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IV. Introduction 

1. An overview of the microbiome: ecology, diversity and host 

interactions 

We live in a world of microorganisms. There are very few truly sterile, habitable 

environments in nature (Cockell, 2021, Michán-Doña et al., 2024). Aside from a few 

extreme inhospitable environments (Dragone et al., 2021, Payler et al., 2019), every 

corner of our surroundings is inhabited by microorganisms: bacteria, archaea, viruses, 

fungi and other eukaryotes. These organisms are so ubiquitous that humans carry them 

even to previously uninhabitable spaces (Salido et al., 2025). The community of 

microscopic organisms living in a specific environment is referred to as microbiome (Berg 

et al., 2020). Each microbiome is shaped by their environment, and in turn shapes that 

environment. This is true not only in abiotic environmental settings, but also within and on 

the surfaces of multicellular organisms, all of which host diverse microbial communities 

(Bordenstein & Theis, 2015). These microorganisms influence the health and 

development of the host, on an individual but also on an evolutionary scale (Zilber-

Rosenberg & Rosenberg, 2008). 

Beyond host interactions, microbes also engage with one another through numerous 

direct and indirect interactions, such as competing for the same resources, developing 

biofilm, anti-microbial peptides, and quorum sensing (Coyte et al., 2015). Consequently, 

a microbiome can be viewed as an ecological community rather than a collection of 

independent species. As such, diversity metrics like alpha-diversity (measuring the 

number and distribution of species in a sample), beta-diversity (measuring the different 

abundance of species between communities), species richness (measuring the number 

of species present in a community), and evenness (measuring how equally the different 

species are distributed) are commonly applied (Galloway-Peña & Hanson, 2020). 

In this dissertation, the term microbiome refers specifically to the human microbiome—

the community of microorganisms residing within and on the surface of the human body. 

Although the human body also serves as host for numerous viruses, fungi, and other 

eukaryotic microorganisms, the focus here is limited to the bacterial component of these 
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communities. These bacteria are high in number and rich in diversity (Huttenhower et al., 

2012a) and influence the host body in several ways, both beneficial and detrimental 

(Clemente et al., 2012). The most extensively studied human microbiome is that of the 

gut, but other important bacterial communities also inhabit the vagina, the oral cavity, and 

the skin (Figure 1).  

 

Figure 1: Most notable taxa of four microbial communities of the human body. (A) and 

(B) important functions of the gut microbiome. Adapted from Hou et al., 2022 

1.1. Composition and functions of the gut microbiome 

The most bacteria-rich environment inside the human body is the gut, particularly the 

large intestine. In this region, the number of bacterial cells is estimated to be roughly 

comparable to, or slightly greater than, the number of human cells of the organ (Sender 

et al., 2016). This richness is combined with a high diversity; there are on average 200-

1000 species in the healthy gut (Turnbaugh et al., 2007). The gut microbiome also shows 

high levels of specificity to the host: microbial “fingerprints” have been shown to work as 
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an accurate means of identifying individuals (Franzosa et al., 2015). Bacteria in the gut 

mainly belong to 5 phyla: Bacillota (formerly Firmicutes), Bacteroidota (formerly 

Bacteroidetes), Proteobacteria, Actinobacteria and Verrucomicrobia (Hou et al., 2022). 

Additionally, the gut is populated by archaea, most notably the methanogens 

Methanobrevibacter smithii and  Methanosphaera stadtmanae (Gaci et al., 2014).  

In the following section I give a brief introduction of 3 important properties of the gut 

microbiota, nonetheless this list is not exhaustive, and the listed functions are not mutually 

exclusive. 

1.1.1. Metabolic role of the gut microbiota 

Gut bacteria produce enzymes for the digestion of proteins, carbohydrates and fatty acids 

and are able to digest complex carbohydrates that would otherwise be hard to digest or 

indigestible for the host (Flint et al., 2012). Through the digestion of these carbohydrates, 

microbial members can produce short-chain fatty acids (SCFA), such as acetate and 

butyrate, which play important roles in immunomodulation and the regulation of the 

epithelial barrier (Mann et al., 2024) 

Moreover, some genera of gut bacteria (e.g. Bacteroides, Bifidobacterium, and 

Enterococcus) can contribute to the production of beneficial nutrients and vitamins 

(Morowitz et al., 2011). The most notable examples are the vitamin group B (such as 

biotin (B7), folate (B9), and cobalamin (B12)) and vitamin K (Tarracchini et al., 2024). It 

has been estimated that up to half of the daily Vitamin K requirement is provided by gut 

bacteria (Morowitz et al., 2011). 

The metabolic properties of the gut microbiome do not always align with our intentions 

since certain drug compounds can be partly or completely digested by members of the 

gut microbiome, thus influencing drug pharmacodynamics and medical treatment 

(Tsunoda et al., 2021). Furthermore, certain bacterial metabolic byproducts can lead to 

health conditions, such as bloating or diarrhea (Sachdev & Pimentel, 2013).  

1.1.2. Host health modulating effect 

The gut microbiota acts as a shield in protecting the host from exogenous and potentially 

pathogenic microorganisms through a process termed as “colonization resistance” (Hou 
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et al., 2022). The gut microbiome also contributes to the modulation of the barrier function 

of intestinal cells (Takiishi et al., 2017) and to the regulation of the intestinal mucus barrier 

(Paone & Cani, 2020). 

On the other hand, bacteria in the gastrointestinal tract can lead directly or indirectly to 

diseases. Notable examples include Helicobacter pylori causing chronic gastritis (Robin 

Warren & Marshall, 1983) and different strains of Escherichia coli facilitating inflammatory 

bowel disease (Mirsepasi-Lauridsen et al., 2019). The gut microbiome can also serve as 

a host for opportunistic pathogens (Dey & Ray Chaudhuri, 2023) and a reservoir for 

antibiotic resistance genes (Anthony et al., 2020). 

1.1.3. The microbiota-gut-brain axis 

A particularly curious effect of the gut microbiome is on the nervous system. The gut has 

a large number of nerve cells and is sometimes referred to as the “second brain” (Gershon, 

1999). There is evidence that the gut microbiome is in a bidirectional communication with 

the central nervous system through these nerve cells, known as the “microbiota-gut-brain 

axis” (Loh et al., 2024). The microbiome is capable of producing or influencing the 

production of several neurotransmitters, such as serotonin (Yano et al., 2015), dopamine 

(Wang et al., 2021), and gamma-aminobutyric acid (Strandwitz et al., 2018). The 

microbiome is also able to regulate microglial maturation and cell death through SCFAs 

(Huang et al., 2023) and thus is theorized to have a role in different neurodegenerative 

diseases, such as Alzheimer’s disease (Dodiya et al., 2021) and Parkinson’s disease 

(Sampson et al., 2016). 

1.2. Oral microbiome 

The oral microbiome is the second largest microbial community in the human body, and 

its composition shows a high degree of overlap with the gut microbiome on a higher 

taxonomic level (phylum, class, family). The most notable oral bacterial phyla are Bacillota 

(formerly Firmicutes), Proteobacteria, Bacteroidota (formerly Bacteroidetes), 

Actinobacteria and Fusobacteria (Hou et al., 2022). The oral cavity can be further divided 

into different distinct microbial habitats, such as the tongue, tooth surfaces, and buccal 

mucosa, each with their own distinct microbial composition (Baker et al., 2023). While the 
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core members of the healthy oral microbiome are stable, there are rare taxa and strain 

variations enough to distinguish one person from another (Arumugam et al., 2025).  

The disruption of a healthy oral flora can lead to diseases, such as dental caries and 

periodontal disease (Baker et al., 2023). Dysbiosis of the oral microbiome also shows 

association with systemic diseases, including cancer and rheumatoid arthritis (Kumar, 

2013). 

1.3. Vaginal microbiome 

Probably the second most researched bacterial community in the human body, the 

vaginal microbiome also plays a significant role in disease development and prevention. 

The healthy vaginal microbiome is dominated by a few species, mainly from the 

Lactobacillus and related genera (Amabebe & Anumba, 2018). These bacteria produce 

lactic acid (hence the name), lowering the pH of the vaginal microenvironment, and 

supposedly inhibiting the growth of other, less beneficial bacteria (Amabebe & Anumba, 

2018). Thus, similarly to the gut, the vaginal microbiota also has an important function in 

colonization resistance (Mei & Li, 2022). Lactic acid may also modulate the immune 

response of the host (Chee et al., 2020). 

There are cases when the vaginal microbiota does not consist primarily of lactobacilli but 

is instead dominated by facultative or obligate anaerobes such as Gardnerella vaginalis, 

Prevotella spp., Mobiluncus spp., Ureaplasma urealyticum, and Mycoplasma hominis. 

The presence of these bacteria is associated with higher pH levels and a condition called 

bacterial vaginosis (Abou Chacra et al., 2022). The presence of these bacteria has also 

been associated with the acquisition of sexually transmitted infections and spontaneous 

preterm birth (Ding et al., 2021). 
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1.4. Skin microbiome 

As the skin is constantly in contact with the outside environment, its microbial composition 

is heavily influenced by environmental factors, such as heat, moisture, and outside 

pathogens, (Baker et al., 2023). An interesting property of the skin is that depending on 

its physiological characteristics (whether it’s oily, moist, or dry) different sites of the human 

body harbor different bacteria (Costello et al., 2009). The healthy skin microbiome is 

composed mainly of the Cutibacterium spp. (formerly Propionibacter spp.), 

Staphylococcus spp. and Corynebacterium spp., bacterial species along with fungi from 

the Malassezia genus (Byrd et al., 2018). Members of the skin microbiome have been 

connected to skin issues, such as acne (Cutibacterium acnes, in Dréno et al., 2018) and 

atopic dermatitis (Staphylococcus aureus, in Kim et al., 2019).  

2. Identifying microbiome members 

As the microbiome can affect human health in several different ways, it is important for 

the members of a given community to be identified correctly. The misidentification of 

bacteria and especially of pathogens in a clinical setting can lead to misdiagnosis and 

unnecessary treatment of patients. Currently, there are several methods for the 

identification of bacteria from microbial samples (Figure 2), each with their own strengths 

and weaknesses. 

Figure 2.: Examples of methods of bacterial identification 
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2.1. Culture-based classification of bacteria 

Classical microbiology methods are the original way to identify species from a microbiome 

sample. In these, most commonly, the sample is spread on an agar plate, and bacteria 

are grown under controlled conditions. The identity of the bacterial species is then 

decided based on phenotypic tests (e.g. color and morphology of the colony, growth on 

specific media) alongside staining and antibiotic susceptibility tests (Giuliano et al., 2019). 

The probably most well-known staining technique is Gram-staining, which targets the 

prokaryotic cell wall and divides bacteria into two non-disjunct groups: Gram-positives 

and Gram-negatives (Bartholomew & Mittwer, 1952). Metabolic capabilities of the studied 

bacteria, measured by biochemical assays, can also serve as the basis of identification 

(Altheide, 2019). For example, the IMViC, which was developed for the differentiation of 

Enterobacteria, is based on the detection of 4 distinct metabolic processes namely indole 

production, acid production, acetylmethylcarbinol (acetoin) production, and citrate 

utilization (Powers & Latt, 1977).  

These methods are still considered the “gold standard” for bacterial identification and are 

required when describing a novel bacterial species: an isolated and pure culture of the 

“type strain” of the new species is necessary for acceptance by the International Code of 

Nomenclature of Prokaryotes (Parker et al., 2019).  Nonetheless, despite their accuracy, 

culture-based methods have several shortcomings as they are expensive, slow (Goelzer 

& Fromion, 2011), low throughput, and the detection of a specific species often requires 

a dedicated test. Additionally, these methods may not provide a representative picture of 

the ratio of bacteria in a sample, as different bacteria can grow better or worse in 

laboratory conditions than in their natural environment (Steensels et al., 2019). Although 

culturing methods are constantly improving, there is still a substantial number of gut 

bacteria that can’t be cultured (Liu et al., 2021). 

2.2. Culture-independent classification of bacteria 

With the expansion of understanding of the molecular processes of prokaryotic cells, 

novel laboratory methods are continuously developed for the culture-independent 

classification of bacteria. These methods target structural, metabolic and other features 

of these microorganisms and often are done in parallel with culturing. These methods 
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include Raman spectroscopy (Krynicka et al., 2025), matrix assisted laser desorption 

ionization-time of flight mass spectrometry (MALDI-TOF MS) (Singhal et al., 2015), 

among others. However, the current most popular prokaryotic classification methods 

focus on DNA. 

2.2.1. DNA-based classification methods 

Nowadays, there is a vast selection of classification methods for differentiating 

prokaryotes based on their DNA content. They are common in that they focus on parts of 

the bacterial genomes which are characteristic of a given bacterium and can be used to 

differentiate it from the rest. These DNA-based methods include polymerase chain 

reaction (PCR) and quantitative PCR (qPCR) based-methods (Kralik & Ricchi, 2017), 

multi-locus sequence typing (MLST) (Maiden, 2006), plasmid profile analysis, and next-

generation sequencing methods (Adzitey et al., 2012). The latter is also the focus of this 

dissertation. 

2.2.2. Next-Generation Sequencing (NGS) 

Although DNA sequencing has been possible since the 1970s, the high-throughput 

sequencing methods brought a breakthrough in the last 30 years (reviewed in Kumar et 

al., 2019). These methods made it possible to find the sequence of large amounts of DNA 

at the same time. 

In brief, the most widely adopted NGS technology, originally developed by Solexa and 

subsequently commercialized by Illumina, is based on sequencing by synthesis (reviewed 

in Hu et al., 2015). Sequencing by synthesis works as follows: template DNA sequences 

are anchored to the surface of a sequencing chip and are extended through polymerase 

reactions. In each cycle, fluorescently marked termination nucleotides are added to the 

mix. The incorporation of these nucleotides results in a fluorescent emission of a specific 

wavelength that can be detected by a camera. This camera takes a high-resolution image 

of every cycle, and at the end of the sequencing runs the generated images are 

“translated into” nucleotides through a process called base-calling (Cacho et al., 2016). 

This method made it possible to determine the sequence of thousands of DNA templates 

in the same run. 
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The high throughput capability of this method proved to be especially useful in the case 

where the DNA content of a sample doesn’t come from a single organism, but from a 

community of tens or hundreds of species The term metagenomics itself, which refers to 

the study of the genetic content of an environmental sample, has been around the same 

time as these high-throughput methods (Handelsman et al., 1998). High-throughput 

sequencing in the last 25 years has brought several breakthroughs to the field. 

 

Figure 3: Comparison of the 16S and shotgun sequencing workflows. 

V3,V4: variable regions of the 16S rRNA gene, C: conserved region 

2.2.3. 16S sequencing 

The more traditional sequence-based identification method of bacterial species is the so-

called 16S sequencing (Janda & Abbott, 2007). This method is based on the 16S rRNA 

gene, which can be found in every bacterial genome. This gene is particularly useful for 

microbial classification, due to its conserved regions, which are very similar among all 

bacteria, as well as variable regions, that show species- or even sub-species-level 

specificity. There are PCR-based methods targeting specific SNPs of this gene, but NGS-

based 16S classification is a far more popular method (Figure 3). Finding the sequence 

of this gene is often enough to classify bacteria in metagenomic samples, and it offers a 
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quick and cheap solution to the problem. However, 16S sequencing-based identification 

has several weaknesses: 

 It doesn’t provide any additional genomic information other than the sequence of 

variable regions of this one specific gene, and such can’t be used for 

metagenomics 

 Bacteria can have multiple copies of the same 16S rRNA gene and these copies 

can differ in their sequence (Lin et al., 2022). Moreover, classification can give a 

different result based on the variable region targeted by the sequencing, leading 

to inaccuracies (Zhang et al., 2024).  

Because of these limitations, 16S sequencing is no longer regarded as a true 

metagenomic approach, since it targets only a single marker gene rather than the full 

genomic content of a community. For this reason, it has largely been replaced by shotgun 

metagenomics, which captures the complete DNA pool of all organisms in a sample. 

However, there are still specific cases, for example, the sample is highly contaminated by 

the eukaryotic host’s DNA, or genus-level classification is sufficient, when 16S is 

commonly used (Durazzi et al., 2021). Additionally, sequencing the whole 16S gene using 

long read sequencing technologies, such as Nanopore (Aja-Macaya et al., 2025) and 

PacBio (Buetas et al., 2024) can partially overcome these limitations and improve 

taxonomic classification.  

16S classification algorithms apply roughly the same basic principles: they order the 

sequences into operational taxonomic units (OTUs) based on sequence similarity, then 

compare these to a reference database (such as SILVA or Greengenes). A more novel 

method is treating each sequence as amplicon sequence variant (ASV) identifying them 

separately, then merging abundance data on species level. This can give a more fine-

grained view on the composition of the bacterial community (Marizzoni et al., 2020). 

2.2.4. Shotgun sequencing 

Modern microbial analysis increasingly relies on metagenomic methods, which aim to 

analyze not just one gene per bacterial taxon, but the whole genetic content of each 

species in the sample. Shotgun sequencing is named after the DNA processing technique 

applied: extracted DNA is randomly fragmented into short DNA fragments that collectively 
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represent the entire genomes of all organisms in the sample, similarly to the scatter 

pattern of a shotgun blast (Anderson, 1981). 

Shotgun sequencing can be applied in more diverse ways compared to 16S (Figure 3): 

 Creating metagenome-assembled genomes (MAGs): 

MAGs are an important tool to study microbial diversity and characterizing new, 

often unculturable, organisms. The creation of MAGs is done by assembling reads 

into longer sequences (contigs and then scaffolds) and then grouping the results: 

creating groups of scaffolds based on short sequence similarities. Each bin 

corresponds to a putative individual bacterial genome. Assembly and binning are 

always followed by quality assessment, where the completeness of the genomes 

and the presence of contaminants is tested (Setubal, 2021). 

 Gene identification and functional profiling: 

This provides information on how bacteria function in a community and how they 

interact with the host. Additionally, it can be used to identify antibiotic-resistance 

genes, which is critical for clinical treatment (Boolchandani et al., 2019). Functional 

annotation typically involves two steps: gene prediction, where the potentially 

coding sequences are identified, and annotation, where predicted proteins are 

compared with protein families in databases and annotated functionally. 

 Taxonomic classification: 

Shotgun sequencing can be used for more accurate classification and can provide 

sub-species level information for certain bacteria. The following section details the 

workings of such classification algorithms. 

Overall, all methods analyzing metagenomic data are strongly influenced by the quality 

of the sample, sequencing depth, and the bioinformatic methods applied. 

3. Metagenomic classification of bacteria 

To make sense of metagenomic data and to find species corresponding to DNA 

sequences (the classification process), bioinformatics methods are needed. As the 

available metagenomic data is increasing exponentially, the number of classification 

strategies grows as well. These classification algorithms apply various methods to identify 
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bacterial taxa in the samples.  

3.1. Types of classification algorithms 

There are several approaches to identify bacteria in metagenomic samples. The most 

popular metagenomic classifiers apply some kind of alignment algorithm in their   

workflow. 

While the algorithmic principles applied by metagenomic classifiers are diverse, they can 

be broadly divided into 3 categories: 

1. k-mer based classifiers: These classifiers process the reference genomes by 

splitting it into short sequences (k-mers) and then building a taxonomic tree of 

the sequences, trying to find the taxon in which the k-mer appears (latest 

common ancestor, LCA). The classification of the samples is done similarly: 

splitting the reads into k-mers and attempting to place these k-mers on the LCA 

tree. The most notable examples are Kraken (Wood & Salzberg, 2014), 

Kraken2 (Wood et al., 2019). and Bracken (Lu et al., 2017), which is an 

extension of Kraken. K-mer based classification methods tend to be fast but 

less specific, compared to other methods (Garrido-Sanz et al., 2022). 

2. Markergene-based classifiers: These classifiers process the reference 

genomes by taxon-specific sequences. During classification, the algorithm 

compares the reads to this taxon-specific database, assigns the recognized 

sequences to taxon and discards the rest. The most notable example of marker 

gene-based classification is MetaPhlAn (Beghini et al., 2021). This method 

tends to produce good sensitivity and specificity, with medium running speed 

(Ye et al., 2019). 

3. Genomic alignment-based classifiers: These methods tend to be computation- 

and time-intensive. They rely on building an indexed reference database of 

complete bacterial genomes and applying a local alignment algorithm to match 

the reads to the reference sequences. GOTTCHA (Freitas et al., 2015) is a 

notable example of alignment-based classification. 

There are, of course, classifiers that don’t fit these categories. For example, Kaiju (Menzel 
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et al., 2016) and DIAMOND-Megan (Bağcı et al., 2021) which utilize a DNA-to-protein 

sequence-based search strategy. These tools are becoming less popular due to their high 

computational and time requirements and low specificity.  

3.2. DNA sequence alignment 

Sequence alignment is the most important step of comparing biological sequences. 

Simply put, alignment is the process when two strings (character sequences) are 

arranged in a way that shows the highest-scoring similarity between the two. In genomics 

alignment is typically done against a reference, which can be a gene, chromosome or 

whole genome of an organism. The completeness and accuracy of this reference highly 

influences the quality of the alignment. 

As the size of the reference grows, alignment becomes progressively less trivial. The 

need for alignment algorithms that can simplify the process or at least reduce the time 

and computational resources needed is growing. Many metagenomic classifiers rely on 

some kind of alignment or alignment-like strategy to compare reads or other query 

sequences to reference genomes, and they apply various methods for saving time and 

computational resources (as detailed in the next section). The method of alignment, 

where only a subsequence of the query sequence is matched to a subsequence of the 

reference, is called local alignment. A classic example of a local alignment algorithm is 

the Smith-Waterman algorithm (Smith & Waterman, 1981), which finds the matching 

substrings between the reference and the query by filling out a scoring matrix: a matrix 

that gives scores for matches and mismatches, and penalties for gaps (insertions or 

deletions). The algorithm applies dynamic programming to maximize the number of 

matching nucleotides while minimizing mismatches and indels. Although the Smith-

Waterman Algorithm is too computationally intensive for large-scale genomics, it serves 

as the foundation for numerous modern alignment algorithms (Daily, 2016, Delcher et al., 

2002). In the following, as an example, I will introduce one such algorithm, the Burrows-

Wheeler Aligner (BWA) (Li & Durbin, 2009) and its Maximum Exact Matches version 

(BWA-MEM) (Li, 2013), which is a robust, frequently used alignment algorithm in 

bioinformatics and underlies the software described in this dissertation. 

Indexing the reference is the initial step of BWA. During this step the reference is 
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transformed into an indexed suffix array via Burrows-Wheeler transformation (Burrows & 

Wheeler, 1994) and FM-indexing (Ferragina & Manzini, 2000). This transformation 

enables fast and computationally efficient substring search. In the original version of BWA 

reads are represented by fixed-length seeds, which are mapped to the reference via exact 

matches in the FM-index (Figure 4). These seeds are then extended and scored with a 

modified version of the Smith-Waterman algorithm and chained together into candidate 

alignments, with the highest-scoring chains reported as the final local alignments. 

BWA-MEM, the variant used in my dissertation, is optimized for longer reads. Instead of 

fixed-length seeds, it first scans reads for minimizers, which serve as representative of 

the query, and then uses the FM-index to identify maximal exact matches (MEMs). 

Among these, it selects supermaximal exact matches (SMEMs) — matches that cannot 

be extended in either direction without mismatch and are not contained within larger 

matches. These SMEMs act as seeds for chaining and local extension, as in the classic 

algorithm. This adaptive seeding strategy makes BWA-MEM faster, more efficient, and 

more suitable for aligning long or noisy reads than the original BWA. 

 

Figure 4: Broad view on basic local alignment and the seed-and-extend alignment 

Adapted from Florescu & Ahmed, 2022 
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3.3. Main challenges in classification 

There are several problems in metagenomic classification, that all classification 

algorithms must deal with: 

 The quality and size of the reference database 

There is a large amount of bacterial sequencing data available, but it varies in 

quality and species specificity. E.g. for extensively studied species, such as E. coli, 

there are several, deeply sequenced strains available. Lesser-known or recently 

discovered species usually have one such reference. Simply comparing every 

sequencing read to every available bacterial reference sequence would be an 

exorbitant computational task. 

 The quickly changing bacterial taxonomic landscape 

 As the field of bacterial genomics is quickly evolving, new species are constantly 

discovered, old ones are reassigned, and existing clades are renamed. 

Metagenomic classifiers need to be constantly updated and need to have a reliable 

source of taxonomic information. 

 Similarity between bacterial species and evolutionally conserved regions 

Defining and dividing between bacterial species is far from trivial (Doolittle, 2012). 

The current scientific is that bacteria of the same species have at least  95% 

average nucleotide identity (ANI) in their genomes, which corresponds to ~99% 

similarity in the 16S rRNA gene (Konstantinidis et al., 2006). Additionally, because 

of the methods of horizontal gene transfer, bacteria that aren’t closely related can 

carry similar sequences in their genome. These conserved regions can make 

classification “noisy” and can increase the number of false positives (Paul et al., 

2020). 

 Making classification computationally efficient 

Classifiers apply different methods to filter and index the reference database and 

the metagenomic sample, to reduce computational costs. 

 Making classification as accurate as possible 

Misclassification can lead to several problems, especially if the metagenomic 

analysis is performed for the purpose of clinical pathogen identification. 
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For example, as mentioned, Kraken2 divides up reference genomes to k-mers (short, 20–

30 bp long sequences) and selects common sequences between bacteria on different 

taxonomic levels, thus making searching the reference database very efficient (k-mer 

search can be 1–3 magnitudes faster than full-sequence alignment (Bokulich, 2025)). 

MetaPhlAn reduces the reference genome size by selecting sequences that are strictly 

specific to one bacterium. This allows for fast classification, although the number of 

classified reads will depend on the quality and the diversity of the sample. 

In general, Kraken2 tends to overestimate the number of species in a sample, while 

MetaPhlAn generally underestimates. The accuracy of these two classifiers can be 

influenced by factors such as the read depth and the size of the reference genome (Sun 

et al., 2021). In general, there is no perfect method, only one that is suitable for the 

specific problem. To compare the performance of the growing number of classifiers, 

benchmarking against “gold standard” samples is needed. 

4. Standards in metagenomics 

For the proper benchmarking of the performance of metagenomic classifiers, it is 

necessary to have a ground truth of bacterial communities with known composition. This 

allows for the fair comparison of classifiers and can reveal their weaknesses, strengths, 

and specific uses of different tools. Several such standards are available for 

metagenomics; they differ in their composition, complexity, and use, but can be grouped 

into three general categories: in vivo, in vitro and in silico standards. 

4.1. In vivo standard communities 

There are several, well-described microbial communities inoculated in living organisms, 

such as minimal microbiomes sustained in gnotobiotic mice (e.g. Altered Schaedler Flora 

(Brand et al., 2015)). These “synthetic communities” are often results of a reductionist 

approach toward understanding the microbiota: they contain only the “key” species of a 

microbial community, and they don’t attempt to model real-world diversity (Raghu et al., 

2024). These in vivo standards can provide a close representation of a real-world 

microbiome. These standard communities may, however, be contaminated or colonized 
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by unknown bacteria, making their maintenance time-consuming and costly (Basic & 

Bleich, 2019). 

4.2.  In vitro standards 

In vitro standards are created by mixing either the cells or isolated DNA of well-known 

and frequently studied bacterial species (Morgan et al., 2010). These standards are 

frequently used in laboratory practice as controls and validation of metagenomics. 

Because these samples aren’t taken from the real-world, they show less resemblance to 

actual, real microbiomes. However, this can be also the strength of these standards: 

make it possible mixing of bacteria together that wouldn’t be able to co-exist in nature. As 

such, in vitro standards allow testing on a broader range than in vivo ones. 

4.3.  In silico standards 

Generating in silico metagenomic standards has several advantages over real-world 

sequenced DNA samples. The number and identity of genomic sequences used for the 

generation, the number, length, insert size and quality of reads can be strictly controlled: 

we can be sure where each read in the sample comes from. 

There are several methods to make sure that the generated reads resemble real-world 

samples as close as possible. Modeling the distribution of quality scores of the reads can 

take several directions, from simply giving each base the same quality score to the same 

value to different average error rates and sequencer-specific error profiles. Random 

sequencing errors, insertions and deletions can also be modeled (Fritz et al., 2019). 

As an example, Critical Assessment of Metagenome Interpretation (CAMI) is one of the 

most well-known examples of these standardization efforts, with two rounds of challenges 

so far (Sczyrba et al., 2017, Meyer et al., 2022). The purpose of these challenges is to 

provide gold standard data for classifiers as well as to compare the existing algorithms 

on different tasks, such as classifying very diverse samples, identifying a novel bacterial 



   

 

 24  

 

strain in a medical context, or assembling and taxonomically classifying the genome of 

previously unknown bacterial species.  

5. Clinical relevance of metagenomics 

Correctly identifying bacteria in human samples is a critical task in clinical analysis. 

Currently, this is most often performed by culturing methods introduced at the beginning 

of the chapter. Because some pathogens are difficult or impossible to culture in laboratory 

settings, and because broad-spectrum antibiotics are often applied before identification, 

these traditional methods can lack in sensitivity and can result in needless complications 

for the patient (reviewed in Gu et al., 2019). Metagenomics could mean a solution for 

these problems, providing a non-targeted, high-throughput, sensitive method for 

pathogen identification. For clinical use, any new detection method needs to be strictly 

validated (Kan et al., 2024). In the case of metagenomics, this can be achieved by using 

the previously mentioned in vitro and in silico standards, or alternatively, using real-world 

clinical data, tested by both culturing and metagenomics-based methods (Angel et al., 

2025). 

As previously mentioned, metagenomic classification faces several challenges: In my 

doctoral work, I devised and benchmarked a novel metagenomic classification algorithm, 

named Novel Alignment-based Biome Analysis Software + (NABAS+) to address these 

challenges. 
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V. Aims 

As I detailed in the introduction, metagenomics has revolutionized our ability to 

characterize complex microbial communities, yet the accurate classification of bacterial 

species within these datasets remains a challenge. To fully harness the potential of 

metagenomics for routine diagnostic use, there is a clear need for classification tools that 

combine high taxonomic specificity with robustness and computational efficiency. The 

validation of such tools requires benchmarking against datasets of precisely known 

composition that model realistic microbial communities. In this doctoral work, my aim was 

to develop, optimize, and validate a novel metagenomic classifier capable of accurate 

species-level identification, and to demonstrate its applicability to clinical pathogen 

detection. 

To achieve these goals, I set out to: 

 Develop a novel metagenomic classifier, NABAS+ that minimizes false-positive 

identification, leveraging high-quality reference genomes and the BWA-MEM 

algorithm 

 Establish comprehensive benchmarking datasets by generating in silico 

metagenomic samples as well as collecting in silico and in vitro standards for 

objective performance evaluation. 

 Benchmark NABAS+ along with other classifiers and evaluate its performance 

using various metrics, such as F1 score, precision and recall.  

 Demonstrate the applicability of the NABAS+ in clinical metagenomics by 

assessing its performance in correctly detecting pathogenic species in a real-world 

sample 
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VI. Materials and Methods 

1. Creation of NABAS+ (Novel Alignment-based Biome Analysis 

Software +) 

To address the problems highlighted in the Introduction, we aimed to create a novel 

metagenomic classifier, which we named NABAS+ (Novel Alignment-based Biome 

Analysis Software +). We used an underutilized alignment algorithm in metagenomic 

classification, BWA-MEM. The algorithmic workings of NABAS+ are detailed in the 

Results section. 

We chose the Java programming language to implement our algorithm, for its speed, 

large available codebase and multithreading capabilities. This allows us to integrate our 

classifier into larger software environments and analysis pipelines. Furthermore, to 

facilitate the use of NABAS+ by the broader scientific community, we created a 

standalone version that can be run from the command line, along with test datasets and 

a reference database. 

2. Creating an in-house in silico dataset 

To evaluate the performance of our classifier, first we built a dataset of in silico 

metagenomic samples, generated in-house. With these samples our aim was to study the 

accuracy of NABAS+ on samples modeling real-world environments, with different read 

depth, as well as to compare the performance of our tool to the current industry-leader 

classifiers. 

Our first set of test samples were generated using an in-house in silico NGS read 

generating algorithm, from 6 mock microbial communities, five of which were retrieved 

from the work of Ounit and Lonardi (Ounit & Lonardi, 2016). The composition of these 

communities was the following:  

“Buc12”: This community contains 12 microbial species found in the buccal microbiota, 

as reported in (Franzosa et al., 2015) and (Huttenhower et al., 2012b) including 
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Haemophilus influenzae, H. parainfluenzae, Neisseria subflava, and Veillonella dispar as 

well as eight species from the Streptococcus genus.  

“CParMed48”: For this community, 48 species were selected from Proteobacteria, 

Acidobacteria, Bacteroidota, Actinobacteria, and Planctomycetes phyla, based on (Reese 

et al., 2016) reporting the most common bacteria in city parks and medians in Manhattan.  

“Gut20”: This community consisted of 20 species commonly found in the human gut, 

described by (Kuleshov et al., 2016), from the Streptococcus, Listeria, and Lactobacillus 

genera among others. 

“Hous31”: This community contains 31 species typically found in Western homes, as 

described in (Ruiz-Calderon et al., 2016). These species belong to the  Streptococcaceae, 

Lactobacillaceae, Pseudomonadaceae, Intrasporangiaceae, and Rhodobacteraceae 

families. 

“Hous21”: This community is composed of 21 species from the dominant organisms  

found in the bathroom and kitchen, reported in (Adams et al., 2015), namely, 

Propionibacterium acnes and the Corynebacterium, Streptococcus, and Acinetobacter 

genera.  

Additionally, we created a “Custom 100” community by randomly selecting 100 species 

from a 500 species list containing the most common bacteria of the human gut microbiota. 

Relative abundances of the species in the communities were uniformly distributed. For 

each bacterium, we collected the latest available reference genome from RefSeq. Our 

algorithm utilized these genomic sequences in the following manner: picking a random 

start point in the genome and copy the sequence for a set number of bases to create a 

mock read. 

We created an in-house in silico sample generating algorithm, to model real-life Illumina 

runs. Our algorithm works with a collection of fasta-formatted reference genomes, picks 

random starting points with a set length of insert size and adds random insertions, 

deletions and “sequencing errors” (bases different from the reference) with a set 

frequency. 
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Reads were generated to model Illumina 2*151 bp reads, with a minimum insert length of 

50 and expected length of 250 bp. The read lengths followed Gaussian distribution with 

a standard deviation of 50 bp. At each position of every generated read, there was a 0.4% 

possibility of mismatch, 0.25% of 1-base-long deletion, and 0.15% of 1-base-long 

insertion. Insertions and deletions were allowed to happen concurrently, making longer 

indels possible. The Phred quality scores were set as consistent “A”, coding the Q score 

32, which corresponds to the error rate of 6.3*10-4 (Ewing et al., 1998). In real-world NGS-

analysis a read with an average Q score above 30 is considered good quality (Ewing & 

Green, 1998).  

Our reference data contained 212 species overall. From each community, we generated 

6 samples with different read numbers: 5 x 105, 106, 2 x 106, 5 x 106, and 107 reads. 

3. Collecting data from the CAMI II challenge  

The gastrooral subset of second CAMI Toy Human Microbiome Project dataset (DOI: 

10.4126/FRL01-006425518) was downloaded from the author’s website (https://cami-

challenge.org/datasets/), using the provided camiClient.jar, along with the provided NCBI 

RefSeq version and NCBI taxonomy. Reads were de-interleaved and given Casava 1.8-

style headers before analysis, using a custom script, FixFastqHeaders.jar. 

Because of the relative outdatedness of the reference database versions of the CAMI2 

data (datasets were generated in January 2019), older, corresponding database versions 

were utilized for each classifier. We aimed to use database versions published in the 

same timeframe as CAMI2 datasets. 

 MetaPhlAn3: ‘mpa_v31_CHOCOPhlAn_201901’ 

 Kraken2: ‘minikraken2_v2_8GB_201 904_UPDATE’; 

 GOTTCHA: ‘GOTTCHA_BACTERIA_c4937_k24_u30_xHUMAN3x.species’ 

In the case of NABAS+, we built the reference database using genomes labelled as 

‘representative’ or ‘reference’ from RefSeq (as of 8 January 2019, shared by the CAMI II 

authors), using a custom script. 

https://cami-challenge.org/datasets/
https://cami-challenge.org/datasets/
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4. CAMI II sample generation 

The in silico sequencing sample was regenerated using the abundance file and settings 

provided in the CAMI II challenge with CAMISIM (Fritz et al., 2019) version 1.3. To get a 

more modern representation of each species in the sample, we collected the most recent 

‘reference’ or ‘representative’ genome corresponding to the species from NCBI Refseq. 

After creation, the created sample was treated the same way as the rest of the CAMI2 

samples. 

5. Collecting and analysing data from deeply sequenced microbial 

community standards 

To demonstrate the accuracy of our tool on in silico real-world shotgun sequencing as 

well, we used deep sequenced ZymoBIOMICS Microbial Community Standards (Nicholls 

et al., 2019). 

These community standards consist of 8 bacterial and 2 fungal species, which are 

common members of the human gut microbiota. Community Standard I (CSI) contains 

these species in equal distribution, while Community Standard II (CSII) has species in 

exponential distribution. For our benchmark, we only considered the bacterial species in 

both communities. 
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Species Relative abundance (%) 

Bacillus subtilis 12.5 

Enterococcus faecalis 12.5 

Escherichia coli 12.5 

Limosilactobacillus 

fermentum 
12.5 

Pseudomonas aeruginosa 12.5 

Salmonella enterica 12.5 

Staphylococcus aureus 12.5 

Table 1 Bacterial composition of the CSI dataset 

Species Relative abundance (%) 

Bacillus subtilis 0.89 

Enterococcus faecalis 0.00089 

Escherichia coli 0.089 

Limosilactobacillus 

fermentum 
0.0089 

Listeria monocytogenes 89.1 

Pseudomonas aeruginosa 8.9 

Salmonella enterica 0.089 

Staphylococcus aureus 0.000089 

Table 2 Bacterial composition of the CSII dataset 



   

 

 31  

 

Illumina sequencing results of the two Zymo datasets were retrieved from the ENA 

archive. The datasets contained 8.8 million (2*151 bp, MiSeq) and 47.8 million read pairs 

(2×101 bp, HiSeq) of the CSI and CSII samples, respectively. Quality control of the 

sequencing data was performed with Trimmomatic (Bolger et al., 2014), with default 

parameters, with an average minimum quality of 20 and a minimum sequence length of 

75 bp. TruSeq Y adapters were removed from reads using Cutadapt (Martin, 2011). 

MultiQC (Ewels et al., 2016) was used to assess quality after trimming, using the default 

command. 

Additionally, we set up classifiers for the analysis of the Zymo data with more modern 

database versions, where it was available: 

Kraken2: Kraken2 standard bacterial database 

MetaPhlAn3: “mpa_vOct22_CHOCOPhlAnSGB_202212” 

NABAS+: RefSeq, 2022 

In the case of GOTTCHA, because its database is updated infrequently, we used the 

same reference database as for the analysis of the CAMI II samples. Since not all 

databases contained the updated taxonomies for Bacillus subtilis (Dunlap et al., 2020) 

and Lactobacillus fermentum (Zheng et al., 2020), these taxa were treated as “groups” to 

reconcile the differences in taxon names. 

6. Collecting and analysing real-world metagenomic sequencing 

data 

For the initial testing of classifiers, we used human metagenomic data provided by 

DeltaBio 2000 Ltd. These datasets originated from stool samples of healthy humans. By 

using the microbiome analysis service DeltaBio 2000 Ltd, patients agree to the 

anonymized use of their samples for research purposes. 

Stool samples were collected, and DNA was isolated using the QIAamp PowerFecal Pro 

DNA Kit. Next-generation sequencing libraries were prepared using Illumina Nextera XT 

DNA Library Preparation Kit (FC-131-1096 Illumina) according to the manufacturer's 
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instructions. For quality control, libraries were run on a BioAnalyzer2100 instrument using 

High Sensitivity DNA Kit (5067-4626 Agilent). Fragment libraries were sequenced on an 

Illumina NextSeq500 instrument with 2*150 bp chemistry (20024904 Illumina). Quality 

control and trimming was done using Trimmomatic, Cutadapt and MultiQC, according to 

the parameters described previously. 

7. Collecting and analysing clinical data 

We aimed to test NABAS+ on samples that come from real-world clinical settings but still 

contain species whose presence has been verified with laboratory methods other than 

metagenomics. For this we collected a dataset of 20 samples, coming from a study 

describing 330 samples with verified pathogenic content (Angel et al., 2025). These 

samples have been tested with PCR-based and MCS (molecular, culture and sensitivity) 

assays for common pathogens, e.g. Salmonella and Campylobacter spp..  Samples were 

collected as paired-end FastQ files, from ENA, from the accession PRJNA1156595. ). 

Quality control and trimming was done using Trimmomatic, Cutadapt and MultiQC, 

according to the parameters described previously. 

8. Selecting and setting up classifiers for the initial gut 

metagenome analysis 

For the initial comparison of human microbiome samples, we set up 8 different 

metagenomic classifiers, chosen based on popularity and diversity of classification 

algorithms applied. The classifiers were run with their respective default databases and 

standard commands when applicable, on a desktop computer equipped with 64 GB RAM 

and 12 processor threads, on a Linux operating system. For this initial analysis, we 

compared unfiltered results.  

For Kaiju, we tested both the freely available webserver (Kaiju Web Server - Submit Job, 

n.d.) and the desktop version of the software were tested. This allowed us to run Kaiju 

with the NCBI nr database, which we could not process locally due to computational 

limitations. During the publishing process of these results, this webserver has become 

unavailable. Classifiers and databases used: 
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 Bracken/Kraken2: Kraken2 standard bacterial database 

 Centrifuge: ‘p_compressed_2018_4_15’ 

 CLARK: ‘bacteria’ 

 DIAMOND: “NCBI nr”   

 GOTTCHA: ‘GOTTCHA_BACTERIA_c4937_k24_u30_xHUMAN3x.species’ 

 Kaiju (local): ‘RefSeq’ 

 Kaiju-webserver: ‘NCBI nr’ 

 MetaPhlAn3: ‘mpa_v31_CHOCOPhlAn_201 901’ 

9. Selecting and setting up reference classifiers for NABAS+ 

benchmarking 

For the initial test on our in-house in silico dataset, we tested NABAS+ along the 8 

classifiers listed in the previous section. For further evaluation against the CAMI 2 and 

Zymo datasets, we benchmarked our tool along three reference classifiers, namely 

MetaPhlAn3, Kraken, and GOTTCHA. These tools showed the highest similarity to our 

own in the initial testing, applied diverse approaches in metagenomic classification, 

showed popularity of the metagenomic community, as well as good performance in other 

benchmarking studies. Additionally, by selecting GOTTCHA, we could compare our 

classifier to another BWA-based algorithm. 

10. Running the classifiers 

Classifiers were run with default commands when applicable. In the case of Kraken2, an 

additional threshold was set to provide a fair comparison (as unfiltered Kraken2 is known 

to produce a lot of false positives): we only accepted species supported by at least 100 

fragments. MetaPhlAn3 and GOTTCHA results were not filtered post-classification. 

In the GOTTCHA analysis, the ‘--minQ 0’ parameter was used for CAMI2 samples 4, 8, 

10, 13, and 15, to avoid the ‘0% of reads passing filters’ exception. Without this parameter, 

GOTTCHA was unable to identify any species from these samples. 
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Classifiers were run with default settings where applicable, on a desktop computer 

equipped with 64 GB RAM and 12 processor threads, on a Linux operating system. 

11. Statistical analysis 

To test the accuracy of our classifier, we utilized several commonly used statistical 

metrics. Classifier outputs were collected and compared to the reference datasets. 

Results were considered only at the species level; non-bacterial and non-archaeal hits 

were removed, and percentages were recalculated only for the remaining species. 

Precision or positive predicted value is used to calculate the ratio of true positives (in our 

case of species correctly classified) based on the following formula: 

𝑇𝑃

𝑇𝑃 + FP
 

Recall, also known as true positive rate (TPR) measures the percentage of actual positive 

samples that were correctly identified by the classifier, and it was calculated as follows: 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score(Chinchor, 1992): This score is the harmonic mean of Precision and Recall, 

calculated as: 

2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 +  𝐹𝑁
 

False Discovery Rate (Benjamini & Hochberg, 1995) was calculated as:  

𝐹𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑃 + 𝑇𝑁
 

Where TP is the number of true-positive species, FP is the number of false positives and 

FN is the number of false negatives. 

Additionally, the following diversity metrics were also calculated: 
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Jaccard-distance (Jaccard, 1912): 

1 −
𝑇𝑃

Number of species in either ground truth or classification result 
∗ 100 

Bray-Curtis distance (Bray & Curtis, 1957): 

1 −
The sum of the lesser abundance values for TP species

2 ∗ TP + FP + FN
∗ 100 

12. Software used and code availability 

Development, comparisons and calculations were performed in Java, graphs were 

generated with Python3.10 using the seaborn package and in R (Version 4.2.1.), using 

the ggplot2 (version 3.3.6.) and ggbreak (version 0.1.1.) packages. 

Figure 1-4 and 6 were generated with BioRender. 

All the generated code, including a stand-alone version of NABAS+ is available on GitHub 

at the following repository: https://github.com/TakacsBertalan/NABAS_paper_scripts 

https://github.com/TakacsBertalan/NABAS_paper_scripts
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VII. Results 

1. Comparing the performance of nine commonly used 

metagenomic classifiers 

There are several freely available metagenomic classifiers in the metagenomics 

community. Although there are less- and more popular ones, currently there is not a 

universally accepted best classifier in the community. To study the similarity metagenomic 

classifiers show in their results, we tested nine of such tools on five real-world shotgun 

sequenced stool samples. We found that these software showed highly discordant results 

testing on the same samples. There was a large disagreement in the number and identity 

of classified species (Figure 5). 

 

Figure 5: Number of found species and Jaccard-distance results of 9 metagenomic 

classifiers 

Kaiju-ws: Kaiju-webserver 

(Takács et al., 2025) 
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Based on the number of common species, we found the biggest agreement between Kaiju 

and Kaiju-webserver, which is not surprising as the latter is an implementation of the 

former. Both local and webserver versions of Kaiju also showed high concordance with 

the DIAMOND results. This is probably due to the same nucleotide-to-protein search 

strategy applied by both classifiers. We also found a large concordance between Kraken2 

and Bracken, which is again to be expected, as they are developed by the same research 

group and work on the same base principles.  

When calculating Jaccard-distance, which takes into account not only species identity but 

also the number of total species identified, we could observe the biggest similarity 

between DIAMOND and Kaiju-ws. Along with similar classification principles applied, this 

could be caused by the reference database used by both classifiers, ncbi-nr. We also 

observed a higher concordance between Kraken2-Bracken and Kaiju-Kaiju-ws. 

Interestingly, we also found larger similarities between Kraken2, GOTTCHA and 

MetaPhlAn3, the latter two classifiers identified the lowest number of total species. 

To demonstrate that these differences are not solely due to the varying analytical depth 

of the classifiers, we also calculated the number of species identified by all tools in 

common. On average, only five species per sample were shared across all classifiers, 

revealing a substantial discrepancy between the consensus set and the total number of 

species reported individually. 

It’s important to point out that this preliminary experiment was done using the default 

settings for all classifiers and fine-tuning the tools would bring these results closer to each 

other. At the same time, this fine-tuning needs to be experiment- and classifier-specific 

as there are no “gold standard” threshold values or “best settings” provided for each 

classifier. 

To address these challenges, we developed NABAS+, a metagenomic classifier designed 

to deliver consistent, high-confidence species identification by minimizing false positives 

and relying on high-quality reference genomes. The following section outlines the main 

design principles and workflow of NABAS+. 
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2. Introducing a novel metagenomic classifier, NABAS+ 

We aimed to create a reliable, accurate metagenomic classification algorithm. Figure 6 

shows a brief overview of the main steps of NABAS+. 

 

Figure 6: Simplified workflow of NABAS+ 

(Takács et al., 2025) 

The first part of the analysis is database creation. This needs to be done once initially and 

every time the reference sequences are updated (e.g. a new species is added). To get 

the most reliable classification results, we used genomes RefSeq database, selecting a 

representative genome for each bacterium. Genomes flagged as “representative” are 

generally considered the current highest quality representation of the genome in the given 
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species in RefSeq. By picking a representative for each species, we aimed to ensure 

high-quality, unambiguous classification results. Additionally, this reduced the size of the 

reference database considerably: RefSeq contains over 440000 genome assemblies and 

22,082 of them are flagged as “representative”, as of September 2025 (NCBI Insights, 

2025).  

To make the indexing and the alignment process more efficient, we processed the 

databases in chunks, each containing ~ 8*109 bases. This makes updating our database 

simpler as we don’t need to replace all genomes for an update: it’s enough to replace the 

respective chunk. Furthermore, this makes it easy to add any new genome by simply 

creating and indexing a new chunk. 

Chunking the database also reduces the RAM requirements of our tool considerably. We 

estimate that indexing of one such chunk requires approximately 16 GBs of RAM, while 

indexing the whole database at the same time would require 140+ GBs and that the RAM 

cost of the BWA-MEM alignment is reduced similarly. Estimations were based on the 

original BWA paper (Li & Durbin, 2009).  

The second stage is metagenomic classification: NABAS+ processes paired-end Illumina 

reads (2*151 bp). In the first step of the analysis, the reads are aligned against our 

reference database using BWA-MEM. BWA-MEM works by scanning the reference for 

maximum exact matches, creating ‘seeds’, from which alignment can be extended. 

Alignments are then scored with the Smith-Waterman algorithm. This, however, makes 

the mapping more extensive compared to other popular metagenomic classifiers. By 

contrast, MetaPhlAn aligns the query sequences against a database of clade-specific 

sequences using Bowtie2, which utilizes the Burrows-Wheeler transformation, similarly 

to BWA. While Kraken2 processes reference sequences as k-mers (usually with a length 

of 31 bases), builds a taxonomic tree of the latest common ancestor (LCA), and maps 

these query sequences to this tree. 

This extensive alignment is the most time-consuming step of running NABAS+ and takes 

advantage of the multi-threading capability of BWA-MEM and the split database. 

According to our estimates, based on the work of Hanussek et al. (2021), using 12 CPU 

threads accelerates alignment five- to eightfold, with further improvements possible 
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through additional parallelization. Samples are aligned to each database chunk 

individually, and the SAM outputs are converted into BAM format using samtools. The 

BAM files are then merged, and low-quality alignments are filtered out, based on the 

CIGAR string of each aligned read, which is a string representation of the alignment. By 

default, we allow a maximum of 10 edit distances (including mismatches, indels, and 

softclips) between the read and the reference; above that the alignment gets rejected. 

From the header of the BAM files, we collect the covered genomes and reject those that 

do not have a minimum of 10 aligned reads. The set cut-off values for edit distances and 

the minimum number of aligned reads were determined through extensive empirical 

testing and can be modified by the user. 

To assign taxonomy to the species corresponding to the genome, we build a hash map 

containing the names and corresponding taxonomic node, using the nodes.dmp and 

names.dmp of the NCBI Taxonomy dump package. This is done only once per run, after 

the alignment step. 

For each remaining genome, we calculate an actual genome coverage (% of the genome 

covered by the reads) and a hypothetical genome coverage (total read length of 

sequences aligning to the genome/length of the genome) value. If hypothetical 

coverage/actual genome coverage is larger than 3.5, we reject the genome. This filters 

out genomes with disproportionate coverage as well as strongly over-represented regions. 

Through empirical testing, 3.5 has been found to be the optimal threshold value, lowering 

it decreased specificity in general. 

Subsequently, we divide each genome into 100 equal-sized bins. To access genome 

length information fast, we read the .ann file of each database chunk and store it in a 

hash map. For each genome, we count the bins that have at least one read. The species 

corresponding to the genome is considered present if 95 of the 100 bins have at least 

one read. For these genomes, we order the bins in an ascending order and count the 

number of reads in the 75th bin so that over-represented, possibly non-species-specific 

regions are avoided. During the filtering steps, the results are collected in an Excel file 
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showing the taxonomy of the identified species per bin, average coverage values, and 

relative abundances. This Excel file is the final report of the analysis. 

Because the previously mentioned microbial samples were taken from real-world gut 

microbial communities, we can’t be exactly sure about their exact microbial composition 

without further laboratory tests. To properly test our novel algorithm and to compare its 

performance to other classifiers, we needed datasets with exact known compositions. 

3. Testing NABAS+ on in-house generated datasets 

To evaluate the accuracy and robustness of NABAS+, we first tested its performance on 

six in silico mock metagenomic communities generated using our in-house read 

simulation pipeline.  

We created 6 such communities, comprising 212 bacterial species in total, modeling both 

environmental and human-associated microbiomes. The experiment was intended to 

evaluate the performance and robustness of NABAS+ under idealized conditions in which 

the exact community composition was known, providing a controlled baseline for later 

comparisons with more complex datasets. 

The following figure (Figure 7) shows the number of species identified by each classifier 

for each sample. Samples from the same community with different read numbers were 

averaged. 



   

 

 42  

 

 

Figure 7:  Number of species identified by each classifier across the in-house datasets 

Dotted red line: actual number of species present in each community 

 (Takács et al., unpublished) 

On this dataset we could show that NABAS+ accurately classified the right number of 

species in each sample. The composition and “origin” of the dataset did not seem to 

influence the classification accuracy of our tool: it produced correct results on 

communities modelling urban environments (CParMed48) as well as ones modelling the 

human oral and gastrointestinal microbiome (Buc12, Gut20 and Custom100). 

Similar to the results shown in Section 1, there was a considerable variation in the number 

of species detected by the different classifiers. Classifiers based on similar algorithmic 

principles, such as DIAMOND and Kaiju, produced correspondingly similar outputs. In 

contrast, the tools whose results most closely matched those of NABAS+—Kraken2, 

MetaPhlAn3, and GOTTCHA—are built on distinct underlying methodologies. 
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Finding the optimal read number for a sample is an important question of metagenomics. 

A “too shallow” sequencing can lead to losing low-abundance species (Pereira-Marques 

et al., 2019) and sequencing “too deeply” could lead to the multiplication of classification 

errors and an increase in false positives. 

By creating a different visualization for the same experiment, we can get a better picture 

on how differing read numbers (ranging from 5*105 to 1*107) affect the classification 

accuracy of the classifiers and NABAS+. Figure 8 shows the number of species found in 

the samples in the 6 mock communities. As earlier, the red dotted line indicates the actual 

number of species in the samples.  

 

Figure 8: Number of identified species in the samples per read number 

(Takács et al., unpublished) 

NABAS+ maintained stable accuracy across all sequencing depths tested. The number 

of detected species remained close to the true value even at the highest coverage levels, 

indicating that our tool is largely insensitive to changes in sequencing depth. This 
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contrasts with several classifiers that exhibited inflated species counts as coverage 

increased. 

The classifiers whose results most closely resembled those of NABAS+ again exhibited 

similar behavior. Their detected species counts were largely unaffected by changes in 

sequencing depth. A consistent pattern was observed: MetaPhlAn3 tended to slightly 

underestimate the number of species, whereas Kraken2 tended to overestimate it. 

To provide an integrated performance measure, we next evaluated the F1 score for each 

classifier, combining precision and recall to capture both sensitivity and specificity. 

 

Figure 9: F1 scores of tested classifiers on the in-house dataset 

(Takács et al., unpublished) 

NABAS+ achieved uniformly high F1 scores across all six mock communities, confirming 

its balanced precision and recall. Its performance remained stable on all datasets, 

including those modeling human and environmental microbiomes. While some classifiers 
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(e.g., Kraken2) showed reduced precision on specific datasets such as Custom100 and 

Gut20, NABAS+ maintained consistent accuracy and specificity throughout. 

These results confirm that NABAS+ can accurately identify bacterial species in controlled 

in silico samples and that sequencing depth has little effect on its classification 

performance. Its reliability across communities of different origin indicates that the tool 

generalizes well beyond the human gut microbiome. 

Even though these results are promising for our classifier, there are important caveats we 

must point out: since our samples were created from RefSeq reference genomes, with 

uniform distribution, they resembled an ideal metagenomic sample, rather than a realistic 

one. In the real world, metagenomic datasets tend to be “noisier” often containing 

sequences of low-abundant or lesser-known species. Additionally, since the NABAS+ 

reference database was also created based on RefSeq, simply relying on this dataset to 

verify our classifier would carry the danger of overestimating the accuracy of our software. 

Moreover, we benchmarked NABAS+ against classifiers run with default settings: the 

caveats detailed in the previous section apply here as well. 

To further assess the robustness of NABAS+ under more realistic yet controlled 

conditions, we next benchmarked it using the CAMI II gastrooral dataset, a set of in silico 

samples designed to emulate human microbiome composition. 
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4. Benchmarking NABAS+ and 3 other classifiers on the CAMI II 

gastrooral in silico data 

Building on the findings from our in-house datasets, we extended our analysis to the CAMI 

II gastrooral dataset to test NABAS+ under more realistic, yet still well-defined conditions. 

Based on the results of the previous section, we decided to continue the benchmark 

against the 3 classifiers that showed the most similar performance to NABAS+ in the 

previous experiments: Kraken2, Metaphlan3 and GOTTCHA. All 3 (and especially 

Kraken2 and Metaphlan3) have a high number of citations and are broadly used by the 

scientific community. 

After running the classifiers as described in the ‘Materials and methods’ section, we 

utilized the following metrics to evaluate their performance: F1 Score, Precision, and 

Recall. 

We found that MetaPhlAn3, GOTTCHA, and NABAS+ produced the highest F1 scores 

(Fig. 10A). As it was previously observed by other studies, Kraken2 tended to produce a 

high number of false positives, leading to a lower precision score (Fig. 10B), despite the 

applied threshold mentioned in the ‘Materials and methods’ section. It is also important to 

point out that Kraken2 often outperformed the other tools in Recall (Fig. 10C), indicating 

that it was able to identify more positive true species in the samples. 
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Figure 10:  Performance comparison on the CAMI II dataset 

The outlying sample19 is marked with red 

(Takács et al., 2025) 
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5. Examining and re-creating an outlier CAMI II sample 

In the case of one sample of the CAMI II “human gastrooral” dataset (sample19), we 

observed that all our tested classifiers produced low classification accuracy (Figure 10). 

The examination of this sample showed that the reference genomes it was created from 

were often from the first half of the 2010s, or were of low confidence, while the reference 

database of the classifiers likely had more recent, higher quality references for the same 

species. We re-created this sample with CAMISIM to see if the low classification accuracy 

was due to this discrepancy between genome versions. We theorized that re-creating this 

sample with current genomes will improve classification accuracy. For this, we utilized the 

same CAMISIM settings as the authors of the original CAMI II dataset but replaced the 

reference genomes with the latest RefSeq reference version. 

6. Testing classifiers on the regenerated CAMI II sample19  

  

Sample name Classifier Precision Recall F1 Score 

sample19-new GOTTCHA 0.912 0.646 0.756 

sample19-old GOTTCHA 0.688 0.344 0.458 

sample19-new Kraken2 0.431 0.969 0.596 

sample19-old Kraken2 0.386 0.458 0.419 

sample19-new MetaPhlAn3 0.778 0.729 0.753 

sample19-old MetaPhlAn3 0.509 0.292 0.371 

sample19-new NABAS+ 0.719 0.719 0.719 

sample19-old NABAS+ 0.484 0.313 0.380 

 

Table 3 Performance of the classifier on the original and newly generated CAMI II 

sample19 

(Takács et al., 2025) 

After running classification on this sample, we observed an increase across all the 

classification metrics for all the examined classifiers. This indicates that classification 

performance depends not only on algorithmic design but also on the quality and currency 

of the reference database. 
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7. Testing classifier performance on Zymo standards 

So far, we have presented NABAS+’s accuracy on in silico generated datasets. To take 

testing a step further, we wanted to measure its accuracy in real-world NGS samples as 

well. We used two Illumina sequencing runs of this community, both encompassing the 

same eight bacterial species and two fungal species. One sample (Zymo CSI) contained 

the bacterial species in equal abundance and the fungal ones in small percentage and 

was sequenced for 8.8 million reads, whereas the other had the species with 

logarithmically distributed abundances and contained 47.8 million reads (Zymo CSII).On 

the Zymo CSI dataset, all classifiers performed well (Figure 11A), with all species 

accurately identified and relative abundances close to ground truth; GOTTCHA, Kraken2, 

and MetaPhIAn3 found a significant percentage of false-positive species, compared to 

NABAS+ that found none. Comparing Bray-Curtis distances showed the same (Table 4): 

NABAS+ produced the lowest distance from the original composition of both Zymo sets, 

suggesting that it was able to give the most accurate classification out of the classifiers 

studied.  

 

(Takács et al., 2025) 

Figure 11.: Classification performance on the (A) Zymo CSI and (B) Zymo CSII datasets 

javascript:;
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Classifier Zymo CSI Zymo CSII 

GOTTCHA 0.622 0.515 

MetaPhlAn3 0.604 0.526 

Kraken2 0.73 0.534 

NABAS+ 0.594 0.515 

Table 4. Bray-Curtis distances between the classifier results and the original 

compositions of the Zymo datasets 

(Takács et al., 2025) 

Zymo CSII data showed similar results across all four classifiers (Figure 11B). The 

logarithmic nature of species abundances may explain why there was little variance in the 

Bray-Curtis distances between the classifiers. Kraken2 and MetaPhIAn3 both identified 

some species falsely, and though GOTTCHA showed high sensitivity, NABAS+ was still 

the classifier that produced the closest value to the ground truth. 

The analysis of the Zymo standards served as a crucial link between controlled in silico 

experiments and real-world sequencing data. Across both Zymo datasets, NABAS+ 

consistently achieved the most accurate reconstruction of microbial community 

composition, yielding the lowest Bray–Curtis distance to the known ground truth and 

producing no false positives. Notably, it successfully detected Enterococcus faecalis at a 

relative abundance of only 0.00089%, demonstrating its good sensitivity. These results, 

obtained from genuine Illumina sequencing runs rather than simulated reads, confirm that 

NABAS+ performs reliably under experimental conditions and is well suited for 

subsequent application to clinical stool samples. 

8. Demonstrating NABAS+’s utility on a real-world clinical dataset 

As mentioned in the Introduction, the use of metagenomics in a clinical setting is not 

considered standard practice currently. Because we developed NABAS+ mainly for the 

analysis of the human gut microbiome, it is crucial that if we identify pathogens in the 

sample, we can be sure about their identity. To demonstrate if NABAS+ was fit for this 

purpose, we obtained a dataset from Angel et al., 2025 and analyzed a random subset of 

the samples using our own method. 
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Eleven of these samples were confirmed as positive for either Salmonella enterica, 

Aeromonas veroni, or Campylobacter jejuni, while the other nine tested negative for the 

same species (Table 5). 

Number of samples = 20 Positive NABAS+ result Negative NABAS+ result 

Positive laboratory test 

result 

11 0 

Negative laboratory test 

result 

0 9 

Table 5. Confusion matrix of the pathogen identification using NABAS+ 

Laboratory testing was either culturing or PCR-based, as described by Angel et al. 

(Takács et al., 2025) 

Our results show that NABAS+ was able to accurately identify the correct pathogen in the 

infected samples and did not report any pathogenic species in the negative samples. This 

illustrates the potential applicability of NABAS+ in a clinical setting. Taken together, our 

findings highlight NABAS+ as a robust and reliable metagenomic classifier that performs 

on par with, and in several cases surpasses, currently available tools. Its ability to 

combine precision and robustness underscores its potential for integration into clinical 

microbiome diagnostics and broader microbiological research. 
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VIII. Discussion 

This dissertation highlights the importance of the human microbiome and demonstrates 

that the challenges of metagenomic classification remain far from solved. Although 

multiple classifiers are available, they often produce highly discordant results when tested 

on real metagenomic samples. These discrepancies concern both the number and the 

identity of the species classified. As metagenomics is increasingly introduced into clinical 

diagnostics, reliable and accurate classification methods are urgently needed. 

In our work, we showed that nine of the most commonly used classifiers display 

considerable disagreement on real-world stool metagenomic samples. This means that 

analysing a sample with multiple tools does not necessarily increase accuracy; rather, it 

may introduce additional uncertainty. In research use, post-classification filtering is often 

applied to classification results, to filter out false positive hits, but the thresholds of this 

are often decided on a case-by-case basis. 

These challenges motivated us to develop our own classifier, NABAS+, designed to 

minimize false positives by relying on reliable genome assemblies. Unlike most tools, 

NABAS+ was developed with the aim of avoiding the need for post-classification filtering, 

thereby displaying a robust performance across different sample origins. 

Our results demonstrate that NABAS+ performs well both on in silico datasets and real-

world metagenomic standards, and that it can also be successfully applied to clinical 

patient data. On our in-house in silico dataset, we observed that NABAS+ consistently 

performed well in detecting the correct number of species and showing a high F1 score. 

Changing the read numbers did not seem to affect NABAS+, it showed robust 

performance on samples ranging from 5*105 to 1*107. 

We further benchmarked NABAS+ against the other three classifiers of similar 

performance—Kraken2, MetaPhlAn3, and GOTTCHA—using standardized microbial 

community datasets. On CAMI II data, MetaPhlAn3 performed best, while NABAS+ and 

GOTTCHA followed closely. Kraken2 showed weaker performance, largely due to high 

false positive rates. This illustrates the good performance of our tool on in silico datasets 
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not generated from RefSeq reference genomes, with more complex species distribution 

and sequencing error profile than our own. 

On Zymo standards, NABAS+ showed good performance, producing no false positives 

and yielding the lowest Bray-Curtis distance from the ground truth. Importantly, NABAS+ 

was also able to correctly identify pathogens in clinical stool samples, underscoring its 

utility in real-world diagnostic applications. Beyond the scope of this dissertation, 

NABAS+ has already been applied successfully in a clinical study of Crohn’s disease 

(Bacsur et al., 2024), further demonstrating its real-world applicability. 

Overall, our findings show that NABAS+, a BWA MEM-based alignment classifier, can 

produce comparable results, and in some cases performs better than the most popular 

metagenomic tools. Our results indicate alignment-based classification methods are 

capable of showing good performance when paired with curated databases, despite their 

underutilization in recent years. Although alignment-based approaches are dismissed by 

some because of their high computational demands, NABAS+ mitigates this limitation 

through a carefully filtered reference database. By including only reliable reference or 

representative assemblies—one genome per species—the total number of reference 

genomes is reduced approximately twentyfold. In addition, dividing the database into 

smaller segments further decreases computational requirements, lowering the memory 

needed for indexing and alignment by roughly a factor of eight, according to our estimates. 

Moreover, unlike other classifiers that depend on clade-specific or marker-based 

databases (where creating a new reference database can be computationally intensive 

and thus not happen regularly), this split means NABAS+ databases can be easily rebuilt 

and updated with new genome versions using simple BWA indexing. We observed that 

in the case of GOTTCHA, where some samples had to be ran with lowered thresholds to 

produce any results. We believe that this is partly due to the outdatedness of GOTTCHA's 

reference database. 

Nevertheless, we identified limitations in all classifiers when analysing CAMI II sample 19, 

which was generated from older, less reliable genome assemblies. Recreating the sample 

with modern assemblies markedly improved performance, suggesting that certain CAMI 

II datasets may no longer be suitable benchmarks without modernization. This issue is 
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likely not unique to CAMI II and may extend to other in silico benchmarking resources, 

reflecting the rapid evolution of metagenomics. We also identified discrepancies between 

classifier performance and the quality of widely used benchmarking datasets. Given the 

rapid pace of developments in bacterial taxonomy and genome sequencing, our results 

suggest that in silico benchmarking datasets should be updated regularly to remain 

relevant for classifier evaluation. 

Despite its strengths, NABAS+ has certain limitations. Because it relies on a curated 

database, it is not suitable for analysing samples dominated by unknown species or for 

the discovery of novel taxa. NABAS+ was designed for species-level metagenomic 

classification, primarily in the context of the human gut microbiome, and has not been 

optimized for non-human or highly diverse environments (e.g., soil, wastewater). Even 

though NABAS+ performed well on the in-house generated samples that model such 

environments (e.g. CParMed48, Hous31), we suggest the fine-tuning of parameters and 

database composition before applying it to environmental samples. 

Even though NABAS+ showed robust performance across a broad range of read 

numbers, it is important to point out that these findings were limited to controlled 

datasets with uniform read quality and distribution. To establish broader conclusions 

about minimum read requirements of in real-world applications, further studies are 

needed. 

Strain level classification is an important task in metagenomics, especially if we intend to 

use these methods in clinical practice, as different strains of the same bacterium can have 

vastly different effects on human health. Testing our software’s capabilities to distinguish 

between different strains or subtypes was beyond the scope of this dissertation. However, 

we think that proper database customization could enable this in future. 

While this dissertation focused on bacterial communities, NABAS+ also showed promise 

for virome analysis, and a eukaryotic reference database is under development. 

Additionally, long-read metagenomics has been gaining traction in the recent years, and 

we think that, with parameter optimization, NABAS+ could likely be adapted for long-read 

sequencing data. Similar alignment-based strategies are already employed in that field 

(Li et al., 2021) and there are already classifiers utilizing BWA-MEM (Curry et al., 2022), 
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suggesting that NABAS+ could be fine-tuned or extended work in a similar manner. 

Collectively, these directions highlight the versatility of NABAS+ and its potential to evolve 

into a comprehensive framework for metagenomic classification across diverse 

sequencing platforms and organism groups. 
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IX. Conclusions 

In the described work, I demonstrated the discordance between different, commonly used 

metagenomic classifiers and introduced a novel classification tool, NABAS+. NABAS+ is 

based on the alignment algorithm BWA-MEM and has a reference database containing 

reliable bacterial genomes from the RefSeq database. NABAS+ was written in Java and 

is freely available as a stand-alone software. 

I created custom in silico datasets to test this software and collected other benchmarking 

datasets, including data from the CAMI II challenge, deeply sequenced microbial mock 

communities from Zymo and real-life stool samples containing pathogens, collected in a 

hospital environment.  

Benchmarking NABAS+ against the mentioned metagenomic classifiers on both in silico 

and real-world samples showed comparable performance to the most commonly used 

and most accurate classifiers (GOTTCHA, Kraken2, MetaPhlAn3). NABAS+ was 

particularly suitable for minimizing the number of false positives and produced the highest 

similarity to the deeply sequenced Zymo standards. 

We were also able to demonstrate the clinical applicability of NABAS+ on a real-world 

dataset, where it was able to find the correct pathogens in the infected samples, while it 

did not classify false positives in the non-infected samples. 

Overall, we could demonstrate that NABAS+ is a reliable tool not only for research but 

also for clinical settings, contributing to improved accuracy and reproducibility in 

metagenomic studies and its ability may benefit the broader metagenomic community. 
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XIII. Magyar nyelvű összefoglaló 

Az emberi mikrobiom az emberi szervezettel együtt élő mikroorganizmusok összességét 

jelenti. Ezen organizmusok száma magasabb, mint a testet felépítő sejtek teljes száma 

és jelentős hatást gyakorolnak a szervezetre: pozitív és negatív módon is képesek 

befolyásolni annak egészségét. A bél, szájüreg, hüvely és a bőr mind saját mikrobiális 

közösséggel rendelkeznek, amelynek összetétele, diverzitása szoros összefüggésben áll 

különféle élettani és kóros folyamatokkal. A mikrobiom vizsgálata ezért az elmúlt két 

évtizedben az orvosbiológiai kutatások központi területévé vált. E fejlődést elősegítette a 

nagy áteresztőképességű molekuláris biológiai módszerek megjelenése és elterjedése is. 

Ilyen módszerek az ezen munkában tárgyalt újgenerációs szekvenálási módszerek is, 

mint a 16S- és “shotgun”-szekvenálás, amelyek lehetővé teszik egy mintában jelen levő 

teljes mikrobiális közösség egyidejű meghatározását. A nagy mennyiségű adat 

ugyanakkor az elemzésére alkalmas bioinformatikai technológiák fejlődését is 

szükségessé tette. Az elmúlt években számos olyan szoftver született, amelyeket a 

mikrobiom összetételének azonosítására fejlesztettek. Ezek pontossága, referencia-

adatbázisa, számítási igénye jelentős eltérést mutat egymástól. Az azonosítás 

pontossága különösen fontos akkor, ha a metagenomikai módszereket klinikai 

környezetben, például patogén fajok azonosítására kívánjuk alkalmazni. Ehhez olyan 

algoritmusokra van szükség, amelyek a lehető legnagyobb pontossággal képesek 

meghatározni a minták összetételét, minimalizálják a hamis pozitív találatok számát, 

emellett gyorsak és skálázhatóak is. 

Doktori munkám során az alábbi célokat tűztem ki: 

 Egy új metagenomikai azonosító algoritmus fejlesztése 

 Az algoritmus teljesítményének teszteléséhez szükséges adatsorok előállítása és 

összegyűjtése 

 Összehasonlító tesztelés 

 Az algoritmus hatékonyságának bemutatása valós klinikai adatokon 
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Kilenc mikrobiális azonosításra alkalmas szoftvert választottunk ki az összehasonlításhoz, 

ezek a következők voltak: Bracken, Centrifuge, CLARK, DIAMOND, GOTTCHA, Kaiju, 

Kaiju-ws, Kraken2, MetaPhlAn3. A válogatás során célunk az volt, hogy olyan 

szoftvereket válasszunk, amelyek népszerűek a tudományos közösségben és 

működésük egymástól jelentősen eltérő algoritmikus megoldásokat implementál. A kilenc 

szoftvert “shotgun” módszerrel szekvenált emberi széklet mikrobiom mintán teszteltük. 

Összehasonlítottuk a szoftverek által azonosított baktériumok számát és identitását, 

illetve azt, hogy egymáshoz mennyire hasonlító eredményt hoztak. 

Saját azonosító algoritmusunk, a Novel Alignment-based Biome Analysis Software + 

fejlesztése során a fő szempontok a pontosság és a hamis pozitívok kiküszöbölése volt. 

Az algoritmust Java nyelven implementáltuk, kihasználva annak skálázhatóságát és 

gyorsaságát, programunk így integrálható egy nagyobb szoftverbe. Emellett elkészítettük 

a szoftver egy önállóan futtatható “stand-alone” verzióját is. 

Az tesztelést a következő adatsorokon végeztük: 

 Saját fejlesztésű in silico adatsorok, összesen 30 minta. A minták különböző 

emberi szervezetből (pl. bél, szájüreg) és a környezetből (pl. városi park, aszfalt) 

gyűjtött mikrobiális közösségek összetételét modellezi, összesen 212 

baktériumfajból, 5*105-től 1*107 terjedő leolvasási mélységekben. 

 Critical Assessment of Metagenome Interpretation II (CAMI) “toy human gastrooral” 

adatsor, 20 minta. Szabadon hozzáférhető in silico minták. Az emberi gasztroorális 

traktus mikrobiális összetételét modellező, metagenomikai kutatásokban 

rendszeresen használt adatsor 

 Zymo Community Standard I és II (CSI és CSII) Illumina szekvenált adatai, 2 minta. 

Kereskedelmi forgalomban elérhető standardok, 10, humán mikrobiomban is 

gyakran előforduló baktérium DNS-ének keverékét tartalmazzák, pontosan ismert 

arányban. 

 Klinikai minták, 20 minta. Shotgun-szekvenált emberi bél-mikrobiom minták, 

melyek valós kórházi körülmények között voltak gyűjtve és patogén-tartalmukat 
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laboratóriumi módszerek segítségével is vizsgálták. Tizenegy minta hordozott 

valamilyen patogént (Aeromonas, Campylobacter vagy Salmonella fajokat), 

A kilenc vizsgált program összehasonlítása kimutatta, hogy ugyanazon mikrobiom minták 

elemzése jelentősen eltérő eredményeket ad, mind a fajok száma, mind azok egyezése 

tekintetében, szoftvertől függően. Az azonosított fajok identitásában alacsony volt az 

átfedés.  

A NABAS+ teljesítményét több szempontból vizsgáltuk: 

 In silico adatokon a NABAS+ magas pontossággal határozta meg a fajok számát 

és identitását. Teljesítménye összemérhető volt tudományos közösségben 

leggyakrabban használt és tesztünk által is legpontosabbnak ítélt algoritmusokhoz 

(Kraken2, MetaPhlAn3, GOTTCHA). Az összehasonlítás további részét a 

NABAS+ mellett ezzel a három szoftverrel végezük. 

 A CAMI II adatsorokon a NABAS+ következetesen jó teljesítményt nyújtott, a 

vezető módszerekkel összehasonlítható eredményekkel. Egy minta (sample19) 

újragenerálása tovább javította az azonosítás pontosságát. 

 A Zymo standardokon a NABAS+ kiemelkedően szerepelt: pontosan detektálta az 

alacsony abundanciájú fajokat is, és ez volt az egyetlen szoftver, amely nem 

azonosított hamis pozitívokat. A Bray-Curtis távolság alapján a NABAS+ 

eredményei álltak legközelebb a valós összetételhez. 

Klinikai mintákon a NABAS+ pontosan azonosította a fertőzött mintákban jelen levő 

patogéneket, és nem jelzett hamis pozitív találatot egészséges mintákban. 

Összefoglalva: kutatásom során egy új metagenomikai azonosító szoftvert, a NABAS+-t 

fejlesztettem ki és validáltam. A NABAS+ teljesítménye a legjobb jelenlegi 

algoritmusokkal összemérhető, az azonosítás során minimalizálja a hamis pozitívok 

számát. Ez különösen nagy jelentőséggel bír a klinikai alkalmazásokban, ahol a téves 

azonosítás súlyos következményekkel járhat. 

Eredményeim alapján a NABAS+ nemcsak kutatási, hanem klinikai környezetben is 

megbízható eszközként alkalmazható, hozzájárulva a metagenomikai vizsgálatok 
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pontosságához és reprodukálhatóságához. A szoftver fejlesztése és publikusan 

elérhetővé tétele elősegítheti a tudományos közösség szélesebb körű felhasználását is. 



   

 

 77  

 

XIV. Summary in English 

The human microbiome refers to the community of microorganisms living in association 

with the human body. Their number exceeds that of human cells, and they exert 

significant influence on the host, they are able to affect health positively and negatively. 

Distinct microbial communities inhabit the gut, oral cavity, skin, and vagina, whose 

composition and diversity are closely associated with a wide range of physiological and 

pathological processes. Consequently, the study of the microbiome has become a focus 

of biomedical research over the past two decades. This development has been greatly 

facilitated by the emergence and widespread use of high-throughput molecular biology 

techniques. Among these, next-generation sequencing methods such as 16S rRNA and 

shotgun metagenomics have enabled the simultaneous characterization of entire 

microbial communities within a sample. The large volume of data generated by these 

techniques, however, has also raised the need for the advancement of bioinformatic 

approaches. In recent years, numerous software have been developed for the 

classification of metagenomic data, but their accuracy, reference databases, and 

computational requirements vary considerably. 

Accuracy is particularly critical when metagenomic methods are applied in clinical 

contexts, for instance in the identification of pathogenic species. For such applications, 

algorithms must provide highly accurate results, minimize false positives, and at the same 

time be fast and scalable. 

During my doctoral work, the objectives were the following: 

 To develop a novel metagenomic classification algorithm 

 To generate and collect datasets required for algorithm validation 

 To conduct comparative benchmarking against existing methods 

 To demonstrate the algorithm’s performance on real clinical data 

We selected nine metagenomic classifiers to include in our comparative analysis: 

Bracken, Centrifuge, CLARK, DIAMOND, GOTTCHA, Kaiju, Kaiju-ws, Kraken2, and 
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MetaPhlAn3. The selection criteria for these software were their popularity in the scientific 

community and the diversity of algorithmic approaches they implement. The nine tools 

were tested on shotgun-sequenced human stool microbiome samples, and their outputs 

were compared in terms of the number and identity of detected bacterial species, as well 

as the degree of similarity among results. 

Our own classification algorithm, Novel Alignment-based Biome Analysis Software+ 

(NABAS+), was developed with an emphasis on accuracy and the elimination of false 

positives. The software was implemented in Java, exploiting its speed and scalability, 

which also ensures integration with other bioinformatic pipelines. In addition, we created 

a stand-alone command-line version to facilitate its independent use. 

The performance of NABAS+ was evaluated using the following datasets: 

 “In-house” in silico datasets (30 samples): These simulated microbial communities 

modeled samples from various human body sites (e.g., gut, oral cavity) and 

environmental sources (e.g., urban park, asphalt). In total, 212 bacterial species 

were included, with sequencing depths ranging from 5×10⁵ to 1×10⁷ reads. 

 Critical Assessment of Metagenome Interpretation II (CAMI II) “toy human 

gastrooral” dataset (20 samples): A freely available in silico dataset that models 

the microbial composition of the human gastrooral tract and is widely used in 

metagenomic research. 

 Zymo Community Standards I and II (CSI and CSII, 2 samples): Commercially 

available reference standards consisting of DNA from 10 bacterial species 

commonly found in the human microbiome, in precisely defined ratios. 

 Clinical samples (20 samples): Shotgun-sequenced human gut microbiome 

samples collected under real hospital conditions, in which pathogen content had 

also been confirmed using laboratory diagnostic methods. Eleven samples 
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contained pathogenic species (Aeromonas, Campylobacter or Salmonella), while 

nine were pathogen-free. 

The nine classifiers produced strongly discordant results on the real-world metagenomic 

samples. The number and identity of detected taxa differed widely between classifiers, 

with only limited overlap in species identification. 

The performance of NABAS+ was evaluated as follows: 

 In silico datasets: NABAS+ accurately determined both the number and identity of 

species, achieving performance comparable to the reliable classifiers identified in 

our study (Kraken2, MetaPhlAn3, and GOTTCHA). Subsequent comparisons were 

therefore restricted to these three leading tools. 

 CAMI II dataset: NABAS+ consistently produced results comparable to those of 

the best-performing methods. Re-generation and -analysis of one outlier sample 

(sample19) further improved classification accuracy. 

 Zymo standards: NABAS+ performed exceptionally well, accurately detecting low-

abundance species and uniquely avoiding false positive identifications. Based on 

Bray-Curtis dissimilarity, NABAS+ produced results closest to the known reference 

composition. 

 Clinical samples: NABAS+ successfully identified pathogens present in infected 

samples and did not report any false positives in healthy samples. 

In conclusion, in this study, I developed and validated a novel metagenomic classification 

tool, NABAS+. Its performance is comparable to that of the most widely used state-of-

the-art algorithms, while uniquely minimizing false positives during classification. This 

property is of particular importance in clinical applications, where misidentification of 

pathogens can have serious consequences. 

Our results demonstrate that NABAS+ is a reliable tool not only for research but also for 

clinical settings, contributing to improved accuracy and reproducibility in metagenomic 

studies. The development and public availability of this software may further support its 

widespread adoption within the scientific community. 


