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SZÓSZEDET 

ARHs ADP-ribosylhydrolases 

cDNA complementary DNA 

c-Fos Fos Proto-Oncogene, AP-1 Transcription Factor Subunit 

CRISPR clustered regularly interspaced short palindromic repeats 

DDR DNA damage response 

DMEM Dulbecco's Modified Eagle Medium 

DraG dinitrogenase reductase activating glycohydrolase 

DNA deoxyribonucleic acid 

DRB Dichlorobenzimidazole 1-β-D-ribofuranoside 

EGFR epidermal growth factor receptor 

ErbB 2,3,4 Erb-B2 Receptor Tyrosine Kinase 2,3,4 

FBS Fetal Bovine Serum 

GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase 

HER 2,3,4 Erb-B2 Receptor Tyrosine Kinase 2,3,4 

KO Knock out 

MAPK Mitogen-activated protein kinase 

MAR mono ADP ribose 

MEK 1/2 Mitogen-Activated Protein Kinase Kinase 1/2 

mRNA messenger RNA 

mTORC1 Mechanistic Target of Rapamycin Kinase 

MYC MYC Proto-Oncogene, BHLH Transcription Factor 

PARPs Poly(ADP-ribose) Polymerases 

PI3K Phosphatidylinositol-4,5-Bisphosphate 3-Kinase 



qPCR quantitative polymerase chain reaction 

qRT-PCR quantitative reverse transcription polymerase chain reaction 

rRNA ribosomal RNA 

RAF RAF Proto-Oncogene Serine/Threonine-Protein Kinase 

RAS RAS Proto-Oncogene, GTPase 

RT szobahőmérséklet 

RTKs Receptor Tyrosine Kinases 

WT  vad típus  



BEVEZETÉS 

Az ADP-riboziláció egy általánosan előforduló biomolekula-módosító folyamat, amely 

nukleinsavakat és különböző fehérje oldalláncokat érint, és az élővilág valamennyi szintjén 

megtalálható. Az ADP-ribóz monomerek és polimerek képződése számos sejtes folyamatban 

játszik szerepet, többek között a DNS-károsodás válaszában, a kromatin szerkezetének 

szabályozásában, a transzkripcióban és az RNS-feldolgozásban. Mivel reverzibilis 

módosításról van szó, az ADP-riboziláció szigorúan szabályozott három enzimcsalád által: 

ezek a DraG-szerű ADP-ribozil-hidroláz család (ARHs), a makrodomént tartalmazó enzimek 

családja, valamint a „nukleozid-difoszfát, változó oldallánccal” (Nudix) család. A 

makrodomént tartalmazó enzimek az élővilág minden szintjein jelen vannak, és egy erősen 

konzervált ADP-ribóz-kötő doménnel (makrodoménnel) rendelkeznek. Három emberi 

makrodomént hordozó fehérje képes mono-ADP-ribozilált szubsztrátokat hidrolizálni: 

MacroD1, MacroD2 és TARG1. Ezek az enzimek képesek eltávolítani az egyetlen ADP-ribóz 

egységet a fehérjékről, de nem a polimer (PAR) láncot. A TARG1 ezen felül képes hasítani a 

glutamáthoz kapcsolódó PAR észterkötést is. Fontos, hogy a MacroD1, MacroD2 és TARG1 

képesek az ADP-ribóz egység hasítására kettős szálú DNS vagy egyszálú RNS 5’ vagy 3’ 

végéről, így reverzálva a nukleinsavak módosítását. Korábbi vizsgálatok során a TARG1 

interaktomjának feltérképezése kimutatta, hogy a riboszomális fehérjék, valamint az rRNS-

anyagcserével és RNS-kötéssel összefüggő fehérjék jelentették a fő kölcsönható partnereket. 

A TARG1 egyik mutációját olyan pácienseknél azonosították, akik súlyos neurodegeneratív 

tüneteket mutattak, bár a pontos molekuláris mechanizmus egyelőre tisztázatlan. A 

túlexpresszált TARG1 a sejtmagvacskákban (nukleólusz) és a magplazmában is megtalálható, 

és ezek között a kompartmentek között folyamatosan ingázik. Megfigyelések szerint a 

TARG1 a transzkripciósan aktív nukleóluszban akkumulálódik, és szerepet játszhat a 

riboszóma-bioszintézis minőségellenőrzésében. A TARG1 csökkent expressziója a 293T 

sejtek proliferációjának visszaesését, míg a U2-OS sejtek esetében (osteosarcoma eredetű 

sejtvonal) szeneszcencia növekedését idézte elő. Ezek a megfigyelések arra utalnak, hogy a 

TARG1 által érintett sejtes folyamatokat nagyrészt a PI3K/Akt és MAPK jelátviteli utak 

szabályozzák, amelyek kulcsszerepet játszanak a sejtek proliferációjában, 

differenciálódásában, migrációjában és apoptózisában. Ezen útvonalak fölött helyezkedik el 

az EGFR, egy membránhoz kötött glikoprotein, amely az ErbB receptor tirozin-kináz család 

tagja. Az EGFR extracelluláris szignálokat érzékel, majd aktivációja során intracelluláris 

jelátvitelt indít el. Az EGFR számos humán daganatban gyakran mutálódik, vagy túlzottan 



expresszálódik, amit génamplifikáció, pontmutációk vagy in-frame deléciók okozhatnak. 

Korábbi tanulmányok összefüggést mutattak ki az EGFR és az ADP-riboziláció között, 

különösen a DNS-károsodás válasz (DDR) kontextusában. EGFR-t túltermelő sejtek 

érzékenyeknek bizonyultak PARP-gátlószerekkel szemben. Az ADP-riboziláció nemcsak a 

DNS-javítást, hanem az EGFR-jelátvitelhez kapcsolódó ERK1/2 aktivitását is befolyásolja, 

amely szerepet játszik a sejtnövekedés, migráció és túlélés szabályozásában. Továbbá a 

PARP1 gátlása vagy kiütése csökkentette az EGFR expresszióját és foszforilációját is. 

 

A KUTATÁS CÉLJA 

Az EGFR jól ismert és kiemelt terápiás célpont a daganatos megbetegedések kezelésében, 

mivel kulcsszerepet játszik a sejtnövekedés, a migráció, a túlélés, valamint a DNS-károsodás 

válasz (DDR) szabályozásában. Az EGFR-t a gátló szerek elleni szerzett rezisztencia, illetve 

maga a jelátviteli út komplexitása, amelyet pozitív és negatív visszacsatolási hurkok, valamint 

a különböző receptorok közötti kereszt jelátvitel (cross-talk) jellemez, folyamatosan a 

daganatos megbetegedésekkel kapcsolatos kutatások fókuszában tartja. Számos tanulmány 

igazolta, hogy a PARP- és EGFR-gátlók kombinált alkalmazása ígéretes terápiás stratégia 

lehet azon daganatos sejtek esetében, amelyek egyetlen kemoterápiás szerrel szemben 

rezisztenciát alakítottak ki. Ezzel szemben az ADP-ribóz-hidroláz enzimek (amelyek a 

PAR/MAR író enzimek által létrehozott módosításokat képesek visszafordítani) szerepét 

ebben az összefüggésben eddig kevésbé vizsgálták. Jelen kutatás célja az volt, hogy 

feltérképezzük a TARG1 lehetséges szerepét az EGFR expressziójának, aktivitásának vagy 

kapcsolódó jelátviteli útvonalainak szabályozásában. A makrodomént tartalmazó hidrolázok 

közül a TARG1 volt az ideális célpont, mivel ez az egyetlen olyan enzim a három közül 

(MacroD1, MacroD2, TARG1), amely mind mono-, mind poli-ADP-ribozil módosításokat 

képes eltávolítani. Emellett a MacroD1 aktivitása főként mitokondriumban zajlik, míg a 

MacroD2 főként idegrendszeri szövetekben expresszálódik. További célunk volt annak 

meghatározása, hogy létezik-e szignifikáns összefüggés az EGFR és a TARG1 expressziója és 

működése között, és amennyiben igen, ez milyen jelentőséggel bírhat a daganatellenes 

terápiás kutatások szempontjából. 

 

  



ANYAGOK ÉS MÓDSZEREK 

1. Sejttenyészet 

A U2-OS vad típusú és TARG1 knockout (CRISPR/Cas) sejtvonalakat korábban írták le, és 

DMEM táptalajban (LM-D1109 Dulbecco’s Modified Eagle Medium magas glükóz 

tartalommal, L-glutaminnal, nátrium-piruvát nélkül, Biosera Cholet, Franciaország), 10% 

FBS-sel (FB-1090/500 magzati borjú szérum (Dél-Amerika), Biosera Cholet, Franciaország), 

1x NEAA-val (E1154 MEM, Biosera Cholet, Franciaország) és Penicillin/Streptomicin 

készítménnyel (A4118, Biosera Cholet, Franciaország) 37 ℃-on, 5% CO2 mellett, nedvesített 

inkubátorban tenyésztettük. A sejtvonalakat rendszeresen ellenőriztük mikoplazma fertőzés 

szempontjából qPCR alapú módszerrel (MQ-50 MycoQuant Mycoplasma Quantification Kit 

AVIDIN, Szeged, Magyarország). A TARG1 expresszió csökkentésére stabil U2-OS 

sejtvonalat használtunk, amely folyamatosan expresszál egy TARG1 elleni miRNS-t. A stabil 

TARG1 knockdown U2-OS sejtvonalat egy transzposzon-alapú vektor, a pNeo-miR genomba 

integrálásával hoztuk létre, amely constitutívan expresszál egy amiR-t, amely a TARG1 

mRNS GCCCACTGTATCAGTGAGGATT szekvenciáját célozza. Ezt a megközelítést 

korábbi módszerekhez igazítottuk. Röviden, az amiR elemeket a miR-E gerincstruktúrája 

alapján terveztük meg, a vezető szekvenciákat pedig a cél specifitásuk alapján választottuk ki. 

Az amiR szekvenciákat az AgeI/XbaI helyeken klónoztuk be a pNeo-miR vektorba. Ez a 

vektor tartalmazza a Sleeping Beauty (SB) transzposzon elemeket a stabil 

genomintegrációhoz, valamint egy neomicin rezisztencia egységet. A genomintegrált klónok 

szelekciójához 800 µg/ml G418-at (HY-17561, MedChemExpress, Monmouth Junction, NJ, 

USA) használtunk három héten át. Az átmeneti siRNS transzfekciókhoz ON-TARGETplus, 

SMARTpool Human OARD1 siRNS-t (Horizon Discovery; Dharmacon™ Reagents; 

Katalógus szám: L-015886-02-0005) használtunk a TARG1 célzására, Ambion™ 

Silencer™Select Human C20orf133 (s44382, s4480 Ambion, Thermo Fisher Scientific, 

Waltham, USA) MacroD2 célzására, és ON-TARGETplus nem célzó kontroll siRNS-t #1 

(Horizon Discovery; Dharmacon™ Reagents; Katalógus szám: D-001810-01-20) 

kontrollként. 

A sejteket Screenfect siRNS transzfekciós reagenssel (ScreenFect; Cat#S-4001) 

transzfektáltuk a gyártó utasításai szerint, majd a transzfekciót követő 72 órával a lizátumokat 

összegyűjtöttük elemzés céljából. 



2. Western blot 

A sejteket úgy ültettük le, hogy a kezelés idejére 70–80%-os konfluenciát érjenek el. Az 

alapállapotú (basal) mintákhoz a sejteket közvetlenül a konfluencia elérése után gyűjtöttük be. 

A foszfo-EGFR jel detektálásához 4 órára eltávolítottuk a FBS-t, majd 100 ng/ml humán 

EGF-et (h-EGF; E9644 Sigma Aldrich, Saint Louis, MO, USA) tartalmazó tenyésztőközeggel 

egészítettük ki a sejteket a mintavételi időpontokig. A sejtlizátumokat 4%-os SDS lízis 

pufferben (4% SDS, 150 mM NaCl, 5 mM MgCl2, 50 mM HEPES pH 7,4) gyűjtöttük össze. 

A lizátumokat 13 000 rpm-en centrifugáltuk 25 percig, majd a felülúszó fehérjetartalmát 

NanoDrop 2000™ spektrofotométerrel (Thermo Fisher Scientific Inc.) határoztuk meg. 

Azonos fehérjemennyiséget tartalmazó mintákat 9%-os TRIS/Glicin SDS-PAGE gélen 

választottuk szét, majd nitrocellulóz (GE10600004 Amersham Protran Premium 0.2 NC, 

Cytiva, Boston, MA, USA) vagy PVDF membránra (GE10600021 Amersham™ Hybond® P, 

Cytiva, Boston, MA, USA) transzferáltuk 10%-os metanoltartalmú transzfer puffert 

használva. A transzfer hatékonyságát Ponceau S festéssel ellenőriztük. A membránokat 

blokkoltuk 4% gelatin (G7765, Sigma Aldrich) vagy foszfo-blotok esetén 5% BSA-val 

(A7906 Sigma Aldrich) 1 órán át PBST-ben (1x PBS, 0,05% Tween-20). A blokkolást 

követően a membránokat elsődleges antitestekkel inkubáltuk egy éjszakán át 4 ℃-on: anti-

EGFR [EP38Y] (ab52894, Abcam, Cambridge, UK, 1:1000), anti-pEGFR [foszfo Y1068] 

(ab32430, Abcam, Cambridge, UK, 1:8000), anti-GAPDH (PA1-16777, Thermo Fisher 

Scientific Inc., 1:3000) és anti-TARG1 (25249-1-AP, ChromoTek GmbH, Planegg-

Martinsried, Németország, 1:2000). A mosás után a másodlagos antitestet (G-21234, Goat 

anti-Rabbit IgG (H+L), HRP, Thermo Fisher Scientific Inc., 1:10 000) adtuk hozzá blokkoló 

pufferben 1 órára szobahőmérsékleten. A fehérjecsíkokat fokozott kémilumineszcencia (ECL) 

technikával detektáltuk (SuperSignal™ West Pico PLUS Chemiluminescent Substrate, 34580 

Thermo Fisher Scientific Inc.), az Alliance Q9 Advanced képalkotó rendszerrel (Uvitec, 

Cambridge, UK). A jelsűrűséget ImageJ programmal (ImageJ, NIH, Bethesda, MD, USA) 

mértük, és a betöltési kontrollhoz normalizáltuk. 

3. Sejt migráció (wound healing) 

A kísérletet megelőző napon a sejteket Ibidi mikroinzert rendszerrel ellátott lemezekre 

vetettük (3×10⁵ sejt/ml, 70 μl térfogat). Az inzert eltávolítása után a sejteket 37 °C-os, FBS-

mentes DMEM-mel mostuk át, majd a következő körülmények között inkubáltuk: 

szérummentes közeg, 10% FBS-t tartalmazó teljes közeg, illetve 100 ng/ml h-EGF-et 



tartalmazó szérummentes közeg. A sejtmozgást Zeiss Cell Discoverer 7 fluoreszcens 

mikroszkóppal monitoroztuk (5% CO₂, 37 °C), és 30 percenként képeket készítettünk 24 órán 

keresztül ugyanarról a területről. A sebzáródási rátát a következő képlettel számítottuk: 

sebzáródás (%) = [(0h – 24h) / 0h] × 100, 

ahol „0h” a kiindulási sebszélesség, „24h” pedig az ugyanazon helyen mért végső érték. Az 

analízist ImageJ szoftverrel végeztük. 

4. EGFR internalization assay (immunfestés) 

A sejteket fedőlemezekre vetettük és konfluenciáig neveltük. Ezután a tenyésztőközeget 4 

órára szerummentes DMEM-re cseréltük, majd 30 percig 100 ng/ml humán EGF-vel (h-EGF) 

kezeltük. A kezelés után a sejteket PBS-sel mostuk, majd 4% paraformaldehiddel 10 percig 

szobahőmérsékleten fixáltuk. A permeabilizáláshoz PBS 0,2% Triton X-100-t tartalmazó 

oldatban inkubáltuk 10 percig. A blokkolást PBS 0,1% Triton X-100 és 5% FBS tartalmú 

oldatban végeztük 1 órán át szobahőmérsékleten. Ezután az anti-EGFR [EP38Y] antitesttel 

(ab52894, Abcam, Cambridge, UK) a blokkoló oldatban, 1:1000-es hígításban inkubáltuk a 

sejteket egy éjszakán át 4 °C-on. A mosások után háromszor 5 percig PBS 0,1% Triton X-

100-szal mostuk, majd 1 órán át szobahőmérsékleten inkubáltuk a Goat anti-Rabbit IgG 

(H+L) Cross-Adsorbed másodlagos antitesttel, Alexa Fluor™ 488 (A11008, Invitrogen, 

Thermo Fisher Scientific Inc.) 1:500-as hígításban. További mosások után a sejtmagnakot 

Hoechst 33342-vel (H3570, Thermo Fisher Scientific Inc.) 1:10 000-es hígításban festettük. A 

fedőlemezeket ProLong™ Glass Antifade Mountant-tal (P36982, Thermo Fisher Scientific 

Inc.) rögzítettük. A képeket Zeiss LSM 800 konfokális mikroszkóppal készítettük, Plan-

Apochromat 40x/0,95 NA és 20x/0,8 NA levegős objektívekkel, GaAsP PMT detektorral, a 

Zen 2.6 szoftverrel vezérelve. 

5. qRT-PCR 

A sejtek növekedésének korlátozásához a sejteket 24 órán keresztül szérummegvonásos 

körülmények között tenyésztettük, vagy 24 órás szérummegvonást követően további 5 órán 

keresztül 10%-os FBS-t tartalmazó DMEM tápoldatban inkubáltuk őket az RNS izolálása 

előtt. A transzkripció és transzláció gátlásának vizsgálatához a sejteket 75 µM DRB-vel 

(D1916, Sigma-Aldrich, Saint Louis, MO, USA) és/vagy 40 µg/ml cikloheximiddel (CHX, 

C7698, Sigma-Aldrich, Saint Louis, MO, USA) kezeltük 12 órán keresztül. A teljes RNS-t a 

NucleoSpin RNA Kit (740955, Macherey-Nagel) használatával izoláltuk a gyártó utasításai 

szerint. Az RNS koncentrációját NanoDrop 2000 spektrofotométerrel (Thermo Fisher 



Scientific) mértük. Az első szálú cDNS szintézisét 1 μg teljes RNS-ből végeztük RevertAid 

First Strand cDNA Synthesis Kit segítségével (K1622, Thermo Fisher Scientific Inc.). 

Minden qPCR reakció 400 nM koncentrációban tartalmazta az adott génhez tartozó forward 

és reverse primereket, 20-szor hígított cDNS-t, valamint 1x SYBR Select Master Mix-et 

(CFX készülékhez, 4472953, Thermo Fisher Scientific Inc.). A használt primerek a 

következők voltak: 

EGFR:  fwd: 5’- GACTGCTGCCACAACCAGT -3’ 

rev: 5’- CGTGGCTTCGTCTCGGAAT -3’ 

MYC:   fwd: 5’- AGCGACTCTGAGGAGGAACAA-3 

  rev: 5’- CTTCAGACCATTCTCCTCCGG-3’ 

CCND1: fwd: 5’- CCTGTCCTACTACCGCCTCA 

  rev: 5’- CAGTCCGGGTCACACTTGA 

RPL27: fwd: 5’- CGCAAAGCTGTCATCGTG - 3’ 

rev: 5’- GTCACTTTGCGGGGGTAG - 3’ 

A qPCR-t 95 °C-on 2 percig történő denaturálással indítottuk, majd 40 cikluson keresztül 

95 °C-on 5 másodperces denaturálás, valamint 60 °C-on 20 másodperces anneálás és 

elongáció követte. A reakciókat Rotor-Gene Q 2Plex készüléken (Qiagen, Hilden, 

Németország) futtattuk. A Ct-értékeket a Rotor-Gene Q Series 2.3.1 szoftverrel számítottuk. 

A relatív génexpresszió szintjét a következő képlet alapján határoztuk meg: 

dCt = Ct(RPL27) – Ct(célgén). Az átlagértékeket és a hibasávokat három független biológiai 

ismétlés alapján számítottuk ki Microsoft Excel segítségével. 

6. Teljes RNA festés 

A sejteket fedőlemezekre vetettük. A következő naptól kezdve a sejteket 24 órán át 

szérumhiányos közegben tartottuk, majd 10%-os szérumot tartalmazó DMEM-mel 

rekonstituáltuk 5 órán keresztül, vagy 24 órás minták esetén szérummentes DMEM-ben 

hagytuk. Az össz-RNS-t a Cell Navigator Live Cell RNA Imaging Kit (AAT Bioquest, 

Pleasanton, CA, USA) használatával vizualizáltuk a gyártó utasításainak megfelelően. A 

készletben alkalmazott StrandBrite™ RNA Green kiváló RNS-szelektivitással rendelkezik. A 



DNS-t Hoechst 33342-vel (H3570, Thermo Fisher Scientific Inc.) festettük, amelyet PBS-ben 

1:10 000 arányban hígítottunk. A képeket Zeiss LSM 800 konfokális mikroszkóppal 

készítettük, Plan-Apochromat 40X/0,95 NA és 20X/0,8 NA levegős objektívvel, valamint 

GaAsP (gallium-arzén) PMT detektorral, a Zen 2.6 szoftver használatával. A 

nukleocitoplazmatikus RNS-intenzitás arányt a nyílt forráskódú sejtkép-analízis szoftverrel, a 

CellProfiler-rel mértük egy egyedi elemzési folyamat (pipeline) segítségével. Röviden, a mag 

területét a Hoechst csatorna alapján szegmentáltuk. Ezután a sejtek kontúrjait az RNS 

csatornából kiinduló propagációval definiáltuk, kezdve a szegmentált magoktól. A citoplazmák 

a propagált citoplazmatikus területek voltak, melyekből kivontuk a mag területét. A 

nukleocitoplazmatikus RNS-intenzitás arány kiszámításához az RNS csatorna átlagintenzitását 

mértük a citoplazmatikus és magterületeken, majd a citoplazmatikus RNS átlagintenzitást 

elosztottuk az adott mag átlagos RNS-intenzitásával minden szegmentált mag esetében. Az 

adatokat ábrázoltuk, és a statisztikai elemzéseket a GraphPad Prism (GraphPad Software, 

Boston, Massachusetts, USA, www.graphpad.com) programmal végeztük. 

7. SUnSET assay (teljes fehérje szintézis kimutatása) 

Az U2-OS vad típusú, TARG1 knockout és stabil TARG1 knockdown sejtek normál tenyésztő 

közegben vagy 24 órás szérummegvonásos körülmények között kerültek tenyésztésre, majd 

az adott mintákat további 5 órán át szérummal stimulálták. A fehérjeszintézist a SunSET assay 

segítségével detektáltuk. Röviden, 1 µM puromicin (sc-108071C, Santa Cruz Biotechnology, 

Dallas, TX, USA) került hozzáadásra a sejtkultúrákhoz, majd 30 percig inkubáltuk. Negatív 

kontrollként a mintákat 10 percen át 100 µg/ml cikloheximiddel (C7698, Sigma-Aldrich, 

Saint Louis, MO, USA) kezeltük a puromicin hozzáadása előtt. A puromicin kezelés után a 

sejteket PBS-sel mostuk, majd 4%-os SDS lizáló pufferrel lyzáltuk, és a fehérje 

koncentrációját NanoDrop 2000™ spektrofotométerrel (Thermo Fisher Scientific Inc.) 

határoztuk meg. Az egyenlő mennyiségű fehérjéket 10%-os SDS-PAGE gélen választottuk 

szét, majd nitrocellulóz membránra transzferáltuk. A membránokat 3%-os gelatin PBST-ben 

blokkoltuk, majd anti-puromicin egér monoklonális ellenanyaggal (MABE343, Sigma-

Aldrich, Saint Louis, MO, USA, 1:20 000) inkubáltuk, ezt követően HRP-konjugált kecske 

anti-egér IgG (H+L) ellenanyaggal (31432, Invitrogen Thermo Fisher Scientific Inc., 1:10 

000) kezeltük. A fehérje sávokat ECL oldattal (SuperSignal™ West Pico PLUS 

Chemiluminescent Substrate, 34580 Thermo Fisher Scientific Inc.) vizualizáltuk az Alliance 

Q9 Advanced képalkotó rendszerrel (Uvitec, Cambridge, UK). A GAPDH fehérjét töltési 

kontrollként alkalmaztuk. 

http://www.graphpad.com/


8. Sejt ploriferáció (resazurin assay) 

A sejtosztódási vizsgálatokhoz a sejtvonalakat Rapamicinnal (37094 Vetranal analytic standard, 

Merck KGaA, Darmstadt, Németország) és U0126-tal (9903, Cell Signaling Technology Inc., 

Danvers, MA, USA) kezeltük. Minden egyes 96-lyukú tenyésztőlap egy-egy jólébe 1000 sejtet 

ültettünk, majd másnap 100 ng/ml Rapamicint, 25 µM U0126-ot vagy ezek kombinációját 

adtuk hozzá 10%-os FBS-t tartalmazó DMEM közeghez. 72 óra elteltével a tenyésztőközeget 

frissre cseréltük további 72 órára. A gyógyszerek koncentrációja a teljes 6 napos kísérlet alatt 

változatlan maradt. A 6. napon a tenyésztőközeget Gibco™ Leibovitz's L-15 Mediumra 

(fenolvöröset nem tartalmazó, 11540556, Thermo Fisher Scientific Inc.) cseréltük, amely 25 

µg/ml Resazurint (199303, Sigma Aldrich, Saint Louis, MO, USA) tartalmazott, majd 30 percig 

inkubáltuk CO₂ termosztátban. A fluoreszkáló anyagcsere-terméket Bio-Tek Synergy H1 

(Agilent Technologies, Santa Clara, CA, USA) mikroplate olvasóval mértük, 530/590 nm-es 

szűrőkészlettel. Minden minta életképességét a megfelelő genotípusú, kezeletlen 

kontrollmintákhoz normalizáltuk. 

9. Statisztikai kiértékelés 

Az eredményeket az egyes vizsgálatokban legalább három biológiai ismétlés átlaga ± SEM 

értékeként adtuk meg. A statisztikai szignifikanciát a ábrák alatti magyarázatokban leírt módon 

határoztuk meg (p=0,05-öt tekintettünk szignifikáns különbségnek minden elemzésben).  



EREDMÉNYEK 

10. A sejt migráció gyengült a TARG1 kiütött mutánsokban 

Annak vizsgálatára, hogy a TARG1-hiány jelentős hatással van-e a sejtek migrációjára, 

sebfeltöltő (wound healing) vizsgálatot végeztünk TARG1 KO és kontroll, vad típusú (WT) 

sejtvonalakon. A sejteket Ibidi betétekkel ellátott tenyésztőedényekben tenyésztettük 

konfluenciáig, mely betétek eltávolítása után egységes karcolást hoznak létre a sejtrétegben. A 

sejteket szérummentes közegben inkubáltuk a proliferációs hatások minimalizálása érdekében, 

és humán EGF-vel (h-EGF) stimuláltuk, hogy elősegítsük a sejtek migrációját a létrejött résbe. 

A sebzáródást 24 órával a h-EGF hozzáadása után mértük. Kvantitatív elemzés kimutatta, hogy 

a h-EGF-vel stimulált TARG1 KO sejtek jelentősen csökkent migrációt mutattak a WT 

sejtekhez képest, lassabb sebzáródási sebességgel. A 10%-os FBS-t tartalmazó közeggel 

stimulált sejtek pozitív kontrollként szolgáltak, míg a szérummegvonásos körülmények között 

tartott sejtek negatív kontrollként voltak jelen. A pozitív kontroll eredményei mindkét 

sejtvonalban hasonlóak voltak a h-EGF stimulációval kapott eredményekhez, míg a negatív 

kontrollban nem mutatkozott szignifikáns különbség a TARG1 KO és WT között, ami arra utal, 

hogy az észlelt eltérések valóban a migrációnak, és nem a sejtvonalak eltérő proliferációs 

kapacitásának köszönhetők. Ezek az eredmények azt sugallják, hogy a TARG1 szükséges a 

hatékony EGF-által stimulált sejtmigrációhoz. 

11. Az EGFR vezikuláris transzportjában nem volt megfigyelhető szignifikáns 

különbség a vad típusú és TARG1 kiütött mutáns sejtek között 

A következő lépésben receptor internalizációs vizsgálatot végeztünk, hogy megfigyeljük, 

mutat-e eltérést a TARG1 mutáns sejtvonal az internalizáció sebességében vagy az EGFR 

receptor vezikuláris traffickings dinamikájában (a jel specifikus sejtszekréció körüli 

akkumulációja, a jelintenzitás változása időben). A sejteket szérummegvonás után 30 percig 

humán EGF-vel stimuláltuk, majd a mintákat fixáltuk, és immunfestést végeztünk az EGFR 

intracelluláris doménjének epitóp-specifikus antitestével mind a szérummegvonásos, mind a 30 

perces stimulációs mintákon. A vad típusú és TARG1 mutáns sejtek nem mutattak eltérést az 

internalizáció dinamikájában a kísérlet során, kivéve, hogy a TARG1 knock out sejtvonal 

alacsonyabb jelintenzitást mutatott. Ez az adat arra engedett következtetni, hogy az EGFR 

aktivációja és internalizációja során a receptor vezikuláris traffickings nem mutatott akkumulált 

visszatartást vagy gyorsított degradációt, valamint nem volt megfigyelhető változás a 

traffickings útvonalában sem a sejtszervecskék felé a vad típusú és a TARG1 knock out mutáns 

között. 



12. A TARG1 kiütött és csendesített sejtek lecsökkent EGFR fehérje szintet mutattak 

Mivel az immunfestéses (IF) kísérletek során az egyetlen különbség az alacsonyabb 

jelintenzitás volt, a következő lépésként a receptor kifejeződési szintjét és aktivitási állapotát 

western blot vizsgálattal ellenőriztük. Mind az összes, mind a foszforilált EGFR fehérjeszintet 

kvantifikáltuk a vad típusú (WT) és TARG1 KO sejtek teljes sejtlízátumaiból. Az eredmények 

csökkent összes EGFR fehérjeszintet és a receptor foszforilációjának mérséklődését mutatták a 

TARG1 KO sejtekben. Azonban, amikor a foszfo-EGFR szinteket az összes EGFR-hez 

normalizáltuk, nem észleltünk szignifikáns különbséget a vad típusú és a TARG1 KO sejtek 

között. A TARG1 EGFR-szintekre gyakorolt hatásának megerősítésére további kísérleteket 

végeztünk stabil miRNS-expressziós (TARG1 KD) és tranziens siRNS transzfekciós 

módszerekkel, amelyekkel a vad típusú sejtekben elnémítottuk a TARG1 kifejeződését. Mind a 

stabil miRNS-expressziós TARG1 KD sejtvonal, mind a siRNS-es TARG1 némítás 

csökkentette az EGFR fehérjeszintjét, bár kisebb mértékben, mint a TARG1 KO esetén. Ezek 

az eredmények alátámasztják a korábbi migrációs vizsgálat eredményeit, mivel a TARG1 knock 

out sejtvonal csökkentett receptor szintje miatt kevesebb jel érkezik a sejt extracelluláris 

teréből, ezáltal csökken a jelintenzitás, amely aktiválja azokat az útvonalakat, amelyek 

szabályozzák a sejtek migrációs képességét. 

13. Fokozott RNS forgalom volt megfigyelhető a TARG1 kiütött sejtekben 

Annak vizsgálatára, hogy a TARG1 KO sejtekben megfigyelt EGFR fehérjeszint csökkenése 

kísérő változásokat eredményez-e az mRNS szinten is, megmértük az EGFR mRNS 

expresszióját vad típusú (WT) és TARG1 KO sejtekben. A sejteket 24 órán át 

szérummegvonás kezelésnek vetettük alá, majd 5 órás regenerálódási időszak következett, 

amely alatt a tenyésztőközeg 10%-os FBS-t tartalmazott. Kvantitatív RT-PCR (qRT-PCR) 

elemzés kimutatta, hogy mindkét körülményben az EGFR mRNS szintje jelentősen 

alacsonyabb volt a TARG1 KO sejtekben a WT-hez képest. Érdekes módon, míg a WT sejtek 

EGFR mRNS szintje a 5 órás regenerálódás alatt nem változott jelentősen, a TARG1 KO 

sejtekben ebben az időszakban szignifikáns növekedés volt megfigyelhető, habár a szérum 

indukálta génexpressziós változások nem csökkentették az EGFR mRNS alacsonyabb szintjét 

a TARG1 KO sejtekben. 

Az EGFR jelátvitelt a génexpresszió szintjén vizsgálva megmértük két EGFR-célgén, a MYC 

és a ciklin D1 (CCND1) mRNS szintjének változását szérum stimuláció hatására. A MYC 

transzkripcióját az EGFR a MAPK útvonalon keresztül szabályozza. A CCND1 expresszióját 



több, az EGFR jelátviteli útvonal alsóbb szintű effektorainak tekinthető transzkripciós faktor 

szabályozza, többek között a MYC proto-onkogén és az AP-1 transzkripciós faktor komplex, 

amely Jun és c-Fos fehérjékből áll. A MYC mRNS szintje jelentősen megnőtt mind WT, mind 

TARG1 KO sejtekben szérum stimuláció hatására. Ezzel szemben a CCND1 mRNS szintje 

jelentősen emelkedett a vad típusú sejtekben, míg a TARG1 KO sejtekben ez az emelkedés 

nem volt szignifikáns. Érdemes azonban megjegyezni, hogy szérum stimuláció után a CCND1 

mRNS szintje nagyon hasonló volt WT és TARG1 KO sejtekben, és a különbség inkább a 

szérummegvonásos állapotban mutatkozott meg, ahol a TARG1 KO sejtek CCND1 mRNS 

szintje nem csökkent a WT-ben megfigyelthez hasonlóan. Összességében ezek az eredmények 

arra utalnak, hogy az EGFR jelátvitel nem sérül a génexpresszió szintjén TARG1 hiányában, 

függetlenül az EGFR fehérje szint csökkenésétől. Az EGFR mRNS csökkenése a TARG1 KO 

sejtekben ösztönzött minket arra, hogy tovább vizsgáljuk az mRNS stabilitását, valamint a 

transzkripció és a transzláció esetleges szerepét a szabályozásban. Ehhez 

Dichlorobenzimidazole 1-β-D-ribofuranoside-t (DRB) alkalmaztunk az RNS-polimeráz II 

általi transzkripció gátlására, valamint cikloheximidet (CHX) a transzláció elongációjának 

blokkolására, és megmértük ezek egyéni és kombinált hatását az EGFR, MYC és CCND1 

mRNS szintjeire. Normál tenyésztőközegben az EGFR mRNS szintje szignifikánsan 

alacsonyabb volt TARG1 KO sejtekben a WT-hez képest. Ezt alátámasztották az EGFR 

mRNS mérések siRNS transzfekcióval TARG1 némított sejtekben. A transzkripció 12 órás 

gátlása mind a vad típusú, mind a TARG1 KO sejtekben csökkentette az EGFR mRNS 

szintjét, azonban az EGFR mRNS csökkenése nagyobb volt TARG1 KO sejtekben. Míg a 

CCND1 mRNS szintje csak a TARG1 KO sejtekben csökkent. A MYC mRNS szintek 

enyhén, de nem szignifikánsan emelkedtek mindkét sejtvonalban transzkripció gátlás esetén, 

ami az mRNS lebomlás és a transzkripció közötti bonyolult visszacsatolásra utal. A 

transzláció gátlása CHX-szel mind WT, mind TARG1 KO sejtekben megnövelte a MYC 

mRNS szintjét. Érdekes módon, az EGFR mRNS szintek közötti különbség a WT és TARG1 

KO között megszűnt, amikor a transzláció gátolt volt, ami arra utalhat, hogy a TARG1 

transzlációs szabályozáson keresztül hat. Ugyanakkor, amikor a transzkripciót és transzlációt 

egyszerre blokkoltuk, mindhárom vizsgált gén mRNS szintje szignifikánsan nagyobb 

mértékben csökkent TARG1 KO sejtekben, mint WT-hez képest a csak CHX-vel kezelt 

állapotokhoz képest. Összességében ezek az eredmények arra utalnak, hogy a TARG1 hiánya 

csökkenti az mRNS-ek stabilitását és fokozza az mRNS lebomlást. 



14. TARG1 függő szabályozása az RNS eloszlásnak és transzlációnak 

Annak a hipotézisnek a tesztelésére, miszerint a TARG1 részt vesz az RNS-anyagcserében, 

ahelyett, hogy csak néhány specifikus, ugyanazon úton szabályozott gén mRNS szintjét 

vizsgáltuk volna, teljes RNS festést végeztünk a sejtvonalakon, amely lehetővé tette a teljes 

RNS szintek esetleges változásainak gyors és egyszerű megfigyelését. Az általunk használt 

festék kifejezetten RNS-re szelektív volt, miközben alacsony háttérfestést okozott a DNS-en 

(a DNS-t Hoechst festékkel előfestettük, hogy relevánsabb eredményeket kapjunk). 

Kísérleteinkben ugyanazt a beállítást alkalmaztuk, mint a qRT-PCR méréseknél, azaz a 

sejteket 24 órán át szérummegvonásos kezelésnek vetettük alá, majd 5 órán át 10%-os 

szérummal stimuláltuk őket. Megfigyeltük, hogy a TARG1 mutáns sejtvonalakban a teljes 

RNS szint szignifikánsan magasabb volt a magban 24 órás szérummegvonás után, és 

ugyanilyen tendencia figyelhető meg az 5 órás szérum stimuláció után is. A citoplazmatikus 

területen 24 óra után nem mutatkoztak jelentős különbségek a sejtvonalak között, de az 5 órás 

szérum stimulációt követően a vad típusú sejtekben a teljes RNS szint jelentősen magasabb 

volt, mint a TARG1 mutáns sejtvonalakban. Annak érdekében, hogy pontosabb képet kapjunk 

a teljes RNS eloszlásáról a mag és a citoplazma között a különböző kezelések során, 

kvantifikáltuk az RNS citoplazmatikus és magi eloszlását, ahol a citoplazmatikus RNS 

intenzitást elosztottuk a magi RNS intenzitással. A vad típusú sejtekben a szérum stimuláció 

szignifikánsan növelte a citoplazmatikus/magi RNS arányt, ami az RNS újraeloszlását jelzi a 

magból a citoplazmába, ami a transzláció újraindulásával járhat. TARG1 KO sejtekben a 

szérummegvonás után nem szignifikáns csökkenést figyeltünk meg a citoplazmatikus/magi 

RNS arányban a WT sejtekhez képest, amely csak enyhén emelkedett az 5 órás szérum 

stimuláció során. A miRNS-indukált TARG1 KD azonban jelentősen csökkentette az RNS 

újraeloszlását a magból a citoplazmába a szérum stimulációt követően a WT sejtekhez 

viszonyítva, továbbá a szérum stimuláció alatt mért citoplazmatikus/magi arány 

szignifikánsan alacsonyabb volt a WT-hez képest. Ezek az eredmények arra utalnak, hogy a 

TARG1 expressziós szintje szerepet játszhat az RNS érésében, stabilitásában és exportjában. 

Annak megállapítására, hogy az RNS eloszlásában bekövetkezett változások összefüggésben 

állnak-e a transzláció változásaival, elvégeztük a SUnSET tesztet, amely újonnan szintetizált 

fehérjéket mutat ki rövid puromicin impulzus bejuttatásával, amit anti-puromicin antitesttel 

detektálnak. Kontrollként a WT és TARG1 KO sejteket vagy csak puromicinnel kezeltük, 

vagy előkezeltük a transzlációs gátló cikloheximiddel (CHX), majd a puromicin beépülést 

Western blot segítségével elemeztük. A puromicin hatékonyan jelöli az újonnan szintetizált 



fehérjéket, míg a transzláció gátlása megakadályozza a puromicin beépülését. Érdekes módon 

a puromicin jelölés fokozott transzlációt mutatott a TARG1 KO sejtekben a WT-hez képest. 

Ezután megvizsgáltuk, hogy a szérummegvonás, majd szérum stimuláció milyen hatással van 

a transzlációra WT, TARG1 KO és TARG1 KD sejtvonalakban. Normál tenyésztési 

körülmények között mind a TARG1 KO, mind a KD sejtvonalakban fokozott puromicin 

jelölést figyeltünk meg a WT-hez képest. A 24 órás szérummegvonás alig befolyásolta a WT 

sejtek transzlációját, míg a TARG1 KO és KD sejtek transzlációja a WT szintjére csökkent. 

Az 5 órás szérum stimuláció hatására a WT és TARG1 KO sejtekben megnőtt a transzláció, 

amit a fokozott puromicin jelölés mutatott, de ez a fokozódás nem volt megfigyelhető a 

TARG1 KD sejtekben. Ezek az eredmények a WT-hez képest emelkedett transzlációs szintet 

mutatnak TARG1 KO és KD sejtekben, ami további bizonyíték arra, hogy a TARG1 szerepet 

játszik a transzláció szabályozásában. 

15. TARG1 mutáns sejtvonalak nagyobb érzékenységett mutattak a vad típusnál 

MEK1/2 gátlószerrel szemben 

A transzlációt és a transzkripciót két fő jelátviteli útvonal szabályozza, a PI3K/mTOR és a 

Ras/Raf/MEK/ERK utak. Célunk annak vizsgálata volt, hogy a sejtosztódásra milyen hatással 

van a TARG1 expresszió megváltozása specifikus útvonalgátlókkal történő kezelés után. A 

sejteket rapamicinnel, az mTOR gátlóval, valamint U0126-tal, a MEK1/2 gátlóval kezeltük 

önmagukban, illetve kombinációban. A rapamicinnel történő kezelés önmagában nem 

eredményezett szignifikáns különbséget a WT és a TARG1 KO sejtek életképességében. 

Ugyanakkor az U0126 mind a TARG1 KD, mind a KO sejtekben nagyobb mértékben 

csökkentette az életképességet, mint a vad típusú sejtekben. Érdekesség, hogy az U0126 és a 

rapamicin együttes alkalmazása csak a WT sejtek érzékenységét növelte, így megszüntette a 

WT és a TARG1 KO sejtek közötti különbséget a MEK1/2 gátlásra adott válaszban. A 

TARG1 KD sejtek MEK1/2 és mTOR gátlásra adott érzékenysége gyakorlatilag megegyezett 

a TARG1 KO sejtekével. 

Ezek az eredmények arra utalnak, hogy a TARG1 hatással lehet egy olyan szabályozó 

célpontra, amely a PI3K/mTOR és a Ras/MEK/ERK útvonalak közötti keresztbeszédben vesz 

részt, potenciálisan az mTOR aktivitás modulálásán keresztül. 

  



ÖSSZEFOGLALÓ 

A poszttranszlációs módosítások kulcsfontosságú szabályozó elemei különböző enzimatikus 

aktivitásoknak és más biomolekulák stabilitásának, dinamikájának, valamint interakcióinak a 

sejtekben. Az elmúlt években kimutatták, hogy az ADP-riboziláció, mint poszttranszlációs 

módosítás, nemcsak a fehérjék különböző aminosav-csoportjait módosítja, hanem 

nukleinsavakat is, ami még összetettebbé tette a PARP enzimcsalád kutatásának területét, 

szélesebbkörű szerepét reprezentálva a már jól ismert DNS hibajavításban betöltött szerepén 

kívül. A család polimeráz aktivitású enzimei mellett az ADP-ribóz módosításokat eltávolító 

hidrolázok is rendkívül fontosak, mivel képesek visszafordítani a polimerázok által végzett 

módosításokat, ezzel megszüntetve az adott jelet (aktiváló vagy deaktiváló), vagy segítve egy 

ciklikus, folyamatos jel újraírását egy célmolekulán. A közelmúltban végzett kutatásaink során 

a TARG1 nevű ADP-ribóz-hidroláz enzim szerepét vizsgáltuk egy ismert, proto-onkogén 

fehérje, az EGFR expressziós profiljának szabályozásában U2-OS oszteoszarkóma 

sejtvonalban. “Wound healing” kísérlettel kimutattuk, hogy a TARG1 gén kiütött sejteknek 

gyengébb volt a sejtmigrációs képessége. Western blot és RT-qPCR kísérleteink bizonyították, 

hogy a TARG1 mutánsokban az EGFR expressziója alacsonyabb volt, mind a fehérje, mind az 

mRNS szinten, valamint immunfestéssel kimutattuk, hogy a receptor endocitózisa és 

endoszomális eloszlása aktivált állapotában nem különbözött a vad típusú sejtektől. Továbbá, 

annak ellenére, hogy a ligand általi aktiválásakor a foszforilált (aktív) receptor mennyisége 

alacsonyabb volt (amely lineáris összefüggést mutatott a receptor fehérje mennyiségének 

expressziójával a sejtvonalakban), a TARG1 mutánsok nem mutatták a receptor célgénenek 

nagy mértékű deficiens transzkripciós szabályozását (CCND1, MYC). Másrészt, specifikus 

inhibitorokkal végzett transzkripciós és/vagy transzlációs gátlás során instabilabb mRNS 

szinteket mértünk az idő függvényében a TARG1 KO-ban. Ez az eredmény megerősítette eddigi 

következtetéseinket, amelyet RNS-specifikus jelölővel végzett festéssel, ahol az RNS forgalom 

citoplazma és mag közötti aránya, valamint puromycin specifikus western blottal (amely a 

globális transzlációs profilt vizsgálta) támasztottunk alá, szignifikáns különbségeket mutatott a 

sejtvonalak között. Ezekből a kísérletekből arra a következtetésre jutottunk, hogy a TARG1 

szabályozó szerepet játszik RNS biogenezisben mind poszt-transzkripcionális, mind 

transzlációs szinten. Továbbá, a TARG1 mutánsok sejt proliferációs vizsgálatai érzékenységet 

mutattak MEK inhibitorral való kezelésre, de nem mutattak mTORC1inhibítor esetében (RNS 

biogenezis fő enzimatikus szabályozó útvonalai), ami arra utal, hogy a TARG1 szerepet játszhat 

a RAS-RAF-MEK-ERK/AKT-mTOR közös szabályozási útvonalon. Összességében adataink 



erősen arra utalnak, hogy a TARG1 szabályozó szerepet játszik az RNS biogenezisben, és ezzel 

együtt az EGFR szintjének szabályozásában az U2-OS sejtvonalakban.  
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