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Introduction
The recent advancements in high-throughput technologies, such as Next-Generation
Sequencing (NGS) and mass spectrometry, have allowed researchers to generate large
amounts of omics data quickly and at a reduced cost. This changed our approach to
the study of biological systems. For example, in the past, the research point of view
in biology was almost entirely reductionist. The aim was to investigate very specific
mechanisms, designing experiments and testing hypotheses. Now, with the increasing
availability of data and computational resources, the goal has moved toward a more
data-driven approach. Here, the goal is to extract knowledge directly from a large
amount of data, which makes it possible to focus on the system in its entirety instead
of one mechanism at time. In this context, Machine Learning (ML) and, in particular,
Deep Learning (DL) have become particularly useful when the mechanisms of a bio-
logical system are unknown or too complex to be approached using only reductionist
approaches. However, ML/DL methods come with limitations: they need large quanti-
ties of training data to be able to generalize well. In many biology-related applications,
datasets can have few samples and a high number of features, which makes it challeng-
ing to apply ML/DL models. This issue is known as the ”curse of dimensionality”, a
well known problem that can limit the efficacy of ML/DL in the biological field.

Omics data can be of several types, for example: transcriptomics, proteomics, or
epigenomics. Each one represents a different aspect of the biological system, and the
approach of simultaneously analyzing and integrating them is referred to as multi-omics
analysis. This integration is crucial because it provides a more complete and holistic
view of the biological system, which would be impossible using any single omic layers
alone. However, multi-omics integration is not always straightforward, as it requires
approaches that handle the heterogeneity across layers while keeping the biological
relevance of each individual data type and for this reason it remains an open challenge
in biology.

The PhD thesis fits into this broader context and is framed within the European
project E-MUSE: Complex microbial Ecosystems MUltiScale modElling (https://
www.itn-emuse.com/https://www.itn-emuse.com). E-MUSE is a Marie Sk lodowska-
Curie Action Innovative Training Network focused on developing new methodologies
for modeling complex biological systems. The project aims to improve our understand-
ing of microbial ecosystems, with a particular emphasis on fermented food products
such as cheese. The Work Package 2 specifically focuses on data-driven approaches.
Among these, it explores the ”curse of dimensionality” in omics dataset and multi-
omics integration using statistical, network-based, and ML/DL approaches. Within
this framework, the PhD thesis explores the use of ML, in particular DL methods
to address these challenges. The common theme of the work is the methodological
development of ML approaches at genome-scale.

https://www.itn-emuse.com/
https://www.itn-emuse.com/
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After this Introduction, we divided this summary into three chapters: one for each
thesis point. In the first one, we introduce a DL method to analyze metagenomics data
in the context of data scarcity. It is based on SuperTML, a method originally used
for small tabular datasets, that embeds data into a 2D format, enabling the use of im-
age augmentation techniques. In the second chapter, we summarize the second thesis
point. We explore supervised multiple kernel learning (MKL) methods for multi-omics
data integration and present a novel MKL method based on DL optimization, called
DeepMKL. In addition, we present a novel feature importance method for biomarker
discovery. In the third chapter, we presented the third thesis point: a hybrid framework
that combines data-driven and mechanistic approaches to predict metabolic fluxes in
the context of data scarcity. The proposed method addresses this problem by regular-
izing a neural network through the incorporation of prior knowledge from genome-scale
metabolic modeling, which reduces the amount of data needed for training.
Each chapter contains an Author’s Contribution section, which details the exact con-
tribution of the author for that thesis point. These chapters are then followed by a
summary in Hungarian.
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Improving microbiome-based disease prediction
with SuperTML and data augmentation
The first thesis point addresses a common issue in bioinformatics: the scarcity and
the high dimensionality of the datasets. Specifically, it addresses this problem in the
microbiome research domain. The human microbiome is the complex of all the mi-
croorganisms that live in our body, especially in the gut. And it is linked with several
health aspects. Alterations in its composition appear in conditions such as diabetes,
inflammatory bowel disease, obesity, liver cirrhosis, and colorectal cancer [1, 3]. In mi-
crobiome research, the availability of data is still limited, and this makes it challenging
to adopt traditional deep learning models such as feed-forward neural networks because
they tend to fall into the “curse of dimensionality” and overfit.

Figure 1: High-level view of SuperTML for microbiome-disease prediction: 2D embed-
ding of tabular data and CNN for control/disease predictions. Left branch: SuperTML
without augmentation, which achieves lower AUC scores for 4 out of 6 datasets com-
pared to state-of-the-art methods. Right branch: the augmented SuperTML framework,
where image augmentation improves performance, achieving higher AUC scores for 5
out of 6 datasets.
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In recent years, an alternative deep learning approach, SuperTML [10], showed
promising performances with small tabular datasets. It is based on a 2D embedding of
the feature vector into an image: the values are printed on a black background, and then
a CNN is employed for the downstream classification task. Additionally, this framework
enables the use of image augmentation as in a standard image processing task [? ].
Image augmentation is a method to synthetically enlarge the dataset dimension and
for this reason is particularly useful in our case.
In our work, we applied SuperTML and the use of image augmentation to six different
microbiome datasets, where the task was to predict the absence or presence of a certain
disease based on metagenomics features. We evaluated our approach against classical
feedforward neural networks and the state-of-the-art DeepMicro. The datasets used in
our analysis and their characteristics are shown in Table 1.

Table 1: Summary of disease datasets.

Disease Dataset # Samples # Controls # Patients # Features
Inflammatory Bowel Disease IBD 110 85 25 443
Type 2 Diabetes EW-T2D 96 43 53 381
Type 2 Diabetes C-T2D 344 174 170 572
Obesity Obesity 253 89 164 465
Liver Cirrhosis Cirrhosis 232 114 118 542
Colorectal Cancer Colorectal 121 73 48 503

In our experiments, we tried several Image Augmentation transformations and also
implemented a custom one, called CellDropout, designed specifically for the kind of
image generated by SuperTML.
The results showed that SuperTML, even when used alone, consistently outperformed
FNNs across five out of six microbiome datasets. Additionally, when enhanced with
augmentation, SuperTML achieved the highest AUC scores in five out of six datasets,
demonstrating its competitive performance. Despite the clear efficacy of image augmen-
tation, we could not observe a single transformation that consistently worked better
in the majority of the datasets. This leaves the open question about which kind of
transformations are more appropriate for this kind of representation.
In this thesis point, we also analyze the limitations of SuperTML and disscuss possible
future directions. First, the dimension of the image grows with the number of fea-
tures. This poses an important computational limit for high dimensional datasets as
multi-omics ones. In order to mitigate this, a potential first approach could be to add
a dimensionality reduction step, such as an autoencoder, on top of our framework. Fi-
nally, another limitation is the black-box nature of this approach. The 2D embeddings
make it harder to retrieve the feature importance. This issue could be mitigated using
pixel-level attribution methods to identify the most relevant pixels and relate them
to features, which would be useful for biomarker discovery and future applications in
precision medicine.
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Author’s contributions
For the first thesis point, the author is responsible for contributing to the conceptualiza-
tion and design of the work, the idea of transforming microbiome–disease classification
tasks into image classification using SuperTML and comparing the results with Deep-
Micro. The author conducted the full literature survey related to SuperTML and data
augmentation, and implemented all experiments presented in the chapter. In addition,
the author designed and developed the novel CellDropout transformation entirely from
scratch.



7

Supervised Multiple Kernel Learning approaches for multi-
omics data integration
In this second thesis point, we address the challenge of multi-omics integration. Omics
datasets are high dimensional and heterogeneous, and this creates several challenges
when trying to combine them into a single predictive framework. Kernel methods, how-
ever, offer a natural and elegant way to deal with this scenario, because they represent
each dataset in terms of a matrix of pairwise similarities and provide a nonlinear ver-
sion of many algorithms. Despite this, kernel approaches remain an underused tool in
genomic data mining [14]. In our work, we explore different Multiple Kernel Learning
(MKL) strategies, starting from classical convex linear combinations of kernels. We
consider simple approaches such as assigning equal weights to each kernel, and also
supervised MKL methods where the weights are optimized to improve classification
performance. At the same time, we adapt an unsupervised fusion method, STATIS-
UMKL [8], to a supervised setting by using the fused meta-kernel as input for an SVM
classifier. This method constructs a consensus kernel by maximizing the average simi-
larity between kernels, and we test whether this unsupervised fusion can still provide
benefits when used in a supervised classification task.

Additionally, we investigate the possibility of integrating kernels using deep learn-
ing. Recent deep learning architectures have shown the ability to learn homogeneous
representations from heterogeneous sources, making them suitable for multi-omics in-
tegration. With this motivation, we introduce DeepMKL, a framework that first ap-

Figure 2: Cross-modal Deep MKL (concat) takes in input the Kernel PCA dense em-
beddings of different omics datasets. It extracts the features using different feedforward
sub-networks that are linked by cross-connections, then fuses the learnt representations
by concatenating them for the final classification
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plies Kernel PCA to each omic dataset to obtain dense embeddings, and then uses a
multi-modal neural network to learn separate representations and integrate them for
classification. We also propose a second architecture, Cross-modal DeepMKL (Figure
2), where cross-connections between modalities allow information exchange before the
final fusion, potentially improving the representation learning. To evaluate all these
methods, we tested them on four publicly available multi-omics datasets widely used
in biomedical machine learning: ROSMAP, BRCA, LGG, and KIPAN. Each dataset
contains three omics layers (mRNA, DNA methylation, and miRNA). To ensure a fair
comparison with state-of-the-art methods such as MOGONET and Dynamics[6, 13].
we applied the same evaluation pipeline and the same performance metrics. The results
show that kernel-based methods are consistently comparable and often outperform the
state-of-the-art deep learning approaches. Methods such as SimpleMKL [9], SEMKL
[15], and STATIS-UMKL combined with SVM achieved strong and stable results across
the datasets, in some cases surpassing both MOGONET and Dynamics. Even SVM
applied to early concatenation performed better than previously reported once proper
tuning and kernel choices were applied. DeepMKL and Cross-modal DeepMKL deliv-
ered competitive performance on larger datasets, while, as expected, their effectiveness
was reduced on smaller ones, confirming the known limitations of deep architectures in
low-sample scenarios. Additionally, we introduce a two-step framework for biomarker
discovery based on DeepMKL. In the first step, we apply Integrated Gradients [11] to
identify the most influential kernel principal components for the classification task. In
the second step, we use KPCA-IG [2] to trace back the contribution of the original vari-
ables, making it possible to recover biologically relevant features from a transformed
representation that normally hides the input structure. This combination allows us to
derive consistent and meaningful biomarker candidates, as shown in our experiments on
BRCA and ROSMAP. In conclusion, this thesis point highlights how MKL represents
a fast and reliable solution that can compete with more complex deep learning archi-
tectures. The integration of deep learning with MKL and its interpretability pipeline
offers a promising direction for future work in multi-omics data analysis, biomarker
discovery, and precision medicine.

Author’s contributions
For the second thesis point, the author is responsible for contributing to the conceptu-
alization and design of the work, specifically comparing deep learning state-of-the-art
approaches to multiple kernel learning ones, based on SVM and deep learning, on
biomedical multi-omics datasets. The author conducted the literature survey regard-
ing the deep learning approaches in the Related Work section and implemented all
data preprocessing steps. Furthermore, the author carried out the conceptualization
and implementation of all DeepMKL architectures together with the relative evalua-
tion pipeline and experiments. Finally, the author conceptualized and implemented
the novel two-step interpretability method used for biomarker discovery.
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MINN: A Metabolic-Informed Neural Network for Inte-
grating Omics Data into Genome-Scale Metabolic Model-
ing

In this chapter, we address the challenge of hybrid modeling in the context of genome-
scale metabolic modeling. Mechanistic models, such as GEMs and FBA, offer a struc-
tured way to describe metabolism and simulate flux distributions under stoichiometric
constraints [12]. However, their predictive power is limited by incomplete biological
knowledge and by the presence of many feasible solutions. On the other hand, data-
driven models can extract complex patterns from multi-omics data, but they require
large datasets and often lack interpretability. For this reason, hybrid models have re-
cently gained attention. They combine the strengths of mechanistic models with the
prediction power of pure data-driven models. Recently, an approach that leveraged
GEM structures and FBA constraints within neural networks to predict growth rates
from media compositions came out, opening the way for the implementation of new
hybrid models [4] .

In this work, we present a Metabolic-Informed Neural Network (MINN), a method
inspired by [4] , designed to use multi-omics data to predict metabolic fluxes under
different growth rates and single-gene knockouts. The architecture is composed of a

Figure 3: High-level scheme of the MINN framework
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first, fully data-driven neural network that predicts an initial flux distribution, and
a mechanistic layer that refines this prediction by enforcing the FBA constraints. A
key issue that emerged in our analysis is the conflict between the data-driven objec-
tive and the mechanistic one. To mitigate this, we introduce different strategies. One
of them is a balancing coefficient that controls the weight of the data-driven compo-
nent. Additionally, we also explore other hybrid optimization strategies, including a
bound on the mechanistic loss, an adaptive loss balancing mechanism, and a dynamic
loss weight scheduler. In our experiments, we evaluate MINN on the ISHII dataset[7],
which contains transcriptomics, proteomics and fluxomics measurements for E. coli
across different growth conditions and knockout strains. We compare the MINN with
pure machine learning models and with pFBA [5]. The results show that the MINN
achieves comparable or better predictive performance than the machine learning base-
lines, and also outperforms pFBA. The configuration with the balanced loss shows the
most stable and robust predictions. We also introduce MINN-reservoir, a variation
trained in two steps. First, a MINN without omics inputs is trained to approximate
an FBA solver, producing a pretrained block that predicts flux distributions directly
from exchange fluxes. Then, this block is embedded into a new architecture that uses
multi-omics data to generate additional constraints for pFBA. This approach allows the
model to generate constraints in a data-driven way, enriching pFBA with information
derived from omics data. In our experiments, the MINN-reservoir slightly improves the
predictive metrics and significantly reduces the variance across the splits, showing more
stable behavior. To conclude, this chapter shows that MINN and its variants improve
predictive performance, stabilize the learning process, and offer a flexible framework
to integrate data-driven and mechanistic components.

Author’s contributions
For the third thesis point, the author is responsible for contributing to the conceptualiz-
ing and designing the MINN architecture for integrating multi-omics into genome-scale
metabolic modeling. The author conducted the literature survey regarding the hybrid
modeling methods in the Related Work section. In addition, the author implemented
the MINN and MINN-reservoir experiments and the related code used in this analysis,
except for the hybrid optimization strategies and the code strictly related to handling
the mechanistic aspects.
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Összefoglalás
A doktori disszertáció genomléptékű gépi tanulási megközeĺıtéseket mutat be.
Különösen olyan módszerekre összpontośıt, amelyek a bioinformatikában gyakori
adatritkaság és multi-omikai integráció problémáját kezelik. A dolgozat három fő
tézispontból áll. Az első részben a mikrobiom adatokból történő betegségpredikció
kih́ıvásait vizsgáltuk. Ezekben az adatokban a kis mintaszám és a nagy dimenziószám
gyakran korlátozza a hagyományos neurális hálózatok teljeśıtményét. Ennek kezelésére
a SuperTML keretrendszert teszteltük, amelyet eredetileg kis táblázatos adathalma-
zokhoz fejlesztettek ki. Eredményeink azt mutatják, hogy a SuperTML életképes al-
ternat́ıvát jelent a legkorszerűbb módszerekkel szemben, és teljeśıtménye tovább javul,
ha adataugmentációs technikákkal kombináljuk. A vizsgált adathalmazok többségében
ez a megközeĺıtés felülmúlta a hagyományos modelleket, ami rámutat az augmentáció
regularizációs szerepének fontosságára. A második részben a multi-omikai adatok
integrációjának kih́ıvását elemeztük. Ezen adatforrások sokfélesége és összetettsége
gyakran csökkenti a hagyományos bioinformatikai módszerek hatékonyságát. Ennek
megoldására két új, Multiple Kernel Learning (MKL) alapú megközeĺıtést vezettünk
be. Az MKL viszonylag ritkán használt módszer, ugyanakkor nagy potenciállal ren-
delkező keretrendszert ḱınál erre a feladatra. Olyan megoldást dolgoztunk ki, amelyben
Support Vector Machine módszer seǵıtségével felügyelet nélküli tanulási módszereket
alaḱıtunk át felügyelt tanulási feladattá. Emellett bemutattuk a DeepMKL-t, egy
mélytanulás-alapú keretrendszert, amely a kernel függvények integrációját konvex
lineáris optimalizálás nélkül valóśıtja meg. Négy nyilvánosan elérhető orvosbiológiai
adathalmazon végzett ḱısérletek azt mutatták, hogy mindkét megközeĺıtés megb́ızható
és versenyképes megoldást jelent. Teljeśıtményük összevethető, sőt esetenként jobb,
mint a bonyolultabb, legkorszerűbb módszereké. Ezen felül egy kétlépéses biomarker-
azonośıtási stratégiát is javasoltunk, amely a DeepMKL-t egy új magyarázhatósági
eljárással kombinálja. Kı́sérleteink alapján az MKL módszer robusztus megoldást
nyújt a multi-omikai integrációra, és versenyképes alternat́ıvát ḱınál a fejlettebb ar-
chitektúrákkal szemben. A harmadik részben a Metabolic-Informed Neural Network
(MINN) módszert mutatjuk be, amely egy hibrid keretrendszer. Célja, hogy multi-
omikai adatokat genomléptékű metabolikus modellekkel integráljon fluxuspredikcióhoz.
A kizárólag adatalapú és a kizárólag mechanisztikus megközeĺıtésekkel szemben a
MINN egyeśıti a neurális hálózatok rugalmasságát a metabolikus modellek strukturált
korlátaival. Az architektúra több változatát teszteltük, hogy kezeljük az előrejelzési
pontosság és a biológiai konzisztencia közötti kompromisszumot. Emellett stratégiát
javasoltunk a MINN parsimonious Flux Balance Analysis (pFBA) módszerrel való
összekapcsolására az értelmezhetőség növelése érdekében. Egy kisméretű, E. coli multi-
omikai adathalmazon, amely egyszeres génkiütéses törzseket tartalmazott, a MINN
felülmúlta mind a klasszikus gépi tanulási módszereket, mind a mechanisztikus mod-
elleket. Eredményeink azt mutatják, hogy a biológiai korlátok bevezetése stabilizálja a
tanulási folyamatot és csökkenti a túlillesztést.
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[8] Jérôme Mariette and Nathalie Villa-Vialaneix. Unsupervised multiple kernel learn-
ing for heterogeneous data integration. Bioinformatics, 34(6):1009–1015, October
2017.

13



[9] Alain Rakotomamonjy, Francis Bach, Stephane Canu, and Yves Grandvalet. Sim-
pleMKL. Journal of Machine Learning Research, 9:2491–2521, 2008.

[10] B. Sun, L. Yang, W. Zhang, M. Lin, P. Dong, C. Young, and J. Dong. Supertml:
Two-dimensional word embedding for the precognition on structured tabular data.
In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 2973–2981, Los Alamitos, CA, USA, jun 2019. IEEE
Computer Society.

[11] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for
deep networks. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, page 3319–3328. JMLR.org, 2017.

[12] Ines Thiele and Bernhard Ø Palsson. A protocol for generating a high-quality
genome-scale metabolic reconstruction. Nature Protocols, 5(1):93–121, January
2010. Publisher: Nature Publishing Group.

[13] Tongxin Wang, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zhengming Ding,
and Kun Huang. MOGONET integrates multi-omics data using graph convolu-
tional networks allowing patient classification and biomarker identification. Nature
Communications, 12(1), June 2021.

[14] Christopher M. Wilson, Kaiqiao Li, Xiaoqing Yu, Pei-Fen Kuan, and Xuefeng
Wang. Multiple-kernel learning for genomic data mining and prediction. BMC
Bioinformatics, 20(1), August 2019.

[15] Zenglin Xu, Rong Jin, Haiqin Yang, Irwin King, and Michael R. Lyu. Simple and
efficient multiple kernel learning by group lasso. In Proceedings of the 27th Inter-
national Conference on International Conference on Machine Learning, ICML’10,
page 1175–1182, Madison, WI, USA, 2010. Omnipress.



Declaration 
In the PhD dissertation of Gabriele Tazza entitled "Machine Learning at Genome Scale", 
with the list of publications: 

J1] Gabriele Tazza, Francesco Moro, Dario Ruggeri, Bas Teusink, and László Vidács. 
MINN: A metabolic-informed neural network for integrating omics data into genome-scale 
metabolic modeling. In Computational and Structural Biotechnology Journal, 27, 3609-3617, 2025. 

[J2] Gabriele Tazza, Dario Ruggeri and László Vidács. Improving Microbiome-Based Disease 
Prediction with Super TML and Data Augmentation. In lIEEE Access, 13, 144505-144515, 2025. 

J3] Mitja Briscik, Gabriele Tazza, László Vidács, Marie-Agnés Dillies and Sébastien Déjean. 
Supervised multiple kernel learning approaches for multi-omics data integration. In BioData Mining, 
17, 53,2024. 

[C1] Gabriele Tazza, Francesco Moro, Bas Teusink, and László Vidács. Metabolic- Informed Neural 
Network for Multi-Omics Data Integration. In Proceedings of the 13th International Conference on 
Simulation and Modelling in the Food and Bio-Industry, FOODSIM 2024, Eurosis-ETI, 193-197, 2024 

Gabriele Tazza 's contribution was decisive in the following results: 

In the first thesis point, "Improving microbiome-based disease prediction with 
SuperTML and data augmentation", the author contributed to the 
conceptualization and design of the comparative analysis based on SuperTML and 
image augmentation techniques in the context of microbiome-based disease 
prediction. The author conducted the literature review presented in the Related 
Work section, contributed to implementing the code for all analyses performed, and 
designed and implemented the novel custom transformation CellDropout. (J2] 

In the second thesis point, "Supervised Multiple Kernel Learning approaches for 
multi-omics data integration", the author contributed to the conceptualization and 
design of the comparison between state-of-the-art deep learning methods and 
multiple kernel learning approaches, based on deep learning optimization, on 
biomedical multi-omics datasets. The author is responsible for the literature review 
regarding the deep learning methods presented in the Related Work section. The 
development of DeepMKL and Cross-Modal DeepMKL, including both their 
conceptualization and implementation, was carried out by the author. The author 
also implemented the code used to preprocess all datasets included in the 
analysis. Finally, the novel feature-importance method, together with its 
implementation, was conceptualized and implemented by the author. [J3] 



Ihese results cannot be used to obtain an academic research degree, other than the submitted PhD thesis of Gabriele Tazza 

Date 

In the third thesis point: "MINN: A Metabolic-lnformed Neural Network for 
Integrating Omics Data into Genome-Scale Metabolic Modeling", the author 
contributed to the conceptualization and design of the MINN architecture for 
integrating multi-omics data into genome-scale metabolic modeling. The author 
conducted a literature review regarding hybrid modeling methods, presented in the 
Related Work section. Furthermore, the author implemented the MINN and MINN 
reservoir experiments and the code used in this analysis, with the exception of the 
hybrid optimization strategies and the components strictly related to handling the mechanistic aspects of this approach. (J1, C1] 

23/01/2026 

Signature of candidate 

Date 

The head of the Doctoral School of Computer Science declares that the declaration above 
was sent to all of the coauthors and none of them raised any objections against it. 

ERSIT} 

signatufe dfheai ofDoctbral Scho 

OF SZE MOOL OF COMPU 

SZEGED 

EGE 

Signature of supervisors 

SCIENCE 


	Bibliography

