 
kind of long range correlations do alter dynamic behaviour,

I issued the nonequillibrium studies as follows, RFIM ground states were ge­
nerated, as described in the previous section (they were already present). For 
each pair of linear size, L and random field strength spread, A 10000 indepen­
dent samples were analyzed, each one ran 20 times with different random seed to 
improve statistics.

During measurements regarding magnetization, domain borders of the initial sta­
tes were adjusted in the sample to include a small initial magnetization. This 
adjustment was introduced randomly and spin by spin. The non equillibrium 
process was implemented using Heat Bath algorvthm. In the corresponding time 
scale of one Monte Carlo step, L2 spins were chosen randomly one after the other, 
independently. For each chosen spin I calculated the energies corresponding to 
the up and down state of the spin, that determined transition probabilities each
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way, based on what I chose the next spin state randomly.

As described above, I studied the Glauber type dynamic process of the two dimen­
sional Ising model on critical temperature, initialized by specific ground states 
of the two dimensional Random Fiels Ising model with no external held. Du­
ring the process I measured the magnetization M (t), and the autocorrelation, 
A(t) = A(s =  0, t), introducing az initial magnetization of Mi =  0.04 in the hrst 
ease, I wondered if fractal structures present in the initial state around Ac affect 
critical dynamic behaviour.

The results can be summarized as following [2, 3]:

I I  fa  I studied the magnet ization M (t) on the nonequilibrium tim e regime t ^  t0. 
For A b < A  << 2.0, the magnetization was decreasing initially up to tmin. 
I realized, that this value depends on A in the vicinity of the critical point 
like ln tmin ~  1/A2 I concluded, that in this regime compact regions of linear 
size Lb present in the RFIM ground states are dissolving,

I I f b  I investigated the impact of fractal structures analyzing the nonequilibrium 
critical exponent 6, So I studied the time evolution of the magnetization, 
M(t), in the asymptotic regime tmin ^  t ^  t0. The measured value of this 
exponent is 6RFIM =  0.184(1), that does not depend on the random held 
strength spread A, This result is in good agreement with the original value 
of 6 =  0.183(1) for random initial state and Mi =  0.04 initial magnetization, 
I concluded, that regarding the exponent 6, long range correlations in the 
RFIM ground states do not inhuenee nonequilibrium behaviour,

I I / c  I also studied the nonequilibrium exponent X/z utilizing the correlation 
function A(t), This exponent also becomes independent of the random held 
strength spread, A, in the asymptotic regime. Also the extracted value of 
XRfiM/ z =  0.73(1) corresponds with X/z =  0.737(1) of the original process. 
These results are in good agreement with the previous results of relaxation.

Nonequillibrium  relaxation from correlated initial 
s ta te

Starting from the RFIM ground states, nonequillibrium exponent values match 
that of the original relaxation starting from high temperatures. There are more
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models, where initial state does not affect long time behaviour[10]. However, there 
are several examples showing the contrary, like the XY model, where the corres­
ponding anomal dimension depends on both starting and ending temperature of 
the queneh[ll]. In the d dimensional spherical model time evolution depends on 
the dimension, and the exponent of the initial correlation as well[12].

In order to change critical behaviour, I tried changing the type of interactions 
within the system, I selected three models with multispin bonds. The Baxter-Wu 
model is defined on the triangle lattice, the energy of the bonding depends on 
all three spins sitting on the vertices of a single triangle. It is proportional to 
the product of the three spin values: all spins up, or two spins down will form 
a stable triplet. While altering the interaction type, edges along one direction of 
the lattice are also deleted, so the relaxation happens on a square lattice. The 
Turban model is one kind of a multispin extention to the Ising model on the two 
dimensional square lattice. While in one direction all interaction are 2-spin, in 
the other direction n(> 2) neighbouring spins affect each other, and the bond 
energy is proportional to the product of the spins, I utilized the Turban model 
with n =  3 and n =  4,

On critical temperature states of threespin-interaetion models consist of a mix of 
four type of clusters, which is based on the four stable spin triplet. The total 
magnetization of the system is fluctuating between the two favoured values of 1 
and -1 /3 , In rare cases, the total magnetization is eventually 0, when quarter 
part of the system consists of clusters type H I, and three quarter part of type m .  
The sudden interaction change will induce a sharp change in the order parameter 
within the second tvps of clusters, which results in sudden transformation in the 
beginning of the relaxation.

Phase transition is of the first order in the ease of the n =  4 Turban model. At 
the critical temperature the ordered and disordered phases coexist[13], The order 
parameter is not necessarily zero, or even small, so I studied its properties as 
initial state issueing only autocorrelation measurements.

Initial states were generated beforehand for several linear sizes, up to a scale 
of 240 x 240. For each system size, 1000 independent samples were chosen at 
critical temperature with the Monte Carlo method using importance sampling. 
No further change was necessary, i.e, no initial magnetization was needed. Each 
independent sample was measured 20 times using different random number seeds.
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I can summarize the following results [4]:

ZZZ/a I studied nonequilibrium properties using the exponent 6, I analyzed the 
evolution of magnetization, M (t), after changing the types of interactions 
of the equilibrium states in the second order transition point of the Baxter- 
Wu and n =  3 Turban models. In both cases two regimes can be separated 
after the initial transient. For the first regime both models exhibit the same 
exponent value 6i =  0.13(1). As well for the second regime 6Bw = 63T = 
0.18(1), that coincides with the value 6 =  0.187(3) for Mj =  0.0 of the 
classical nonequilibrium process. This concludes, that the change in the 
interaction type can have an effect on the nonequilibrium behaviour,

ZZZ/6 I also studied the nonequilibrium exponent, X/z using the autocorrelation 
function, A(t). This function scales as A(t) ~  t -x/z e x p [-t/tL], as long as 
t »  1. I obtained the values XBW/z =  0.18(1) for the Baxter-Wu model, 
and X3T/z  =  0.165(10) for the n =  3 Turban model. Both of them is 
substantially smaller than X/z =  0.732(3), measured for the process with 
random initial state. These results agree with the previous findings,

ZZZ/c I considered investigating the change in interaction in a critical system re­
siding in a first order transition point. So I used equilibrium critical states 
of the n =  4 Turban model as initial states for the 2D Ising relaxation, I 
studied its behaviour with the exponent X/z extracted from the autocorre­
lation function A(t), This function scales as A(t) ~  t -A/z e x p [-t/tL] as well. 
The obtained value of X4T/z  =  0.475(10) differs from the classical value of 
X/z =  0.732(3) significantly. The calculated value of X4T — 1 =  d/2 can be 
argued with fluctuations in the volume of the evolving clusters.
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