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V. Introduction

1. An overview of the microbiome: ecology, diversity and host
interactions

We live in a world of microorganisms. There are very few truly sterile, habitable
environments in nature (Cockell, 2021, Michan-Dofa et al., 2024). Aside from a few
extreme inhospitable environments (Dragone et al., 2021, Payler et al., 2019), every
corner of our surroundings is inhabited by microorganisms: bacteria, archaea, viruses,
fungi and other eukaryotes. These organisms are so ubiquitous that humans carry them
even to previously uninhabitable spaces (Salido et al., 2025). The community of
microscopic organisms living in a specific environment is referred to as microbiome (Berg
et al., 2020). Each microbiome is shaped by their environment, and in turn shapes that
environment. This is true not only in abiotic environmental settings, but also within and on
the surfaces of multicellular organisms, all of which host diverse microbial communities
(Bordenstein & Theis, 2015). These microorganisms influence the health and
development of the host, on an individual but also on an evolutionary scale (Zilber-
Rosenberg & Rosenberg, 2008).

Beyond host interactions, microbes also engage with one another through numerous
direct and indirect interactions, such as competing for the same resources, developing
biofilm, anti-microbial peptides, and quorum sensing (Coyte et al., 2015). Consequently,
a microbiome can be viewed as an ecological community rather than a collection of
independent species. As such, diversity metrics like alpha-diversity (measuring the
number and distribution of species in a sample), beta-diversity (measuring the different
abundance of species between communities), species richness (measuring the number
of species present in a community), and evenness (measuring how equally the different

species are distributed) are commonly applied (Galloway-Pefia & Hanson, 2020).

In this dissertation, the term microbiome refers specifically to the human microbiome—
the community of microorganisms residing within and on the surface of the human body.
Although the human body also serves as host for numerous viruses, fungi, and other

eukaryotic microorganisms, the focus here is limited to the bacterial component of these
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communities. These bacteria are high in number and rich in diversity (Huttenhower et al.,
2012a) and influence the host body in several ways, both beneficial and detrimental
(Clemente et al., 2012). The most extensively studied human microbiome is that of the
gut, but other important bacterial communities also inhabit the vagina, the oral cavity, and
the skin (Figure 1).

A]  Oral cavity Gut [B |

» Actinobacteria « Actinobacteria
« Bacillota « Bacillota )
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» Bacteroidota » Bacteroidota o .
R R + Vitamin production
+ Fusobacteria « Fusobacteria )
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« Corynebacterium spp. + Lactobacilli
« Cutibacterium spp.
+ Staphylococcus spp.

Figure 1: Most notable taxa of four microbial communities of the human body. (A) and

(B) important functions of the gut microbiome. Adapted from Hou et al., 2022

1.1.Composition and functions of the gut microbiome

The most bacteria-rich environment inside the human body is the gut, particularly the
large intestine. In this region, the number of bacterial cells is estimated to be roughly
comparable to, or slightly greater than, the number of human cells of the organ (Sender
et al., 2016). This richness is combined with a high diversity; there are on average 200-
1000 species in the healthy gut (Turnbaugh et al., 2007). The gut microbiome also shows
high levels of specificity to the host: microbial “fingerprints” have been shown to work as
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an accurate means of identifying individuals (Franzosa et al., 2015). Bacteria in the gut
mainly belong to 5 phyla: Bacillota (formerly Firmicutes), Bacteroidota (formerly
Bacteroidetes), Proteobacteria, Actinobacteria and Verrucomicrobia (Hou et al., 2022).
Additionally, the gut is populated by archaea, most notably the methanogens

Methanobrevibacter smithii and Methanosphaera stadtmanae (Gaci et al., 2014).

In the following section | give a brief introduction of 3 important properties of the gut
microbiota, nonetheless this list is not exhaustive, and the listed functions are not mutually

exclusive.

1.1.1. Metabolic role of the gut microbiota
Gut bacteria produce enzymes for the digestion of proteins, carbohydrates and fatty acids

and are able to digest complex carbohydrates that would otherwise be hard to digest or
indigestible for the host (Flint et al., 2012). Through the digestion of these carbohydrates,
microbial members can produce short-chain fatty acids (SCFA), such as acetate and
butyrate, which play important roles in immunomodulation and the regulation of the
epithelial barrier (Mann et al., 2024)

Moreover, some genera of gut bacteria (e.g. Bacteroides, Bifidobacterium, and
Enterococcus) can contribute to the production of beneficial nutrients and vitamins
(Morowitz et al., 2011). The most notable examples are the vitamin group B (such as
biotin (B7), folate (B9), and cobalamin (B12)) and vitamin K (Tarracchini et al., 2024). It
has been estimated that up to half of the daily Vitamin K requirement is provided by gut

bacteria (Morowitz et al., 2011).

The metabolic properties of the gut microbiome do not always align with our intentions
since certain drug compounds can be partly or completely digested by members of the
gut microbiome, thus influencing drug pharmacodynamics and medical treatment
(Tsunoda et al., 2021). Furthermore, certain bacterial metabolic byproducts can lead to

health conditions, such as bloating or diarrhea (Sachdev & Pimentel, 2013).

1.1.2. Host health modulating effect

The gut microbiota acts as a shield in protecting the host from exogenous and potentially

pathogenic microorganisms through a process termed as “colonization resistance” (Hou



et al., 2022). The gut microbiome also contributes to the modulation of the barrier function
of intestinal cells (Takiishi et al., 2017) and to the regulation of the intestinal mucus barrier
(Paone & Cani, 2020).

On the other hand, bacteria in the gastrointestinal tract can lead directly or indirectly to
diseases. Notable examples include Helicobacter pylori causing chronic gastritis (Robin
Warren & Marshall, 1983) and different strains of Escherichia colifacilitating inflammatory
bowel disease (Mirsepasi-Lauridsen et al., 2019). The gut microbiome can also serve as
a host for opportunistic pathogens (Dey & Ray Chaudhuri, 2023) and a reservoir for

antibiotic resistance genes (Anthony et al., 2020).

1.1.3. The microbiota-gut-brain axis

A particularly curious effect of the gut microbiome is on the nervous system. The gut has
a large number of nerve cells and is sometimes referred to as the “second brain” (Gershon,
1999). There is evidence that the gut microbiome is in a bidirectional communication with
the central nervous system through these nerve cells, known as the “microbiota-gut-brain
axis” (Loh et al., 2024). The microbiome is capable of producing or influencing the
production of several neurotransmitters, such as serotonin (Yano et al., 2015), dopamine
(Wang et al., 2021), and gamma-aminobutyric acid (Strandwitz et al., 2018). The
microbiome is also able to regulate microglial maturation and cell death through SCFAs
(Huang et al., 2023) and thus is theorized to have a role in different neurodegenerative
diseases, such as Alzheimer’s disease (Dodiya et al., 2021) and Parkinson’s disease
(Sampson et al., 2016).

1.2. Oral microbiome

The oral microbiome is the second largest microbial community in the human body, and
its composition shows a high degree of overlap with the gut microbiome on a higher
taxonomic level (phylum, class, family). The most notable oral bacterial phyla are Bacillota
(formerly  Firmicutes), Proteobacteria, Bacteroidota (formerly Bacteroidetes),
Actinobacteria and Fusobacteria (Hou et al., 2022). The oral cavity can be further divided
into different distinct microbial habitats, such as the tongue, tooth surfaces, and buccal

mucosa, each with their own distinct microbial composition (Baker et al., 2023). While the
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core members of the healthy oral microbiome are stable, there are rare taxa and strain

variations enough to distinguish one person from another (Arumugam et al., 2025).

The disruption of a healthy oral flora can lead to diseases, such as dental caries and
periodontal disease (Baker et al., 2023). Dysbiosis of the oral microbiome also shows
association with systemic diseases, including cancer and rheumatoid arthritis (Kumar,
2013).

1.3. Vaginal microbiome

Probably the second most researched bacterial community in the human body, the

vaginal microbiome also plays a significant role in disease development and prevention.

The healthy vaginal microbiome is dominated by a few species, mainly from the
Lactobacillus and related genera (Amabebe & Anumba, 2018). These bacteria produce
lactic acid (hence the name), lowering the pH of the vaginal microenvironment, and
supposedly inhibiting the growth of other, less beneficial bacteria (Amabebe & Anumba,
2018). Thus, similarly to the gut, the vaginal microbiota also has an important function in
colonization resistance (Mei & Li, 2022). Lactic acid may also modulate the immune

response of the host (Chee et al., 2020).

There are cases when the vaginal microbiota does not consist primarily of lactobacilli but
is instead dominated by facultative or obligate anaerobes such as Gardnerella vaginalis,
Prevotella spp., Mobiluncus spp., Ureaplasma urealyticum, and Mycoplasma hominis.
The presence of these bacteria is associated with higher pH levels and a condition called
bacterial vaginosis (Abou Chacra et al., 2022). The presence of these bacteria has also
been associated with the acquisition of sexually transmitted infections and spontaneous
preterm birth (Ding et al., 2021).
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14. Skin microbiome

As the skin is constantly in contact with the outside environment, its microbial composition
is heavily influenced by environmental factors, such as heat, moisture, and outside
pathogens, (Baker et al., 2023). An interesting property of the skin is that depending on
its physiological characteristics (whether it’s oily, moist, or dry) different sites of the human
body harbor different bacteria (Costello et al., 2009). The healthy skin microbiome is
composed mainly of the Cutibacterium spp. (formerly Propionibacter spp.),
Staphylococcus spp. and Corynebacterium spp., bacterial species along with fungi from
the Malassezia genus (Byrd et al., 2018). Members of the skin microbiome have been
connected to skin issues, such as acne (Cutibacterium acnes, in Dréno et al., 2018) and

atopic dermatitis (Staphylococcus aureus, in Kim et al., 2019).

2. Identifying microbiome members

As the microbiome can affect human health in several different ways, it is important for
the members of a given community to be identified correctly. The misidentification of
bacteria and especially of pathogens in a clinical setting can lead to misdiagnosis and
unnecessary treatment of patients. Currently, there are several methods for the
identification of bacteria from microbial samples (Figure 2), each with their own strengths
and weaknesses.

-

IDENTIFICATION OF BACTERIA 7 &
§5% é&
4

Culture dependent Culture independent

o Growth tests o PCR/gPCR
o Antibiotic susceptibility o Raman spectroscopy
o Staining o MALDI-TOF
o Biochemical assays o MLST
o NGS

Figure 2.: Examples of methods of bacterial identification
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21. Culture-based classification of bacteria

Classical microbiology methods are the original way to identify species from a microbiome
sample. In these, most commonly, the sample is spread on an agar plate, and bacteria
are grown under controlled conditions. The identity of the bacterial species is then
decided based on phenotypic tests (e.g. color and morphology of the colony, growth on
specific media) alongside staining and antibiotic susceptibility tests (Giuliano et al., 2019).
The probably most well-known staining technique is Gram-staining, which targets the
prokaryotic cell wall and divides bacteria into two non-disjunct groups: Gram-positives
and Gram-negatives (Bartholomew & Mittwer, 1952). Metabolic capabilities of the studied
bacteria, measured by biochemical assays, can also serve as the basis of identification
(Altheide, 2019). For example, the IMViC, which was developed for the differentiation of
Enterobacteria, is based on the detection of 4 distinct metabolic processes namely indole
production, acid production, acetylmethylcarbinol (acetoin) production, and citrate
utilization (Powers & Latt, 1977).

These methods are still considered the “gold standard” for bacterial identification and are
required when describing a novel bacterial species: an isolated and pure culture of the
“type strain” of the new species is necessary for acceptance by the International Code of
Nomenclature of Prokaryotes (Parker et al., 2019). Nonetheless, despite their accuracy,
culture-based methods have several shortcomings as they are expensive, slow (Goelzer
& Fromion, 2011), low throughput, and the detection of a specific species often requires
a dedicated test. Additionally, these methods may not provide a representative picture of
the ratio of bacteria in a sample, as different bacteria can grow better or worse in
laboratory conditions than in their natural environment (Steensels et al., 2019). Although
culturing methods are constantly improving, there is still a substantial number of gut
bacteria that can’t be cultured (Liu et al., 2021).

2.2. Culture-independent classification of bacteria
With the expansion of understanding of the molecular processes of prokaryotic cells,
novel laboratory methods are continuously developed for the culture-independent
classification of bacteria. These methods target structural, metabolic and other features

of these microorganisms and often are done in parallel with culturing. These methods
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include Raman spectroscopy (Krynicka et al., 2025), matrix assisted laser desorption
ionization-time of flight mass spectrometry (MALDI-TOF MS) (Singhal et al., 2015),
among others. However, the current most popular prokaryotic classification methods
focus on DNA.

2.2.1. DNA-based classification methods
Nowadays, there is a vast selection of classification methods for differentiating

prokaryotes based on their DNA content. They are common in that they focus on parts of
the bacterial genomes which are characteristic of a given bacterium and can be used to
differentiate it from the rest. These DNA-based methods include polymerase chain
reaction (PCR) and quantitative PCR (qPCR) based-methods (Kralik & Ricchi, 2017),
multi-locus sequence typing (MLST) (Maiden, 2006), plasmid profile analysis, and next-
generation sequencing methods (Adzitey et al., 2012). The latter is also the focus of this

dissertation.

2.2.2. Next-Generation Sequencing (NGS)
Although DNA sequencing has been possible since the 1970s, the high-throughput

sequencing methods brought a breakthrough in the last 30 years (reviewed in Kumar et
al., 2019). These methods made it possible to find the sequence of large amounts of DNA

at the same time.

In brief, the most widely adopted NGS technology, originally developed by Solexa and
subsequently commercialized by Illlumina, is based on sequencing by synthesis (reviewed
in Hu et al., 2015). Sequencing by synthesis works as follows: template DNA sequences
are anchored to the surface of a sequencing chip and are extended through polymerase
reactions. In each cycle, fluorescently marked termination nucleotides are added to the
mix. The incorporation of these nucleotides results in a fluorescent emission of a specific
wavelength that can be detected by a camera. This camera takes a high-resolution image
of every cycle, and at the end of the sequencing runs the generated images are
“translated into” nucleotides through a process called base-calling (Cacho et al., 2016).
This method made it possible to determine the sequence of thousands of DNA templates

in the same run.
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The high throughput capability of this method proved to be especially useful in the case
where the DNA content of a sample doesn’'t come from a single organism, but from a
community of tens or hundreds of species The term metagenomics itself, which refers to
the study of the genetic content of an environmental sample, has been around the same
time as these high-throughput methods (Handelsman et al., 1998). High-throughput

sequencing in the last 25 years has brought several breakthroughs to the field.

Targeted amplification

Read
of the 16S rRNA gene

- . classification
Bioinformatics

Biological
sample

l Z

Reference DBs
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|
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Random Read -
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Figure 3: Comparison of the 16S and shotgun sequencing workflows.

V3,V4: variable regions of the 16S rRNA gene, C: conserved region

2.2.3. 16S sequencing
The more traditional sequence-based identification method of bacterial species is the so-

called 16S sequencing (Janda & Abbott, 2007). This method is based on the 16S rRNA
gene, which can be found in every bacterial genome. This gene is particularly useful for
microbial classification, due to its conserved regions, which are very similar among all
bacteria, as well as variable regions, that show species- or even sub-species-level
specificity. There are PCR-based methods targeting specific SNPs of this gene, but NGS-
based 16S classification is a far more popular method (Figure 3). Finding the sequence

of this gene is often enough to classify bacteria in metagenomic samples, and it offers a
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quick and cheap solution to the problem. However, 16S sequencing-based identification

has several weaknesses:

e |t doesn’t provide any additional genomic information other than the sequence of
variable regions of this one specific gene, and such can't be used for
metagenomics

e Bacteria can have multiple copies of the same 16S rRNA gene and these copies
can differ in their sequence (Lin et al., 2022). Moreover, classification can give a
different result based on the variable region targeted by the sequencing, leading

to inaccuracies (Zhang et al., 2024).

Because of these limitations, 16S sequencing is no longer regarded as a true
metagenomic approach, since it targets only a single marker gene rather than the full
genomic content of a community. For this reason, it has largely been replaced by shotgun
metagenomics, which captures the complete DNA pool of all organisms in a sample.
However, there are still specific cases, for example, the sample is highly contaminated by
the eukaryotic host’'s DNA, or genus-level classification is sufficient, when 16S is
commonly used (Durazzi et al., 2021). Additionally, sequencing the whole 16S gene using
long read sequencing technologies, such as Nanopore (Aja-Macaya et al., 2025) and
PacBio (Buetas et al., 2024) can partially overcome these limitations and improve

taxonomic classification.

16S classification algorithms apply roughly the same basic principles: they order the
sequences into operational taxonomic units (OTUs) based on sequence similarity, then
compare these to a reference database (such as SILVA or Greengenes). A more novel
method is treating each sequence as amplicon sequence variant (ASV) identifying them
separately, then merging abundance data on species level. This can give a more fine-

grained view on the composition of the bacterial community (Marizzoni et al., 2020).

2.2.4. Shotgun sequencing
Modern microbial analysis increasingly relies on metagenomic methods, which aim to

analyze not just one gene per bacterial taxon, but the whole genetic content of each
species in the sample. Shotgun sequencing is named after the DNA processing technique
applied: extracted DNA is randomly fragmented into short DNA fragments that collectively
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represent the entire genomes of all organisms in the sample, similarly to the scatter

pattern of a shotgun blast (Anderson, 1981).

Shotgun sequencing can be applied in more diverse ways compared to 16S (Figure 3):

Creating metagenome-assembled genomes (MAGS):

MAGs are an important tool to study microbial diversity and characterizing new,
often unculturable, organisms. The creation of MAGs is done by assembling reads
into longer sequences (contigs and then scaffolds) and then grouping the results:
creating groups of scaffolds based on short sequence similarities. Each bin
corresponds to a putative individual bacterial genome. Assembly and binning are
always followed by quality assessment, where the completeness of the genomes
and the presence of contaminants is tested (Setubal, 2021).

Gene identification and functional profiling:

This provides information on how bacteria function in a community and how they
interact with the host. Additionally, it can be used to identify antibiotic-resistance
genes, which is critical for clinical treatment (Boolchandani et al., 2019). Functional
annotation typically involves two steps: gene prediction, where the potentially
coding sequences are identified, and annotation, where predicted proteins are
compared with protein families in databases and annotated functionally.
Taxonomic classification:

Shotgun sequencing can be used for more accurate classification and can provide
sub-species level information for certain bacteria. The following section details the

workings of such classification algorithms.

Overall, all methods analyzing metagenomic data are strongly influenced by the quality

of the sample, sequencing depth, and the bioinformatic methods applied.

3. Metagenomic classification of bacteria

To make sense of metagenomic data and to find species corresponding to DNA

sequences (the classification process), bioinformatics methods are needed. As the

available metagenomic data is increasing exponentially, the number of classification

strategies grows as well. These classification algorithms apply various methods to identify
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bacterial taxa in the samples.

3.1.

Types of classification algorithms

There are several approaches to identify bacteria in metagenomic samples. The most

popular metagenomic classifiers apply some kind of alignment algorithm in their

workflow.

While the algorithmic principles applied by metagenomic classifiers are diverse, they can

be broadly divided into 3 categories:

1.

k-mer based classifiers: These classifiers process the reference genomes by
splitting it into short sequences (k-mers) and then building a taxonomic tree of
the sequences, trying to find the taxon in which the k-mer appears (latest
common ancestor, LCA). The classification of the samples is done similarly:
splitting the reads into k-mers and attempting to place these k-mers on the LCA
tree. The most notable examples are Kraken (Wood & Salzberg, 2014),
Kraken2 (Wood et al., 2019). and Bracken (Lu et al.,, 2017), which is an
extension of Kraken. K-mer based classification methods tend to be fast but
less specific, compared to other methods (Garrido-Sanz et al., 2022).
Markergene-based classifiers: These classifiers process the reference
genomes by taxon-specific sequences. During classification, the algorithm
compares the reads to this taxon-specific database, assigns the recognized
sequences to taxon and discards the rest. The most notable example of marker
gene-based classification is MetaPhlAn (Beghini et al., 2021). This method
tends to produce good sensitivity and specificity, with medium running speed
(Ye etal., 2019).

Genomic alignment-based classifiers: These methods tend to be computation-
and time-intensive. They rely on building an indexed reference database of
complete bacterial genomes and applying a local alignment algorithm to match
the reads to the reference sequences. GOTTCHA (Freitas et al., 2015) is a

notable example of alignment-based classification.

There are, of course, classifiers that don’t fit these categories. For example, Kaiju (Menzel
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et al., 2016) and DIAMOND-Megan (Bagci et al., 2021) which utilize a DNA-to-protein
sequence-based search strategy. These tools are becoming less popular due to their high

computational and time requirements and low specificity.

3.2. DNA sequence alignment

Sequence alignment is the most important step of comparing biological sequences.
Simply put, alignment is the process when two strings (character sequences) are
arranged in a way that shows the highest-scoring similarity between the two. In genomics
alignment is typically done against a reference, which can be a gene, chromosome or
whole genome of an organism. The completeness and accuracy of this reference highly

influences the quality of the alignment.

As the size of the reference grows, alignment becomes progressively less trivial. The
need for alignment algorithms that can simplify the process or at least reduce the time
and computational resources needed is growing. Many metagenomic classifiers rely on
some kind of alignment or alignment-like strategy to compare reads or other query
sequences to reference genomes, and they apply various methods for saving time and
computational resources (as detailed in the next section). The method of alignment,
where only a subsequence of the query sequence is matched to a subsequence of the
reference, is called local alignment. A classic example of a local alignment algorithm is
the Smith-Waterman algorithm (Smith & Waterman, 1981), which finds the matching
substrings between the reference and the query by filling out a scoring matrix: a matrix
that gives scores for matches and mismatches, and penalties for gaps (insertions or
deletions). The algorithm applies dynamic programming to maximize the number of
matching nucleotides while minimizing mismatches and indels. Although the Smith-
Waterman Algorithm is too computationally intensive for large-scale genomics, it serves
as the foundation for numerous modern alignment algorithms (Daily, 2016, Delcher et al.,
2002). In the following, as an example, | will introduce one such algorithm, the Burrows-
Wheeler Aligner (BWA) (Li & Durbin, 2009) and its Maximum Exact Matches version
(BWA-MEM) (Li, 2013), which is a robust, frequently used alignment algorithm in

bioinformatics and underlies the software described in this dissertation.

Indexing the reference is the initial step of BWA. During this step the reference is
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transformed into an indexed suffix array via Burrows-Wheeler transformation (Burrows &
Wheeler, 1994) and FM-indexing (Ferragina & Manzini, 2000). This transformation
enables fast and computationally efficient substring search. In the original version of BWA
reads are represented by fixed-length seeds, which are mapped to the reference via exact
matches in the FM-index (Figure 4). These seeds are then extended and scored with a
modified version of the Smith-Waterman algorithm and chained together into candidate

alignments, with the highest-scoring chains reported as the final local alignments.

BWA-MEM, the variant used in my dissertation, is optimized for longer reads. Instead of
fixed-length seeds, it first scans reads for minimizers, which serve as representative of
the query, and then uses the FM-index to identify maximal exact matches (MEMs).
Among these, it selects supermaximal exact matches (SMEMs) — matches that cannot
be extended in either direction without mismatch and are not contained within larger
matches. These SMEMs act as seeds for chaining and local extension, as in the classic
algorithm. This adaptive seeding strategy makes BWA-MEM faster, more efficient, and

more suitable for aligning long or noisy reads than the original BWA.

Local Alignment Seed-and-extend Alignment
(e.g. Smith-Waterman) (BWA)
Seed generation and mapping
Query sequence [ I I -
Reference sequence -- || I |
Extension Extension  Extension

Figure 4: Broad view on basic local alignment and the seed-and-extend alignment
Adapted from Florescu & Ahmed, 2022
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3.3. Main challenges in classification

There are several problems in metagenomic classification, that all classification

algorithms must deal with:

The quality and size of the reference database

There is a large amount of bacterial sequencing data available, but it varies in
quality and species specificity. E.g. for extensively studied species, such as E. coli,
there are several, deeply sequenced strains available. Lesser-known or recently
discovered species usually have one such reference. Simply comparing every
sequencing read to every available bacterial reference sequence would be an
exorbitant computational task.

The quickly changing bacterial taxonomic landscape

As the field of bacterial genomics is quickly evolving, new species are constantly
discovered, old ones are reassigned, and existing clades are renamed.
Metagenomic classifiers need to be constantly updated and need to have a reliable
source of taxonomic information.

Similarity between bacterial species and evolutionally conserved regions

Defining and dividing between bacterial species is far from trivial (Doolittle, 2012).
The current scientific is that bacteria of the same species have at least 95%
average nucleotide identity (ANI) in their genomes, which corresponds to ~99%
similarity in the 16S rRNA gene (Konstantinidis et al., 2006). Additionally, because
of the methods of horizontal gene transfer, bacteria that aren’t closely related can
carry similar sequences in their genome. These conserved regions can make
classification “noisy” and can increase the number of false positives (Paul et al.,
2020).

Making classification computationally efficient

Classifiers apply different methods to filter and index the reference database and
the metagenomic sample, to reduce computational costs.

Making classification as accurate as possible

Misclassification can lead to several problems, especially if the metagenomic

analysis is performed for the purpose of clinical pathogen identification.
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For example, as mentioned, Kraken2 divides up reference genomes to k-mers (short, 20—
30 bp long sequences) and selects common sequences between bacteria on different
taxonomic levels, thus making searching the reference database very efficient (k-mer

search can be 1-3 magnitudes faster than full-sequence alignment (Bokulich, 2025)).

MetaPhlAn reduces the reference genome size by selecting sequences that are strictly
specific to one bacterium. This allows for fast classification, although the number of

classified reads will depend on the quality and the diversity of the sample.

In general, Kraken2 tends to overestimate the number of species in a sample, while
MetaPhlAn generally underestimates. The accuracy of these two classifiers can be
influenced by factors such as the read depth and the size of the reference genome (Sun
et al., 2021). In general, there is no perfect method, only one that is suitable for the
specific problem. To compare the performance of the growing number of classifiers,

benchmarking against “gold standard” samples is needed.

4. Standards in metagenomics

For the proper benchmarking of the performance of metagenomic classifiers, it is
necessary to have a ground truth of bacterial communities with known composition. This
allows for the fair comparison of classifiers and can reveal their weaknesses, strengths,
and specific uses of different tools. Several such standards are available for
metagenomics; they differ in their composition, complexity, and use, but can be grouped

into three general categories: in vivo, in vitro and in silico standards.

41. In vivo standard communities

There are several, well-described microbial communities inoculated in living organisms,
such as minimal microbiomes sustained in gnotobiotic mice (e.g. Altered Schaedler Flora
(Brand et al., 2015)). These “synthetic communities” are often results of a reductionist
approach toward understanding the microbiota: they contain only the “key” species of a
microbial community, and they don’t attempt to model real-world diversity (Raghu et al.,
2024). These in vivo standards can provide a close representation of a real-world

microbiome. These standard communities may, however, be contaminated or colonized
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by unknown bacteria, making their maintenance time-consuming and costly (Basic &
Bleich, 2019).

4.2. In vitro standards

In vitro standards are created by mixing either the cells or isolated DNA of well-known
and frequently studied bacterial species (Morgan et al., 2010). These standards are
frequently used in laboratory practice as controls and validation of metagenomics.
Because these samples aren’t taken from the real-world, they show less resemblance to
actual, real microbiomes. However, this can be also the strength of these standards:
make it possible mixing of bacteria together that wouldn’t be able to co-existin nature. As

such, in vitro standards allow testing on a broader range than in vivo ones.

4.3. In silico standards

Generating in silico metagenomic standards has several advantages over real-world
sequenced DNA samples. The number and identity of genomic sequences used for the
generation, the number, length, insert size and quality of reads can be strictly controlled:

we can be sure where each read in the sample comes from.

There are several methods to make sure that the generated reads resemble real-world
samples as close as possible. Modeling the distribution of quality scores of the reads can
take several directions, from simply giving each base the same quality score to the same
value to different average error rates and sequencer-specific error profiles. Random

sequencing errors, insertions and deletions can also be modeled (Fritz et al., 2019).

As an example, Critical Assessment of Metagenome Interpretation (CAMI) is one of the
most well-known examples of these standardization efforts, with two rounds of challenges
so far (Sczyrba et al., 2017, Meyer et al., 2022). The purpose of these challenges is to
provide gold standard data for classifiers as well as to compare the existing algorithms

on different tasks, such as classifying very diverse samples, identifying a novel bacterial
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strain in a medical context, or assembling and taxonomically classifying the genome of

previously unknown bacterial species.

5. Clinical relevance of metagenomics

Correctly identifying bacteria in human samples is a critical task in clinical analysis.
Currently, this is most often performed by culturing methods introduced at the beginning
of the chapter. Because some pathogens are difficult or impossible to culture in laboratory
settings, and because broad-spectrum antibiotics are often applied before identification,
these traditional methods can lack in sensitivity and can result in needless complications
for the patient (reviewed in Gu et al., 2019). Metagenomics could mean a solution for
these problems, providing a non-targeted, high-throughput, sensitive method for
pathogen identification. For clinical use, any new detection method needs to be strictly
validated (Kan et al., 2024). In the case of metagenomics, this can be achieved by using
the previously mentioned in vitro and in silico standards, or alternatively, using real-world
clinical data, tested by both culturing and metagenomics-based methods (Angel et al.,
2025).

As previously mentioned, metagenomic classification faces several challenges: In my
doctoral work, | devised and benchmarked a novel metagenomic classification algorithm,
named Novel Alignment-based Biome Analysis Software + (NABAS+) to address these

challenges.
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V. Aims

As | detailed in the introduction, metagenomics has revolutionized our ability to
characterize complex microbial communities, yet the accurate classification of bacterial
species within these datasets remains a challenge. To fully harness the potential of
metagenomics for routine diagnostic use, there is a clear need for classification tools that
combine high taxonomic specificity with robustness and computational efficiency. The
validation of such tools requires benchmarking against datasets of precisely known
composition that model realistic microbial communities. In this doctoral work, my aim was
to develop, optimize, and validate a novel metagenomic classifier capable of accurate
species-level identification, and to demonstrate its applicability to clinical pathogen

detection.

To achieve these goals, | set out to:

e Develop a novel metagenomic classifier, NABAS+ that minimizes false-positive
identification, leveraging high-quality reference genomes and the BWA-MEM
algorithm

e Establish comprehensive benchmarking datasets by generating in silico
metagenomic samples as well as collecting in silico and in vitro standards for
objective performance evaluation.

e Benchmark NABAS+ along with other classifiers and evaluate its performance
using various metrics, such as F1 score, precision and recall.

e Demonstrate the applicability of the NABAS+ in clinical metagenomics by
assessing its performance in correctly detecting pathogenic species in a real-world

sample
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VI. Materials and Methods

1. Creation of NABAS+ (Novel Alignment-based Biome Analysis
Software +)

To address the problems highlighted in the Introduction, we aimed to create a novel
metagenomic classifier, which we named NABAS+ (Novel Alignment-based Biome
Analysis Software +). We used an underutilized alignment algorithm in metagenomic
classification, BWA-MEM. The algorithmic workings of NABAS+ are detailed in the

Results section.

We chose the Java programming language to implement our algorithm, for its speed,
large available codebase and multithreading capabilities. This allows us to integrate our
classifier into larger software environments and analysis pipelines. Furthermore, to
facilitate the use of NABAS+ by the broader scientific community, we created a
standalone version that can be run from the command line, along with test datasets and

a reference database.

2. Creating an in-house in silico dataset

To evaluate the performance of our classifier, first we built a dataset of in silico
metagenomic samples, generated in-house. With these samples our aim was to study the
accuracy of NABAS+ on samples modeling real-world environments, with different read
depth, as well as to compare the performance of our tool to the current industry-leader

classifiers.

Our first set of test samples were generated using an in-house in silico NGS read
generating algorithm, from 6 mock microbial communities, five of which were retrieved
from the work of Ounit and Lonardi (Ounit & Lonardi, 2016). The composition of these

communities was the following:

“Buc12”: This community contains 12 microbial species found in the buccal microbiota,

as reported in (Franzosa et al., 2015) and (Huttenhower et al., 2012b) including
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Haemophilus influenzae, H. parainfluenzae, Neisseria subflava, and Veillonella dispar as

well as eight species from the Streptococcus genus.

“‘CParMed48”: For this community, 48 species were selected from Proteobacteria,
Acidobacteria, Bacteroidota, Actinobacteria, and Planctomycetes phyla, based on (Reese

et al., 2016) reporting the most common bacteria in city parks and medians in Manhattan.

“Gut20”: This community consisted of 20 species commonly found in the human gut,
described by (Kuleshov et al., 2016), from the Streptococcus, Listeria, and Lactobacillus

genera among others.

“‘Hous31”: This community contains 31 species typically found in Western homes, as
described in (Ruiz-Calderon et al., 2016). These species belong to the Streptococcaceae,
Lactobacillaceae, Pseudomonadaceae, Intrasporangiaceae, and Rhodobacteraceae

families.

“‘Hous21”: This community is composed of 21 species from the dominant organisms
found in the bathroom and kitchen, reported in (Adams et al., 2015), namely,
Propionibacterium acnes and the Corynebacterium, Streptococcus, and Acinetobacter

genera.

Additionally, we created a “Custom 100” community by randomly selecting 100 species

from a 500 species list containing the most common bacteria of the human gut microbiota.

Relative abundances of the species in the communities were uniformly distributed. For
each bacterium, we collected the latest available reference genome from RefSeq. Our
algorithm utilized these genomic sequences in the following manner: picking a random
start point in the genome and copy the sequence for a set number of bases to create a

mock read.

We created an in-house in silico sample generating algorithm, to model real-life lllumina
runs. Our algorithm works with a collection of fasta-formatted reference genomes, picks
random starting points with a set length of insert size and adds random insertions,
deletions and “sequencing errors” (bases different from the reference) with a set

frequency.
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Reads were generated to model lllumina 2*151 bp reads, with a minimum insert length of
50 and expected length of 250 bp. The read lengths followed Gaussian distribution with
a standard deviation of 50 bp. At each position of every generated read, there was a 0.4%
possibility of mismatch, 0.25% of 1-base-long deletion, and 0.15% of 1-base-long
insertion. Insertions and deletions were allowed to happen concurrently, making longer
indels possible. The Phred quality scores were set as consistent “A”, coding the Q score
32, which corresponds to the error rate of 6.3*104(Ewing et al., 1998). In real-world NGS-
analysis a read with an average Q score above 30 is considered good quality (Ewing &
Green, 1998).

Our reference data contained 212 species overall. From each community, we generated

6 samples with different read numbers: 5 x 10°, 108, 2 x 10%, 5 x 10°, and 107 reads.

3. Collecting data from the CAMI Il challenge

The gastrooral subset of second CAMI Toy Human Microbiome Project dataset (DOI:
10.4126/FRL01-006425518) was downloaded from the author’s website (https://cami-
challenge.org/datasets/), using the provided camiClient.jar, along with the provided NCBI
RefSeq version and NCBI taxonomy. Reads were de-interleaved and given Casava 1.8-

style headers before analysis, using a custom script, FixFastqHeaders.jar.

Because of the relative outdatedness of the reference database versions of the CAMI2
data (datasets were generated in January 2019), older, corresponding database versions
were utilized for each classifier. We aimed to use database versions published in the

same timeframe as CAMI2 datasets.

e MetaPhlAn3: ‘mpa_v31_CHOCOPhHhIAn_2019071’
e Kraken2: ‘minikraken2_v2 8GB_ 201 904 UPDATE’;
e GOTTCHA: ‘GOTTCHA_BACTERIA c4937_k24 u30_xHUMANB3Xx.species’

In the case of NABAS+, we built the reference database using genomes labelled as
‘representative’ or ‘reference’ from RefSeq (as of 8 January 2019, shared by the CAMI |l

authors), using a custom script.
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4. CAMI Il sample generation

The in silico sequencing sample was regenerated using the abundance file and settings
provided in the CAMI Il challenge with CAMISIM (Fritz et al., 2019) version 1.3. To get a
more modern representation of each species in the sample, we collected the most recent
‘reference’ or ‘representative’ genome corresponding to the species from NCBI Refseq.
After creation, the created sample was treated the same way as the rest of the CAMI2

samples.

5. Collecting and analysing data from deeply sequenced microbial
community standards

To demonstrate the accuracy of our tool on in silico real-world shotgun sequencing as
well, we used deep sequenced ZymoBIOMICS Microbial Community Standards (Nicholls
et al., 2019).

These community standards consist of 8 bacterial and 2 fungal species, which are
common members of the human gut microbiota. Community Standard | (CSI) contains
these species in equal distribution, while Community Standard Il (CSIl) has species in
exponential distribution. For our benchmark, we only considered the bacterial species in

both communities.
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Species

Relative abundance (%)

Bacillus subtilis 12.5
Enterococcus faecalis 12.5
Escherichia coli 12.5
Limosilactobacillus
fermentum 125
Pseudomonas aeruginosa 12.5
Salmonella enterica 12.5
Staphylococcus aureus 12.5

Table 1 Bacterial composition of the CSI dataset

Species Relative abundance (%)
Bacillus subtilis 0.89
Enterococcus faecalis 0.00089
Escherichia coli 0.089
Limosilactobacillus
fermentum 00089
Listeria monocytogenes 89.1
Pseudomonas aeruginosa 8.9
Salmonella enterica 0.089
Staphylococcus aureus 0.000089

Table 2 Bacterial composition of the CSlI dataset
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lllumina sequencing results of the two Zymo datasets were retrieved from the ENA
archive. The datasets contained 8.8 million (2*151 bp, MiSeq) and 47.8 million read pairs
(2x101 bp, HiSeq) of the CSI and CSIlI samples, respectively. Quality control of the
sequencing data was performed with Trimmomatic (Bolger et al., 2014), with default
parameters, with an average minimum quality of 20 and a minimum sequence length of

75 bp. TruSeq Y adapters were removed from reads using Cutadapt (Martin, 2011).

MultiQC (Ewels et al., 2016) was used to assess quality after trimming, using the default

command.

Additionally, we set up classifiers for the analysis of the Zymo data with more modern

database versions, where it was available:

Kraken2: Kraken2 standard bacterial database
MetaPhlAn3: “mpa_vOct22_ CHOCOPhIANSGB_202212”
NABAS+: RefSeq, 2022

In the case of GOTTCHA, because its database is updated infrequently, we used the
same reference database as for the analysis of the CAMI Il samples. Since not all
databases contained the updated taxonomies for Bacillus subtilis (Dunlap et al., 2020)
and Lactobacillus fermentum (Zheng et al., 2020), these taxa were treated as “groups” to

reconcile the differences in taxon names.

6. Collecting and analysing real-world metagenomic sequencing
data

For the initial testing of classifiers, we used human metagenomic data provided by
DeltaBio 2000 Ltd. These datasets originated from stool samples of healthy humans. By
using the microbiome analysis service DeltaBio 2000 Ltd, patients agree to the

anonymized use of their samples for research purposes.

Stool samples were collected, and DNA was isolated using the QlAamp PowerFecal Pro
DNA Kit. Next-generation sequencing libraries were prepared using Illlumina Nextera XT

DNA Library Preparation Kit (FC-131-1096 lllumina) according to the manufacturer's
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instructions. For quality control, libraries were run on a BioAnalyzer2100 instrument using
High Sensitivity DNA Kit (5067-4626 Agilent). Fragment libraries were sequenced on an
lllumina NextSeq500 instrument with 2*150 bp chemistry (20024904 lllumina). Quality
control and trimming was done using Trimmomatic, Cutadapt and MultiQC, according to

the parameters described previously.

7. Collecting and analysing clinical data

We aimed to test NABAS+ on samples that come from real-world clinical settings but still
contain species whose presence has been verified with laboratory methods other than
metagenomics. For this we collected a dataset of 20 samples, coming from a study
describing 330 samples with verified pathogenic content (Angel et al., 2025). These
samples have been tested with PCR-based and MCS (molecular, culture and sensitivity)
assays for common pathogens, e.g. Salmonella and Campylobacter spp.. Samples were
collected as paired-end FastQ files, from ENA, from the accession PRIJNA1156595. ).
Quality control and trimming was done using Trimmomatic, Cutadapt and MultiQC,

according to the parameters described previously.

8. Selecting and setting up classifiers for the initial gut
metagenome analysis

For the initial comparison of human microbiome samples, we set up 8 different
metagenomic classifiers, chosen based on popularity and diversity of classification
algorithms applied. The classifiers were run with their respective default databases and
standard commands when applicable, on a desktop computer equipped with 64 GB RAM
and 12 processor threads, on a Linux operating system. For this initial analysis, we

compared unfiltered results.

For Kaiju, we tested both the freely available webserver (Kaiju Web Server - Submit Job,
n.d.) and the desktop version of the software were tested. This allowed us to run Kaiju
with the NCBI nr database, which we could not process locally due to computational
limitations. During the publishing process of these results, this webserver has become

unavailable. Classifiers and databases used:
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e Bracken/Kraken2: Kraken2 standard bacterial database

e Centrifuge: ‘p_compressed_2018 4 15’

e CLARK: ‘bacteria’

e DIAMOND: “NCBI nr”

e GOTTCHA: ‘GOTTCHA_BACTERIA_c4937_k24 u30_xHUMAN3Xx.species’
e Kaiju (local): ‘RefSeq’

o Kaiju-webserver: ‘NCBI nr’

e MetaPhlAn3: ‘mpa_v31_CHOCOPhHIAn_201 901’

9. Selecting and setting up reference classifiers for NABAS+

benchmarking

For the initial test on our in-house in silico dataset, we tested NABAS+ along the 8
classifiers listed in the previous section. For further evaluation against the CAMI 2 and
Zymo datasets, we benchmarked our tool along three reference classifiers, namely
MetaPhlAn3, Kraken, and GOTTCHA. These tools showed the highest similarity to our
own in the initial testing, applied diverse approaches in metagenomic classification,
showed popularity of the metagenomic community, as well as good performance in other
benchmarking studies. Additionally, by selecting GOTTCHA, we could compare our

classifier to another BWA-based algorithm.
10. Running the classifiers

Classifiers were run with default commands when applicable. In the case of Kraken2, an
additional threshold was set to provide a fair comparison (as unfiltered Kraken2 is known
to produce a lot of false positives): we only accepted species supported by at least 100

fragments. MetaPhlAn3 and GOTTCHA results were not filtered post-classification.

In the GOTTCHA analysis, the ‘--minQ 0’ parameter was used for CAMI2 samples 4, 8,
10, 13, and 15, to avoid the ‘0% of reads passing filters’ exception. Without this parameter,

GOTTCHA was unabile to identify any species from these samples.
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Classifiers were run with default settings where applicable, on a desktop computer

equipped with 64 GB RAM and 12 processor threads, on a Linux operating system.

11.Statistical analysis

To test the accuracy of our classifier, we utilized several commonly used statistical
metrics. Classifier outputs were collected and compared to the reference datasets.
Results were considered only at the species level; non-bacterial and non-archaeal hits

were removed, and percentages were recalculated only for the remaining species.

Precision or positive predicted value is used to calculate the ratio of true positives (in our

case of species correctly classified) based on the following formula:

TP
TP + FP

Recall, also known as true positive rate (TPR) measures the percentage of actual positive

samples that were correctly identified by the classifier, and it was calculated as follows:

TP
TP+ FN

F1-Score(Chinchor, 1992): This score is the harmonic mean of Precision and Recall,

calculated as:

2*TP
2*TP+FP + FN

False Discovery Rate (Benjamini & Hochberg, 1995) was calculated as:

FP
TP+FP+TP+TN

Where TP is the number of true-positive species, FP is the number of false positives and

FN is the number of false negatives.

Additionally, the following diversity metrics were also calculated:
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Jaccard-distance (Jaccard, 1912):

TP
—_ *
Number of species in either ground truth or classification result

100

Bray-Curtis distance (Bray & Curtis, 1957):

The sum of the lesser abundance values for TP species
*

1
2*TP+ FP+ FN 00

12.Software used and code availability

Development, comparisons and calculations were performed in Java, graphs were
generated with Python3.10 using the seaborn package and in R (Version 4.2.1.), using

the ggplot2 (version 3.3.6.) and ggbreak (version 0.1.1.) packages.

Figure 1-4 and 6 were generated with BioRender.

All the generated code, including a stand-alone version of NABAS+ is available on GitHub

at the following repository: https://github.com/TakacsBertalan/NABAS paper_scripts
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VIl. Results

1. Comparing the performance of nine commonly used
metagenomic classifiers

There are several freely available metagenomic classifiers in the metagenomics
community. Although there are less- and more popular ones, currently there is not a
universally accepted best classifier in the community. To study the similarity metagenomic
classifiers show in their results, we tested nine of such tools on five real-world shotgun
sequenced stool samples. We found that these software showed highly discordant results
testing on the same samples. There was a large disagreement in the number and identity

of classified species (Figure 5).

Number of species in common
Bracken
Centrifuge

CLARK

DIAMOND
GOTTCHA 25 % % 25

Kaiju
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Kraken 2

& BBE B
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CLARK
DIAMOND
GOTTCHA
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Kraken 2
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Bracken
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Figure 5: Number of found species and Jaccard-distance results of 9 metagenomic
classifiers
Kaiju-ws: Kaiju-webserver
(Takacs et al., 2025)
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Based on the number of common species, we found the biggest agreement between Kaiju
and Kaiju-webserver, which is not surprising as the latter is an implementation of the
former. Both local and webserver versions of Kaiju also showed high concordance with
the DIAMOND results. This is probably due to the same nucleotide-to-protein search
strategy applied by both classifiers. We also found a large concordance between Kraken2
and Bracken, which is again to be expected, as they are developed by the same research

group and work on the same base principles.

When calculating Jaccard-distance, which takes into account not only species identity but
also the number of total species identified, we could observe the biggest similarity
between DIAMOND and Kaiju-ws. Along with similar classification principles applied, this
could be caused by the reference database used by both classifiers, ncbi-nr. We also
observed a higher concordance between Kraken2-Bracken and Kaiju-Kaiju-ws.
Interestingly, we also found larger similarities between Kraken2, GOTTCHA and

MetaPhlAn3, the latter two classifiers identified the lowest number of total species.

To demonstrate that these differences are not solely due to the varying analytical depth
of the classifiers, we also calculated the number of species identified by all tools in
common. On average, only five species per sample were shared across all classifiers,
revealing a substantial discrepancy between the consensus set and the total number of

species reported individually.

I's important to point out that this preliminary experiment was done using the default
settings for all classifiers and fine-tuning the tools would bring these results closer to each
other. At the same time, this fine-tuning needs to be experiment- and classifier-specific
as there are no “gold standard” threshold values or “best settings” provided for each

classifier.

To address these challenges, we developed NABAS+, a metagenomic classifier designed
to deliver consistent, high-confidence species identification by minimizing false positives
and relying on high-quality reference genomes. The following section outlines the main

design principles and workflow of NABAS+.
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2. Introducing a novel metagenomic classifier, NABAS+

We aimed to create a reliable, accurate metagenomic classification algorithm. Figure 6

shows a brief overview of the main steps of NABAS+.

RefSeq reference and

. Metagenomic sample
representative genomes

BWA indexing Shotgun
sequencing
BWA-MEM
alignment . .
Reference database Paired-end lllumina reads
Filtering
alignments
v

coverage information

lBinning

Rejecting species if 95% of the bins
aren't covered

l Ordering bins by coverage in

Per-species genome ‘

ascending order

covered genomes, with

Filtered list of sufficiently
ordered bins

Calculating the coverage of the 75th
bin for each species

Species-level relative
abundance

Figure 6: Simplified workflow of NABAS+
(Takacs et al., 2025)

The first part of the analysis is database creation. This needs to be done once initially and
every time the reference sequences are updated (e.g. a new species is added). To get
the most reliable classification results, we used genomes RefSeq database, selecting a
representative genome for each bacterium. Genomes flagged as “representative” are

generally considered the current highest quality representation of the genome in the given
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species in RefSeq. By picking a representative for each species, we aimed to ensure
high-quality, unambiguous classification results. Additionally, this reduced the size of the
reference database considerably: RefSeq contains over 440000 genome assemblies and
22,082 of them are flagged as “representative”, as of September 2025 (NCBI Insights,
2025).

To make the indexing and the alignment process more efficient, we processed the
databases in chunks, each containing ~ 8*10° bases. This makes updating our database
simpler as we don’t need to replace all genomes for an update: it's enough to replace the
respective chunk. Furthermore, this makes it easy to add any new genome by simply

creating and indexing a new chunk.

Chunking the database also reduces the RAM requirements of our tool considerably. We
estimate that indexing of one such chunk requires approximately 16 GBs of RAM, while
indexing the whole database at the same time would require 140+ GBs and that the RAM
cost of the BWA-MEM alignment is reduced similarly. Estimations were based on the
original BWA paper (Li & Durbin, 2009).

The second stage is metagenomic classification: NABAS+ processes paired-end lllumina
reads (2*151 bp). In the first step of the analysis, the reads are aligned against our
reference database using BWA-MEM. BWA-MEM works by scanning the reference for
maximum exact matches, creating ‘seeds’, from which alignment can be extended.
Alignments are then scored with the Smith-Waterman algorithm. This, however, makes
the mapping more extensive compared to other popular metagenomic classifiers. By
contrast, MetaPhlAn aligns the query sequences against a database of clade-specific
sequences using Bowtie2, which utilizes the Burrows-Wheeler transformation, similarly
to BWA. While Kraken2 processes reference sequences as k-mers (usually with a length
of 31 bases), builds a taxonomic tree of the latest common ancestor (LCA), and maps

these query sequences to this tree.

This extensive alignment is the most time-consuming step of running NABAS+ and takes
advantage of the multi-threading capability of BWA-MEM and the split database.
According to our estimates, based on the work of Hanussek et al. (2021), using 12 CPU
threads accelerates alignment five- to eightfold, with further improvements possible
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through additional parallelization. Samples are aligned to each database chunk
individually, and the SAM outputs are converted into BAM format using samtools. The
BAM files are then merged, and low-quality alignments are filtered out, based on the
CIGAR string of each aligned read, which is a string representation of the alignment. By
default, we allow a maximum of 10 edit distances (including mismatches, indels, and
softclips) between the read and the reference; above that the alignment gets rejected.
From the header of the BAM files, we collect the covered genomes and reject those that
do not have a minimum of 10 aligned reads. The set cut-off values for edit distances and
the minimum number of aligned reads were determined through extensive empirical

testing and can be modified by the user.

To assign taxonomy to the species corresponding to the genome, we build a hash map
containing the names and corresponding taxonomic node, using the nodes.dmp and
names.dmp of the NCBI Taxonomy dump package. This is done only once per run, after

the alignment step.

For each remaining genome, we calculate an actual genome coverage (% of the genome
covered by the reads) and a hypothetical genome coverage (total read length of
sequences aligning to the genome/length of the genome) value. If hypothetical
coverage/actual genome coverage is larger than 3.5, we reject the genome. This filters
out genomes with disproportionate coverage as well as strongly over-represented regions.
Through empirical testing, 3.5 has been found to be the optimal threshold value, lowering

it decreased specificity in general.

Subsequently, we divide each genome into 100 equal-sized bins. To access genome
length information fast, we read the .ann file of each database chunk and store it in a
hash map. For each genome, we count the bins that have at least one read. The species
corresponding to the genome is considered present if 95 of the 100 bins have at least
one read. For these genomes, we order the bins in an ascending order and count the
number of reads in the 75th bin so that over-represented, possibly non-species-specific

regions are avoided. During the filtering steps, the results are collected in an Excel file
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showing the taxonomy of the identified species per bin, average coverage values, and

relative abundances. This Excel file is the final report of the analysis.

Because the previously mentioned microbial samples were taken from real-world gut
microbial communities, we can’t be exactly sure about their exact microbial composition
without further laboratory tests. To properly test our novel algorithm and to compare its

performance to other classifiers, we needed datasets with exact known compositions.

3. Testing NABAS+ on in-house generated datasets

To evaluate the accuracy and robustness of NABAS+, we first tested its performance on
six in silico mock metagenomic communities generated using our in-house read

simulation pipeline.

We created 6 such communities, comprising 212 bacterial species in total, modeling both
environmental and human-associated microbiomes. The experiment was intended to
evaluate the performance and robustness of NABAS+ under idealized conditions in which
the exact community composition was known, providing a controlled baseline for later

comparisons with more complex datasets.

The following figure (Figure 7) shows the number of species identified by each classifier
for each sample. Samples from the same community with different read numbers were

averaged.
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Figure 7: Number of species identified by each classifier across the in-house datasets

Dotted red line: actual number of species present in each community

(Takacs et al.,

unpublished)

On this dataset we could show that NABAS+ accurately classified the right number of

species in each sample. The composition and “origin” of the dataset did not seem to

influence the classification accuracy of our tool:

it produced correct results on

communities modelling urban environments (CParMed48) as well as ones modelling the

human oral and gastrointestinal microbiome (Buc12, Gut20 and Custom100).

Similar to the results shown in Section 1, there was a considerable variation in the number

of species detected by the different classifiers. Classifiers based on similar algorithmic

principles, such as DIAMOND and Kaiju, produced correspondingly similar outputs. In

contrast, the tools whose results most closely matched those of NABAS+—Kraken2,
MetaPhlAn3, and GOTTCHA—are built on distinct underlying methodologies.
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Finding the optimal read number for a sample is an important question of metagenomics.
A “too shallow” sequencing can lead to losing low-abundance species (Pereira-Marques
et al., 2019) and sequencing “too deeply” could lead to the multiplication of classification

errors and an increase in false positives.

By creating a different visualization for the same experiment, we can get a better picture
on how differing read numbers (ranging from 5*10° to 1*107) affect the classification
accuracy of the classifiers and NABAS+. Figure 8 shows the number of species found in
the samples in the 6 mock communities. As earlier, the red dotted line indicates the actual

number of species in the samples.
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(Takacs et al., unpublished)

NABAS+ maintained stable accuracy across all sequencing depths tested. The number
of detected species remained close to the true value even at the highest coverage levels,
indicating that our tool is largely insensitive to changes in sequencing depth. This
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contrasts with several classifiers that exhibited inflated species counts as coverage

increased.

The classifiers whose results most closely resembled those of NABAS+ again exhibited
similar behavior. Their detected species counts were largely unaffected by changes in
sequencing depth. A consistent pattern was observed: MetaPhlAn3 tended to slightly

underestimate the number of species, whereas Kraken2 tended to overestimate it.

To provide an integrated performance measure, we next evaluated the F1 score for each

classifier, combining precision and recall to capture both sensitivity and specificity.
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Figure 9: F1 scores of tested classifiers on the in-house dataset

(Takacs et al., unpublished)

NABAS+ achieved uniformly high F1 scores across all six mock communities, confirming
its balanced precision and recall. Its performance remained stable on all datasets,

including those modeling human and environmental microbiomes. While some classifiers
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(e.g., Kraken2) showed reduced precision on specific datasets such as Custom100 and

Gut20, NABAS+ maintained consistent accuracy and specificity throughout.

These results confirm that NABAS+ can accurately identify bacterial species in controlled
in silico samples and that sequencing depth has little effect on its classification
performance. Its reliability across communities of different origin indicates that the tool

generalizes well beyond the human gut microbiome.

Even though these results are promising for our classifier, there are important caveats we
must point out: since our samples were created from RefSeq reference genomes, with
uniform distribution, they resembled an ideal metagenomic sample, rather than a realistic
one. In the real world, metagenomic datasets tend to be “noisier” often containing
sequences of low-abundant or lesser-known species. Additionally, since the NABAS+
reference database was also created based on RefSeq, simply relying on this dataset to
verify our classifier would carry the danger of overestimating the accuracy of our software.
Moreover, we benchmarked NABAS+ against classifiers run with default settings: the

caveats detailed in the previous section apply here as well.

To further assess the robustness of NABAS+ under more realistic yet controlled
conditions, we next benchmarked it using the CAMI |l gastrooral dataset, a set of in silico

samples designed to emulate human microbiome composition.
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4. Benchmarking NABAS+ and 3 other classifiers on the CAMI |l

gastrooral in silico data

Building on the findings from our in-house datasets, we extended our analysis to the CAMI

Il gastrooral dataset to test NABAS+ under more realistic, yet still well-defined conditions.

Based on the results of the previous section, we decided to continue the benchmark
against the 3 classifiers that showed the most similar performance to NABAS+ in the
previous experiments: Kraken2, Metaphlan3 and GOTTCHA. All 3 (and especially
Kraken2 and Metaphlan3) have a high number of citations and are broadly used by the

scientific community.

After running the classifiers as described in the ‘Materials and methods’ section, we
utilized the following metrics to evaluate their performance: F1 Score, Precision, and

Recall.

We found that MetaPhlAn3, GOTTCHA, and NABAS+ produced the highest F1 scores
(Fig. 10A). As it was previously observed by other studies, Kraken2 tended to produce a
high number of false positives, leading to a lower precision score (Fig. 10B), despite the
applied threshold mentioned in the ‘Materials and methods’ section. It is also important to
point out that Kraken2 often outperformed the other tools in Recall (Fig. 10C), indicating

that it was able to identify more positive true species in the samples.
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5. Examining and re-creating an outlier CAMI Il sample

In the case of one sample of the CAMI Il “human gastrooral” dataset (sample19), we
observed that all our tested classifiers produced low classification accuracy (Figure 10).
The examination of this sample showed that the reference genomes it was created from
were often from the first half of the 2010s, or were of low confidence, while the reference
database of the classifiers likely had more recent, higher quality references for the same
species. We re-created this sample with CAMISIM to see if the low classification accuracy
was due to this discrepancy between genome versions. We theorized that re-creating this
sample with current genomes will improve classification accuracy. For this, we utilized the
same CAMISIM settings as the authors of the original CAMI |l dataset but replaced the

reference genomes with the latest RefSeq reference version.

6. Testing classifiers on the regenerated CAMI |l sample19

Sample name Classifier Precision Recall F1 Score
sample19-new GOTTCHA 0.912 0.646 0.756
sample19-old GOTTCHA 0.688 0.344 0.458
sample19-new Kraken2 0.431 0.969 0.596
sample19-old Kraken2 0.386 0.458 0.419
sample19-new MetaPhlAn3 0.778 0.729 0.753
sample19-old MetaPhlAn3 0.509 0.292 0.371
sample19-new NABAS+ 0.719 0.719 0.719
sample19-old NABAS+ 0.484 0.313 0.380

Table 3 Performance of the classifier on the original and newly generated CAMI |l
sample19
(Takacs et al., 2025)

After running classification on this sample, we observed an increase across all the
classification metrics for all the examined classifiers. This indicates that classification
performance depends not only on algorithmic design but also on the quality and currency

of the reference database.
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7. Testing classifier performance on Zymo standards

So far, we have presented NABAS+’s accuracy on in silico generated datasets. To take
testing a step further, we wanted to measure its accuracy in real-world NGS samples as
well. We used two Illumina sequencing runs of this community, both encompassing the
same eight bacterial species and two fungal species. One sample (Zymo CSI) contained
the bacterial species in equal abundance and the fungal ones in small percentage and
was sequenced for 8.8 million reads, whereas the other had the species with
logarithmically distributed abundances and contained 47.8 million reads (Zymo CSII).On
the Zymo CSI dataset, all classifiers performed well (Figure 11A), with all species
accurately identified and relative abundances close to ground truth; GOTTCHA, Kraken2,
and MetaPhlAn3 found a significant percentage of false-positive species, compared to
NABAS+ that found none. Comparing Bray-Curtis distances showed the same (Table 4):
NABAS+ produced the lowest distance from the original composition of both Zymo sets,

suggesting that it was able to give the most accurate classification out of the classifiers

studied.
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Classifier Zymo CSI Zymo CSlI
GOTTCHA 0.622 0.515
MetaPhlAn3 0.604 0.526

Kraken2 0.73 0.534

NABAS+ 0.594 0.515

Table 4. Bray-Curtis distances between the classifier results and the original
compositions of the Zymo datasets
(Takacs et al., 2025)
Zymo CSII data showed similar results across all four classifiers (Figure 11B). The
logarithmic nature of species abundances may explain why there was little variance in the
Bray-Curtis distances between the classifiers. Kraken2 and MetaPhlAn3 both identified
some species falsely, and though GOTTCHA showed high sensitivity, NABAS+ was still

the classifier that produced the closest value to the ground truth.

The analysis of the Zymo standards served as a crucial link between controlled in silico
experiments and real-world sequencing data. Across both Zymo datasets, NABAS+
consistently achieved the most accurate reconstruction of microbial community
composition, yielding the lowest Bray—Curtis distance to the known ground truth and
producing no false positives. Notably, it successfully detected Enterococcus faecalis at a
relative abundance of only 0.00089%, demonstrating its good sensitivity. These results,
obtained from genuine lllumina sequencing runs rather than simulated reads, confirm that
NABAS+ performs reliably under experimental conditions and is well suited for

subsequent application to clinical stool samples.

8. Demonstrating NABAS+’s utility on a real-world clinical dataset

As mentioned in the Introduction, the use of metagenomics in a clinical setting is not
considered standard practice currently. Because we developed NABAS+ mainly for the
analysis of the human gut microbiome, it is crucial that if we identify pathogens in the
sample, we can be sure about their identity. To demonstrate if NABAS+ was fit for this
purpose, we obtained a dataset from Angel et al., 2025 and analyzed a random subset of

the samples using our own method.
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Eleven of these samples were confirmed as positive for either Salmonella enterica,
Aeromonas veroni, or Campylobacter jejuni, while the other nine tested negative for the

same species (Table 5).

Number of samples = 20 | Positive NABAS+ result Negative NABAS+ result
Positive laboratory test 11 0

result

Negative laboratory test 0 9

result

Table 5. Confusion matrix of the pathogen identification using NABAS+
Laboratory testing was either culturing or PCR-based, as described by Angel et al.
(Takacs et al., 2025)

Our results show that NABAS+ was able to accurately identify the correct pathogen in the
infected samples and did not report any pathogenic species in the negative samples. This
illustrates the potential applicability of NABAS+ in a clinical setting. Taken together, our
findings highlight NABAS+ as a robust and reliable metagenomic classifier that performs
on par with, and in several cases surpasses, currently available tools. Its ability to
combine precision and robustness underscores its potential for integration into clinical

microbiome diagnostics and broader microbiological research.
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VIIl. Discussion

This dissertation highlights the importance of the human microbiome and demonstrates
that the challenges of metagenomic classification remain far from solved. Although
multiple classifiers are available, they often produce highly discordant results when tested
on real metagenomic samples. These discrepancies concern both the number and the
identity of the species classified. As metagenomics is increasingly introduced into clinical

diagnostics, reliable and accurate classification methods are urgently needed.

In our work, we showed that nine of the most commonly used classifiers display
considerable disagreement on real-world stool metagenomic samples. This means that
analysing a sample with multiple tools does not necessarily increase accuracy; rather, it
may introduce additional uncertainty. In research use, post-classification filtering is often
applied to classification results, to filter out false positive hits, but the thresholds of this

are often decided on a case-by-case basis.

These challenges motivated us to develop our own classifier, NABAS+, designed to
minimize false positives by relying on reliable genome assemblies. Unlike most tools,
NABAS+ was developed with the aim of avoiding the need for post-classification filtering,

thereby displaying a robust performance across different sample origins.

Our results demonstrate that NABAS+ performs well both on in silico datasets and real-
world metagenomic standards, and that it can also be successfully applied to clinical
patient data. On our in-house in silico dataset, we observed that NABAS+ consistently
performed well in detecting the correct number of species and showing a high F1 score.
Changing the read numbers did not seem to affect NABAS+, it showed robust

performance on samples ranging from 5*10° to 1*10".

We further benchmarked NABAS+ against the other three classifiers of similar
performance—Kraken2, MetaPhlAn3, and GOTTCHA—using standardized microbial
community datasets. On CAMI Il data, MetaPhlAn3 performed best, while NABAS+ and
GOTTCHA followed closely. Kraken2 showed weaker performance, largely due to high

false positive rates. This illustrates the good performance of our tool on in silico datasets

52



not generated from RefSeq reference genomes, with more complex species distribution
and sequencing error profile than our own.
On Zymo standards, NABAS+ showed good performance, producing no false positives
and yielding the lowest Bray-Curtis distance from the ground truth. Importantly, NABAS+
was also able to correctly identify pathogens in clinical stool samples, underscoring its
utility in real-world diagnostic applications. Beyond the scope of this dissertation,
NABAS+ has already been applied successfully in a clinical study of Crohn’s disease

(Bacsur et al., 2024), further demonstrating its real-world applicability.

Overall, our findings show that NABAS+, a BWA MEM-based alignment classifier, can
produce comparable results, and in some cases performs better than the most popular
metagenomic tools. Our results indicate alignment-based classification methods are
capable of showing good performance when paired with curated databases, despite their
underutilization in recent years. Although alignment-based approaches are dismissed by
some because of their high computational demands, NABAS+ mitigates this limitation
through a carefully filtered reference database. By including only reliable reference or
representative assemblies—one genome per species—the total number of reference
genomes is reduced approximately twentyfold. In addition, dividing the database into
smaller segments further decreases computational requirements, lowering the memory
needed for indexing and alignment by roughly a factor of eight, according to our estimates.
Moreover, unlike other classifiers that depend on clade-specific or marker-based
databases (where creating a new reference database can be computationally intensive
and thus not happen regularly), this split means NABAS+ databases can be easily rebuilt
and updated with new genome versions using simple BWA indexing. We observed that
in the case of GOTTCHA, where some samples had to be ran with lowered thresholds to
produce any results. We believe that this is partly due to the outdatedness of GOTTCHA's

reference database.

Nevertheless, we identified limitations in all classifiers when analysing CAMI Il sample 19,
which was generated from older, less reliable genome assemblies. Recreating the sample
with modern assemblies markedly improved performance, suggesting that certain CAMI

Il datasets may no longer be suitable benchmarks without modernization. This issue is
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likely not unique to CAMI Il and may extend to other in silico benchmarking resources,
reflecting the rapid evolution of metagenomics. We also identified discrepancies between
classifier performance and the quality of widely used benchmarking datasets. Given the
rapid pace of developments in bacterial taxonomy and genome sequencing, our results
suggest that in silico benchmarking datasets should be updated regularly to remain

relevant for classifier evaluation.

Despite its strengths, NABAS+ has certain limitations. Because it relies on a curated
database, it is not suitable for analysing samples dominated by unknown species or for
the discovery of novel taxa. NABAS+ was designed for species-level metagenomic
classification, primarily in the context of the human gut microbiome, and has not been
optimized for non-human or highly diverse environments (e.g., soil, wastewater). Even
though NABAS+ performed well on the in-house generated samples that model such
environments (e.g. CParMed48, Hous31), we suggest the fine-tuning of parameters and

database composition before applying it to environmental samples.

Even though NABAS+ showed robust performance across a broad range of read
numbers, it is important to point out that these findings were limited to controlled
datasets with uniform read quality and distribution. To establish broader conclusions
about minimum read requirements of in real-world applications, further studies are

needed.

Strain level classification is an important task in metagenomics, especially if we intend to
use these methods in clinical practice, as different strains of the same bacterium can have
vastly different effects on human health. Testing our software’s capabilities to distinguish
between different strains or subtypes was beyond the scope of this dissertation. However,

we think that proper database customization could enable this in future.

While this dissertation focused on bacterial communities, NABAS+ also showed promise
for virome analysis, and a eukaryotic reference database is under development.
Additionally, long-read metagenomics has been gaining traction in the recent years, and
we think that, with parameter optimization, NABAS+ could likely be adapted for long-read
sequencing data. Similar alignment-based strategies are already employed in that field
(Li et al., 2021) and there are already classifiers utilizing BWA-MEM (Curry et al., 2022),
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suggesting that NABAS+ could be fine-tuned or extended work in a similar manner.
Collectively, these directions highlight the versatility of NABAS+ and its potential to evolve
into a comprehensive framework for metagenomic classification across diverse

sequencing platforms and organism groups.
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IX. Conclusions

In the described work, | demonstrated the discordance between different, commonly used
metagenomic classifiers and introduced a novel classification tool, NABAS+. NABAS+ is
based on the alignment algorithm BWA-MEM and has a reference database containing
reliable bacterial genomes from the RefSeq database. NABAS+ was written in Java and

is freely available as a stand-alone software.

| created custom in silico datasets to test this software and collected other benchmarking
datasets, including data from the CAMI Il challenge, deeply sequenced microbial mock
communities from Zymo and real-life stool samples containing pathogens, collected in a

hospital environment.

Benchmarking NABAS+ against the mentioned metagenomic classifiers on both in silico
and real-world samples showed comparable performance to the most commonly used
and most accurate classifiers (GOTTCHA, Kraken2, MetaPhlAn3). NABAS+ was
particularly suitable for minimizing the number of false positives and produced the highest

similarity to the deeply sequenced Zymo standards.

We were also able to demonstrate the clinical applicability of NABAS+ on a real-world
dataset, where it was able to find the correct pathogens in the infected samples, while it

did not classify false positives in the non-infected samples.

Overall, we could demonstrate that NABAS+ is a reliable tool not only for research but
also for clinical settings, contributing to improved accuracy and reproducibility in

metagenomic studies and its ability may benefit the broader metagenomic community.
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Xlll.  Magyar nyelvl 0sszefoglalo

Az emberi mikrobiom az emberi szervezettel egyutt €16 mikroorganizmusok 0sszességét
jelenti. Ezen organizmusok szama magasabb, mint a testet felépitd sejtek teljes szama
és jelentés hatast gyakorolnak a szervezetre: pozitiv €s negativ mddon is képesek
befolyasolni annak egészségét. A bél, szajureg, hively és a bér mind sajat mikrobialis
k6zosséggel rendelkeznek, amelynek dsszetétele, diverzitasa szoros dsszefliggésben all
kulonféle élettani és koros folyamatokkal. A mikrobiom vizsgalata ezért az elmult két
évtizedben az orvosbioldgiai kutatasok kozponti tertletéve valt. E fejlédést elésegitette a
nagy ateresztoképességl molekularis biolégiai médszerek megjelenése és elterjedése is.

llyen mdédszerek az ezen munkaban targyalt Ujgeneracios szekvenalasi médszerek is,

mint a 16S- és “shotgun”-szekvenalas, amelyek lehetdvé teszik egy mintaban jelen levé

telies mikrobialis kozdsség egyidejii meghatarozasat. A nagy mennyiségli adat
ugyanakkor az elemzésére alkalmas bioinformatikai technolégiak fejlédését is
szlkségessé tette. Az elmult években szamos olyan szoftver szlletett, amelyeket a
mikrobiom Osszetételének azonositasara fejlesztettek. Ezek pontossaga, referencia-
adatbazisa, szamitasi igénye jelentés eltérést mutat egymastél. Az azonositas
pontossaga kulénésen fontos akkor, ha a metagenomikai modszereket klinikai
koérnyezetben, példaul patogén fajok azonositasara kivanjuk alkalmazni. Ehhez olyan
algoritmusokra van szukség, amelyek a lehet6 legnagyobb pontossaggal képesek
meghatarozni a mintak Osszetételét, minimalizaljak a hamis pozitiv talalatok szamat,

emellett gyorsak és skalazhatoak is.
Doktori munkam soran az alabbi célokat tiztem Kki:

e Egy Uj metagenomikai azonosité algoritmus fejlesztése

e Az algoritmus teljesitményének teszteléséhez szukséges adatsorok el6allitasa és
Osszegydljtése

e Osszehasonlitd tesztelés

e Az algoritmus hatékonysaganak bemutatasa valos klinikai adatokon
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Kilenc mikrobialis azonositasra alkalmas szoftvert valasztottunk ki az 6sszehasonlitashoz,
ezek a kovetkezdk voltak: Bracken, Centrifuge, CLARK, DIAMOND, GOTTCHA, Kaiju,
Kaiju-ws, Kraken2, MetaPhlAn3. A valogatas soran célunk az volt, hogy olyan
szoftvereket valasszunk, amelyek népszerlek a tudomanyos kozosségben és

mikodésuk egymastdl jelentésen eltérd algoritmikus megoldasokat implemental. A kilenc

szoftvert “shotgun” modszerrel szekvenalt emberi széklet mikrobiom mintan teszteltik.

Osszehasonlitottuk a szoftverek altal azonositott baktériumok szamat és identitasat,

illetve azt, hogy egymashoz mennyire hasonlit6 eredményt hoztak.

Sajat azonosité algoritmusunk, a Novel Alignment-based Biome Analysis Software +
fejlesztése soran a f6 szempontok a pontossag és a hamis pozitivok kikliszébdlése volt.
Az algoritmust Java nyelven implementaltuk, kihasznalva annak skaldzhatésagat és

gyorsasagat, programunk igy integralhaté egy nagyobb szoftverbe. Emellett elkészitettlik

a szoftver egy o6nalléan futtathatd “stand-alone” verzidjat is.

Az tesztelést a kovetkez6 adatsorokon végeztik:

e Sajat fejlesztésli in silico adatsorok, 6sszesen 30 minta. A mintak kilénbdzé
emberi szervezetbdl (pl. bél, szajlureg) és a kdrnyezetbdl (pl. varosi park, aszfalt)
gydjtott  mikrobialis kozOsségek Osszetételét modellezi, Osszesen 212

baktériumfajbdl, 5*10°-t61 1*107 terjedd leolvasasi mélységekben.
e Critical Assessment of Metagenome Interpretation Il (CAMI) “toy human gastrooral”

adatsor, 20 minta. Szabadon hozzaférhet6 in silico mintak. Az emberi gasztrooralis
traktus mikrobialis Osszetételét modellez6, metagenomikai kutatasokban
rendszeresen hasznalt adatsor

e Zymo Community Standard | és Il (CSI és CSlI) lllumina szekvenalt adatai, 2 minta.
Kereskedelmi forgalomban elérhet§ standardok, 10, human mikrobiomban is
gyakran el6fordul6 baktérium DNS-ének keverékét tartalmazzak, pontosan ismert
aranyban.

e Klinikai mintak, 20 minta. Shotgun-szekvenalt emberi bél-mikrobiom mintak,

melyek valos kérhazi korulmények kozott voltak gyljtve és patogén-tartalmukat
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laboratoriumi modszerek segitségével is vizsgaltak. Tizenegy minta hordozott

valamilyen patogént (Aeromonas, Campylobacter vagy Salmonella fajokat),

A kilenc vizsgalt program 6sszehasonlitasa kimutatta, hogy ugyanazon mikrobiom mintak
elemzése jelentésen eltéré eredményeket ad, mind a fajok szama, mind azok egyezése
tekintetében, szoftvertdl fuggdéen. Az azonositott fajok identitdsaban alacsony volt az

atfedés.
A NABAS+ teljesitményét tobb szempontbdl vizsgaltuk:

e In silico adatokon a NABAS+ magas pontossaggal hatarozta meg a fajok szamat
és identitdsat. Teljesitménye Osszemérhet§ volt tudomanyos kdzosségben
leggyakrabban hasznalt és tesztlnk altal is legpontosabbnak itélt algoritmusokhoz
(Kraken2, MetaPhlAn3, GOTTCHA). Az 0Osszehasonlitas tovabbi részét a

NABAS+ mellett ezzel a harom szoftverrel végezuik.

« A CAMI Il adatsorokon a NABAS+ kovetkezetesen jo teljesitményt nyuijtott, a
vezetd modszerekkel dsszehasonlithaté eredményekkel. Egy minta (sample19)

Ujrageneralasa tovabb javitotta az azonositas pontossagat.

e A Zymo standardokon a NABAS+ kiemelkedden szerepelt: pontosan detektalta az
alacsony abundanciaju fajokat is, és ez volt az egyetlen szoftver, amely nem
azonositott hamis pozitivokat. A Bray-Curtis tavolsag alapjan a NABAS+

eredményei alltak legkozelebb a valds Osszetételhez.

Klinikai mintakon a NABAS+ pontosan azonositotta a fert6zo6tt mintakban jelen levé

patogéneket, és nem jelzett hamis pozitiv talalatot egészséges mintakban.

Osszefoglalva: kutatdsom soran egy Uj metagenomikai azonosito szoftvert, a NABAS+-t
fejlesztettem ki és validaltam. A NABAS+ teljesitménye a legjobb jelenlegi
algoritmusokkal 0sszemeérhetd, az azonositas soran minimalizalja a hamis pozitivok
szamat. Ez kulondsen nagy jelentéséggel bir a klinikai alkalmazasokban, ahol a téves

azonositas sulyos kovetkezményekkel jarhat.

Eredményeim alapjan a NABAS+ nemcsak kutatasi, hanem klinikai kérnyezetben is
megbizhaté eszkozként alkalmazhat6, hozzajarulva a metagenomikai vizsgalatok
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pontossagahoz és reprodukalhatosagahoz. A szoftver fejlesztése és publikusan

elérhetéve tétele el6segitheti a tudomanyos kdzosség szélesebb korl felhasznalasat is.
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XIV. Summary in English

The human microbiome refers to the community of microorganisms living in association
with the human body. Their number exceeds that of human cells, and they exert
significant influence on the host, they are able to affect health positively and negatively.
Distinct microbial communities inhabit the gut, oral cavity, skin, and vagina, whose
composition and diversity are closely associated with a wide range of physiological and
pathological processes. Consequently, the study of the microbiome has become a focus
of biomedical research over the past two decades. This development has been greatly
facilitated by the emergence and widespread use of high-throughput molecular biology
techniques. Among these, next-generation sequencing methods such as 16S rRNA and
shotgun metagenomics have enabled the simultaneous characterization of entire
microbial communities within a sample. The large volume of data generated by these
techniques, however, has also raised the need for the advancement of bioinformatic
approaches. In recent years, numerous software have been developed for the
classification of metagenomic data, but their accuracy, reference databases, and

computational requirements vary considerably.

Accuracy is particularly critical when metagenomic methods are applied in clinical
contexts, for instance in the identification of pathogenic species. For such applications,
algorithms must provide highly accurate results, minimize false positives, and at the same

time be fast and scalable.

During my doctoral work, the objectives were the following:
o To develop a novel metagenomic classification algorithm
e To generate and collect datasets required for algorithm validation
e To conduct comparative benchmarking against existing methods
« To demonstrate the algorithm’s performance on real clinical data

We selected nine metagenomic classifiers to include in our comparative analysis:
Bracken, Centrifuge, CLARK, DIAMOND, GOTTCHA, Kaiju, Kaiju-ws, Kraken2, and
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MetaPhlAn3. The selection criteria for these software were their popularity in the scientific
community and the diversity of algorithmic approaches they implement. The nine tools
were tested on shotgun-sequenced human stool microbiome samples, and their outputs
were compared in terms of the number and identity of detected bacterial species, as well

as the degree of similarity among results.

Our own classification algorithm, Novel Alignment-based Biome Analysis Software+
(NABAS+), was developed with an emphasis on accuracy and the elimination of false
positives. The software was implemented in Java, exploiting its speed and scalability,
which also ensures integration with other bioinformatic pipelines. In addition, we created

a stand-alone command-line version to facilitate its independent use.
The performance of NABAS+ was evaluated using the following datasets:

e ‘“In-house” in silico datasets (30 samples): These simulated microbial communities
modeled samples from various human body sites (e.g., gut, oral cavity) and
environmental sources (e.g., urban park, asphalt). In total, 212 bacterial species

were included, with sequencing depths ranging from 5x10° to 1x107 reads.

e Critical Assessment of Metagenome Interpretation 1l (CAMI 1) “toy human
gastrooral” dataset (20 samples): A freely available in silico dataset that models
the microbial composition of the human gastrooral tract and is widely used in

metagenomic research.

e Zymo Community Standards | and Il (CSI and CSII, 2 samples): Commercially
available reference standards consisting of DNA from 10 bacterial species

commonly found in the human microbiome, in precisely defined ratios.

e Clinical samples (20 samples): Shotgun-sequenced human gut microbiome
samples collected under real hospital conditions, in which pathogen content had

also been confirmed using laboratory diagnostic methods. Eleven samples

78



contained pathogenic species (Aeromonas, Campylobacter or Salmonella), while

nine were pathogen-free.

The nine classifiers produced strongly discordant results on the real-world metagenomic
samples. The number and identity of detected taxa differed widely between classifiers,

with only limited overlap in species identification.
The performance of NABAS+ was evaluated as follows:

e In silico datasets: NABAS+ accurately determined both the number and identity of
species, achieving performance comparable to the reliable classifiers identified in
our study (Kraken2, MetaPhIAn3, and GOTTCHA). Subsequent comparisons were

therefore restricted to these three leading tools.

o« CAMI Il dataset: NABAS+ consistently produced results comparable to those of
the best-performing methods. Re-generation and -analysis of one outlier sample

(sample19) further improved classification accuracy.

o Zymo standards: NABAS+ performed exceptionally well, accurately detecting low-
abundance species and uniquely avoiding false positive identifications. Based on
Bray-Curtis dissimilarity, NABAS+ produced results closest to the known reference

composition.

e Clinical samples: NABAS+ successfully identified pathogens present in infected

samples and did not report any false positives in healthy samples.

In conclusion, in this study, | developed and validated a novel metagenomic classification
tool, NABAS+. Its performance is comparable to that of the most widely used state-of-
the-art algorithms, while uniquely minimizing false positives during classification. This
property is of particular importance in clinical applications, where misidentification of

pathogens can have serious consequences.

Our results demonstrate that NABAS+ is a reliable tool not only for research but also for
clinical settings, contributing to improved accuracy and reproducibility in metagenomic
studies. The development and public availability of this software may further support its
widespread adoption within the scientific community.
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