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Chapter 1

Introduction

1.1 Definitions and Notations

We begin this dissertation by fixing terminology and notation that will be used.

Throughout this work, log x refers to the natural logarithm. Disjoint unions will be

denoted by
⊔

. We will use the standard notation [n] := {1, ..., n}. Vectors in Rd will

be understood as column vectors, and when we write the coordinate decomposition

x = (x(1), . . . , x(d)) ∈ Rd, x(i) denotes the ith coordinate of x. As usual, {e1, . . . , ed}
stands for the standard orthonormal basis of Rd. We denote the standard (d − 1)-

dimensional simplex represented in Rd by

∆d := conv {e1, . . . , ed} =
{
λ ∈ Rd : λ(i) ≥ 0 ∀i ∈ [d],

∑
i∈[d]

λ(i) = 1
}
.

Given a collection of vectors V = {v1, ..., vn}, we denote its convex hull by

conv V := {λ1v1 + · · ·+ λnvn : λ ∈ ∆d}.

By convex polytope we always mean a non-empty, bounded intersection of finitely

many closed halfspaces (without any requirement on its interior). Let Kd denote the

class of convex bodies in Rd, i.e., compact convex sets with non-empty interior, and

let Kd
o ⊂ Kd be the class of convex bodies containing the origin in their interior. For

B ∈ Kd
o, the Minkowski norm generated by B is defined as

∥x∥B := inf{r ≥ 0 : x ∈ rB}.

Note that this is a norm on Rd in the classical sense only when B is symmetric about

1



2 Introduction

0, that is B = −B; otherwise, ∥.∥B is homogeneous only for positive scalars – in this

case ∥.∥B is called an asymmetric norm. In this dissertation the term ‘norm’ will be

used in a general sense that encompasses both cases. Note that B is the unit ball of

∥ · ∥B.

According to standard conventions, Bd
p stands for the unit ball of the ℓp-norm on

Rd, where

∥x∥p :=
(∑

i∈[d]

∣∣x(i)
∣∣p)1/p, ∀p ≥ 1, x ∈ Rd,

and

∥x∥∞ = max
i∈[d]

|x(i)|.

• The closed positive halfspace orthogonal to u,

H+(u) := {x ∈ Rd : ⟨x, u⟩ ≥ 0}.

• The spherical cap of height (1− t) centered at u,

Ct(u) :=
{
v ∈ Sd−1 : ⟨v, u⟩ ≥ t

}
.

• The ball-cone of height t centered at u,

Kt(u) :=
{
v ∈ Bd

2 :
〈 v

|v|
, u
〉
≥ t
}
= Conv(Ct(u) ∪ {0});

Figure 1.1: Depiction of Ct(u) and Kt(u).

Let κd := Vold(B
d
2) = πd/2/Γ(d

2
+ 1) denote the volume of the Euclidean unit ball,

where
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Γ(x) =

∫ ∞

0

tx−1e−t dx, x > 0

is Euler’s gamma function.

Let σ(·) be the normalized surface area measure on Sd−1. We will need to estimate

the measure of spherical caps: to that end, we define

σt := σ(Ct(u))

for an arbitrary u ∈ Sd−1 – note that σt is independent of u.

Finally, when useful we denote the sum of a finite collection of vectors V ⊂ Rd by

Σ(V ) :=
∑

v∈V v.

1.2 A Brief Overview of History and Results

In this dissertation we will focus on results relating to vector sum problems from

convex and discrete geometry, in particular the vector balancing problem and the

Steinitz problem. These two problems, while quite different in nature, are intricately

connected by the beautiful transference theorem of Chobanyan [26]. We begin by

introducing these two problems and their history, and conclude the section with a

brief summary of related work.

The vector balancing question asks the following: given symmetric convex bodies

K,L ∈ Kd
o with associated Minkowski norms ∥ · ∥K , ∥ · ∥L and any collection of vectors

v1, ..., vn ∈ K, select signs ε1, ..., εn ∈ {±1} so that
∥∥∥∑i∈[n] εivi

∥∥∥
L

is minimal. The

term vector balancing is readily motivated by the following interpretation: placing the

vectors into the two plates of a scale according to their associated signs, the problem

asks for achieving a nearly equal balance, that is, forcing the sum of the vectors in the

plates to be as close as possible.

In order to facilitate the coming work, we introduce the notion of vector balancing
constants of K,L ∈ Kd

o. To this end, we define the n-vector balancing constant:

vb(K,L, n) = max
v1,...,vn∈K

min
ε1,...,εn∈{±1}

∥ε1v1 + . . .+ εnvn∥L. (1.1)

The first surprising observation we can make is that even though vb(K,L, n)

depends on the bodies K,L ∈ Kd
o and the two parameters d, n ∈ N, the optimal

bounds turn out to be independent of the number of vectors n in the case n ≥ d
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[12, 54, 67], a fact that we will return to in Section 2.2. In light of this observation,

we can define the vector balancing constant of K and L,

vb(K,L) = sup
n≥d

vb(K,L, n).

When K = L, we simply write

vb(K,n) = vb(K,K, n) and vb(K) = sup
n≥d

vb(K,n).

The vector balancing problem is over six decades old, and was first introduced

by Dvoretzky [28], who asked for bounds specifically in the ℓp setting for p ≥ 1 and

d ∈ N; that is, on vb(Bd
p).

The first results for Dvoretzky’s question came in the late 1970’s, first for the case

of the Euclidean norm. The sharp bound

vb(Bd
2 , d) = vb(Bd

2) =
√
d (1.2)

was independently proven by Sevast’yanov [64], Bárány (unpublished at the time,

for the proof, see [22]), Spencer [67] and also, perhaps, by V.V. Grinberg [23].

Sevast’yanov and Bárány used linear algebraic techniques, whereas Spencer applied

the probabilistic method. In both approaches, the proof reduces to showing that any

point of a parallelotope in Rd can be approximated by a vertex with Euclidean error

at most
√
d. This result is the direct predecessor of our Proposition 3.1 in Section 3.1.

The case of the ℓ∞-norm proved to be much more challenging, but it was later

solved by Spencer in 1985 [68], who showed that

vb(Bd
∞, d) ≤ C

√
d (1.3)

and

vb(Bd
∞) ≤ 2C

√
d (1.4)

for a universal constant C < 6. These estimates are asymptotically sharp, as one

can see using random constructions involving Hadamard matrices. One interesting

note about the maximum norm case is that although Spencer’s original proof was

highly non-constructive, more recent algorithmic approaches have been developed

showing that the coloring is actually obtainable in randomized polynomial time

[10, 47]. We also note that the weaker bound of O(
√
n log d) can be shown by
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applying the probabilistic method, but removing the
√
log d factor is not possible

using that approach. The upper bound (1.3) was also shown, independently, by

Gluskin [33], who applied Minkowski’s theorem on lattice points and an argument of

Kashin [44]. These results rely on the parallelotope approximation in the maximum

norm, which is the predecessor of our Proposition 3.2 in Section 3.2. These vertex

approximation results are also closely related another class of vector sum problems

known as the Beck-Fiala “integer-making” theorems [15].

In 2022, Reis and Rothvoss [54] proved that there exists a universal constant C ′

for which vb(Bd
p) ≤ C ′

√
d holds for all 2 ≤ p ≤ ∞. This bound can be combined

with the following lower bound of Banaszczyk [8] for general norms to fully resolves

Dvoretzky’s question.

Theorem 1.1 (Lower Bound for General Norms). Let K,L be two symmetric convex
bodies in Rd and |K|, |L| their d-dimensional volumes. Then there exist vectors u1, ..., un ∈
K such that for any choice of signs ε1, ..., εd ∈ ±1,

∥ε1ud + · · ·+ εdud∥L ≥ 1√
2πe

√
n
(
|K|/|L|

)1/d
.

The major open question remaining in this area is the Komlós conjecture (see

[9, 68]), which posits that

vb(Bd
2 , B

d
∞, n) ≤ C

holds for each n, d ≥ 1 with a universal constant C. Very recently, a new breakthrough

was made by Bansal and Jiang, who showed that vb(Bd
2 , B

d
∞) = O((log d)1/4). This

improved on the O(
√
log d) bound of Banaszczyk from 1998, which was actually a

consequence of a more general theorem, stated below.

Theorem 1.2 ([9]). Let γd denote the (standard) Gaussian measure on Rd with density
1

(2π)−d/2 exp(−∥x∥22/2), and let K ⊂ Rd be a convex body with γd(K) ≥ 1/2. Then given
v1, ..., vn ∈ Bd

2 , there exist signs ε1, ..., εn ∈ {±1} such that

∥ε1v1 + · · ·+ εnvn∥K ≤ CK,

where C > 0 is a universal constant.

Similar to the case of Spencer’s maximum norm result, the original proof of

Banaszczyk was highly non-constructive, but a recent algorithmic proof was given

obtaining the colorings in randomized polynomial time [11].
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Beyond the unit balls of the ℓp norms, this problem has been studied for many other

convex bodies, as well as in specific dimensions, in online settings, and through many

other variants. We introduce a few here. Giannopoulous provides a nice summary of

classical vector balancing results in [32]. Vector balancing of zonotopes, a particular

class of convex bodies, was studied in [42] as an extension of Spencer’s results in the

maximum norm setting. Vector balancing in the specific setting of the plane (d = 2)

has been studied by Swanepoel [74] and Lund and Magazinov [49]. There are also

related online versions of the vector balancing problem, where one is given vectors

one at a time, as well as other related combinatorial games; these have been studied

extensively by Spencer [66, 69]. One can also ask related anti-balancing questions, see

for example [3, 8]. In addition, vector balancing in the maximum norm is intricately

connected to discrepancy theory, as one can interpret vb(Bd
∞, n) as the discrepancy of

a set system with d sets on n elements. For more information on discrepancy theory

and related results, see Matoušek [50].

An exciting new direction that has driven recent research on vector balancing

type problems is a close connection between vector balancing and various problems

in machine learning. Applications thus far include, but are not limited to, coresets

for kernel density estimation [21, 52, 53, 75], randomized control trials [41], and

quantization of neural networks [5].

In Chapters 2 and 3 we will introduce another generalization of the vector bal-

ancing problem, called the colorful vector balancing problem, and prove that the

asymptotically tight bounds in the Euclidean and maximum norm cases extend to this

more general setting. The precise results are formulated below.

Theorem ([2], Theorem 1.4). Given vector families V1, ..., Vn ⊆ Bd
2 with

0 ∈
∑
i∈[n]

Conv Vi,

one can select vectors vi ∈ Vi for i ∈ [n] such that ∥v1 + · · ·+ vn∥2 ≤
√
d.

Theorem 1.3 ([2], Theorem 1.5). Given vector families V1, ..., Vn ⊆ Bd
∞ with

0 ∈
∑
i∈[n]

Conv Vi,

one can select vectors vi ∈ Vi for i ∈ [n] such that ∥v1+ · · ·+vn∥∞ ≤ C
√
d, where C = 22

suffices.
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We now change focus and introduce the Steinitz problem, a seemingly unrelated

vector sum problem that is in fact closely connected to vector balancing. The Steinitz

problem arises in connection with a famous theorem that will be familiar to all

mathematicians: the Riemann rearrangement theorem [55]. This theorem, a classic

result in analysis, tells us that a conditionally convergent series can be rearranged

to converge to any real number. Formulated through a different lens, for any real

series, consider the set of all sums of its possible rearrangements. The Riemann

rearrangement theorem tells us that this set is either empty, i.e. the series is divergent;

a single point, i.e. the series is absolutely convergent; or the entire real line, i.e. the

series is conditionally convergent. A natural question is what happens if one studies

sequences of complex numbers, or even more generally, sequences of vectors in Rd.

This problem was first addressed by Lévy in 1905 [46](at just 19 years old, in his very

first article), who proved the following result.

Theorem 1.4 (Lévy-Steinitz Theorem). Given a series of vectors in Rd, the set of all
sums of its rearrangements is empty, or it forms an affine subspace of Rd.

Recall that an affine subspace of Rd is of the form L+ x, where L ⊂ Rd is a linear

subspace and x ∈ Rd. The reader may notice that the theorem is also attributed to

Steinitz: the reason for this is that Lévy’s proof contained serious gaps in dimensions

d ≥ 3, which was pointed out and fixed by Steinitz in a series of works published in

three parts [71, 72, 73], which is quite technical and covers much ground. The key

step in his proof is the following, which is the birth of what we will call the Steinitz

problem.

Theorem 1.5 ([71], p.171). Given any finite family of vectors V ⊂ Rd of Euclidean
norm at most 1 summing to 0, one can order the elements of V as v1, ..., vn so that for
every k = 1, ..., n, ∥∥∥∑

i∈[k]

vi

∥∥∥
2
≤ C, (1.5)

where C is a constant that depends only on the dimension d.

Steinitz’s proof shows that in fact C ≤ 2d. It is natural to ask for the smallest value

of C for which (1.5) holds, in general norms as well. This quantity will be called the

Steinitz constant, and is defined as follows.

Definition 1.6 (Steinitz constant). Let B ∈ Kd
0. The Steinitz constant of B, denoted

S(B), is the smallest number C for which any finite family of vectors V ⊂ B with
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Σ(V ) = 0 has an ordering V = {v1, . . . , vn} along which each partial sum has norm at
most C. That is, for every k ∈ [n], ∥∥∥∑

i∈[k]

vi

∥∥∥
B
≤ C.

Note that the term ‘constant’ above refers to the fact that S(B) depends only on

the choice of B, but not on the vector family V ⊂ B. We make no reference to the

dimension d, as the value of the Steinitz constant is independent of d as long as B can

be embedded in Rd.

One can also consider a generalized version of the Steinitz constant, where the

zero-sum condition Σ(V ) = 0 on the vector family is dropped:

Definition 1.7 (Relaxed Steinitz constant). For B ∈ Kd
0, let S∗(B) denote the smallest

constant C for which any finite family of vectors V ⊂ B has an ordering V = {v1, . . . , vn}
so that ∥∥∥∑

i∈[k]

vi −
k

n
Σ(V )

∥∥∥
B
≤ C (1.6)

holds for every k ∈ [n].

The relationship with the original Steinitz constant is given by the simple chain of

inequalities

S(B) ≤ S∗(B) ≤ (1 + ρ(B))S(B), (1.7)

where

ρ(B) := max
v∈B

∥ − v∥B

measures the asymmetry of B. Note that ρ(B) = 1 if B is symmetric. The lower bound

in (1.7) is trivial; to see the upper estimate, one has to observe that starting from any

family V of n vectors in B, the triangle inequality implies that ∥Σ(V )∥B ≤ n, hence

∥ − Σ(V )
n

∥B ≤ ρ(B). Accordingly, the zero-sum vector family
{
v − Σ(V )

n
: v ∈ V

}
lies in

(1 + ρ(B))B, and the estimate readily follows. We note that there are further variants

of Definition 1.7 (see e.g. [7]), although these are not directly related to the topics of

this dissertation.

Theorem 1.5, proved by Steinitz, justifies that S(Bd
2) and, via (1.7), that S∗(Bd

2)

are well-defined. The proof can be extended to any symmetric norm. For asymmetric

norms, the justification of Definitions 1.6 and 1.7 is implied by the following general

bound, proved in 1978 by Sevastyanov [63] and by Grinberg and Sevastyanov [34]

for not necessarily symmetric bodies by a simpler proof.
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Theorem 1.8 (The Steinitz Lemma for general norms [34, 63]). For any convex body
B ∈ Kd

o,
S(B) ≤ d. (1.8)

The bound is tight for non-symmetric convex bodies, as is shown by taking B

to be the regular simplex centered at the origin and choosing V to be the set of its

vertices, whereas it is sharp by the order of magnitude for symmetric norms, which is

confirmed by the inequality S(Bd
1) ≥ (d+ 1)/2, see [34]. For symmetric B ∈ Kd

o, the

estimate in (1.8) can be strengthened to d− 1 + 1
d
, see [65].

Via (1.7), Theorem 1.8 readily implies the bound

S∗(B) ≤ (1 + ρ(B))d,

which also follows from the results in [34]. In particular, S∗(B) ≤ 2d holds for

symmetric B ∈ Kd
o.

The following long-standing conjecture of Bergström [18], be it confirmed, would

yield a much stronger estimate on the Steinitz constant in the Euclidean case:

Conjecture 1.9. For all d ≥ 1, S(Bd
2) = O(

√
d).

The same bound is expected to hold for the maximum norm. So far, Conjecture 1.9,

which is sometimes also called the Euclidean Steinitz problem, has refuted all at-

tempts. An explicit construction [27, 34] shows that S(Bd
2) ≥

√
d+ 3/2 must hold,

meaning that no stronger estimate is possible. The exact value of the planar Euclidean

Steinitz constant was determined by Banaszczyk [7], who proved that S(B2
2) =

√
5/2,

matching this lower bound.

Our work in this dissertation focuses on relating the Steinitz constant to the

restricted setting of ‘nearly unit’ vectors: the subscript ‘ε’ will mean that only families

of vectors are considered whose members have norm in the interval [1− ε, 1].

Definition 1.10 (ε-Steinitz constants). For B ∈ Kd
0 and 0 ≤ ε ≤ 1, let S∗

ε (B) denote the
smallest constant C for which any finite family V ⊂ Rd consisting of vectors of ∥.∥B-norm
in [1− ε, 1] may be ordered as V = {v1, . . . , vn} so that∥∥∥∑

i∈[k]

vi −
k

n
Σ(V )

∥∥∥
B
≤ C

holds for every k = 1, . . . , n. Furthermore, let Sε(B) denote analogous quantity for vector
families that satisfy the extra condition Σ(V ) = 0.
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Note that for any 0 ≤ ε ≤ 1, S0(B) ≤ Sε(B) ≤ S1(B) = S(B), S∗
0(B) ≤ S∗

ε (B) ≤
S∗
1(B) = S∗(B), and Sε(B) ≤ S∗

ε (B). Thus, (1.7) ensures that

S∗
ε (B) ≤ 2S(B) (1.9)

for symmetric norms, while

S∗
ε (B) ≤ (1 + ρ(B))S(B)

holds for arbitrary B ∈ Kd
o.

Furthermore, observe that setting ε = 0 restricts the problem to families of unit

vectors. In the Euclidean case, a construction given by Damsteeg and Halperin [27]

implies that

Ω(
√
d) ≤ S0(B

d
2) ≤ S∗

0(B
d
2) ≤ S∗

ε (B
d
2). (1.10)

In this dissertation we prove two results establishing reverse estimates of (1.9).

The first result is specific to the Euclidean norm.

Theorem 1.11. For any 0 < ε < 1 and all d ≥ 2,

S(Bd
2) <

1

ε

(
S∗
ε (B

d
2) + 200

√
d

log d

)
. (1.11)

In particular, an o(d) bound on S∗
ε (B

d
2) for some fixed 0 < ε ≤ 1 would yield an

o(d) estimate on S(Bd
2), hence improving the current strongest bound. Moreover,

(1.10) and (1.11) imply that Conjecture 1.9 is equivalent to the statement that

S∗
ε (B

d
2) = O(

√
d) for some constant ε ∈ (0, 1].

The second result generalizes and simplifies the techniques of the proof of Theorem

1.11 and yields an even stronger estimate for general norms.

Theorem 1.12 ([4] Theorem 7). For all d ≥ 2, for every convex body B ∈ Kd
o, and

0 < ε ≤ 1,
S(B) <

1

ε

(
S∗
ε (B) + 2ρ(B) + 1

)
. (1.12)

In the case that B is symmetric, the bound simplifies to 1
ε
(S∗

ε (B) + 3).

We conclude this section with the Chobanyan transference theorem, a surprising

result that connects the vector balancing problem to the Steinitz problem. In order to

introduce this theorem, we first describe a variant of the vector balancing problem,
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called the signed sequence problem. In this problem one is given a symmetric convex

body B ⊂ Rd and a (potentially infinite) sequence u1, u2, ... ∈ B. The goal is to find

signs εi ∈ {±1} for i = 1, 2, ..., so that all signed partial sums
∑

i∈[k] εiui for k ∈ N
are bounded by a constant C depending only on B. We define the signed sequence

constant of B, E(B), to be the smallest constant C that holds for all sequences selected

from B. Bárány and Grinberg proved that E(B) ≤ 2d − 1 for all symmetric convex

B ⊂ Rd [23].

The Chobanyan transference theorem establishes a close connection between the

signed sequence constant and Steinitz constant of any given symmetric convex body.

Theorem 1.13 (Chobanyan Transference Theorem [26]). Assume B is a symmetric
convex body in Rd. Then S(B) ≤ E(B).

In particular, to verify Conjecture 1.9 it would suffice to show that E(B) = O(
√
d).

The Chobanyan transference theorem is just one example of deep and beautiful

connections between seemingly distinct vector sum problems in discrete and convex

geometry.

1.3 Overview of Thesis

To conclude this chapter, we summarize the organization of the thesis. In Chapter

2 we introduce the colorful vector balancing problem, a geometric generalization of

the original vector balancing problem. In Section 2.1 we discuss the history of the

problem and existing results. In Section 2.2 we describe a linear algebraic reduction

of the problem which will be key to our proofs. In particular, this aspect of the proofs

allows us to prove bounds independent of the number of vectors. In Section 2.3 we

extend techniques from [11] to prove that the colorful vector balancing problem can

always be bounded in terms of the original vector balancing problem. We also justify

the benefits of our more direct, geometric proof of these results.

In Chapter 3 we prove our main results for the colorful vector balancing problem

in the Euclidean and maximum norms. In particular, we extend the tight (respectively,

asymptotically tight) results for the Euclidean and maximum norms in the vector

balancing setting to the colorful setting (see Theorems 1.2 and 1.3). The chapter

is structured as follows: in Section 3.1 we prove our result for the Euclidean norm

using the probabilistic method. In Section 3.2 we prove our result for the maximum

norm, up to the proof of a technical lemma that we defer to Section 3.3 in order to
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simplify the exposition in Section 3.2. The proof in the maximum norm setting is more

involved and is based on analysis of a Gaussian random walk. It is a generalization of

the algorithm introduced by Lovett and Meka in [47].

In Chapter 4 we turn our attention to the Steinitz problem and Conjecture 1.9. Our

main result is a reduction of the Steinitz problem for arbitrary norms to the setting

where the vectors all have norm in [1− ε, 1] for any fixed constant 0 < ε < 1 (which

we call “almost-unit vectors”), up to additive O(1) error (see Theorems 1.11 and 1.12).

In Section 4.1 we outline the structure of the chapter. In Section 4.3 we present a

proof of a slightly weaker result in the specific case of the Euclidean norm, utilizing

techniques of independent interest (several technical lemmas are deferred to Section

4.4). Finally, in Section 4.5 we prove our main result, which holds for arbitrary norms.

In Chapter 5 we present a brief conclusion and discuss several potential future

extensions of our work.



Chapter 2

Colorful Vector Balancing: a Linear

Algebra Reduction

Chapters 2 and 3 of the dissertation are based on the following published paper of the

author:

[2] Gergely Ambrus and Rainie Bozzai. Colourful vector balancing. Mathematika,

70(4), August 2024.

2.1 The Colorful Vector Balancing Problem

Recall the vector balancing problem introduced in Section 1, where we are given a

norm ∥ · ∥ on Rd with unit ball B ⊂ Rd and vectors v1, ..., vn ∈ B, and asked to select

signs ε1, ..., εn ∈ {±1} so that norm of the signed sum, ∥ε1v1 + · · ·+ εnvn∥, is minimal.

This chapter focuses on a natural “colorful” generalization of this problem: again fix a

norm ∥ · ∥ on Rd with unit ball B ⊂ Rd, but now consider vector families V1, ..., Vn ⊆ B

satisfying the condition that 0 ∈ conv V1 + · · · + conv Vn. The goal is to select one

vector from each family, vi ∈ Vi, so that the norm of the sum of the selected vectors,

∥v1 + · · ·+ vn∥, is minimal.

We make two remarks about this problem statement. First, to motivate the name

“colorful” vector balancing, note that one can interpret the families as color classes,

in which case the problem asks for a colorful sum of vectors of minimal norm (see

Figure 2.1 for an example. Note that in this example, while 0 ̸∈ convV1, convV2, it is

true that 0 ∈ convV1 + convV2 + convV3.).

Second, to see that this problem is indeed a generalization of the original vector

13
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Figure 2.1: An example of colorful vector balancing with n = 3, d = 2 in the Euclidean
norm.

balancing problem, note that the original problem is retrieved by setting Vi = {±vi}
for i ∈ [n].

The colorful vector balancing problem was first introduced by Bárány and Grinberg,

who proved the following result.

Theorem 2.1 (Bárány, Grinberg [23]). Assume that B ⊂ Kd
o is an origin-symmetric

convex body, and V1, . . . , Vn ⊆ B are vector families so that 0 ∈
∑

i∈[n] ConvVi. Then
there exists a selection of vectors vi ∈ Vi for i ∈ [n] such that∥∥∥∑

i∈[n]

vi

∥∥∥
B
≤ d. (2.1)

Taking B = Bd
1 , n = d, and Vi = {±ei} for i ∈ [n] shows that Theorem 2.1 is sharp.

Yet, for specific norms, asymptotically stronger estimates may hold. In light of the

fact that vb(Bd
2) =

√
d and vb(Bd

∞) = O(
√
d) (see (1.2) and (1.4)), it is plausible to

conjecture that for the Euclidean and the maximum norms, the sharp estimate is of

order O(
√
d). For the case of the Euclidean norm, it is mentioned in [23] that V. V.

Grinberg proved the sharp bound of
√
d, although this has never been published (or

verified) – and 25 years later, the statement was again referred to as a conjecture [14].

Bárány and Grinberg [23] also note that “from the point of view of applications, it

would be interesting to know more about” the case of the ℓ∞-norm.

Recall Theorem 1.2 from Section 1, which for a convex body K ⊂ Rd connects

vb(Bd
2 , K) to the Gaussian measure of K [9]. This result, as mentioned previously,

was recently proven constructively using an algorithm called the Gram-Schmidt walk
[11]. In this paper, Bansal et al. additionally prove the a colorful generalization of
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Banaszczyk’s result, albeit in a slightly different colorful setting.

Theorem 2.2 (Bansal, Dadush, Garg, Lovett [11]). Let V1, ..., Vn ⊆ Bd
2 be vector families

with 0 ∈ conv Vi for each i ∈ [n]. Then for any convex body K with γd(K) ≥ 1/2, there
exist vectors vi ∈ Vi such that

∑n
i=1 vi ∈ cK, where c > 0 is an absolute constant.

Note that the condition 0 ∈
∑

i∈[n] ConvVi is weaker than requiring 0 ∈ ConvVi for

each i – by applying a shift of each family, the more general estimate can be derived

from the statement under this more restrictive condition, albeit with the loss of a

factor 2 compared to the above bound.

Applying Theorem 2.2 to the Euclidean norm, one retrieves a sum of norm at

most C
√
d for some constant C > 1, and for the maximum norm one obtains a

bound of O(
√
d ln d) (the latter can also be obtained by a straightforward application

of the probabilistic method). We note that their proof method, which is based on

the techniques of Lovász, Spencer, and Vesztergombi [48], can be modified to show

that the bound in the colorful setting is at most twice the original vector balancing

constant, which implies O(
√
d) bounds for both the Euclidean and maximum norm.

This asymptotically matches the estimates that we will prove, up to constants; for

details, see Section 2.3. In this chapter, we instead provide a direct, constructive

approach for proving asymptotically matching, yet tighter estimates for both the

Euclidean and maximum norms, which also shed more light on the geometry of

the problem and its algorithmic aspects. Our main results show bounds of
√
d and

O(
√
d) for the Euclidean and maximum norm cases, respectively, matching the tight

(respectively, tight in order of magnitude) results in the vector balancing setting (see

Theorems 1.2 and 1.3).

For an estimate in the dual direction in the Euclidean setting, the following result is

well known: if V1, . . . , Vn are sets of unit vectors with 0 ∈ ConvVi for each i, then one

may select vi ∈ Vi for i ∈ [n] so that
∥∥∥∑i∈[n] vi

∥∥∥
2
≥

√
n (for a further generalization,

see [1]).

The proofs of Theorems 1.2 and 1.3 are deferred to Chapter 3; in the remainder of

this chapter we instead focus on several reductions of the colorful vector balancing

problem that motivate our proof technique. In Section 2.2 we will prove an essential

linear algebraic reduction of the colorful vector balancing problem that is the key to

giving bounds independent of the number of vector families n. The tools developed

in Section 2.2 form the basis for the proofs of Theorems 1.2 and 1.3 in Chapter 3.

We will also address the above-mentioned reduction of the colorful vector balancing

problem to the original vector balancing problem and highlight the advantages of our
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more geometric approach.

2.2 A Linear Algebraic Reduction

In this section we will use the method of linear dependencies to prove that the number

of vector families can be reduced from n to at most d, and moreover that the total

number of vectors can also be bounded from above. This approach dates back to the

classical work of Shapley and Folkman, and Starr from the 1960’s [70]. Several other

applications of the method of linear dependencies are well surveyed by Bárány [22].

Recall the setting of the problem: we are given an origin-symmetric convex body

B in Rd and vector families V1, ..., Vn ⊆ B such that 0 ∈
∑

i∈[n] conv Vi, and our goal is

to select vectors vi ∈ Vi for i ∈ [n] such that
∥∥∥∑i∈[n] vi

∥∥∥
B

is minimal (here ∥ · ∥B is the

Minkowski norm associated to B, see Section 1.1 for the definition).

We first note that by Carathéodory’s theorem we may assume that each family

Vi is finite (in fact, |Vi| ≤ d + 1 for each i ∈ [n]). Indeed, as we assume that

0 ∈
∑

i∈[n] conv Vi, we know that for each i ∈ [n] there exists xi ∈ conv Vi so that

x1 + · · · + xn = 0. By Carathéodory’s theorem, for each i ∈ [n] there exists (up

to relabeling) v1, ..., vd+1 ∈ Vi so that xi ∈ conv{v1, ..., vd+1}, thus redefining the

families this way still yields a collection of families satisfying the condition that

0 ∈
∑

i∈[n] convVi, and without loss of generality we can assume that each family is

finite. From now on we will make this assumption.

We identify a set of vectors U = {u1, . . . , um} ⊂ Rd with the d×m matrix

U =
(
u1 · · ·um

)
.

Definition 2.3. Given vector families V1, . . . , Vn ⊂ Rd with |Vi| = mi and
∑

i∈[n] mi = m,
we define the associated vector family matrix

V :=
(
V1|V2| · · · |Vn

)
∈ Rd×m,

which is a partitioned matrix. We also introduce the associated set of convex coefficients

∆V := ∆m1 × · · · ×∆mn ⊂ Rm (2.2)

which is a convex polytope arising as a direct product of simplices.

The relevance of ∆V is shown by the fact that a vector v ∈ Rd is contained in
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ConvVi if and only if v = Viλ for some λ ∈ ∆mi. Accordingly,

ConvV1 + · · ·+ ConvVn = {V λ : λ ∈ ∆V }.

In the above scenario, we will usually consider Rm along with its orthogonal

decomposition Rm = Rm1 ×· · ·×Rmn . A collection of vector families V = {V1, . . . , Vn}
will always be identified with its associated vector family matrix V – using the same

notation for these two will cause no ambiguity and will be clarified by the context.

From now on, U, V and W will always stand for a collection of vector families or their

associated vector family matrices.

Throughout this section, Greek letters will be used to denote vectors in the coeffi-

cient space ∆V ⊂ Rm, while letters of the Latin alphabet will stand for vectors in Rd.

To make the connection between these spaces explicit, coefficient vectors β ∈ ∆V will

also be indexed by members of Vi as follows:

β = (β(vi))vi∈Vi, i∈[n] ∈ Rm. (2.3)

Given a vector family matrix V ∈ Rm×d and a set of indices J ⊂ [m], we naturally

define V |J , the restriction of V to the columns indexed by elements of J . This is

again a vector family matrix which naturally induces a collection of vector families,

the restrictions of the original ones to J . Naturally, ∆V |J ⊂ R|J | is the set of convex

coefficients associated to V |J . By virtue of the indexing (2.3), we may also define the

restriction to a subcollection W ⊂ V . In particular, for β ∈ ∆V and Vi ∈ V , β|Vi
∈ ∆Vi

consists of the coefficients of vectors in Vi.

Given a partition I∪̇J = [m] and vectors λ ∈ ∆V |I , µ ∈ ∆V |J , we introduce the

natural concatenation of λ and µ by λ∨µ ∈ ∆V ; that is, (λ∨µ)|I = λ and (λ∨µ)|J = µ.

Definition 2.4. A number x ∈ [0, 1] is fractional if x ̸∈ {0, 1}. Given a vector β ∈ ∆V ,
we say that family Vi is locked by β if none of the coordinates of β|Vi

are fractional.
Otherwise family Vi is free under β. A vector β ∈ ∆V is a selection vector if every family
is locked by β, equivalently, β is a vertex of ∆V .

Note that for a selection vector β ∈ ∆V , Viβ|Vi
= vi for some vi ∈ Vi for each i ∈ [n].

The main tool of the section is the following generalization of the Shapley-Folkman

lemma [57, 70], a cornerstone result in econometric theory. Alternative versions were

proved and used by Grinberg and Sevast’yanov [35] and Bárány and Grinberg [23].

Theorem 2.5. Given a collection of vector families V = {V1, . . . , Vn} in Rd with 0 ∈∑
i∈[n] ConvVi, there exists a vector α ∈ ∆V such that
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(i) V α = 0;

(ii) All but k ≤ d families Vi are locked by α;

(iii) α has at most k + d fractional coordinates.

The proof is based on the Shapley-Folkman–style statement below which is related

to the geometry of basic feasible solutions of linear programs.

Lemma 2.6 ( [70], [35]). Let K be a polyhedron in Rm defined by a system

fi(x) = ai, i = 1, . . . , p,

gj(x) ≤ bj, j = 1, . . . , q,

where fi, gj are linear functions. Let x0 be a vertex of K and A = {j : gj(x0) = bj}. Then
|A| ≥ m− p.

Proof of Theorem 2.5. Given vector families V1, . . . , Vn in Rd with 0 ∈
∑

i∈[n] ConvVi

and m =
∑

i∈[n] |Vi|, consider the set

P =
{
λ ∈ ∆V : V λ = 0

}
=
{
λ ∈ Rm :

∑
i∈[n]

∑
vi∈Vi

λ(vi)vi = 0,
∑
vi∈Vi

λ(vi) = 1 ∀i ∈ [n],

λ(vi) ≥ 0 ∀i ∈ [n],∀vi ∈ Vi

}
.

(2.4)

By our assumption that 0 ∈
∑

i∈[n] ConvVi, P is a (non-empty) convex polytope in Rm.

Let α ∈ P be any extreme point of P . Define

S :=
{
i ∈ [n] : Vi is free under α

}
and let k = |S|. By Lemma 2.6, at most n + d non-negativity inequalities in (2.4)

are slack when substituting λ = α. Each of the n− k families locked by α contribute

exactly one slack constraint, arising from the (unique) 1-coordinate. Let f denote the

number of fractional coordinates of α; then f + (n− k) is the total number of slack

constraints. Thus

f + (n− k) ≤ n+ d

which implies that f ≤ k + d. Since, by definition, f ≥ 2k, this also shows that

k ≤ d.
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By virtue of allowing us to reduce consideration to at most d families, the following

corollary is the main tool for proving upper bounds for the colorful vector balancing

problem in arbitrary norms.

Corollary 2.7. Let ∥ ·∥ be a norm on Rd with unit ball B. Suppose there exists a constant
C(d) such that given any collection of k ≤ d families U = {U1, . . . , Uk} in B satisfying
|U1|+ · · ·+ |Uk| ≤ k + d, and any λ ∈ ∆U , there exists a selection vector µ ∈ ∆U such
that

∥V λ− V µ∥ ≤ C(d).

Then given any collection of families V1, . . . , Vn ⊆ B with 0 ∈
∑

i∈[n] ConvVi, there exists
a selection of vectors vi ∈ Vi for i ∈ [n] such that∥∥∥∑

i∈[n]

vi

∥∥∥ ≤ C(d).

Proof. Suppose that the hypothesis of the statement holds. Let m := |V1|+ · · ·+ |Vn|.
Applying Theorem 2.5 to V = {V1, . . . , Vn}, we find α ∈ ∆V such that V α = 0, all

but k ≤ d families Vi are locked by α, and α has at most k + d fractional coordinates.

Let F ⊂ [m] be the set of indices of fractional coordinates, and set L = [m] \ F .

Then |F | ≤ k + d. By hypothesis, there exists a selection vector µ ∈ ∆V |F such that

∥V |Fα|F − V |Fµ∥ ≤ C(d), and so

∥V |Lα|L+V |Fµ∥ ≤ ∥V |Lα|L+V |Fα|F∥+∥−V |Fα|F +V |Fµ∥ ≤ ∥V α∥+C(d) = C(d).

Taking the selection of vectors given by α|L ∨ µ completes the proof.

2.3 A Reduction to Vector Balancing

In this section we describe an alternative approach for proving asymptotic estimates

for colorful vector balancing constants matching Theorems 1.2 and 1.3, based on the

proof techniques of Lovász, Spencer and Vesztergombi [48] and Bansal, Dadush, Garg,

and Lovett [11] 1. For the following proof we denote the colorful vector balancing

constant of two symmetric convex bodies K,L ⊂ Rd as

colvb(K,L) := sup
n≥d

max
V1,...,Vn⊆K

0∈
∑

ConvVi

min
vi∈Vi, i∈[n]

∥v1 + · · ·+ vn∥L.

1We thank the anonymous referee for pointing out the argument sketched in this section
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Theorem 2.8. Given any symmetric convex bodies K,L ⊂ Rd,

colvb(K,L) ≤ 2vb(K,L).

Proof. We are given families V1, ..., Vn ⊆ K and a vector λ ∈ ∆V so that V λ = 0. Note

that by Carathéodory’s theorem we may assume that |Vi| ≤ d+ 1 for each i ∈ [n]. Let

ρ = max
u∈K

∥u∥L.

Fix ε > 0 and take ℓ ∈ Z so that n(d+ 1)2−(ℓ−1)ρ ≤ ε.

Each coordinate λ(v) of λ, for v ∈ Vi, i ∈ [n], has a binary expansion, which we

truncate at the ℓth digit after the radix point to obtain the vector µ with coordinates

µ(v) so that |µ(v)− λ(v)| ≤ 2−(ℓ−1) for each v ∈ Vi, i ∈ [n]. Then

∥V λ−V µ∥L =
∥∥∥∑

i∈[n]

∑
v∈Vi

(λ(v)−µ(v))v
∥∥∥
L
≤ 1

2ℓ−1

∑
i∈[n]

∑
v∈Vi

∥v∥L ≤ n(d+ 1)ρ

2ℓ−1
≤ ε. (2.5)

Denote the jth digit of the binary expansion of µ(v) by µ(v)(j). We define the set

Sℓ := {v ∈ ∪i∈[n]Vi : µ(v)(ℓ) = 1}

to be the set of vectors in our collection for which the ℓth digit of the binary expansion

of the corresponding coefficient is 1. Since
∑

v∈Vi
λ(v) = 1 for each i ∈ [n], it follows

that |Sℓ ∩ Vi| = 2qi for some qi ∈ Z, so we can write S ∩ Vi = {vi1, ..., vi2qi} for each

i ∈ [n]. We define the auxiliary collections of vectors

Wi =
{

vi2j−vi2j−1

2

}
j∈[qi]

⊆ K

and then balance the collection W = ∪i∈[n]Wi, yielding signs χi(j) ∈ {±1} so that∥∥∥∥∥∥
∑
i∈[n]

∑
j∈[qi]

χi(j)
vi2j − vi2j−1

2

∥∥∥∥∥∥
L

≤ vb(K,L).

Color the elements of Sℓ as follows: for each i ∈ [n], for each k ∈ [2qi], we assign
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βi(k) = χi(j) for k even and βi(k) = −χi(j) for k odd, so that∥∥∥∥∥∥
∑
i∈[n]

∑
k∈[2qi]

βi(k)v
i
k

∥∥∥∥∥∥
L

= 2

∥∥∥∥∥∥
∑
i∈[n]

∑
j∈[qi]

χi(j)
vi2j − vi2j−1

2

∥∥∥∥∥∥
L

≤ 2vb(K,L). (2.6)

We then update the vector µ as follows: for v ̸∈ Sℓ, µ1(v) = µ(v). For v ∈ Sℓ, we know

that v = vik for some i ∈ [n], k ∈ [2qi], and we update µ1(v) := µ(v) + 2−ℓβi(k). By

construction, µ1 ∈ ∆V ∩ 2−(ℓ−1), and ∥V µ1∥ ≤ 2−(ℓ−1)vb(K,L). Iterating the argument

for the successive digits leads to a selection vector µℓ for which

∥V λ∥L ≤ ∥V λ− V µ∥L + ∥V µ∥L ≤

∥∥∥∥∥
ℓ−1∑
i=0

2ivb(K,L)

∥∥∥∥∥
L

≤ ε+ 2vb(K,L).

As ε > 0 was arbitrary, the theorem follows.

Combining Theorem 2.8 with (1.2) and (1.4) implies our Theorems 1.2 and 1.3

up to constants. We intended to give a direct proof that is more suited to algorithmic

applications. Indeed, the computational complexity of finding a solution by the above

approach depends heavily on the number of vector families n, whereas our technique

illuminates the geometric aspects of the problem and the independence of the number

of vector families, including the reduction to O(d) total vectors that is necessary in the

maximum norm case. Moreover, it leads to the sharp bound of
√
d for the Euclidean

case as opposed to the asymptotic bound above, and it improves on the constant for

the maximum norm given by combining [47] with Theorem 2.3.

2.4 Conclusion

In this chapter we introduced the colorful vector balancing problem as a geometric

generalization of the vector balancing problem and discussed its history and existing

results. We further used the method of linear dependencies to reduce the number of

vector families from n to d, which will be a key tool in our proofs of Theorems 1.2 and

1.3. Finally, we discussed an alternate method of providing bounds on the colorful

vector balancing problem by reducing it to the original vector balancing problem, and

highlight the benefits of our more direct geometric approach.



Chapter 3

Colorful Vector Balancing: the

Euclidean and Maximum Norms

In this chapter we present the proofs of Theorems 1.2 and 1.3. In Section 3.1 we

prove Theorem 1.2, and in Section 3.2 we prove Theorem 1.3. Finally, in Section 3.3

we give a detailed proof the our Skeleton Approximation Lemma, a technical result

that forms the backbone of the proof of Theorem 1.3.

3.1 The Euclidean Norm

To prove Theorem 1.2, we will prove the following vertex approximation property for

color classes. Combining Proposition 3.1 with Theorem 2.5 will yield Theorem 1.2.

Proposition 3.1 (Colorful vertex approximation in Euclidean norm). Given a collection
of k vector families U = {U1, . . . , Uk} in Bd

2 and any point λ ∈ ∆U , there exists a selection
vector µ ∈ ∆U such that ∥Uλ− Uµ∥2 ≤

√
k.

Our proof is inspired by Spencer’s argument for the vector balancing case [67]

(in particular, Proposition 3.1 generalizes the Lemma in [67], see also Theorem 4.1

of [22]), and it works in any finite dimensional Hilbert space.

Proof of Proposition 3.1. Define x := Uλ ∈ ConvU1 + · · ·+ ConvUk, so that

x = x1 + · · ·+ xk, xi =
∑
ui∈Ui

λ(ui)ui ∀i ∈ [k],

where λ|Ui
∈ ∆Ui

for each i ∈ [k]. We define a vector-valued random variable wi ∈ Rd

for each i ∈ [k], which takes the value ui with probability λ(ui) for each ui ∈ Ui,

22
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independently of the other wj ’s, j ∈ [k] \ {i}. Then

E[w1 + · · ·+ wk] =
∑
i∈[k]

E[wi] =
∑
i∈[k]

∑
ui∈Ui

λ(ui)Ui =
∑
i∈[k]

xi = x.

Component-wise this yields

E
[
w

(ℓ)
1 + · · ·+ w

(ℓ)
k − x(ℓ)

]
= 0, ℓ ∈ [d]. (3.1)

For each ℓ ∈ [d], (3.1) and the independence of the wi’s imply

E
[
(w

(ℓ)
1 + · · ·+ w

(ℓ)
k − x(ℓ))2

]
= E

[
(w

(ℓ)
1 + · · ·+ w

(ℓ)
k − x(ℓ))2

]
− E

[
w

(ℓ)
1 + · · ·+ w

(ℓ)
k − x(ℓ)

]2
= Var

[
w

(ℓ)
1 + · · ·+ w

(ℓ)
k − x(ℓ)

]
=
∑
i∈[k]

Var
[
w

(ℓ)
i

]
.

(3.2)

Since

∥w1 + · · ·+ wk − x∥22 =
d∑

ℓ=1

(
(w

(ℓ)
1 + · · ·+ w

(ℓ)
k )− x(ℓ)

)2
,

by linearity of expectation and (3.2) we conclude

E
[
∥w1 + · · ·+ wk − x∥2

]
=
∑
ℓ∈[d]

E
[
(w

(ℓ)
1 + · · ·+ w

(ℓ)
k − x(ℓ))2

]
=
∑
ℓ∈[d]

∑
i∈[k]

Var
[
w

(ℓ)
i

]
=
∑
ℓ∈[d]

∑
i∈[k]

E
[
(w

(ℓ)
i )2

]
−
∑
ℓ∈[d]

∑
i∈[k]

E
[
w

(ℓ)
i

]2
=
∑
i∈[k]

E
[
∥wi∥22

]
−
∑
ℓ∈[d]

∑
i∈[k]

E
[
w

(ℓ)
i

]2
.

(3.3)

Finally, we note that

E
[
∥wi∥22

]
=
∑
ui∈Ui

λ(ui) · ∥ui∥22 ≤
∑
ui∈Ui

λ(ui) = 1,

hence continuing calculation (3.3),

E
[
∥w1 + · · ·+ wk − x∥2

]
≤ k −

∑
ℓ∈[d]

∑
i∈[k]

E
[
w

(ℓ)
i

]2 ≤ k.
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It follows that for some specific choice of ui ∈ Ui, i ∈ [k], we have

∥u1 + · · ·+ uk − x∥22 ≤ k.

The corresponding selection vector µ ∈ ∆U satisfies the proposition.

Theorem 1.2 now follows immediately from Corollary 2.7 and Proposition 3.1.

3.2 The Maximum Norm

To prove Theorem 1.3, we need to show that the vertex approximation property (the

analogue of Proposition 3.1) holds for the maximum norm. This result for the original

vector balancing problem is due to Spencer [68] and, independently, Gluskin [33]. As

in the original vector balancing problem, the challenge is to remove the
√
ln d factor.

Note that, unlike in the Euclidean case, we need to set an upper bound on the total

cardinality of the vector systems.

Proposition 3.2 (Colorful vertex approximation in Maximum norm). Given a collection
of k vector families U = {U1, . . . , Uk} in Bd

∞ satisfying m := |U1| + · · · + |Uk| ≤ 2d,
and an arbitrary point λ ∈ ∆U , there exists a selection vector µ ∈ ∆U such that
∥Uλ− Uµ∥∞ ≤ C

√
d for a universal constant C > 0.

Note that applying the probabilistic method directly with the union bound over

coordinates results in the weaker upper bound of O(
√
d
√
ln d). Thus, in order to reach

the bound of O(
√
d), one must apply an alternative argument, just as in the case of the

original vector balancing problem in the maximum norm. In [68], Spencer utilized a

partial coloring method in order to overcome this difficulty. This technique and the

algorithmic argument of Lovett and Meka [47] are the predecessors of our approach

described below.

We will prove Proposition 3.2 by iterating the following lemma, which is a close

relative of the Partial Coloring Lemma in [47]. We call it the skeleton approximation
lemma, as it approximates a point in the set of convex coefficients ∆W ⊂ Rm by a

point on the (m/2)-skeleton of ∆W .

Lemma 3.3 (Skeleton Approximation). Let W = {W1, . . . ,Wk} be a collection of vector
families in Bd

∞ with |Wi| ≥ 2 for each i and m := |W1|+ · · ·+ |Wk| ≤ 2d. Then for any
point λ ∈ ∆W , there exists µ ∈ ∆W such that
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(i) ∥Wλ−Wµ∥∞ ≤ η
√

m ln ξd
m

where η, ξ are constants specified as

η =
7

3
and ξ = 18; (3.4)

(ii) µ(i) = 0 for at least m/2 indices i ∈ [m].

The proof of Lemma 3.3 is postponed to Section 3.3. We now deduce Proposi-

tion 3.2 assuming Lemma 3.3.

Proof of Proposition 3.2. We may assume that |Ui| ≥ 2 for each i, since any convex

coefficient vector corresponding to a 1-element family is necessarily a selection vector.

By an inductive process, we are going to define points λ(s) ∈ ∆U , sets of indices

F (s), L(s) ⊂ [m], and cardinalities m(s) for s = 0, 1, . . . so that for a suitably large S,

λ(S) is a selection vector with the desired properties. To initiate the recursive process,

take λ(0) = λ, let F (0) ⊂ [m] be the set of indices of fractional coordinates of λ(0),

and L(0) = [m] \ F (0) be the set of indices of coordinates of λ(0) equal to 0 or 1.

Introducing m(0) = |F (0)|, we have m(0) ≤ m ≤ 2d.

Assuming that iterative step s has been taken, we define step number s + 1 as

follows. Apply Lemma 3.3 to the vector family matrix U(s) := U |F (s) of total cardinality

m(s) ≤ m and the point λ(s)|F (s) ∈ ∆U(s) to find µ(s+ 1) ∈ ∆U(s) with the prescribed

properties. Define λ(s + 1) = λ(s)|L(s) ∨ µ(s + 1) to be natural concatenation of

these two vectors, obtained by replacing the fractional coordinates of λ(s) by the

approximating vector µ(s+ 1). Let F (s+ 1) ⊂ [m] be the set of indices of fractional

coordinates of λ(s+ 1), L(s+ 1) = [m] \ F (s+ 1), and set m(s+ 1) = |F (s+ 1)|.
By Property (i) of Lemma 3.3 and the definition of λ(s+ 1), for each s ≥ 0

∥Uλ(s)− Uλ(s+ 1)∥∞ ≤ η
√
m(s) ln ξd

m(s)
. (3.5)

Also, by property (ii) of Lemma 3.3 we have that

m(s) ≤ m

2s
≤ d

2s−1
. (3.6)

Since m(s) ∈ N, this also yields that after a finite number S of steps, m(S) = 0 will

hold. Set µ = λ(S). We will show that µ fulfills the criteria of Proposition 3.2.

That µ ∈ ∆U is a selection vector is shown by m(S) = 0. To show the approximation

property, note that the function f(x) = x ln(1/x) is increasing on the interval [0, 1/4].
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Combined with (3.5),(3.6), and (3.4), this yields that

∥Uλ− Uµ∥∞ ≤
S−1∑
s=0

∥Uλ(s)− Uλ(s+ 1)∥∞

≤
S−1∑
s=0

η

√
ln

ξd

m(s)

√
m(s)

≤
S−1∑
s=0

η

√
ln

ξd

d/2s−1

√
d

2s−1
(3.7)

≤ η
√
d

∞∑
s=0

2−(s−1)/2
√

ln(ξ) + ln 2 · (s− 1)

< 22
√
d.

As in the Euclidean case, Theorem 1.3 now follows from Corollary 2.7 and Propo-

sition 3.2. A simple modification of the proof yields the following version of Proposi-

tion 3.2, which provides a significant strengthening for m ≪ 2d.

Proposition 3.4. Given a collection of vector families U = {U1, . . . , Uk} in Bd
∞ such that

m = |U1|+ · · ·+ |Uk| ≤ 2d and any point λ ∈ ∆U , there exists a selection vector µ ∈ ∆U

such that
∥Uλ− Uµ∥∞ ≤ K

√
m
√

ln 18d
m

for a universal constant K > 0.

Proof. Take µ ∈ ∆V as in the proof of Proposition 3.2. Then, substituting (3.6) in

(3.7),

∥Uλ− Uµ∥∞ ≤
S−1∑
s=0

η

√
ln

ξd

m/2s−1

√
m

2s−1

≤ η
√
m

∞∑
s=0

√
ln
(
ξd
m

)
+ ln 2 · s

√
2s−1

≤ η
√
m
√

ln ξd
m

∞∑
s=0

√
1 + s√
2s−1

< 9η
√
m
√

ln 18d
m
.
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3.3 The Skeleton Approximation Lemma

Proving Lemma 3.3, the Skeleton Approximation Lemma, requires several standard

facts about the behavior of Gaussian random variables. By N (µ, σ2) we denote

the (1-dimensional) Gaussian distribution with mean µ and variance σ2. Given a

linear subspace A ⊆ Rd, N (A) denotes the standard multi-dimensional Gaussian

distribution on A, i.e. for G ∼ N (A), G = G1a1 + · · · + Gmam, where {a1, . . . , am}
is any orthonormal basis of A and G1, . . . , Gm ∼ N (0, 1) are independent Gaussian

random variables (for further details, see [20, 29]).

Lemma 3.5. Let A ⊆ Rd be a linear subspace with G ∼ N (A). Then given any u ∈ Rd,
⟨G, u⟩ ∼ N (0, σ2), with σ2 = ∥PA(u)∥2 ≤ ∥u∥22, where PA(·) denotes the orthogonal
projection onto A.

Corollary 3.6. Let A ⊆ Rd be a linear subspace with G ∼ N (A) and define σi by
⟨G, ei⟩ ∼ N (0, σ2

i ). Then
∑

i∈[d] σ
2
i = dimA.

A proof of Lemma 3.5 can be found in [29, Section III.6 ] (see also [47]). These re-

sults are particularly useful when combined with the following standard tail estimate.

Lemma 3.7. Given a Gaussian random variable G ∼ N (µ, σ2), for all t > 0,

P
[
|G− µ| ≥ t

]
≤ exp

(
− t2/2σ2

)
.

This result is a special case of the general version of Hoeffding’s inequality (for a

proof see e.g. [76]). We will also need a similar bound for martingales with Gaussian

steps. Recall that a sequence {Xi}i∈N of real-valued random variables is a martingale

if E[Xn+1| X1, . . . , Xn] = Xn.

Lemma 3.8 ([10]). Let 0 = X0, X1, . . . , XT be a martingale in R with steps Yi =

Xi −Xi−1 for i ≥ 1. Suppose that for all i ∈ [T ], Yi|X0, . . . , Xi−1 is a Gaussian random
variable with mean zero and variance at most σ2. Then for any c > 0,

P
[
|XT | ≥ σc

√
T
]
≤ 2 exp(−c2/2).

Finally, we will need the following result about sequences of Gaussian random

variables. This is a well-known result that can be found for example in [76]; we

provide the standard proof for the reader’s convenience.
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Lemma 3.9. Let Xi ∼ N (0, σ2
i ) with σi ≤ 1 for i = 1, 2, . . . be a sequence of not

necessarily independent, jointly Gaussian random variables. Then for any T ≥ 2,

Emax
i≤T

|Xi| ≤ 6
√
lnT

and
Emax

i≤T
|Xi|2 ≤ 10 lnT.

Proof. We define the random variable Y := maxi∈N
|Xi|√
1+ln i

. Then by Lemma 3.7, the

union bound, and the fact that σi ≤ 1 for all i,

E[Y ] =

∫ ∞

0

P[Y ≥ y]dy

=

∫ 2

0

P[Y ≥ y]dy +

∫ ∞

2

P[Y ≥ y]dy

≤ 2 +

∫ ∞

2

P
[
max
i∈N

|Xi|√
1+ln i

≥ y
]
dy

≤ 2 +

∫ ∞

2

∞∑
i=1

P
[
|Xi| ≥ y

√
1 + ln i

]
dy

≤ 2 +

∫ ∞

2

∞∑
i=1

exp
(
− y2(1 + ln i)/2σ2

i

)
dy

≤ 2 +

∫ ∞

2

(
∞∑
i=1

i−y2/2

)
exp(−y2/2)dy

≤ 2 + π2

6
· 0.06 < 3.

(3.8)

Finally, note that
√
1 + ln i ≤

√
1 + lnT for all i ∈ [T ], hence the calculation in (3.8)

yields

Emax
i≤T

|Xi|√
1+lnT

≤ Emax
i≤T

|Xi|√
1+ln i

≤ Emax
i∈N

|Xi|√
1+ln i

< 3.

Then for T ≥ 2, Emaxi≤T |Xi| < 3
√
1 + lnT ≤ 6

√
lnT . The proof for maxi≤T |Xi|2

follows from an analogous calculation.

We complete the proof of Theorem 1.3 by proving the crux of the argument,

Lemma 3.3. This will be done by means of providing an algorithm that proves the

following slightly weaker statement.

Lemma 3.10. Let 0.01 > δ > 0 be arbitrary, and let W = {W1, . . . ,Wk} be a collection of
vector families in Bd

∞ which satisfies that |Wi| ≥ 2 for each i, and m :=
∑

i∈[k] |Wi| ≤ 2d.
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Define

ω(m) := η
√

m ln ξd
m

(3.9)

where η = 7
3

and ξ = 18 as in (3.4). Then for any γ ∈ ∆W there exists γ̂ ∈ ∆W such that

(i) ∥Wγ −Wγ̂∥∞ ≤ ω(m);

(ii) γ̂(i) ≤ δ for at least m/2 indices i ∈ [m].

Lemma 3.3 follows immediately from Lemma 3.10 by standard compactness

arguments.

Proof of Lemma 3.10. For each j ∈ [d], let W j ∈ Rm denote the jth row of the vector

family matrix W . The condition W ⊂ Bd
∞ ensures that ∥W j∥∞ ≤ 1 for each j ∈ [d].

Accordingly,

∥W j∥22 ≤ m (3.10)

for each j.

∆W

R

Figure 3.1: The polytope R

Consider the polytope

R :=
{
α ∈ Rm : α ∈ ∆W , ∥Wα−Wγ∥∞ ≤ ω(m)

}
,

which is the intersection of ∆W with d slabs of width ω(m)
/
∥W j∥∞, j ∈ [d] (see

Figure 3.1). Equivalently, R is defined by the following set of linear equations and
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inequalities:

R =
{
α ∈ Rm :

∑
wℓ∈Wℓ

α(wℓ) = 1 ∀ℓ ∈ [k], α(i) ≥ 0 ∀i ∈ [m], |⟨α−γ,W j⟩| ≤ ω(m) ∀j ∈ [d]
}
.

(3.11)

We call the first and second set of constraints convexity constraints, as they ensure that

Wα ∈ Conv(W1) + · · · + Conv(Wk) for each α ∈ R. The third set of constraints will

be referred to as maximum constraints, as they imply that given α ∈ R,

∥Wα−Wγ∥∞ = max
j∈[d]

|(Wα−Wγ)j| = max
j∈[d]

|⟨α− γ,W j⟩| ≤ ω(m).

Let Z be the set of normal vectors of the inequality constraints in (3.11):

Z =
{
e1, . . . , em,W

1, . . . ,W d
}
. (3.12)

By the previous remarks, ∥Z∥∞ = 1.

The main tool of the argument is to introduce a suitable discrete time Gaussian

random walk on Rm, similar to that in [10] and [47]. In order to help the reader nav-

igate through the forthcoming technical details, we first give an intuitive description

of the walk, whose position at time t = 0, 1, . . . will be denoted by Γt ∈ Rm.

The walk starts from Γ0 = γ and runs in aff R with sufficiently small Gaussian

steps as long as Γt is in the interior of R, far from its boundary. As Γt gets δ-close to

crossing a facet of R, we confine the walk to an affine subspace parallel to that facet

for the subsequent steps, by intersecting the current range with a hyperplane parallel

to the facet. In particular, if any coordinate of Γt reaches a value less than δ, we freeze

that coordinate for the remainder of the walk.

We show that running the walk long enough, until say time T , with high probability

at least half of the coordinates of ΓT become frozen, while ΓT ∈ R still holds. This

will mean that γ̂ = ΓT satisfies the criteria of Lemma 3.10. For the proof it is essential

that the value of ω(m) is carefully set (3.9), hence the slabs defining R are sufficiently

wide so that the walk is unlikely to escape from them.

Let us turn to the formal definition of the random walk. Let ε > 0 and T ∈ N be

parameters to be defined later. Define the sets

Cconv
t :=

{
i ∈ [m] : Γ

(i)
t ≤ δ

}
, Cmax

t :=
{
j ∈ [d] : |⟨Γt − Γ0,W

j⟩| ≥ ω(m)− δ
}

(3.13)

to be the convexity and maximum constraints, respectively, that are at most δ-close
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to being violated by Γt. We will say that coordinate i is frozen iff i ∈ Cconv
t . Recall

that by (2.3), coordinates may be indexed by the vectors, that is, for each i ∈ [m],

Γ
(i)
t = Γt(wl) for some l ∈ [k] and wl ∈ Wl. In that case, coordinate wl is frozen iff

i ∈ Cconv
t .

Let A be the linear component of aff ∆W , that is, A = lin (∆W −∆W ). For each

t ≤ 1, step t is confined to occur in the linear subspace

St :=
{
β ∈ A : β(i) = 0 ∀i ∈ Cconv

t−1 , ⟨β − Γ0,W
j⟩ = 0 ∀j ∈ Cmax

t−1

}
by taking a Gaussian step Λt ∼ N (St) and defining

Γt = Γt−1 + εΛt.

The walk terminates after T steps: γ̂ := ΓT , where T is to be determined later.

We will show that with certain restrictions on the parameters, ΓT satisfies properties

(i) and (ii) of Lemma 3.10 with probability at least 0.2.

Given ε > 0, we define

T :=

⌊
0.992η2

2ε2

⌋
. (3.14)

Choose ε > 0 small enough so that the following inequalities hold simultaneously:

6Td exp
(
− δ2

2mε2

)
< 0.01, (3.15)

22εm2 lnT ≤ 0.01, (3.16)

and

10ε2 lnT ≤ 1. (3.17)

This can indeed be guaranteed since the functions exp(−x)/x, x ln 1
x2 and x ln 1

x
con-

verge to 0 as x ↘ 0.

We summarize a few useful properties of the random walk.

Lemma 3.11. Let Γ0, . . . ,ΓT be the steps of the Gaussian random walk defined above
and i ∈ [m], j ∈ [d]. Then:

(i) Given Γt−1, E[Λt] = 0.

(ii) Cconv
t , Cmax

t are nested increasing sets in t.

(iii) St is a nested decreasing sequence of linear subspaces in Rm in t.
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(iv) At any time 0 ≤ t ≤ T and for any i ∈ [k],
∑

wi∈Wi
Γt(wi) = 1.

(v) If the walk leaves the polytope R at time t ∈ [T ], then Γs ̸∈ R for any s ≥ t.

(vi) If the walk leaves the polytope R at time t ∈ [T ], then |⟨Λt, z⟩| ≥ δ/ε for some
z ∈ Z.

(vii) If coordinate i is frozen at step t, that is i ∈ Cconv
t \ Cconv

t−1 , then Γ
(i)
T = Γ

(i)
t ≥

δ − ε
∣∣Λ(i)

t

∣∣.
Proof. Properties (i)-(v) are straightforward consequences of the definition of Γt.

To prove (vi), suppose that the walk leaves the polytope R at time t. Then an

inequality constraint in (3.11) with normal vector z ∈ Z is violated at time t. Suppose

that z = W j for some j ∈ [d]. Since j ̸∈ Cmax
t−1 ,

|⟨Γt−1 − Γ0,W
j⟩| < ω(m)− δ,

while on the other hand,

|⟨Γt − Γ0,W
j⟩| > ω(m).

Combining these inequalities shows that

ε|⟨Λt,W
j⟩| = |⟨Γt − Γt−1,W

j⟩| ≥ δ.

The proof when z = ei for i ∈ [m] is analogous.

To prove (vii), note that i ̸∈ Cconv
t−1 implies that Γ(i)

t−1 ≥ δ. Therefore,

Γ
(i)
T = Γ

(i)
t = Γ

(i)
t−1 + εΛ

(i)
t ≥ δ + εΛ

(i)
t ≥ δ − ε|Λ(i)

t |.

Equipped with these properties, we are ready to prove that ΓT satisfies the required

conditions of Lemma 3.10 with probability at least 0.01. To show (i), that is

∥WΓ0 −WΓT∥∞ ≤ ω(m), (3.18)

it is sufficient to argue that (with high probability) ΓT ∈ R; that is, the walk does not

leave the polytope R at any step.

Define the event Et := {Γt ̸∈ R| Γ0, . . . ,Γt−1 ∈ R} that the walk steps out of R

at time t. If Et occurs, then by Lemma 3.11(vi), |⟨Λt, z⟩| ≥ δ/ε for some z ∈ Z. By

Lemma 3.5 and (3.10), for any z ∈ Z, ⟨Λt, z⟩ is a Gaussian random variable with
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mean 0 and variance σ2 ≤ m. Applying Lemma 3.7 to ⟨Λt, z⟩, we find

P
[
|⟨Λt, z⟩| ≥ δ

ε

]
≤ 2 exp

(
−
(
δ
ε

)2
/2m

)
. (3.19)

Using the union bound, equations (3.12), (3.19), and the fact that d ≤ 2d, we derive

P[∃t ∈ [T ] : Γt ̸∈ R] =
T∑
t=1

P[Et]

≤
T∑
t=1

∑
z∈Z

P
[
|⟨Λt, z⟩| ≥ δ

ε

]
≤ 2T (d+m) exp

(
−
(
δ
ε

)2
/2m

)
≤ 6Td exp

(
− δ2

2mε2

)
< 0.01

(3.20)

by condition (3.15). This proves that (3.18) holds with probability at least 0.99.

It remains to address (ii) of Lemma 3.10, that (with positive probability) Γ
(i)
T ≤ δ for

at least m/2 indices i ∈ [m]. We will reach this by means of proving that

E[|Cconv
T |] > 0.51m. (3.21)

To this end we derive the following identity, using Lemma 3.11(i):

E
[
∥Γt∥22

]
= E

[
∥Γt−1 + εΛt∥22

]
= E

[
∥Γt−1∥22

]
+ ε2E

[
∥Λt∥22

]
+ 2εE

[
⟨Γt−1,Λt⟩

]
= E

[
∥Γt−1∥22

]
+ ε2E

[
dim(St)

]
,

where in the last equation we use that, by Corollary 3.6,

E
[
∥Λt∥22

]
= E

[ ∑
i∈[m]

⟨Λt, ei⟩2
]
=
∑
i∈[m]

E
[
⟨Λt, ei⟩2

]
= dimSt.

Iterating this calculation and using Lemma 3.11(iii),

E
[
∥Γt∥22

]
≥ ε2

∑
t∈[T ]

E
[
dim(St)

]
≥ Tε2E

[
dimST

]
= Tε2 E

[
m− |Cconv

T | − |Cmax
T |

]
,
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and rearranging yields

E
[
|Cconv

T |
]
≥ m−

E
[
∥ΓT∥22

]
Tε2

− E
[
|Cmax

T |
]
. (3.22)

The above identity allows us to prove (3.21) by giving upper estimates on E
[
∥ΓT∥22

]
and E

[
|Cmax

T |
]
.

We start with the second of these and show that

E
[
|Cmax

T |
]
≤ 2m

ξ
. (3.23)

To this end, we bound the probability that the walk gets close to escaping from a given

slab. Note that for fixed j ∈ [d], {⟨Γt − Γ0,W
j⟩}t∈[T ] for 0 ≤ t ≤ T is a martingale

satisfying the conditions of Lemma 3.8. As the step size is ε⟨Λt,W
j⟩, by Lemma 3.5

the variance of any step is bounded by ε2∥W j∥22 ≤ ε2m (cf. (3.10)).

For any j ∈ Cmax
T , by (3.13),

|⟨ΓT − Γ0,W
j⟩| ≥ ω(m)− δ ≥ 0.99ω(m),

as we have δ ≤ 0.01 and ω(m) ≥ 1 by (3.9).

Therefore, by Lemma 3.8, (3.9), and (3.14),

P[j ∈ Cmax
T ] ≤ P

[
|⟨ΓT − Γ0,W

j⟩| ≥ 0.99ω(m)
]

≤ 2 exp
(−0.992 · η2 ln(ξd/m)

2Tε2

)
< 2 exp

(
ln m

ξd

)
=

2m

ξd
.

Thus

E
[
|Cmax

T |
]
=
∑
j∈[d]

P
[
j ∈ Cmax

T

]
< 2m

ξ

as desired.

To complete the proof of (3.21) we address the second term in (3.22) and show

that

E
[
∥ΓT∥22

]
≤ 1.01m. (3.24)

By (2.3), we represent ΓT in terms of the vector families as

ΓT =
(
ΓT (wi)

)
, wi ∈ Wi, i ∈ [k].
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Then

∥ΓT∥22 =
∑
i∈[k]

∑
wi∈Wi

(
ΓT (wi)

)2
. (3.25)

As the above double sum has m terms in total, it suffices to show that the expectation

of any of these terms is at most 1.01, that is, E
[
ΓT (wi)

2
]
≤ 1.01 for any i ∈ [k] and

wi ∈ Wi. By Lemma 3.11(iv),
∑

wi∈Wi
ΓT (wi) = 1. Thus, for any fixed wi ∈ Wi,

ΓT (wi) = 1−
∑

w∈Wi\{wi}

ΓT (w). (3.26)

Note that in the above sum, ΓT (w) ≥ 0 unless coordinate w is frozen. In this

case, assuming that coordinate w is frozen at step t, by Lemma 3.11(vii) we have

ΓT (w) ≥ δ − ε
∣∣Λt(w)

∣∣. Accordingly,

ΓT (w) ≥ δ −max
t∈[T ]

ε
∣∣Λt(w)

∣∣ > −εmax
t∈[T ]

∣∣Λt(w)
∣∣. (3.27)

Thus, by (3.26),

ΓT (wi) ≤ 1 + ε
∑

w∈Wi\{wi}

max
t∈[T ]

∣∣Λt(w)
∣∣.

When ΓT (wi) ≥ 0, this leads to(
ΓT (wi)

)2 ≤ 1 + 2 ε
∑

w∈Wi\{wi}

max
t∈[T ]

∣∣Λt(w)
∣∣+ ε2

∑
w∈Wi\{wi}

max
t∈[T ]

∣∣Λt(w)
∣∣2

+ ε2
∑

w ̸=u∈Wi\{wi}

max
t∈[T ]

∣∣Λt(w)
∣∣max
t∈[T ]

∣∣Λt(u)
∣∣.

Note that by Lemma 3.5, for each vector w, Λt(w) is a Gaussian random variable with

variance at most 1. Also, for a, b ≥ 0 we will use that ab ≤ a2 + b2. Therefore, by
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taking expectations above, and applying Lemma 3.9,

E
((

ΓT (wi)
)2∣∣ΓT (wi) ≥ 0

)
(3.28)

= 1 + 2 ε
∑

w∈Wi\{wi}

E
[
max
t∈[T ]

∣∣Λt(w)
∣∣]+ ε2

∑
w∈Wi\{wi}

E
[
max
t∈[T ]

∣∣Λt(w)
∣∣2]

+ ε2
∑

w ̸=u∈Wi\{wi}

E
[
max
t∈[T ]

∣∣Λt(w)
∣∣max
t∈[T ]

∣∣Λt(u)
∣∣]

≤ 1 + 12εm
√
lnT + 10ε2m lnT + ε2

∑
w ̸=u∈Wi\{wi}

E
[
max
t∈[T ]

∣∣Λt(w)
∣∣2

+max
t∈[T ]

∣∣Λt(u)
∣∣2]

≤ 1 + 12εm
√
lnT + 10ε2m lnT + 2m(m−1)

2
10ε2 lnT

≤ 1 + 12εm
√
lnT + 10ε2m2 lnT

≤ 1 + 22εm2 lnT

≤ 1.01

by (3.16) and that m, lnT ≥ 1, ε < 1.

When ΓT (wi) < 0, then coordinate wi is frozen. Therefore, (3.27) and (3.17) imply

that

E
((

ΓT (wi)
)2∣∣ΓT (wi) < 0

)
< ε2 Emax

t∈[T ]

∣∣Λt(wi)
∣∣2 ≤ 10ε2 lnT < 1.

Combining this with (3.28) shows that E
((

ΓT (wi)
)2) ≤ 1.01 for each i ∈ [k] and

wi ∈ Wi, and by invoking (3.25), we reach (3.24).

To prove (3.21), we may now combine (3.14), (3.22), (3.23) and (3.24) in order

to derive that

E
[∣∣Cconv

T

∣∣] ≥ m− 1.01m

Tε2
− 2m

ξ

≥
(
1− 2 · 1.01

0.992η2
− 2

ξ

)
m

> 0.51m.
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Since
∣∣Cconv

T

∣∣ ≤ m, this leads to

P
[∣∣Cconv

T

∣∣ ≥ m/2
]
≥ 0.02.

As the probability of the walk leaving R is less than 0.01 by (3.20), we conclude that the

algorithm finds the desired vector ΓT with probability greater than 0.02− 0.01 = 0.01,

as claimed.

Finally, we illustrate how to transform the proof of Proposition 3.2 so as to provide

a polynomial time algorithm.

Proposition 3.12. There exists an algorithm of running time O(d7 ln2 d) which, in the
setting of Proposition 3.2, yields the desired selection vector µ ∈ ∆U .

Proof. Along the course of the proof of Proposition 3.2, we replace the iteration of

Lemma 3.3 by that of Lemma 3.10 so as to obtain a vector µ̂ ∈ ∆U such that, for each

i ∈ [k],

|{wi ∈ Wi : 0 ≤ µ̂(wi) ≤ δ}| = |Wi| − 1. (3.29)

The existence of such a vector is guaranteed as long as δ < 1/|Wi| for each i ∈ [k]. At

the final step, we take µ to be the closest vertex of ∆W to µ̂, that is, define

µ(wi) =

0 if µ̂(wi) ≤ δ

1 if µ̂(wi) > δ.

In particular, taking χ := µ− µ̂, we have that by (3.7),

|⟨µ− λ,W j⟩| = |⟨µ̂− λ,W j⟩+ ⟨χ,W j⟩| ≤ 22
√
d+ |⟨χ,W j⟩|

for each j ∈ [d]. We show that taking a sufficiently small value of δ ensures that

|⟨χ,W j⟩| ≤ O(
√
d), accordingly, µ is an appropriate selection vector.

Let i ∈ [k] be arbitrary, and let w ∈ Wi be so that µ̂(w) > δ. Then µ̂(w) =

1−
∑

wi ̸=w∈Wi
µ̂(wi). Accordingly,∑

wi∈Wi

|χ(wi)| = 2
∑

w ̸=wi∈Wi

|µ̂(wi)| < 2|Wi| δ.
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Therefore, as ∥W j∥∞ ≤ 1,

|⟨χ,W j⟩| ≤
∑
i∈[k]

∑
wi∈Wi

|χ(wi)| ≤
∑
i∈[k]

(2|Wi| δ).

Since |Wi| ≤ m ≤ 2d for each i ∈ [k] and k ≤ m ≤ 2d, we conclude that for each

j ∈ [d], |⟨χ,W j⟩| ≤ 8d2δ. Thus, fixing

δ = 0.01d−3/2, (3.30)

we indeed obtain

∥Wµ−Wλ∥∞ = max
j∈[d]

|⟨µ− λ,W j⟩| ≤ 22
√
d+ 8

√
d = O(

√
d).

Next, we estimate the running time of the algorithm at iteration s of Lemma 3.10.

As before, let m(s) be the number of active vectors. For a fixed step t ∈ [T ] of the

Gaussian random walk, the calculation of the sets Cvar
t , Cmax

t takes time O(d+m(s)).

An orthonormal basis of the subspace St may be determined in O(d3) time by applying

a Gram-Schmidt orthogonalization process, and then the Gaussian vector Λt+1 is

sampled in O(m(s)) time. Hence, the time complexity of performing a given step of

the Gaussian walk is dominated by the calculation of the orthonormal basis of St.

By (3.30), (3.6), and the condition that m ≤ 2d, the maximal ε which satisfies the

constraints (3.15), (3.16), and (3.17) simultaneously can be estimated by

1

ε2
= O

(
m(s)d3 ln2 d

)
.

Since, by (3.14), the number of steps of the random walk is T = O(1/ε2), the

above estimate shows that the running time of the algorithm within a given iteration

s is

O
(
m(s)d6 ln2 d

)
.

Let S be the total number of iterations until reaching the vector µ̂ ∈ ∆U satisfying

(3.29). Note that by (3.6), we have m(s) ≤ m/2s. Therefore, the total running time

of the algorithm is

S∑
s=1

O
(m
2s
d6 ln2 d

)
= O

(
md6 ln2 d

)
= O

(
d7 ln2 d

)
.
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3.4 Conclusion

In this chapter we extended the optimal results for the Euclidean and maximum norm

vector balancing problem to the more general colorful setting. We also discussed the

algorithmic complexity of the maximum norm solution, and provided a stronger result

for the maximum norm in the setting where the number of vectors is much smaller

than the dimension.



Chapter 4

A Reduction of the Steinitz Problem

This chapter of the dissertation is based on the following publication of the author.

[4] Gergely Ambrus and Rainie Heck. A note on the Steinitz constant. Accepted for

publication; Mathematika, 2026.

4.1 The Steinitz Problem for ‘Almost-Unit’ Vectors

In this chapter our goal is to prove Theorems 1.11 and 1.12. Recall that Theorem 1.12

bounds S(B) in terms of S∗
ε (B) for any B ∈ Kd

o and 0 < ε ≤ 1 (see Definitions 1.6

and 1.10 for details), and that Theorem 1.11 proves a slightly weaker bound for the

Euclidean setting using the geometry of the Euclidean ball. The primary motivation

for this work is that these results offer a potential approach to resolving Conjecture

1.9. We remark that although Theorem 1.12 is strictly stronger, we present both proofs

because the specific techniques used for the geometry of the Euclidean ball are of

independent interest.

The chapter is organized as follows: we first delve into the history of the Steinitz

problem and briefly summarize existing results in Section 4.2. In Section 4.3 we prove

Theorem 1.11, up to a handful of technical lemmas, the proofs of which are deferred

to Section 4.4. Finally, in Section 4.5 we prove Theorem 1.12 by generalizing (and

thereby simplifying) the proof of 1.11.

40
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4.2 History of the Steinitz Problem

Despite being more than a century old, the story of the Steinitz lemma is still far from

complete. In the following, we provide an overview that lists the main, and often

forgotten, steps in its development. Recall from Chapter 1 that the Steinitz problem

arose from a higher dimensional analog of the Riemann rearrangement theorem,

proved by Lévy and Steinitz, restated here for clarity:

Theorem (Lévy-Steinitz theorem). Given a series of vectors in Rd, the set of all sums of
its rearrangements is empty, or it forms an affine subspace of Rd.

Unfortunately, the proof of Lévy contained serious gaps for dimensions d ≥ 3,

as pointed out by Steinitz [71] in 1913. In turn, he gave the first complete proof

of Theorem 4.2, known today as the Lévy-Steinitz theorem. Steinitz’s work is quite

technical and wide-scoped: it was published in three parts [71, 72, 73], with total

length summing well over 100 pages. A key step of his proof is Theorem 1.5 (see [71,

p.171]), which he stated with C = 2d.

Independently of Lévy and Steinitz, Gross [36] also found a shorter proof for

Theorem 4.2 that is reminiscent of Steinitz’s method. His approach is again based

on the rediscovered Steinitz lemma, yet it yields only the weaker constant S(Bd
2) ≤

2d − 1, which is an inevitable consequence of the induction dimension technique

he applies. He also provides a geometric reformulation of Theorem 1.5: given any

closed polygonal path in Rd starting at the origin with side lengths not exceeding 1,

it is possible to rearrange the order of its sides so that the resulting polygonal path

does not leave the ball of radius C. This later led to the alternate title “polygonal

confinement theorem” for Theorem 1.5 (cf. Rosenthal [56]).

Gross was not the last one to rediscover the Steinitz lemma. In 1931, Bergström

published two papers on the topic. In the first [19], he gives an alternative proof for

Theorem 4.2. The crux of his proof is again Theorem 1.5, which he considers to be of

interest on its own, and proves by induction on the dimension, leading to the estimate

S(Bd
2) ≤

√
(4d − 1)/3. His second article [18] concentrates solely on the Steinitz

lemma. He proves that any family of vectors V ⊂ B2
2 with Σ(V ) = 0 can be arranged

to form a closed polygonal path that fits in a circle of radius
√
5/2 (not necessarily

centered at the origin), leading to the upper bound S(B2
2) ≤ (

√
5 + 1)/2 in the plane.

Regarding the question in arbitrary dimensions, he formulates Conjecture 1.9.

In 1936, Hadwiger [38] became the first one to study the Steinitz lemma (which

he attributes to Gross and Bergström) for series in general inner product spaces: he
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manages to bound the norm of partial sums in terms of the number of vectors n. His

attention then turned to the extension of the Lévy-Steinitz theorem to abstract Hilbert

spaces [39] and finite-dimensional vector spaces [37].

Returning to the Euclidean case, Damsteeg and Halperin [27] provided a construc-

tion of Euclidean unit vectors establishing 1
2

√
d+ 3 ≤ S0(B

d
2) ≤ S(Bd

2), which implies

that the O(
√
d) bound conjectured by Bergström would be optimal by the order of

magnitude (this is also shown by considering the vertex set of a centered regular

simplex).

In 1954, Behrend entered the scene [16] and by a refinement of Steinitz’s original

method strengthened the estimate to S(Bd
2) < d for every d ≥ 3. He also showed that

S(B3
2) ≤

√
5 + 2

√
3.

Much of the above information had been blocked by the iron curtain. Although

Theorem 1.5 is noted to be a ‘well-known lemma of Steinitz’ [34], Kadets [43] only

rediscovered Bergström’s estimate S(Bd
2) ≤

√
(4d − 1)/3 in 1953. Twenty years later,

in a series of pioneering works, Sevastyanov studied several variants of the question,

introduced the compact vector summation problem, and worked on the algorithmic

aspects of the topic, including its connections to scheduling problems. In 1973, he

rediscovered and re-proved the planar case of the Steinitz lemma with the bound

S(B2
2) ≤

√
3, see [62]. Turning to the higher dimensional case, he proved [63] that

S(B) ≤ d for every B ∈ Kd
o (this extends a weaker form of Behrend’s 1954 bound

to arbitrary Minkowksi norms), thus achieving Theorem 1.8. His proof was further

simplified in his subsequent joint work with Grinberg [34], where the authors in fact

proved that S∗(B) ≤ d for arbitrary B ∈ Kd
o. For further developments related to

algorithmic aspects, see [58, 60].

Meanwhile in Hungary, independently of the work in the USSR, Fiala [30] also

rediscovered (after Sevastyanov [61] and Belov and Stolin [17]) the connection

between the flow shop problem and the Steinitz lemma, and re-proved the latter in

the planar case. Inspired by his work, Bárány [12] proved the bound S(B) ≤ 3d/2 for

symmetric B’s (note that this is weaker than the estimate in [34, 63]) and solved the

flow-shop problem for the maximum norm.

Still in the 1980s, Halperin [40] applied a variation of Lévy’s method to obtain

an elementary proof of Theorem 4.2, using the Grinberg-Sevastyanov variant of

the Steinitz lemma, called here as the ‘Polygon Rearrangement Theorem’. He also

studies the question in Lp and ℓp spaces for 0 < p ≤ ∞. In an expository article,

Rosenthal [56] presented the Lévy-Steinitz theorem along the Gross-Steinitz approach.



4.3 Proof of Theorem 1.11 43

He cites the Steinitz lemma as the ‘Polygonal Confinement Theorem’ with the weak

bound S(Bd
2) ≤ O(2d), apparently unaware of its stronger forms.

Concentrating on the planar case, Banaszyczyk showed in [6] that S(B) ≤ 3/2

for any symmetric B ⊂ R2, and this bound is achieved when B is a square centered

at the origin. In [7], he determined the exact value of the planar Euclidean Steinitz

constant: S(B2
2) =

√
5/2.

A possible approach for attacking Conjecture 1.9 is via Chobanyan’s transference

theorem, which gives an explicit connection between the Steinitz constant and the

sign-sequence constant E(B), where one is asked to assign signs to vectors of a

(potentially infinite) sequence of vectors selected from B so that all partial sums are

bounded by E(B). Chobanyan’s result [25, 26] shows that S(B) ≤ E(B). For further

information about the sign-sequence constant, see the survey article of Bárány [22].

Beyond the results mentioned above, there are many other related problems and

results, including coordinate-dependent Steinitz bounds for the maximum norm (see

e.g. [59]), various extensions of the Lévy-Steinitz theorem to infinite-dimensional

spaces (see e.g. [45]), or colorful versions of the Steinitz lemma (see [13, 51]).

4.3 Proof of Theorem 1.11

In this section, we prove Theorem 1.11, which is specific to the Euclidean norm. For

the remainder of the section we denote the Euclidean norm by | · |, as it is the only

norm that will be used in this section.

Proof of Theorem 1.11. Take 0 ≤ ε < 1 as in the statement of Theorem 1.11, and fix

0 < t < 1, whose value we will specify later. Suppose that we are given a finite vector

family V ⊂ Bd
2 with Σ(V ) = 0; our goal is to order V in such a way that all partial

sums are bounded by the right-hand side of (1.11). The first step of the proof is to

partition V as

V =
( ⊔

α∈A

Vα

) ⊔
R,

where A is an index set of cardinality m, satisfying the following properties:

(i) For each α ∈ A, there exists uα ∈ Sd−1 such that Vα ⊂ Kt(uα).

(ii) For each α ∈ A,
1

ε
− 1 ≤ |Σ(Vα)| <

1

ε
.
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(iii) For any u ∈ Sd−1, and any subset T ⊆ R,

∣∣Σ(T ∩Kt(u))
∣∣ < 1/ε.

Note that we intentionally use an unordered index set A of cardinality m, rather

than A = [m], to emphasize that the vectors are not yet ordered.

We define the families Vα via the following process: initialize R := V . As long as

there exists u ∈ Sd−1 and T ⊆ R such that∣∣∣Σ(T ∩Kt(u))
∣∣∣ ≥ 1

ε
− 1, (4.1)

we set uα := u and select any subfamily Vα ⊆ T ∩H+(uα), so that

1

ε
− 1 ≤

∣∣Σ(Vα)
∣∣ < 1

ε
.

Such a set is given e.g. by taking any minimal1 (with respect to containment) subset

T ⊂ (T ∩Kt(u)) that satisfies |Σ(T )| ≥ 1
ε
− 1. The family over which we minimize is

nonempty by (4.1), and the triangle inequality guarantees that the upper bound holds

as well.

We then update R := V \ Vα and proceed until there is no choice of a vector

u ∈ Sd−1 and T ⊆ R satisfying (4.1). Properties (i)-(iii) are immediate consequences

of this construction.

For every α ∈ A, let wα := ε ·Σ(Vα), and define W := {wα}α∈A. Property (ii) yields

that for every α ∈ A,

1− ε ≤ |wα| < 1.

Thus, by the definition of S∗
ε (B

d
2), there exists an ordering w1, ..., wm of W such that

for any j ∈ [m], ∣∣∣∑
i∈[j]

wi −
j

m
Σ(W )

∣∣∣ ≤ S∗
ε (B

d
2). (4.2)

Further, as Σ(V ) = 0 and V = (
⊔

α∈A Vα)
⊔

R,

Σ(W ) = εΣα∈AΣ(Vα) = −εΣ(R), (4.3)

1Note that here we do not require taking a minimal set with respect to containment, but rather
note that such a set satisfies the necessary conditions. In the proof of Theorem 1.12, we will require
the set to be minimal containment-wise, which simplifies the proof.
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combining (4.2) and (4.3) yields the bound∣∣∣∑
i∈[j]

wi + ε
j

m
Σ(R)

∣∣∣ ≤ S∗
ε (B

d
2). (4.4)

We now order our original collection of vectors V as follows: fix the ordering of

W as in (4.2), and note that this ordering of {wα}α∈A induces a matching ordering

V1, ..., Vm of the sets {Vα}α∈A. Within each set Vi for i ∈ [m] we order the vectors

v ∈ Vi arbitrarily. Finally, we also order the remaining vectors in R arbitrarily. Along

this ordering, two types of partial sums occur:

(a)
∑

i∈[j] Σ(Vi) + Σ(U) for 0 ≤ j ≤ m− 1 and U ⊂ Vj+1 (where U = ∅ is allowed);

(b)
∑

i∈[m]Σ(Vi) + Σ(T ) for T ⊆ R.

We need to show that any partial sum of type (a) or (b) satisfies the bound in

(1.11). To this end, we will need the following two lemmas, the proofs of which we

defer to Section 4.4.

Lemma 4.1. For any α ∈ A and any U ⊆ Vα, and for any 0 < t < 1,

∣∣Σ(U)
∣∣ < 1

εt
.

Lemma 4.2. For any T ⊆ R, and for any 0 < t < 1,

∣∣Σ(T )∣∣ < 1

εσt

.

We now use Lemmas 4.1 and 4.2 to complete the proof of Theorem 1.11. It will

be useful to note that by dividing both sides of (4.4) by ε and applying the triangle

inequality, one has∣∣∣∑
i∈[j]

Σ(Vi)
∣∣∣ ≤ j

m
|Σ(R)|+ 1

ε
S∗
ε (B

d
2) <

1

εσt

+
1

ε
S∗
ε (B

d
2), (4.5)

where we have used that j < m and Lemma 4.2.

We first consider partial sums of type (a). For any 0 ≤ j ≤ m − 1 and U ⊂ Vj+1,

combining Lemma 4.1 and (4.5) yields∣∣∣∑
i∈[j]

Σ(Vi) + Σ(U)
∣∣∣ ≤ ∣∣∣∑

i∈[j]

Σ(Vi)
∣∣∣+ ∣∣∣Σ(U)

∣∣∣ ≤ 1

ε

(
1

σt

+ S∗
ε (B

d
2) +

1

t

)
,
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where we have interpreted Σ(U) = 0 for the case U = ∅. Second, we consider any

partial sum of type (b). Fix any T ⊆ R, and recall that
∑

i∈[m] Σ(Vi) = −Σ(R). Thus

applying Lemma 4.2 to R \ T ⊆ R,∣∣∣ ∑
i∈[m]

Σ(Vi) + Σ(T )
∣∣∣ = ∣∣∣Σ(T )− Σ(R)

∣∣∣ = ∣∣∣Σ(R \ T )
∣∣∣ ≤ 1

εσt

.

We have now shown that every partial sum along the specified ordering has

Euclidean norm at most
1

ε

(
S∗
ε (B

d
2) +

1

t
+

1

σt

)
. (4.6)

We finish the proof via the following estimate on the measure of spherical caps,

that we prove in the subsequent section:

Lemma 4.3. For every d ≥ 2, and for

t =

√
log d

2d
, (4.7)

the estimate
σt ≥

1

c
· t (4.8)

holds with c = 140.

Thus, setting t as in (4.7), we have by (4.8) that

1

t
+

1

σt

< 200

√
d

log d

for every d ≥ 2, which combined with (4.6) establishes the desired bound.

We note that by setting t =
√

log d−2 log log d
d

, Lemma 4.3 holds with c = 11 if d is

sufficiently large. Consequently, the constant 200 in Theorem 1.11 can be improved

to 12. As this does not constitute an asymptotic improvement, we decided to simplify

the calculations by choosing the value of t specified in (4.7).

4.4 Technical Lemmas

In this section, we prove Lemmas 4.1, 4.2, and 4.3.
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Proof of Lemma 4.1. Fix α ∈ A and U ⊂ Vα. By property (i) of our construction, there

exists uα ∈ Sd−1 such that U ⊂ Vα ⊂ Kt(uα).

Since Kt(uα) is convex, and U ⊂ Vα ⊆ Kt(uα), we have that

〈 Σ(U)

|Σ(U)|
, uα

〉
≥ t. (4.9)

As U ⊂ Vα and 0 < ⟨v, uα⟩ for all v ∈ Vα,

⟨Σ(U), uα⟩ ≤ ⟨Σ(Vα), uα⟩ ≤
∣∣Σ(Vα)

∣∣ < 1

ε

by property (ii) of our construction. Thus, by (4.9),

|Σ(U)|2 ≤ 1

t2
⟨Σ(U), uα⟩2 <

1

ε2t2
.

Proof of Lemma 4.2. Fix an arbitrary subset T ⊆ R. The key step of the proof is the

observation that for any u ∈ Sd−1 and v ∈ Bd
2 , v ∈ Kt(u) if and only if u ∈ Ct

(
v
|v|

)
. To

see this, note that

v ∈ Kt(u) ⇐⇒
〈

v
|v| , u

〉
≥ t ⇐⇒ u ∈ Ct

(
v
|v|

)
.

Thus, for any v ∈ Bd
2 , we have

v =
1

σt

∫
Sd−1

v · χKt(u)(v) dσ(u).

Therefore,

|Σ(T )|2 = ⟨Σ(T ),Σ(T )⟩

=
〈
Σ(T ),

∑
v∈S

1

σt

∫
Sd−1

v · χKt(u)(v) dσ(u)
〉

=
1

σt

∫
Sd−1

〈
Σ(T ),Σ(T ∩Kt(u))

〉
dσ(u)

≤ 1

σt

∫
Sd−1

|Σ(T )| · |Σ(T ∩Kt(u))| dσ(u)

<
|Σ(T )|
σt

∫
Sd−1

1

ε
dσ(u)

=
|Σ(T )|
εσt
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where we used Property (iii) in the penultimate line. Thus we conclude that |Σ(T )| <
1
εσt

, as desired.

Proof of Lemma 4.3. We will use the following bound of Gautschi [31]: for x > 0 and

0 < λ < 1,

x1−λ ≤ Γ(x+ 1)

Γ(x+ λ)
≤ (x+ 1)1−λ.

Combining the above inequality for x = d/2 and λ = 1/2 with the definition of κd

yields
(d− 1)κd−1

dκd

=
(d− 1) · π(d−1)/2 · Γ(d

2
+ 1)

d · πd/2 · Γ(d
2
+ 1

2
)

≥
√
d

2
√
2π

. (4.10)

A standard calculation shows that

σt =
(d− 1)κd−1

dκd

∫ 1

t

(1− x2)
d−3
2 dx.

Therefore, by (4.10),

σt ≥
√
d

2
√
2π

∫ 1

t

(1− x2)
d−3
2 dx ≥

√
d

2
√
2π

∫ 1

t

(1− x2)d/2 dx =

√
d

2
√
2π

∫ 1

t

f(x) dx, (4.11)

where f(x) := (1− x2)d/2.

For d ≤ 9, inequality (4.8) can be verified by directly calculating the above integral;

in particular, for 2 ≤ d ≤ 9, σt ≥ 0.05 and t/c ≤ 0.004.

Assume that d ≥ 10. Then (4.7) implies that t > 1√
d−1

. Consequently, since f(x) is

convex on the interval
[

1√
d−1

, 1
]
, we derive that f(x) is convex on [t, 1].

Figure 4.1: Lower bound on surface area integral using convexity
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Consider the triangle T defined by the x-axis, the tangent line at f(t), and the line

x = t, as shown in Figure 4.1. By convexity,∫ 1

t

f(x) dx ≥ Area(T ) =
1

2

(
−f(t)2

f ′(t)

)
=

(1− t2)d/2+1

2dt
. (4.12)

Since for d ≥ 4, t2 = log d
2d

< 1
5
, by (4.11) we obtain that

σt ≥
1− t2

4
√
2π

· (1− t2)d/2√
dt

≥ 1

5
√
2π

· (1− t2)d/2√
dt

≥ 1

13
· (1− t2)d/2√

dt
.

Thus, the proof of (4.8) boils down to verifying

(1− t2)d/2 ≥ 13

c

√
dt2,

which, after substituting (4.7), takes the form(
1− log d

2d

)d/2

≥ 13

2c
· log d√

d
.

After taking logarithms, this is equivalent to

d

2
log

(
1− log d

2d

)
≥ − log

(
2c

13

)
+ log log d− 1

2
log d. (4.13)

By using the standard inequality

log(1− ε) > − ε

1− ε

that holds for every 0 < ε < 1, and the estimate 1− log d
2d

≥ 5
6

that is valid for d ≥ 10,

we derive that (4.13) follows from

log d ≤ 5

3

(
log d− 2 log log d+ 2 log

(
2c

13

))
. (4.14)

Let d0 := 4 · 107. For d ≥ d0, log log d < 1
5
log d holds and implies (4.14). Finally, for

d ≤ d0, log log d < 3 is valid, and since log
(
2c
13

)
> 3, (4.14) holds trivially.
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4.5 An Extension to General Norms

In this section we prove Theorem 1.12. By optimizing the proof of Theorem 1.11, one

can see that the strongest bound is given in the case of half-spaces. This generalization

not only greatly simplifies the proof and allows us to extend it to arbitrary norms,

but also yields a stronger O(1) bound on the additive error introduced. Although the

construction is similar to that in the proof of Theorem 1.11, we repeat it for the sake

of clarity. We restate the theorem for reference.

Theorem. For all d ≥ 2, any convex body B ∈ Kd
o, and 0 < ε ≤ 1,

S(B) <
1

ε

(
S∗
ε (B) + 2ρ(B) + 1

)
.

Proof. Fix 0 < ε < 1, d ≥ 2, and B ∈ Kd
o, and suppose that we are given a finite vector

family V ⊂ B with Σ(V ) = 0; our goal is to order V in such a way that all partial sums

are bounded by the right-hand side of (1.12). For simplicity, we will write ∥.∥ := ∥.∥B
throughout the proof, omitting the dependence on B. Recall also from Chapter 1 that

for u ∈ Sd−1, we denote the closed positive half-space orthogonal to u by H+(u).

The first step is to partition V as

V =
( ⊔

α∈A

Vα

) ⊔
R,

where A is an index set of cardinality m, satisfying the following properties:

(i) For each α ∈ A, there exists uα ∈ Sd−1 such that Vα ⊂ H+(uα)

(ii) For each α ∈ A,
1

ε
− 1 ≤ ∥Σ(Vα)∥ <

1

ε
.

(iii) For any u ∈ Sd−1, and any subset T ⊆ R,

∥∥Σ(T ∩H+(u))
∥∥ < 1/ε.

Note that we intentionally use an unordered index set A of cardinality m, rather

than A = [m], to emphasize that the vectors are not yet ordered.

We define the families Vα via the following process: initialize R := V . As long as
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there exist u ∈ Sd−1 and T ⊆ R such that∥∥∥Σ(T ∩H+(u))
∥∥∥ ≥ 1

ε
− 1, (4.15)

then we set uα := u and select a containment-wise minimal subfamily Vα ⊆ T ∩H+(uα)

so that

∥Σ(Vα)∥ ≥ 1

ε
− 1 (4.16)

holds. By the minimality condition, the triangle inequality guarantees that ∥Σ(Vα)∥ <
1
ε
, therefore Vα satisfies property (ii). We then update R := V \ Vα and proceed until

there is no choice of a vector u ∈ Sd−1 and T ⊆ R satisfying (4.15).

It is an immediate consequence of the construction that properties (i)–(iii) are

satisfied for the partition of V obtained above.

Next, for every α ∈ A, let wα := ε · Σ(Vα), and define W := {wα}α∈A. Property (ii)

yields that for every α ∈ A,

1− ε ≤ ∥wα∥ < 1.

Thus, by the definition of S∗
ε (B), there exists an ordering w1, ..., wm of W such that for

any j ∈ [m], ∥∥∥∑
i∈[j]

wi −
j

m
Σ(W )

∥∥∥ ≤ S∗
ε (B). (4.17)

Further, as Σ(V ) = 0 and V = (
⊔

α∈A Vα)
⊔
R,

Σ(W ) = ε
∑
α∈A

Σ(Vα) = −εΣ(R),

and combining this with (4.17) yields that for any j ∈ [m],∥∥∥∑
i∈[j]

wi + ε
j

m
Σ(R)

∥∥∥ ≤ S∗
ε (B). (4.18)

We now order our original collection of vectors V as follows: fix the ordering of W

as above so that (4.17) holds, and note that this ordering of W = {wα}α∈A induces a

matching ordering V1, ..., Vm of the families {Vα}α∈A. Within each family Vi for i ∈ [m]

we order the vectors v ∈ Vi arbitrarily. Finally, we also order the remaining vectors in

R arbitrarily. Along this ordering, two types of partial sums occur:

(a)
∑

i∈[j] Σ(Vi) + Σ(U) for 0 ≤ j ≤ m− 1 and U ⊂ Vj+1 (where U = ∅ is allowed);

(b)
∑

i∈[m]Σ(Vi) + Σ(T ) with some T ⊆ R.
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To prove (1.12), we need to show that any partial sum of type (a) or (b) has norm at

most 1
ε

(
S∗
ε (B) + 2ρ(B) + 1

)
. Recall that by property (iii) of our construction, for any

subset T ′ ⊆ R and any u ∈ Sd−1,

∥Σ(T ′ ∩H+(u))∥ < 1/ε.

Fix any direction u ∈ Sd−1, and partition T ′ as

T ′
+ := T ′ ∩H+(u), T ′

− := T ′ \ T ′
+.

Note that these are subfamilies of R, moreover, T ′
− ⊂ H+(−u). Therefore, property

(iii) implies that

∥Σ(T ′
+)∥ <

1

ε
and ∥Σ(T ′

−)∥ <
1

ε
,

thus by the triangle inequality

∥Σ(T ′)∥ <
2

ε
. (4.19)

We are ready to estimate the norm of partial sums along the ordering specified

above. This is simple for sums of type (b): applying (4.19) for the family T ′ := R \ T ,∥∥∥ ∑
i∈[m]

Σ(Vi)+Σ(T )
∥∥∥ =

∥∥∥−Σ(R)+Σ(T )
∥∥∥ =

∥∥∥−Σ(R\T )
∥∥∥ ≤ ρ(B)

∥∥∥Σ(R\T )
∥∥∥ < ρ(B)

2

ε
.

Finally, we handle the sums of type (a). Dividing both sides of (4.18) by ε and

applying the triangle inequality yields that for any 0 ≤ j ≤ m− 1,∥∥∥∑
i∈[j]

Σ(Vi)
∥∥∥ ≤

∥∥∥− j

m
Σ(R)

∥∥∥+ ∥∥∥∑
i∈[j]

Σ(Vi) +
j

m
Σ(R)

∥∥∥
≤ j

m
∥ − Σ(R)∥+ 1

ε
S∗
ε (B)

< ρ(B)
2

ε
+

1

ε
S∗
ε (B),

where we have used j < m and (4.19) with T ′ = R. Recall that Vj+1 was chosen as

a minimal set (with respect to containment) that satisfies inequality (4.16), that is,
1
ε
− 1 ≤ ∥Σ(Vj+1)∥. In particular, for any U ⊂ Vj+1, we know that ∥Σ(U)∥ < 1

ε
− 1 < 1

ε
.

Combining these estimates, for fixed 0 ≤ j ≤ m− 1 and U ⊂ Vj+1 we conclude that∥∥∥∑
i∈[j]

Σ(Vi) + Σ(U)
∥∥∥ ≤

∥∥∥∑
i∈[j]

Σ(Vi)
∥∥∥+ ∥∥∥Σ(U)

∥∥∥ <
1

ε

(
S∗
ε (B) + 2ρ(B) + 1

)
.
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We have now shown that the B-norm of every partial sum along the specified

ordering is strictly less than

1

ε
(S∗

ε (B) + 2ρ(B) + 1) .

Remark. The proof can not be transformed so as to provide an estimate on S∗(B)

instead of S(B): since there is no upper bound on the size of the families Vα, the

size of these re-groupings need not be uniform. Hence, the average of the families Vi

and the whole family V may differ drastically, which yields that the quantity in (1.6)

cannot be estimated in terms of the individual deviations corresponding to Vi.



Chapter 5

Concluding Remarks and Future Work

In this dissertation we have addressed two fascinating problems regarding vector

sums in discrete and convex geometry: the vector balancing problem and the Steinitz

problem. In Chapters 2 and 3 we prove results about a geometric generalization of

the classical vector balancing problem, and in Chapter 4 we prove a reduction of the

Steinitz problem to a simpler geometric setting. The nature of these works is clearly

different: one generalizes and opens the problem in new directions, whereas the

other reduces the problem to a simpler setting and offers a new line of attack on a

long-standing conjecture.

In this brief chapter, we discuss future open questions and potential extensions of

these works, beginning with the colorful vector balancing problem. As mentioned in

Chapter 2, Banaszczyk’s famous vector balancing result [9] has already been extended

to a colorful setting by Bansal et al. [11], and the strategy that we outline in Section

2.8 shows that in fact up to a constant factor of 2, any bound in the classical vector

balancing setting transfers to the colorful setting as well. However, as we argue in

Chapter 2, there is value in proofs that show such bounds directly and geometrically,

as they shed more light on the problem. Hence a potential direction for future work

would be to derive direct proofs of colorful vector balancing bounds for other settings:

other ℓp norms, to generalize [54], or to any other class of symmetric convex bodies.

Further, colorful problems arise in many areas of convex and discrete geometry (as we

mentioned, recently the Steinitz problem has also been extended to a colorful setting),

and the techniques that we develop in Chapters 2 and 3, particularly understanding

the geometry of the direct product of simplices as a parameterization space for the

convex hulls, may prove useful in other settings as well.

We now turn to our work on the Steinitz problem. An early motivation for this
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reduction was the chain of thought that perhaps the Steinitz problem would be easier

to solve if one reduces consideration to only unit vectors. Indeed, one can imagine

and construct problematic and challenging examples with arbitrarily short vectors

that confound certain proof strategies. Our proof falls just short of showing that the

Steinitz problem can be reduced to unit vectors (we show that we can reduce to

vectors of length at least 1− ε for any constant ε), and it would be quite interesting to

prove that in fact unit vectors suffice. Conversely, it would also be interesting to prove

Conjecture 1.9 in the specific setting of unit vectors. Another interesting research

direction would be to extend or exploit the “pre-processing” strategy that we use in

order to break the vectors into smaller subsets that may be easier to sum, especially in

the particular case of spherical caps and the Euclidean norm.



Summary

The PhD thesis presents work on two related problems in discrete and convex geome-

try: the vector balancing problem and the Steinitz problem.

The majority of the mathematical content of the dissertation is based on the

following two publications of the author:

[2] Gergely Ambrus and Rainie Bozzai. Colourful vector balancing. Mathe- matika,

70(4), August 2024.

[4] Gergely Ambrus and Rainie Heck. A note on the Steinitz constant. Accepted

for publication; Mathematika, 2026.

In Chapter 1 we introduce all necessary notation and terminology in Section 1.1,

followed by a thorough introduction of the vector balancing and Steinitz problems in

Section 1.2.

In Chapter 2 we introduce the colorful vector balancing problem, a geometric

generalization of the original vector balancing problem. Both Chapters 2 and 3 are

based on the results of the paper [2]. To recap, in the vector balancing problem, we

are given a symmetric convex body K ⊂ Rd and a collection of vectors v1, ..., vn ∈ K

and asked to select signs ε1, ..., εn ∈ {±1} so that ∥ε1v1 + · · · + εnvn∥K is minimal.

The colorful vector balancing problem generalizes to the setting where we are given

vector families V1, ..., Vn ⊂ K satisfying the condition that 0 ∈
∑

i∈[n] conv Vi, and we

select one vector from each family to minimize ∥v1+ · · ·+ vn∥K . In the classical vector

balancing setting, two well-known results are the following: first, in the Euclidean

norm one can always select signs εi ∈ {±1}, i ∈ [n], so that the signed sum has

Euclidean norm at most
√
d. Second, in the maximum norm, one can always select

signs so that the signed sum has maximum norm at most O(
√
d). Our primary goal in

Chapters 2 and 3 is to extend these results to the colorful setting.

In Section 2.1 we introduce the history of the colorful vector balancing problem,

including a closely related result of Bansal, Dadush, Garg, and Lovett in a slightly

modified colorful setting [11]. In Section 2.2 we prove the following key result (for
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the relevant definitions and notation, refer to Section 2.2).

Corollary ([2] Corollary 2.5). Let ∥ · ∥ be a norm on Rd with unit ball Bd. Suppose
that there exists a constant C(d) such that given any collection of k ≤ d families
U = {U1, ..., Uk} in Bd satisfying |U1|+ · · ·+ |Uk| ≤ k + d, and any λ ∈ ∆V , there exists
a selection vector µ ∈ ∆U such that ∥Vλ − V µ∥ ≤ C(d). Then given any collection of
families V1, ..., Vn ⊆ Bd with 0 ∈

∑
i∈[n] ConvVi, there exists a selection of vectors vi ∈ Vi

for i ∈ [n] such that ∥∥∥∑
i∈[n]

vi

∥∥∥ ≤ C(d).

In effect, this result allows us to transform the colorful vector balancing problem

into a separate problem about vertex approximation in high dimensional direct

products of simplices. Furthermore, this result is the key that allows us to prove

bounds on the colorful vector balancing problem depending only on the dimension d,

and not n, the number of vector families.

Finally, in Section 2.8 we return to the aforementioned result of Bansal, Dadush,

Garg, and Lovett and show how one can generalize their techniques to show asymp-

totically tight bounds in the colorful vector balancing setting based on the vector

balancing setting. However, we also justify why our direct geometric approach sheds

more light on the problem itself.

In Chapter 3 we continue our study of the colorful vector balancing problem by

turning to the specific cases of the Euclidean and maximum norms. In Section 3.1 we

prove the following result.

Theorem ([2], Theorem 1.4). Given vector families V1, ..., Vn ⊆ Bd
2 with

0 ∈
∑
i∈[n]

Conv Vi,

one can select vectors vi ∈ Vi for i ∈ [n] such that ∥v1 + · · ·+ vn∥2 ≤
√
d.

By virtue of our reduction in Chapter 2, it remains to show that we can solve the

vertex approximation-style problem introduced in Corollary 2.7. To this end, the key

result of Section 3.1 is the following:

Proposition ([2], Proposition 3.1). Given a collection of k vector families U1, ..., Uk ∈ Bd
2

and any point λ ∈ ∆U , there exists a selection vector µ ∈ ∆U such that ∥Uλ−Uµ∥2 ≤
√
k.

The proof follows the probabilistic method, and it is inspired by Spencer’s argument

in the classical vector balancing setting [67]. In Section 3.2 we turn to the more
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challenging case of the maximum norm. The main result of Section 3.2 is the

following:

Theorem ([2], Theorem 1.5). Given vector families V1, ..., Vn ⊆ Bd
∞ with

0 ∈
∑
i∈[n]

Conv Vi,

one can select vectors vi ∈ Vi for i ∈ [n] such that ∥v1+ · · ·+vn∥∞ ≤ C
√
d, where C = 22

suffices.

Similarly to Section 3.1, the proof reduces to the following proposition.

Proposition ([2], Proposition 4.1). Given a collection of k vector families U1, ..., Uk ∈
Bd

∞ satisfying |U1|+ · · ·+ |Ud| ≤ 2d and any point λ ∈ ∆U , there exists a selection vector
µ ∈ ∆U such that ∥Uλ− Uµ∥∞ ≤

√
k.

Our proof, based on the algorithmic proof of Spencer’s original result for the

vector balancing problem due to Lovett and Meka [47], uses a Gaussian random walk

inside of a high dimensional product of simplices to construct “partial colorings” (i.e.

assignments of convex coefficients to each family, with the goal of eventually selecting

one vector) with high probability. By iterating this algorithm, one can construct a full

coloring with bounded error. The key technical aspect of this proof, which we call

the skeleton approximation lemma, is deferred to Section 3.3 in order to make the

exposition of the proof cleaner.

In Chapter 4 we focus our attention on the Steinitz problem. The content of

Chapter 4 is based on the results published in [4]. Recall from Chapter 1 that in

the Steinitz problem, we are again given a symmetric convex body B ⊂ Rd and a

collection of vectors V ⊂ B such that
∑

v∈V v = 0. The goal is to find an ordering

v1, ..., vn of V such that every partial sum along this ordering has norm bounded

by a constant C depending only on the convex body B. That is, for every k ∈ [n],

∥v1 + · · ·+ vk∥ ≤ C. The smallest constant C that holds for a given convex body B is

called the Steinitz constant S(B) of B, and it is a well-known result that S(B) ≤ d for

any convex body B ⊂ Rd [24, 71]. It is a long-standing open conjecture of Bergström

[18] that S(Bd
2) = O(

√
d), although not even an o(d) result is known. In Chapter 4 we

show that in order to prove this conjecture, one can additionally assume that all of the

vectors have length at least 1− ε for any constant 0 < ε < 1, reducing to the setting of

“almost-unit vectors”. We prove two results, one specifically for the Euclidean norm
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and one holding for arbitrary norms. We state the precise results below, recalling that

Sε(B
d
2) denotes the Steinitz constant in the setting where all vectors v ∈ V satisfy

1− ε ≤ ∥v∥2 ≤ 1.

Theorem. For any 0 < ε < 1 and all d ≥ 2,

S(Bd
2) ≤

1

ε

(
Sε(B

d
2) + 200

√
d

log d

)
In particular, an o(d) estimate on the restricted problem would yield an o(d)

estimate for Bergström’s conjecture, and an O(
√
d) result in the “almost-unit vectors”

setting would resolve the conjecture completely.

The stronger result for arbitrary norms is as follows, where we recall that ρ(B) :=

maxv∈B ∥ − v∥B.

Theorem ([4] Theorem 6). For all d ≥ 2, any convex body B ∈ Kd
o, and 0 < ε ≤ 1,

S(B) <
1

ε

(
S∗
ε (B) + 2ρ(B) + 1

)
.

In Section 4.2 we introduce the interesting and storied history of the Steinitz

problem in more detail. In Section 4.3 we prove Theorem 1.11 in broad strokes,

deferring the proof of a handful of technical lemmas to Section 4.4. The strategy of

the proof is a key pre-processing of the vectors to remove any short (i.e., of norm less

than 1− ε) vectors. We do this by summing together short vectors within spherical

caps until we get a vector that is sufficiently long; in doing so, we must be careful

that all partial sums of the new long vectors remain sufficiently short, and we must

deal with a handful of extra vectors that are left after pre-processing; these are the

details of the technical lemmas in Section 4.4. In Section 4.5 we generalize this proof

technique to arbitrary norms by completing the pre-processing with half spaces in lieu

of spherical caps.



Összefoglalás
A disszertációban két, egymáshoz kapcsolódó diszkrét és konvex geometriai témával

foglalkozunk: a vektorkiegyensúlyozási feladattal és a Steinitz problémával. A vek-

torkiegyensúlyozási feladatban legyen K ∈ Rd egy szimmetrikus konvex test, és

v1, ..., vn vektorok K-ban; célunk az ε1, ..., εn ∈ {±1}n együtthatók meghatározása úgy,

hogy ∥ε1v1 + · · ·+ εnvn∥K minimális legyen.

Az általánośıtott, “sźınezett” vektorkiegyensúlyozási feladatban V1, ..., Vn ⊂ K

olyan vektorrendszerek, melyekre 0 ∈
∑

i∈[n] conv(Vi). Célunk kiválasztani minden

családból egy vi ∈ Vi vektort úgy, hogy ∥v1+ · · ·+ vn∥K minimális legyen. A klasszikus

vektorkiegyensúlyozási probléma két speciális esetére jól ismert korlátok vonatkoznak:

az euklideszi normában mindig választhatók olyan előjelek, hogy az előjeles összeg

euklideszi normája legfeljebb
√
d legyen. Továbbá, a maximum normában mindig

választhatók olyan előjelek, hogy az előjeles összeg maximum normája legfeljebb

O(
√
d) legyen. Mindkét eredményt kiterjesztjük az általánosabb sźınezett verzióra,

éles, illetve aszimptotikusan éles becsléseket igazolva. A bizonýıtás kulcslépése-

ként a sźınezett vektorkiegyensúlyozási problémát visszavezetjük magas dimenziós

szimplexek direkt szorzataiban a csúcsközeĺıtés problémájára.

A Steinitz problémában ismét adott egy B ⊆ Rd szimmetrikus konvex test, és

egy olyan V ⊂ B vektorrendszer, amelyre
∑

v∈V v = 0. Célunk V egy olyan V =

{v1, ..., vn} sorbarendezésének meghatározása, melyre a sorrend szerinti parciális

összegek normája legfeljebb egy C konstans, amely csak B-tól függ: tehát minden

k ∈ [n] esetén ∥v1 + · · ·+ vk∥B ≤ C. Adott B-re a C korlát elérhető legkisebb értékét

a B Steinitz-konstansának S(B) nevezzük. Jól ismert eredmény, hogy S(B) ≤ d

bármely B ⊆ Rd szimmetrikus konvex testre. Bergström régóta fennálló nýılt sejtése

szerint S(Bd
2) = O(

√
d), azonban ebben az esetben még egy o(d) becslés sem ismert.

A disszertációban a sejtést visszavezetjük arra az esetre, amikor a V vektorrendszer

összes elemének normája az [1− ε, 1] intervallumban van, tehát a vektorcsalád “közel

egységvektorokból” áll. Első eredményünk az euklideszi norma esetére vonatkozik,

majd ezt erőśıtjük és kiterjesztjük tetszőleges, nem feltétlenül szimmetrikus normákra

is.
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