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Introduction

The theory of integrable systems is a very rapidly developing branch of modern mathematical
physics. From a physical point of view the importance of this subject is quite clear. A great
amount of knowledge about nature is based on the use of special, exactly solvable models. The
harmonic oscillator and the Kepler problem play a central role in classical mechanics as well
as in quantum theory. The KdV and KP equations help us to understand the wave motion of
shallow water and indicate the behaviour of ‘solitons’ in general. The nonlinear Schrodinger
equation found applications in the theory of optical fibres. The sine-Gordon equation serves as
a theoretical laboratory for particle physicists. These selected examples are enough to convince
us about the importance of integrable systems, even in their own right. Furthermore, it is a
well known fact that beside numerical simulations it is perturbation theory that allows us to
get an insight into the details of physical phenomena. It is worth keeping in mind that all
perturbative calculations rely heavily on exactly solved problems. From a mathematical point
of view it is much simpler and much more obvious to give grounds for the investigations of
these models. First, they are challenging mathematical problems. Second, almost all branches
of mathematics can be used during calculations. Not only the classical parts of mathematics
are applicable, but the newest methods play a role, too. In conclusion, we can state that the

study of integrable systems is highly motivated.

The outline of the present work is the following. In Chapter 1 we give a short overview of
the theory of integrability [, 2] . After recalling Liouville’s definition of a finite dimensional
integrable hamiltonian system, we introduce the main concepts of classical integrability, i.e.
Lax pairs and classical r-matrices. We touch upon the classical Yang-Baxter equation and the
classical dynamical Yang—Baxter equation, too. These concepts are the main players in the

subsequent chapters.

In Chapter 2 we begin to present our own results (3, d]. After recalling the definition

of the degenerate Calogero-Moser models [5, B, [1], we present a complete description of the
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non-dynamical r-matrices of these models based on gl,. First the most general momentum
independent r-matrices are given for the standard Lax representation of these systems and those
r-matrices whose coordinate dependence can be gauged away are selected. Then the constant
r-matrices resulting from gauge transformation are determined and are related to well-known
r-matrices. In the hyperbolic/trigonometric case a non-dynamical r-matrix equivalent to a
real /imaginary multiple of the Cremmer—Gervais [U] classical r-matrix is found. In the rational
case the constant r-matrix corresponds to the antisymmetric solution of the classical Yang-
Baxter equation associated with the Frobenius subalgebra of gl, consisting of the matrices
with vanishing last row. These claims are consistent with previous results of Hasegawa [I0]
and others, which imply that Belavin’s [[1] elliptic 7-matrix and its degenerations appear in
the Calogero-Moser models. The advantages of our analysis are that it is elementary and also

clarifies the extent to which the constant r-matrix is unique in the degenerate cases.

In Chapter 3 we start the analysis of the classical dynamical r-matrices. It is well known
[T2, 3] that a classical dynamical r-matrix can be associated with every finite-dimensional self-
dual Lie algebra G by the definition R(w) := f(adw), where w € G and f is the holomorphic
function given by f(z) = %Cothg — % for z € C\ 2miZ*. We present a new, direct proof of the
statement that this ‘canonical’ r-matrix satisfies the modified classical dynamical Yang—Baxter

equation on G [I4].

In Chapter 4 we continue the study of the classical dynamical r-matrices. We associate a
dynamical r-matrix with every self-dual Lie algebra A which is graded by finite-dimensional
subspaces as A = @,czA,, where A, is dual to A_, with respect to the invariant scalar
product on A, and Ay admits a nonempty open subset Ay for which ad & is invertible on A, if
n # 0 and k € Ay. Examples are furnished by taking A to be an affine Lie algebra obtained
from the central extension of a twisted loop algebra ¢(G, 1) of a finite-dimensional self-dual Lie
algebra G. These r-matrices, R : Ay — End(.A), yield generalizations of the basic trigonometric
dynamical r-matrices that, according to Etingof and Varchenko [I5], are associated with the
Coxeter automorphisms of the simple Lie algebras, and are related to Felder’s [I6] elliptic 7-
matrices by evaluation homomorphisms of ¢(G, ) into G. The spectral-parameter-dependent
dynamical r-matrix that corresponds analogously to an arbitrary scalar-product-preserving

finite order automorphism of a self-dual Lie algebra is calculated explicitly [I7, IR].



Chapter 1

Overview of the theory of integrable

systems

Integrable systems play important role in the area of dynamical systems. The main feature of
an integrable system is the existence of global first integrals of motion. Liouville’s theorem gives
a precise connection between the existence of conserved quantities and solvability. Practically
all systems for which the equation of motion has been solved explicitly are integrable in the

sense of Liouville. Let us consider a list of some classical examples:

e Any system with only one degree of freedom is integrable.

e The motion of a point particle in a central potential (Newton).

e The motion of a point particle in the gravitational field of two fixed centers (Euler).
e Free motion of a particle on the ellipsoid (Jacobi).

e Motion of a particle on the sphere under the influence of linear force (K. Neumann).

e The motion of three particles in one dimensional space, with two-body interactions in-

versely proportional to the square of the distance (Jacobi).

e The spinning top, i.e. a solid body rotating around one fixed point, in the special cases of
Euler (no external force), Lagrange (in the presence of a gravitational field, but when the

top has a rotational symmetry axis passing through the fixed point), and Kowalewski.
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The investigation of these systems was an important line of study in the 19th century.
Early in the 20th century, however, the work of H. Poinaré made it clear that global integrals
of motion for hamiltonian systems exist only in exceptional cases, and the interest in integrable
systems declined. Further progress in this field was made only a short time ago. In 1967
Gardner, Greene, Kruskal, and Miura [19] discovered the inverse scattering method. This
approach was cast in algebraic form by Peter Lax [20]. Their pioneering work shed a new
light on integrable systems. The inverse scattering method, also called the isospectral method,
was originally applied to nonlinear partial differential equations, such as the Korteweg-de Vries
equation, the nonlinear Schrodinger equation and the sine-Gordon equation. However, this
method is applicable not only in infinite dimensional cases, but in the realm of many-particle
systems, too. The most famous integrable many-particle systems are the Toda chains and the

Calogero—Moser models.

The content of this chapter is based on the papers [1, 2]. After this introduction, the chapter
consists of two sections. The concept of Liouville integrability and Lax pairs is described in
section 1.1. Section 1.2 is devoted to the definition of the r-matrices and the classical Yang-

Baxter equations.

1.1 Liouville integrability and Lax pairs

Let us consider a finite dimensional hamiltonian system (M, {, }, h). The phase space M is a
2n dimensional differentiable manifold, {,} is a Poisson bracket and h is a hamiltonian. The
system is said to be integrable in the sense of Liouville, if it possesses n independent integrals

of motion F; (i = 1,...,n) in involution, i.e.
{h,F;} =0, {F,,F;} =0, (Vi,j € {1,...,n}) (1.1)
where h is not independent of the F’s. Under these assumptions the following theorem, the

so-called Liouville theorem holds.

Theorem 1.1 The solution of the equations of motion of a Liouville integrable system is ob-

tained by quadrature.

Proofs can be found in [2, 21]. Somewhat informally, the essence of this theorem is that the
existence of first integrals in involution is a good indication for the problem being exactly

solvable.
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The use of Lax pairs proves extremely useful to produce integrable systems. A Lax pair
L, M consists of two functions on the phase space M with the values in some Lie algebra G,
such that the
dL

= [L,M] (1.2)

equation holds along every solution of the hamiltonian evolution equations. We will denote by
G a connected Lie group having G as a Lie algebra. The solution of the Laz equation ([[.2) is

of the form
L(t)y=g(t)" L(0)g (1), (1.3)

where g (t) € G is determined by the equation

M (1) =g 21,

Recalling that the adjoint action of G on G is given by Ad, (X) =gXg™' (Vg€ G,VX € G),

the following proposition is a trivial consequence of ([[.3).

(1.4)

Proposition 1.2 If I is an Ad-invariant function on G then

dr (L (1))
——==0. 1.5

i (1.5)
The message of this statement is that by means of the Ad-invariant functions numerous con-
served quantities become available. If L. and M are taken in some representation of G, the
invariants are essentially the eigenvalues of L. This is why the time evolution of equation ([[.Z)

is referred to as isospectral deformation.

Now we explain [[] that every finite dimensional Liouville integrable system admits a Lax
pair. It is a well known fact that the Liouville theorem relies heavily on the existence of action-
angle variables. Given a Liouville integrable system described at the beginning of this section
there exists a system of conjugate coordinates I;, ©; (i = 1,...,n), where I; are functions of the
F;’s only and the equations of motion take the very simple form

di; de; oh

=0 = oL, (1.6)
To prove the existence of a Lax pair, it is enough to show one such pair. This is straight-
forward in the action-angle coordinate system. Introduce the Lie algebra G generated by
H;,E;(i=1,...,n) with the relations

5
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Set

n

3 Z” Oh
j=1 "/

Jj=1

It can be easily seen that the equation
L =[L,M] (1.9)
is equivalent to ([[.G).

Before turning out attention to the theory of r-matrices, let us finish this section with two
concluding remarks. First, Lax pairs are not unique: even the Lie algebra G may be changed.

Second, there is a natural gauge transformation group acting on the Lax pair:

d
L I =gLg™', M M =gMg™' — d—igfl, (1.10)

where ¢ is an arbitrary smooth G-valued function on phase space M. Simply, L', M’ also serves

as a Lax pair for the given system.

1.2 Poisson structure and r-matrices

A Lax pair provides us with integrals of motion without referring to a Poisson structure. The
notion of Liouville integrability requires the knowledge of the involution property of the con-
served quantities as well. Suppose we are given a Lax pair L, M in some matrix representation
of some Lie algebra G. Assuming that the L matrix is diagonalizable, its eigenvalues are first
integrals as we have already mentioned in the previous section. Babelon and Viallet [l] gave

an algebraic characterization of the involution property of the eigenvalues.

Before formulating their result we need some notations. Let T}, be a basis of the Lie algebra

G. We can write

L=> L'T, (1.11)
i

where L are functions on phase space M. We may evaluate their Poisson brackets {L*, L"}
and gather the results as follows. Set
Ly:=L®1l, Ly=1&®L  {L,L}:=)» {L"L}T,0T, (1.12)
nv
and if @ € G ® G, denote
a=o0p=>» a"T,®T,  an=Y» o"T,dT, (1.13)

I 1%
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Proposition 1.3 The involution property of the eigenvalues of L is equivalent to the existence
of functions a,b: M +— G ® G such that

{L1, Lo} = [a12, Ln] + [bi2, Lo] - (1.14)

Using the antisymmetry of the Poisson bracket we can write

{LI; L2} = [7“12, Ll] - [7“21, L2] ) (1-15)

1
2
is non-dynamical if it does not depend on the dynamical variables, i.e., constant over the

where ri5 = = (@12 — by1). It is customary to call 79 a classical r-matriz. A classical r-matrix
phase space M, and dynamical otherwise. It is wort mentioning that the ([.I5) form of the
Poisson bracket is preserved by the ([[.10) gauge transformations. Namely, if ([[.13) holds and
L' = g7'Lg, then

{L/h L/2} = {Ti% L/l] - [T;hL/Z]? (116)

where
/ 1 -1 1 11
T2 =91 95 (7’12 —{g1, Lo} + 5 {a1,92} g1 ' 95 7L2]> 9192 (1.17)

The remaining question is the connection between the Jacoby identity of the Poisson bracket
and the r-matrix. In the approach of classical integrable hamiltonian systems developed by the

St Petersburg School of L.D. Faddeev and collaborators, the key equation is
{L1, Ly} = [r12, L1 + L], (1.18)

which is a trivial consequence of ([.15) when 7 is antisymmetric, i.e., i3 + r9; = 0. Since the
left hand side of ([.1§) is a Poisson bracket, it must satisfy the antisymmetry property and the
Jacoby identity. This yields constraints on the r-matrix. In the very special case when r is

non-dynamical, the following statement is valid.

Proposition 1.4 The antisymmetry property of the Poisson bracket and the Jacoby identity

are equivalent to the equations:

[r12 + 791, L1 + Lo] = 0, (1.19)
[p, L1+ Lo+ Lg] = 0, (1.20)

with
© = [ri2,713) + [r12, Ta3] + [r32, 13] - (1.21)
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Here the standard tensorial notations are used, L1 = L® 1 ® 1,112 =r ® 1,793 = 1 @ r ete. If

r is antisymmetric, one obtains the better-known and much studied form of ([[.21)):

(112, T13) + [r12, T23] + [113, T23] = . (1.22)

If r obeys ([.22) with ¢ = 0 we say that r is a solution of the classical Yang—Baxter equation
(CYBE). If r satisfies ([.22) with ¢ # 0, where ¢ is some constant G-invariant element of
GAGAG, we say that r is a solution of the modified classical Yang-Baxter equation (mCYBE).

Dynamical generalizations of the Yang—Baxter equations and the associated algebraic struc-
tures are in the focus of current interest due to their applications in the theory of integrable
systems and other areas of mathematical physics and pure mathematics (see [22] for a review).
Let us recall that dynamical r-matrices in the sense of Etingof-Varchenko [I5] are associated
with any subalgebra H of any (complex or real) Lie algebra G. By definition, a dynamical
r-matrix is a (holomorphic or smooth) G ® G-valued function on an open subset H* of the dual
space ‘H* of 'H subject to the following three conditions. First, » must satisfy the modified
classical dynamical Yang-Baxter equation (mCDYBE):

67“23 2 87'13 3 87'12
— =17 T: = 1.23
aw]’ J &uj + J aw]‘ & ( )

[r12, 713] + (112, 23] + [r13, r2s] + T}

where ¢ is some constant, G-invariant element of G A G A G. The w; are coordinates on H*
with respect to a basis {T}} of H, and the usual tensorial notations as well as the summation
convention are used. The second condition is that (r +r?), where (X, @ Y9I =Y?® X,, is a
G-invariant constant. The third condition requires the map r : H* — G®G to be equivariant
with respect to the (coadjoint and adjoint) infinitesimal actions of H on the corresponding
spaces. The mCDYBE becomes the CDYBE for ¢ = 0.



Chapter 2
Degenerate Calogero—Moser models

The purpose of this chapter is to provide a complete description of the non-dynamical, constant
r-matrices of the standard Calogero—Moser models [5, 6] associated with degenerate potential

functions, which can be obtained by gauge transformations of their usual Lax representation.

The Calogero-Moser type many particle systems (for a review, see [{]) have been much
studied recently due to their fascinating mathematics and applications [8] ranging from solid
state physics to Seiberg-Witten theory. The definition of these models involves a root system
and a potential function depending on the inter-particle ‘distance’. The potential is given either
by the Weierstrass P-function or one of its (hyperbolic, trigonometric or rational) degenerations.

The classical equations of motion of the models admit Lax representations ([[.2),

L =[L,M], (2.1)
which underlie their integrability. A Lax representation of the Calogero-Moser models based
on the root systems of the classical Lie algebras was found by Olshanetsky and Perelomov [23]
using symmetric spaces. Recently new Lax representations for these systems as well as their

exceptional Lie algebraic analogues and twisted versions have been constructed [24, P5).
As we have already seen in section 1.2, Liouville integrability can be understood as a con-
sequence of the Poisson brackets of the Lax matrix having the r-matrix form ([.15),

{L1, Lo} = {L", L"}T,, @ T, = [r12, L1] — [ra1, La]. (2.2)

Of course, L and r may also depend on a spectral parameter in general, but this does not occur
for the systems of our interest, and thus is suppressed in (.). When the r-matrix really does

depend on the phase space variables, one says that it is ‘dynamical’.
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The classical r-matrix has been calculated first for the standard Lax representation of the
gl,, Calogero—Moser systems associated with degenerate potentials [26], and then for Krichever’s
[217] spectral parameter dependent Lax matrix in the elliptic case [28, 29]. The r-matrices found
in these papers are dynamical, but depend only on the coordinates of the particles. These r-
matrices have been re-derived by means of Hamiltonian reduction in [30, B1], and in a recent
paper [32] they have been generalized explicitly for the BC), system as Well as for all classical
Lie algebras. In the physically most interesting gl,, case, dynamical r-matrices have also been
found [33, B4, B3] for the relativistic deformations of the Calogero-Moser models introduced
by Ruijsenaars and Schneider [36]. Then the quantization of the non-relativistic [37] and the

relativistic models [38, B9, 0] has been investigated in a new framework based on quantum

dynamical R-matrices.

The above developments have close connections with the new theory of dynamical r-matrices
and associated quantized structures reviewed in [22]. However, since the present understanding
of most integrable systems involves constant (i.e. ‘non-dynamical’) r-matrices, which form a
direct link to Poisson-Lie groups and quantum groups [41], it is natural to ask if the Lax
representation of the Calogero-Moser models can be chosen in such a way to exhibit non-
dynamical r-matrices. The obvious way to search for new Lax representations with this property
is to perform gauge transformations on the usual Lax representations. In the elliptic case of the
standard g¢l,, models a new Lax representation associated with Belavin’s [I1] constant elliptic
r-matrix has recently been found in this way [A2]. To be more precise, the results of [47]
are already contained in a somewhat less explicit form in the seminal paper by Hasegawa
[T0], where the commuting Ruijsenaars operators [&3] have been interpreted as commuting
transfer matrices based on a realization of the RLL = LLR relation with Belavin’s elliptic
R-matrix and certain difference L-operators. In fact, the dynamical twisting and the classical
and non-relativistic limits of the L-operator leading to Krichever’s Lax matrix for the elliptic
Calogero-Moser model are indicated in [10] (see also [40]). Then in the paper [44] some delicate
limit procedures have been considered, whereby non-dynamical R-matrices can be obtained for
the trigonometric degenerations of the Ruijsenaars-Schneider and Calogero—Moser models. The
resulting R-matrix was found to be non-unique, one possibility [44] being the spectral parameter

independent Cremmer—Gervais R-matrix discovered in a different context in [9].

It is clear from the above that Lax representations for the degenerate Calogero-Moser models
with non-dynamical r-matrices can be obtained by taking limits of Hasegawa’s RLL = LLR
relation. However, the details of the admissible limiting procedures appear rather complicated

and the starting point requires familiarity with quite advanced results. In this circumstance,

10
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it might be worthwhile to understand the possible non-dynamical r-matrices also from an
elementary viewpoint. This is the objective of the present chapter, where we aim to perform a
self-contained, systematic analysis of the gauge transformations of the usual Lax representation

of the degenerate Calogero-Moser models that lead to constant r-matrices.

The organization and the main results of this chapter are as follows. First, we describe the
most general momentum independent dynamical r-matrices for the standard Lax representation
in section 2.1. This amounts to a slight but necessary generalization of the Avan-Talon [26]
r-matrix as given by Theorem 2.1. Second, we select those dynamical r-matrices that become
constant by a gauge transformation (defined by eq. (.1§)) and determine the corresponding
‘gauge potentials’ Ag(q). This is the content of section 2.2, in particular Proposition 2.2 and
Theorem 2.3. Third, in section 2.3 we compute explicitly the gauge transformations g(¢q) (from
eq. (B.19)) and the resulting most general constant r-matrix, which is given by Theorem 2.6.
It turns out that in the rational case the constant r-matrix is conjugate to the antisymmetric
solution of the classical Yang—Baxter equation that belongs to the Frobenius subalgebra of gl,
consisting of the matrices with vanishing last row [45]. In the hyperbolic/trigonometric cases
the sl,-part of the most general gl, A gl,-valued constant r-matrix (see Proposition 2.7) is
equivalent to a multiple of the Cremmer—Gervais classical r-matrix [9, 6], and it can also be
made equal to it by a choice of the gauge transformation. This identification of the constant
Calogero—Moser r-matrices is presented in section 2.4. The details of some proofs are contained

in appendix A, B, and C.

2.1 Momentum independent dynamical r-matrices

The standard (degenerate) Calogero-Moser—Sutherland models are defined by the Hamiltonian

I
h = §;pk + Zv(qk —q), (2.3)

k<l

where v is given as

x 72, rational case

v(x) = ¢ a’sinh™?(ax), hyperbolic case (2.4)

a’sin~?(ax), trigonometric case.

One has the canonical Poisson brackets {px, ¢;} = 6y, the coordinates are restricted to a domain

in R™ where v(qx — ¢;) < oo, and a > 0 is a parameter.

11
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Let us fix the following notation for elements of the Lie algebra gl,,:
Hk = €kk, Ea = €, Ha = (ekk — 6”), Ka = (ekk + 6”) fOI" o = >\k — )\l € q). (25)

Here ® = {(Ax — A\))|k # [} is the set of roots of gl,, Ay operates on a diagonal matrix,
H = diag(Hi1, ..., Hnp) as A\g(H) = Hyy, and ey is the n x n elementary matrix whose kl-
entry is 1. Moreover, we denote the standard Cartan subalgebra of sl,, C gl,, as 'H,, and put
P =2k Pl ¢ =3 ae e, 1n =370 Hie

From the list of known Lax representations we consider the original one [8, 6] for which L

is the gl,, valued function

L(g,p) =p+V—=1)_w(a(q))Ea, (2.6)

acd
where the real function w is chosen according to
1
w(x) = ¢ asinh™(ax) (2.7)
asin!(ax).
Then the function
w 2.8
Fi=—— .
- (28)
enjoys the important identities
F' = —w?, (2.9)
w(z)w(y)
F(x)+ F(y) = ———=, 2.10
(@) + Fy) = 222 (210)
F(z —y) (F(z) = F(y)) + F(2)F(y) = B, (2.11)
where, respectively to the cases above,
0
B = a? (2.12)
—a?.

fela) = fla),  fala) = flala)), (2.13)

12



CHAPTER 2. DEGENERATE CALOGERO-MOSER MODELS

and sometimes write fy for f, if & = (\x — \;). As an n x n matrix Ly; = ppdr, + v —1(1 —
de1)w(qe — ), but L can also be used in any other representation of gl,,. The r-matrix cor-
responding to this L was studied by Avan and Talon [26], who found that it is necessarily
dynamical, and may be chosen so as to depend on the coordinates ¢; only. We next describe a

slight generalization of their result.

Theorem 2.1 The most general gl, ® gl,-valued r-matriz that satisfies (2.3) with the Laz
matriz in ([2.4) and depends only on q is given by

r(g) = — ; Fo(@)EBa ® E_o + % ;wa(q)(ca(q) — K,) @ E,+ 1, ® Qq), (2.14)

where the Cy(q) are H,, C s, valued functions subject to the conditions

Coalg) = =Calg),  B(Calq)) = a(Cplg)) Vo, € ® (2.15)

and Q(q) is an arbitrary gl,-valued function.

Remarks. The functions C,, can be given arbitrarily for the simple roots, and are then uniquely
determined for the other roots by (B.I3). The r-matrix found by Avan and Talon [26] is
recovered from (B.14) with C, = 0; and we refer to r(q) in (R.14) as the Avan-Talon r-matriz
in its general form. Given that this holds for the Avan-Talon r-matrix, the fact that r(q) above
satisfies (B.2) with any Q(q) and C,(q) subject to (B.I7) is easy to verify. Theorem 2.1 can be

proved by a careful calculation along the lines of [29]. For the details, see appendix A.

2.2 Is r(q) gauge equivalent to a constant?

A gauge transformation ([[.10) of a given Lax representation (B.1) has the form

dg
dtg )

where ¢ is an invertible matrix function on the phase space. If L satisfies (2.2), then L’ will

L— L =qgLg™*, Mi— M =gMg" — (2.16)

have similar Poisson brackets with a transformed r-matrix . The question now is whether one
can remove the g-dependence of any of the r-matrices in (.14) by a gauge transformation. It is
natural to assume this gauge transformation to be p-independent, i.e. defined by some function
g:q— g(q) € GL,. In this special case ([.16) reads as

{Llla L/2} = [T/127 Lll] - [réleIQL (217)

13
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where ([[.T7) takes the form

r'(q) = (9(a) ® 9(q ( + Z Aplq) ® Hk) 9(@)®@9(9) ", (2.18)
1 )
Ar(@) = =97 (@)Okg(q),  Ok:= a0 (2.19)

The meaning of this formula is that if r(g) is the most general p-independent r-matrix for which
L (B.6) satisfies (2.2), then 7'(¢) has the analogous property in relation to L'.

We wish to find r(¢g) and g(q) such that Jyr’ = 0. On account of (2.1§) this is equivalent to

Oc(r+> A@H)+[r+Y A@H,A®L +1,®A4] =0. (2.20)
=1 =1
By using (2.19), whereby
OA; — O/ Ax + [A, A] = 0, (2.21)
it is useful to rewrite (B.20) as
8kr + ZalAk: &® Hl + [7", Ak & 1n + 1n & Ak] + ZAZ ® [Hl, Ak] = 0. (2.22)

=1 =1

Our strategy is to first find Ax(q) and r(q) from eqs. (B:21)), (B.29), and then determine g(q)

and the resulting constant r-matrix. For this we now parametrize A as

Z A H +> AR (2.23)

aed

and expand the r-matrix from Theorem 2.1 in the form
—> Fu(q)Ea® E_, —i—Zr VH; @ E, +ZQ ® H;. (2.24)

We here have .
ri(g) = Q%(a) + walg)tr (Hi(Cala) — Ka)) (2.25)

ZQ’ VH; + Y Q(q)E (2.26)

acd

where Q(q), Cu(q) and K, appear in (2.14).

14
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With reference to the conventions (@) we define the structure constants cgzﬁ by writing
[Eo, Eg] = c. ﬂﬂEaJrﬁ if a, 3, (a + ) all belong to ®, and ca+ﬂ := 0 otherwise. Then ()
yields

DAL — A} = i AFAL, ik (2.27)

acd

DAY — DA} —Zaz (AJAT — LA + 3 S, JATAYT, Ya, Yk L (2.28)

yed

The H; ® H; and H; ® E, components of (£.29) require that

OuQ + 0 A4+ oyt ALY =0, Vi gk, (2.29)
acd
Oprs — o, FLAY + ZQJQ]AO‘ ZaJAiro‘ + cha AT+ Za]A’AO‘ =0 (2.30)
yed j=1

Vi, k,a. From the E, ® H; and E, ® Ez components of (.22) we find that

&AZ + OéiFaAg = 0 VZ ]{3 a, (231)
Op -atuw? — ¢ Z’}“wj AP Z arf 4G+ BAAL =0 (2.32)
ot j=1 =1

VE,a, 5. Note that to derive (2.32) we have used the identities (2.9), (B.10) and the symmetry

properties of the structure constants.

It is convenient to focus first on the last two equations, since they do not contain the Cartan

components of A. Eq. (B.31) obviously implies that
A% (q) = wa(q)by, by : some constants. (2.33)

The constants are then determined as follows.

Proposition 2.2 Eq. (2.33) admits solution for the constants by only for those two families
of (q) in (2.14) for which the C,, are chosen according to

case I: Co,=—-H, Vaed, or case II: C,=H, VYaec o. (2.34)
For o = \,,, — N, the by are respectively given by
bé’\mf)‘l) = Opm +Q  in case I, and b Om=A1) _ =0 +Q in case 11, (2.35)
where 2 is an arbitrary constant.
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Proof. The statement is obtained by an elementary, but rather lengthy inspection of eq. (2.39).
This is contained in appendix B. Q.E.D.

It is easy to explain why we got two series of solutions in the above. Namely, they arise
due to the fact that L in (R.6) is a self-adjoint matrix. Indeed, LT = L implies that if r(q)
solves (2.9) then rf(q) also solves it, where (u; @ us)" = ul @ ul. Furthermore, if r(q) is gauge
transformed to a constant 7’ by g(q), then r(q) is transformed to (r')" by (¢7)~*. The two series
of solutions described in Proposition 2.2 are exchanged by this symmetry. It is thus enough to

consider only one of these series, and from now on we concentrate on case I.

As the main result of this section, we now give the most general ‘gauge potential’ A, and
r(q) for which " (B.1§) will be constant.

Theorem 2.3 The most general solution of egs. (£.21), (2.23) for Ay and Q in case I of
Proposition 2.2 can be described as follows. The root part of Ay is determined by Proposition
2.2, while its Cartan part has the formf]

AL:FN—AIC+Q Z FAZ_M+6;€0 (Vk‘,l: 1,...,n), (236)
m (m#l)
where 0(q) is arbitrary smooth function. The function Q(q) € gl,, is given by
Q = _ZAZH’C _szaEa+g_1Q/g> (237)
k=1 acd

where g(q) € GL,, denotes a solution of Org = —gAx and Q' € gl,, is an arbitrary constant.

Proof. The main steps of the proof can be outlined as follows. After choosing case 1 of
Proposition 2.2, the right hand side of (.27) can be calculated. The general solution of (2.27)

for the unknowns Aﬁg is then found to be
Ay =Fy +Q Y Fya, +08  (Vki=1,...n), (2.38)
m (m#l)

where the §' are arbitrary smooth functions of ¢q. Next, it is verified that (R.38) solves (R.2§) if

and only if
O =0*=...=0":=90. (2.39)

Note that Fy,_y, = 0 by the definition of Fy,_j, in ()
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At this point we have the general solution for A; and remaining task is to solve (2.29), (B.30) for
Q. By using also (2.25) with C,, = —H,, these are inhomogeneous linear differential equations
for @. Tt is an easy matter to check that (B.37) with Q' = 0 gives a particular solution, and

that the difference Q) of two solutions must satisfy the equations
Ok(0Q) + [0Q, Ax] =0 (VE=1,...,n). (2.40)

The proof is completed by remarking that the last equation is equivalent to 9x(g(6Q)g~!) =0
with Org = —gA,. Q.E.D.

We wish to make some observations on the above result. Firstly, note that if ' is the

constant r-matrix obtained from (B.1§) in the case
§=0, Q =0, (2.41)
then in the general case of Theorem 2.3 the same formula yields
r+1,2Q". (2.42)

This means that the free parameters 6 and @' in (B.36), (B.37) are irrelevant. Henceforth
they will be set to zero. An additional convenience of this choice is that it guarantees the
antisymmetry of r' (2.1§). In fact, one can compute the symmetric part of (r + >, Ay ® Hy)
and finds it to be zero if )’ = 0. Secondly, it is worth pointing out that
1
r" € sl A s, & Q=——. (2.43)
n
Indeed, the condition 7" € sl, A sl,, is clearly equivalent to (r + ), Ay ® Hy) € sl,, A sl,, and
this is easily calculated to hold if and only if Q" = 0 and Q = —%. Since for a given Ay the

solution of (B.19) for ¢g(q) € GL, is unique up to a constant,

9(q) = go9(q),  Vgo € GLy, (2.44)

we can also conclude that if the condition ' € sl, ® sl, is imposed, then ' is necessarily

antisymmetric and is uniquely determined up to an automorphism of sl,,.

Finally, let us observe that our r(¢) and Ax(q) for which »" will be a constant admit the

interesting decompositions

r=7—01,®A,  A,=A,+QA, (2.45)
where
./4: Z (F)\L*AmHl—i_w)\l*)\mE)\l*)\m)' (246)
I,m (I#£m)
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Here r(q), Ay are given by Theorem 2.3 together with (2.41]). In the rest of the chapter we shall
determine the corresponding constant r-matrices from (2.18). It will be convenient to consider

first the € = 0 special case, for which r, Ay, " become 7, Ay, 7/, respectively.

2.3 Constant r-matrices from gauge transformation

If Ay, is given so that (B.21]) holds then the gauge transformation g(¢q) can be determined from
the differential equation in (E.19). By taking A and r(q) from Theorem 2.3 with (.41]), this
g will transform the dynamical r-matrix r(q) into an antisymmetric constant (R.1§). Here we
shall determine g(q) and 7’ explicitly. For an antisymmetric constant ' the (modified) classical
Yang-Baxter equation is a sufficient condition for the Jacobi identity {{L}, L}, Ly} +cycl. = 0,

which will be seen to hold for the r-matrices found below.

2.3.1 The case of 2 =0

Now we calculate the gauge transformation and the resulting constant r-matrix in the special
case of Theorem 2.3 for which 2 = 0 and (R.4]) hold. In agreement with (R.45), the various

quantities will carry a tilde in this case. We shall use the notation
Iy ={1,...,n}\ {k}, Vk=1,...,n, (2.47)
and write the elements of gl,, as matrices. Then 7(q) and Ay (q) take the following form:

r=- Z (Fuewn ® ew + wrer ® ex) , Ay = Z (wrier + Firen) - (2.48)

1<k#1<n lerp

Let us start by defining the matrix function ¢ of q as follows: ¢, :=1forany k =1,...,n

and
ik 1= D <H E) Vk, 1<j<n-1, (2.49)
pcI leP
|Pl=n—j
where |P| denotes the number of the elements of P. Moreover, let x be the n X n matrix

function of ¢ given by
1
xXir =0k || o (2.50)

lely
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These formulas yield invertible matrices on the admissible domain of ¢, where v(q) is finite.
This is obvious for the diagonal matrix y. By using the identity

S (=F) ey =[] F - F). (2.51)

=1 TEl}

we can also find the inverse of ¢ explicitly

(9071)% - (_Fj)kil H ( B ) (2.52)

lern b - I
J

Proposition 2.4 A gauge transformation g(q) € GL, that satisfies
Okg(a) = —g(a)Ar(q) (2.53)

with Ay, in (2.48) is given by §(q) = o(¢)x(q), where ¢ and x are defined by (2.49) and [2.54).

Proof. The componentwise form of (2.53) with A in (.48) reads

6k§lk =0, Vl,k < {1,...,n}, (254)

OrGij = —9ij Fjk — Ginwr;, Vi,j,ke{l,....,n}, j#Ek (2.55)

We notice that the matrix

gila) =] _t i,j €{1,...,n}, (2.56)

lelr w(g +¢;)

where the {¢;}7_, are pairwise distinct constants, yields a solution of these equations. Indeed,
(B-54) holds obviously, while (2.57) is checked with the aid of the identity (B.I0). Using (2.10)
again, we can rewrite the matrix §(q) defined by (2.56) in the product form

9(q) = Co(a)x(q), (2.57)

where C is the invertible constant matrix given by

1

Cia‘:W

(Fle:)) ™. (2.58)

Since equation (B.53) determines ¢ up to multiplication by a constant matrix form the left, the

required statement follows. Q.FE.D.
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We can now calculate the gauge transformed r-matrix from (B.1§). The result turns out to

be an antisymmetric, constant solution of the (modified) classical Yang-Baxter equation,
19 Th5] + [0y T3] + [15,755] = —BF, (2.59)

where B appears in (2.14) and F € (g1,,)*" is given by

F = Z Fiimeii @ e @ eps With e, ex] Z FiikCrs- (2.60)

,7,k,l,r,s=1 r,s=1

Proposition 2.5 The gauge transform of 7(q) in (2.48) by §(q) in Proposition 2.4 is given by

7:, = Z (Beab A €ed — 6a+1,b A ec—l—l,d) s (261)
(a,b,c,d)eS

S={(a,b,c,d) eN*|a+c+1=b+d, 1<b<a<n, b<c<n, 1<d<n}.

This formula defines an antisymmetric solution of ([2.59).

Proof. The first statement is verified by a direct calculation, which is described in appendix
C. The fact that 7 solves (R.59) can also be checked directly. Alternatively, it follows from
the identification of 7 in terms of certain well-known solutions of (£.59), which is presented in
section 2.4. Q.E.D.

It is clear from (R.59) that the two terms in (R.61]) must separately satisfy the classical

Yang-Baxter equation,
[b12, b1s] + [b12, bas] + [b13, bas] = 0. (2.62)

In fact, this holds since the first term

bgln = Z Cab A Ced (263)
(a,b,c,d)eS

is nothing but the classical r-matrix associated with the Frobenius subalgebra of gl,, spanned by

the matrices with vanishing last row, which is described as an example in [45]. More explicitly,

it reads as
n—1 n—k j—i—1
gln E E €jj A Cn—kn+l—k + E E Cn+l—i—mn+1—j A En+m—jn+l—i- (264)
k=1 j=1 1<i<j<n m=1

20



CHAPTER 2. DEGENERATE CALOGERO-MOSER MODELS

The second term is a transform of the first one according to

Z €at1p N €cy1a=—(0 @ 0)by,, (2.65)
(a,b,c,d)€S

where o : gl,, — g¢l,, is the inner automorphism
T €ij b Cptimintlj- (2.66)
Finally, we note for later purpose that
7 = Bbg, + (0 ® 0)bg, =70y + X A1y, (2.67)

where 7, € sl,, A sl, and

—_

3

B n—1
X =- (n = F)ekpp = — > kekp (2.68)

1
n
1 k=1

T

- : : iy
Of course, 7, satisfies the same equation (.59) as .

2.3.2 The case of an arbitrary (2

Now we tackle the general case by making use of the decompositions of r(¢q) and Ay in (B.45).

It is natural to look for g(q) as a product
9(q) = h(q)g(a), (2.69)
where §(q) is given in Proposition 2.4. Then the equation dyg = —(Aj, + Q.A)g reduces to
Oh = —hAQ with A :=gAj", (2.70)

where A is given in (B.46). By using also the decomposition of r(g) in (2.45) we obtain from

(R-18) that
' = (hla) @ h(@) (7 + QA(g) A 1) (ha) @ h(g)) ™", (2.71)

where 7 is given by (B.61]). The fact that 7" and 7 are both constant permits us to prove the

following result without further explicit calculation.

Theorem 2.6 With the above notations and ¥, X defined in (2.61), (2.67), we have
h(q) = goexp (—XnQ Z %’) ; (2.72)
i=1

21



CHAPTER 2. DEGENERATE CALOGERO-MOSER MODELS

where gy € GL,, is an arbitrary constant, and
' = (90 ® go) (P, + (nQ+1X A 1L,) (90 ® go) " (2.73)

is the most general constant r-matrixz resulting from gauge transformation.

Proof. By substituting (2.67), we can rewrite (2.71)) as the sum ' = 7

sly,

+ 7l with

ra, = (h(q) ® h(q))7y, (h(q) ® h(q)) ™ (2.74)

and
e = (M@(©QA() + X0 (@) A L (2.75)

Since 1’ is constant, these two terms must be constant separately. Recall now that fl(q) is
independent of Q by its definition (R.70) and that for Q@ = —%1 we must have v’ € sl, A sl,
(2.43). This implies that (X — 1A(q)) must vanish, whereby

A=nX. (2.76)

Hence we obtain (2.72) from the differential equation in (2.7()). But then the fact that 7, is

constant shows that the relation
X®1l,+1,®X,7, ] =0, (2.77)
which is equivalent to
. = (90 ® 90)7%, (90 @ go) (2.78)

must be valid. By substituting these results back into (B.71) we arrive at (2.73). Q.E.D.
Incidentally, we have also verified by explicit calculation that (B.76) and (R.77) are indeed

satisfied, which represents a reassuring check on the foregoing considerations in the work.

2.4 Identification of the constant r-matrices

The constant r-matrix (.73) is a solution of (R.59). For the rational Calogero-Moser model,
B = 0, this is the classical Yang—Baxter equation. In this case the identification of the -
matrix in terms of a Frobenius subalgebra of gl, has already been mentioned (B.67). In the

hyperbolic/trigonometric cases (.59) is the modified classical Yang-Baxter equation, whose
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antisymmetric solutions have been classified by Belavin and Drinfeld [45] for the complex simple

Lie algebras. A well-known solution for the Lie algebra sl,,, with the normalization

A

(P12, p13] + [p12, p2s] + [p13, p23] = —F, (2.79)

is the so-called Cremmer—Gervais classical r-matrix, which we quote from [46] as

j—i—1

1 ..
reg = Z 61'3' A eji + 2 Z Z ez-,j_m A ej,7;+m + E Z (n + 2(2 — j))@m N 6]']'. (280)

1<i<j<n 1<i<j<n m=1 1<i<j<n
Note that rog € sl A sl, and F () belongs to (sl,)*". Below we show that for B # 0 the
sly,-part of the constant Calogero—Moser r-matrix (R.73) is equivalent to r¢g.
We shall need the following properties of r¢g. As in [46], first introduce Jy, J+ € s, by

n n—1

1
J() = 5 ;(n +1-— 2k>€kk7 J_|_ = ;(TL - k)ek,k_i_l, J_=o0 J+ Z k€k+1 k- 2 81)

They generate the principal sly subalgebra of si,,
[Jo, J+| = £J4, [, J_] = 2J. (2.82)

Then define the elements bgG = q:%[Ji ®1,+1,® Jy,rcg] € sl A sl,. Explicitly,

Jj—i—1

k
k
bCG = E dk AN Ck k+1 + E E 6” m-+1 YA\ ej itms dk = E e]J — gln (283)
Jj=1

1<i<j<n m=1

On account of (0 ® o)reg = —reg, with o defined in (R.66), bor = (0 ® 0)bf. It has been
pointed out in [46] that the subspace of sl, A sl, spanned by rcg and béG is an irreducible

representation of the principal sl, subalgebra. In fact, for the operators
jO,:I:(Y) = {JO,:N: ®1,+1,® JO,:|:7 Y] VY € gln ® glm (284)

one has the relations:

bJ(SG bgG bJ(SG 0 b&; —Toa
boa —boe boa rca boa 0
(2.85)

It follows from these relations that b%,, satisfy the classical Yang-Baxter equation [46], and the

identification of bgG in terms of Frobenius subalgebras of sl,, is also described in this reference.
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Now we are prepared to establish the connection between rog and the r-matrix ' (B.73).

The key observation is the following identity:
—(T®T)r, =bls+ Bbog, (2.86)

where T : gl, — gl, denotes matrix transposition. This can be checked directly from the
formulas (2.67), (2.64), (2.83). It permits us to transform 7, into a multiple of r¢¢ in a simple

manner. To treat the hyperbolic/trigonometric cases together, we introduce the parameter

h boli
o { a, yperbolic case, (2.87)

v—1la, trigonometric case,

whose square B = (a’)? appears in (2.59). By using (R.89) it is not difficult to verify that

(s @u_uy) (TOTH, ) (u—uy @u_uy)™' =d'reg (2.88)

a 1
U_ = exp §J_ , Uy 1= exp —;JJF : (2.89)

According to (B.8§) the si,-part of r’ is equivalent to a'rcg under a Lie algebra automorphism.

In the end, notice from (P.6§) and (B.81) that

with

1
X =—=(JL +BJL). (2.90)
n
This allows us to present the r-matrix associated with

L'(q,p) = 90h(0)3(q)L(q, p)(90h(0)3(q)) " (2.91)

in a ‘standard form’. Here h(q) and §(q) are the same as in Theorem 6, and our final result is

formulated as follows.

Proposition 2.7 Consider the hyperbolic/trigonometric Calogero—Moser models. If in Theo-

rem 2.6 the constant gy is chosen to be

! 1
go = exp (—%JT) exp (;JI) , (2.92)
then the r-matriz (2.73) becomes

1
r'=ad(T®T)(rcg+2(Q+ H)JO A1,). (2.93)
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Proof. By means of the s, algebra (2.89) and (2.90) it is easy to check that goX gy = 2= J7"
The statement is obtained by combining this with (2.8§8). Q.E.D.

This proposition describes the precise relationship between the most general constant -
matrices of the hyperbolic/trigonometric Calogero-Moser models and the standard Cremmer—

Gervais classical r-matrices.

The outcome of our direct analysis of the degenerate Calogero-Moser models is consistent
with the previous results [I0, 44, 42]. In addition to the advantage that our analysis is ele-
mentary, we also clarify the extent to which the constant r-matrix is unique in the degenerate
cases. In principle, this uniqueness question cannot be answered by studying the limits of the
elliptic case, even though in the final analysis it follows that all our constant r-matrices can be

regarded as various degenerations (see also [47]) of Belavin’s elliptic r-matrix.

25



Chapter 3
Canonical dynamical r-matrices

The present chapter contains a detailed study of a particular dynamical r-matrix, which is an
important special case of the classical dynamical r-matrices introduced in [T5]. Let us recall
that Etingof-Varchenko type dynamical r-matrices [I5] are associated with any subalgebra H
of any Lie algebra G (see section 1.2). In most applications G is a simple Lie algebra and H
is (a subalgebra of) a Cartan subalgebra. Another distinguished special case is is obtained by
taking H := G. We consider this latter case, and allow G to be any self-dual Lie algebra for
which G* can be identified with G by means of an invariant scalar product (, ). We here study

the dynamical r-matrix given by the formula

riw e r(w) = (T, fadw)Tp)T7 @ TF, wedg, (3.1)

where G C G is an open subset, {7;} and {T*} denote dual bases of G, (T};, T*) = 6%, and f is

the complex analytic function defined by

1 z 1 _—
f(z):= 3 coth§ -2 z e C\2mZ". (3.2)

It is known that this r-matrix is a solution of the mCDYBE ([[.23) for H = G ~ G* with
1 .
p=—1HTeTen, [T,T]=f0 (3:3)

If G is a simple Lie algebra, then the mCDYBE for r in (B.)) follows from a general result
(Theorem 3.14) in [1H]. Remarkably, this r-matrix came to light naturally in two different
applications, namely in the context of equivariant-cohomology [[2] and in the description of
a Poisson structure on the chiral WZNW phase space compatible with classical G-symmetry

[T3]. A further reason for which the r-matrix in (B.1]) is important is that it can be reduced to
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certain self-dual subalgebras of G, and thereby serves as a common ‘source’ for a large family

of dynamical r-matrices [A8]. We call it the canonical r-matrix of the self-dual Lie algebra G.

The authors of [I2] assumed G to be compact, while in [I3] G was taken to be a simple Lie
algebra. In these papers the mCDYBE for the canonical r-matrix was proved, independently,
using the additional assumption that w is near to zero, so that f(adw) is given with the aid of
the power series expansion of f(z) around z = 0. Though this is not obvious, the proofs found
in [I2, T3] (see also [49, b]) can in fact be adapted to cover the case of a general self-dual Lie
algebra as well. In this case, a different proof of the mCDYBE appeared in [61]. This proof is
indirect and uses the restriction of w to a neighbourhood of the origin. The maximal domain of
definition of f(adw) contains all w for which the eigenvalues of adw lie in C \ 27iZ*. Although
the above-mentioned local proofs and the analyticity of r(w) together imply the mCDYBE on

this domain, it could be enlightening to have an alternative direct proof, too.

After this introduction, the chapter consists of 2 sections. The proof of the mCDYBE is
described in section 3.1. It relies on some technical material collected in appendix D, E, and
F. Appendix D is a recall of relevant basics of the functional calculus from [62]. Section 3.2 is
devoted to a discussion of consequences of the proof, including the above-mentioned uniqueness

result for the function f, and some comments.

3.1 Proof of the mCDYBE for the canonical r-matrix

Let G be a finite-dimensional complex Lie algebra equipped with an invariant, symmetric,
nondegenerate bilinear form (, ). For the structure of such Lie algebras, see e.g. [63]. We call
these Lie algebras self-dual, since we identify G with G* by means of the ‘scalar product’ (, ).
Defining the transpose AT of an operator A € End (G) by (ATX,Y) = (X, AY) (VX,Y € G),
the invariance property of ( , ) means that (adw)” = —adw (Vw € G), where (adw)(X) = [w, X].

Consider a map r : G — G® G, where G C G is a nonempty open subset. Then there exists
a unique map R: G — End(G) for which

r(w) = (T}, Rw) )T @ TF, Vw € G, (3.4)

where {T};} and {T"} denote dual bases of G. The directional derivatives of R are given by

(VsR) (w) = % R(w+tS), V¥SeG wed, (3.5)

t=0
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and the ‘gradient’ of R is defined by

(X,(VR) (w)Y) =T (X, (V,R) (w)Y), VX,YeEG weQ. (3.6)

If r is antisymmetric, i.e., RT (w) = —R(w), then the mCDYBE ([.23) for r with ¢ in (B.3)
is in fact equivalent to the following equation for R:

! (X, Y]+ [R(w) X, R(w)Y] - R(w) ([R(w) X, Y]+ [X,R(w)Y])

4
+(X,(VR) (W) Y) + (VyR) (W) X — (VxR) (W)Y =0, VX, YeEG, wegG. (3.7
The G-equivariance of the map r : G — G® G can be expressed as

(ViswR)(w) = [adS, R(w)] VS e€G, weg. (3.8)

After these remarks, we are ready to study the canonical r-matrix. From now on we use
G:={weG|o(adw) N2mZ* =0}, (3.9)

which is a nonempty open subset in G. Here and below ¢ (adw) denotes the spectrum of adw
(Vw € G), and sometimes we use the notation w := adw for brevity. With the aid of the familiar
holomorphic functional calculus (see appendix D), we can define an operator valued dynamical
r-matrix R: G — End (G) by

1
omi

Wi R(w) = f (adw) = /C de F(€)(ET — adw), (3.10)

where f is given in (B.2). The curve C encircles each eigenvalue of adw and [ is the identity

operator on G. Now our main theorem can be formulated as follows.

Theorem 3.1 The mapping (13.10) with f in (5.3) defines an antisymmetric r-matriz which
satisfies the equivariance condition (13.§) and the mCDYBE given by (3.7).

The antisymmetry of the r-matrix follows from (B.10) by using that f is an odd function, and
the equivariance condition (B.§) is also an immediate consequence of (B.10) (cf. (D.3)). Before

verifying (B.7), we gather some useful information and lemmas that make the calculations easier.

Let w be an arbitrary fixed element of G. For every A\ € C, let by := adw — A\ =@ — A\ €
End (G). Thanks to the derivation property of adw, the by’s enjoy the identities

na X Y=Y < " ) [B2X,057Y], VX,Y €G, Va,BeC. (3.11)

=0 \J
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By means of the G = ®)c,(@)Na Jordan decomposition, where Ny = Ker <bK(’\)> (see appendix
D), the r-matrix (B.10) can be written as
v(A)—1

R (w) P>

Ao (@)

f(k

b’“EA (3.12)

We can regard this equation as the application of (D.4) to the operator adw. Here E) € End(G)
means the projection corresponding to the subspace Ny. Note also that [Ny, N,] C Ny, is
implied by (B.IT)), with N, = {0} for any u ¢ o(w).

The mCDYBE (B.7) is linear in X and Y. Therefore it is enough to prove this equation
when X € N, Y € N, are arbitrary elements of the subspaces associated with the eigenvalues
A, p € o (w). So, from now on let A, 1 be arbitrary, fixed eigenvalues of @ and X € Ny, Y € N,

arbitrary, but fixed vectors. Applying the r-matrix (B.12) on these vectors, we obtain
v(A)—1

(k)
R@X = f@)X= Y f k!o\)b’;X,
YOS FO ()
RwY = f@Y = 7 bLY. (3.13)

=0

In the subsequent four lemmas we calculate the various terms of the mCDYBE (B.1) in
a form that will prove convenient for verifying this equation. In all expressions containing

(b5 X, b!,Y] it is understood that the indices k,1 vary as in (B.13).

Lemma 3.2 If \,p € o(w), X € N\, Y € N, then

i[X’ Yl = Z(a oW ag:;ﬂl 4 [bk)zi!zl Y]’ (3.14)
J@X IOy = 2 @ 3y D] (3.15
@YY = X i YAC1 LAY
CLYERED TN R A YA e

Proof. First, identity (F.3) from appendix F leads immediately to (B.14) as
411 X,Y] = i [BX, 0] = ; 5k,161,0 [b‘i)li a!lb!LY} _ ; 83’:;; l% [b’i?]i ' ZLY} . (318)
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Second, with the aid of (B.I3) and ([F.4), we easily obtain (B.15)

F@XF@Y] = S P00 W

k.l

B , okt [b5X, 0L Y]
= 2 A arag! @7 O = (3.19)
Third, the calculation of
®) (A
@@ XY= @) [Z o xy (3.20)
p !
goes as follows. Since [Z f” Apk X, Y} € Ny, (B.13) yields
®) (N FO (\
FEU@xyY = S B, Y]
SO0 O At )~ [ ix
B ; Kl ]Zo j AxyY] B2y
where we used (B.11)). Introducing a new variable s := k + [ for the summation, we have
— - A)f(l) ()‘+M) s—j j
f@)[f(@)X,Y] = Z;;( ) (s Tl (557X, 6] (3.22)
NS [T SO [N
i Z%%( J ) L+ ) s =g =) XY
>l (g S

Using the Leibniz rule and introducing new summation variables as [ := j, k := s— 7, we obtain
s—j

F@[f@X,Y] = ZZ S_j,dgw

s j= 0
L

= Jck
k,l d§

By ([F.5), this gives (B.16). Finally, (B.17) is trivial consequence of (B.16). @Q.FE.D.

FOE+p) f(©) [ X, b)Y

E=X

VX, WY
FOE+m) f(©) % (3.23)
£=X
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Lemma 3.3 If\,p €0 (w), X € N\, Y € N,, then

_ o fla) 4 (0) (XY
> o zl: (ayﬁl)gr%)\,u) 80/“851 o+ ﬁ A . (324)

(X, (VR) (w)Y

Proof. We obtain directly from the definitions (B.3), (B.6), (B.10) (see also (D.3)) that
(6 TR) @)Y = 5 [ 6O (Xt @) T3 V), (3.25)

where pe(@) = (61 —@)~'. By using that pe (@)" = —p_¢ (@) and the invariance of (, ), this

expression is easily converted into

(X(VR)@)Y) = 5= [ 4O @) X.pe @) V1. (326)

We can apply the functional calculus to the holomorphic function pe : (C\ {{}) — C defined
by pe:z— (§ — z)_l. Thus we have

*) (y
@X =) p‘jd( )b’;X, pe (@)Y =) e l!(“) bLY, (3.27)

similarly to () Since pﬁ) (A) =kl (=& — \)7FFD = (1) pe (—A), this leads to
k—i—l ka7 bl Y
(X, (VR) (@)Y) = ( o / def () pt” (=) o (u)) % (3.28)

Now our task is to determine these integrals. Obviously, two different cases can appear. When

—\ = u, the integrands have poles only at the point p. Alternatively, when —\ # u, the
integrands have poles at the point —\ and at the point u.

The A+ p1 =0 case. In this case pék) (—A) pé (1) = KM (E = p)"* D7 Thanks to Cauchy’s

theorem, the integrals can be written as

1)+ k+1 L1
( 2731 /dgf <€> ( A)pg) () = Qm / dg (k+l+1)+ -
CCEDMRI ey | a’f“ f( )+f(6)
BRCENES)) fEHED () = _(aﬁl)lgbw) L A (3.29)

where we used the identity (F.§). Thus (B.24) is valid in this case.
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The A+ # 0 case. By C,, we denote a sufficiently small circle around the eigenvalue « € o (@),

which encircles this point in the positive sense. Using Cauchy’s theorem in (B.2§), we can write

S [ A @ a3 6 0 =

271

—(—1)’@“{% [ aer @ 0o w0+ 5 [ dsf@)pg”(u)pg’“)(—»}

k41 dl
B (_1> ’ {dél
E=p

- (-1 {Z (-1 ( l ) £ 0 457 () + 3 (1) ( . ) £O (=) it <—A>}

a

a=0 b=0
!
l F (1)
= — (=) k+1—a)(-1)°
( ) ; ( a > ( ) ( ) ()\+M)k+l+lfa
k
k RO
— (1) k+1—b)(=1)" . 3.30)
-1 Z(b)< ) (
Comparing this equation with (F.7), we see that when A + p # 0
(- / (k) 0 o+ f () + f(B)
d —A =—— — 31
i s EF () pe (=) pg” (1) 9o o7 P (3.31)
(a,8)=(A,p)
Thus the proof of the lemma is complete. Q.E.D.
Lemma 3.4 If\,p€o0(w), X € Ny, Y € N,, then
O flatB) = f(8) [BXHY]
R Y = li £ - 3.32
(VxR) (w) ;( ,5)13%,\,“) dakoa «Q k! ( )
Proof. As a consequence of (D.3), the left hand side of (B.32) can be written as
1 _ -
(VxR) @)Y = 5 [ A6 (9 pc (@) [X.pe @) V1. (33
The application of the functional calculus (see also (B.17) and ([F.6)) gives
- - d! WX, bY
pe (@) [(Xope @) Y] =2 a0 pe (A1) pe () % (3.34)
7 - 1!
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Therefore,

bEX, B, Y]

(VxR) ()Y = Z{ ( )27” / A (€ “““‘”(Aw)pé”(u)}“#. (3.35)

When A = 0, the integrands have poles only at the point p. If A # 0, then the integrands have
poles at the points A + p and p.

The A =0 case. In this case pgﬁl*j) (A+p) péj) (1) = (k+1— §)51 (€ — p)”*HD7 Thys

( >2m/ def (&) p™ ™ (A ) pf (1) =

l l .
_ Z l k iy _]) f(k—i—l—l—l) (U) k'l'f (k+1+1) Z
=\ J (k+1+1) k;+l+1 k+l—l

1L FOHD () ( k+1+1 > FUHED (1))

j=0

_ oM fla+B8)—f(B)
= i) ok o ) (3.36)

where we used the combinatorial identity (E.J) and (F.14). So in this case (B.39) holds.

The A # 0 case. Denote by C,, a sufficiently small circle around « € o (@). Then, by Cauchy’s
theorem, the relevant integrals in (B.39) give

7 L 46F €A O 1) =

. . 1 s
- / WSO O el 0+ g [ aer @) A ok
PO 0+ I e )
dgg 13 H d§k+l—j Pe (1
&=p E=M
I ; (a)
:qu“3“22(2>(h+bwm%m%%
a=0
e A B (k+l—j=b) ()
+ 3 ( +b ”)(j+by@4ff Aﬂ£1+“f (3.37)
b=0
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Thus the coefficient of [b5X, 8! Y] /k!l! in (B.35) is equal to the following expression:

! j . (@)
Z( ){ k+la+1z<a>(k:+l )/\{;T(ﬁ)l

\J+b+1 (338)
b=0
Firstly, do the summation of the first part of (B.38):
l j ,
J £ (1)
Part1(k, 1) :Z( ) ’““*”Z(a)(mz—a)m:
Jj=0 a=0
l l—a
(k+1—a)l! @ (u) l—a ;
Dladan a ;
Z al l—a)‘ \et—a+1 (_1) Z j (_1)
a=0 j=0
l
_ priri N (B 1= a)lll £ () a _ ko SO (1)
— (-1 T (~1)" Gma0 = = (D RS (339)
a=0

Secondly, do the summation of the second part of (B.3§). Introducing a new variable m := j+b
we obtain

! kHl—j _ i
Part2(k, 1) ::Z ( l. ) Z ( ktl—3 ) G+ ) (=1)" /! ) (A + ) _

b 2\j+b+1
b=0

l . 1! (+=m) . k41—
== (—pm (k+l;l_m)uf AmSJFM) (1) ( m) ( R )
j=0 b=0 )

J k
I VIR R LI
(

(—l)j m kE+1—7
— kE+1—m)! Amtl « j k

k+1

1! (kti—m) : k+1—7
_ Z )m! G él ‘f )\mg\“‘ﬂ) (—1Y ( m ) ( T ) (3.40)
m=l+1 +1—=m) =0 J k

1=

M

J

~ |l

By means of the combinatorial identities (E.3), (E.I0), we can simplify this formula. In fact,
after a straightforward further computation, we get

k
B (A4 )
m+1
Part2(k,1) = — ) (- T S UEEa— (3.41)
m=0
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Now collecting equations (B.41), (B:39), (B-38), (B-39), in the A # 0 case we can write

k l
(VxR) (W)Y = Z{Partl(k;,l)+Part2(k,l)}%
k1l
rH - bEX BLY
. f(a+p) f(ﬂ)bwu | (3.42)
ks 00 & (@.8)=(A\n) “ o

since equation ([F.13) is valid. Hence Lemma 3.4 is proved. Q.E.D.

Lemma 3.5 If\,p €0 (w), X € N), Y € N,, then

Bt _ WX DY
(VYRNWLX:?_%;mé'Auaw@@fol+€; f&w[kkuf L em)

Proof. This is a trivial consequence of the preceding lemma.

Now we are in the position to verify the mCDYBE (B.7) for the canonical r-matrix (B.I0).

Proof of Theorem 3.1. Let A\, p € 0 (w) and X € N,,Y € N,. By applying the four lemmas,
the left hand side of (B.7) can be written as

E
><
T
><
5

hXH+WMXR@WMR@
+(X (VR)() +(VYR (W) X — ( )(W)Y

=3 A o (3@ 0) = (a5 () + (9)
fl)+f8) <a+5> fla) fla+p)—f(B)N [BX.0Y
- a+f o )[Ak!l! L (3:44)

This equals zero since the ‘addition formula’ (F.) is valid for the function f in (B.2). Q.E.D.

3.2 Discussion

We have shown that the canonical r-matrix defined by (B.I0) with f in (B.2) satisfies the
mCDYBE (B.7). It is worth noticing that our proof implies a uniqueness result as well. Sup-
pose that we wish to define an antisymmetric solution of the mCDYBE (B.7) by the functional
calculus, i.e., by using some holomorphic complex function in formula (B.10) now considered as

an ansatz. For this formula to be well defined, the domain of holomorphicity of the function f
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must contain zero, since this is always an eigenvalue of adw. Moreover, for R to be antisym-
metric, which is in turn necessary for the equivalence of (B.1) to ([.23) with ¢ in (B.3), f must
be an odd function. Under these assumptions, the mCDYBE (B.7) for the ansatz (B.I() is in
fact equivalent to the functional equation ([F-) for the unknown function f. Indeed, the whole
calculation described in section 2.1 is valid for such an ansatz up to the equality in (B.44). The
point then is that the functional equation (F.1) has a unique odd solution around the origin.
The proof of this statement is quite easy. By taking the y — 0 limit in ([F.I]) we obtain the
differential equation for f which appears in (F.2). With the initial value f(0) = 0, which is
implied by f being odd, this differential equation has a unique, holomorphic solution around

the origin, namely the function f (z) = 3 coth £ — 1.

So far we assumed the Lie algebra G to be complex, but the mCDYBE can be considered
for a real self-dual Lie algebra, too. The real case arises naturally in applications [I2, [3]. Let
us now suppose that G is the complexification of a real self-dual Lie algebra, say G,. Then it
is not difficult to see that R(w) given by (B.I() maps G, to G, if w € G,. This is obviously the
case if w is near to zero, where one can apply the power series expansion of f around zero to
define R(w). More generally, if w € G, then one may take the curve C' in (B.10) to be invariant
under complex conjugation as the eigenvalues of adw occur in conjugate pairs. By using this
and f(2) = f(z), complex conjugation of (B.10) shows that R(w)X € G, if w € G, and X € G,.

Thus the canonical r-matrix is a solution of the mCDYBE (B.7) in the real case as well.

Our use of the functional calculus, which is applicable to Banach algebras in general [62], in
the definition (B.I() might serve as a starting point for future work towards generalizations of
this canonical r-matrix to certain infinite-dimensional self-dual Banach Lie algebras. However,
this represents a nontrivial problem since the above-presented proof of Theorem 3.1 relies

heavily on the finite-dimensionality of G.
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Chapter 4

Generalizations of Felder’s elliptic

dynamical r-matrices

The classical dynamical Yang—Baxter equation ([.23) introduced in its general form by Etingof
and Varchenko [I5] is a remarkable generalization of the classical Yang-Baxter equation
(CYBE). Currently we are witnessing intense research on the theory and the applications of

the CDYBE to integrable systems [[I6, 37, b4]. For a review, see [22].

The aim of this chapter is to study infinite-dimensional generalizations of a certain class of
finite-dimensional classical dynamical r-matrices. Next we briefly recall these finite-dimensional
r-matrices, which appear naturally in the chiral WZNW model (see e.g. [b0] and references

therein).

Let A be a finite-dimensional complex Lie algebra equipped with a nondegenerate, symmet-
ric, invariant bilinear form (, ). Such a Lie algebra is called self-dual [63]. Consider a self-dual
subalgebra L C A, on which ( , ) remains nondegenerate. Introduce the complex analytic

functions f and F' by
1 z 1 1 z
f:z»—>§coth§—;, F:z»—>§coth§. (4.1)
Suppose that K is a nonempty open subset of K on which the operator valued function R :
K — End(A) is defined by

) f(adk) on K .
R(k) :== { Fladr) on k' Vk e K. (4.2)

The decomposition A = K + K+ is induced by ( , ). R(k) is a well defined linear operator on

A if and only if the spectrum of ad k, acting on A, does not intersect 2miZ*, and (ad k) |cr
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is invertible. On K C K subject to these conditions, the following (modified) version of the
CDYBE holds:

1
:_Z[X’Y]’ VXY € A (4.3)
Here the ‘dynamical variable’ x is suppressed for brevity, VX € A is decomposed as X =
XIC + X]Ci, and

(VrR) (k) := %R(H +tT)|¢=0 VI e K, k€K, (4.4)
(X, (VR)(R)Y) =) E'X,(Vi,R)(r)Y), VXY €A, (4.5)

where K; and K* denote dual bases of K, (K;, K7) = §7. R(k) is antisymmetric, (R(k)X,Y) =
—(X, R(r)Y), and is K-equivariant in the sense that

(VirgR) (k) = [ad T, R(k)], VT € K,k e K. (4.6)

These properties of R have been established in this general setting in [b0, 48]. In various special
cases — in particular the case K = A — they were proved earlier in [I5, 12, [[3]; this was the
main topic of Chapter 3. If one introduces r* : K — A ® A by

() = (R)T) @ T + ST, @ T°, (@)

where {T,,} and {T*} are dual bases of A, and uses the identification K ~ K* induced by (, ),
then the above properties of R become the CDYBE for r* with respect to the pair K C A as
defined in [I5] (see also ([[.23)).

It is natural to suspect that whenever (f.2) is a well defined formula, the resulting r-matrix
always satisfies (f.3). For this it is certainly not necessary to assume that A is finite dimensional.
For example, Etingof and Varchenko [T4] verified the CDYBE in the situation for which A is an
affine Lie algebra based on a simple Lie algebra and IC C A is a Cartan subalgebra. Moreover,
by applying evaluation homomorphisms to these r-matrices they recovered Felder’s celebrated
spectral-parameter-dependent elliptic dynamical r-matrices [I6]. Without presenting proofs,
this construction was generalized in [48] to any affine Lie algebra, A(G, 1), defined by adding
the derivation to the central extension of a twisted loop algebra, ¢(G, 1), based on an appropriate
automorphism, u, of a self-dual Lie algebra, G. Namely, such an affine Lie algebra automatically

comes equipped with the integral gradation associated with the powers of the loop parameter,
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and it can be shown that (fl.7) provides a solution of (f.3) if one takes K to be the grade zero
subalgebra in this gradation. In this chapter, this solution will arise as a special case of a general
theorem, which ensures the validity of (£.3) for (.9) under the assumption that I = Ay where
A = ®,czA, is graded by finite-dimensional subspaces and carries an invariant scalar product
that is compatible with the grading in the sense that A, L A,, unless (n +m) = 0. Here Z
is some abelian group, in our examples Z = Z. The precise statement, which is our first main
result, is given by Theorem 4.1 in section 4.1. We shall use this result to obtain dynamical
r-matrices on the twisted loop algebras ¢(G, ;1) with the dynamical variable lying in the fixed
point set Go C G of the automorphism p of G. By means of evaluation homomorphisms,
these r-matrices then yield spectral-parameter-dependent G ® G-valued dynamical r-matrices
generalizing Felder’s elliptic r-matrices. The latter are recovered if G is taken to be a simple
Lie algebra and p a Coxeter automorphism, consistently with the derivation found in [I5].
The existence of the above-mentioned family of elliptic dynamical r-matrices was announced
in [@8]. Our second main result is their derivation presented in section 4.2. See in particular
Proposition 4.2 and Proposition 4.3 in subsection 4.2.3. We shall also find a relationship between
the underlying (G, u) ® €(G, p)-valued r-matrices with dynamical variables in Gy, and certain

G ® G-valued dynamical r-matrices on Gy introduced in [61]. This is contained in appendix H.

4.1 r-matrices on graded, self-dual Lie algebras

In this section we apply formula (f.7) to infinite-dimensional Lie algebras that are decomposed
into finite-dimensional subspaces in such a way that the r-matrix leaves these subspaces in-
variant. The definition of the r-matrix on these subspaces will be given in terms of the well
known holomorphic functional calculus of linear operators [62]. The relevant basics of functional

calculus are contained in appendix D.

We now consider a complex Lie algebra A equipped with a gradation based on some abelian
group Z. We use the additive notation to denote the group operation on Z. The zero as a
number and the unit element of Z are both denoted simply by 0, but this should not lead to

any confusion. We assume that as a linear space
A= @nezAn, 0 <dim(A,) <oo, dim(Ag) # 0, (4.8)
and

(A, Anl C Apin Vm,n € Z. (4.9)
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The elements of A are finite linear combinations of the elements of the homogeneous subspaces,
and we permit the possibility that dim(.A,) = 0 for some n € Z. We further assume that A has
a nondegenerate, symmetric, invariant bilinear form ( , ) : A x A — C, which is compatible

with the gradation in the sense that
A, L A, unless (m+mn)=0. (4.10)

This means that if (m +n) # 0 then (X,Y) =0 for any X € A,,, Y € A,, and the dual space
of A,, can be identified with A_,, by means of the pairing given by (, ). In particular, Ay is a
finite-dimensional self-dual subalgebra of A. Since [Ag, A, C A,, and A, is finite dimensional,
e*d% is a well defined linear operator on A for any x € Ay. The invariance of the bilinear
form, ([X,Y],Z) + (Y,[X, Z]) = 0, VX,Y, Z € A, implies that (e**Y,e**Z) = (Y, Z) for any
Y, Z € Aand k € Ay.

Now we wish to apply formula (£.2) to
K= A, Kt = @nez\{O}An- (4.11)

For any k € K and n € Z, introduce (ad k), := ad k|4, and let ¢ denote the spectrum of
this finite-dimensional linear operator (o7 = ) if dim(.A,) = 0). Our crucial assumption is that

there exists a nonempty, open subset K C K for which
o"N2miZ =0 Yn#0 and ¢°N2mZ* =0 VK, (4.12)

where Z and Z* are the set of all integers, and nonzero integers, respectively. It is clear that
if such a K exists, then there exists also a maximal one. If this assumption is satisfied, then
we can define the map R : K — End(A) by requiring that the homogeneous subspaces A,, be

invariant with respect to R(k) in such a way that Vs € K
R(K)|4, = f((ad K)g), R(K)|a, == F((adk),) Vne Z\{0}. (4.13)

For n € Z for which dim(A,,) # 0, these finite-dimensional linear operators are given similarly
to (D). The assumption (f.12) guarantees that the spectra o” do not intersect the poles of the
corresponding meromorphic functions f and F in ({.1)), whereby R(k) is well defined for x € K.
If dim(A,,) = 0, then R(k)|4, is of course understood to be the zero linear operator. Somewhat
informally, we summarize (f.13) by saying that R(x) equals f(ad x) on K and F(ad k) on K.

Theorem 4.1 Let A be a graded, self-dual, complex Lie algebra satisfying the assumptions
given by @)—) Take K := Ay and suppose the existence a nonempty, open domain K C
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K for which ({{.13) holds. Then the r-matriz R : K — End(A) defined by (.13) satisfies the
CDYBE @) Moreover, R(k) is an antisymmetric operator Vk € K, and the K-equivariance
condition ({f.4) holds.

Proof. Since the CDYBE (f.3) is linear in X,Y € A, it is enough to verify it case by case
for all possible choices of homogeneous elements X and Y. As a preparation, let us write the
function F in (f.1)) as

with Qi(z) =e2 £e 2, (4.14)
and define the linear operators Q+(x) on A by
1 .
Qi(k) =e e with K := sadr Ve e K. (4.15)

Q)+ (k) are well defined operators on A since their restrictions to any A, are obviously well
defined. It follows from the definitions of the domain K and that of R(k) that Q_(k) is an

invertible operator on A,, for any n # 0 and that we have
R(r)Q_(k) = Q_(k)R(k) = %Q+(/{) on A, Vn#D0. (4.16)
We first consider the simplest case,
XeA, YecA, m#0, n#0, (m+n)#0, (4.17)

for which the derivative terms drop out from (f.3). Without loss of generality, we can now

write

X=Q (e, Y =Q (s (4.13)
with some & € A,,, n € A,. If we multiply (f.3) from the left by the invertible operator 4Q _ (k)
on A, 1n, then by using (.16) the required statement becomes

Q- (#)[Q-(r)E Q- (r)n] + Q- (r)[Q+(r)E, @y (k)7]
—Q+ (k) ([Q-(K)E, Q4 (r)n] + [Q1(K)E, Q- (k)n]) = 0. (4.19)

We further spell out this equation by using that e*® are Lie algebra automorphism, and thereby

(E19) is verified in a straightforward manner.

Second, let us consider the case for which
XeAd, YeA, n#0. (4.20)
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Then the derivative term (VxR)(x)(Y) appears in equation (f.3). To calculate this, we need
the holomorphic complex function h given by

z h(z) = - 1. (4.21)

z

We recall (e.g. [b5], page 35) that for a curve t — A(t) of finite-dimensional linear operators
one has the identity

de*4® dA(t)

dt dt -

The right hand side of the above equation is defined by means of the Taylor expansion of h

=+ On(Fadaw) (A1),  A(t) = (4.22)

around 0, and of course
(adaw ) (A1) = [A(1), (ada@ ) (A@®)], €N, (adaw) (A1) = A(1). (4.23)
In our case we consider the curve of linear operators on A, given by
t—adrk +t(ad X). (4.24)
Then (f.29) leads to the formula

S IHER)X, Y], (4.25)

where K = %ad k. From this, by taking the derivative of the identity 2Q _R = @), on A, along
the curve (f.24) at t = 0, we obtain

(VxetS) (V) = +

4Q_(k)(VxR)(R)Y = X[h(—K)X,Y —2R(rk)Y] — e ®[W(K)X,Y 4+ 2R(x)Y]. (4.26)
On the other hand, for (£.20) the CDYBE ([£.3) is equivalent to
4Q-(r)(VxR)(R)Y = Q-(®)[X, Y] +4Q_(r)[R(r) X, R(r)Y]
~2Q. () ([X, R()Y] + [R()X, Y]). (127)

We fix x € K arbitrarily, and write Y = Q_(x)n with some 7 € A,. Then by a straightforward
calculation, using that e** are Lie algebra automorphisms and collecting terms, we obtain that

the required equality of the right hand sides of the last two equations is equivalent to
[(e"h(—K) + e “n(K) —e" —e ™) X,n] =2 [(e “R(r) — e"R(r)) X,n] . (4.28)

Here R(k)X = f(2K)X with (f.2), and the statement follows from the equality of the corre-

sponding complex analytic functions, namely

1—e77 -1 1 1
e 4=t —ef—ef=¢e" (Cothz - —> —é* (Cothz - —> : (4.29)

z z z z
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which is checked in the obvious way.

The third case to deal with is that of
XeA, YeA, n#0, (4.30)

for which the derivative term (X, (VR)(x)Y) occurs in ({.3). At any fixed x € K, we may write

X=Q (R Y =Q (o) (4.31)
with some £ € A_,,, n € A,,. We introduce the holomorphic function
2 g(z2) = c _ze : (4.32)

and define g(K') by the Taylor series of g(z) around z = 0. Then we can calculate that

(X, (VR)(R)Y) = 2o(K)Dn.€]. (1.3
To obtain this, note that
(X, (VR)()Y) = TUX, (V5 R)(x)Y) (4.34)

with dual bases T; and T of Ay, where (V1,R)(k)Y is determined by (£.26). By using these
and the invariance of the scalar product of A, it is not difficult to rewrite (£.34) in the form
(B:33). As for the non-derivative terms in (f.3), with X, Y in ({.31)) we find

1
4
5 (@Q() — 2R(5)Q-(x) [€.1]. (4.35)

It is easy to check that the sum of the right hand sides of (£.33) and (f.35) is zero, which
finishes the verification of the CDYBE (f£.3) in the case (£.30).

[R(k)X,R(r)Y] — R(k) ([X,R(r)Y]+ [R(r)X,Y]) +-[X,Y] =

The remaining case is that of X, Y € Ay. Then the variable  as well as all terms in (£.3) lie
in the subalgebra A, and it is known [I5, 12, 3] that the formula x — f(ad k) (£.2) defines a
solution of the CDYBE on any finite-dimensional self-dual Lie algebra (it was the main object
of Chapter 3). This completes the verification of the CDYBE ([.3).

The antisymmetry of R(k) follows from ([l.13) since ad k is antisymmetric by the invariance
of (, ) and both f and F' are odd functions. Finally, the equivariance property ([.6) is also

easily verified from (f.I3) by using that for any finite-dimensional linear operator given by

(D.T) one has
dH(A(t))

2, = L f G H ) (e — A A0 (T — A) (4.36)

21 T
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along any smooth curve t — A(t) for which A(0) = A. Q.E.D.

We conclude this section by describing the tensorial interpretation of the CDYBE ([.3) for
the r-matrices of Theorem 4.1. For this, consider dual bases T;[n] and T?[n] of A (n € Z,i,j =
1,...,dim(A,)), which satisfy Tj[n] € A, and (Tj[m],T[n]) = 0,n._n07. Then introduce r* :
K— A2 Abyf

dim(Ap)
) 1 )
MOEDIDY ((R(@W) ® T'[-n] + STin] @ T’[—m) . (437)
nez =1
In fact, as a consequence of the properties of R established in Theorem 4.1, r* satisfies the

tensorial version of the CDYBE given by

[ri2(K), ris(K)] + [ria(K), r33(K)] + [ris(k), 735(K)]

HTJO G — TPl + TP G =0, =% (438
where r; := (k, T;[0]). Here the standard notations are used, T3[0]' := T;[0]®@ 1®1, r{, ;== " ®1
etc. The expression on the left hand side of (£.38) belongs to a completion of A® A® A; it has
a unique expansion in the basis T;, [n1] @ T}, [ne] @ T;,[n3] of A® A® A. Similarly to the CYBE,
the CDYBE ([.3§) is compatible with homomorphisms of A. This means that if 7; : A — G
(1 =1,2,3) are (possibly different) homomorphisms of A into (possibly different) Lie algebras
G*, then we can obtain a G! ® G2 ® G3-valued equation from (£.3§) by the obvious application of
the map m ® m ® 73 to all objects on the left hand side of ({£.3§). More precisely, to take into
account the unit element 1, here one uses the extensions of these Lie algebra homomorphisms

to the corresponding universal enveloping algebras.

4.2 Applications to affine Lie algebras

Let G be a finite-dimensional complex, self-dual Lie algebra equipped with an invariant ‘scalar
product’ denoted as B : G x § — C. Suppose that p is a finite order automorphism of
G that preserves the bilinear form B and has nonzero fixed pointsfl. With this data, one may
associate the twisted loop algebra ¢(G, pt) and the affine Lie algebra A(G, 1) obtained by adding

the natural derivation to the central extension of ¢(G, ). We below show that Theorem 4.1

'Here A® A is a completion of the algebraic tensor product containing the elements that are associated with

the linear operators on A.
2The last two properties are automatic if G is simple or p = id, which are included as special cases.
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is directly applicable to A(G, ). Then we explain that the resulting dynamical r-matrices on
A(G, 1) admit a reinterpretation as one-parameter families of r-matrices on ¢(G, 1t). By applying
evaluation homomorphisms to the corresponding ¢(G, 1) ® (G, pv)-valued r-matrices, we finally
derive spectral-parameter-dependent ¢ ® G-valued dynamical r-matrices. These results were

announced in [AR] without presenting proofs, which are provided here.

4.2.1 Application of Theorem 4.1 to A(G, i1)
Any automorphism p of order N, uV = id, gives rise to a decomposition of G as

G = @ace,Ya, £, C{0,1,...,(N—-1)}, (4.39)
with the eigensubspaces

1a2m

o= {8 € G| (&) = exn(—~)¢} # {0} (4.40)

Since we assumed that B(ué, un) = B(&,n) (V&,n € G), G, is perpendicular to G, with respect
to the form B unless a +b = N or a = b = 0. This implies that if a nonzero a belongs to the
index set &, then so does (N — a). We assume that 0 € £,, and thus Gy # {0} is a self-dual
subalgebra of G.

The twisted (or untwisted if we choose p = id) loop algebra ¢(G, 1) is the subalgebra of
G ® C[t,t™!] generated by the elements of the form

"=t with £€€G,, n,=a+mN, melZ, (4.41)
where ¢ is a formal variable. The ‘affine Lie algebra’ A(G, i) is then introduced as
AG, p) :=4(G,pu) @ Cd Ce (4.42)
with the Lie bracket of its generators defined by

(€7, = & 4 nabn,—p, BE ), VE € Gay € Gy, (4.43)

[d, "] = ny&",  [é,d] =[¢,Em] = 0. (4.44)
A(G, 1) is a self-dual Lie algebra as it carries the scalar product ( , ) given by
<€na> 77pb> = 5naﬁpbB(§> 77)? <év d> =1, <d? gna> = <é> gna> = 0. (4'45)
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We obtain a Z-gradation of A(G, u) by the decomposition

where A(G, 11),, is the eigensubspace of ad d with eigenvalue n if n € (,+ NZ), and A(G, ), =

{0} if n ¢ (£, + NZ). We need to introduce these zero subspaces for notational consistency,
since (£, + NZ) is not necessarily a group in general. This is also consistent with the fact
that (L.43) gives zero if (n, +py) ¢ (£, + NZ). The gradation given by (f.4G) clearly satisfies
equations (.§)—(E.1I(0), where now Z := Z. We below regard G, as a subspace of A(G, u) by
identifying € € Gy with £ ® tY € A(G, 1), whereby we can write

A(G, 1)o = Go @ Cd @ Ce. (4.47)

Since we wish to apply Theorem 4.1, we now set A := A(G,pn) and K := A(G, u)o. We

parametrize the general element x € K as
k=w+ kd+ ¢, w € Gy, k,leC. (4.48)

It follows from the above that formula (t.13) provides us with a dynamical r-matrix R : K —
End(A) if we can find a nonempty, open domain X C K whose elements satisfy the conditions
given in (f.13). The point is that we can indeed find such a domain, and actually the maximal

domain has the form
K={rk=w+kd+1¢|l€C, ke (C\Ri), we B}, (4.49)

where By, C Gy is described as follows. Let A, denote an eigenvalue of the operator adwlg,
associated with w € Gy. By definition, the subset B, C Gy consists of those w € Gy whose

eigenvalues satisfy the following conditions:

(Aa +k(a+mN)) ¢ 2miZ YmeZ, Vac&,\{0}, (4.50)
Ao ¢ 2miZ* and (Ao + kmN) & 2miZ NYm € 7. (4.51)

If we note that for ™ in (f.41]) and ~ € K written as in ({.4§) one has
(ad k)(£™) = kne&™ + [w, €]", (4.52)

then the conditions in (f.50) and (f.51]) are recognized to be the translation of the condition in
({.19) to our case. The set K defined by these requirements obviously contains the elements of
the form k = kd+ ¢ for any k € (C\iR), [ € C, and therefore it is nonempty. It is not difficult

to see that £ C K in (f.49) is an open subset, for which one needs k to have a nonzero real

part, and By C Gy is a nonempty open subset as well. For completeness, we present a proof of

these statements in appendix G.
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4.2.2 One-parameter family of r-matrices on ¢(G, )

We now reinterpret the dynamical r-matrices R : K — End(A(G, 1)) constructed in subsection

4.2.1 as a family of r-matrices
Ry : B, — End(¢(G, ), (4.53)

where the parameter k varies in (C \ iR) and the k-dependent domain B, C G, appears in
(.49). For any w € By, the operator Ry(w) is given by

Ri(w)n := f(adw)n, Ri(w)&" == F(kn, + adw)&™™ (4.54)

Vn € Go = £(G, j1)o and VYE™ € £(G, i1),, with n, # 0. In other words, by regarding ¢(G, i) as a
subspace of A(G, 1), we have Ry(w)X = R(x)X for X € £(G, ) and s € K.

It is an easy consequence of Theorem 4.1 that R, satisfies the operator version of the CDYBE

for any fixed k:

[Ri.X, RY| — Ri([X, RY] + [Ri X, Y]) + (X, (VRy)Y)
1
+(Vy, Ri) X — (Vx,Rp)Y = _Z[X’ Y], VXY € UG, p). (4.55)
Here the Lie brackets are evaluated in ¢(G, ), Xy is the grade 0 part of X, and the scalar
product on £(G, ) is given by the restriction of (f.45). This equation is verified by a simplified
version of the calculation done in the proof of Theorem 4.1, the simplification being that ¢ has
now been set to zero. It is also clear that Ry : By — End(¢(G, i) is a Gp-equivariant map in

the natural sense.

For later purpose, we here introduce the shifted r-matrices
1
Rf =R, + 51 (4.56)
where [ is the identity operator on ¢(G, ). By using the scalar product, we associate with
these operator valued maps the corresponding ¢(G, 1) @ £(G, p)-valued maps. These are denoted

respectively as
i B — UG, ) © UG, ). (4.57)

By translating the CDYBE into tensorial terms, (f.53) becomes

(s (@), 715 ()] + [r15 (), 753 ()] + [ (w), 753 (w)]
0 ks O ks O ks
+7}16—%7’§é (w) — 1328—%T]f3 (w) + 7}36—%7’]& (W) =0, s==, (4.58)

where w; := B(w, T};) with a basis T} of Gy.
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4.2.3 Spectral-parameter-dependent r-matrices

The loop algebra ¢(G, 1) admits an ‘evaluation homomorphism’ m, : ¢(G, u) — G for any fixed
v e C*,

T EQT =" V(E®T") € UG, p). (4.59)
It is well known that spectral-parameter-dependent G ® G-valued r-matrices may be obtained
by applying these homomorphisms to ¢(G, 1) ® ¢(G, p)-valued r-matrices. In the context of
dynamical r-matrices, Etingof and Varchenko [[5] used this method to derive Felder’s elliptic
dynamical r-matrices from the basic trigonometric dynamical r-matrices of the (untwisted)
affine Kac-Moody Lie algebras. We here apply the same procedure to the general family
of dynamical r-matrices introduced in eq. (.57). As for the presentation below, we find it
convenient to first provide a self-contained definition of the spectral-parameter-dependent 7-

matrices and show afterwards how they are obtained from the evaluation homomorphisms.

We start by collecting some meromorphic functions and identities that will be useful. Con-

sider the standard theta functionf

0,(z|7) == — ZeXp <7r7j(j + %)QT + 2mi(j + %)(z + %)) . S(r) >0, (4.60)

which is holomorphic on C and has simple zeros at the points of the lattice
Q:=7Z+17. (4.61)
Recall that 64 is odd in z and satisfies
0.(z + 1|7) = —01(2|7), Oi(z +7|7) = —q e ™0, (2|7), q:=e€™". (4.62)

Define now the function

1 01(5% + 2|7)01(0|7)

w, zZ|T) 1= — DL - . 4.63
w2 m) = o e () (469

This function is holomorphic in w and in z at the points
(w,z) € (C\ 2miQ2) x (C\ Q). (4.64)

The following important identity holds:
(w, z) = 1 Z e2mian [1 + coth(E + wiTn) (4.65)
x(w,z) = 3 2 5 T T )

3We have 61 (z|7) = 91 (rz|7) with ¥; in [56].
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on the domain
D :={(w,2)|w € (C\ 2mi2), —(1) < () <0}. (4.66)
All terms in the sum are holomorphic on D, the convergence is absolute at any fixed (w, z) € D,

and is uniform on compact subsets of D. The verification of (f.67) is a routine matter, example

13 on page 489 of [56] contains a closely related statement.

We also need the functions

27miaz

da
Xa(w, z|T) ;=€ N (X(w + 27m'%7‘,z|7‘) - ’O> , (4.67)

w

where a € {0,1,..., (N — 1)} with some positive integer N. The function y,(w, z|7) is holo-

morphic in w and in z if (w, z) belongs to the domain

(C\ 27i0%) X (C\ Q) where Q= (Q - %7) \ {0}. (4.68)
By using the notation
1 w 5%0
fo(w) = 5 [1 + coth 5] ot (4.69)

we have the identity

Tiaz 1 ;
Xo(w, z|7) = e (fa(w + 2m’%7) + 3 Z e?mien [1 + coth(% + Wi%T + WiTn)}) (4.70)

nez*
on the domain

D, = {(w,2)|w e (C\ 2mif,), —(7) < (z) <0} (4.71)

for any a € {0,1,...,(N — 1)}. All terms in the sum are holomorphic on D,, the convergence

is absolute at any (w, z) € D,, and is uniform on compact subsets of D,.

Let now p be an automorphism of G of order N as considered previously and fix 7 with
J(r) > 0. For any w € Gy and a € &,, let o((adw),) be the spectrum of the linear operator
(adw), := adwlg,. Define B™ C Gy by

B":={weGylo((adw),) N 21, =0 Vaec&,}. (4.72)
It is easy to verify that
. kN
BT =8B, if 7=—, (4.73)
i

where By, C Gy appears in ({.49). In particular, B7 is an open subset of Gy that contains the

origin. By using the above notations, we now define the function R, as
R, :B" x (C\ Q) — End(G), R, (w, 2)|g, = xa((adw)g, 2|T). (4.74)
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It follows from the properties of the holomorphic functional calculus on Banach algebras [67]
that R, is well defined and is holomorphic in its variables. Next we introduce also the holo-

morphic function
rTBTx (C\Q) -GG, 1 (w,2):=B(Ty, R (w,2)Ts)T*@T", (4.75)

where T,,, T? are dual bases of G. We now state one of our main results.

Proposition 4.2 The function r™ introduced above satisfies the spectral-parameter-dependent
versiton of the CDYBE:

[r1a(w, 212), T15(w, 213)] + [rTa(w, 212), 733w, 223)] + [rT3(w, 213), T93(w, 223)]

0 . 0 . 0 -
+lea—wj7°23(w> 223) — 7}28_%7“13(017 z13) + Tg?’%rm(% z12) = 0, (4.76)

j
where 253 = (20— 23) € (C\Q), w € BT, and w; := B(w,T;) with a basis T; of Gy. Furthermore,
r™ has the properties
1
Res,—or" (w, z) = TTO‘ ® Ty, (r"(w, 2))" + 77 (w, —2) =0, (4.77)
i
where (1" (w, 2))" 1= B(Ty, Ro(w, 2)T3)T? @ T with dual bases Ty, T° of G, and
d
%TT(eadT’”(w), Dm0 =T R1+1T,r (w, 2)] VT € G. (4.78)
The statements in (f.77) follow immediately from the definition (£.74), (£.75) and the
properties of the meromorphic functions x, in (f.67). For the first equality in (.77), one can
check that

Res,—oxa(w, 2|T) = 0<a<AN. (4.79)

2mi’
For the second statement, one uses the invariance of the scalar product B on G and

XO(_w’ ZlT) - _XO(w7 _Z|T)7 Xa(_w7 ZlT) - _XN—a(w7 _ZlT)7 0<a<N. (480)

The Gop-equivariance property (£.78) is obvious from the definition of 7. As for the CDYBE
(B.79), it is consequence of the following result.

Proposition 4.3 The dynamical r-matriz r™ given by ({.74), ([{.73) results by evaluation ho-
momorphism from the dynamical r-matriz r*% in ([.57). More precisely, if we set
kN

=— and — =¢e
g 211 Uy <

”s
ke ?\;2) with  — (1) < 3(z) <0, (4.81)

then the evaluation homomorphism (f.59) yields the relation

(T, @ Ty ) (PP (w)) = 1" (w, 2) Yw e B, =B". (4.82)
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Proof. The left hand side of ({.82) gives only a formal infinite sum in general. Below we first

calculate this sum, and then notice that it converges to the function on the right hand side of

(F:82) if the variables satisfy (£.81).

Let T, ; and T? (j = 1,...,dim(G,)) denote bases of G, (a € &,) subject to the relations
(To ;. Tp) = 0, (Toj, Ti_o) = 0., Va €&, \{0}. (4.83)
Introduce corresponding bases of (G, u):
Ty ilne] == To; @t", T/ n.) =T @t"™, VYa €&, n, € (a+ NZ). (4.84)

By definition, we then have

dim(Go)

= Y > (Tusl—nol. R (@) Toalnol) T [ne] ® Th[—no]
3l=1 moeNZ
dim(Gg)

+ Z Z Z TN a] a]? Rk+ (w)Ta,l [na]> Tg [na] ® Tll\f—a[_na]' (485)

ac& \{0} J4l=1 ng€(a+NZ)

By substituting the definition of R; (w), ({.56) with ({.54), we obtain that

(TN—ajl—na), B (W) Twi[na)) = B(Tn—aj, (F(kn, + adw) + %)Ta,l) (4.86)

for a € &€, \ {0}, and
(To j[—no), Ry (w)To,[no]) = B(To 4, (F(kno + adw) + %)To,l), ng # 0, (4.87)
(To, 0], B @)Toal0)) = BTy, (f(adw) + 2)Th), (4.88)

2
where the functions f and F are given in ({.1). This implies that the left hand side of (£.82)

can be written in the following form:

dim(Go)
(M0 ® 7)) (PFF (@) = > B(To,vo((adw)o, 21k)To)) T @ Ty
=1
dim(Ga)
+ Y > B(Ty-ajval(adw)e, 2| k)L T @ T, (4.89)
acE \{0} J,l=1
with
2miaz
kN k d
wa((adw)mz“{:) w Z 2mizm |:1 + coth m + C;"‘ (a W)a . a 7£ 0, (490)

meZ
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and

kENm + (adw)o
2

Yo((adw)o, z|k) = E + f((adw)o)} +% Z e2miEm [1 + coth (4.91)

mezZ*

To obtain the a # 0 terms in (.89) from (£.85), we used ({.8G) and the parametrization

o= exp(25£), whereby

Z (Tn—al=nal, By () Tog[na]) (70, @ 70,) (Tg [na] ® T]l\f—a[_na])
nqa€(a+NZ)

1 Tiaz . .
= 5627 ¥ M B(Tx 4, [1 4+ 2F (ka + kmN + ad w)|T,,)T’ @ Tx_,

meZ

]. 27miaz

= B(TN—a;, 3¢ N ™M1 4+ 2F (ka + kmN + adw)|T,)T? @ Tx_,. (4.92)
meZ
This leads to (f.89) with ({£.90) by inserting the definition of ' (f1.1)) and noting that (adw)T},; =
(adw)yTy,. The a =0 term is dealt with in a similar manner.

Now we come to the main point. We notice that if on the right hand sides of ({.90) and
kN

2w

become precisely identical with the corresponding series in ([.70), which are convergent on the

(1.91)) (adw), is replaced by a complex variable w and one uses also 7 = then these series

domain D, ({.71)) for any a € £,. Since these are absolute convergent series and the convergence
is uniform on compact subsets of D,, it follows that the corresponding operator series in (£.90),
(E.91)) converge, too. Therefore, if

kN

omi’

then ¢,((adw)q, z|k) € End(G,) is well defined by the corresponding series in (£.90), (£.91),

and on this domain we obtain

T we B, —-3(1) < 3(2) <0, (4.93)

Yo ((adw)g, 21k) = xa((ad w)g, 2|7), Va € &,. (4.94)

If we now compare (f.89) with the definition of r” given by (£.74), (E.75), then (£.94) allows
us to conclude that (m,, @ ,,)(r**(w)) = r"(w, 2) holds indeed on the domain given by ([£.81]).
Q.E.D.

It is clear from the proof that (.81 is necessary for (f.89); the series appearing in (f.90)
and ([.91)) do not converge if z lies outside the strip in ([£.81)). Thus, by applying m,, @ 7, @ Ty,
to the CDYBE ([1.5§), Proposition 4.3 directly implies Proposition 4.2 if 219, 213, 293 all lie in
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this strip. However, by the holomorphicity of the function »7, (.7G) is then necessarily valid
for any w, z for which r7 is defined by eqs. ({.74), (E.75).

Of course, it is possible to calculate (7, ® 7,,)(r*~(w)) as well on an appropriate domain

of vy, vo. This is left as an exercise.

4.2.4 Recovering Felder’s r-matrices

In this subsection G is a complex simple Lie algebra, and we start by fixing a Cartan subalgebra
and a corresponding set ®* of positive roots. We also choose root vectors E, (o € ®) and dual

bases of the Cartan subalgebra, H; and H’, normalized so that
B(H;,H’)=6!,  B(E. E_,)=1. (4.95)

If a; € ®* are the simple roots, then there is a unique element, .J, of the Cartan subalgebra
for which
a;(J) =1 Vi=1,...,rank(G). (4.96)

Let N be the largest eigenvalue of (ad J) plus 1, i.e., the Coxeter number of G. We wish to

show that the application of our preceding construction to the automorphism

o
poi= exp(ﬂad J) (4.97)

N
provides an r-matrix that is equivalent to Felder’s solution of the CDYBE [I6]. The fixed point
set Gg of this i is the chosen Cartan subalgebra of G, and Felder’s r-matrix is in fact equivalent

v Ath
- L 1 Z\T
§7(w, 2) = 271 01(2|7)

H,® H' —I—Zx(a(w),zh—)Ea QR F_q. (4.98)

acd
To be precise, Felder’s original r-matrix, F7, is given by F7(w, z) := 2miS™ (2miw, z), which is a
substitution that leaves the CDYBE invariant. Referring to the corresponding terms in (.95),

o T T T
below we also write S™ := ST, tan + Stoot-

It is well known that p (F.97) acts as a Coxeter element on a Cartan subalgebra which
is ‘in opposition’ to the Cartan subalgebra G, and that A(G, ) with its natural gradation
is isomorphic to the untwisted affine Lie algebra of G equipped with its principal gradation
[67]. In [T5] the homogeneous realization of the untwisted affine Lie algebra was used to recover
Felder’s r-matrix with the aid of evaluation homomorphisms. The principal realization provided
by A(G, ) must of course give an equivalent result. It is enlightening to see how this works,

and it also provides a useful check on our foregoing calculations.
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By using the above notations, now we can spell out r™ from (f.74), (E.75) explicitly as

T = Tz—jartan + le—oot with
Teartan (W, 2) = B(H;, xo(ad w, z|7)H;)H' @ H’ = x0(0, z|7)H; ® H". (4.99)
The second equality holds because xo(adw, z|7)H; = x0(0, z|7)H;, which in turn follows from

(adw)H; = 0. It is easy to compute that

L _ 1 0i(zl7)
Xo(0, z|T) = ilLI%)XO(’w,Z’T) = it () (4.100)

Thus the Cartan parts of ST and ™ are equal, and are w-independent.

As for the root part, by using that (adw)E, = a(w)E,, the definitions give

root

2mia(J)z J
(W, 2) = Z R X(a(w) + 27m'aj(v)7',z|7')Ea ® E_,

acdt
Ti(N—a z N - J
+ Z S X(—a(w) + 2m’¢7’,z|7’)E_a ® E,. (4.101)
acdt
Then we use the identity
x(w + 2miT, 2|7) = e ™ x(w, 2|7), (4.102)
which permits us to rewrite 7, as
- 2mia(J)z O[(J)
Tioor(w, 2) = Ze N x(a(w) + 2mi N T 2|T)Ey ® E_,. (4.103)

acd
By comparing the above expressions of ™ and S7, we conclude that
r(w, z) = <e%zlad°’ ® e%zzad‘]) ST (w + QWi%J, z|T) with 2z =2 — 29. (4.104)

If the dynamical variable w belongs to a Cartan subalgebra, Gy, then the constant shifts of w
and the similarity transformations by e*®# & e#22dH for any H € Gy, 21 — 2 = z map the
solutions of the CDYBE to other solutions. In fact, these transformations are special cases of

the gauge transformations considered in section 4.2 of [I5].

In summary, we have shown that the solution of the CDYBE provided by Proposition 4.2

in the principal case of p in (f.97) is gauge equivalent to Felder’s dynamical r-matrix in the
sense of ({.104).

Recently generalizations of Felder’s r-matrices have been found [68] for which the dynam-

ical variables belong to a subalgebra of a Cartan of a simple Lie algebra G. The subalgebra
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in question is the fixed point set of an outer automorphism of G of finite order, and the -
matrices given by proposition 4.2 in [68] contain the same elliptic functions that appear in
(B.74). These r-matrices are very likely to be gauge equivalent to those special cases of the
r-matrices constructed in subsection 4.2.3 for which G is simple and G, is a contained in a

Cartan subalgebra.

4.3 On a possible application to spin Calogero—Moser

models

An interesting problem is to find applications of the generalizations of Felder’s r-matrices
provided by Proposition 4.2 in integrable systems. In this respect, it appears promising to seek
for generalized Calogero—Moser type systems, since certain spin Calogero-Moser systems are

known to be closely related to Felder’s r-matrices [37, b4].

Let (G, (, )) be a self-dual Lie algebra and H C G a self-dual, Abelian subalgebra. Keeping
the notations of Proposition 4.2, let us consider a solution 7(q,z) € G ® G of the spectral
parameter dependent version of the CDYBE (£.76):

[7”12((1, 212)77“13(61, 213)] + [7’12(% 212), 7“23(61, 223)} + [7“13(% 213), 7“23(% 223)]

0 0 0
1 2 T3 _
+T; 9%7’23(% Z93) T; 9qj7“13(q, z213) + j 9qu12(Qa z12) = 0, (4.105)

where 2,3 = (24 — 23) and ¢; := (g, T;) with a basis T; of H. Assume in addition that
r21(q, —2) = —112(q,2) and  [ri2(q,2), H1 + Ho) =0 VH € H. (4.106)

Let R(q, z) denote the End(G) valued function associated with r(q, z) in the natural way, i.e.,
R(q,2)X = T,r®(q, 2)(Ty, X) for r(q, z) = r®(q, 2)T, @ Ty, where {T,} and {T°} are dual bases
of G. The ‘dynamical variable’ ¢ varies in an appropriate open subset of H*, denoted by H*,

and we denote the spectral parameter by z.

Consider the phase space
M =TH" x G ~H xHxG~{(q,p, 8} (4.107)

equipped with the direct product of the natural Poisson brackets on T*H* and on G*. In

coordinates,

{¢.p;} =6,  {& &} = fate (4.108)
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where f& = (T°, [T,, Tp]) are the structure constants of G.
Define the functions £(z) : M — G by

L(2):(¢,p,€) = p—R(g 2)§. (4.109)
Using the decomposition G = H + H* induced by (,), V& € G is decomposed as € = &y + Ex.

We can now state

Proposition 4.4 The G-valued functions L(z) on M verify the Poisson bracket relation

{L1(2), Lo(w)} = [r12(z — w), L1(2) + Lo(w)] — Ve, r12(2 — w). (4.110)

Proof. An easy calculation gives that

{L1(2), Lo(w)} = ([r12(z — w), L1(2) + La(w)] — Ve, r12(z — w))
= (&E(n T T 2, 0)T, © Ty, (4.111)

where

Er, XY, z,w) = [RT(2) X, R"(w)Y] + R (2)[X,R(z — w)Y]
~RT(w)[RT(z —w) X, Y] + (X, (VR(z — w))Y)
—(Vy,, RT(2))X + (Vx,,RT(w))Y VXY €G. (4.112)

Due to the first relation in (£.106),
E(r, X, Y, z,w)=0 VX, Y €§ (4.113)

can be checked to be equivalent to the CDYBE ([.103), whereby the proposition is proved.
Q.E.D.

The main message of this proposition is that the Poisson brackets of £(z) are almost St
Petersburg type ([.I§), up to a derivative term. The natural question is how to construct
integrable systems, based on the relation (E.110). In the special case when G is simple Lie
algebra and H is a Cartan subalgebra, Li and Xu have given a detailed analysis [64]. (The
statement of Proposition 4.4 in this case is contained in [64], but their proof is much more
complicated.) The essential point of the construction of ‘integrable spin Calogero-Moser type

systems’ can be summarized as follows: Let us impose such constraints on the phase space M
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(£ 107) whereby the second term on the right hand side of ({{.110) vanishes. The simplest (and

in many cases the only) way to do this is to impose the constraint
& =0. (4.114)

These constraints are first class in Dirac’s terminology. Perhaps first restricting to an open
submanifold M of M, one has to determine the associated reduced phase space. In fact, this

reduced phase space has the structure
Myeg = T*H* X Gy, (4.115)

where G* , is the reduced phase space coming from G* C G* associated with M. By restricting
to appropriate symplectic leaves in G:ed, what one gets may be called a (generalized) integrable

spin Calogero-Moser system.

In the near future we wish to list a set of (new) integrable spin Caloger-Moser systems
in correspondence with our solutions of the CDYBE (see Proposition 4.2.) There are lots of
further problems. For example to prove the integrability of these systems and to integrate
them.
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Summary

In conclusion, let us summarize the content of the present work, chapter by chapter.

Chapter 1: Overview of the theory of integrable systems. In this chapter we introduced those
notions that are necessary to treat the non-dynamical r-matrix structure of the degenerate
Calogero—Moser models and to understand the concept of dynamical r-matrices. We briefly
reviewed the definition of Liouville integrability, Lax pairs and r-matrices. The definition of

the classical Yang—Baxter equation and its dynamical generalization was also presented.

Chapter 2: Degenerate Calogero—Moser models. In this chapter we have determined the
most general constant r-matrices that may be obtained by coordinate dependent gauge trans-
formations of the standard Lax representation (B.6) of the degenerate Calogero-Moser models
associated with gl,,. Up to automorphisms of gl,, (i.e. up to conjugation by constants gy € GL,
and transpose) and addition of an irrelevant term 1, ® Q" with any constant @)’ € gl,,, the most

general such r-matrix turned out to have the form

= Z (Beab N €cq — €a+1,b A 65+17d) +nQX A 1,,

(a,b,c,d)€S
where
—1 n—1
1« B
X=—=>% (n—k)err1p—— E keg ki1,
n n
k=1 k=1

B is given according to (2.13) in correspondence with the rational, hyperbolic and trigonometric

potential functions (2.4), 2 is an arbitrary constant scalar, and
S={(a,b,c,d) eN*|a+c+1=b+d, 1<b<a<n, b<c<n, 1<d<n}

We have seen that r’ solves the classical (modified) Yang—Baxter equation (B.59), and have
identified it in terms of well-known solutions of this equation. In particular, we have shown
that in the hyperbolic and trigonometric cases the above " with Q = —% is equivalent to a

multiple of the Cremmer—Gervais classical r-matrix under an automorphism of gl,,. We obtained
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these results by an explicit determination of the gauge transformations ¢g(q) € GL,, for which
the Poisson brackets of L'(q,p) = g(q)L(q,p)g*(q), where L is the standard Lax matrix (R.G),
can be written in the form (2.2) with a constant r-matrix. The gauge transformation g(q) for
which the Poisson brackets of L’ are encoded by ' in (.116) was found as the product

9(q) = exp (—XnQ Z qz-) w(a)x(q),

where the matrices p(q) and x(q) are defined by (2.49) and (B.5(), with the notations fixed by
equations (2.7), (B-§), (B.13) in section 2.1. The outcome of our direct analysis of the degenerate

Calogero—Moser models is consistent with the results obtained in [#4, [0, 2] by different means.

Chapter 3: Canonical dynamical r-matrices. In this chapter we have presented a direct proof
of the mCDYBE for the canonical r-matrix. As opposed to the local power series expansion
around 0, we here use the well known [62] holomorphic functional calculus of linear operators
to define the canonical r-matrix as R(w) = f(adw), and thus our proof is valid globally on
the maximal domain of the ‘dynamical variable’ w. An advantage of our proof is that it also
yields a uniqueness result for the holomorphic function f(z) that enters the definition of the
r-matrix in (B.I)). Namely, by taking formula (B.I) as an ansatz the mCDYBE translates into
a functional equation (eq. (F.I)) for the holomorphic function f that has (B.J) as its unique

solution under certain further natural conditions.

Capter 4: Generalizations of Felder’s elliptic dynamical r-matrices. In this chapter we have
further developed the construction of dynamical r-matrices building mainly on the seminal
paper [[H] and the work [48]. Here our first main result is Theorem 4.1, whereby a dynam-
ical r-matrix is associated with any graded self-dual Lie algebra subject to the rather mild
conditions in (f.§)—(f.I0) and the strong spectral condition described in (f.17). Our second
main result is the application of this construction to the general class of affine Lie algebras
A(G, 1) corresponding to the automorphisms of the finite-dimensional self-dual Lie algebras
that preserve the scalar product and are of finite order. The resulting dynamical r-matrices
are generalizations of the basic trigonometric dynamical r-matrices of [IH], which are recovered
if 1 is a Coxeter automorphism of a simple Lie algebra. Motived by the derivation of Felder’s
elliptic dynamical r-matrices [16] found in [T5], we have also determined the spectral-parameter-
dependent G ® G-valued dynamical r-matrices that correspond to the A(G, 1) ® A(G, u)-valued
r-matrices directly obtained from Theorem 4.1. The result is given explicitly by Proposition

4.2 and Proposition 4.3 is subsection 4.2.3.

It is worth noting that the conditions of Theorem 4.1 are satisfied also if A is an arbitrary
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Kac-Moody Lie algebra associated with a symmetrizable generalized Cartan matrix, equipped
with the principal gradation [67]. In this case one recovers the r-matrices given by equation (3.4)
in [I5]. Tt would be interesting to find applications of Theorem 4.1 outside the aforementioned
classes of Lie algebras. It would be also interesting to find applications of the r-matrices given
by Proposition 4.2 in the context of spin Calogero-Moser models; some ideas in this direction

are collected in section 4.3.
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(")sszefoglalés

Végezetiil, foglaljuk ossze a dolgozat tartalmat, fejezetenkénti lebontasban.

1. Fejezet: Az integrdalhato rendszerek elméletének dttekintése. Ebben a fejezetben
bevezettiik azokat az objektumokat, amelyek sziikségesek a degenerdlt Calogero-Moser
modellek r-matrix strukturdjanak kezeléséhez, illetve a dinamikai r-matrix fogalmanak
megértéséhez. Roviden attekintettiik a Liouville integralhatésag fogalmat, illetve a Lax par és
r-matrix definiciéjat. Ismertettiik a klasszikus Yang—Baxter egyenletet, és annak egy lehetséges

(dinamikai) &ltalanositasét is.

2. Fejezet: Degenerdlt Calogero-Moser modellek. Ebben a fejezetben meghataroztuk a gl,
Lie algebran alapulé degeneralt Calogero-Moser modellek szokvanyos Lax reprezentaciéjabdl
(R.6) koordinata fiiggdé mérték transzformécidéval nyerhetd legaltaldnosabb konstans r-métrixot.
Kideritettiik, hogy egy irrelevans 1, ® Q' tag (Q' € gl,,), illetve a gl,, Lie algebra egy tetszoleges

automorfizmusanak erejéig a legaltalanosabb ilyen tulajdonsagi r-matrix alakja

= Z (Beap N €cq — €atip N €cr,a) +nUX A1y,

(a,b,c,d)€S
ahol
1 n—1 B n—1
X =—— n— ke - — ke )
n k:1( )€ht1, . ; kk+1

A formuldkban szerepl6 B paraméter értéke modellfiiggs (B.19), €2 tetsz6leges konstans skaldr,

az Osszegzésben szereplo S halmaz definicigja pedig
S={(a,bc,d eN*|atc+1=b+d 1<b<a<n, b<c<n, 1<d<n}.

Belattuk, hogy ' megoldja a klasszikus (modifikalt) Yang—Baxter egyenletet (2.59). Ezen
egyenlet jol ismert megoldésainak birtokaban a megoldasunk beazonositasa is megtortént. En-

nek eredményeként arra jutottunk, hogy hiperbolikus, illetve trigonometrikus esetben a nyert

61



OSSZEFOGLALAS

1
n

valens a Cremmer—Gervais-féle klasszikus r-matrix tobbszorosével. Ezen eredményeket ugy kap-

r’ megolddsunk 2 = = valasztds esetén, a gl,, Lie algebra egy automorfizmusanak erejéig ekvi-
tuk, hogy meghatéroztuk azon g(q) € GL, mérték transzformacidkat, melynek eredményeként
a transzformalt L'(q,p) = g(q)L(q,p)g ' (q) Lax-méatrix Poisson zaréjele a ([.16) alakot 6lti, de

méar egy konstans r’-métrix segitségével. Amennyiben a g(q) mérték transzformaciénak a

9(q) = exp (—XnQZq@) o(q)x(q)

alakot valasztjuk, a transzformalt L' Lax-métrix Poisson zaréjelét konstans r-méatrix kédolja,
pontosan a mi 7’ megoldasunk. Erdemes megjegyezni, hogy a direkt analizisiink eredményeként
nyert megolddsok Osszhangban vannak més mdédszerekkel nyert [44, 10, 42 megfontoldsokkal
is.

3. Fejezet: Kanonikus dinamikai r-mdtrizok. Fzen fejezet célja az, hogy egy 1j, direkt
bizonyitasat adjuk annak, hogy a kanonikus r-matrix kielégiti a klasszikus dinamikai modi-
fikalt Yang—Baxter egyenletet. A lokalis érvényu hatvanysor moédszerrel szemben, a linedris
operatorok jol ismert holomorf fiiggvény kalkulusat [62] hasznaljuk a kanonikus r-métrix
R(w) = f(adw) definiciéjaban. Ennek eredményeként a bizonyitdsunk globélisan érvényes
az w dinamikai vdltozo egy maximalis tartoméanyan. Bizonyitasunk erdsségének tekintheto az a
tény, hogy az r-métrix (B.I) definiciéjaban szerepld f(z) fliggvényre egyértelmiiségi eredmény
is nyerhetd. Nevezetesen, ha az r-métrix alakjara vonatkozdlag az (B.1) feltevéssel éliink, akkor
a klasszikus dinamikai modifikalt Yang-Baxter egyenlet a holomorf f fliggvényre nézve egy
fiiggvényegyenletbe ([F.1) megy at, ami tovabbi természetes feltevések mellett az egyértelmi
(B.Z) megoldassal rendelkezik.

4. Fejezet: A Felder-féle elliptikus dinamikai r-mdtrixok dltaldnositdisai. Ezen fejezet célja
az, hogy Etingof és Varchenko nagyhatédsi dolgozata [[H] és egy kordbbi munkénk [48] alapjan
tovabbfejlessziik a dinamikai r-matrixok konstrukciéjara vonatkozo ismereteket. Ezzel kapcso-
latos els6 eredménytinket a 4.1 Tétel tartalmazza. Beldttuk, hogy a meglehetésen enyhe (E.8)-
(B10) feltételek, és az erés (E12) spektralis feltevés teljesiilése esetén, tetszéleges ondudlis,
gradélt Lie algebrdahoz dinamikai r-matrix tarsithato. A kovetkezo érdekes eredményiink az,
hogy ezen konstrukci6 az A(G, 1) affin Lie algebrak altaldnos osztélyara is alkalmazhaté. (Az
A(G, ) affin Lie algebrak alapjiul olyan véges dimenzids 6nduélis G Lie algebrék szolgdlnak,
melyeken adott egy véges rendl p automorfizmus, ami megdrzi a skaldris szorzatot.) Az
eredményiil kapott dinamikai r-matrixok a Felder-féle alapveto trigonometrikus dinamikai -
matrixok altalanositdsaként tekinthetok. Valoban, konstrukcionk specidlis eseteként vissza-

nyerheto a Felder-féle megoldas, nevezetesen, ha G egyszerti Lie algebra, p pedig Coxeter
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automorfizmus. Ugyancsak fontos eredmény, hogy a 4.1 Tétel kovetkezményeként nyerhetd
A(G, 1) @ A(G, 1) értékili dinamikai r-mdtrixokbdl, G ® G értéki, spektralparamétertdl fliggd,
elliptikus dinamikai r-matrixokat kaptunk. Ennek alapjaul az a megfigyelés szolgalt, ahogy
a [[H]-es munkdban levezették a Felder-féle elliptikus dinamikai r-matrixot [I6]. A pontos

allitasok a 4.2 és 4.3 Propozicidkban kertiltek megfogalmazésra.

Erdemes megjegyezni, hogy a 4.1 Tétel feltételei akkor is fennallnak, ha az A Lie algebraként
egy principdlis gradalassal elldtott, tetszileges Kac-Moody algebrat [67] valasztunk. Ilyen
vélasztds esetén az [[[H]-es dolgozat (3.4)-es egyenletében szerepld r-matrixok is visszanyerhetok.
Tovabbra is nyitott kérdés Lie algebrak olyan tjabb osztalyainak feltardasa, melyekre a 4.1 Tétel
alkalmazhaté. Hasonléan érdekes kérdés lenne alkalmazast talalni a 4.2 Propoziciéban leirt r-
matrixoknak a spin Calogero-Moser modellek keretei kozott. Ilyen irdnyu lehetéségeket a 4.3

szakasz tartalmaz.
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Appendices

A  Proof of Theorem 2.1

The proof given below relies on the general analysis of the momentum independent Calogero—
Moser r-matrices presented by Braden and Suzuki in [29]. We first specialize the relevant results

of [29] to our case and then further elaborate them to obtain the statement of Theorem 2.1.

Consider the Lax matrix in (6) with a function w in (7). Our task is to find the most general

momentum independent r-matrix, r(g), which satisfies equation (2), i.e.,

{L1, Ly} (q,p) = [r12(q), L1(q,p)] — [r21(q), La2(q,p)]. (A1)

Obviously, r(q) = r12(q) € gl,, ® gl,, can be expanded in the form

r(q) =Y ri(QH; @ Hj+ Y Y (r"(q)H; ® Eq +r*(q)Ea ® H}) + Y _ r*?(q)E, ® Ej.
1,7=1 acd i=1 a,pe®
(A.2)

Since the functions w in (7) are odd (and thus w_,(q) = —wa.(q)), we can use the results of
the third and fourth chapters of [12], where it has been shown that under our conditions the

following equations hold:

r*'(q) =0 (Vie {1,...,n}, Va € D), (A.3)
)= 25, s = ~Fu@ds (VB ) (A4

Moreover, according to [29], the remaining requirements on r(g) reduce to the equations

Zairi’j(q) =0 (Vaed Vje{l, ..., n}), (A.5)
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and

Z(aﬁi’ﬂwa — Bir*®wg) = céa,aw(r_“’o‘waw N T Vo, 6 € D). (A.6)
i=1
We here use the basis of gl,, introduced in (5), «; := a(H;), the structure constants czjgﬁ satisfy
[Ea, Eg] = cgzﬁEaJrﬁ if o, 3, (a+ ) all belong to ®, and cgfgﬂ := 0 otherwise.

Now consider equation ([A.5) for o := (\y—\;) € ®. From this we see that r*J(q)—r"(q) = 0
(k # 1,¥7), which means that the general solution of ([A.5) is

ri(q) = M(q)  (Vi,je{l,...,n}), (A7)

where the M7 are arbitrary smooth functions of ¢. Let us next solve ([A.G) for r**(¢q). By
substituting ((A.4) into (A.G) and using the identity (10) and the symmetry properties of the

structure constants we obtain

n

> (P (q) = B (@) = iy (Va, B € @), (A.8)

i=1

where we define 77 := % for any v € ®. By introducing the notations
2l

Po= D (PPN H, R = (P — T H,, (A.9)
i=1 i=1
we have
e . N6 1 ~o e e A—a A—o ~o
r= Z"” H; = 5(7”5 +7%), 75(q) =75%(q), T1%(q) = —7%(q). (A.10)
i=1

We now consider equation ([A.§) for the pairs of roots («, 3) and («, —3). By adding these two

equations we get
a(fg(q)) = o+l (Va,Be @) (A.11)

It follows from the definition of K, in (5) that a(Kjs) = —(cgzﬁ + cgiﬁﬁ) for any o, 3 € ®.
Therefore the general solution of (JA.T1]) is given by

75(q) = =Ko +75(q)1, (Va € D), (A.12)

where 7§(q) = 74%(q) are arbitrary smooth functions. On the other hand, by substituting
(A1) and the decomposition in ([A.I() into ([A.§) we obtain the relation

a(3(a)) = B(FR(@)  (Va, B € ®). (A.13)
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Obviously, there exists the decomposition

71(q) = Calq) + 74(q) 1y, (A.14)

where C\,(q) € H,, C sl, and 74(q) are smooth functions. The antisymmetry of 74 (¢) in o and
(AI3) can be rewritten as

Coalg) = =Calg),  al(Cplq)) = A(Calq),  74%(q) = —74(q). (A.15)

By the above, we have parametrized the most general 7(q) in terms of the functions M7,

79, 7§ and C,. If we now introduce the notation

Q) = 3 M@ H+ 5 3 (08(0) + 75(0) wal0) B (A.16)

aed

then 7(g) in (JA.2) takes precisely the form stated by Theorem 2.1, which completes the proof.

B Proof of Proposition 2.2

In this appendix we prove Proposition 2.2 by analyzing equation (2.32),

W05, o — czzﬁzuua—lfAerﬁ + (a- )AL+ (3- AN AT =0 (Vk=1,...,n), (B.1)
a+

whereby we determine the constants by that appear in A} = w,by (2.33). We here use the
notation a - 1% = 3" a3 A* = 37 3;A% and similarly for all quantities with Cartan

indices. For later reference, note from (2.25) that
1
g-r*= §woﬁ (Cq — Ky), Vo, € P, (B.2)

where K, is defined in (2.5) and C, = Y ;" , C%. H; enjoys the properties in (R.17).
If we fix a € ®, then (B) for the pairs of roots (a, 3) given by (o, ), (—a, —a), (o, —)

and (—a, ) leads respectively to the following relations:

(a-r*+a-AYAL =0, (B.3)
(- 4a-AT)A =0, (B.4)
apw? + (a7 AY — (o A% AL* =0, (B.5)



APPENDICES

apw? + (- )AL — (- A7) AL = 0. (B.6)
Since av- r* = - 7 by (B.2), these relations imply that
a-A=a- A" =—a-r" (B.7)
On account of (B.7) and (B.2), (B.5) can be written as
apw? = (- A%) (A} + A %). (B.8)
This expression shows that
by — b, % =%y (B.9)
with some constants €¢*. We then find from the above that
a- b = (B.10)
and the * must satisfy
e =79 (e%)? = 1. (B.11)
Now it is convenient to introduce II{ := (b3 + b, “), which results in

1 1
b[o; = §€aak + §Hg, Ya € . (B12)
Let us put ITY := H,(C’\i_’\j). Then the relations II{ = II,“ and a - II* = 0 (by (@)) give
my =11, Iy =17

7 70

Vk, i # j. (B.13)

Consider now such roots o = (\; — \;) and 3 = £(\, — \,,,) € @ that {i,j} N {l,m} =0. In
this case (B:) yields

(- #)bg + (B - b*)b] = 0, (B.14)

(- )0 — (8- 0%)b,” =0, (B.15)

where we use the notation 77 := ;—: for any v € ®. Adding these two equations, and using
(B7) and (B.12), we can easily get that now

B-b* =0, g-11* = 0. (B.16)

The general form of ITY which obeys (B.13) and ([B.16) is in fact the following:
I = 1 (i + dy) + 202, (B.17)
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where 7%, Q® are constants. Notice that for a = (\; — A;) that element K, = >} K¥Hy
defined in (R.5) has precisely the components K* = dy; + 8.

Now, let «, 3, + 8 € ® be roots. In this case « — = a+ (—(3) ¢ ®. Hence (B for the
(e, B) and the (a, —f3) pairs reads as

SR = (a- PO 4+ (8- b, (B.18)

0=(a- 7Py —(6-b%)b,". (B.19)
By adding these two equations making use of (B.J) and (B.9), we obtain
g it = —(a Ka)b +%(B- %) By (B.20)

If a = (N —2), 8= (N —X\) are chosen, then a - K3 = —1 and cg;ﬂ = 1. Let us then
substitute (B.12) with (B:17) into (B.20) and consider the resulting equation for k ¢ {i, 7,1}
and for k € {i,7,1}. In this way we obtain the requirementsf]

QP — Qo (B.21)
ga—i—ﬁ 4 na—i—ﬁ — o 4 na, (B22)
e — ™ =27 (8- b), (B.23)
notP — gotB = _9:8(3 - b)), (B.24)
These tell us that
Qo8 — e, gotlf — £%, 770“"6 =n°. (B.25)

In conclusion, there exist some constants ¢, 1, €2 that
=g, n*=n Q"=Q, Va € O. (B.26)

In addition, we can compute from (B.13) that in the above case 20 - b* = (n — ¢), and by
substituting this back into (B.23) we obtain

(e+1)(n—e)=0. (B.27)

4We here implicitly assume that n > 4, but the final solution is valid for any n > 2.
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At the same time we know from (B.IT]) that ¢ must be equal to 1 or —1.

The first solution of (B.27) is € = 1 = n. In this case we can determine b9 from (B.12) in

terms of the arbitrary constant () as
by N = 6 + Q. (B.28)

We can then also calculate 5 - r® from the above equations, and thereby find from (B.2) that
C, = —H, must hold. This is precisely the result stated in case I of Proposition 2.2. We have
obtained it as a consequence of considering a subset of all cases of (B.), but it can checked to

satisfy this equation in all remaining cases (for o = (A\; — A;), B = (A — \;) etc.) as well.

The other solution of (B.27) is ¢ = —1, but then we still have to determine 7. For this we
consider a = (\; — A;), = (A\; — A;) and calculate that

e = 2 (00— 1)+ (14 1))+, (B.29)
b= 5 (1= 1)y + (1) 3) + (B.30)

We then look at (B.1]) for the (a, ) and (8, «) pairs of roots and add these two equations,
which gives
0=(a-#+a- )W+ (B-7+ 3 b)), (B.31)

Since b and bf are linearly independent n-component vectors for any 7, we obtain
a- P ra-tP=0 B4 3-0*=0. (B.32)

By subtracting these equations and taking into account that by (B.Z) now

1
a.fﬂ_ﬁ.fa:i(ﬁ.Ka_a.Kﬁ):L (B.33)

we find that 7 = 1. So we have completely determined 0} again, and it is easy to confirm that

the final formula agrees with case II of Proposition 2.2. Thus the proof is complete.

C Proof of Proposition 2.5

In this appendix we verify the statement of Proposition 2.5.

By combining eq. (B.1§) and Proposition 2.4, the constant r-matrix that we wish to calculate

can be written in the form

7 = (o(q) ® () pla) (v(q) @ ()" (C.1)
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with

p(q) = (x(9) @ x(q)) (f(Q) +Y Al ® Hk:) (x(9) @x(9) " (C2)
The formulas in (2.48), (B.50) together with (2.10) and (B.11]) result in

= —BZ Fk — €kz - 611) €lk - €kk + Z Fk — Fl ekl - ezz) & (elk - ekk>

k£l k£l
+ Z Frepr @ ep — Z Fey ® ey (C.3)
k£l k£l

Therefore, to prove Proposition 2.5 it is enough to verify that

(e(q) @ v(q)) p(q) = 7 (v(q) ® ©(q)) (C.4)

holds for p in (C.3) and 7 in (R.61]). We obtain in a straightforward manner that

(Sp(q) ® SD(Q)) p(q) = Z (BBabcd + Babcd) €ab X €cd, (05)
a,b,c,d=1
where ( ) )
Pad — Pab )\ Ped — Pcb .
Bped = , i b #£d, )
bed P F, if b# (C.6)
. F,F )
abed = Fdd— }b(%d — Vab)(Ped — Peb) + FiPadPed — Fyparpen, if b F#d, (C.7)

and Buypeg = Bupeg = 0 if b = d. From (M) and (f2_61|), the right hand side of (@) is found to
be

n

7:/ (QO(Q> b2y 90<Q)> = Z <B-Dabcd + Dabcd) €ab X €cd (CS)
a,b,c,d=1
with
Dabcd = Z PrbPyd — Z PrbPyd, (CQ)
(a,x,c,y)ES (e,y,a,z)ES
[)abcd = Z PrbPyd — Z PabPyd, (ClO)
(a—1,z,c—1,y)€S (c—1,y,a—1,z)€S

where the set S is defined in Proposition 2.5 and by an empty sum we mean zero.

We now observe that Dyy.g = 0 = Byeg if a =1 or ¢ = 1, and

Dapeda = Da-1pec-1,4d, Baped = Ba-1p,c—1,d; if 2<a,c<n. (C.11)
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These properties are obvious for D, while for B they follow from the formula (.49). In partic-
ular, the second equality in ({C.11]) is checked by inserting into ([C.6) the identity

Pa—1,d — Pa—1,b = Fb@ab - Fd@ad, 2<a< n, (012)

which is consequence of (.49). We conclude that it is sufficient to show that Buped = Dapea-

Let us examine the expressions of Bgy.q and Dp.q. First, we notice that for all indices
Babcd = Bcbad7 Dabcd = chada <C13)

and
Baeda =0=Dypeq if a=n or c=n or b=d. (C.14)
Hence it is enough to show that Bpeq = Dapeq for such indices that a < ¢ < n and b # d. We

now introduce the notation

Fp=]][F vPc{1,...,n} (C.15)

teP

and also put Fp := 1 if P = (), for which |P| = 0. We then rewrite Bypq as

Boapea = (Fa — Fb)( Z Fp)( Z Fp), (C.16)
PcIrny PcI NI}
|IPl=n—1—a |IPl=n—1-c¢

where I} is defined in (2.47). This is derived from ([C.€) by using that as a result of (2.49)

Pat — ok = (F. — 1) Z Fp. (C.17)
PcIrnIp
|IPl=n—1-a

Next, by inserting (B.49) into (C.9) and using that a < ¢, we get the expression

Daed = (Fa = Fy) > (( > ) X )

r+y=a+c+1 PcCIynIy PcLNIy
I<z<a<y<n |IPl=n—1—2x |IPl=n—y
( x w X a) ©19
Pcn Pcn
|IPl=n—1-—y |Pl=n—x
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The x = a, y = (¢ + 1) term in the first line of the right hand side of ([C.I§) clearly equals the
right hand side of ([C.16). The proof is completed by a close inspection of the ranges of the
summation indices, which shows that all the remaining terms cancel pairwise between the two
lines of (C.I§) for any a < c¢ < (n —1).

D Functional calculus of linear operators

For convenient reference in the main text, in this appendix we collect some result from the

theory of bounded operators based on chapter VII of the book [52].

Let X # {0} be a complex Banach space. The space of bounded linear operators on X is
denoted by B (X), which is a Banach algebra in the usual way. Let T' € B (X)) be a bounded lin-
ear operator. The resolvent set of T is given by R (T') = { A € C | A\I — T invertible operator },
where [ is the unit operator. The spectrum o (1) of T is the complement of R (7"). The formula
R(T) 3 € pe (T) = (1 — T)™" defines the resolvent function of T'. Denote by F (T') the set
of all complex functions H that are holomorphic on some neighbourhood of ¢ (T'). Then one

can define the functions H (T") of the operator T as follows.

Definition D.1 Let H € F(T) and consider a closed, rectifiable curve C that lies in the
domain of analyticity of H and encircles the spectrum o (T') in the positive sense customary in

the theory of complex variables. Then the operator H (T') is defined by the equation

H(T)= -1 / H (€) pe (T) dc. (D.1)

2T
c

It can be shown that H (T") depends only on the function H, and not on the curve C'. Some

important properties of this functional calculus are gathered in the following theorem.
Theorem D.2 If f,g € F(T) and o, 3 € C then

e af +pgc F(T) and (af + Bg) (T) = af (T) + pg (T),
o fge F(T) and (fg)(T) = f(T)g(T),

e if [ has the power series expansion f(z) =Y o, cxz" valid in a neighbourhood of o (T),

then f(T) =1 cxT".
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One can define the directional derivatives, (VsH) (T') € B(X), of H (T) by

(VsH)(T) = &

S| HT+1S),  SeB(X). (D.2)

t=0

The integral formula (D.1]) implies the equation

(VsH) () = 5 [ HI(€)pe (T) Spe (T) e 023)

Now suppose that X is a finite dimensional Banach space. In this case the spectrum
o (T) of the operator T has finitely many elements, which are just the eigenvalues of T'. The

index v (\) of an eigenvalue A is the smallest positive integer v such that (Al —T)"z = 0

v+1

for every vector = for which (Al —T)""" x = 0. Introducing the invariant subspaces N, :=

Ker (T — AI)"™ (X € o (T)), one has the usual X = ®reo(r) Ny Jordan decomposition of X.

Theorem D.3 If dim (X) < oo and H € F (T), then

v(A)—1 1

k‘H ) (T — )" Ey, (D.4)

Aeo(T) k=0

where E\ € B(X) is the projection operator of the subspace N.

E Some combinatorial identities

We here gather some elementary combinatorial identities needed in section 3.1.

Identity E.1 Ifk,l € N:={0,1,2,...}, then

i k k!
> (- n+z+1( ):(k+l+1)!' (E-1)

n=0

Proof. By induction, with respect to k.

Identity E.2 Ifk,n € N and 0 < k <mn, then

b n—a n+1
> () ()
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Proof. By induction with respect to n.

Identity E.3 Let k,l,m € N and 0 < m <, then

m bl 0 if k< m,
(—1) , = k+1—m ‘ (E.3)
=0 J k ) if k> m.
Proof. Consider the smooth function

R x (R\ {0}) > (a,b) — "= (a 4+ b)™ . (E.4)
Using the binomial theorem, we can write
P @+ 0)" =) ( " ) al b (E.5)
i=o0 \ J
Let us differentiate this equation k-times with respect to b. Then the left hand side gives

" iim m =k O siem ) m

=0 v

min(m,k)
- ¥ (k ) ( e+ 1—m)iml B @+ )" (E6)

i ) (l+i—m)!(m—1i)

=0
By evaluating this equation at a = —1, b = 1, we obtain
) 0 if £ <m,
7 (B (a+b)™) = k+1—m (E.7)
obk - k! l if £ > m.

At the same time, the right hand side of (E.§) gives

o & ( m ) ; ; [ m k+1—j —_
— aVFH = k) alb' . (E.8)
Obk 4 j : j k
3=0 J=0
It follows that

9 ") @i S ey " . (E9)
ot =0 ( J ) a=—1,b=1 jgo J k

Comparing (E.7) and (E.9) we see that our statement is valid. @Q.F.D.
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Identity E.4 Let k,l,m e N andl <m < k+1, then

=" . = k+l—m \ (E.10)
s J k l if k> m.
Proof. Similar to the preceding identity.

F Addition formula and further identities

Let us consider the function f (z) = 5 cothZ — 2. This function is holomorphic on the whole
complex plane except the points 2miZ*, where it has first order poles. Using the familiar
coth z cothy — coth (x + y) (cothz + cothy) + 1 = 0 identity, the following ‘addition formula’

can be obtained:
Identity F.1 Ifx #0, y #0, v +y # 0, then

THI@ @) = a4y (F @)+ f ()
flaty)—fly) flaty —f@) [fl)+F)

— — — = 0. (F.1)
x Y r+y
On its domain of holomorphicity, the function f satisfies also the relations
1
9 (o) = (DM O @), el e =t (F 2)
x

The first relation in ([F.2) uses only the fact that f is an odd function, while the second relation
follows, for example, by taking the y — 0 limit in ([F.1)).

For convenience, we now collect some further identities that give the results for the differ-
entiation of expressions of the type appearing in ([F.1). All these identities are obvious, and are

actually valid for any odd holomorphic function f. They are used in section 3.1 to derive the
equality in (B.44) for the r-matrix of the form in (B.I0).
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Identity F.2 Ifk,1 € N ={0,1,2,...}, then

ak+l 1 1
GFoyd 3okt (F.3)
O i) = @10 ) (F.4)
8.Tk8yl ’
K-+ q¢ o
gyl @@ = gg e O, (F.5)
é=x
ak-‘rl dl i
axkayzf($+y)f(?/> - FE(E+z) f(© (F.6)
=y

Identity F.3 If x4+ y # 0, then

oxkoyt x+y

O f(x) + f(y) _ (_1)kH l (l) bl ) (1) @ ()
(-1) Z o ) D
k41 . k B b O (z)
=) ;( b ) (k+1=0)(=1) (x+y>k+l+17b' (F.7)
We also have
oM fa)+fly) k! el
P e kmf( (). (F.8)

Proof. Equation (F.7) is a direct consequence of the Leibniz rule. To verify (F.§), let us

introduce u := z + y, y = u — x. By using power series expansion around u = 0, we have

S+ f@)+flu—x) [fz)-f(z—u

r+y U U
. F.9
S e S e
Differentiating this equation [-times with respect to y, we get that
9" f(z)+[f(y) i~ (=D
I VR G | N ) gt n F.10
oyt r+y ( )Zn!(n—l—l—l—l)f (z)(z +y) ( )

Then differentiating k-times with respect to x, we obtain

I f(a)+ fly) < (—1)" [ &\ oD (1) .
ko zty —(—UZ(m%( ) Y (x +y) >

n=0 J (n_‘7>

il 1\ E (nH+1+k—5) (o .
+(=0" ) (%Z;(k)f - .,< >(:B+y)"J>. (F.11)

n=k+1 J (n—j)!
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Now, let us take the limit + — —y. Using the combinatorial identity ([E.I), we can see that

lim L AORFAT) = (—1)" fEHFD () Z (=D ( k >

a——y 0xk0y! x4y “n+l+1\ n
k!
= (-1)f mf(kﬂﬂ) (Y), (F.12)
whereby the proof is complete. Q.FE.D.
Identity F.4 If x # 0, then
I flaty) = f) _ o~ K it P @t y) e PO )
9oy p == > G Y e (R

In the limit case, we have

HF fle+y) —fly)  fHH(y)
2—0 Qxk oy x  k+1

(F.14)

Proof. The verification of (F.13) is trivial. As for (F.14), the power series expansion of f

around z = 0 implies that

fle+y) —fly) 1, 1
v =/ Wt

FED () 2k + 0 (:rk“) ) (F.15)

By taking the derivatives of this equation, we obtain that

O fla+y)—fy) &V (y)
oxk x k41

+0(2), (F.16)

and

O fla+y)—fly)  fETY(y)

dzkoy! T  k+1 +0(), (F.17)
which implies (F.14). Q.E.D.
Identity F.5 If y # 0, then
O flr+y) —f(2) l ! mi1 fEHT (2 4 y) 1 fP (@)
= — — — (=1 . (F1
Dk oy Y Z: (1 —m)! (=1) ym (=1 Y+ (F.18)

m=0

In the limit case,

O ety = f@) A (@)

F.19
y—0 Jzkdy! Yy [+1 ( )

Proof. This is an obvious consequence of the preceding identity.
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G The maximal open domain K C A(G, i)

In this appendix we show that if A = A(G, i), then the mazimal, nonempty, open domain on
which the r-matrix of Theorem 4.1 can be defined is given by K in ([.49), where w € By is
subject to the conditions in (f.50) and (f.51)).

In general, the elements of the domain K C .4y must satisfy the spectral conditions ({.12).
If A= A(G, 1) and k € K is parametrized as in (.48), then these conditions are explicitly given
by (£50) and (f.51)), where )\, is an arbitrary eigenvalue of adw|G,. Since Ay = 0 is always
one of the eigenvalues, the second condition in (f.51)) implies that & # 27 for any n € Z,
m € Z*. As K must be an open subset of K, it follows that k € (C\ iR) for any admissible
k = w + kd + lé. Note that K # (), since e.g. the elements of the form x = kd + I¢ in ([.49)
satisfy the conditions (£.50), (£.51]). Hence we only have to show that (f.49) subject to these

conditions is an open subset of .

If A, is an arbitrary eigenvalue of adw on G, and k € (C\ iR), then let us consider the real
line in C defined by
L/\a,k(t> =M+ /{Zt, vVt € R. (Gl)

This line intersects the imaginary axis for ¢ = ¢, at the point Py, » = Ly, x(tr, k)

R TS R 1) .
Now the condition in ({£50) can be reformulated as follows:
P\, ¢ 2miZ or  tyai ¢ (a+NZ), Va € €, \ {0}. (G.3)
This can be further reformulated as the requirement
e et ‘e%(t*a”‘_“) —1|" #o. (G.4)
It is also useful to rephrase the second condition in ({.51) as
Py, i ¢ 2miZ or taok & NZ*. (G.5)

Let 7 : C — C be an arbitrary continuous function, which is zero precisely on NZ*. (For

example, we may use 7 (z) = z7'sin(N~'nz).) Then (G.5) is equivalent to

[Pk =1+ [T (t,) # 0. (G-6)
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Since the left hand sides of ([G.4) and (G.6) are given by continuous functions of k and the
Aq, it follows that these inequalities are stable with respect to small variations of £ and the
Xa. The same is true for the first condition \g ¢ 2miZ* in (f.51)). The statement that K C K
and Bj, C Gy subject to (f:49), (E50), (E51) are open subsets follows from this observation by

taking into account that the position of the eigenvalues of ad w varies continuously with w € G.

This means that by choosing w near enough to say w*, any eigenvalue of ad w can be taken to

be arbitrarily close to some eigenvalue of ad w*.

H A remark on some finite-dimensional r-matrices

We here describe some finite-dimensional dynamical r-matrices, which were first considered in
the appendix of [61], and point out a relationship between these and the infinite-dimensional

r-matrices described in subsection 4.2.2.

Let p be an automorphism of a self-dual Lie algebra of the same type as in section 4.2
and recall the decomposition in (f.39), (£.40). For any a € &, and integer ¢ specified below,
introduce the meromorphic function f, , by

1 1 1 1 271
foq(w) == 5 coth% o faq(w) := 5 coth §(w + %an) if a#0. (H.1)
In order to guarantee that these functions are holomorphic in a neighbourhood of w = 0, we

require the integer ¢ to satisfy the conditions
1<qg<(N-1), qa ¢ NZ* Va € &, \ {0}. (H.2)

Then there exists a nonempty open domain Gy C Gy, containing the origin, on which the map

pq - Go — End(G) can be defined by
Pg(w)§ == foq(adw)§ VE € Gl we G (H.3)

It can be shown that p, satisfies the CDYBE (f.3), where A is replaced by G and K is
taken to be Gy. If u = id, then p, becomes the well known canonical (or Alekseev-Meinrenken)
dynamical r-matrix [I5, I2, [3]. In the case ¢ = 1, which always satisfies (H.2), p, has been
introduced in [61], where it was proved that it solves the CDYBE. The proof given in [51] is
very elegant and is very indirect. A direct proof in the case p = id is written down in Chapter
3. For general p and ¢, a proof of the CDYBE for p, can be extracted from the following

observation. If we let k := %q, then we have

pg(w)n = R(w)n and (py(w)§)" = Rp(w)E"™ (H.4)
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for any n € Go and § € G,, a # 0, n, € (a + NZ), where Ry, refers to the formula (f.54).
It should be stressed that this is a relationship purely at the level of formulas, since in the
definition of the infinite-dimensional r-matrices in section 4.2 the imaginary values of k£ were
excluded for domain reasons. Nevertheless, it follows from this coincidence of formulas that
essentially the same algebraic computation that proves the CDYBE ([.55) can be repeated to
verify the CDYBE for p,. We have also verified the CDYBE for p, by a direct calculation that

proceeds analogously to the proof of our Theorem 4.1.

In certain cases p, is equivalent to an r-matrix of the form in (f.2) by a shift of the dynamical

variable. Namely, this happens if the automorphism p can be written as

271

= eXp(Wad M), Meg, (H.5)
where ad M is diagonalizable and the fixed point set Gy of u satisfies
Go = Ker(ad M). (H.6)

In particular, by (H.5), ¢ is an inner automorphism of G. If these assumptions hold, then we

can define a new r-matrix p, by

ale) = paleo — g, (H7)

and this r-matrix can be identified with R in ({.2) by taking A := G and K := Gy. The Gp-

equivariance property of the dynamical r-matrices is respected by the shift of the variable in

(H.7) on account of (H.G).
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