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ABSTRACT

This dissertation introduces a new family of non-parametric fit tests for the Rasch 

model combining the elements of Monte Carlo method, traditional hypothesis testing, 

and Item Response Theory model fit. The new tests do not make assumptions re­

garding the distributions of their test statistics. Rather, distributions used for testing 

model fit are generated ”on the fly” using a Monte Carlo method. The developmental 

phases and algorithms for performing the tests are discussed in detail. Differences be­

tween the new method and the usually accepted residual-based fit tests are presented 

from theoretical and practical perspectives, as well as the correspondence between the 

new indices and the general case of fit analysis. Comprehensive validity and stability 

studies are conducted using real and computer simulated test data to demonstrate 

the performance of the proposed indices under various conditions and to make com­

parisons with previously used Rasch fit indices. The results of the new global fit 

analysis, also introduced in this thesis, show that when fit analysis is performed with 

the aid of the new tests the Rasch model performs very well. It is demonstrated 

using several test scenarios that the traditional mean-square fit index reports false 

misfit quite frequently. Although, the Monte Carlo p-values are always approximate, 

a stability study conducted in this dissertation reveals, that they show remarkable
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stability with respect to the number of simulated matrices. It is shown, that for mod­

erately sized response matrices a satisfactorily stable p-value can be obtained within 

a reasonable computing time, making the newly proposed technique available to the 

test developing community.
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CHAPTER 1 

INTRODUCTION

A major purpose of measurement in the social sciences is to establish a linear ordering 

among objects such as persons (often referred to as subjects), examination questions 

(often referred to as items) and performances. There is a large collection of methods 

developed in the behavioral sciences to define and measure this wide variety of vari­

ables. The problem is twofold. On the one hand, a priori one does not know what 

to measure. Entities in human measurement do not come in an easily manageable 

format. It is a customary point of view, that a variable is not only measured in the 

process, but the measurement process itself is the definition of the measured variable. 

That is, say, an intelligence test only measures the intelligence of a person that is 

defined by that very test. This situation makes the task challenging but it also opens 

the door for a very exciting world of measurement theories. Of course, the final goal 

of research in the behavioral sciences is to furnish more universal tests that can be 

repeated over time. It is desirable to have test results that can be compared over 

a chain of re-takes. Test theories are concerned with the mathematical foundation 

of this experimental process (Allen & Yen, 1979; Hambleton & Swaminathan, 1985; 

Baker, 1992; Embretson & Hershberger, 1999; Rust, 1999).
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The test theory of choice in this dissertation is item response theory (IRT) (Wright 

& Stone, 1979; Wright & Masters, 1982; Baker, 1982; Hambleton & Swaminathan, 

1985; van der Linden, 1997). The seminal idea of IRT is that the extremely complex 

interaction between the subject and the item to be answered is captured by a set of 

response probabilities - usually presented in a form of the response probability matrix 

- governing the possible outcomes (response matrices). That is, the model does not 

make any attempt to explain why the subject gave a certain answer. It only tries 

to assign a probability to each outcome. Put in yet another way, in IRT one does 

not assume the existence of the true score or error score. It is not assumed that 

the response is uniquely determined by the subject-item pair. Even under idealistic 

test-taking situations the model carries a certain degree of indeterminacy considering 

the test outcome. This gives the model a great flexibility and was, and continues to 

be the key to its success.

IRT models are most easily classified by their item characteristic functions (ICF). 

In short, ICF gives the probability of a person giving a specific answer to an item. In 

general, it can depend on any number of parameters of the subject and/or the item 

(Baker, 1992).

Many IRT models assume that persons have only one variable affecting the ICF. 

In these cases this random variable is called ability and the model is called unidimen­

sional.

Frequently, these IRT models also assume that the more ability subjects have, the 

more likely that they are to successfully complete a task requiring that ability. This 

is called the monotonicity of ability, and is expressed by the fact that the ICF is a
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strictly increasing function of ability. It would be extremely counter-intuitive to work 

with a model which lacks monotonicity.

A family of item response models have been developed out of the work of a Danish 

mathematician George Rasch who first published his revolutionary ideas in 1960 

(Rasch, 1960). His work was inspired by L. L. Thurstone (1925) and E. L. Thorndike 

(1926) who basically worked with similar measurement models and described the 

fundamental logic of psychological measurement. The main feature of the Rasch 

model is that its ICF depends only on a single item parameter, called item difficulty. 

In addition to the monotonicity of ability it features the similarly defined monotonicity 

of difficulty. This is rarely true in other IRT models. It is also counter-intuitive to 

drop monotonicity of difficulty. This topic is still a major source of hot debate over 

the possible IRT models.

The Rasch model is considered to be the first member of a big family of logistic 

models (Rasch, 1960; Wright & Stone, 1979; Wright & Masters, 1982). The family 

consists of the Rasch model (a.k.a. 1PLM or 1 parameter logistic model) the 2PLM, 

the 3PLM, and the 4PLM. They are named after the number of item parameters used 

in the ICF.

The theory of model fit in statistics has been opened up long time ago and been 

investigated from several perspectives (Drasgow & Levin, 1985; 1986; Drasgow & 

Levin & McLaughlin, 1987; Baker, 1992; Meijer & Sijtsma, 2002). Theory of fit 

in psychometric research has become a popular field in the 1960’s and 1970’s and 

has led to the discovery of several new fit statistics, or appropriateness indices. As
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Figure 1.1: General Theory of Model Fit

the cornerstone of IRT, model fit was sought to be done since other important IRT 

concepts heavily depended upon its success.

Another important concept in IRT is the local independence (LID) (Ferrara, 1997; 

Chen & Thissen, 1997) of items, which stipulates that an item should not give infor­

mation that could be used to answer any subsequent items (McCamey, 2002). Tests 

with strongly dependent items are to be avoided since their seemingly different ques­

tions are targeting the exact same area. Several indices have been developed to justify 

the LID assumption (Yen, 1994) and they rely on a good match between the model 

and the data. If the model fit is not assessed carefully and a LID index indicate 

significant departure from independence then there is no way to tell the reason. It 

can either be the misfit of the model or the presence of local dependence. Another
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frequently utilized set of indices are developed to test against differential item func­

tioning (DIF) (Dorans & Smith, 1993; Holland & Wainer, 1993). If one requires a 

reliable answer regarding DIF then the issue of model fit has to be taken seriously. 

These and other interesting indices are nicely reviewed by Ponoczny (2001).

A general model of fit theory is illustrated in Figure 1.1 which shows that there are 

two sources of data present: one represents the real world (or observed phenomenon) 

that one wishes to investigate and another which corresponds to a mathematical 

model that has been furnished and being thought to represent the real world. A good 

fit between these two objects is hoped for and needs justification. After obtaining 

representative data about the observed phenomenon the statistical analysis of fit 

can be carried out by applying one of the fit indices coupled with the mathematical 

analysis of the theoretical model. The selection of the right statistics is governed by 

the model of choice, its assumptions and the availability of indices.

The purpose of this dissertation is to introduce a new family of fit tests for the 

Rasch model. Figure 1.2 displays how the new technique (Monte Carlo method) 

applied in the new tests relates to the general notion of fit theory. The innovative 

aspect of the new tests is the creation of the test’s distribution ”on the fly” which 

makes these tests non-parametric, hence assumption free. The price one has to pay 

is that the exact mathematical calculation which is formidable even in the case of the 

Rasch model (let alone other, more complicated IRT models) is replaced by a Monte 

Carlo simulation method.

The structure of this dissertation is as follows. First the relevant terms used 

in the study will be introduced such as, IRT models, item characteristics function,
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Figure 1.2: Model Fit in the Rasch Model

model assumptions, and the joint maximum likelihood estimation procedure. This 

will be followed by a detailed presentation of the fit problem in general. The heart 

of this introductory part is the discussion of the common method for approaching 

model fit, laying down the foundation of the newly proposed technique. This general 

point of view presented at this stage lights the road to the “Monte-Carlo solution” 

of the fit problem. Chapter 3 will give a thorough account of the geometrical picture 

underlying the typical residual-based fit analysis. This visual “aid” is mainly used 

to provide yet another motivation for the next section where the fundamental idea 

behind the new fit index is explained. Then comes the core of the dissertation, 

introducing the new family of fit indices in its entirety. This section also contains a 

theoretical comparison of the general, the residual-based, and the newly introduced 

fit tests, as well as a detailed description of the simulation method used. In Chapter
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4 the performance of the new fit tests will be investigated under various conditions. 

Variables of interests are the size of response matrices, the distributional properties of 

test scores, the number of iterations necessary for obtaining stable p-values, and the 

association between the new test and the previously used residual-based fit indices in 

the Rasch model. These analyses are performed using raw and simulated data.
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IRT MODELS, ESTIMATION, AND MODEL FIT

CHAPTER 2

2.1 Response Matrix

For the purpose of this study dichotomous models will be used exclusively, so the 

treatment of IRT extends only to these types of models.

Test data are usually summarized in the form of a two-dimensional data matrix, 

the response matrix X , that contains responses of subjects to each test item. One 

row of the matrix contains the responses of a subject to all test items and a column 

reflects responses to an item from all subjects. As mentioned earlier, it is assumed 

that the responses are scored dichotomously. It means that the elements Xji of X  

assume the value 1 or 0. Thus, is 1 if subject j  responded correctly on item i, and 

0 otherwise. The number of subjects is denoted by N  and the number of items is by 

L.

The following 4 x 10 matrix is a possible data matrix for N  

L = 10 items.
^ 1 1 1 0 1 1 0 0 0 0 ^

4 subjects and

X
1 0 0 0 0 0 0 0 0 0

1 1 1 1 0 1 1 0 1 0

1 1 0 0 0 1 1 0 0 1 /

(2 . 1)



Row marginal sums (r^, j  = 1, . . . ,  N) represent the total score of each examinee 

(number of correct responses), and column marginal sums (s*, i = 1, . . . ,  L) represent 

the number of examinees responding correctly to a particular item:

Test theories, in their most pragmatic form, are developed to explain the response 

matrix X . Their raison d’etre is the desire for a deeper understanding of the process 

that resulted in a very simple mathematical object X. As argued later, the single 

challenge in this field is the huge number of possible outcomes. For a simple test 

situation with 8 items and 8 subjects the number of possible response matrices is 264, 

an incomprehensibly large number. It will be seen later, how this simple problem is 

able to control and restrict the treatment of fundamental questions in item response 

theory.

2.2 Classical Test Theory and Item Response Theory

For many decades test theory was dominated by a theory now referred to as classical 

test theory (CTT) (Hopkins, 1998, Allen & Yen, 1979). In the framework of this the­

ory one assumes that subjects have a single trait (ability) that influences the response 

given to an item, which is assumed to possess certain difficulty. These parameters are 

estimated by the row and column marginal sums (or by the corresponding p-values), 

respectively. The model postulates, what kind of answers a pair of items can receive. 

That is, for an item pair (?i,i2) with si2 < the acceptable answer patterns are

L N

( 2 .2 )
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(1,1), (0, 0), (1,0). In other words one is not allowed to give a correct answer to an 

item after missing an easier one.

Unfortunately, for CTT, in a real test-taking situation the existence of perfect 

Guttmann patterns (as they came to be called) are extremely rare. The appearance of 

an unexpected answer pattern (0,1), in accordance with CTT, can only be attributed 

to measurement error. On the other hand, it is so frequent in practice, that one simply 

cannot achieve measurement without a huge measurement error. This drawback of 

CTT puzzled social scientists for a long time, but then a better alternative, called 

item response theory slowly emerged and has gradually gained popularity.

2.3 Response Probability Matrix

The fundamental idea of item response theory is that it allows any response pattern, 

as it only prescribes their probability. More precisely, item response theory postulates 

the existence of a response probability matrix V  of the exact same size as X. The 

elements of V  are denoted by Pp. The theory also states that the probability of a 

correct answer to item i by subject j  is exactly Pp.

Item response theory has a great flexibility compared to CTT. This statement can 

be made more transparent if we realize that item response theory actually contains 

CTT. One obtains CTT from IRT by choosing a very degenerate response probability 

matrix: V  = X . This works only for the dichotomous model in this form. This choice 

means that a subject’s answer is strictly determined by whether the subject’s ability is 

larger than what is required for the correct answer or not. If the ability is larger, then
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the probability of correct answer is 1, otherwise zero. For a test with many reversed 

Guttmann patterns the model becomes self contradictory. It predicts a correct answer 

even for too difficult items (for items that are more difficult than those that received 

incorrect answers). Also, in this case V  is very rigid and extremely sensitive for even 

the smallest measurement error. Much more importantly, V  is not determined by the 

ability of the subject and the difficulty of the item, so these notions simply do not 

gain real existence in CTT.

Item response theory becomes really powerful by the introduction of special item 

characteristic functions. IRT borrows the notion of subject ability and item difficulty 

from classical test theory and assumes that Pji depends on them in a specific manner. 

More precisely, one assumes the existence of two collections of vector-valued random 

variables (0j), j  = 1, . . . ,  JV and (A*), i = 1 , . . . , L  the subject ability and item 

difficulty, respectively. Then one chooses a function /  =  /(A , 0) of these variables 

and prescribes that

Pji = f (  Ai,©,-), (2.3)

for item i and subject j.

Now, the response probability matrix V  = (Pf) is determined fully by ability and 

difficulty parameters, so using smart test-designing strategies it is possible to compare 

abilities of subjects who have never taken the same test. This is the underlying theme 

of one of the earliest books on the Rasch model by Wright and Stone (1979) which 

made a huge contribution to the work of psychometric firms performing large-scale 

assessment with tens of thousands of students throughout the United States.
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To many, item response theory means a specific choice of / .  In the next section 

the most important item response theory models will be reviewed, with respect to 

their item characteristic functions.

2.4 Logistic Models

In accordance with the model choice of this study only unidimensional models will 

be covered namely, models with a single random variable for each subject. The main 

distinction among models then is made by the ICF and the number of difficulty vari­

ables introduced. An intuitive step to reduce the collection of possible ICFs is taken 

by allowing only functions which are monotonic with respect to the ability variable. 

Models with this property are called monotonic item response theory models.

First, note that by taking any monotonic real function of one variable /  with 

lower asymptote 0, upper asymptote 1 and with slope /'(O) =  1, one can create a 

family of 2, 3 or 4 parameter models by introducing the 4 parameter unidimensional, 

monotone model with A =  (a, 6, c, d) and 0  =  (i9)

F(a, b, c, d; d) = c T (d — c)f(a(b — $)). (2.4)

Taking d = 1 gives the 3 parameter model from which one obtains the 2 parameter 

model by requiring c =  0. If, in addition, a = 1 then one obtains a 1 parameter 

model.
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A very popular family of IRT models is represented by the logistic models. The 

family borrows its name from the logistic function (Birnbaum, 1968; Baker, 1992, van 

der Linden & Hambleton, 1997)

m = (2 .5)

playing the role of the ICF in these models. The simplest model is the one-parameter 

logistic model, a.k.a. the Rasch model. The detailed account of this model is post­

poned to the next section.

The two parameter logistic model (2PLM) utilizes two item parameters. Its ICF 

is given by

/ ( a> M ) =  1 +  e1a(6_tf)- (2-6)

Routine calculation shows that the slope of the tangent line to /  (as a function of b) 

along the set {b = is a. That is why one refers to a as the slope. Since both a and 

b are attributed to the item, these parameters together represent item difficulty.

One sometimes wants to have more freedom and introduces a third parameter to 

the model yielding the three parameter logistic model (3PLM). The ICF of 3PLM is

/(a , 6, c; 0) =  c +  1+1eQ(feC_tf)- (2.7)

The parameter c (0 < c < 1), being the lower asymptote of / ,  represents the prob­

ability of giving a correct answer with even extremely low ability, c is called the 

guessing factor, but sometimes this naming is rejected.

The 4PLM can be derived by introducing an upper asymptote for the ICF:

/(a , 6, c, d- ■&) = c +  1+deQ(feC_tf)- (2.8)

13



d (c < d < 1) stands for the probability of achieving the correct answer with extremely 

high ability, usually called the ceiling effect. Parameter estimation procedures fre­

quently run into trouble due to the large number of parameters to be estimated.

2.5 Raseh Model

The Rasch model utilizes 2 variables: item difficulty and person ability. The difficulty 

of item i and the ability of person j  are denoted by and fij, respectively.

Under the Rasch model (Rasch, 1960, Wright & Stone, 1979; Wright & Masters, 

1982) the conditional probability of subject j  scoring on item i correctly (Pji) or 

incorrectly (Qji) given the ability of the subject (i9j) and the difficulty of the item 

(5j) is defined by the following functions:

Function 2.9 is called the Rasch item characteristic function (or curve), Figure 2.1 

shows the Rasch ICF.

The Rasch or response probability matrix V  is the matrix with elements P)i (Equa­

tion 2.9).

The conditional probability of one matrix element Xji is then given by

Pji := Prob(xji =
1

(2.9)

Qji := Prob(xji = (2 .10)

P ( x j i )  : =  P r o b ( : C j j  j 6 i , i 9 j )  : (2 .11)

Also,

Q ( X j i )  ■ —  1  P ( X j i ) . (2 .12)

14
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Figure 2.1: The Rasch Item Characteristic Function

4

It is worthwhile to note that the difficulty and ability values are real numbers 

without measurement unit. Their real meaning becomes apparent only when one 

introduces the conditional probability of each element of the item response matrix as 

in Equation 2.11. It is customary to say that the scale of ability and difficulty is a 

logarithmic measure called logit which expresses that they are on the same scale.

There are two important properties of the Rasch model which are already built 

in. One of them is the fact that the Rasch ICF is a monotone increasing function. It 

reflects the expectation that the probability of correctly answering to an item increases 

with ability. There is always a better chance for correct response with higher ability 

than with a lower one.
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The second assumption that has already been utilized is that there is only one 

”trait” influencing the answer of a subject. This means more precisely, that there 

exists a family of random variables 0  =  ( $ j ) ,  j  = 1 , N  (the ability or trait). The 

ability of subject j  is dj. One does not have to make any assumptions on the distri­

bution of 0 , though. The presence of only one ability variable in the model implies 

that the Rasch model is unidimensional. Note that even though unidimensionality is 

formulated in terms of ability it is a feature of the test not the subjects taking it. In 

other words, it is a feature of the model used to explain the process of testing.

The presence of the other family of random variables the difficulty, A =  (5¿), i = 

1 ,...  ,L, also has to be considered. The difficulty of item i is

What is crucial for the theory is the conditional probability of the entire item 

response matrix. For this, knowing the conditional probability Pji is not sufficient. An 

additional condition is needed. The simplest choice is that the conditional probability 

of the response matrix is the product of the conditional probabilities of its elements. 

This definition requires the statistical independence of the matrix elements. It is 

expressed in the following equality

L(X) :=Prob(X \ (dj, S i ) P ( x j i ) .  (2.13)

Now everything is ready to formulate the Rasch model. Recall that the goal of 

the Rasch model is to explain the response matrix X.

D efinition 1 The Rasch Model for a response matrix X  is given by the following:

• Two families of random variables A and 0  (difficulty and ability);
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• The conditional probability P(xji) of the matrix element Xji, given by (2.11);

• The conditional probability L(X)  of X,  given by (2.13).

2.6 Comparison of Logistic IRT Models

In this section arguments defending the Rasch model over other IRT models will be 

introduced. Given its position as the simplest logistic model, the Rasch model is 

frequently judged pre-mature and un-suitable for good-fitting analysis. It is a fair 

criticism since the Rasch model is strictly contained in the 2PLM and as such, will 

never allow a better fit than the 2PLM, let alone the 3PLM or the 4PLM.

In the measurement society there has been a misunderstanding regarding the mea­

surement necessity for conjoint additivity. According to Wright (1999) non-additive 

models like 2PLM and 3PLM models are mistaken as improvements over the 1PLM 

Rasch model. They introduce an item scaling parameter a to estimate discrimination 

and a lower asymptote parameter c to estimate a guessing level for each item. The 

negative consequences of applying these models are evident. For example, bias in 

person measures is significant (Stocking, 1989), and estimation procedures in 3 PLM 

can drift out of bounds (Swaminathan, 1983).

Wright (1999) also claims that these models destroy additivity by introducing item 

discrimination as a new parameter, while a and b cannot be estimated independently.

Another criticism of the many-parameter models is that their variables are not 

uniquely defined by ICFs that cross, for example, slopes differ due to differing dis­

criminations, or asymptotes differ due to differing guessing parameters. This yields
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crossing curves and the hierarchy of relative item difficulty can change at every ability 

level. In this situation there will be no criterion definition of the variable of interest.

”To construct measures we require orderly, cooperating, non-crossing curves like 

the Rasch curves. This means that we must take the trouble to collect and refine data 

so that they serve this clearly defined purpose, so that they approximate a stochastic 

Guttmann scale” (Wright, 1999, p.97).

Yet another motivation behind fit analysis is the need for clarifying the correspon­

dence of the different IRT models in terms of model fit. One sees immediately that 

the fit of the Rasch model can never be better than the fit of the other members of the 

logistic family. However, knowing the fit of the Rasch model with a certain degree of 

reliability greatly helps researchers in deciding between the appealingly simple Rasch 

model and the conceptually not so well founded and mathematically questionable 2, 

3, or 4 PLMs.
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2.7 Joint Maximum Likelihood Estimation

Estimation procedures make parameter estimates available through an iteration pro­

cedure. The joint maximum likelihood estimation (JMLE) (Baker, 1992; Fisher, 1981; 

Myung, in press) procedure considers difficulties and abilities on the same footing. By 

definition, JMLE finds parameter estimates such that the likelihood function L(A, 0) 

corresponding to the response matrix X  is maximal.

In practice it is much more convenient to use the log-likelihood function

£ := l o g {L{X) ) = Y  lo g iP fo j)) =  -  Y  log (1  +  e(2a* " 1)(i<-*d ) . (2.14)
( x j i ) - X  ( x j i )=X

Note, that finding the maximum place of L(X)  and that of £  are equivalent since 

the logarithm is a strictly monotone increasing function.

Locating the maximum of £  is usually done by finding the zeros of the deriva­

tive DC of £, since, if £  has a unique maximum then it occurs at the zero of DC. 

This maximum problem is unsolvable by analytic methods (especially for large tests), 

therefore a numerical method is called for. Frequently, the Newton-Raphson algo­

rithm is used to find the zeros of DC.

Let us recall the Newton-Raphson algorithm for finding the zeros of the first 

derivative matrix DC (Kress, 1998, p. 102). First, let us choose an arbitrary initial 

point

=  ( 2 .15)

for the iteration. The iteration scheme is then given by

Xn+i = xn -  (D2C(xn))~1 ■ DC(xn), (2.16)
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where

xr. (Sn Kn Kn 1T1 1T1 ,9" 1V°1 ! °2 ) • • • ) ° L i  v l  1 v 2 1 ■ ■ ■ 1 V N ) (2.17)

denotes the nth approximation of zero, and (D2C(xn)) is the inverse of the second

derivative matrix of £  evaluated at xn.

Due to the special form of the second derivative matrix this procedure has a 

unique solution. In other words, the iteration scheme converges to a unique solution 

no matter what the initial value of xq is. This behavior seems to be a special feature 

of the Rasch model that is not, in general, shared by other IRT models.

Let us now embark on the calculation of the derivatives of £  involved in the 

computation. The components of the first derivative function are given by

T l

DC L + j

D C  _
N

- E
± e ^ - ^  ..

3 5 ; .¿iL.md
j =i j =1

3 C
L

- E
*—i3 3 , -  ̂ $7*) .¿¡ill.md

% — 1

1 +  0j) ’

±1
1 _|_ e= F '

1 < * < L, (2.18) 

1 < j  < N, (2.19)

where ±  (resp. =p) stands for 2Xji — 1 (resp. 1 — 2Xji).

The non-zero elements of the second derivative of £  are

N _P=F (Si-fy) N
D Cm

d2C
35?

d 2c

y
U  ( i +

¿)2£
L + j,L + j 332 E

n ' C ,

fa, (l + CT(l.->.))-
d2c  —eT(Si-'6j)

E  p i<Q.
j =1

E

jn

jn

i ,L + j

d 2c

dSid'dj (i _|_ eTiii-tfj))
d2C

i—1

PjiQjii

L+j,i dfijdSi
D C;i ,L + j PjiQjt,

1 < i < L ,  (2.20)

1 < j  < JV,(2.21) 

(2 .22) 

(2.23)
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where in the last two equations 1 < i < L and 1 < j  < N. Note that the equality 

P{xji)Q{xji) =  PjiQji is used .

It is transparent that

N  L

^ 2  l)2£i. ■ /■'■ = D'~ £a and that ^  D2£ L+jti = D2£ L+j,L+j. (2.24)
j—l *—l

It is customary to quote some assumptions (independence of the ability and difficulty 

estimates) of the Rasch model which would imply that D2£ L+jti = 0 for all i and 

j . It is clear from the equalities in Equation 2.24 that this would, in turn, imply 

that D2£ ü =  D2£ L+ĵ L+j = 0, as well. This is not only a contradiction but would 

also make the entire calculation meaningless since it would imply that D2 £  = 0 

everywhere.

Note, however, that in the generic case the off-diagonal matrix elements are much 

smaller than the diagonal ones. This is true for test situations when the number of 

subjects N  and the number of items L are large. That is why off-diagonal elements are 

omitted from the calculation noting that for relatively small tests or for non-generic 

situations this is a very questionable approximation.

After the simplification, D2£  becomes an everywhere strictly negative definite 

matrix, implying that the zero of its first derivative is really a maximum value of the 

likelihood function.

Recognize that, due to the special form of the Rasch ICF it is invariant to trans­

lations. That is,

fRasch (5 + s,â + s) = f Rasch (5, â) (2.25)
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for all real numbers s. To resolve this ambiguity in the model an additional condition 

has to be imposed. This is usually done by requiring that the mean of the item 

difficulties is 0. This is achieved by performing the following transformation to the
_ L

estimates (5 =  j; ^  1S the mean of 
*—1

/  . \  /  . j  \01 ui — u

¿2

$1 

$2

\ ^ N /

M-

So- 6

SL - S

$2

.V  /

(2.26)

In a Newton-Raphson scheme this extra condition needs to be taken into account 

by adjusting the mean item difficulty estimates to zero after each iteration step. 

Denoting by * the un-adjusted estimates, the details of the JMLE procedure are as
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follows:

Xn

i f  N

i f

i f
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4i \°1
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€

0i

&

\  ß«  /

. . .  (2.27)

where —> symbolizes the mean adjustment (Equation 2.26) and => stands for the 

Newton-Raphson iteration step (Equation 2.16).

The iteration stops when the norm1 of the difference

\Xn—l X r, (2.28)

between two consecutive parameter estimate vectors is smaller than a prescribed 

number. This number is usually called the margin of iteration. In practice this 

number is chosen to be around 0.001 and in any computer program this can be set 

by the researcher. The last element xn in the iteration scheme is the estimate of the 

parameters sought by the researcher.

1 The usual Euclidean norm is defined as

\x
n

5=1
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Note that from a practical point of view the estimates obtained by this method 

can be considered exact solutions to the mathematical problem of finding the zeros of 

DC. By adjusting the iteration margin appropriately we can achieve any prescribed 

precision. If estimation procedures that are based on the same algorithm give different 

estimates then that cannot be attributed to the fact that they are estimates. These 

estimates remain estimates in the sense that the measurement procedure itself carries 

an inevitable measurement error.

2.7.1 Data ” Cleaning”

There is a very important computational, as well as conceptual issue that has not yet 

been discussed. It concerns the fact that the estimation procedure cannot converge 

if there are rows or columns with all Os or all Is (see Wright & Masters, 1979). Let 

us assume that the first row consists of only Is, that is the first subject gave correct 

answer to all items. Let us choose any set of estimates (¿ i,. . . ,  SL, $ 1 , • • •, $w)- The 

contribution C\ to the log-likelihood C coming from the first row is

Adding any positive number to $ 1  will increase C\ and in turn C. This means that 

the maximum of the log-likelihood can only be achieved at a point where the ability 

estimate of the first respondent is oo. The same reasoning yields that in case of a 

constant row or column the estimate vector will lie outside any bounded region.

The conceptual explanation is that those subjects that answer all questions are too 

smart for the test. These subjects cannot contribute to the measurement targeted by

L

(2.29)
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the specific test and they have to be discarded from the analysis. By the same token, 

those subjects that answer all questions wrong do not attribute to the measurement 

process either. Therefore, data ” cleaning” is not an attempt to artificially improve 

fit. The removal of rows and columns with constant values has solid computational 

and conceptual reasons.

This procedure can be easily demonstrated by looking at a moderately sized re­

sponse matrix but requires extensive computing time for larger matrices. This ” clean­

ing” procedure is comparable in running time to the entire estimation procedure.

The following example will present the steps of a general ’’data cleaning” proce­

dure. The response matrix to start with is the one introduced in Chapter 2 (2.1) with 

size of 4 x 10. After removing two columns, two rows and again one row the final 

” cleaned” response matrix becomes a 3 x 6 matrix.

The steps are as follows:

X

1 1 0 1

0 0 0 0

1 1 1 0

1 0 0 0

1 1 1 0 1 1 0 0 0

1 0 0 0 0 0 0 0 0

1 1 1 1 0 1 1 0 1

1 1 0 0 0 1 1 0 0

1 0 0 o \  /
1 1 0

0 0 0 0
1 1 1

1 1 1 0
1 1 0  0

1 1 0  1 J  x

l )

1 1 0 0 0

0 1 1 1 0

0 1 1 0 1
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1 0  1 0  0 0/ \

X,c lean 1 1 0  1 1 0  

v 0 0 0 1 0 1
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2.8 Rasch Model Fit Analysis

The importance of model fit can not be overstated. No matter how consistent and well 

established a theory is if the data are not explained an alternative has to be found. 

Data fit simply means the extent to which the underlying social and/or psychological 

process, represented by the data, is explained by the model. If the model is able to 

reproduce the observed data with high probability then one can say that the data 

fit the model (see Figure 1.1). The higher the probability of the observed data the 

more one believes in the model. Since perfect fit can rarely be achieved one has to 

develop an array of tools to measure the ” distance” of the observed data from the 

data created by the model. The quantifications of this distance are called fit indices.

Models that can stand several decades of investigation and almost always display 

good fit constitute the foundations of educational measurement. Without well-fitting 

models educational and psychological measurement could not exist.

Many advocates of the Rasch model argue, that the Rasch model is not only sim­

ple and beautiful, but due to the conceptual difficulties of other item response theory 

models, it is essentially the only one that could be used in a sensible manner. The 

biggest criticism is that the simplicity of the model also results in the worst fit (at 

least in the logistic family of IRT models). For, the exact form of the other logistic 

models (2PLM, 3PLM, 4PLM) ICF reveals that the maximum likelihood estimation 

procedure for the Rasch model is the same as the maximum likelihood estimation 

procedure for the higher logistic models restricted to the subset of the variable space
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where the additional parameters are set to appropriate constants. Having more free­

dom in the choice of the parameter estimates clearly results in a better (or at least 

not worse) fit.

Arguably, to see how ” badly” the Rasch model fits the fit analysis must be taken 

very seriously. When the fit analysis introduces extra assumptions and fails, then not 

only the model, but the extra assumptions become suspicious.

By no surprise, the theory of fit in IRT is not much younger than the theory 

itself. Wright & Stone (1979) and Wright & Masters (1982) introduced the mean- 

square (MNSQ) fit indices. Practically, these are distances between the response 

probability matrix V  and the response matrix X  with respect to specific weights.

The rc-distance of two matrices A and B  of the same size is given by the square 

root of the function

(2.31)
ij

where w is the weight matrix satisfying: Wij > 0 for all i , j .

A residual fit index is usually of the form D ^(A ,P) with some special weight w.

2.8.1 Mean-Square and Log-likelihood Tests

The first item-fit statistics for the Rasch model proposed by Wright and Panchapake- 

san (1969) were based on person raw score groups which focused on the difference 

between the observed and expected score for a group of persons with the same raw 

score on a test (Smith, 1995). Subsequent developments were based on the item 

and person residuals and were expressed in a chi-square form. Then, this chi-square
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statistic were converted to a mean-square by dividing by the number of degrees of 

freedom.

The total MNSQ outfit is defined as

(2.32)

MNSQ infit is defined as

L N

E Efo. -  P j i f

MNSQjn L N (2.33)
E E P j i Q j i
i — 1 j — 1

According to Wright and Stone (1979) and Wright and Masters (1982), MNSQ 

outfit follows an approximate x 2 distribution (after multiplying by NL)  with N L  

degrees of freedom.

These statistics originally were evaluated as fit mean-squares in BICAL, an early 

Rasch calibration program, with expected value of 1. Unfortunately, the critical 

values for detecting misfit depend on the the degrees of freedom so they will vary 

from sample to sample (Smith, 1995). Due to the difficulty involved in handling the 

X 2 distribution the MNSQ score were transformed to an approximate unit normal 

distribution using the Wilson-Hilferty transformation (Patel & Read, 1996).

More precisely one defines the standard z score belonging to MNSQ outfit as 

follows:

(2.34)
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For infit one finds the standardized value by

■\ I \SQ.;n_. ,{,/ ■
3 ({/MNSQjn -  f) 

Q
1
3 ’

where q is the standard deviation of infit given by

Q

L N

E E  P.nQ.n(P.n -  Q ji?
i —1 j —1

L N

E E PjiQa
i —1 j —1

(2.35)

(2.36)

(see Wright & Masters. 1982 p. 100).

Based on the assumptions, both ,\I .\ 'S Q fo llo w  a standard normal distribution

iV(0,l).

Levine & Rubin (1979) applied the log-likelihood function to assess fit.

L N

£ 0 := £ (X)  := log(L(X)) = E  E 2*  i0S P>‘ + (! -  **) logd -  Pa)- (2-37)
i — 1 j — 1

Drasgow, Levine, & Williams (1985) have used the standardized version £ z of this 

index, that is asymptotically standard normally distributed.

£ , = (2'38) <7[£>o)

where
L N

£ ( A ,)  :=  E  E  +  i 1 "  p ji)  !o g (!  -  P ji)  (2 .39)
*— l  j — l

and
L N (  P \Â ) ■■= E E PA  - pj<) >°62 (tEE)' (2-40)

i = 1 j = l  '  i % '
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There is an ongoing battle between these fit indices (Li & Olejnik, 1997; Linacre, 1997) 

even though both of them are perfect candidates for assessing model or person/item 

fit. The main drawback of both is that they use extra assumptions about their 

distributions that are not always satisfied.

2.8.2 General Theory of Model Fit

In this section the general theory of item response theory model fit is discussed. The 

generality of the presentation will allow pinpointing where the particular fit indices 

enter the picture and how their deficiency can be remedied.

In the framework of dichotomous IRT, for even a moderately large response ma­

trix, the number of possible response matrices is already incomprehensibly large. The 

number of dichotomous response matrices of size N  x L is 2NL. In this humongous 

set one has to calculate the probability of each element (under the assumption that 

the model holds). As will be shown, this is practically impossible, making the theory 

of model fit a subtle problem.

To be more specific, let there be given a response matrix X  of size N  x L. It is 

assumed from now on that the estimation procedure has been carried out and the 

parameter estimates have been obtained. These estimates give rise to the response 

probability matrix V  via Equation 2.9. Then, one considers the collection of all 

response matrices Mresp(N, L) with size N  x L. The set Mresp(N, L) is defined to be 

the collection of N  by L matrices with entries 0 and 1.
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Let y  be an element in Mresp(N , L). The probability required for the hypothesis 

testing concerning model fit is the conditional probability

Prob(y | V) := IJO /,,/’,  +  (1 -  yji)Qji). (2.41)
j i

(Note the subtle difference between L(X)  and Prob(3; | V).)

This probability measure p(V) on Mresp(N, L)

p := p(V) : Mresp(N, L) [0,1] : y  ^  Prob(^ | V) (2.42)

is the null distribution for the hypotheses testing.

Due to the enormity of the set Mresp(N, L) for even moderate values of N  and L 

it is absolutely hopeless to handle this null distribution in its entirety.

The next step in the hypotheses testing is to find the ’’tail” probability (or p- 

value) p0 of X.  This tail probability p0 can be defined as the sum of all conditional 

probabilities Prob(3; | V) satisfying Prob(3; | V) < Prob(Tf j V) =  L(X)  over y  e 

Mresp(N,L), that is

By introducing

Po :=  Y ,  P ro b ^  I p )-
3̂: Prob(3̂  j 'P)<Prob(A' | ~P)

Bl := { y  : Prob(y | V) < Prob(Tf | V)}

(2.43)

(2.44)

one can rewrite p0 as an integral of the constant 1 function over Bl with respect to 

the probability measure p:

Po ■■= P(Bl ) := J 1 dp (2.45)
Bl
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This form allows the formulation of the fit problem for a general fit index. For 

instance, the null probability of the MNSQ fit test is defined by using

B mnsq  : =  { y  : D2(y,P) <  MNSQ(Af) < 1 }  U { y  : D2(y,  V) > MNSQ(Af) > 1 }

In other words, the null probabilities are always the measures of some specific sets 

defined by the particular fit index of choice. The difficulty in handling these indices 

is always the same, however. It lies in the practical impossibility of handling the 

probability distribution p by exact methods.

Note that the probability p0 in Equation 2.45 is the p-value of the L-test, which 

is the fit test using the likelihood function itself as the fit index. From the point of 

view of the maximum likelihood estimation this test seems to be the most natural 

choice.

The MNSQ and Cz tests with their probability normality assumptions show how 

practitioners make assumptions about their respective null distributions allowing a 

first approximation of fit analysis.

Having the null-probability p£ for some fit index V, the final task is to decide if 

it is larger or smaller than a prescribed threshold probability a  (traditionally a  lies 

in the range [0.001, 0.1]). When p0 < a  then the null hypothesis is rejected and it is 

stated that there is not enough evidence to support that the data fit the model (or 

the model explains the data).

(2.46)

in place of Bl and defining the p-value by

(2.47)
0 M N S Q
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A FAMILY OF NON-PARAMETRIC FIT INDICES

3.1 Statement of Problem

Unfortunately, both the MNSQ-based outfit and infit indices as well as the likelihood- 

based £„ and Cz use a strong assumption regarding their distributions. Namely, it 

is assumed that MNSQ statistics have a x 2 distribution. It is customary then to 

convert it, using the Wilson-Hilferty transform, to MNSQ,,/,/ which is then assumed 

to have a standard normal distribution. This assumption is the normality assumption 

of MNSQ. Cz is also assumed to be standard normally distributed. In cases when 

these assumptions fail to hold, the appropriateness of MNSQ and of Cz are in danger. 

There are several studies targeting this issue (Li & Olejnik, 1997; Noonan, Boss & 

Gessaroli, 1992; Wright & Linacre, 1985; Smith, 1982). They all show evidence that 

the distribution of MNSQ statistics depart from normality.

Li and Olejnik (1997) conducted a simulation study for MNSQ,,,,/.,,/,/ person fit 

with several test and misfit scenarios. For each scenario 50 replications were made 

resulting in a fit index distribution. Investigating the normality of these distributions 

using skewness and kurtosis they found that it significantly deviates from the normal 

distribution. A similar study was conducted by Noonan, Boss and Gessaroli (1992)

CHAPTER 3
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also yielding that MNSQout,z s td  person fit shows a great departure from normality 

with large skewness and extremely large variable kurtosis.

Similar results were found earlier by Smith (1982) and Wright and Linacre (1985). 

Wright and Linacre suggested raising the cut-off value for rejecting person fit to 3.0 

(from the standard 2) or beyond to compensate for non-normality.

3.2 Rationale for the New Tests

A closer look at the MNSQ fit reveals that it is nothing else but a distance squared 

between the Rasch probability matrix V  and the response matrix X  with respect to 

specific weights. First, an overview of the elementary linear algebra involved is given.

In general, a vector w = (u>j)"=1 G R" is called a weight if its elements are all 

positive, that is Wi > 0 for all i. The distance between two vectors x, y G R with 

respect to the weight w (or rc-distance) is given by

The name is justified, because Dw satisfies the conditions required in the definition 

of a distance (see e.g. Lang, 1986). That is, one has for all x ,y , z  G R"

(i) Dw(x, x) =  0 => x = 0,

n

(3.1)

(ii) Dw(x,y) = Dw(y,x),

(iii) Dw(x, z) < Dw(x, y) +  Dw(y, z ).
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From Equation 2.32 it is clear th a t .MXSQm,( is the distance squared

M N S Q ^ r ^ C P ,* ) (3.2)

with weight
1

w,o,Ji NL  •

Similarly for the MNSQ infit (Equation 2.33) one has

MNSQ,„ =  D l . I V ,  X ) ,

(3.3)

(3.4)

where the weight is
1

L N

E E P j i Q a
i —1 j —1

(3.5)

Note, that w^ji is a constant vector, that is for the infit index one uses a constant 

weight.

Before starting the precise definition of the new fit indices let us give a short 

rationale for them.

Due to the reasons presented in the previous section a completely new direction 

has to be found for fit analysis to overcome those limitations. The use of predefined 

generic distributions has been an issue for a long time, not only in fit analysis but 

also in many other fields of statistical modeling.

The innovative idea for the new testing method is the creation of a sampling dis­

tribution representing the Rasch model and to create a second distribution that shows 

the characteristics of observed data. Both are created through computer simulation.
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Furthermore, the original fit statistic M N S Q 0Utfu and M  N  SQinfu will be utilized to 

some degree.

In generating the distributions the main idea is to use the distance interpretation of 

MNSQ. From this point of view, the goal of the fit test is to find the distance between 

V  and X  and then to assess how far we have gotten with the estimation procedure 

from the initial data X.  One has to be careful with the distance interpretation, 

though, as the expected value of this distance is not zero but 1.

The idea is to use computer simulated data to find out how much deviation of 

this distance from 1 should be considered too large. In the process the computer

generates a new set of response matrices y k, k = 1.......I\ using the item difficulty

and person ability estimates that actually specify the probability matrix P. (K  is 

the number of simulated matrices)1.

By construction, for these simulated matrices the Rasch model holds (note that 

the Rasch model has been used to generate them!). In other words, this simulated 

set shows the best case scenario for the test output from the Rasch point of view. 

Every one of them could have been a completely legitimate response matrix in a 

process governed by the Rasch model with ability and difficulty vectors given by the 

estimates obtained from the original response matrix. The task now is to find where 

X, the original response matrix, is situated among these simulated matrices. It is 

very important to note that by this simulation method a sample of response matrices 

is created in a way to make finding good fit for X  as difficult as possible.

1 As can be seen later, it actually generates two sets (Ti and T2), because at some point of the 
hypotheses testing the independence of the simulated data is needed.
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Y1

Y2

Figure 3.1: A non-fitting Rasch model

The new simulation technique proposed in this work is embodied in four different 

fit tests which will be discussed in the following sections in more detail. The tests 

aim to allocate X  in relation to V which in turn has been replaced by y k. The 

model/sampling distribution can be generated in two different ways with the aid of 

y k. Also, the observed data will be represented by either the original MNSQ fit 

statistics or a distribution.

To give the reader a general idea the test that uses a sampling distribution and a 

fit statistic is illustrated in Figures 3.1 and 3.2 (a non-fitting and a fitting example, 

respectively).

If X  sits outside the ” cloud” of ^s, then it is highly unlikely that X  is the result 

of a process that can be described by the Rasch model (Figure 3.1). On the other 

hand, if X  can be found inside the ring of simulated matrices then we tend to accept
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Figure 3.2: A fitting Rasch model

that the extremely complicated interaction between the test taker and the test can 

be actually understood with the aid of the Rasch model (Figure 3.2).

Figure 3.3 shows an empirical distribution of D ^ ^ y ,  V). For this run the number 

of simulated matrices chosen is K  = 1000 and the number of bars is 50. This 

graph symbolizes a sampling distribution that has been simulated via a Monte Carlo 

method. It can be visualized as a projection of all simulated y  matrices on a 2 

dimensional surface.

By now, it should be clear that this distribution will serve as a basis for the fit 

test. The p-value is obtained by finding the tail probability which is the area in the 

tail beyond the cut score. If this area is larger than the pre-defined a  then fit is 

accepted; if not, the null hypothesis of model fit is rejected. In fit analyses, model 

fit is desired, so analysts are always looking for high p-values. The selection of a  is 

dependent upon the purpose of the study, though.
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Figure 3.3: A D ^ ^ y ^ V )  distribution

3.3 Simulation of Rasch Response Matrices

In this section the algorithm to simulate Rasch response matrices used in the new 

tests is described. The initial data are the Rasch probability matrix calculated from 

the item difficulty and person ability vectors, which are obtained from a suitable 

estimation procedure. The generation of a response matrix y  is done by generating 

each of its elements separately. To create a single response of subject j  to item i the 

computer generates a random number r uniformly distributed on the interval [0,1]. 

The response yji is then defined by

va
1 if r < P j i ,  

0 otherwise.
(3.6)
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where Pji is the Rasch probability as in Equation 2.9. The parameter estimates are 

used through of course.

It is clear from the construction, that for the expected value of y  one has the 

following formula

£{y)  = V  or £(yji) = Pj i V(i,j). (3.7)

The heart of the Monte Carlo fit test is the very simple consequence of this 

simulation method:

Observation: The relative frequency of a response matrix y  E  Mresp(N , L) in the 

simulation scheme described above is the probability Prob(y \ V).

This observation is due to the independence of the simulated matrix elements 

which in turn is implied by the independence of the random numbers r. This ob­

servation says that the proposed simulation scheme produces every response matrix 

y  with probability equaling the probability p((V) (Equation 2.42). In other words, 

the simulation method creates an approximation of p. That is why the use of this 

simulation scheme is well suited for the proposed fit analysis.

The following theorem reveals the relationship of the several expected values ap­

pearing in the simulation.

Theorem 1 Assume that there exists a matrix valued random variable y  = (y^f) (1 < 

i < L, 1 < j  < N) with the property that the expected value of the ij-th element equals 

the Rasch conditional probability:

£{yij) — Pij- (3.8)
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Also, assume that y '  is a random variable with the same properties as that o f y ,  and 

that y  and y '  are independent.

Then one has the following equalities:

= 1, (3.9)

£(t iHX,y))  -MNSQ,„(^) = 1, (3.10)

£ (D'UP-y)) =  1, (3.11)

£ ( DU p,y)) =  i. (3.12)

£ (D'Uy,y')) =  2, (3.13)

£ W ( i , y ) )  =  2. (3.14)

Proof: First rewrite .MXSQm,(:
L N  2 L N  L N  p

NL ■ MNSQ„, = £ £  -  2 E E ^  + E E # -  (3.15)
i = l  3=1 * i= l j = 1 Q v  i= 1 j = 1 Q i

Then £ y)) is expressed as:

/  L  N  2 \  /  L  N
i v ' '  XiJ i o c i  xuyijN L - £ ( D l t(x,y)) = £ f Y . T . j r % - } - 2£ S E W
\ ;  i  ,  i  1 ' M ' ' /  \ i = i  j

+ i  ( E E # ? r
\ T t  ¿ i  / ;/ ^ ;/

L N  2 L  NXia v '  v \ X{j£[g}{. L N
Y " ' s r ^  _  2  Y " ' Y " ' x’h’c  KiJijS , Y " ' Y " ' £  (V i j )
Z ^ Z ^  / > .  Q .  Z _ ^ Z _ - i  p .  n .  ~  Z - i Z _ - i  / > .  v i .

j=l j=l ¿-1 j=l*—1 J = 1
L iV 2

E E p t E ^ E E ^  + E E q T-
i = l  i=l i = l  i=l i = l  i=l

PijQtj
L N  L N  ,*£? 1 V 'X V 'X 1
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Next, recognize that (t/ij)2 = Vij (since only assume values 1 or 0). In the last 

step, note the assumption that £(yij) = Pij.

For the difference one has

L N  L N
£ (DUX,y)) -hWSQUX) = w E E q— w E E tt:

i=1 j=l i=1 /^  ^  Qij NL  Z_^ Qi=1 j = 1 i=1 3 = 1
J L ^  i  _  p . .sr^ 1 r t3

N L Q ,i=1 3=1 
L N

NL

NL
~NL

E E1
*—l j=i

1.

For the infit index use the weight

Wi.
1

L N

E E PiiQi,i=lj=l

(3.16)

Then

/  L N L N  L N

.\I\'SQf„ =  win ■
\*=1 j=l *—1 j=l *—1 j=l

(3.17)

On the other side,

/  L N L N L N

£ ( D U x , y ) )  = Wiu-£ E E 4 - 2 E E  ^ijUij T E E s ’
\  i i j=l 

/  L N
i=1 j=l 

L N
i=1 j=l 

L N

Win ‘ ( J2 J2 x2ij~2J2J2 xi<pi<+J2J2 pv

(3.18)

(3.19)
\  ; i j=i i=1 3=1 *—1 3 = 1
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Then write
L N

£ ( D l ( X , y ) ) - M N S Q in(X) =  win- Y , Y , P^ i (3.20)

(3.21)

This section is concluded by commenting on the Monte Carlo method suggested 

by Ponoczny (2001).

There, for the simulation of response matrices a similar but in many respect 

different approach was chosen in an attempt to produce a non-parametric fit test. 

Ponoczny chose the simulated matrices y  such that they have the same row marginal 

sums as X.  This raises several issues:

• There have been several studies devoted to the problem of sampling the col­

lection of matrices with given row marginal sums (Snijders, 1991; Rao et. ah, 

1996; Roberts, 2000; Ponoczny, 2001); and it is also argued by the same authors 

that the problem in general, due to the size of this set, is unsolvable from a 

theoretical point of view.

• By fixing the row marginals the process is inherently restricted to the Rasch 

model, as it is well known that the estimates in the other logistic models are 

sensitive to the inner structure of the rows of the response matrix. Even though 

there are estimation methods developed for other IRT models that use only the 

marginal sums, these are all approximate methods and use some parametric 

assumption about the underlying data, which is exactly what the Monte Carlo 

method wants to avoid.
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• From the perspective of the probability measure (Equation 2.45) the constant 

row marginal sums may introduce an unwanted bias to the fit analysis. To make 

this point more transparent, let C denote the set of response matrices with the 

same row marginal sums as X.  For Ponoczny’s method to be unbiased what 

has to be shown is that
p (B n C )

P(C)
P(B), (3.22)

where B is any set introduced in conjunction with the fit analysis as in Equations 

2.44 and 2.46. The rather strong independence condition in Equation 3.22 is 

hard to believe to hold in general (or for even special cases).

All these problems disappear at once if one chooses the method suggested here.

3.4 Algorithm Defining the New Tests

Following, a family of fit tests is presented. First, a long list of procedures is given 

and then it will be shown how to combine them to obtain particular members of this 

family. One introduces the general notation D2 for the weighted distances introduced 

in the previous section.

(a) Run a joint maximum likelihood estimation (Wright & Stone (1979) p. 62; 

Baker (1992) p. 144, also in Chapter 2.7) (or other estimation) procedure on 

the response matrix X  to obtain the ability and difficulty estimates;
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(b) Generate K  pairs of response matrices y f ,  y k (1 < k < K)  using the Rasch 

model (for precise meaning see the section on the simulation method). The 

elements of the matrix y k are denoted by (l = 1,2);

(c) Calculate all K  D2 between X  and y f  according to the following formulae:

D2'̂k,out;X
-, L  N  ( k \ 2

_1 \xji Vlji)
PjtQn ’î=1 j=1 1 £1

(3.23)

L N

E  E  (xn -  v ia )
D2u k,in\X

*—i j—i
_ L N  ' (3.24)

E E p j i Q j ii—1 j—1

This provides distributions D l out.x  and D^in.x .

(d) Calculate all K  D2 between V  and y k according to the following formulae:

■= D l J V . y l ) ,  (3.25)

D l,in;v  ■= (3.26)

This provides distributions t .-p and D l in.v .

(e) Calculate K  D2 within the set ((V|)|Li defining the distributions out.y and

DkM-,y

n 2 — n 2 ( y k' y k")^k^ t^y  ■— J~JoutW2 ; J 2 )i (3.27)

Y)2 — r)2 iyk’ yk"\ ±JinW2 i ^ 2 )i (3.28)

where (k!, k") are randomly chosen pairs.
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Consider the following hypothesis tests (for both outfit and infit; for simplicity the 

subscripts out and in are dropped):

(/) H0: The samples (Dk.x  — l ) f=1 and (Dk.r )k=l are from the same population,

Hi: The samples {D\.x  — l )k=1 and (D2k.r )f=1 are NOT from the same popu­

lation.

(g) H0 : The samples {Dl.x )k=1 and {Dl_y )k=1 are from the same population,

Hi : The samples {Dk.x )k=1 and (Dk_y)k=i are NOT from the same population.

(h) H0 : The sample (Dl.r )k=l and MNSQ are from the same population,

Hi : The sample (Dk.v )k=1 and MNSQ are NOT from the same population.

(i) H0 : The sample (Dk.y — l )k=i and MNSQ are from the same population,

Hi : The sample (Dk.y — l)|L i an(l MNSQ are NOT from the same populations.

Note: The two simulated sets are used in step (g) where they are needed to ensure 

that the two distributions {Dk.x )k=1 and {Dk.y )k=1 are independent. To make all 

these tests independent of one another, one should choose more sets of simulated

matrices, although it is avoided here to ease the presentation.

The following four fit tests are developed:

M C -p x  '■ (ft) —̂  (6) —̂  (c) —Y (d) —Y ( /)?  (3 .29)

M C y x  '■ (ft) —Y (6) —Y (c) —Y (e) —Y ($ ), (3 .30)

M C -pM  '■ (ft) —̂  (¿) —Y (d) —Y (d ), (3 .31)

M C y M  '■ (ft) (b) — Y (e) — Y (i ). (3 .32)
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Dist 1 Dist 2

Figure 3.4: Two p-values from two distributions

To actually perform the hypothesis test the method of computing the one-tail proba­

bility is chosen by counting the elements in one distribution that are higher (or lower, 

as the case maybe) than the mean of the other distribution. To be more precise, one 

defines the p -value for a test by the following:

#  of response matrices with worse fit
p := ~r,—,■ „ ■----;-----;------------------- :---- • (3.33)#  of all simulated response matrices

This results in two p -values (denoted by p  and p ')  (as in M C -p x  and M C y x )  in 

the case of two distributions (Figure 3.4), and one p -value in the case of a single 

distribution (Figure 3.5) (as in MC-pm and MC^m)-

Finding a p -value that is larger than the predefined a  shows that the data fit the 

Rasch model, whereas misfit is indicated by a p-value that is less than a. Alterna­

tively, one may report the p -value and let the practitioner to decide on fit.
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Distribution

Figure 3.5: p-value from one distribution with MNSQ

3.5 Description and Specifics of the Tests

As a consequence of the innovative simulation technique four tests were created for 

testing model fit. They have been designed to make use of the simulated distributions 

extensively. All of them have a sampling distribution simulated, therefore they avoid 

using assumptions in terms of an existing generic distribution.

The reason for having four tests can be understood by the following. The simula­

tion results in a set of possible response matrices denoted by y .  Using the weighted 

distance formulae one may construct three distributions of distances:

(a) Distances among V  and y .  This is related to the model which in turn is 

represented by V. The expected value of this distribution is 1.

(b) Distances among X  and y .  This is related to the data represented by X.  The 

expected value is MNSQ+1 (see Theorem 1).
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(c) Distances among y .  Here again, only the model is used (implicitly, since y  is 

generated using V). The expected value of this distribution is 2.

The goal of fit analysis is to compare the model and the data (V and X). There are 

four ways to do this.

• MC-px'- Compare (a) and (6),

• MCyx'- Compare (b) and (c),

•  M C - p m - Compare (a) to MNSQ,

• MCyM'■ Compare (c) to MNSQ.

There are other comparisons possible which are left out. One may compare MNSQ to 

(b) but that would not check the fit of the model, rather it would constitute a check 

for the simulation. The same can be said about the comparison of (a) and (c) as this 

lacks explicit reference to the data X  it would only check how accurate the simulation 

is. A more sound test for the appropriateness of the sample y  will be outlined in the 

stability study presented in Chapter 4.

In the previous section the algorithms for developing all four tests have been 

presented. Now, each test will have an in-depth discussion about its properties, 

rationale, and its underlying geometric pictures will be presented.
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Figure 3.6: Geometry Behind M C -p x

3.5.1 M C VX

The first test aims to find out whether there is a significant difference between the 

empirical distribution built from X  and y k and the sampling distribution generated 

using V  and y k.

More precisely, the distribution of P>\.Xi defined in Equations 3.23 and 3.24, rep­

resents an empirical distribution furnished by the squared differences of the response 

matrix X  and the generated matrices y k. The second distribution is made out of 

defined in Equations 3.25 and 3.26, which represents the squared distances 

between y k and the V  matrix (Figure 3.6). Then, a significance test is need to be 

performed to find the relevant p-values. This is simply done by counting the portion
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of cases beyond the intersection of the mean and the tail of the other distribution 

depending on which tail probability is needed (Figure 3.4).

The motivation behind this test is as follows: MNSQ fit analysis aims to find and 

assess the distance between V  and X. Good fit is obtained if that distance is close 

to 1. To make the comparison, the test ” blows up” V and substitutes it with a set 

of response matrices y.  If V is close to X  then the average distance between V and 

the set of ^ s  is close to the average distance of X  and ^s. Unlike the traditional 

MNSQ fit tests, this time one not only has the average values but both distributions 

are present making a realistic comparison possible.

An awkward feature of this test is that 1 has to be subtracted from the later 

distribution. This 1 is the expected value of the distance between V and X  (for both 

outfit and infit) which is represented by a circle in Figures 3.6 to 3.9. This topic was 

detailed previously in Theorem 1.

3.5.2 MC_v,v

The test MCyx  aims to serve as an alternative to MC-px- It also requires two 

distributions similarly to the previous test. Although, the empirical distribution 

(D% x ) stays the same the nature of the sampling distribution has changed. Note that 

the two simulated sets ensure that the two distributions {Dl-x)k=i and {Dl-y)k=i are 

independent (Figure 3.7).

If the model fits the data, then X  is indistinguishable from the set of model 

generated response matrices y .  That is, one should find that the average distance
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Figure 3.7: Geometry Behind M C y x

between X  and the set of y  is the same as the average distance among the y  matrices. 

Here, again, one has two distributions resulting in two p - values ( p  and p ' ) .

3.5.3 MC-pm

This test reveals whether there is a significant difference between the sampling or 

modeled distribution generated with V  and y k, and MNSQ statistics.

MC-pm requires only one distribution and one fit statistic. The distribution is 

constructed from defined in Equations 3.25 and 3.26 the squared residuals

between y k and the P  matrix, just like in the first test (Figure 3.8). This test 

might resemble the test developed by Wright and Stone (1979), however, there is a
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Figure 3.8: Geometry Behind MC-pm

significant difference between the two methods. In this case, no assumption is made 

regarding the sampling distribution; rather it is generated ”on the fly” based on the 

model and response matrix characteristics. The test is distribution-free, hence the p- 

value is not influenced by the violation of assumptions and will give unbiased results. 

Issues related to distributional assumptions in Rasch fit analysis have been discussed 

in the previous section.

The rationale behind this test is that any simulated y  matrix could be a perfectly 

acceptable response matrix. As always, the set of response matrices, ^s, are created 

to represent the model. The distance MNSQ is the traditional residual-based fit 

statistics. This time, however, one does not have to evaluate it against an artificial
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Figure 3.9: Geometry Behind MCy,n

(and faulty) normality assumption. Rather, the Monte Carlo sampling distribution 

is created by the computer and the p-value is calculated on his generated distribution 

(Figure 3.5). The idea is very natural and one believes that it has not yet become 

common practice only because robust computers are just becoming available, and 

without them the Monte Carlo fit test could run for days.

3.5.4 MCj>m

Yet another extension of the ideas above is the test denoted by MCyM■ The under­

lying geometric picture is explained as follows (Figure 3.9). To assess the distance 

between X  and V  first one ” blows-up” V  into a set of response matrices and then
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substitutes X  by another set of response matrices. The average distance between 

these two sets is then evaluated against MNSQ. If the model fits, then X  is equiv­

alent with the generated set of ^s, so MNSQ should be the same as the average. 

Again, a closer look at the structure of the test reveals that 1 has to be subtracted 

from the distribution before comparison. Having only one distribution and a fixed 

number (MNSQ) this test provides only one p-value (Figure 3.5).

3.6 Case of General Fit Indices

In this section the author indicates how the above described procedure can be ex­

tended to other IRT models and to other indices.

Let us accept for the purposes of this discussion that an IRT model is fully rep­

resented by its response probability matrix V. As before, the elements of V  are the 

probabilities of the actual performance levels given all the model parameters. Any 

IRT model defines the set of response matrices, that is the set of matrices with size 

N  x L and with entries according to the model. For a partial credit model, for 

example, the entries are restricted to the range of possible response levels.

The simulation method should be changed in accordance with the model. The 

actual method varies from theory to theory but the content is always the same: one 

has to sample the set of response matrices so that the relative frequency of a matrix 

equals its probability calculated from V. The crucial difference between models lies 

in the way one may find the estimates of the parameters, but that is no concern of 

the Monte Carlo method outlined here.
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According to Drasgow, Levine, & McLaughlin (1987) and Klauer (1995) and Sni-

jders (2 0 0 1) almost all fit statistics can be expressed in the general form

L N

v  ~  /  , /  Xxp PjiHi (3.34)

or
L N

(3.35)

where Wji and Vji are appropriate weight functions. As can be shown, the procedure 

in the previous section generalizes in a straightforward manner to any fit statistics 

given by Equations 3.34 and 3.35. To be more specific, let us briefly indicate how 

one can formulate this procedure in the presence of a general fit index V  and V* 

(Equations 3.34 and 3.35). For simplicity only MG-py the index corresponding to 

MC-pm is covered.

Let us again start with the assumption that the parameter estimates have already

been obtained. Then, using a set of simulated matrices y k, k = 1....... /\" as before

one creates distributions

L N

(3.36)
*— l  j — l  

L N

(3.37)

Then, one performs the hypotheses testing to see if

v  = V{V, X ) and L ' =  L ' (P, X) (3.38)

belong to the same population as the samples (1 4 ) and (14*), respectively.
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It is now easy to understand how one may extend the Monte Carlo procedure to 

a much wider context. For any index calculated from X  and V  one may produce a 

simulated set of response matrices and calculate the same index for y  now in place 

of X . The observation made in Chapter 3.3 about the correspondence between the 

relative frequency of y  and the probability p(^) of y  makes it possible to find the 

p-value of the index in question.

Credible tests must possess good psychometric characteristics in order to be used 

with trust. Thus, after introducing the new Monte Carlo fit tests the next step to 

proceed to is to investigate the validity and stability of the new tests.
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CHAPTER 4

ANALYSES AND RESULTS

4.1 Overview

The rationale behind the new testing method is the creation of a sampling distribution 

representing a model behavior and the creation of a second distribution that shows 

the characteristics of observed data. In distribution generation the main idea is to 

use the distance interpretation of MNSQ. From this point of view, the goal of the 

fit test is to find the distance between V  and X . There are four ways to test model 

fit employing simulated distributions. The process of executing these four tests was 

introduced in the previous chapter. Now, the investigation extends to ”how good 

these tests are”, ”how they relate to the old MNSQ test”, and ”what their behavior 

is under different conditions”? This chapter includes two major sections that deal 

with the validity and stability of the new tests.

A validity study is presented to contrast the new method with the old .MNSQ test 

and to highlight the fundamental differences. Within this framework a complex study 

explores the association between the MC-pm Monte Carlo test and the traditionally 

used MNSQ outfit test utilizing different kinds of response matrices of different sizes. 

In order to make the comparison on a global scale 8 x 8, 25 x 25, 50 x 50, and
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100  x 100  response matrices will be generated and fit indices and their appropriate 

p-values calculated to determine if there is any functional relationship between the 

Monte Carlo (MC) and the traditional MNSQ outfit tests. Due to the time consuming 

nature of this study the focus is narrowed down to the outfit version of MC-pm■ For 

the purpose of the validity study real test data will be used from Mathematics 116 

midterm and final examinations. These exams were given to undergraduate students 

by the Department of Mathematics at the Ohio State University in Spring, 2002. 

The midterm exam contained 24 multiple choice questions (with no partial credits) 

and was administered to 82 students. The final exam contained 48 multiple choice 

questions (with no partial credits) and was given to 82 students. Both pools of 

examinees were split into two approximately equal subgroups. The following four 

data matrices were derived: 82 x 48, 40 x 48, 40 x 24, and 82 x 24.

A related study in this section investigates the influence of the original score 

distribution on the outcome of MC-pm test. The new MC tests employ the response 

matrix X  in their initial step to obtain parameter estimates. In an extreme case, 

when a large number of spuriously high test scores are obtained from the pool of 

examinees will result in a negatively skewed score distribution or, spuriously low test 

scores will yield a positively skewed distribution. None of these cases are atypical in 

educational measurement. Since the fit index depends highly on the inner structure of 

the response matrix (not only on the marginal sums) one does not expect any simple 

correspondence between the distribution of marginal sums and the actual fit value. 

With the exact same marginal sums a matrix can be very well fitting (a response 

matrix in which rows are close to pure Guttmann patterns is an example). However,
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the fit can be made worse by introducing several aberrant responses and keeping the 

marginal sums intact. Data for this study was obtained from a licensing exam of the 

International Hearing Society.

The last section investigates the stability of the MC p-values with respect to the 

number of simulated response matrices (K). The goal of this study is to find an 

empirical threshold for K, a number K t such that for all K  > K t the fit analysis 

gives essentially the same result. This threshold is also required to be as small as 

possible, since the computational time increases with K.

4.2 Validity Study

4.2.1 First Look at the MC Statistics

This analysis presents the four new Monte Carlo (MC) fit tests and the old MNSQ 

tests, form both the infit and the outfit point of view. (One actually has six p-values 

because there are 2 tests that have two p-values, as explained earlier). The goal of this 

analysis is to present the proposed MC p-values along with their test statistics. By 

test statistics here one understands the D2 values defined in Equations 3.23 through 

3.28. The concrete values of these statistics are used in defining the MC p-values and 

they also provide some useful insight about the MC fit analysis.

Exam data were obtained from a Mathematics 116 final examination (with 82 

subjects and 48 items). MNSQ outfit and infit indices were calculated using Equations 

2.32 and 2.33 and then converted, using the Wilson-Hilferty transform (Equations 

2.34 and 2.35) to an approximate normal distribution iV(0,1) for easy evaluation of
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p-value. These values are reported under px2 in Table 4.1, which also shows the result 

of the computations of D2 statistics and the corresponding standard deviations.

In Table 4.1 the column of p*x shows the p-values for MCyx  and MC-px (for both 

infit and outfit). For example, the p-value for MC0Ut,yx = 0.229. The columns of 

and p\x  are explained similarly. For this run the number of simulated matrices 

chosen is the ample K  = 10, 000.

Statistic Value Std.Dev. P x 2 P * x P ',x P*M

\I \S Q (Wt 0.9475 0.009

D2out-,x 0.9464* 0.0806

D 2^out-,y 0.9991* 0.1093 0.229 0.323 0.328

D 2^out-p 1.0002 0.0747 0.225 0.234 0.240

MNSQjn 0.9832 0.444

D 2^in^X 0.9832* 0.0444

D 2u in-,y 0.9996* 0.0498 0.356 0.378 0.378

D 2 0.9998 0.0230 0.356 0.238 0.238

Table 4.1: MNSQ and D2 statistics and corresponding p-values. (Values with -*■ are 
reduced by one.)
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The MNSQ outfit statistic is 0.9475 which represents the traditionally used statis­

tic calculated by Equation 2.32. Its p-value is 0.009 - a significant misfit.

D'out—x  has been defined in Equation 3.23. It is the mean of the squared distances 

among X  and the simulated y k set. This mean is the estimate of the expected value 

of DgUt_x . According to Theorem 1 this mean (more precisely, its expected value) is 

the same as MNSQ after subtracting 1 . For easy comparison the table contains this 

modified value. Indeed, the difference 0.9475 — 0.9464 =  0.0011 is close to 0 indicating 

the appropriateness of the simulation. The standard deviation of D^ut_x  is 0.0806 

which shows that the expected value of Dlut_x and of .MNSQ and D%ut_x is within 1  

standard deviation. Recall that, the intention in hypothesis testing concerning model 

fit is to assess the difference between MNSQ and its expected value 1. Considering 

this case, the expected value is within one standard deviation from MNSQ. This in 

itself is not a strong ground forjudging model fit, but since the distribution of D%ut_x  

is also at our disposal the corresponding p-values can be obtained.

D^ut-y is the mean of the squared distances among the elements of the simulated 

set. Its expected value is 2, that is why the value reported is really DgUt_y — 1. 

Note, that its actual value is very close to 1, indicating once more the goodness of 

the simulation. The standard deviation is 0.1093, so the actual MNSQ value is again 

inside the interval of 1  standard deviation (of £(MNSQ) =  1).

Dout—V is the mean of the squared distances between V  and the members of the 

simulated y k set. Here, the expected value is 1, and the obtained 1.0002 reinforces the 

representativeness of the simulated set. MNSQ falls inside the interval of 1  standard
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deviation (0.00747) here, as well. The rest of the table contains the outfit p-values. 

All of these indices indicate moderate fit, contradicting px2.

For infit one could repeat the entire analysis almost word by word. The only 

significant difference is that the traditional MNSQ infit shows very good fit, while 

the MC tests indicate good to moderate fit. It turns out, it is a special feature of 

infit to be extremely lenient.

The newly introduced MC indices, however, make good sense even with the use 

of the more lenient infit. The reason is that even though the actual value of infit is 

lenient so are the infit values for the simulated response matrices. The insensitivity 

of infit to aberrant responses survives in the fact that the MC infit p-values tend 

to be higher than their outfit counter parts. An explanation for this might be that 

the weight of outfit penalizes outlier responses while the constant weight of infit only 

measures the difference between V  and X , irrespective to how aberrant the pattern 

may be.

4.2.2 Comparison Study

In this study the goal of the investigation is to see if all MC tests display the same 

findings in relation with each other. Here, the effort is made to see how consistent 

the new tests are and whether they contradict the traditional tests. Note, that the 

possibility of contradiction was indicated in the previous study. For the purposes of 

this analysis four data sets were used which had been described in the Overview.

The comparison between the traditional .MNSQ and the new MC tests can be seen 

easily (Table 4.2 shows all p-values) as the results are consistently the same for all.
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Test p-value 82x48 40x48 40x24 82x24

M N  S Q 0Ut ,z s td Px2 0 .10 2 1 0 . 0 1 4 5 0.0914 0 . 0 4 4 7

MC-px Pvx 0.2970 0.2194 0.2874 0.2536

MC-px Pvx 0.3174 0.1796 0.3000 0.2358

M Cyx Pyx 0.2986 0.2192 0.2802 0.2536

M Cyx Pyx 0.3842 0.2644 0.3654 0.3386

M C p m P V M 0.3200 0.1818 0.2988 0.2338

M  C y , u PyM 0.3856 0.2660 0.3652 0.3366

Table 4.2: Comparison between MNSQ and MC indices for four different exam data.

The new MC tests rarely show significant misfit (not even at the strict a = 0.1 level), 

while MNSQ outfit shows significant (at a  =  0.05) misfit 2 out of 4 cases (these are 

highlighted in the table).

Although, all MC tests employ the same method obtaining its relevant p-value, 

each has its unique characteristics. Due to their differences the resulting p-values are 

slightly different. It is not very difficult to understand their differences in the light 

of the general theory of model fit (given in Chapter 2). Given any new index the set 

of misfitting matrices may differ. One cannot expect that those matrices which are 

further away with respect to one distance is going to be further away with respect to 

another distance (see the geometrical interpretation in Figures 3.6 through 3.9). As

65



long as they indicate the same message there is no transparent reason to discard any 

of them.

It is worthwhile to note that the order among the four exams in terms of p-values 

is exactly the same for all MC tests. The lowest p-value was obtained for exam 

40 x 48 and the highest for 82 x 48, considering all six MC p-values. Further, even 

MNSQ seems to follow the same order. This suggests a hidden functional relationship 

between the new and the old indices.

The next, global analysis study, aims to reveal the association between MNSQ 

outfit and the MC-pm in greater depth than it was presented in this example.

4.3 Global Fit Analysis

This comprehensive study aims to examine the relationship of MC-pm test and the 

old M N SQ 0Utfu test on a large global scale. The observed response matrices X  are 

obtained through simulation and then entered to the testing process. For thorough 

investigation four different response matrix sizes were used: 8x8 , 25x25, 50x50 and 

100x100. For each size 1000 response matrices were generated.

4.3.1 Statement of Problem

In any discrete item response theory model the number of response matrices n of 

fixed size is finite. For any fixed significance level a  G [0,1] this finite set is divided 

into two parts: the set T a for which a particular item response theory model fits with 

probability higher than a, and the rest of the set. If the cardinality of T a is fa then
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the ratio k  expresses the extent to which the model holds in general. The goal of 

this study is to find this probability.

What makes the task challenging is the fact that the set of response matrices is 

humongous. Therefore, the first step in the global fit analysis is to develop a method 

for sampling the set of response matrices. The other observation that makes this step 

difficult is that a completely random sample has to be extremely large to contain 

matrices which do not show almost perfect fit. These difficulties are overcome by in­

troducing a matrix generating method dictated by understanding real test situations.

For any response matrix from the sample created above in the next step the Monte 

Carlo fit analysis is performed. To obtain an estimate of the ratio k  one counts the 

number of fitting response matrices in the sample and divides this number by the 

cardinality of the sample.

All the numerical calculations performed in this study made use of the Rasch 

estimation engine developed for a comprehensive Rasch analysis program (Antal & 

Antal, 2003). All the programs used here were written using the Perl language (Wall 

et. ah, 2 0 0 1).

4.3.2 Sampling of M resp(N, L)

To draw a sample from the set of response matrices suitable for the global fit analysis 

is not a straightforward task. The nature of item response theory models shows that 

for a generic response matrix the model fits. In real life, the response matrices are 

not generic. This means that a real life dichotomous response matrix has many more 

1 entries than 0 entries. That is, in a realistic test situation one assumes that the
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subjects usually give correct responses. Note, however, that this assumption is by no 

means a requirement of the results presented here. It is only used to help us find a 

good way of generating response matrices for which fit is less expected.

Note, also, that using the Rasch model to generate response matrices (see Equa­

tion 3.6) is highly undesirable, as a sample so generated would be biased toward the 

Rasch model.

A rather large family of response matrix generating methods can be described as 

follows. First one chooses a matrix Q of the same size as the response matrix one 

wishes to generate with entries <7̂  G [0,1]. Q is called the generating matrix. The 

entry Xji in a simulated response matrix X  is then set by generating a uniformly 

distributed random number r G [0,1] and then defining

Choosing gji = |  for all (j, i) would be the generic choice mentioned above, 

unfortunately giving mostly well fitting matrices with respect to any fit index. Of 

course, if the generating process was left to run indefinitely it would produce every 

response matrix with non zero frequency. One does not have that much time, though. 

It is sufficient to obtain a great many ” interesting” response matrices by choosing 

= t for all (j,z), where t is sufficiently close to 1 , (or 0 if one desires to model 

mostly incorrect responses). The acceptable range for t depends on the actual size 

(JV, L) of the response matrix. A little experimentation shows that t = 0.075 works 

very well for (JV, L) =  (25, 25) to (JV, L) =  (100,100).

(4 . 1)
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There are two effects acting in opposite directions that need to be considered 

when generating response matrices. On one hand, one wants to generate response 

matrices which are ” appropriate” from the point of view of fit analysis, that is, they 

are mainly filled with 1  and with only a small number of 0 is added, or vice-versa. 

This pushes t close to 1 (or to 0). The effect of the proliferation of 1 is that a few 

”misplaced” 0 can add substantially to the non-fitting direction. ” Misplaced” means 

that for a subject with high ability the incorrect response is given to a relatively easy 

item.

On the other hand, since for the generating matrix an estimation procedure has to 

be performed, the matrix has to be without constant rows or columns; in other words, 

it has to be ’’clean”. Of course, it is impossible to randomly generate a clean matrix 

- the algorithm should discard un-clean matrices. If there are too many matrices to 

be discarded the computational time will increase uncomfortably. The closer t is to 

1  the more likely it is to simulate an un-clean matrix.

If one desires, one may tune Q to obtain response matrices with prescribed re­

sponse patterns (several Guttmann like or reverse Guttmann like rows, patterns re­

flecting time pressure, and so on).

4.3.3 Results of the Global Analysis

The global fit analysis starts with drawing a big enough sample from the set of 

response matrices keeping in mind the subtleties discussed in the previous section. 

Next, for each generated response matrix the traditional fit analysis (for comparison 

purposes) and the Monte Carlo fit analysis are performed.
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As previously indicated, using all the newly introduced fit induces, while feasible 

in principle, could have resulted in a very lengthy computation. The computation 

with MC-pm for the largest (100 x 100) size lasted for two days! Since raising the 

number of simulated matrices (K) in the fit analysis to the more desirable 5000 would 

have changed the required running time to 10 days. The less stable indices used at 

the K  =  1000 level were avoided. Also, the comparison of the new MC indices in the 

previous section showed that they have some degree of consistency. Since this study 

is not designed to further this comparison, there seems to be no reason to include all 

the new MC indices.

Figure 4.1: p-values of MNSQ outfit vs. MC-pm (8 x 8).
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Figure 4.2: p-values of MNSQ outfit vs. MC-pm  (25 x 25).

The first series of figures shows the comparison of MNSQ outfit and MC-pm p- 

values. The size of the response matrices were 8 x 8 (Figure 4.1), 25 x 25 (Figure 4.2), 

50 x 50 (Figure 4.3), and 100 x 100 (Figure 4.4). For all cases 1000 response matrices 

were generated and the Monte Carlo fits were calculated with K  =  1000 simulations.

Several observations can be made about these figures. The first is that the chosen 

method of sampling response matrices that are problematic from the fit point of view 

is successful when the size is at least 25 x 25. For the three larger sizes the majority of 

the simulated response matrices show significant MNSQ misfit. Moreover, the larger 

the size the higher the portion of MNSQ misfitting matrices. The smallest (8 x 8) 

case requires special attention, since here the simulation method was not successful
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Figure 4.3: p-values of MNSQ outfit vs. MC-pm  (50 x 50).

in selecting misfitting matrices. By pushing the threshold to t = 0.075 does not 

appear to be a good idea, as the number un-clean matrices (those with constant 

rows or columns) grows rapidly among the simulated response matrices increasing 

the running time significantly.

More importantly, for all the simulated response matrices the Monte Carlo index 

shows fit with higher than a  =  0.05 confidence level, and only a very few display 

Monte Carlo misfit at the a  =  0.1 confidence level. Adding, that the Monte Carlo 

fit index is not just yet another fit index but it is the simulation version of the un­

approachable ”exact fit index”, this result should be read as a very strong conjecture 

forming the heart of this study (formulated rather loosely here):
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Figure 4.4: p-values of MNSQ outfit vs. MC-pm  (100  x 10 0 ).

C onjecture 1 The Rasch model almost never shows misfit.

To provide a better understanding of this comparison the frequency distributions 

of MNSQ and MC-pm is presented in Figures B.l - B.4 in Appendix. The information 

conveyed by these figures is again that for larger matrices the .MNSQ shows misfit with 

overwhelming frequency even at the a  =  0.05 level. For the Monte Carlo index there 

is not a single matrix showing worse than 5% misfit, and the number of misfitting 

matrices at the a  =  0.1 level is at most 1.

Table 4.3 shows the experimental global fit values. The values presented are the 

relative frequencies of fitting matrices at the level a  =  0.05. The relative frequencies 

of fitting matrices at the level a  =  0 .1 are listed in parentheses.
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8 x 8 25 x 25 50 x 50 100 x 100

MNSQ 0.998 (0.974) 0.493 (0.295) 0.393 (0.278) 0.438 (0.177)

MC-pm 1 (1 ) 1 (0.999) 1 (0.999) 1 (1 )

Table 4.3: The experimental global fit indices of MNSQ and MC-pm  for four different 
sizes. The listed values are the probabilities of fit at a  =  0.05 (a  =  0.1) 
significance levels.

4.4 Distributional Considerations

To test the distributional dependence of the new .NIC indices one might be tempted 

to use several response matrices with different score distributions and to compare the 

resulting fit indices. Let us explain why this approach is not tenable.

It is a remarkable feature of the Rasch model, that parameter estimates can be ob­

tained, without any additional assumption, from the marginal sums of the response 

matrix. In other words, the parameter estimates are not very sensitive to the in­

ner structure of the response matrix. From this point of view there seems to be a 

small difference between classical test theory and Rasch IRT. The main difference, 

however, is that the Rasch fit analysis is strongly influenced by the structure of the 

response matrix. One cannot, without punishment, permute the elements, even if the 

marginals are kept the same. From this, it is clear that there could be no reasonable 

correspondence between score distributions and fit values. Nevertheless, three exam­

ples with different score distributions are provided. All of them are obtained from
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S t a t i s t i c V a l u e S t d . D e v . P X 2 V * x P * x P * M

M N S Q o u t 0 . 9 9 1 9 0 . 1 3 8 3

D î u t ; X 0 . 9 9 1 2 0 . 0 1 7 8

D 2^ o u t- ,y 0 . 9 9 9 7 0 . 0 2 2 1 0 . 3 2 3 0 0 . 3 5 8 0 0 . 3 6 8 0

n2^ o u t-fP 1 . 0 0 0 4 0 . 0 1 3 8 0 . 3 1 1 0 0 . 2 3 8 0 0 . 2 5 6 0

M N S Q i n 0 . 9 9 0 3 0 . 4 3 5 8

n2U in \X 0 . 9 8 9 7 0 . 0 1 4 5

n2 
in-,y 0 . 9 9 9 4 0 . 0 1 6 1 0 . 2 5 8 0 0 . 2 6 1 0 0 . 2 6 8 0

n2
JJin ;V 0 . 9 9 9 9 0 . 0 0 7 7 0 . 2 4 5 0 0 . 0 8 4 0 0 . 1 0 4 0

Table 4.4: Fit Test for Total IHS exam

an International Licensing Examination administered by the International Hearing 

Society (IHS), which is a professional organization of hearing instrument dispensers 

in the USA. They offer this exam to US states and Canadian provinces which in turn 

provide the license to practice as hearing instrument dispenser in their respective 

state/province. Their exam is based on a competency model which was derived from 

role delineation studies conducted in 1981, 1990 and 2000 (D’Costa, 2003).

The first response matrix corresponds to the total exam while the other two 

were obtained by carefully splitting this exam into two tests. The splitting was 

performed in a way to result in two sets with different distributional properties. 

Score distributions are shown in Figures A.l, A.3, and A .2 (in the Appendix). The 

results of the fit analyses are presented in Tables 4.4, 4.5, and 4.6.
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S t a t i s t i c V a l u e S t d . D e v . P X 2 P * x p'*x P * M

M N S Q o u t 1 .0 0 3 2 0 . 3 8 3 0

D out-,X 1 .0 0 4 0 0 . 0 2 5 3

n 2
u out-,y 1 .0 0 1 1 0 . 0 3 1 9 0 . 4 5 4 0 0 . 4 6 1 0 0 . 4 7 3 0

D 2^ o u t y P 1 .0 0 1 1 0 . 0 2 0 0 0 . 4 5 4 0 0 . 4 3 1 0 0 . 4 4 5 0

M N S Q i n 0 . 9 9 3 9 0 . 4 4 9 4

n 2
in;X 0 . 9 9 4 2 0 . 0 1 8 9

n 2 1 . 0 0 0 4 0 . 0 2 0 6 0 . 3 5 8 0 0 . 3 7 5 0 0 . 3 7 5 0

D 2JJi n ; V 1 .0 0 0 6 0 . 0 0 8 0 0 . 3 5 8 0 0 . 1 9 6 0 0 . 1 9 3 0

Table 4.5: Fit Test for Low-ability IHS exam

S t a t i s t i c V a l u e S t d . D e v . P X 2 P * x P * x P * M

M N SQ out 1 .0 0 3 9 0 . 3 5 2 0

D o u t;X 1 . 0 0 4 7 0 . 0 2 6 9

D 2^ o u t - ,y 1 .0 0 1 2 0 . 0 3 4 7 0 . 4 5 5 0 0 . 4 5 9 0 0 . 4 6 6 0

D 2^ o u t-y p 1 . 0 0 0 7 0 . 0 2 2 0 0 . 4 4 9 0 0 . 3 8 2 0 0 . 3 9 4 0

M N S Q jn 0 . 9 9 5 9 0 . 4 5 3 2

D 2u in \X 0 . 9 9 5 6 0 . 0 1 7 4

D 2l J in-,y 0 . 9 9 9 6 0 . 0 1 8 4 0 . 4 0 4 0 0 . 4 2 6 0 0 . 4 3 2 0

n 2
^ in -y p 1 .0 0 0 1 0 . 0 0 6 6 0 . 3 8 4 0 0 . 2 4 9 0 0 . 2 6 5 0

Table 4.6: Fit Test for High-ability IHS exam

76



Comparison of the three distributions (Figures A.l, A.2 and A.3) shows that while 

the original test is quite symmetric the two smaller tests are negatively and positively 

skewed, respectively.

For the total test both types of tests indicate model fit. MC tests, however, have 

larger p-values than the MNSQ outfit test.

On the infit side, in Table 4.4 MNSQ again shows the usual strong fit due to the 

effective blindness of infit. The MC indices, however, resulted in smaller p-values.

An interesting result can be derived from the fit tests of the two smaller exams. 

The two tests display excellent fit from every investigated point of view. Both tra­

ditional .MNSQ p-values are very high (this is meaningful only for outfit as infit is 

almost incapable of showing anything but excellent model fit). The MC p-values are 

also very high. This is in accordance with the the result found in the global analysis, 

which indicated quite a strong relationship between MNSQ outfit and MC-pm■ Even 

though, this relationship is not at all understood at this point the present analysis 

provides yet another indication of it.

The explanation of the very good fit of these data may be attributed to the fact 

that by splitting the test, the structure of the response matrix changed dramatically.

Note, however, that the distributional dependence study is concluded by noting 

that there is no observable difference between the fit analyses of the three data sets 

with different distributional properties.

To really perform a distribution dependence study one should consider the fol­

lowing global analysis. First, a large sample should be drawn from the collection of
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response matrices with the same marginal sums (same marginal sums will of course 

imply distributional equality). This is a quite well understood process described in 

the literature (Snijders, 1991; Rao et ah, 1996; Roberts, 2000; Ponoczny, 2001). The 

main computational tool is the Markov chain Monte Carlo method. For this sample a 

Monte Carlo fit test is performed. Finally, the entire process is repeated for different 

score distributions.

As explained, there is no real reason to go into this very involved algorithm. 

The global fit analysis of the previous section, however, has a much more interesting 

research question which, in a way, can be understood as a good and meaningful 

substitute for the distributional relationship study.

4.5 Stability Study

The goal of this study is to find an empirical threshold for K, a number K t such that 

for all K  > K t the fit analysis gives essentially the same result. This threshold is 

desired to be as small as possible, since the computational time increases with K.

Due to the nature of Monk' Carlo method p-values provided by the new fit tests 

might show a certain degree of fluctuation over trials. Even under exactly identical 

circumstances, the corresponding D2 and p-values will be different. However, only 

small differences are expected if the number of simulated matrices (K) is large enough.

For four different exam data the MC p-values were calculated with K  =  1000 and 

with K  =  5000, as well. Both cases were repeated five times. The stability study is 

performed by analyzing the obtained p-values.
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K = 1 0 0 0 K = 5 0 0 0

R e p l \ E x a m 8 2 x 4 8 4 0 x 4 8 4 0 x 2 4 8 2 x 2 4 R e p l \ E x a m 8 2 x 4 8 4 0 x 4 8 4 0 x 2 4 8 2 x 2 4

P-p m i 0 . 3 1 0 0 0 . 1 8 1 0 0 . 3 2 6 0 0 . 2 2 6 0 P-p m i 0 . 3 2 0 0 0 . 1 8 1 8 0 . 2 9 8 8 0 . 2 3 3 8

P V M  2 0 . 3 2 4 0 0 . 1 7 4 0 0 . 2 9 0 0 0 . 2 2 6 0 V V M  2 0 . 3 1 8 8 0 . 1 8 4 0 0 . 3 0 8 2 0 . 2 2 4 0

P V M A 0 . 2 8 8 0 0 . 1 8 0 0 0 . 3 0 9 0 0 . 2 0 8 0 P V M A 0 . 3 2 1 8 0 . 1 8 0 4 0 . 2 9 7 6 0 . 2 3 2 0

P V M A 0 . 3 2 7 0 0 . 1 6 2 0 0 . 3 1 0 0 0 . 2 4 1 0 P V M A 0 . 3 2 0 4 0 . 1 7 4 2 0 . 2 9 6 0 0 . 2 3 4 2

P V M A 0 . 3 3 4 0 0 . 1 7 7 0 0 . 2 9 0 0 0 . 2 3 9 0 P-PMA 0 . 3 2 9 8 0 . 1 7 5 6 0 . 3 0 2 4 0 . 2 2 5 2

M e a n 0 . 3 1 6 6 0 . 1 7 4 8 0 . 3 0 5 0 0 . 2 2 8 0 M e a n 0 . 3 2 2 2 0 . 1 7 9 2 0 . 3 0 0 6 0 . 2 2 9 8

S t d . D e v . 0 . 0 1 8 2 0 . 0 0 7 7 0 . 0 1 5 3 0 . 0 1 3 2 S t d . D e v . 0 . 0 0 4 4 0 . 0 0 4 2 0 . 0 0 4 9 0 . 0 0 4 9

R a n g e 0 . 0 4 6 0 0 . 0 1 9 0 0 . 0 3 6 0 0 . 0 3 3 0 R a n g e 0 . 0 1 1 0 0 . 0 0 9 8 0 . 0 1 2 2 0 . 0 1 0 2

M i n i m u m 0 . 2 8 8 0 0 . 1 6 2 0 0 . 2 9 0 0 0 . 2 0 8 0 M i n i m u m 0 . 3 1 8 8 0 . 1 7 4 2 0 . 2 9 6 0 0 . 2 2 4 0

M a x i m u m 0 . 3 3 4 0 0 . 1 8 1 0 0 . 3 2 6 0 0 . 2 4 1 0 M a x i m u m 0 . 3 2 9 8 0 . 1 8 4 0 0 . 3 0 8 2 0 . 2 3 4 2

Table 4.7: Stability of MCpu'- five replicated p-values of M C - p m  for four different 
Math exams.

The following tables (Tables 4.7 through 4.12) display the respective Monte Carlo 

p-values resulting from five independent replications. The tables are in pairs. The first 

one always stands for the case when the number of simulated matrices is K  = 1000, 

while the second contains the results from K  =  5000 simulations.

These tables also contain the means of the Monte Carlo p-values along with their 

standard deviations, ranges, minima, and maxima.

The stability analysis shows very satisfactory results. Even though the range of 

MC-pm p-values reaches 0.0460 (for sample size K  =  1000; test 82 x 48) it drops 

below 0.012 for all tests when the sample size is raised to K  = 5000. The means show
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K = 1 0 0 0 K = 5 0 0 0

R e p l \ E x a m 8 2 x 4 8 4 0 x 4 8 4 0 x 2 4 8 2 x 2 4 R e p l \ E x a m 8 2 x 4 8 4 0 x 4 8 4 0 x 2 4 8 2 x 2 4

P y M  l 0 . 3 7 1 0 0 . 2 6 4 0 0 . 3 9 0 0 0 . 3 2 2 0 P y M  l 0 . 3 8 5 6 0 . 2 6 6 0 0 . 3 6 5 2 0 . 3 3 6 6

P y m  2 0 . 3 8 2 0 0 . 2 6 2 0 0 . 3 6 0 0 0 . 3 2 2 0 P y m  2 0 . 3 8 0 4 0 . 2 7 7 2 0 . 3 6 8 8 0 . 3 1 4 2

P y m  3 0 . 3 6 5 0 0 . 2 7 0 0 0 . 3 8 2 0 0 . 3 2 4 0 P y m  3 0 . 3 7 8 6 0 . 2 7 3 2 0 . 3 7 1 0 0 . 3 2 4 4

P y m  4 0 . 3 7 6 0 0 . 2 5 9 0 0 . 3 5 3 0 0 . 3 2 3 0 P y m  4 0 . 3 7 7 4 0 . 2 6 6 0 0 . 3 6 4 8 0 . 3 2 5 2

P y m  5 0 . 3 8 1 0 0 . 2 6 5 0 0 . 3 6 5 0 0 . 3 3 6 0 P y m  5 0 . 4 0 3 8 0 . 2 8 4 2 0 . 3 7 3 0 0 . 3 1 8 4

M e a n 0 . 3 7 5 0 0 . 2 6 4 0 0 . 3 7 0 0 0 . 3 2 5 4 M e a n 0 . 3 8 5 2 0 . 2 7 3 3 0 . 3 6 8 6 0 . 3 2 3 8

S t d . D e v . 0 . 0 0 7 1 0 . 0 0 4 1 0 . 0 1 5 5 0 . 0 0 6 0 S t d . D e v . 0 . 0 1 0 9 0 . 0 0 7 8 0 . 0 0 3 6 0 . 0 0 8 5

R a n g e 0 . 0 1 7 0 0 . 0 1 1 0 0 . 0 3 7 0 0 . 0 1 4 0 R a n g e 0 . 0 2 6 4 0 . 0 1 8 2 0 . 0 0 8 2 0 . 0 2 2 4

M i n i m u m 0 . 3 6 5 0 0 . 2 5 9 0 0 . 3 5 3 0 0 . 3 2 2 0 M i n i m u m 0 . 3 7 7 4 0 . 2 6 6 0 0 . 3 6 4 8 0 . 3 1 4 2

M a x i m u m 0 . 3 8 2 0 0 . 2 7 0 0 0 . 3 9 0 0 0 . 3 3 6 0 M a x i m u m 0 . 4 0 3 8 0 . 2 8 4 2 0 . 3 7 3 0 0 . 3 3 6 6

Table 4.8: Stability of A/Cy,u: five replicated p-values of MCyM for four different 
Math exams.

very convincing stability, as well. The largest jump is 0.3222 — 0.3166 =  0.006, that 

is 0.6% (in the case of the largest, 82 x 48, response matrix).

For MCyM , the fluctuation is even smaller in terms of the range for K  =  1000, 

however, for increased number of simulated matrices MC-pm shows better stability. 

The largest range for MCyM with K  =  1000 is 0.0370 (for 40 x 24 matrix) which 

falls significantly back to 0.0082 for K  =  5000 matrices.

Ranges of M Cpx are also small, but p'PX has relatively large ranges for K  =  1000 

such as 0.0730 for 82 x 48 matrix and 0.0550 for the 40 x 24 one. The increased 

number of simulated matrices provides acceptable ranges for M C px , though.
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K = 1 0 0 0 K = 5 0 0 0

R e p l \ E x a m 8 2 x 4 8 4 0 x 4 8 4 0 x 2 4 8 2 x 2 4 R e p l \ E x a m 8 2 x 4 8 4 0 x 4 8 4 0 x 2 4 8 2 x 2 4

P v x  1 0 . 3 0 4 0 0 . 2 2 7 0 0 . 3 0 1 0 0 . 2 3 4 0 P v x  1 0 . 2 9 7 0 0 . 2 1 9 4 0 . 2 8 7 4 0 . 2 5 3 6

P V X  2 0 . 3 2 8 0 0 . 2 0 4 0 0 . 3 0 2 0 0 . 2 3 2 0 P v x  2 0 . 2 9 7 6 0 . 2 3 1 2 0 . 2 9 2 4 0 . 2 3 6 6

P v x - i 0 . 2 9 5 0 0 . 2 3 6 0 0 . 3 0 2 0 0 . 2 4 7 0 P V X  3 0 . 3 1 2 0 0 . 2 2 3 2 0 . 2 9 4 0 0 . 2 5 8 4

P V X 4 0 . 3 0 4 0 0 . 2 2 5 0 0 . 2 9 4 0 0 . 2 4 4 0 P v x  4 0 . 3 0 5 4 0 . 2 2 4 4 0 . 2 9 5 4 0 . 2 5 1 2

P v x s 0 . 3 0 9 0 0 . 2 3 6 0 0 . 3 0 3 0 0 . 2 7 4 0 P v x s 0 . 3 0 7 2 0 . 2 3 0 0 0 . 2 8 9 8 0 . 2 5 4 0

M e a n 0 . 3 0 8 0 0 . 2 2 5 6 0 . 3 0 0 4 0 . 2 4 6 2 M e a n 0 . 3 0 3 8 0 . 2 2 5 6 0 . 2 9 1 8 0 . 2 5 0 8

S t d . D e v . 0 . 0 1 2 3 0 .0 1 3 1 0 . 0 0 3 6 0 . 0 1 6 8 S t d . D e v . 0 . 0 0 6 4 0 . 0 0 4 9 0 . 0 0 3 2 0 . 0 0 8 3

R a n g e 0 . 0 3 3 0 0 . 0 3 2 0 0 . 0 0 9 0 0 . 0 4 2 0 R a n g e 0 . 0 1 5 0 0 . 0 1 1 8 0 . 0 0 8 0 0 . 0 2 1 8

M i n i m u m 0 . 2 9 5 0 0 . 2 0 4 0 0 . 2 9 4 0 0 . 2 3 2 0 M i n i m u m 0 . 2 9 7 0 0 . 2 1 9 4 0 . 2 8 7 4 0 . 2 3 6 6

M a x i m u m 0 . 3 2 8 0 0 . 2 3 6 0 0 . 3 0 3 0 0 . 2 7 4 0 M a x i m u m 0 . 3 1 2 0 0 . 2 3 1 2 0 . 2 9 5 4 0 . 2 5 8 4

Table 4.9: Stability of M C - p x ' -  five replicated p - values of M C - p x  for four different 
Math exams.

In summary, the question of stability shows remarkable results overall. Except for 

the p- and p ' - values of M C y x  (which are really the same cases) the range of p - values 

with sample size K  =  5000 is rarely over 2%! It is worthwhile to note once more, that 

a sample of size K  =  5000 is an extremely small sample. The number of response 

matrices with size 82 x 48 is 23936 «  7 • 101185. It is almost unbelievable that a sample 

from this set of size 5000 (or in many cases even 1000) produces stable result. This 

is due to the way this humongous set is sampled. Those matrices which are likely to 

be sampled are the ones with high probability (with respect to the measure p). Most 

matrices in this set come with negligible probability, even when compared to the size 

of the set M r e s p .
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K = 1 0 0 0 K = 5 0 0 0

R e p l \ E x a m 8 2 x 4 8 4 0 x 4 8 4 0 x 2 4 8 2 x 2 4 R e p l \ E x a m 8 2 x 4 8 4 0 x 4 8 4 0 x 2 4 8 2 x 2 4

p 'v x i 0 . 3 2 3 0 0 . 1 8 1 0 0 . 3 4 2 0 0 . 2 1 1 0 P'vxi 0 . 3 1 7 4 0 . 1 7 9 6 0 . 3 0 0 0 0 . 2 3 5 8

P vx  2 0 . 3 3 0 0 0 . 1 7 4 0 0 . 2 8 7 0 0 . 2 1 4 0 P vx  2 0 . 3 1 6 8 0 . 1 8 3 8 0 . 3 0 9 8 0 . 2 1 1 6

p 'v x 'a 0 . 2 6 5 0 0 . 1 8 1 0 0 . 3 0 8 0 0 . 2 1 3 0 P vx  3 0 . 3 2 6 8 0 . 1 8 1 0 0 . 2 9 7 6 0 . 2 3 7 4

P'vxi 0 . 3 2 8 0 0 . 1 6 2 0 0 . 3 2 4 0 0 . 2 2 4 0 P'vxi 0 . 3 1 7 8 0 . 1 7 9 2 0 . 2 9 8 2 0 . 2 3 4 8

P'vxs 0 . 3 3 8 0 0 . 1 8 1 0 0 . 2 9 9 0 0 . 2 5 4 0 P'vxs 0 . 3 1 6 2 0 . 1 7 5 4 0 . 2 9 3 8 0 . 2 3 1 4

M e a n 0 . 3 1 6 8 0 . 1 7 5 8 0 . 3 1 2 0 0 . 2 2 3 2 M e a n 0 . 3 1 9 0 0 . 1 7 9 8 0 . 2 9 9 9 0 . 2 3 0 2

S t d . D e v . 0 . 0 2 9 5 0 . 0 0 8 3 0 . 0 2 1 5 0 . 0 1 7 9 S t d . D e v . 0 . 0 0 4 4 0 . 0 0 3 0 0 . 0 0 6 0 0 . 0 1 0 6

R a n g e 0 . 0 7 3 0 0 . 0 1 9 0 0 . 0 5 5 0 0 . 0 4 3 0 R a n g e 0 . 0 1 0 6 0 . 0 0 8 4 0 . 0 1 6 0 0 . 0 2 5 8

M i n i m u m 0 . 2 6 5 0 0 . 1 6 2 0 0 . 2 8 7 0 0 . 2 1 1 0 M i n i m u m 0 . 3 1 6 2 0 . 1 7 5 4 0 . 2 9 3 8 0 . 2 1 1 6

M a x i m u m 0 . 3 3 8 0 0 . 1 8 1 0 0 . 3 4 2 0 0 . 2 5 4 0 M a x i m u m 0 . 3 2 6 8 0 . 1 8 3 8 0 . 3 0 9 8 0 . 2 3 7 4

Table 4.10: Stability of MC-px'- five replicated p'-values of MC-px for four different 
Math exams.

It is easy to understand why M C yx  produces the least stable results. For, one 

only has to observe that the sampled response matrices are used the most intensively 

in this test. The p-value is calculated from two distributions, one which is the set of 

distances among simulated matrices which depends heavily on this simulated set. The 

other distribution depends on this set as well, since it is the set of distances between 

X  and the simulated set. Even in this case the largest range is only 3.14%. Since the 

p-values themselves are all larger than 27%, this deviation is relatively small, and in 

no way can affect the conclusion of the hypothesis tests.

On the other hand the MC-pm and MCyM are the most desirable from the per­

spective of stability. For, both of them use the simulated set only once. Moreover,
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K = 1 0 0 0 K = 5 0 0 0

R e p l \ E x a m 8 2 x 4 8 4 0 x 4 8 4 0 x 2 4 8 2 x 2 4 R e p l \ E x a m 8 2 x 4 8 4 0 x 4 8 4 0 x 2 4 8 2 x 2 4

P y x  l 0 . 2 9 6 0 0 . 2 2 5 0 0 . 2 9 1 0 0 . 2 4 1 0 P y x i 0 . 2 9 8 6 0 . 2 1 9 2 0 . 2 8 0 2 0 . 2 5 3 6

P y x  2 0 . 3 2 2 0 0 . 2 0 8 0 0 . 2 9 0 0 0 . 2 3 2 0 P y x  2 0 . 2 9 9 6 0 . 2 3 0 6 0 . 2 8 3 6 0 . 2 4 0 2

P y x  3 0 . 2 9 9 0 0 . 2 3 6 0 0 . 3 1 6 0 0 . 2 5 2 0 P y x  3 0 . 3 1 0 6 0 . 2 2 2 6 0 . 2 9 2 0 0 . 2 6 1 2

P y x  4 0 . 2 9 8 0 0 . 2 2 5 0 0 . 2 8 0 0 0 . 2 5 6 0 P y x  4 0 . 3 0 6 0 0 . 2 1 7 8 0 . 2 9 2 2 0 . 2 4 9 4

P y x  s 0 . 3 0 0 0 0 . 2 3 0 0 0 . 3 0 3 0 0 . 2 6 9 0 P y x  s 0 . 3 1 9 6 0 . 2 3 8 8 0 . 2 8 9 4 0 . 2 4 5 2

M e a n 0 . 3 0 3 0 0 . 2 2 4 8 0 . 2 9 6 0 0 . 2 5 0 0 M e a n 0 . 3 0 6 9 0 . 2 2 5 8 0 . 2 8 7 5 0 . 2 4 9 9

S t d . D e v . 0 . 0 1 0 7 0 . 0 1 0 4 0 . 0 1 3 8 0 . 0 1 4 2 S t d . D e v . 0 . 0 0 8 6 0 . 0 0 8 8 0 . 0 0 5 3 0 . 0 0 8 0

R a n g e 0 . 0 2 6 0 0 . 0 2 8 0 0 . 0 3 6 0 0 . 0 3 7 0 R a n g e 0 . 0 2 1 0 0 . 0 2 1 0 0 . 0 1 2 0 0 . 0 2 1 0

M i n i m u m 0 . 2 9 6 0 0 . 2 0 8 0 0 . 2 8 0 0 0 . 2 3 2 0 M i n i m u m 0 . 2 9 8 6 0 . 2 1 7 8 0 . 2 8 0 2 0 . 2 4 0 2

M a x i m u m 0 . 3 2 2 0 0 . 2 3 6 0 0 . 3 1 6 0 0 . 2 6 9 0 M a x i m u m 0 . 3 1 9 6 0 . 2 3 8 8 0 . 2 9 2 2 0 . 2 6 1 2

Table 4.11: Stability of M C y x '• five replicated p - values of M C y x  for four different 
Math exams.

MC-pm appears to be the most natural fit index from the geometrical point of view 

(described in Chapter 3).

The only case when the small inaccuracy of MC tests can have effect on the

final conclusion of the hypothesis test is when the p-value is around the prescribed 

significance level a.



K=1000 K=5000
Repl\Exam 82x48 40x48 40x24 82x24 Repl\Exam 82x48 40x48 40x24 82x24

P y x i 0.3750 0.2660 0.3960 0.3120 P y x i 0.3842 0.2644 0.3654 0.3386

P y x  2 0.3840 0.2610 0.3590 0.3190 P y x 2 0.3792 0.2760 0.3696 0.3072

P y x  3 0.3530 0.2700 0.3820 0.3260 P y x  3 0.3816 0.2748 0.3708 0.3292

P y x  4 0.3770 0.2590 0.3590 0.3100 P y x  4 0.3752 0.2698 0.3658 0.3256
P yxs 0.3850 0.2730 0.3730 0.3480 P y x  5 0.3956 0.2834 0.3694 0.3218
Mean 0.3748 0.2658 0.3738 0.3230 Mean 0.3832 0.2737 0.3682 0.3245
Std.Dev. 0.0129 0.0059 0.0158 0.0153 Std.Dev. 0.0077 0.0071 0.0024 0.0115
Range 0.0320 0.0140 0.0370 0.0380 Range 0.0204 0.0190 0.0054 0.0314
Minimum 0.3530 0.2590 0.3590 0.3100 Minimum 0.3752 0.2644 0.3654 0.3072
Maximum 0.3850 0.2730 0.3960 0.3480 Maximum 0.3956 0.2834 0.3708 0.3386

Table 4.12: Stability of MCyx'- five replicated p'-values of M Cyx  for four different 
Math exams.
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CHAPTER 5

CONCLUSIONS

The primary goal of this work is to introduce a new method for fit analysis that is 

based on a Monte Carlo method. This new technique has been formulated and devel­

oped for the Rasch model and it has manifested itself in four different fit tests. The 

new technique combines the element of computer simulation, statistical hypothesis 

testing and Rasch model fitting. The innovative element in the proposed fit analysis 

is the creation of the sampling or model distributions ”on the fly” which makes these 

tests non-parametric in nature. Fit indices that were proposed and used extensively 

in practice for the Rasch model (most notably MNSQin/u, MNSQ0„t/jt) have been 

shown to have serious deficiencies due to assumed distributional properties of their 

fit statistics. In cases when their assumptions fail to hold, the appropriateness of fit 

analysis is in danger.

The non-parametric family of Monte Carlo fit tests introduced in this dissertation 

appears to be a good candidate for replacing the faulty MNSQ fit tests. The family 

contains several members among which no preference was given as of yet. Further 

study is planned to identify (if any) significant differences among the newly introduced 

tests. All of them acquired a solid theoretical foundation here, therefore they can be

used with confidence.



A comparison study targeted to contrast MNSQ and MC indices confirms the 

results of earlier studies by showing significant departure from normality for MNSQ. 

Recall, that in all instances when the normality assumption holds, .MNSQ fit tests 

are correct and their p-value should be taken seriously. Since the newly proposed 

indices involve no additional assumption, they deliver reliable fit information every 

time they are used. When the MNSQ normality assumption is appropriate the two 

indices should convey the same message about model fit. On the other hand, their 

significant difference can only be attributed to the in-appropriateness of the normal­

ity assumption. Since significant difference was found in this dissertation, another 

manifestation of the non-normality phenomenon should be recorded. None of the 

tests showed significant misfit for the response matrices under consideration in this 

study (and there were many thousands of them!), contradicting the traditional MNSQ 

outfit tests on several occasions.

Although the Monte Carlo p-values are always approximate, they show remarkable 

stability with respect to the number of simulated matrices. It is shown that for 

moderately sized tests a sample of size 5000 gives satisfactory result. This means that 

from the set of all response matrices an extremely small sample of K=5000 elements is 

satisfactory to model the entire probability distribution. This is in itself a remarkable 

finding which is due mainly to the careful choice of the simulation method. This fact 

also makes the introduction of more developed sampling methods unnecessary. Also, 

one has to keep in mind that the p-values - the final results of the analysis of fit - 

are calculated as relative frequencies. They are calculated as the ratio of the number
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of sampled matrices with worse fit characteristic than the original response matrix 

and the number of simulated matrices. Hence, a p-value with K  =  1000 simulated 

matrices can not be more accurate than 0.001 =  For K  =  5000 the maximal 

accuracy of the p-value increases to 0.0002 =  As a consequence, no reasonable 

precision can be achieved with a small number of simulated matrices.

It is advised to always perform the stability study. It is highly unlikely that a 

one-size fits all answer can be given concerning the number of simulated matrices 

needed to obtain a reliable result. Some replications of the calculation of the Monte 

Carlo p-values, however, could easily lead to reasonably well founded decision on fit. 

In this study 5 replications were made for both sample sizes K  =  1000 and K  =  5000 

and that was seen to be sufficient under the circumstances.

The results of the global fit analysis of the Rasch model show that when fit 

analysis is performed correctly the Rasch model performs very well. Indeed, small 

to medium sized examples show that the global fit index of the Rasch model is very 

small for a  =  0.1 and cannot be seen to differ from 0 at a  =  0.05. This means 

that the maximum number of misfitting matrices was 1  when the number of matrices 

sampled was 1000. Again, this sample is very small compared to the number of all 

response matrices, but the sampling was performed so as to yield intuitively misfitting 

matrices (that is, a very large number of possible aberrant responses). This choice 

was successful, as shown by the overwhelming number of matrices displaying strong 

MNSQ misfit.

In the light of this observation, one may arrive at the very pleasing conclusion, 

namely the data almost always fit the Rasch model. This could settle a long-standing
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and unpleasant paradox of the Rasch model which is kept alive by the fact that even 

though the Rasch model is theoretically a most reasonable model it shows misfit for 

a considerably large number of tests. This dissertation shows that this was due to 

the violation of the assumptions of model fit and not to the model itself. In the light 

of these findings the Rasch model appears as an even more appealing model for test 

development.

Note, however, all results presented here are subject to the specific sampling of the 

set of response matrices. Thus, a straightforward extension of the present work could 

be a study of different sampling schemes represented by the choice of the generating 

matrix Q using different IRT models. Also, it is an interesting question if the small 

matrices always show acceptable fit (as indicated by this study) or this was just a 

deficiency of the simulation scheme. The global fit analysis study could, in the long 

run, make good use of the advanced sampling methods (e.g., the Monte Carlo Markov 

Chain method). The one million simulations needed to create just one chart in the 

global analysis makes this kind of research very time consuming. Each figure was 

obtained by an approximately two day run on a well equipped up-to-date computer.

Another interesting observation is that there is a quite well displayed functional 

relationship between the p-values of MNSQ and MC-pm■ The question one might ask 

is if it is possible to identify this function in general. If so, then one could by-pass 

the calculation of the Monte Carlo fit index as it would be derivable from the MNSQ 

p-value (which is much easier to calculate).

Let us also remark on the running time of the tests. Since the Monte Carlo tests 

substitute the analytic solution of the fit problem with simulation it is computer
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intensive. The code that was used in this study (Antal & Antal, 2003b) was written 

in a way to consume as little memory as possible. The running time for the largest test 

of size 82 x 48 with sample size 5000 took approximately 10 minutes on a machine with 

a 2.4 GHz Xenon processor. Knowing that a large group of item response theorists 

left the Rasch model because it unable to display significant model fit frequently (and 

misleadingly), the increased computational time should be worth clarifying the fit of 

a particular model. As high computing power becomes more and more commonplace 

there is nothing to obstruct the way of fit analysis proposed here.

There are two major directions that are expected to be followed in the future. 

One is to investigate the possibilities of adapting the proposed method to other IRT 

models, as well as to different kinds of test indices.

An IRT model is fully represented by its response probability matrix V  with 

elements being the probabilities of the actual performance levels given all model 

parameters. Any IRT model defines the set of response matrices, that is the set of 

matrices with size N  x L (N  and L are as before) and with entries according to the 

model. As indicated earlier, the simulation method should be changed in accordance 

with the model. To sample the set of response matrices the relative frequency of a 

matrix has to be equal to its probability calculated from V. It is also attempting to 

generalize the new technique to other fit statistics given by Equations 3.34 and 3.35. 

Background information on this research problem can be found in the last section 

of Chapter 3. The first addition to the current work in this direction could be the 

development of item and person MC tests.
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FREQUENCY DISTRIBUTIONS OF IHS EXAMS

Appendix A

Total Score

Figure A.l: Total Score Distribution for IHS Exam
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Figure A.2: Low-ability Portion of IHS exam

Figure A.3: High-ability Portion of IHS exam
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FREQUENCY DISTRIBUTIONS OF GLOBAL FIT

ANALYSIS

Appendix B

i tn

n c n v t v v r  win

MNSQ p -v a l i»  (6  x  6)

Figure B.l: Frequency distribution of the MNSQ p-value and p-pM (8 x 8).
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riNSO p-value (29 x 29>

Figure B.2: Frequency distribution of the MNSQ p-value and p-pM (25 x 25).
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® •» •* « -N « « *
pPM (50 x 50)

Figure B.3: Frequency distribution of the MNSQ p-value and p-pM (50 x 50).

94



Figure B.4: Frequency distribution of the MNSQ p-value and p-pM (100 x 100).
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SIMULATION OF RESPONSE MATRICES (PERL

COMPUTER CODE)

Appendix C

# random(\®RASCH) returns random score matrix according

# to the Rasch p robab ility  matrix, 

sub random {

my $ref = $_ [0 ] ; 

my ®P = ®$ref; 

my ($ i,® score, $P_rand, $ n ) ; 

fo r  (my $j=0; $j<®P;$j++H 

$P_rand = r a n d ( l ) ;

$score[$ j]= 0  i f  $P_rand > $ P [ $ j ] ; 

$ sc o re [$ j]= l  i f  $P_rand <= $ P [$ j] ;

>

>

return (S sco re ) ;
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