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Chapter 1

Introduction

Communication extends far beyond the words we speak. In every human interaction,
many non-verbal cues accompany our verbal expressions. For example, the tone of
our voice, temporal dynamics, and the subtle intonations that broadcast emotions,
intent, speaker state and meaning. While these acoustic cues have been fundamen-
tal to human communication throughout our evolutionary history, the computational
analysis of paralinguistic information represents a relatively recent yet rapidly ad-
vancing field in speech technology. However, despite rapid advances in machine
learning and speech processing, the field of computational paralinguistics lacks uni-
fied methodological frameworks that can reliably generalise across different tasks,
languages, and datasets.

This current work addresses fundamental challenges by systematically investigat-
ing feature extraction methodologies and architectural design choices in computa-
tional paralinguistics. Through a comprehensive analysis of traditional, hybrid, and
State-of-the-Art approaches, this thesis aims to establish global guidelines for specific
algorithmic choices. The research encompasses three interconnected methodological
streams: I. Traditional Feature Extraction Methods (Bag-of-Audio-Words), II. Hybrid
Approaches (HMM/DNN Integration), and III. Deep Learning Techniques (Sequence-
to-Sequence Autoencoder and Wav-to-Vec 2.0 Neural Network). These experiments
collectively address the critical need for robust, generalisable solutions in computa-
tional paralinguistics while providing practical guidelines for researchers and devel-
opers working across diverse paralinguistic applications.

The thesis is organised into three main chapters, each representing a key thesis
point. The datasets, methods, experiments, and results discussed in this thesis have
been detailed in the earlier works of the authors. Table 1.1 highlights how these
works relate to the specific thesis points.

The thesis is structured into four main chapters. Chapter 2 briefly outlines some
of the most important fundamental concepts relevant to multiple parts of this the-
sis, including the technical challenges of working with small corpora and variable-
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[94] [55] [92] [91] [93] [96] [90] [46] [95]
I/1. • •
I/2. • •
I/3. •
II/1. •
III/1. • •
III/2. •

Table 1.1: The relation between the theses and the corresponding publications

length utterances, the databases employed throughout the research, and the evalua-
tion methodologies used across various experiments.

The first part in Chapter 3 describes the results of our work in traditional fea-
ture extraction methodologies, focusing on the Bag-of-Audio-Words (BoAW) tech-
nique. This chapter provides an understanding of how traditional machine learning
approaches handle paralinguistic tasks and why parameter optimisation is crucial
for achieving robust performance. The chapter’s main contributions include system-
atic parameter optimisation strategies, demonstration of corpus independence capa-
bilities, and methods for handling the stochastic nature of clustering-based feature
extraction.

The second part in Chapter 4 investigates hybrid methodologies that combine
traditional statistical methods with modern deep learning approaches. It provides
a detailed analysis of the HMM/DNN hybrid system. It explains why selecting the
proper aggregation strategy is fundamental to achieving optimal performance. The
chapter aims to provide a comprehensive understanding of how traditional Hidden
Markov Models can be effectively combined with Deep Neural Networks for paralin-
guistic feature extraction, bridging the gap between traditional and State-of-the-Art
approaches.

The third part in Chapter 5, dealing with State-of-the-Art Deep Neural Network
methodologies. It describes how modern deep learning approaches, specifically the
Sequence-to-Sequence Autoencoder and Wav-to-Vec 2.0 Neural Network models, can
be optimised for paralinguistic tasks. The chapter includes experiments in audio pre-
processing optimisation and advanced aggregation strategies. It establishes guide-
lines for different architectural choices and demonstrates how proper preprocess-
ing and aggregation techniques can significantly improve classification performance
across diverse paralinguistic tasks.

These findings address real-world constraints, including limited computational re-
sources, small dataset sizes, and the need for cross-corpus generalisation. These chal-
lenges are particularly relevant for different paralinguistic applications, edge comput-
ing deployment, and rapid prototyping scenarios. The thesis concludes with a final
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part that contains comprehensive summaries in both English and Hungarian. It is
a detailed description of the thesis points and a comprehensive list of the author’s
contributions and publications related to this research.

1.1 Contributions

The ideas, figures, tables and results included in this thesis were published in scien-
tific papers (listed at the end of the thesis). The author has the following contribu-
tions presented in this chapter:

Chapter 3.:

I/1. The author implemented the Bag-of-Audio-Words feature-extraction pipeline
for emotion recognition, including parameter optimisation for preprocessing,
codebook generation, quantisation, and feature transformation. She has taken
care of the experimental setup, ensuring speaker-independent evaluation and
systematic testing of parameter ranges such as codebook size, neighbour count,
clustering algorithms, and delta feature computation. The author performed
data preparation, feature extraction using openSMILE and openXBOW, and in-
tegrated the output into SVM-based classification. She conducted multiple iter-
ations of experiments to analyse the effect of each parameter on classification
accuracy, performed statistical comparison of configurations, and identified op-
timal parameter settings, while also documenting the findings.

I/2. The author implemented an experimental framework for analysing corpus in-
dependence in Bag-of-Audio-Words feature extraction. She preprocessed the
three different databases, constructed cross-corpus codebooks, and ran system-
atic tests with an emotion recognition task, while documenting all the results
and conclusions.

I/3. The author implemented the experimental framework for the stochastic vari-
ability of Bag-of-Audio-Words feature extraction, while documenting all of the
results. She developed an infrastructure for repeated feature extraction with
multiple random seeds. The author implemented various aggregation strate-
gies and addressed the data dimensionality issue using Principal Component
Analysis.
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Chapter 4.:

II/1. The author implemented an aggregation pipeline, which included various ag-
gregations, feature transformations, and classification. She has taken care of
this experimental setup, ensuring systematic testing in different databases. The
author performed data preparation and integrated the output into SVM-based
classification. She conducted multiple iterations of experiments to analyse the
effect of layers and aggregations. She performed the comparison of configu-
rations and identified optimal parameter settings while also documenting the
findings.

Chapter 5.:

III/1. The author implemented a classification pipeline that included various predic-
tion-level aggregations and feature transformations. Based on already calcu-
lated posterior values, she has taken care of this experimental setup, ensuring
systematic testing. The author performed data preparation and evaluated the
posteriors. She conducted multiple iterations of experiments to analyse the
effect of noise reduction and aggregations. She performed a comparison of
configurations, identifying optimal noise reduction settings and aggregation
techniques, while also documenting her findings.

III/2. The author implemented the classification pipeline, which included various
aggregations and feature transformations. Based on already calculated frame-
level feature vectors, she has taken care of the experimental setup, ensuring
systematic testing in different databases. The author performed data prepara-
tion and integrated the output into SVM-based classification. She conducted
multiple iterations of experiments to analyse the effect of aggregation method-
ologies and the features given by different layers. She performed a compari-
son of configurations, identifying optimal layer settings and aggregation tech-
niques, while also documenting her findings.



Chapter 2

Fundamentals

2.1 Paralinguistics

“Paralinguistic: Connected with the ways in which people show what
they mean other than by the words they use, for example by their tone of
voice, or by making sounds with the breath.” – Cambridge Dictionary

Computational Paraliguistics refers to the study of non-verbal communication
cues that accompany speech, such as tone, pitch, volume, and speed. These ele-
ments can convey emotions, intentions, and meanings that words alone may not
fully express. [72]

In the early stages of speech processing, initial research was primarily focused on
creating systems for speech recognition, which aimed to transcribe spoken language
into written text. However, in the 1990s, the introduction of paralinguistic con-
cepts gained momentum as researchers started to recognise the significance of non-
linguistic cues in human communication and the rich information embedded in the
way we speak. They explored concepts such as emotion recognition, speaker identi-
fication, speaker verification, analysis of prosodic characteristics, health conditions,
and inspection of other speaker traits. This marked the beginning of computational
paralinguistics as a distinct field within speech processing. The interdisciplinary na-
ture of computational paralinguistics has fostered collaborations between linguists,
computer scientists, psychologists, and healthcare professionals. [72]

Nowadays, computational paralinguistics is an interdisciplinary field that focuses
on analysing and understanding the non-linguistic aspects of human communication,
such as

• speaker recognition and diarisation (“who’s speaking when”) [32],
• speech compression [51],
• cognitive load measurement [23, 89],
• detecting Parkinson’s disease [42, 44, 98]

11



12 Fundamentals

• detecting Alzheimer’s disease [10, 64, 66],
• identifying Multiple Sclerosis symptoms [101],
• assessing the level of depression [15],
• recognising age, gender [68]
• recognising emotion [59, 105],
• identifying laughter events [22],
• estimating the degree of sleepiness [13]
• estimating conflict intensity [28],
• detecting whether the speaker is intoxicated [5]

Some of the trends focus on handling more tasks simultaneously to investigate
task interdependencies, developing large and varied datasets, optimising features,
and fusing linguistic and non-linguistic information. Overall, the ability to automati-
cally process these non-verbal cues has opened up new possibilities for more natural
and effective human-machine interaction, with applications ranging from healthcare
support to security systems and personalised user experience. [77]

In this thesis, the primary focus is on feature extraction in the context of compu-
tational paralinguistics, which serves as a crucial step in paralinguistic analysis. Both
traditional and non-traditional methodologies are commonly used for this purpose.

Traditional approaches often involve hand-crafted feature extraction, rule-based
methods and early machine learning algorithms [68, 72, 85]. These methods, such
as calculating Mel-Frequency Cepstral Coefficients (MFCC) and Bag-of-Audio-Words
(BoAW), have been used for a long time to capture acoustic features. Traditional
methodologies can outperform end-to-end DNNs in low-resource environments (such
as in many paralinguistic use cases) [22, 82, 89]. When Deep Neural Networks are
not an option, either due to data limitations, annotation scarcity, or infrastructure
constraints, then traditional methods provide robust and practical solutions. This
makes these methods a good choice for rapid prototyping, testing, and deployment
in real-world and edge environments.

At the same time, State-of-the-Art (SotA) methodologies take advantage of deep
learning techniques to automatically learn representations from data. Newest mod-
els, such as Sequence-to-Sequence Autoencoder (Seq. Autoencoder) [90] and X-
Vector Neural Network (X-Vector) [14], or self-supervised models like Wav-to-Vec 2.0
Neural Network (Wav2Vec 2.0) [95], have revolutionised feature extraction by learn-
ing contextual embeddings directly from raw audio. These solutions may outper-
form traditional methods if sufficient data and computational resources are available.
While traditional methods and deep learning approaches each have their strengths
and weaknesses, there’s a growing trend towards using DNNs for feature extraction,
particularly with pre-trained models. However, the field currently lacks consensus,
with solutions often being database and topic-dependent. Additionally, hybrid ap-
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proaches, such as combining a traditional Hidden Markov Model (HMM) with Deep
Neural Network (DNN), have demonstrated resource-efficient solutions [13, 50, 80].
Whether traditional or SotA solutions are best depends on the paralinguistic task at
hand.

2.2 Technical Challenges

Computational paralinguistics involves several technical challenges. These challen-
ges arise from the complexities involved in accurately capturing and interpreting the
nuanced elements of human speech. In addition, the integration of diverse data
sources and the necessity for robust algorithms to process and analyse this data high-
light the development of effective paralinguistic models.

2.2.1 Small Corpora

One of the significant challenges in computational paralinguistics is dealing with
small corpora or limited amounts of labelled data. As the analysis of data often
requires large and diverse datasets, the lack of samples poses a major difficulty in
training robust and accurate models. One reason for this is that each use case usually
requires specific recording protocols and annotations. It means that usually there are
just a few hundred (or at most, a few thousand) examples for a particular subtopic
or class. There are different strategies, such as data augmentation, transfer learning,
or domain adaptation, that can help mitigate this effect.

Furthermore, careful experimental design and validation procedures are essen-
tial in each paralinguistic task. Commonly, the optimal hyperparameters of a model
depend on the current database and the paralinguistic topic being studied. The prob-
lem is that each database has different characteristics, such as variations in speaking
styles, recording quality, and noise levels. Hence, the optimal hyperparameters for
different databases and use cases are mostly not the same, and task interdependen-
cies always require further research. The choice of hyperparameters can significantly
impact the model’s accuracy, robustness, ability to generalise to unseen data and per-
formance on different paralinguistic tasks. This means we are highly dependent on
the quality of the research databases, and it is challenging to create a solution that
performs as well in real-life scenarios as it does in the experimental setup.

2.2.2 Variable-Length Utterances

Another crucial technical challenge in computational paralinguistics is getting a fixed-
sized feature vector from variable-length speech segments. In computational par-
alinguistics, we aim to assign a single label output (classification or regression) to
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Figure 2.1: Creating fixed-sized feature vectors from varying-length utterances.

an audio recording (utterance) of varying length. For instance, we need to extract
features from recordings and then determine whether the speaker’s emotion is angry
or not. Figure 2.1 illustrates a computational paralinguistic pipeline that processes
audio recordings to extract non-verbal information from speech for classification or
regression tasks. The workflow demonstrates how raw audio files with different du-
rations are converted into fixed-size features suitable for machine learning models:

1. The pipeline begins with varying-length raw audio recordings represented as
waveforms. These recordings can have different durations. The raw audio is
divided into short-duration frames (segments). The length of each segment
depends on the type of feature extraction technique that will be used. There
are several common windowing types and sizes, such as Hamming or Gaussian
windows, with sizes ranging from 20ms to 40ms [73, 75, 76].

2. The next step is frame-level processing. Fixed-sized feature vectors are ex-
tracted from each frame. The size and the characteristics of the vector depend
on the processing methodology. It is labelled as f1, f2, f3, f4... f40 in our
figure. In case of Traditional Machine Learning models, we commonly calcu-
late hand-crafted features that are manually designed acoustic features, such as
MFCC and F-bank, as well as spectral or prosodic features, among others. Each
frame-level feature vector contains the same number of feature dimensions, but
the total number of vectors varies with audio length. This produces sequences
of fixed-size frame-level features. In case of most DNN models, the network
itself learns hierarchical feature representations directly from raw frames. It
produces dense feature vectors directly, which can replace hand-crafted fea-
tures [73, 74, 78].
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Figure 2.2: Creating fixed-sized feature vectors from varying-length utterances.

3. The next step is the Aggregation: To handle the varying number of frames per
utterance, the pipeline employs an aggregation step that converts the variable-
length sequence of frame-level features into a single fixed-size utterance-level
feature vector. In the case of Traditional Machine Learning models, we com-
monly use statistical techniques to calculate feature-wise values. Various ag-
gregation techniques compute summary statistics (such as mean, standard de-
viation, percentiles, BoAW features, and so on). In case of most DNN models,
the aggregation is an integral part of the network and is performed by specific
layers.

4. The resulting fixed-sized utterance-level feature vector serves as an input to a
classification or regression model that outputs labels for various paralinguistic
tasks such as emotion recognition or speaker age detection, and so on.

In addition to aggregating features at the frame level, there is a less commonly
used but potentially valuable approach. In this method, we do not calculate ut-
terance-level features. Instead, we conduct classification/regression individually for
each frame, and the resulting frame-level posterior distributions or labels are com-
bined to produce the final outcome. The process is shown in Figure 2.1

2.2.3 Using Deep Neural Networks for Computational Paralin-
guistic

The challenges mentioned earlier often make DNNs unsuitable to use as classifiers,
and these methods are still in their early stages of development in this field [59, 88].
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However, there is a growing trend among scientists to use DNNs for feature extrac-
tion. When discussing these networks, the result of feature extraction is often re-
ferred to as an embedding. DNN embeddings can be effectively represented in a
low-dimensional feature space while retaining crucial information. These embed-
dings have been shown to capture complex relationships in data and can outperform
traditional feature extraction methods.

Due to the limited size of paralinguistic datasets, training a feature extractor DNN
from scratch is challenging, so researchers often use standard Automatic Speech
Recognition (ASR) corpora for pretraining. Examples of such pretraining methods in-
clude HMM/DNN acoustic models [24], X-Vector [84], ECAPA-TDNN [83], Sequence-
to-Sequence Autoencoder [90] and Wav2Vec 2.0 [50]. These pretrained models have
demonstrated significant improvements in various paralinguistic tasks. The use of
transfer learning from these models allows researchers to leverage large-scale ASR
datasets and apply the learned representations to smaller, task-specific paralinguistic
datasets. Despite these advancements, it is always a challenge to adapt these models
to the specific requirements of different paralinguistic tasks.

2.3 Data and Methods

2.3.1 Databases

AIBO

The FAU AIBO Emotion Corpus [86] contains speech taken from 51 native German
children. The children were selected from two schools. The database contains 9959

recordings from the Ohm school and 8257 recordings from the Mont school. The
total duration is approximately 9 hours. The subjects had to play with a pet robot
called AIBO. They were told that AIBO responds to their commands, but it was re-
motely controlled by a human. The Ohm school recordings are commonly used for
training. The Mont school recordings were used for the test set. Because of the size
of the training set, we were able to define a development set. We kept recordings
of 20 children in the training set (7578 utterances) and used recordings of 6 children
in the development set (2381 utterances). The original 11 emotional classes were
merged to form a 5-class problem. The new classes were derived from the originals:
Anger (angry, irritated, reprimanding), Emphatic, Neutral, Positive (motherese and
joyful), and the Rest (helpless, surprised, bored, and non-neutral but not belonging
to the other categories). This database was also employed in the INTERSPEECH 2009
Emotion Challenge [73].
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URTIC

The Upper Respiratory Tract Infection Corpus (URTIC) [47] was provided by the In-
stitute of Safety Technology, University of Wuppertal in Germany. It contains native
German speech from 630 subjects (248 female, 382 male). The total duration is ap-
proximately 45 hours. The recordings have a sampling rate of 44.1 kHz downsampled
to 16 kHz. They were split into 28 652 chunks of 3 to 10 seconds. The participants
were required to complete various tasks. They had to read short stories (e.g, a well-
known story in the field of phonetics “The North Wind and the Sun”), had to produce
voice commands (such as state numbers from 1 to 40), and they also had to nar-
rate spontaneous speech (e.g, tell something about their best vacation). The number
of tasks varied for each speaker. The database was split speaker-independently into
training, development and test sets, where each one contained 210 speakers. The
training and development sets contained 37 infected participants and 173 partici-
pants with no cold. There are 2 classes, namely cold and no cold. The purpose of the
classification was to decide whether the speaker had a cold. This database was also
employed in the INTERSPEECH 2017 Computational Paralinguistics Challenge [74].

iHEARu-EAT

The iHEARu-EAT corpus [33] was provided by the Munich University of Technol-
ogy. It contains close-to-native German speech taken from 30 subjects (15 female, 15
male). It was recorded in a quiet, slightly echoing office room, and the recordings
have a sampling rate of 16 kHz. It contains approximately 2.9 hours of speech (sam-
pled at 16 kHz). They were segmented into roughly equal parts. The participants had
to perform practice trials to familiarise themselves with the procedure. The speakers
had to complete different tasks, such as reading the German version of ”The North
Wind and the Sun” story, and they had to give a spontaneous narrative about their
favourite activity or place. The number of recordings varied for each speaker because
not everyone was willing to eat every type of food offered. The database was split
speaker-independently into a training set (20 speakers) (sometimes a dev set from
6 train speakers) and a test set (10 speakers). There are 7 classes determined by
the consistency: apple, nectarine, banana, crisp, biscuit, gummy bear and without
any food. The classification aimed to recognise what the subject was eating while
speaking. These types of foods typically allowed the participants to eat while talk-
ing. This database was also employed in the INTERSPEECH 2015 Computational
Paralinguistics Challenge [75].
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Sleepiness Database

The public German Sleepy Language Corpus (i.e, Sleepiness database) [39] was in-
troduced in the Interspeech 2011 Speaker State Challenge [78]. It contains 16463

recordings. The recordings came from native German speakers (aged between 20-
52 years). One part of it came from a story reading task, another part came from
giving verbal commands to the GPS navigator, another from traffic controller com-
munication statements, another from picture descriptions and another from giving
a presentation. The dataset was divided into three speaker-disjunct sets as training,
development and test sets. The training set contained 20 female and 16 male speak-
ers, 5 564 recordings in total. The development (i.e dev) set contained 17 female and
13 male speakers, and 5 328 recordings in total. The test set contained 19 female and
14 male speakers, 5 571 recordings in total. The labels were defined by a subjective
questionnaire that was filled in by the subject and three other assistants. The labels
are integers and lie in the range from 1 to 10: extremely alert (1), very alert (2),
alert (3), rather alert (4), neither alert nor sleepy (5), some signs of sleepiness (6),
sleepy, without any effort to stay awake (7), sleepy, some effort to stay awake (8),
very sleepy, great effort to stay awake, struggling against sleep (9), extremely sleepy,
cannot stay awake (10).

HUN Emotion Dataset

The Hungarian Emotion corpus [87] was provided by the Department of Telecom-
munication and Media Informatics of the Budapest University of Technology and
Economics. It contains utterances from 97 native Hungarian speakers. The voice
samples came from recorded television shows. The vast majority of segments were
recorded from an emotion-rich, continuous, spontaneous programme with actors. In
this case, due to the acting performance, the samples are vivid, and the emotions are
more clearly represented. The other part came from an improvisation entertainment
show. The samples from this case are closer to real-life emotions due to the improvi-
sation. The training set contains approximately 20 minutes of recordings, and the test
set contains approximately 7 minutes of recordings. The sampling frequency of the
samples is 16 kHz. The database contains 1111 sentences, which were separated into
an 831 sample training set and a 280 sample test set. In this thesis, we used samples
from 4 classes: neutral, joy, anger, and sadness. The distribution of the emotions was
not uniform. The training set sample distribution was: ≈ 57% neutral, ≈ 6% sad,
≈ 9% joy and ≈ 27% anger. The test set sample distribution was: ≈ 62% neutral,
≈ 4% sad ≈ 7% joy and ≈ 27% anger.
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EmoDB

The German Emotion Speech Database (EmoDB) [6] was provided by the Technical
University of Berlin. This database contains speech from 10 native German actors.
The recordings were made with actors aged between 25 and 35. Each participant pro-
duced 10 German speeches (5 short and 5 longer sentences), all of them with a dif-
ferent emotion. The database contains a total of 535 utterances. The recordings were
taken in an anechoic chamber with high-quality recording equipment. Recordings
were taken with a sampling frequency of 48 kHz and later downsampled to 16 kHz.
The whole database contains approximately 25 minutes of recordings. The actors
were standing in front of the microphone, allowing them to use body language if
desired, only hindered by the cable of the laryngograph. They were speaking in the
direction of the microphone at a distance of about 30 cm. There are 7 classes: neutral
(79 samples), anger (127 samples), boredom (81 samples), disgust (46 samples), fear
(69 samples), happiness (71 samples) and sadness (62 samples).

MCI Dataset

Our utterances were recorded at the Memory Clinic at the Department of Psychiatry
of the University of Szeged, Hungary. The Mild Cognitive Impairment (MCI) data
were recorded using a digital voice recorder and a tie-clip microphone. Recordings
have a sampling rate of 44.1 kHz in stereo. Later, the recordings were converted to
16 kHz mono with a 16-bit resolution. A total of 50 subjects, selected from a larger
pool of test participants, were used in the current thesis: 25 MCI patients and 25

healthy controls. Subjects were chosen to ensure that the two study groups did not
differ significantly from each other in terms of gender (p = 0.734), age (p = 0.150),
and years of education (p = 0.214). All the subjects were right-handed and native
speakers of Hungarian. The exclusion criteria were drug or alcohol consumption,
being under pharmacological treatment affecting cognitive functions, depression, a
medical history of head injuries or psychosis, and visual or auditory deficits.

MCI patients were selected based on a medical diagnosis supported by neuropsy-
chological tests and CT or MRI scans. Patients indicating any signs of dementia were
not enrolled in this study. The following clinical tests were applied to assess the cog-
nitive state of the subjects: Mini-Mental State Examination (MMSE), Clock Drawing
Test (CDT) and ADAS-Cog. All techniques and procedures were performed per the
Declaration of Helsinki, with approval from the University of Szeged Ethical Com-
mittee and the Regional Human Investigation Review Board, and written informed
consent was obtained from all participants. They focused on spontaneous speech: in
their protocol, the subjects were asked to talk about their previous day. The duration
of the responses lay in the range of 25 . . . 325 seconds, with a mean duration of 89.8
seconds.
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BEA

In this thesis, a subset of the BEA Hungarian corpus [60] is also used to pretrain
acoustic models. This was not a specific paralinguistics corpus like the others men-
tioned above, but it is also a speech corpus. It contains only spontaneous speech,
and it is suitable for generalising a neural network for speech processing. This sub-
set includes the speech of 165 subjects (≈ 60 hours). This subset contained only
spontaneous speech, including special events such as filled pauses, breathing sounds,
laughter, gasps, and other similar sounds. It has a transcription, where the phonetics
set and the special events were also marked.

Hand-Crafted Features

ComParE

Hand-crafted features are manually designed acoustic or prosodic descriptors ex-
tracted from raw audio based on human knowledge of speech signal characteristics.
In this thesis, the feature set of the INTERSPEECH 2013 Paralinguistic Challenge (so-
called ComParE) is used many times [76]. It contains 65 frame-level features: 55

spectral, 6 voicing-related low-level descriptors and 4 energy-related. Mostly 60 ms
frame (Gaussian window function) and a sigma value of 0.4 was used for the speech-
related features; and a 25 ms frame (Hamming window function with a step size of
10 ms) for the others. Not only were basic features used, but their derivatives were
also utilised. With the ∆values, we aimed to obtain information about the dynamics
of the speech samples over time.

F-bank

The human ear does not perceive all frequencies equally, and letting a speech sys-
tem mimic this uneven sensitivity can improve recognition. Rather than using a
straight-line analysis of the sound, a Filter-bank (F-bank) breaks the spectrum into
overlapping bands that align with our hearing. The filters used are triangular, and
they are equally spaced along the mel-scale. The triangular filters are spread across
the entire frequency range, from zero. After applying the filters, the resulting energy
in each filter band is captured, and these values are then transformed into a simple
Fourier transform based F-bank designed to provide approximately equal resolution
on a mel-scale. In the thesis points of this work, a 40 Mel-frequency filter bank was
used with a standard window size of 25ms and a frame step of 10ms. Then 1 addi-
tional feature was added, the energy of the signal. Then, the first and second order
derivatives were calculated (∆values and ∆∆values). The final number of features
in a frame-level vector was 41 ∗ 3 = 123. F-bank features were calculated using the
HTK tool. [102]
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2.3.2 Employed Research Methods

Aggregation Techniques

Aggregation could be done straightforwardly by calculating statistical values along
the time axis of feature vectors. For example, we have an input recording with a
number of N windows, each containing a number of y features. We can calculate
statistical values from all the N vectors by taking a summary of each feature along
the time axis. The used aggregations have the following mathematical formula, if we
have N frame-level embeddings in the form x1, x2, . . . , xi, . . . , xN :

Arithmetic mean: x = 1
N

∑n
i=1 xi

Standard deviation: σ =
√

1
N

∑N
i=1(xi − x)2

Kurtosis = 1
N

∑N
i=1

(xi−x)4

σ4

Skewness = 1
N

∑N
i=1

(xi−x)3

σ3

Zero ratio = 1
N

∑N
i=1 yi, where yi =

{
1 if xi > 0,
0 otherwise

Percentile: The p-th percentile of N values (x(1) ≤ x(2) ≤ · · · ≤ x(N)), is the value
below which p% of the observations fall.

Sequential Forward Selection (SFS)

The basic idea behind SFS is to initialise a subset with only the best method, and
then iteratively add one more aggregation to the subset, based on which combination
provides the greatest improvement in performance.

For example, to select the best combination of a set of aggregations, we can mea-
sure the efficiency of each aggregation and then select the best one. In the next
iteration, we can measure the efficiency of the best aggregation combined with one
more aggregation (in every possible combination) and choose the best combination.
With this iterative method, we can reduce the risk of overfitting, as the selected sub-
set is more likely to be the most relevant and informative for the given prediction
task.
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K-fold Cross-Validation

In this thesis, k-fold cross-validation was employed multiple times as a method for
parameter optimisation. The process can be outlined as follows:

1. Data Segmentation: The training dataset was divided into k approximately
equal-sized segments, known as folds. Each speaker’s data was allocated to only
one fold, ensuring that the data in each fold was entirely speaker-independent.

2. Model Training: For k iteration, we trained a model. Each model used a differ-
ent 9/10 part of the folds for training and the remaining 1/10 for testing. It was
done for every possible combination of folds.

3. Prediction Generation: By designating each fold as the test set during all of
the k evaluations, we were able to generate predictions for all the samples in
the training dataset. Upon completing all evaluations, we obtained a single
prediction for each sample.

4. Performance Assessment: Following the k evaluations, all of the predicted
scores were collected. Finally, any evaluation metrics can be computed across
all samples.

2.3.3 Machine Learning Models

Support Vector Machine (SVM)

SVMs were initially designed for two-class learning, but it was later extended to
multi-class classification. In the case of two classes, we assume that in a multidimen-
sional space, the samples are arranged in such a way that we can divide the space
into two parts with a hyperplane, so that only samples belonging to a given class fall
on one side of the hyperplane. So there should be a hyperplane with only samples
from the same class on one side. This hyperplane can be a line in 2D space or a plane
in an n-dimensional space, where n is the number of features for each observation
in the dataset. If our dataset is truly linearly separable, then the number of such
hyperplanes is infinite. In this case, we have to decide which of the possible planes
will have the best generalisation ability [54].

To decide this question, we will use a so-called decision margin. We are mea-
suring the distance to the first nearest sample in both directions from the decision
boundary. Our new goal will be to place the hyperplane in space so that the size of
the corresponding margin can be maximised, while maintaining an equal distance
from the decision boundary on both sides. In this case, we will obtain the best gen-
eralisation ability. Figure 2.3 represents this process. The margin is the maximal
width of the slab parallel to the hyperplane that has no interior data points. The data



2.3 Data and Methods 23

Figure 2.3: Maximising the margin of the decision plane of the SVM algorithm [54].

points that mark the boundary of this parallel slab and are closest to the separating
hyperplane are the support vectors. Support vectors refer to a subset of the training
observations that identify the location of the separating hyperplane [54].

Of course, in real life, samples are unlikely to be separable with a linear hyper-
plane. For this reason, we introduce an error threshold, which allows us to control
the number of patterns that are allowed to fall within the decision margin. Margin
violation penalties are controlled by the hyperparameter C. For nonlinearly separa-
ble data, nonlinear support vector machines use kernel functions to transform the
features. The number of support vectors determines the number of transformed fea-
tures [54].

Kernel functions map the data to a different, often higher-dimensional space. This
transformation can make the classes easier to separate by simplifying the complex
nonlinear decision boundary to a linear boundary in the higher-dimensional, mapped
feature space. In this process, commonly known as the kernel trick, the data does not
have to be explicitly transformed, which would be computationally expensive [54].

Support Vector Regression Machine (SVR)

SVMs are primarily used for classification tasks, but they can also be adapted for
regression. Support Vector Regression Machine (SVR) relies on kernel functions. The
working principle of SVR is the same as that of support vector machine classifiers,
except that SVR aims to predict continuous values instead of discrete classes. In
this case, the margin will define a region around the regression hyperplane where
predictions are considered “good enough.” If a data point falls within this tube, the
model doesn’t penalise it. Using the kernel trick, we can perform nonlinear regression
by mapping data to a high-dimensional space.
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Figure 2.4: Structure of X-Vector Neural Network [84].

X-Vector Neural Network (X-Vector)

X-Vector was initially developed for speaker recognition [84]. Nowadays, X-Vectors
have become a strong baseline in computational paralinguistics [13, 15, 38, 42].
Figure 2.4 visualises the structure of the neural network. It begins with lower frame-
level layers using a time-delayed architecture. There are three time-delayed layers in
total. The first layer takes a 5-slice speech frame with a context of [t-2, t+2] as input
and produces an output size of 512. The second layer takes a 3-slice output from the
previous layer with a context of (t-2, t, t+2) and also produces an output size of 512.
The third layer takes a 3-slice output from the previous layer with a context of (t-3, t,
t+3), again resulting in an output size of 512. This temporal context builds upon the
earlier layers, allowing the third layer to consider a total context of 15 frames [84].

Following these frame-level layers, there are fully connected layers with input
and output sizes of 512. Subsequently, there is another fully connected layer with an
input size of 512 and an output size of 1500. After the last frame-level layer, the net-
work establishes a connection to the next utterance-level (segment-level) block using
a special ”statistics pooling” layer. This middle layer aggregates the output segments
from the last frame-level layer and calculates the mean and standard deviation of the
activations [84].

Following the middle layer, there are three more fully connected layers with input-
output sizes of 3000-512, 512-512, and 512-N. This network design enables us to
train for speaker identification, as the output of the last softmax layer has N neurons,
corresponding to the number of speakers in the training set. It predicts labels over
frame-level features while effectively handling variable-length utterances [84].



2.3 Data and Methods 25

2.3.4 Evaluation Metrics

Unweighted Average Recall (UAR)

Unweighted Average Recall measures the average recall across all classes without
considering class imbalance. To calculate UAR, you compute the recall for each class
and then take the average across all classes. Recall, also known as sensitivity or true
positive rate. It is the proportion of true positive instances (correctly identified in-
stances) out of all actual positive instances. UAR is called ”unweighted” because it
treats each class equally, regardless of class size or prevalence. This makes it suit-
able for datasets with imbalanced class distributions, where some classes may have
significantly fewer instances than others. It provides a balanced view of the overall
performance of a classification system, taking into account the performance across
all classes equally [56].

For example, in an emotion recognition task with an imbalanced dataset (Happy:
500, Sad: 300, Neutral: 2000), accuracy can be misleading. If a classifier only pre-
dicts the majority class (Neutral) for all instances, then it would have high accuracy
(2000/2800 ≈ 71.4%). However, UAR provides a more accurate evaluation. In this
case, it would indicate a worse performance (UAR: (0 + 0 + 1)/3 ≈ 0.333) as the
classifier fails to identify instances of the minority classes (Happy and Sad) while
performing well on the majority class [56].

The Unweighted Average Recall is calculated by taking the average of the re-
call values across all classes, treating each class equally regardless of its frequency:
UAR = 1

K

∑K
k=1

TPk

TPk+FNk
, where K is the total number of classes, TPk is the true

positives for a class, and FNk is the false negatives for a class [56].

Pearson and Spearman Correlations

The Pearson correlation coefficient measures the strength and direction of the linear
relationship between two continuous variables, X and Y . The range of the result
is between -1 (perfect negative linear association) and +1 (perfect positive linear
association), with 0 indicating no linear relationship at all. A strong assumption
underlying the metric is that both variables are measured on an interval scale, are
approximately normally distributed, and that their relationship is linear.

The Spearman correlation coefficient assesses the strength and direction of a
monotonic relationship between two variables, X and Y . The range of the result
is between -1 and +1, where the edge values indicate a perfect monotonic relation-
ship (increasing (+1) or decreasing (-1)), and 0 means no monotonic relationship
at all. In this case, there is no assumption about normality or linearity, only that the
relationship is monotonic.
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Area Under the ROC Curve (AUC)

Area Under the ROC Curve is a performance measurement for the classification prob-
lems at various threshold settings. In binary classification, the Receiver Operating
Characteristic (ROC) curve plots the True Positive Rate against the False Positive Rate
at different decision thresholds. The Area Under the ROC Curve (AUC) quantifies the
overall ability of the classifier to discriminate between two classes. The range of the
result is between 0 (perfectly swapping the classes, like predicting 0s as 1s and 1s as
0s) and 1 (perfect predictions). The value 0.5 is the worst, as it indicates that the
model performs no better than random guessing. The higher the (AUC), the better
the model is at predicting 0 classes as 0 and 1 classes as 1.

2.4 Motivation

Computational paralinguistics faces significant challenges, including small corpora,
variable-length speech segments, and the need for task-independent embeddings.
Despite these obstacles, the field continues to advance, driven by its potential for
wide-ranging applications in human-machine interaction, healthcare, security, and
personalised user experiences. Understanding the non-verbal aspects of human com-
munication plays a crucial role in numerous applications. The ability to automatically
infer emotions, speaker identities, and other paralinguistic attributes from speech
signals has the potential to support a wide range of domains, such as healthcare,
customer service, education, and entertainment.

It can be used in human-computer interfaces, such as monitoring human com-
munication and detecting the emotional state of the speaker, or their level of confi-
dence [41]. We can also utilise paralinguistics in dialogue systems to detect prob-
lematic dialogue phrases or adapt the dialogue to assist the speaker [7]. Moreover,
we can utilise emotion detection in call centres [97]. For instance, if the client be-
comes angry, we can automatically notify a supervisor. Besides this, it may be helpful
in healthcare systems to monitor the patient’s mental state and may be useful for
assessing patients. [37, 97] Furthermore, we can also utilise it for therapist support
diagnostics and create more empathetic healthcare robots. In the future, we will
be able to create more human-oriented systems. For example, we can develop in-
telligent tutorial systems that adapt to the student’s mental state and provide more
constructive advice. Additionally, we can utilise it for lie detection to enhance law
enforcement. In computer games, we can use it to set the game’s difficulty based on
the user’s emotions [43]. Human-computer interfaces and user adaptation systems
could be used to recognise the age and gender of the speaker from their voice. For in-
stance, we can use these human features in an automatic dialogue system to adapt to
the speaker by speaking slower and louder for an older user or use a different corpus
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for younger customers. An interactive voice response system can select background
music based on guessing the age and the gender of the user. A smart home system
can adapt to the needs of older customers with more automation, while adapting to
the needs of younger customers with a more collaborative system. Last, but not least,
a police call analysis system can identify the age and the gender of a suspect from a
telephone call [68].

By comprehending the motivations driving research in this field, we gain a deeper
appreciation for the significance and real-world impact of computational paralin-
guistics. These motivations directly highlight the development of task-independent
solutions, which aim to capture general speech characteristics across various paralin-
guistic tasks. It is a crucial step towards addressing the technical challenges in com-
putational paralinguistics while simultaneously advancing its real-world applications.
Nowadays, there are no consents about feature-extraction methodologies in the field.
Published solutions are mainly topic- and database-dependent. Lastly, achieving com-
parability among research findings is quite challenging. The range of datasets is
quite wide (e.g, numerous initial studies presenting results from their unique and
self-collected datasets), and the used evaluation metrics are diverse. Based on these
aspects, this thesis focuses on finding global best practices. My goal is to construct
guidelines that can help identify common directions for different paralinguistic tasks
and methodologies.
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Chapter 3

Bag-of-Audio-Words as a Traditional
Feature Extraction Method

3.1 Chapter Overview

Traditional machine learning models have long served as the backbone of computa-
tional paralinguistics. These conventional techniques are especially vital in scenar-
ios characterised by limited available data or restricted computational resources, as
in many paralinguistic research and clinical applications. This makes these meth-
ods a good choice for rapid prototyping, testing, and deployment in real-world and
edge environments. Additionally, traditional methods provide reliable benchmarks
for evaluating new techniques, ensuring that innovations advance the field rather
than merely improve performance. In this chapter, the focus is on the Bag-of-Audio-
Words (BoAW) traditional method. There are three main works with different core
thesis points.

Section 3.2 summarises the related works and briefly presents previous research
results with the Bag-of-Audio-Words method. Section 3.3 introduce the Bag-of-Audio-
Words (BoAW) method. Thesis Work I/1 is covered in Section 3.4.1. Thesis Work I/2 is
covered in Section 3.4.2. Thesis Work I/3 is covered in Section 3.4.3. Results and final
thoughts are summarised in Section 3.5.

3.2 Related Works

Since the beginning of research in computational paralinguistics, various feature ex-
traction and classification techniques have been used along with different datasets
to achieve the best results. One of the most challenging problems in speech emotion
recognition and other paralinguistic areas is feature extraction, because our record-
ings vary in length, but classification/regression techniques require fixed-sized fea-

29
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ture vectors. This particular feature extraction approach shares similarities with the
Bag-of-Visual-Words (BoVW) image analysis technique and the Bag-of-Words (BoW)
text preprocessing technique.

Several methods have already been developed to address the problem of varying
lengths and to standardise the features extracted from the recordings to a uniform
length. For example, the hand-crafted features (like ComParE, intonation, volume
contours, jitter and shimmer values, etc.) with statistical aggregation [53, 73], the
GMM supervectors [8], i-vectors [12, 29, 89, 104] and Fisher vectors [21].

BoAW representations have been used in various paralinguistic tasks as well.
For example, it has consistently demonstrated competitive performance across In-
terspeech challenges, often serving as one of the primary baseline methods in case
of several aspects, like recognise COVID-19 infection, classify the level of escala-
tion in human dialogues, differentiate four species of primates versus background
noise [80], recognise the emotion of elderly people, predict breathing patterns pro-
vide medical insights, tell apart whether a speaker wears a surgical mask or not [81],
indicate speech dialects, detect the level of sleepiness, recognise five types of baby
cries, differentiate between orca sounds to understand their communication [82],
classifying emotions in disabled speech, detecting severities of heartbeats [79], clas-
sifying child-directed versus adult-directed speech, recognising speech affected by
illness (cold), identifying snore types by origin [74].

3.3 The Bag-of-Audio-Words Technique

As an overview, Bag-of-Audio-Words (BoAW) first performs an analysis on the entire
audio database and then, based on the results obtained, generates statistical info for
each file separately. This info represents the relationship of the audio to the entire
database, and it will be the fixed-sized feature vector. By employing this feature
representation, the issue of variable length, as previously discussed, can be effectively
addressed. The BoAW technique provides a compact and informative representation
of audio signals, ensuring efficient analysis of audio data using machine learning
algorithms.

Figure 3.1 provides a more detailed, step-by-step introduction of the BoAW tech-
nique. It have some differences wether we are talking about a training or a test
utterance. This method has various steps:

1. The initial step involves frame-level feature extraction for each recording. This
step leads to varying numbers of feature vectors for each recording, where the
quantity is determined by the original length of the audio and the windowing
size. Generally, we use the same hand-crafted features for both train and test
sets, like MFCCs.
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Figure 3.1: Workflow for the Bag-of-Audio-Words technique.

2. When we have all the frame-level feature vectors from all the recordings, the
next step is clustering. The feature vectors belonging to the train set are col-
lected into a unified ”bag” and a clustering algorithm (e.g: k-means) is applied
on them. This step creates a specific number of groups from the vectors. Each
cluster is represented by its centroid vector (i,e: ”codeword”). Then, a ”code-
book” is formed using the collection of ”codewords”. This step gives a reliable
description of the acoustic patterns found in the training audio data. The pur-
pose is to organise the frame-level vectors into subsets where vectors within
the same group have greater similarity to each other than to vectors in differ-
ent groups. After we have this ”codebook”, we will use it for further analysis.

3. The next step is the vector quantisation, where we assign the original frame-
level vectors to their nearest ”codewords” based on a distance metric such as
Euclidean distance. We are using the same ”codebook” for quantising booth
train and test samples.

4. To construct the final BoAW representation for an audio, we create a histogram
vector, where the length of this vector equals the number of ”codewords”. We
go through the quantised vectors of the original recording, and for each vector,
we check the index of the ”codeword” and increase our new vector by one at the
same index. The distribution of codewords across the audio forms a histogram-
like representation (shown in Figure 3.2), known as the utterance-level BoAW
feature vector.

5. In the last step, this histogram is normalised by dividing each counter value by
the original number of frames in the recording. This normalisation process en-
sures that the resulting histogram accurately represents the relative frequencies
within the audio segment.
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Figure 3.2: The Bag-of-Audio-Words histogram of an audio recording.

3.4 Experiments

The effectiveness of the Bag-of-Audio-Words methodology depends on the careful
optimisation of its hyperparameters and the architectural decisions made during its
implementation. While it provides an elegant solution to the variable-length utter-
ance problem inherent in computational paralinguistics, its performance is highly
sensitive to parameter configurations. This behaviour is systematically investigated
and optimised in the following thesis works.

Our experimental investigation addresses three critical research questions that emer-
ged from our theoretical analysis of BoAW:

1. How do individual parameter choices affect classification/regression performance,
and can we establish optimal parameter ranges?

Firstly, parameter optimisation experiments highlighted the significant impact
of proper parameter optimisation. The preprocessing methods, codebook size,
quantisation neighbour count, clustering algorithm choice, and the utilisation
of delta features have a high impact on classification performance.

2. To what extent is the BoAW approach dependent on corpus-specific characteristics,
and can codebooks be transferred across different datasets?

Secondly, we challenged the conventional approach of corpus-dependent code-
book generation by investigating the corpus independence. Our experiments
demonstrated that codebooks created on one database could be reused effec-
tively across different datasets.

3. How does the inherent stochastic nature of the clustering process affect result reli-
ability, and what strategies can mitigate this variability?
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Lastly, we examined the stochastic behaviour of the method, a consequence of
its reliance on randomised clustering initialisations. We found that repeated
runs of the BoAW feature extraction can produce variable results, potentially
undermining reliability.

Each investigation follows a systematic experimental design, with controlled ma-
nipulation of specific variables while maintaining consistency across other parame-
ters. This approach allows us to isolate the effects of individual design choices and
build a comprehensive understanding of the Bag-of-Audio-Words method’s behaviour
across different scenarios. Each experiment was built upon the insights gained from
the other. The first two experiments utilise a classification. The third experiment ex-
plores the behaviour through regression. This diverse and iterative approach allows
to establish increasingly sophisticated guidelines for BoAW implementation while en-
suring that our recommendations are both theoretically aus nd practically applicable
across diverse paralinguistic tasks. The cumulative insights from these three investi-
gations form the basis for our practical guidelines and recommendations for BoAW
implementation in computational paralinguistics applications.

3.4.1 Parameter Optimisation

Thesis Point I/1. - Using the Bag-of-Audio-Words approach for emotion recogni-
tion [94].

The BoAW method has many adjustable parameters that affect the quality of the
extracted utterance-level feature vectors, and furthermore affect the efficiency of
the final classification or regression as well. In our first research, we investigated
how changing the settings of the parameters in an emotion detection task affects
the final result. The primary aim of this study was to analyse the effectiveness of the
Bag-of-Audio-Words method and identify the most suitable parameter set for emotion
recognition. We iteratively optimised the parameters, taking into account the findings
from each iteration.

Database

In each experiment, we trained and evaluated our classification model on the Hun-
garian emotion database discussed in section 2.3.1. Earlier studies working with the
same database were able to achieve a classification accuracy score of 66–70% [21,
87, 87].
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Frame-Level Features

The frame-level feature set was the ComParE features with delta values, described
in section 2.3.1. For feature extraction, we used the open-source openSMILE [16]
software package with the IS13 ComParE config file.

Utterance-Level Features

Our utterance-level feature set was created with the Bag-of-Audio-Words techniques.
Therefore, we created two codebooks in parallel (one for 65 frame-level features
and one for their ∆values). Because of this, the codebook sizes given in this sec-
tion, the indicated codebook sizes have to be multiplied by 2 to get the number of
features used. For the codebook building, we used an open-source program called
openXBOW [71].

Classification

In the end, the classification was performed with an SVM, introduced in section 2.3.3.
It was implemented with the help of the LIBSVM library [9]. The C complexity pa-
rameter was tested in the range 10−5 to 100. In the optimisation configurations the
following powers of 10 were used: −5; −4; −3; −2; −1 and 0. In the optimisation
part of our experiments, we worked with the training set, based on 10-fold cross-
validation. The cross-validation methodology is introduced in section 2.3.2. In the
test scenario, we trained a model on the whole training set with the optimal C pa-
rameter value found above and evaluated it on the test set. As an evaluation metric,
we used the Unweighted Average Recall, introduced in section 2.3.4. The reason we
use this metric, that we have imbalanced classes.

Results

In our experiments, we tested the effect of the following parameters and design
choices:

1. preprocessing method (normalisation and standardisation

2. the quantisation neighbour number (5 and 10)

3. clustering method (k-means and k-means++)

4. resampling method (upsampling)

5. the effect of ∆values

6. the codebook size N (32, 64, 128, 256, 512, 1 024, 2 048, 4 096, 8 192)
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Feature- Maximum Codebook
preprocessing UAR size
No preprocessing 36.32% 8 192
Normalization 46.73% 4 096
Standardization 45.42% 1 024

Table 3.1: Preprocessing: The best results were obtained without preprocessing,
with normalisation and standardisation, when we evaluated our technique with cross-
validation.

The first option, an architectural decision we investigated, was the preprocessing
technique, where we tested two types: normalisation and standardisation. Prepro-
cessing is always a good choice because databases contain outliers, which have a
detrimental effect on learning effectiveness. From our results in Table 3.1, it is ap-
parent that the data without preprocessing proved to be the weakest in all cases.
By comparison, normalisation and standardisation gave performance improvements
that were nearly the same. Another advantage of normalising or standardising the
input is that significantly fewer clusters are required for optimal performance than
leaving the input unchanged (8 192), so we found that in both normalisation and
standardisation, a size of 1 024 was big enough to achieve the best performance. This
lower codebook size also helps the performance of the SVM, because in a smaller
feature space, the speed and success of the learning will also increase.

The second option, a parameter we investigated how many closest codewords
have to be assigned to a frame-level feature vector when creating a histogram to
achieve the optimal performance. We tested two setups: 5 and 10 neighbours. Based
on the results of our previous optimisation, all three quantisation options were also
evaluated with normalisation and standardisation. From our new results in Table 3.2,
we may conclude that more than one neighbour gives better results in the majority
of cases. This can be seen for both preprocessing techniques (normalisation and

Feature- Maximum Codebook
preprocessing a UAR size

Normalization
1 46.73% 4 096
5 48.93% 4 096
10 49.14% 16 384

Standardization
1 45.42% 1 024
5 46.16% 8 192
10 47.37% 8 192

Table 3.2: Number of neighbours: The best results obtained for 1, 5, 10 neighbours with
normalisation and standardisation.
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Clustering- Feature Maximum Codebook
algorithm preprocessing a UAR size

k-means Normalization
5 48.93% 4 096
10 49.14% 16 384

k-means Standardization
5 46.16% 8 192
10 47.37% 8 192

k-means++ Normalization
5 50.94% 4 096
10 47.77% 4 096

k-means++ Standardization
5 50.08% 8 192
10 47.74% 4 096

Table 3.3: Clustering algorithm: The best results for k-means and k-means++ algo-
rithms with cross-validation.

standardisation). There was no significant difference between the a = 5 and a = 10

values.

The third option, a parameter we investigated, was the clustering algorithm,
where we tested two techniques: k-means and k-means++. Based on our earlier
results, we decided to test them with normalisation and standardisation, and with 5

and 10 neighbours in the quantification step. Based on the results in Table 3.3, we
can say that both clustering methods have the same trend. Since we did not find any
significant difference between the trends of k-means and k-means++, so other tests
were performed using the k-means algorithm.

The fourth option, an architectural choice we investigated, was the upsampling
method. Because our database is relatively small and has imbalanced classes, we
decided to use upsampling on our samples as utterance-level BoAW features. In this
scenario, we tested how upsampling affects our results. Based on the results in Ta-
ble 3.4, we can state that upsampling gave an improvement of about 10% compared
to all of our previous results.

In the last optimising scenario, we tested the effect of using ∆values. From our
results in Table 3.5, we can conclude that ∆ values can help to reduce the number

Feature- Maximum Codebook
preprocessing a UAR size

Normalization
5 58.88% 2 048
10 60.42% 256

Standardization
5 55.93% 128
10 58.59% 1 024

Table 3.4: Upsampling: The best results obtained with upsampling in cross-validation
training.
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Feature- Maximum Codebook
preprocessing a UAR size

Normalization
5 58.63% 512
10 57.48% 512

Standardization
5 56.08% 512
10 59.00% 512

Table 3.5: Deltas: The best results of cross-validation using deltas.

of necessary codewords to a moderate size. Another advantage is that performance
trends are less hectic than before and much more predictable.

Summary of Guidelines

Our results indicated an increasing performance in emotion classification. Precise
tuning of multiple parameters was necessary to achieve optimal efficiency. We are
provided clear recommendations on parameter configurations that might be helpful
when using the BoAW technique:

• Transform the input dataset to the same scale by normalisation or standardisa-
tion. Preprocessing is always a good choice.

• For greater generalisation ability, it is worth including more neighbours in the
quantising step, such as 5 or 10.

• It is worth choosing the size of codebook from a medium-large range (e.g.
between 128 and 4 096). If possible, try to keep the codebook size low to get a
better generalisation. The connection between increasing codeword quantities
and decreasing model performance also seems to suggest that the larger the
codebook size we choose, the greater the chance of over-fitting.

• Clustering with the k-means or with the k-means++ algorithms could be equal-
ly good.

• By balancing the frequency of classes seen during learning, we can improve our
generalisation ability. Upsampling can help to achieve it.

• We should calculate and use ∆values. With that, we can reduce the number
of necessary codewords to a moderate size, and the training trends are less
random than before and much more predictable.
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3.4.2 Corpus Independence

Thesis Point I/2. - Investigating the Corpus Independence of the Bag-of-Audio-
Words Approach [92].

In our previous paper, we investigated the influence of model parameters and fea-
ture preprocessing in a corpus-dependent environment, but this raises the question
of topic independence. In our next research, we focus on a comprehensive corpus-
independence analysis of the Bag-of-Audio-Words feature extraction method. The
initial clustering step is typically corpus-dependent and performed on the training
set of the investigated database. However, this approach has limitations, such as
the need to create new codewords for each dataset, resulting in increased compu-
tational time and potential overfitting. In this paper, we discuss the effect of using
a predefined codebook. We address the question of whether a codebook from an-
other database can produce similar or better results than using a codebook from the
original database.

Database

Our experiments consist of three databases: the Hungarian emotion database, the
EmoDB, and the BEA speech database. All of their details are discussed in sec-
tion 2.3.1. We experimented with constructing codebooks on each of these databases.
Then, different BoAW representations were created for the Hungarian database with
the help of these different codebooks. In each experiment, we trained and evaluated
our classification model on these representations. We examined how the classifica-
tion accuracy scores vary based on the codebook used.

Frame-Level Features

The frame-level feature set was the ComParE features with delta values, described in
section 2.3.1. We used the open-source openSMILE [16] feature extractor, with the
IS13 ComParE config file.

Utterance-Level Features

Our utterance-level features were created with the BoAW technique. For the code-
book building, we used an open-source program called openXBOW [71]. We ap-
plied standardisation to the BoAW feature vectors before the classification model
was trained. Because we extracted 2 × 65 features from each recording, we created
two codebooks in parallel: one for 65 frame-level features and one for their deriva-
tives. Therefore, the codebook sizes given in the results have to be multiplied by 2 to
get the number of features actually used.
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Classification

In the end, the classification was performed with an SVM, introduced in section 2.3.3.
It was implemented with the help of the LIBSVM library [9]. We optimised the
C complexity parameter of the SVM in the range of 10−5 to 100. In the optimisa-
tion part of our experiments, we worked with the training set, based on speaker-
independent 10-fold cross-validation. The cross-validation methodology is intro-
duced in section 2.3.2. In the test scenario, we trained one SVM model on the whole
training set with the optimal C parameter found above and evaluated it on the test
set. As an evaluation metric, we used the Unweighted Average Recall, introduced in
section 2.3.4. The reason we use this metric, that we have imbalanced classes.

Results

Based on the best practices from our previous study [94], we tested the corpus inde-
pendence within a wider parameter set to get a comprehensive view. In our experi-
ments, we tested the effect of the following parameters and design choices:

1. two feature preprocessing methods (normalisation and standardisation)

2. the quantisation neighbour number (5 and 10)

3. the codebook size N (32, 64, 128, 256, 512, 1 024, 2 048)

As the baseline, we conducted a model evaluation with a traditional BoAW feature
set on the Hungarian emotion database. The codebook was created from the training
set of the Hungarian emotion database. Then, calculated features based on this
codebook. Finally, evaluated a classification model with 10-fold cross-validation.

In the first case, we wanted to know whether working with a codebook from
another database could produce similar or better results than a codebook created

Feature- UAR Codebook
transformation a CV Test size

Normalization
5 59.52% 70.07% 1 024

10 60.13% 62.70% 256

Standardization
5 57.34% 66.59% 128

10 58.81% 70.70% 256

Table 3.6: EMODB: best results with normalisation and standardisation and 5/10
quantisation neighbours, when we evaluate our technique with cross-validation and do
it on the test set.
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Feature- UAR Codebook
Database transformation a CV Test size

1-hour news
Normalization

5 56.48% 62.77% 512

10 58.55% 65.86% 1 024

Standardization
5 60.74% 67.29% 1 024

10 58.82% 69.48% 1 024

2-hour news
Normalization

5 57.08% 70.17% 1 024

10 57.11% 56.53% 32

Standardization
5 57.16% 66.21% 2 048

10 58.41% 63.62% 2 048

5-hour news
Normalization

5 57.67% 61.61% 2 048

10 59.80% 66.33% 1 024

Standardization
5 55.75% 65.82% 128

10 56.54% 64.79% 2 048

10-hour news
Normalization

5 58.51% 62.04% 2 048

10 58.13% 67.47% 1 024

Standardization
5 59.05% 65.72% 1 024

10 58.27% 71.86% 1 024

Table 3.7: News: best results with normalisation and with standardisation, when we
evaluate our technique using cross-validation and a test set.

from the original database. It is important, the booth of the databases was made
for the same paralinguistic use-cases. In this part, the codebooks were created from
EmoDB. Then, we built a BoAW representation for the Hungarian emotion database
and performed classification using these features.

Based on the results shown in Table 3.6, it is apparent that a codebook created
from a different database led to significant improvements. Since the main step in cre-
ating a codebook is an unsupervised clustering, the question arises as to whether it
can affect the success of the classification if the database used to create the codebook
was designed for a different purpose than the database which was used in the clas-
sification step. So, for the next part, the new codebooks were prepared from subsets
of the above-mentioned non-emotion Hungarian television recordings database.

Thereafter, with these predefined codebooks, we created the BoAW representation
of the Hungarian emotion database. We examined four cases to determine whether
the length of the database used affects the performance of the classifier or not. An
analysis was performed for 1-hour, 2-hour, 5-hour, and 10-hour. The values obtained
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are shown in Table 3.7. The results from the test set shown were very similar to
our previous results with the EmoDB codebooks. Using a codebook from a different
database always improved the cross-validation compared to the Baseline (except in
one case where there was a slight(0.58%) reduction in the performance for the 2-hour
database, with 10 neighbours and normalisation).

Summary of Guidelines

The findings indicate similar classification performance across all cases, suggesting
that the Bag-of-Audio-Words codebooks have practical corpus independence. Based
on our tests, it can be clearly stated that each predefined codebook can be successfully
used to extract BoAW feature representations of another database. The baseline
result with the Hungarian emotion database’s own codebook was 64.32%. Compared
to this, when we used other database codebooks, we got better results. The best score
of the tests with the German emotion database codebook was 66− 70.70%. The best
score of the tests with the Hungarian speech database codebook was 66 − 71.86%.
With these results, we could not find a clear answer to whether it is advisable to use
a codebook between any two databases created for similar purposes but a different
language or for a similar language but different purpose, so we can not draw any
clear conclusion about whether it is good to proceed from one database to another.
In both cases, our results varied on a similar scale, with no significant difference. This
corpus-independence aspect enables the reuse of codebooks generated from different
datasets, thereby facilitating the practical implementation of the BoAW method.

3.4.3 Ensembling Strategies

Thesis Point I/3. - Handling the stochastic behaviour of the Bag-of-Audio-Words
method [93].

Our previous experiments showed there are general parameter settings and code-
books that can be reused in the case of emotion recognition. However, the BoAW
method contains non-consistent calculations, including random numbers, so it can
give us slightly different features for each re-run, even when we use the same set-
tings. It can heavily influence the quality of the extracted features. Due to this, we
decided to investigate how this behaviour affects the global parameter settings and
the performance. We wanted to focus on this effect only, so we did not use cross-
corpus codebooks.
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Database

In each experiment, we trained and evaluated our classification model on the Slepi-
ness database discussed in section 2.3.1. Previous results for this database produced
scores between .260-.383 [25, 82].

Frame-Level Features

The frame-level feature set was the ComParE features with delta values, described in
section 2.3.1. We used the open-source openSMILE [16] feature extractor, with the
IS13 ComParE config file.

Utterance-Level Features

Our utterance-level features were created with the BoAW technique. For the code-
book building, we used an open-source program called openXBOW [71].

Regression

In the end, we have to predict the factor of sleepiness on a scale from 1 to 10. There-
fore, we trained a regression model for prediction calculation. The regression was
performed using an Support Vector Regression Machine, discussed in section 2.3.3.
It was implemented with the help of the LIBSVM library [9]. In the training sce-
nario we evaluated it with multiple C complexities in the range 10−5 to 10−3. For the
evaluation, we used Pearson and Spearman correlation, introduced in section 2.3.4.

Results

Based on the best practices from our previous studies [91, 94] and to test the stochas-
tic behaviour, we made the following architectural and parametric decisions:

• used standardisation as a feature preprocessing methods

• used the k-means++ algorithm for clustering

• counted on the 5 closest neighbours at quantisation

• the codebook size were tested from 32 to 8 192

• use different random seeds for clustering

In order to test the robustness of the BoAW algorithm, we ran the feature extrac-
tion 10 times with 10 different start-up random seeds and ran our experiments on
that pool. The following seeds were used: 1964, 423, 1355, 86, 1052, 1549, 139, 731,
951. This showed us the deviation of the output. We tried to handle the stochasticity
with three different ensembling methodologies:
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• Model performance ensembling - Average models: From the different feature
sets, we built 10 different models and calculated their final performance value
(correlation), then took the average of the correlations.

• Prediction ensembling - Average predictions: From the different feature sets,
we built 10 different models and calculated predictions, then took the average
in case of each sample.

• Feature ensembling: We calculated the average feature for each sample, and
then we built one model on it. The drawback of this is that our feature space is
now 10 times larger. In the case of a codebook size of 32×2 it will be 640, 64×2

it will be 1 280 and so on. Unfortunately, it has a major drawback in the com-
puting time and the memory used. As we wished to reduce these effects, we
ran a Principal Component Analysis (PCA) on the concatenated feature data. It
is a dimension-reduction method, and it projects the original feature set into a
lower-dimensional space by reducing the number of features. In our investiga-
tion, we decided to keep 95% and 99% of the original information.

Our main results are shown in Table 3.8. As a baseline, the standalone perfor-
mances of the 10 different feature sets were calculated. The best case, the worst case
and a randomly selected case are highlighted in the first three rows. The differences
between the best model and the worst model predictions may be up to .033 on the
dev set and .03 on the test set, depending on the codebook size. This difference tells
us that the BoAW algorithm should be more robust, because if we made only one
feature extraction, we may just get an unbiased, edge result.

Pearson Spearman
dev test codebook size dev test codebook size

Best model .334 .382 8 192 .341 .369 8 192
Worst model .325 .379 4 096 .326 .373 8 192
Random model .329 .375 4 096 .331 .363 4 096
Average model .328 .378 4 096 .331 .369 8 192
Prediction average .331 .382 4 096 .336 .373 8 192
PCA 95 .322 .354 3 319 .322 .328 4 036
PCA 99 .322 .353 4 780 .320 .341 4 780

Challenge original – – – .269 .260 2 000
BoAW
Challenge original – – – .367 .383 –
best one

Table 3.8: Best results with the Pearson/Spearman correlation
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Pearson Spearman
Concatenated Reduced size PCA 95% PCA 99% PCA 95% PCA 99%
codebook size 95 % 99 % dev test dev test dev test dev test
640 165 379 .291 .331 .293 .335 .291 .323 .293 .328
1 280 331 753 .302 .337 .302 .338 .297 .332 .297 .333
2 560 700 1 482 .311 .355 .311 .356 .309 .346 .309 .346
5 120 1 369 2 661 .314 .362 .314 .362 .316 .351 .317 .351
10 240 2 337 3 968 .317 .364 .317 .365 .316 .350 .317 .350
20 480 3 319 4 780 .322 .354 .322 .353 .321 .344 .320 .341
40 960 4 036 5 132 .318 .339 .317 .336 .322 .328 .320 .323
81 920 4 473 5 283 .302 .328 .303 .322 .303 .313 .303 .309

Table 3.9: PCA results

If we are comparing the Average model and the Average prediction techniques,
we can see that the prediction ensembling gave slightly better results by .003 and
.004 on the dev and test sets.

For comparison, we also show the results of the original Interspeech challenge. It
can be seen that our method gives better results than the challenge original BoAW
baseline, and it is close to the best submission with .336 on the dev set and .373 on
the test set.d

When we are analysing our results of Feature ensembling with PCA, on one hand,
we can see a performance drop, but on the other hand, we were able to decrease the
size of the codebook, which gives us an improvement in the computational load.

Table 3.9 shows the Feature ensembling results in more detail. The second and
third columns contain the number of dimensions after the PCA transformation. As we
can see, there was a slight loss in efficiency with the 95% and the 99% compression.
An interesting pattern can be seen in the test results. The curve of the test set does
not follow the curve of the development set. The concatenated features that were
reduced to a third or a quarter performed better. We think that this is due to a
drawback of the PCA method. PCA finds linear combinations of the features, but
sometimes it fails when the number of features is equal or even larger than the size
of the database. As we can see in Table 3.9, when the concatenated codebook size
was more than twice the count of our recordings (≈ 5500×2), the test results started
to decrease.

Summary of Guidelines

Overall, we found that the usage of the Bag-of-Audio-Words technique can also per-
form effectively in regression. This approach not only captures essential acoustic
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information but also proves adaptable for various paralinguistic analyses. Although
it has a stochastic behaviour, we can overcome this problem with prediction ensem-
bling or feature ensembling. The best results came from prediction ensembling, but
it requires higher-dimensional feature spaces. On the other hand, we can have good
results with feature ensembling plus PCA as well, while decreasing the feature space.
PCA ensures computational efficiency and maintains the original information, but be-
fore applying it, we have to make sure that the original number of features is lower
than the number of data samples.

3.5 Concluding Remarks

In this chapter, we conducted an in-depth analysis of the Bag-of-Audio-Words tech-
nique as a foundational traditional feature extraction method in various computa-
tional paralinguistics tasks (emotion recognition and speaker identification). Our
systematic investigations addressed critical challenges, including parameter optimi-
sation, corpus independence, and the stochastic nature inherent in clustering com-
putations.

• The first investigation (Parameter Optimisation in section3.4.1) establishes the
foundation by systematically exploring the impact of individual BoAW parame-
ters on emotion classification performance. We examine feature preprocessing
options (normalisation, standardisation, delta feature computation), clustering
parameters (codebook size, algorithm selection, quantisation strategies), and
class balancing techniques. This investigation aims to identify optimal parame-
ter ranges and establish clear guidelines for a traditional method.

Proper parameter optimisation has a high impact on the performance of BoAW
technique, and we were able to define gold standards to narrow the pool of pos-
sible hyperparameters. We identified that normalisation or standardisation of
input features consistently leads to better generalisation and higher classifica-
tion accuracy, while upsampling helps mitigate class imbalance effects. Optimal
codebook sizes generally lie between 128 and 4096 clusters, balancing detail
capture and computational feasibility. Furthermore, assigning multiple neigh-
bours (5 or 10) during quantisation enhances the representational precision of
the BoAW histograms. These findings provide clear practical guidelines that
researchers and practitioners can follow to achieve robust BoAW-based paralin-
guistic models.

• Building on the first findings, the second investigation (Corpus Independence in
section3.4.2) challenges the traditional assumption that BoAW codebooks must
be generated from task-specific training data. We evaluate the transferabil-
ity of codebooks across different corpora, examining whether general-purpose
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or cross-domain codebooks can achieve comparable performance to corpus-
specific approaches. This investigation has significant practical implications for
resource-constrained applications and rapid prototyping scenarios if we can use
already-made cross-corpus codebooks.

We are proving that the BoAW feature extraction method can be applied across
different datasets without requiring dataset-specific parameter optimisation.
Our experiments demonstrated that codebooks created on one database could
be reused effectively across different datasets without significant performance
loss, and even improve classification results by reducing overfitting. The ability
to reuse existing codebooks substantially reduces the need for computation-
ally expensive retraining on specific corpora and facilitates faster prototyping
and deployment in real-world applications. This insight is particularly valuable
given the scarcity and cost of collecting large, labelled paralinguistic corpora.

• The third investigation (Ensemble Strategies in section3.4.3) addresses another
aspect, the impact of stochastic variability inherent in the clustering process.
We propose and evaluate the ensembling strategy to improve result stability
and reliability, incorporating dimensionality reduction techniques to manage
the computational overhead of ensemble approaches.

We demonstrated that different ensembling strategies can increase robustness
and stabilise the regression performance. On the other hand, feature ensem-
bling exponentially increases the feature dimensionality, posing computational
challenges. We mitigated this issue using Principal Component Analysis for di-
mensionality reduction, which preserved classification performance while dras-
tically lowering feature space size. Nonetheless, the effectiveness of PCA de-
pends on the relationship between feature dimensionality and sample size, sug-
gesting caution when applying it under extreme conditions.

In summary, the Bag-of-Audio-Words remains a competitive and practical feature
extraction method for low-resource environments, especially in scenarios constrained
by limited data or computational resources. The contributions in establishing golden
standards for parameter settings, demonstrating corpus-independent applicability,
and presenting strategies to control the stochastic nature of BoAW through ensem-
bling and PCA serve as a valuable reference for both academic research and industrial
applications.



Chapter 4

HMM/DNN as a Hybrid Feature
Extraction Method

4.1 Chapter Overview

The following research direction aims to investigate beyond traditional machine
learning methods and explore hybrid methodologies that combine both traditional
and modern approaches. Although the previous findings demonstrate the strengths
and practical guidelines of traditional techniques (like Bag-of-Audio-Words), the field
of computational paralinguistics could greatly benefit from investigating how hybrid
models (such as HMM/DNN) might address persistent challenges.

Hidden Markov Models, were once at the forefront of automatic speech recogni-
tion. It was built for modelling probabilistic sequences of observations. In the foun-
dational period of HMM-based speech recognition, systems employed discrete prob-
ability distributions and were primarily designed for isolated word recognition with
small vocabularies in speaker-dependent configurations. After a while, the integra-
tion of Gaussian Mixture Models into HMM-based speech recognition systems proved
to be more effective for larger vocabulary recognition tasks. After DNNs were raised,
HMM/GMM models evolved into HMM/DNN hybrids, replacing the GMM module
with a DNN. It was able to process complex relationships in data. The efficient train-
ing and utilisation of HMM/DNN hybrids soon became widely adopted. [4, 19, 58]

While this method gains more interest in the field of paralinguistics as well, its ini-
tial training raises problems. This hybrid solution presents challenges in architecture
design, computational management, and hyperparameter tuning. Hidden Markov
Models were originally designed for frame-level classification. Otherwise, computa-
tional paralinguistics requires utterance-level classification/regression and typically
has a small corpora. This drawback, combined with the fact that Deep Neural Net-
work (DNN)s require a massive amount of data, makes them more challenging to
apply in paralinguistics. [22, 58]

47



48 HMM/DNN as a Hybrid Feature Extraction Method

Section 4.2 summarises the related works and briefly presents previous research
results with HMM/DNN models. Section 4.3 introduce the HMM/DNN architecture.
Thesis Work II/1 is covered in Section 4.4. Results and final thoughts are summarised
in Section 4.5.

4.2 Related Works

In recent times, Recurrent Neural Network structures with components like Long-
Short Term Memory [36] and Gated Recurrent Unit [11] have been recognised as
the benchmark in Automatic Speech Recognition. However, various studies sug-
gest that the HMM/DNN model outperforms these networks. Key factors toward
the hybrid model are that it includes simpler training processes, reduces computa-
tional demands, and has smaller memory requirements. In addition, non-recurrent
neural networks have demonstrated competitive performance when the quantity of
training data is limited. Hybrid paralinguistic approaches merge the advantages of
traditional statistical methods with those of modern machine learning techniques.
[26, 35, 63, 70]

The original HMM-based speech recognition systems employed discrete proba-
bility distributions. In HMM/GMM architectures, each hidden state of the HMM is
associated with a GMM. GMMs serve to model data distributions. The multi-modal
nature of speech acoustics is better captured through Gaussian mixture distributions
than through unimodal density functions. The HMM/GMM combination leverages
the probabilistic nature of GMMs for modelling the emissions from hidden states in
HMMs. These models have a localised GMM component to provide frame-level pho-
netic probability estimates, while the HMM component processes these into overall
phone sequences. Compared to this, HMM/DNN models have an architectural chal-
lenge. Unlike GMMs, which are generative methods, DNNs are discriminative classi-
fiers and they estimate different probability values. This issue can be addressed by ap-
plying Bayes’ theorem. This synergy enhances the model’s ability to capture intricate
patterns in speech data, resulting in improved accuracy and robustness. Pre-trained
neural networks are commonly used in the HMM/DNN hybrids. [4, 19, 22, 58]
The HMM/DNN solution was applied to numerous use-cases, like emotion recog-
nition [49], story segmentation [103], laughter event detection [22], social signal
identification [26] and children’s speech recognition [20].

4.3 The HMM/DNN Hybrid Technique

The HMM/DNN model has two parts. The first part is the Deep Neural Network,
which excels in feature extraction and non-linear mapping. The second part is a
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Figure 4.1: Hybrid HMM/DNN Model Workflow for Paralinguistic Tasks.

Hidden Markov Model. It handles temporal modelling. The outputs of the first DNN
will be the input of the HMM.
The HMM expects a class-condition likelihood: p(xi | ck),
but the DNN gives frame-level estimations, a posterior probability: P (ck | xi).

Because of this, before utilising the output of the DNN into the HMM, we have
to transform it. The transformation can be processed with Bayes’ theorem. The
posterior estimation should be divided by a priori probabilities of the phonetic classes
(P (ck)). Then we get the class-condition likelihood value within a scale factor. The a
priori probabilities are usually estimated using simple statistical methods. The scale
factor can be ignored because it does not influence the subsequent search process.
This methodology can yield effective models for capturing complex paralinguistic
features.

Figure 4.1 shows the complete flow of training and using a HMM/DNN model.
First, we need to train our hybrid model. We can see the acoustic HMM/DNN model
training in the top left corner of Figure 4.1. Here, we need a larger ASR corpus that
has time-aligned phonetic labels. From this corpus, we have to extract frame-level
features. The extraction can be handled using various techniques, such as calculat-
ing filter banks, deltas, spectrograms, or employing neural networks. We can utilise
these frame-level features to train our hybrid model for a general language structure.
Once the training of the hybrid model is complete, we need to make a slight modi-
fication to our model to utilise it for DNN embedding extraction. We have to detach
the DNN from the hybrid model and fix its weights. In this case, we are no longer
interested in the original output layer of our DNN, which produced the posterior es-
timates. Now we will focus on the output of the last few hidden layers, as they can
provide more abstract information. Typically, this type of higher-level information
can describe paralinguistic aspects. This is what we will refer to as frame-level em-
beddings. The process of embedding extraction is shown in the bottom left corner
of Figure 4.1. First, we have to extract frame-level features from a paralinguistics
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corpus. We have to use the same feature set as we used for the ASR corpus. After-
wards, we can feed them into the detached Deep Neural Network. Figure 4.1 shows
the final utterance-level classification workflow in the bottom right corner. When
we have the frame-level embeddings, we transform them into utterance-level feature
vectors by aggregating them using a statistical function along the time axis. These
utterance-level feature vectors can be used directly as input to any traditional classi-
fication or regression model, such as SVMs. The final output will be a label (class or
real number) for each recording [58].

4.4 Experiments

4.4.1 Topic independence

Thesis Point II/1. - Using Hybrid HMM/DNN Embedding Extractor Models in
Computational Paralinguistic Tasks [96].

In this study, we propose a method that combines Automatic Speech Recognition
solutions with paralinguistic approaches to address the aforementioned challenges
of computational paralinguistics. We trained a hybrid HMM/DNN acoustic model on
a general ASR corpus, which allowed us to generate embeddings to serve as features
for multiple paralinguistic tasks.

Database

On the one hand, we preferred databases that were easily accessible to the research
community, and thus, the databases used in the ComPare challenge were chosen.
Another aspect was that our results should be easily comparable with other research
papers. We selected three German-language databases to minimise the potential
impact of language differences on the results. To cover various paralinguistic topics,
we utilised three paralinguistic corpora: AIBO, URTIC, and iHEARu-EAT. Although
these corpora cover multiple topics, the recording conditions (such as sampling rate,
language and background noise) are quite similar. The fourth database utilised in
our experiments (called BEA) was used for training our hybrid acoustic model, and
it is not a paralinguistic but a speech database. More details about these databases
are discussed in section 2.3.1.

Frame-Level Features

For all four corpora, F-bank features were calculated with the HTK tool [102]. The
final number of features in a frame-level vector was 41 ∗ 3 = 123. The technique
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is discussed in section 2.3.1. For frame-level embedding extraction, we used the
activation values of the middle five hidden layers (i.e, layer 1, 2, 3, 4, 5). Each layer
generated 1024-sized frame-level feature vectors.

Utterance-Level Features

To transform frame-level feature vectors into utterance-level feature vectors, the sta-
tistical approaches used were the following: arithmetic mean, standard deviation,
kurtosis, skewness, and zero ratio. The zero ratio represents how many times an
output neuron fired (meaning a feature has a non-zero value in the embedding, as
we used ReLU neurons). The final size of the aggregated vector is independent of the
original recording’s length. It depends only on the number of neurons in the given
hidden layer and the chosen aggregation technique. More details about all of the
approaches are discussed in section 2.3.2. These utterance-level feature vectors can
be fed into any traditional classification or regression model. In the case of AIBO
and URTIC, we always standardised and downsampled the actual training set be-
fore feeding it into the Support Vector Machine. In the case of iHEARu-EAT, we only
performed a speaker-wise standardisation.

Classification

During the classification step, our classifier was a Support Vector Machine, intro-
duced in section 2.3.3. We optimised the complexity parameter using 10 powers
between 10−5 and 100. It was implemented with the help of the LIBSVM library [9].
For optimal results, we separated all paralinguistic corpora into train, development
and test sets. We determined the optimal parameters of the classifier while training
it on the training set and evaluating on the development set. After optimisation, we
measured the overall efficiency while training on the combined train and develop-
ment sets and evaluating with the test set. As an evaluation metric, we used the
Unweighted Average Recall, introduced in section 2.3.4.

Results

A summary of our best results from the first series is represented in Table 4.1. More
detailed results are visually shown in the published paper. As a baseline, we evalu-
ated an X-Vector Neural Network on each dataset. The results are represented in the
last row of this table.

In case of the AIBO database: Regarding the layers, we can state that the 4th
layer consistently outperforms the baseline. Moreover, the 4th layer achieved the
best performance scores with all the aggregation techniques used. In the view of



52 HMM/DNN as a Hybrid Feature Extraction Method

AIBO URTIC iHEARu-EAT
Layer DEV TEST Layer DEV TEST Layer DEV TEST

mean 4 45.2% 44.0% 4 67.3% 69.3% 2 71.4% 79.0%
std 4 44.8% 44.4% 2 66.4% 68.1% 2 73.3% 74.4%
kurtosis 4 42.5% 40.3% 1 64.2% 60.8% 4 69.7% 69.0%

skewness 4 43.0% 41.2% 1 63.5% 68.3% 4 70.3% 67.3%

zero ratio 4 44.3% 42.1% 2 67.4% 68.8% 3 70.0% 75.5%

all 5 45.5% 44.2% 4 66.0% 65.3% 4 76.6% 74.6%

x-vector baseline – 41.8% 35.6% – 66.9% 57.1% – 58.7% 53.8%

Table 4.1: Results of different aggregation techniques with the three different corpora.

aggregation, there were no significant differences between the robustness of aggre-
gations. Kurtosis and skewness had the worst overall performance scores. The mean
and standard deviation performed the best. In most cases, they outperformed the X-
Vector baseline. The mean and standard deviation of the 4th and 5th layers achieved
better performance scores than their average layer performance score, yielding the
best results overall.

In case of the URTIC database: Here, we can state that the 3rd and 4th layers
always reach or outperform the average performance of a conversion technique. But,
in the majority of cases, they cannot beat the X-Vector baseline. The standard devia-
tion is a bit more robust than the others, but again, there is no significant difference.
The conversions of kurtosis and skewness statistics again had the worst performance
scores. Here, the best results can beat the baseline. One of them is the mean of the
3rd and 4th layers. The other is the zero ratio statistic conversion with the 2nd and
4th layers.

In case of the iHEAR-uEAT database: Here, we can state that all of our em-
beddings consistently outperform the baseline. Similar to URTIC, the 2nd and 4th
layers perform best and, in most cases, outperform the local average performance
(represented by a black column). The robustness behaviour is similar, but the zero
ratio and mean are slightly improved. The rest of the aggregations behave just like
before. The mean and the standard deviation with the 2nd and 4th layers give the
overall best results.

We can see that the HMM/DNN embeddings outperform the X-Vectors. The kur-
tosis and skewness aggregations perform the worst. The mean, standard deviation,
and zero ratio techniques behave similarly.

We also wanted to explore the expressive power of the embeddings, so we began
combining all five techniques as well. In the second series of experiments, we used
Sequential Forward Selection (SFS) to combine multiple aggregated feature vectors.
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This methodology is discussed in more detail in the section 2.3.2. To combine a sub-
set of aggregations, we concatenated their utterance-level feature sets. The size of
each utterance-level feature vectors was as follows: 1 024 as one technique, 2 048 as a
concatenation of two different aggregated vectors, 3 072 as a concatenation of three
different aggregated vectors, 4 096 as a concatenation of four different aggregated
vectors and 5 120 when we concatenated all the different aggregated vectors. A sum-
mary of our results from the second series is given in Table 4.2.

In case of the AIBO database: With layer 4 features, all of the combinations per-
form better than their X-Vector baseline. With layer 5 features, all of the combinations
performed better here as well. The combination of mean, skewness, standard devi-
ation, and kurtosis yielded the best performance score, but we can achieve almost
the same result without the kurtosis. The mean and standard deviation techniques
always gave improvements. Although layer 5 had better performance scores than
layer 4, we should also consider that calculating more than one aggregation requires
more time and memory.

In case of the URTIC database: With layer 2 features, the best combination (zero
ratio + mean + standard deviation) had the same performance score on the dev set,
like the zero ratio only option. But the combination gave a better performance score
on the test set. With layer 4 features, the first three combinations can outperform
the X-Vector baseline. We can state that the 4th layer has the best generalisation if
we use the combination of mean and zero ratio techniques. Kurtosis and skewness
aggregations always underperform the others.

In case of the iHEAR-uEAT database: With layer 2 features, all combinations
outperformed the baseline on both the development and test sets. In the case of
combining four techniques, the zero ratio slightly improves our model and increases
its ability to generalise. The best combination is std+kurtosis+zero ratio+mean.
With layer 4 features, all of the combinations outperformed the baseline. When we
combined three techniques (std + skewness + zero ratio), it slightly improved our
model. We can state that a model trained on features from the 2nd layer can gener-
alise better if we use the combination of mean, zero ratio and skewness techniques.
The zero ratio always produces a good improvement.

Summary of Guidelines

For frame-wise computing, we followed standard ASR principles and utilised DNNs
to perform frame-level feature extraction. Afterwards, to aggregate these features,
we used more or less traditional computational paralinguistics techniques such as
standard deviation and kurtosis. We found that combining the aggregation tech-
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AIBO URTIC iHEARu-EAT

Layer Combination DEV TEST Layer Combination DEV TEST Layer Combination DEV TEST

4 mean 45.2% 44.0% 2 zero 67.4% 68.8% 2 std 73.3% 74.4%

4 me-ze 44.4% 42.0% 2 ze-me 67.1% 70.0% 2 st-ku 74.8% 75.9%

4 me-ze-st 44.4% 44.3% 2 ze-me-st 67.4% 69.6% 2 st-ku-ze 74.8% 78.9%

4 me-ze-st-ku 44.4% 44.5% 2 ze-me-st-sk 66.6% 69.4% 2 st-ku-ze-me 74.9% 78.3%

5 mean 44.5% 42.3% 4 zero 66.9% 67.1% 4 std 70.5% 73.8%

5 me-sk 44.3% 40.2% 4 ze-me 67.7% 69.5% 4 st-sk 74.9% 74.8%

5 me-sk-st 45.1% 43.7% 4 ze-me-st 67.6% 68.5% 4 st-sk-ze 76.0% 75.0%

5 me-sk-st-ku 45.3% 44.2% 4 ze-me-st-sk 66.8% 67.9% 4 st-sk-ze-me 76.0% 74.3%

Table 4.2: The best results were obtained by doing SFS. The base aggregation and layers
came from the best corpus-specific aggregations.

niques effectively led to further improvements, depending on the task and the layer
of the neural network from which the local embeddings were sourced. Based on our
experimental findings, we conclude that our proposed method presents a competi-
tive and resource-efficient approach for a wide range of computational paralinguistic
tasks. By integrating ASR with paralinguistic techniques, we address the challenges
of handling varying-length utterances and working with limited datasets.

In an overall conclusion, we can provide clear recommendations on parameter
configurations that might be helpful when using the HMM/DNN hybrid technique:

• Extracting embeddings from the 4th layer always gives the best performance
scores.

• Combining at least three aggregation techniques will always improve our re-
sults in any paralinguistic task. But we should carefully select the aggregation
techniques used, as the best combination may be task-dependent.

• When choosing the exact number of aggregations to combine, taking into ac-
count Occam’s razor principle.

• We should always consider including the mean, standard deviation and/or zero
ratio in the combination.

• The ratio of non-zero activations as an aggregation function proved to be use-
ful in combination. Mean and standard deviation consistently performed best,
while non-traditional techniques can enhance their performance.

4.5 Concluding Remarks

In this chapter, we conducted an in-depth analysis of the HMM/DNN technique as
a hybrid feature extraction method in various computational paralinguistics tasks
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(emotion recognition, cold identification and eating monitoring). Our systematic
investigations addressed critical challenges, including the careful selection of aggre-
gation types.

In our first experiments, we tested five aggregation techniques individually. Our
results indicate that the hybrid acoustic model performed better than X-Vector Neu-
ral Networks did. The mean, standard deviation and zero ratio techniques achieve
practically the same performance scores.

After obtaining these results, we wanted to improve the expressive power of the
embeddings. We chose to investigate the performance of combined aggregation tech-
niques. We tested the possible combinations of the five methods using Sequential
Forward Selection. Our results indicate that we successfully extracted features for
different paralinguistic tasks using our HMM/DNN hybrid acoustic model-based fea-
ture extraction method. We can see that combining three techniques consistently
improves our results in any paralinguistic task. On the other hand, the combina-
tion of four techniques will behave inconsistently. Although it improves the results
on the development set, the results on the test set often decrease. For this reason,
when choosing the number of aggregations to combine, it is worth considering Oc-
cam’s razor principle, which states that unnecessarily complex models should not be
preferred over simpler ones.

Using the 2nd or the 4th layer of the model is always a good choice. As for
aggregations, the mean, standard deviation, and zero ratio always help improve per-
formance, but we must combine these techniques carefully. In the case of kurtosis
and skewness aggregations, we can observe varied behaviour in all databases. In the
first stage, individually, they had the worst performance for each database and each
layer. In the second stage of our research, in combination, they showed a similar
tendency. They gave the lowest scores in 13 of 18 cases.

Our results indicate that our proposed method presents a competitive and reso-
urce-efficient approach for a wide range of computational paralinguistics tasks. The
contributions in establishing golden standards for aggregation selection.
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Chapter 5

Deep Neural Networks as
State-of-the-Art Feature Extraction
Models

5.1 Chapter Overview

Following the successful application of Deep Neural Networks to Automatic Speech
Recognition, these methodologies have also gained increased attention in the field of
computational paralinguistics [23, 43, 59]. Nowadays, the most effective solutions
are integrating these State-of-the-Art models [10, 13]. These modern techniques can
automatically learn complex representations directly from raw audio. It makes them
able to capture intricate patterns and contextual relationships in speech data. Ad-
ditionally, DNN approaches can provide benchmarks when we are using traditional
and hybrid techniques in low-resource environments. In this chapter, the focus is
on two State-of-the-Art Deep Neural Networks: the Sequence-to-Sequence Autoen-
coder (Seq. Autoencoder) model and the Wav-to-Vec 2.0 Neural Network (Wav2Vec
2.0) model. There are two main works with different core thesis points. The first
research highlights the performance of an Seq. Autoencoder model in a cross-corpus
environment. The primary focus is on the importance of audio preprocessing. The
second study demonstrates the use of the Wav2Vec 2.0 model as a frame-level feature
extractor and explores the effects of various aggregation strategies.

Structure of the chapter: Section 5.2 summarises the related works and briefly
presents previous research results with Deep Neural Networks. Section 5.3 introduces
the Seq. Autoencoder model architecture. Section 5.4 introduces the Wav2Vec 2.0 model
architecture. The Work III/1 is covered in Section 5.5.1. The Work III/2 is covered in
Section 5.5.2. Results and final thoughts are summarised in Section 3.5.
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5.2 Related Works

Low-resource environments often make it unsuitable for using Deep Neural Net-
works, and deep learning methods are still in their early stages of development
in computational paralinguistics. Traditional machine learning methodologies tend
to perform better than large end-to-end DNNs. Deep learning methods have been
shown to be more effective on raw features such as F-bank energies than hand-crafted
attributes such as MFCCs. [57, 79, 81, 82, 88].

5.2.1 Embedding extraction in paralinguistic

There is a growing interest in general feature extractors that are non-specific to any
paralinguistic tasks, such as X-Vectors, Seq. Autoencoders, Wav2Vec 2.0s and other
neural networks. First, these methodologies were constructed for a specific purpose,
but later they were employed as a frame-level feature extractor in computational
paralinguistics [80, 99]. X-Vector technique was developed for speaker verification,
but was later employed as a frame-level feature extractor in case of predicting the
level of sleepiness [38], detecting Alzheimer’s disease [64], and recognising emo-
tions [69]. Seq. Autoencoder technique was developed for creating compressed
and representative embeddings for data samples. It has a long history in machine
learning, dating back to the 1990s. The basic idea is to train a neural network to
reconstruct the input (not necessarily audio), while the network structure contains
a small-sized bottleneck layer. Evaluating the fully trained network and using the
activation values of the bottleneck layer leads to a compressed representation of the
input. In computational paralinguistics, these representations can be used as frame-
level features. Such techniques were successfully used in the past on various tasks
like translation [52], acoustic event classification [2] and categorising the sounds of
primates [80]. Wav2Vec 2.0 technique was developed to learn general speech fea-
ture representations by pre-training on large amounts of unlabeled speech data. It
was also used as a frame-level feature extractor in other tasks like speaker recogni-
tion [50], stuttering detection [83] and emotion recognition [18]

The main advantage of the above-mentioned approaches is that they do not have
to be trained on limited-sized speech data. The small size of paralinguistic datasets
makes it difficult to train a feature extractor DNN model from scratch, so usually
a standard ASR corpus is used for this purpose. Deep Neural Network embeddings
can reduce the feature space dimension while preserving important information. It
has been effective in capturing complex relationships in the data. In computational
paralinguistics, these embeddings are representations of spoken language. They are
a condensed and meaningful representation of the speech signal, capturing various
paralinguistic cues. For example, they may encode information about the speaker’s
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emotional state, the speaker’s identity, or the underlying prosodic characteristics of
the speech. The advantage of embeddings in paralinguistics is that they can poten-
tially capture more subtle and complex patterns that might be missed or difficult to
model with handcrafted features [13, 50, 84].

On the other hand, DNN models require large amounts of labelled data for train-
ing and are computationally more demanding compared to traditional feature-based
approaches. The training is done by passing speech audio recordings through a Deep
Neural Network model. The model typically consists of multiple layers of intercon-
nected neurons, which learn to extract high-level features and patterns from the raw
audio input. After the training, the last few layers of the model are detached. The
output of one of the internal layers, often called the bottleneck layer, is considered
as the DNN embedding [13, 50, 84].

5.2.2 End-to-end systems in paralinguistic

Traditional paralinguistic systems often involve multiple stages of processing. As we
presented before, the system might have separate modules for frame-level feature
extraction, followed by an intermediate step to convert them to utterance-level fea-
ture vectors, and finally, a classifier or a regression model. These systems require
engineering domain-specific features [29, 62].

In the context of paralinguistics, end-to-end Deep Neural Networks refer to neu-
ral network models that are used to directly map raw audio or speech signals to a
specific paralinguistic attribute without the need for explicit feature extraction or in-
termediate processing steps. One of the most important aims is to streamline this pro-
cess by directly learning complex representations from the raw audio and perform-
ing the target paralinguistic task in a single integrated model. The DNN is trained
on a large unlabelled dataset, learning to extract high-level features and patterns
from the audio itself, making it capable of implicitly capturing various paralinguistic
cues. It’s worth noting that while end-to-end DNNs have gained popularity in various
speech-related tasks, they might not always outperform traditional feature-based sys-
tems, especially when domain-specific knowledge is crucial for the task at hand. The
choice between an end-to-end DNN approach or a traditional system depends on the
specific requirements, available resources, and the complexity of the paralinguistic
task [30, 40, 81, 88]
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Figure 5.1: An overview of the recurrent Seq. Autoencoder [2].

5.3 Sequence-to-Sequence Autoencoder (Seq. Autoen-
coder)

Figure 5.1 shows the structure of the Seq. Autoencoder used in this chapter. In
case of an Seq. Autoencoder frame-level features are fed into the encoder part of
the neural network. This part consists, e.g. Long-Short Term Memory (LSTM) or
Gated Recurrent Unit (GRU) cells in a recurrent manner over the time axis. The
output of the fully connected bottleneck layer comes from the hidden states of the
last cells. This will be the encoded representation. On top of the encoder network,
another layer of LSTM or GRU cells is applied (i.e. the decoder part). It is expected
to reconstruct the input frame-by-frame. Depending on the direction of this layer,
the network can be unidirectional or bidirectional. The whole network is trained
for input reconstruction, using the RMSE error function between the input vectors
and decoder outputs. After training, we can detach the decoder. If the encoder is
evaluated for a frame-level feature vector of an utterance, we will get the encoded
representation. This might be used as the compressed form (or, in practice, as a
feature vector) [2].

Although the Sequence-to-Sequence Autoencoders in theory can handle utter-
ances with any duration, due to implementation constraints of Tensorflow-based
toolkits, in practice, only objects with a limited duration could be processed.
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5.4 Wav-to-Vec 2.0 Neural Network (Wav2Vec 2.0)

Figure 5.2 shows the structure of the Wav2Vec 2.0 model used in this chapter. The
model has two main parts:

• a Convolutional Neural Network (CNN) block

• a BERT-based transformer block

In the first part, the raw input waveform is transformed into a sequence of high-
level feature representations, known as the latent speech representation. The CNN
incorporates ”dilation” between the filter weights, allowing it to capture information
from a wider range of time steps in the input sequence without increasing the number
of parameters.

Moving on to the second part, the output of the CNN is further processed into
a sequence of high-level feature vectors, which capture the relationships between
the input waveform and the extracted features. This part utilises a contextualised
transformer architecture based on the widely used BERT model. The transformer
consists of a multi-head self-attention mechanism and a position-wise feed-forward
network.

The model can be trained with the cross-lingual representation (XLSR) learning
approach, which involves two steps:

• pretraining the model by self-supervised learning on large unlabeled datasets
of speech in different languages

• fine-tuning this model on a smaller labelled corpus with the target speech lan-
guage (e.g. German)

In this way, the model learns to share discrete tokens across languages. The first
pretraining step divides the input into small segments while applying random mask-
ing. The masking is done in a way that ensures that the model does not rely on
any specific frequency components. Then we use the Contrastive Predictive Cod-
ing (CPC) approach, where the model is trained to distinguish between positive and
negative pairs of examples. It has to maximise the similarity between different aug-
mentations of the same input waveform (positive pairs) and minimise the similarity
between different audio’s augmentations (negative pairs). In the second fine-tuning
step, the original output layer is replaced with task-specific layers (typically with a
recurrent neural network (RNN) and a Softmax layer). Then, the modified network
is optimised with a Connectionist Temporal Classification (CTC) loss [3].
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Figure 5.2: The fine-tuned wav2vec 2.0 framework structure [3].

5.5 Experiments

In this chapter, we conducted an extensive examination of State-of-the-Art Deep Neu-
ral Network models as feature extractors in computational paralinguistic tasks. Our
experiments focused on two prominent architectures: the Sequence-to-Sequence Au-
toencoder and the Wav-to-Vec 2.0 Neural Network. While these techniques offer the
potential to automatically learn complex representations directly from raw audio,
their effectiveness are depends on the audio preprocessing techniques and the se-
lected aggregation methodologies. These aspects are systematically investigated and
optimised in the following thesis works:

• How do preprocessing decisions, aggregation strategies and cross-corpus train-
ing methods affect the reliability of Seq. Autoencoder?

In this research, the experiments with different noise reduction thresholds de-
monstrate the crucial importance of audio preprocessing choices. Then we
investigated how different aggregation techniques influence the classification
performance in the case of Seq. Autoencoders. On the other hand, these exper-
iments proved that cross-corpus training strategies can improve performance
when feature extractors DNNs are trained on general ASR data rather than
task-specific paralinguistic corpora.

• To what extent can aggregation strategies enhance the performance of Wav2Vec
2.0 embeddings, and can we establish optimal aggregation combinations across
diverse paralinguistic tasks?
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In the next research, a comprehensive experiment about diverse aggregation
strategies demonstrates the importance of aggregation choices. Our results
challenge the conventional choice of simple statistical measures. We are demon-
strating that percentile-based aggregations and multi-technique combinations
significantly outperform traditional approaches across various paralinguistic
subtopics.

Each investigation follows a systematic experimental design, with controlled ma-
nipulation of specific variables while maintaining consistency across model architec-
tures. This approach allows us to isolate the effects of individual design choices in
the case of using DNNs in computational paralinguistics. These experiments allow us
to establish increasingly sophisticated guidelines for Seq. Autoencoder and Wav2Vec
2.0 models. We ensured that our recommendations are both theoretically and prac-
tically applicable across diverse paralinguistic tasks. The cumulative insights from
these two investigations form the basis for our practical guidelines and recommen-
dations for DNN implementations in computational paralinguistics applications.

5.5.1 Audio Preprocessing and Aggregation Methods

Thesis Point III/1. - Using Spectral Sequence-to-Sequence Autoencoders to Assess
Mild Cognitive Impairment [46, 90].

In our first research, we investigated how changing the audio preprocessing meth-
od in a clinical task affects the final result. We expect specific behaviour because of
the fact that DNNs process directly the spectrum of the raw waveform, without re-
lying on hand-crafted features. In our second research, we investigated how the
aggregation process affects the final results. As our previous research showed, we
expected different behaviours by different aggregations. On the other hand, mostly
Seq. Autoencoder models are trained on the same corpus that is used during the clas-
sification experiments. However, in the medical speech processing area, the amount
of data is extremely limited due to the availability of subjects with the given disease,
and the fact that trained doctors are required to diagnose patients. To resolve this,
we trained our model on a general ASR audio dataset. We expected that we could
demonstrate the robustness of the feature extraction technique in a cross-corpus en-
vironment.

Database

In our study, we trained and evaluated our classification model on the MCI database
discussed in section 2.3.1. That is, besides the 25 MCI and the 25 control subjects
(HCI), we utilised the speech recordings of 25 mild Alzheimer’s (mAD) patients as
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Figure 5.3: The general workflow of the sequence-to-sequence autoencoder-based fea-
ture extraction process that we applied.

well. They were also matched to the other groups in terms of age, gender and level
of education.

Mild Cognitive Impairment (MCI) is a heterogeneous clinical syndrome charac-
terised by the deterioration of memory, language, and problem-solving skills. It is
often viewed as the transitional stage between normal ageing and dementia. How-
ever, in contrast to those with dementia, the cognitive impairments that occur in
MCI are not severe enough to affect the patients’ ability to carry out simple everyday
activities [1, 67]. Recently, several studies have been published on detecting MCI
and other forms of dementia [34, 65]. In this study we apply Seq. Autoencoder
for extracting features in order to distinguish the speech of MCI and healthy control
subjects.

Frame-Level Features

For the general workflow of our feature extraction approach employed, see Fig-
ure 5.3. The first step of the process is the extraction of Mel-scale spectrograms
from raw waveforms. We split all recordings into 5-second-long chunks. The Mel-
sceptras are normalised into the interval [−1, 1] to match the expected input range
for neural networks. We applied 128 log-scale Mel-spectrogram filters with 0.08ms
wide windows and a 0.04ms overlap. We used the AuDeep toolkit [17], which was
written in Python. It normalises all the computed spectrograms to 0 dB. Thresholds
were applied after the spectrogram normalisation. We experimented with removing
background noise by clipping power levels below a given dB value.

The next step is the model training. To train the Sequence-to-Sequence Autoen-
coder, we used a subset of the BEA corpus, introduced in section 2.3.1. We employed
a small subset, consisting of the speech of 16 subjects with a total duration of 3 hours
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and 59 minutes. We used the Adam optimiser with a learning rate of 0.001, and ap-
plied dropout with a 0.2 probability. We trained our models with a mini-batch size of
64 for 32 epochs. In our study, each recurrent layer consisted of 128 GRU cells, and
the decoder was bidirectional.

Frame-Level Predictions

In this research, we do not create utterance-level features. Instead of it, we per-
formed classification at the level of the 5-second chunks. All features were standard-
ised before utilising them in the classification step. Besides the embeddings extracted
from the Seq. Autoencoder, we used one further attribute: the number of chunks as-
sociated with the given speaker.

Classification

To aggregate frame-level predictions of a speaker, first, we simply took the (un-
weighted) arithmetical mean of the posterior scores when we tested the clipping
values. In the next experiments, we took a look at the efficiency of other forms of
aggregations: median, geometric mean and harmonic mean.

During the classification step, our classifier was a Support Vector Machine, in-
troduced in section 2.3.3. We optimised the complexity parameter using 10 powers
between 10−5 and 101. The following powers of 10 were used: −5; −4; −3; −2; −1; 0
and 1. It was implemented with the help of the LIBSVM library [9]. We used 25-fold
cross-validation, where each fold consisted only one healthy and one MCI subject.
Performance was measured with classification accuracy, equal error rate (EER), and
the AUC value (discussed in section 2.3.4).

Results

For reference, we also trained an X-Vector on the same BEA dataset, but on 60 hours
and 14 seconds of data with 165 speakers, using F-bank features.

First, we tested the effect of the following noise clipping thresholds: −30 dB, −45

dB, −60 dB, −75 dB. Moreover, we tried concatenating the feature vectors of these
four variations (“Merged” approach), and without clipping as well (“Unclipped”).
Results are represented in Table 5.1.

We can see that clipping the power levels below a certain dB threshold clearly
affects the classification performance. In case of a two-class (MCI and HCI) clas-
sification, the largest threshold (−75 dB) led to the best accuracy and AUC scores,
although the values corresponding to the −60 dB case were also quite similar. Con-
catenating the four variations led to a clear fall in the values: although the accuracy
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Feature extraction approach Acc. AUC

Sequence-to-sequence

-30 dB 64% 0.694

autoencoders

-45 dB 60% 0.706
-60 dB 68% 0.734
-75 dB 72% 0.763
Merged 68% 0.643
Unclipped 68% 0.715

x-vectors 60% 0.680

Table 5.1: The accuracy (Acc.) and AUC scores obtained with the different approaches
tested.

is only slightly lower than the best value, the AUC score is the lowest one for all six
cases.

In the next experiment, we investigated how these features could be used to
discriminate three speaker categories (MCI, mAD and HCI). We retrained our SVM
models on a 3-class task with cross-validation. Table 5.2 shows our results. Now
we focus only on the AUC values of the individual speaker categories. In the case
of MCI and HC case, the −75 dB threshold again led to the best results. We also
observe that the mAD patients could be distinguished from the other speakers with
the lowest efficiency. In the −30 dB case, they could not be identified at all. This
is surprising as distinguishing healthy controls from the mAD subjects with more
prominent symptoms is usually known as an easier task than detecting MCI.

In our last experiments, we investigated the influence of different aggregation
techniques. For this, we took a look at the efficiency of the arithmetic mean, median,
geometric mean and harmonic mean. Results are shown in Table 5.3.

In the 2-class setup (see the upper half - MCI), we can see that employing the
median of the chunk-level posterior estimates was slightly better than using the stan-
dard arithmetic mean. Geometric and harmonic means gave almost identical or even

Feature extraction AUC
approach HC MCI mAD

Autoencoders

-30 dB 0.706 0.618 0.503
-45 dB 0.714 0.633 0.569
-60 dB 0.732 0.706 0.606
-75 dB 0.771 0.710 0.589
Merged 0.701 0.622 0.598
Unclipped 0.682 0.703 0.629

x-vectors 0.753 0.546 0.606

Table 5.2: The AUC scores obtained for the approaches tested in the 3-class case.
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Speaker Aggregation AUC
Category HC MCI mAD

MCI

Arithmetic 0.763 0.763 —
Median 0.782 0.782 —
Geometric 0.760 0.760 —
Harmonic 0.749 0.749 —

MCI + mAD

Arithmetic 0.771 0.710 0.589
Median 0.755 0.712 0.586
Geometric 0.789 0.716 0.606
Harmonic 0.801 0.733 0.611

Table 5.3: The AUC scores obtained for the different aggregation formulas applied.

slightly worse values. In the 3-class setup (see the lower half - MCI + mAD), we note
the opposite trend. Compared to the arithmetic mean, relying on the median value
made the AUC score of the HC speaker category slightly worse (although the AUC
values corresponding to the MCI and mAD patients were practically unaltered). Util-
ising the geometric and the harmonic means improved all three AUC values. These
opposing trends, however, seem to indicate the lack of robustness of these aggrega-
tion strategies.

Summary of Guidelines

Our study lies in the use of Sequence-to-Sequence Autoencoders to detect mild cog-
nitive impairment and mild Alzheimer’s disease. The experiments highlighted im-
portant methodological choices that improve performance in paralinguistic classi-
fication tasks involving Deep Neural Networks. The following guidelines provide
practical recommendations for implementing Seq. Autoencoder feature extraction in
computational paralinguistics, especially for clinical applications with limited data
availability:

• Audio preprocessing can increase the performance. Removing background noi-
se by clipping power levels below -75 dB enhances classification accuracy.

• Among various power-level clipping strategies, individual threshold conditions
outperform combined feature sets.

• Aggregation strategies are crucial, but different methods of aggregating chunk-
level predictions (arithmetic mean, median, geometric mean, harmonic mean)
showed varying robustness. Median worked better for two-class tasks, while
harmonic mean improved three-class distinctions. It is highlighting the need
for task-specific aggregation selection.
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• A cross-corpus training technique for Sequence-to-Sequence Autoencoders is
feasible and beneficial.

According to estimates, the prevalence of MCI ranges from 15% to 20% in individ-
uals of 60 years and older, while the annual progression rate from MCI to dementia
is between 8% and 15% [67]. MCI may be present up to 15 years before the clini-
cal manifestation of dementia [48], and this time window offers a chance for early
MCI detection, which can provide an opportunity to reduce the rate of cognitive de-
cline [31]. From our results, this approach gives a competitive performance. Taking
this into account, automatic speech analysis could prove to be a cheap, easy-to-apply,
remote and non-invasive tool for detecting the symptoms of MCI.

5.5.2 Aggregation Strategies

Thesis Point III/2. - Aggregation Strategies of Wav2vec 2.0 Embeddings for Com-
putational Paralinguistic Tasks [95].

In this study, we focus on the utterance-level aggregation step. Although re-
searchers tend to use task-specific aggregations, including only the most popular
metrics such as mean and standard deviation, our aim is to show that there are other
efficient techniques available too. Some of them can handle different paralinguistic
subtopics at the same time. With Wav-to-Vec 2.0 Neural Network embeddings, we
investigated 11 aggregation strategies, including both traditional and less frequently
employed ones. We conducted experiments on three different databases to find gen-
eral trends across various paralinguistic subtopics.

In the first phase, we examined how altering a single aggregation method affects
the classification performance. We expected not only traditional metrics are give reli-
able results. In the second phase, we expanded the study to examine how combining
multiple aggregation strategies would influence results. Based on our previous find-
ings, we expected that different combinations would lead to diverse outcomes, while
it will increase the performance as well.

Database

We performed our experiments on three public paralinguistic corpora, which covered
a variety of topics: AIBO, URTIC and iHEARu-EAT. All of them are discussed in more
detail in section 2.3.1. All three corpora had native German speakers. This allowed
us to justifiably employ the same Wav2Vec 2.0 model for frame-level embeddings
extraction, as it was fine-tuned for German speech. In case of training, development
and test cuts:
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• iHEARu-EAT: The database was divided into a training set (14 speakers), a
development set (6 speakers) and a test set (10 speakers) in a speaker-indepen-
dent manner.

• URTIC: The corpus was divided into three sets (train, dev, test), each containing
210 speakers. The training and development sets contained 37 infected and 173

uninfected participants.

• AIBO: The Ohm subset was divided into a training set (7578 utterances, 20

children) and a development set (2381 utterances, 6 children), while the Mont
subset served as the test set (8257 utterances).

Frame-Level Features

To extract frame-level embeddings, we employed a self-supervised and fine-tuned
Wav-to-Vec 2.0 Neural Network model. It is introduced in section 5.4. After the
training and the fine-tuning, we can use the network as an embedding extractor by
freezing the weights and removing the last few layers. We experiment with two
setups, where we extract embeddings from:

• the last layer of the CNN block, where the size of the embeddings was 512

• the last layer of the Transformer block, where the size of the embeddings was
1 024

When we feed the paralinguistic utterances into the model, the output of the last
remaining layer serves as the embeddings.

Utterance-Level Features

During aggregation, we used 11 different statistical methods to convert frame-level
embeddings into an utterance-level feature vector. Besides the traditional approaches
of mean, median and standard deviation, we experimented with the skewness, the
kurtosis, theminimum, the maximum and the 1st, 25th, 75th, 99th percentiles. All of
them are discussed in section 2.3.2 Note that the median is identical to the 50th per-
centile. The 1st and 99th percentiles are frequently used as alternatives to minimum
and maximum, because they are not that sensitive to outliers [61].

Classification

In the end, the classification was performed with an SVM, introduced in section 2.3.3.
It was implemented with the help of the LIBSVM library [9]. The C complexity
parameter was tested in the range 10−5 to 100. In the optimisation configurations the
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following powers of 10 were used: −5; −4; −3; −2; −1 and 0. To avoid peeking and
determine the optimal hyperparameter settings, we trained our models on the train
set and evaluated them on the development set. In the end, we measured the final
performance of the best parameters by training the model on the concatenation of
the train and dev sets and evaluating it on the test set. As an evaluation metric, we
used the Unweighted Average Recall, introduced in section 2.3.4.

In the case of the AIBO and the URTIC corpora, we always standardised utterance-
level features. Due to the unbalanced class distribution and the relatively large size
of these corpora, we also employed downsampling on them, as these techniques
proved to be beneficial in our previous experiments. In the case of iHEARu-EAT,
we performed speaker-wise standardization, where the test set speaker IDs were de-
termined by using the single Gaussian-based bottom-up Hierarchical Agglomerative
Clustering algorithm [45, 100].

Results

Based on the best practices from our previous study [96] and to test the influence of
different aggregation methodologies with different architectures of SotA solutions,
we tested the following setups:

• we compared the performance of the convolutional and the transformer (i.e.
hidden) layer embeddings

• we used 11 different statistical methods:

– mean

– standard deviation

– skewness

– kurtosis

– minimum (0th percentile)

– 1st percentile

– 25th percentile

– median (50th percentile)

– 75th percentile

– 99th percentile

– maximum (100th percentile)

The best results for the aggregation functions are shown in Figure 5.4.
First, to investigate architectural choices, we can analyse the behaviour of differ-

ent layers. From our results, convolutional embeddings significantly outperformed
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Figure 5.4: Development results got from convolutional and transformer (i.e. hidden)
layer embeddings while using different aggregation techniques. The x axis represents the
aggregation method and the y axis represents the UAR value.

the hidden representations on the iHEARu-EAT corpus. On the other two corpora, it
also had a slight advantage against hidden embeddings. Although the hidden layer
performed better for percentage aggregations on the AIBO database, it varied greatly,
proved unreliable and lost robustness. The other significant difference of the AIBO
database compared with the others is that it contains recordings of children’s speech.
Changes in tones and speech skills can produce slight differences in the analysis re-
sults.

Next, if we take a closer look at the aggregations, we can observe general trends.
The mean aggregation produced the best results on each database, which, as it is
perhaps the most frequently used method, is not that surprising. Standard devia-
tion appears to be a promising alternative for a potential combination. Regarding
percentiles, the central ones (i.e. 25%, 75%) have competitive performances, so we
should pay more attention to these non-traditional aggregations. We would like to
recommend their usage more, especially the 75th percentile. The traditional median
metric (which is the same as the 50% percentile) had a varying performance depend-
ing on the database, while it follows the curve of the percentiles. This curve shows
which part of the ordered sequence is the best descriptor. Last, but not least, for
almost all corpora, we obtained very low results with the minimum and maximum
aggregations (where the minimum is practically the 0th, while the maximum is the
100th percentile). It tells us that Wav2Vec 2.0 embeddings frequently contain outlier
values, which has a significant drawback in classification. Instead of these, the 1st
and 99th percentiles are promising alternatives. Although low percentiles may also
be minor outliers, the trend clearly shows that their use is more advisable than the
minimum and maximum. Lastly, we tested skewness and kurtosis aggregations, but
they gave a significantly lower performance overall.
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iHEARu-EAT
Aggregation Dev Test

Mean 79.4% 83.7%
Median 78.4% 82.6%

75th percentile 78.4% 81.2%
mean+std+min+p25 82.2% 85.4%

All 80.5% 85.0%

Table 5.4: The best development and test results for different aggregation strategies and
their combinations for the iHEARu-EAT paralinguistic corpora.

Due to the above-mentioned observations, we decided to continue our research
with convolutional embeddings, because they behave more robustly and have a
global pattern in all three databases. In case of aggregation techniques, we wanted
to further improve our solution, so we used Sequential Forward Selection to combine
multiple aggregated feature vectors.

With the iHEARu-EAT database Table 5.4 contains an overall statistic. The first
three rows show the three best aggregations from the previous experiment of the
convolutional layer, which are the mean, the median and the 75th percentile. It
serves as a baseline.

The next row shows the best result obtained with the combination approaches.
We were able to improve the performance scores up to the 4th iteration. This subset
of aggregations determined on the development set contains the mean, standard
deviation, minimum and the 25th percentile.

The last row shows the UAR scores we obtained when we combined all of the
aggregation methods. It has a score close to the best combination, but we noticed that
if we include too much unnecessary information, we can decrease the generalisation
ability of our classification model.

With the URTIC database, Table 5.5 contains an overall statistic. The first three
rows show the three best aggregations from the previous experiment of the convo-
lutional layer, which are the mean, the 75th percentile and the 99th percentile. It
serves as a baseline.

The next row shows the best result obtained with the combination approaches.
We found that we can improve the development results up to the 3rd iteration. This
subset of aggregations determined on the development set contains the mean, 99th
percentile and the maximum.

The last row shows the UAR scores we obtained when we combined all of the ag-
gregation methods. Here we got an increase in the test values. In our opinion, these
results indicate that there is a significant difference between the feature distribution
of the development and the test sets, because different aggregation types seemed to
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be important only in the case of these sets.
With the AIBO database, Table 5.6 contains an overall statistic.
The first three rows show the three best aggregations from the previous exper-

iment of the convolutional layer, which are the mean, the 99th percentile and the
standard deviation. It serves as a baseline.

The next row shows the best result obtained with the combination approaches.
We found that we could improve development scores up to the 3rd iteration. This
subset of aggregations determined on the development set contains the mean, the
99th percentile and the 75th percentile.

The last row shows the UAR scores we obtained when we combined all of the
aggregation methods. Here we observed the same behaviour as that for the URTIC
database. In our opinion, these results indicate that there is a significant difference
between the feature distribution of the development and the test sets, because differ-
ent aggregation types seemed to be important only in the case of these sets.

In the view of the three databases, we can state that there are database-specific
behaviours. Lower than middle percentile values work better for iHEARu-EAT while
higher values perform better for URITC and AIBO corpora. On the other hand, there
is a global tendency to need 3 or 4 iterations of SFS to improve the efficiency of our
model. As we can see, combinations bring improvements to the development and
test set as well, which means they increase the generalisation ability of the model. It
highlights the importance of diverse aggregations that can be easily calculated along-
side traditional metrics. It is always worth containing one or two non-traditional
percentile values. These significant improvements were obtained using simple, easy-
to-implement and quick-to-calculate aggregation techniques. All metrics can be cal-
culated in parallel from frame-level features. Each new metric introduces as many
new features as we originally had. The combination of 3-4 aggregations leads to an
utterance-level feature vector of length 1536-2048. This does not drastically increase
the dimensionality for a casual set of features extracted from other Deep Neural Net-
works, which are commonly used in paralinguistics.

URTIC
Aggregation Dev Test

Mean 68.7% 63.1%
75th percentile 67.6% 66.4%
99th percentile 66.5% 66.2%

mean+p99+max 69.5% 64.8%
All 67.3% 67.1%

Table 5.5: The best development and test scores for different aggregation strategies and
their combinations for the URTIC paralinguistic corpora.
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AIBO
Aggregation Dev Test

Mean 45.5% 42.7%
99th percentile 43.8% 42.9%

Standard dev. 43.5% 43.3%
mean+p99+p75 47.0% 42.7%

All 44.2% 44.0%

Table 5.6: The best development and test results for different aggregation strategies and
combinations for the AIBO paralinguistic corpora.

Summary of Guidelines

Overall, we found that DNN architectural choices and embedding aggregation choic-
es have a high impact on the classification performance. Certain non-traditional
aggregation metrics can be highly effective for almost any paralinguistic subtopic.
Traditional metrics vary in performance depending on the dataset. We also per-
formed SFS initialised with the mean to test the combination of different metrics.
Our results indicate that the effective summarisation of frame-level embeddings is
a nontrivial task, and classification performance can be improved significantly using
multiple aggregation functions. In addition, we present a novel rule set for Wav2Vec
2.0 embeddings where we identify general patterns and provide guidelines for se-
lecting appropriate design choices.

• Convolutional embeddings behave more robustly and have a global pattern in
different databases

• The mean aggregation is always a good choice, but it is not the only one. Our
first results indicate that middle percentile aggregations are competitive tech-
niques.

• The traditional standard deviation and median aggregations are heavily topic
dependent.

• Wav2Vec 2.0 embeddings can be expected to contain extreme values, which
are not really useful for classification. Owing to this, aggregation methods that
are sensitive to outliers might perform less robust. Obvious examples are the
minimum and maximum, which were clearly outperformed by the first and
99th percentiles.

• Choosing only one aggregation technique leads to a suboptimal classification
performance. The peak of performance fell on the combination of the first 3-4
techniques. The best combinations typically include the mean, a non-traditional
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percentile value below and/or above the median. This combination can im-
prove the generalization ability of the model, while keeping the feature space
below 2048.

If we are following these rule, the performance of the classification models can
have a high improvement, while the computational demand does not increase dras-
tically due to possible parallelisations.

5.6 Concluding Remarks

In this chapter, we conducted an in-depth analysis of Deep Neural Networks as
State-of-the-Art feature extraction models in various computational paralinguistics
tasks (mild cognitive impairment detection, emotion recognition, cold identification
and eating monitoring). Our systematic investigations addressed critical challenges,
including audio preprocessing methodologies, aggregation strategy selection, and
cross-corpus training approaches.

• The first investigation (Audio Preprocessing and Aggregation Methods in sec-
tion 5.5.1) systematically explores the impact of data and prediction processing
decisions on Sequence-to-Sequence Autoencoder performance. We examined
noise reduction strategies (power level clipping thresholds), cross-corpus train-
ing approach, and aggregation techniques for chunk-level predictions. This
investigation aims to identify optimal preprocessing parameters and establish
clear guidelines about these aspects.

The experiments with different noise reduction thresholds demonstrated the
importance of audio preprocessing choices. We identified that removing back-
ground noise by clipping power levels below −75 dB consistently enhances
classification accuracy across different clinical conditions. Cross-corpus train-
ing strategies proved feasible and beneficial, and they allow feature extractors
DNNs to be trained on general ASR data. Individual threshold conditions sig-
nificantly outperformed the combined methodology, suggesting that focused
preprocessing approaches are more effective than ensemble-based noise reduc-
tion techniques.

• The second investigation (Aggregation Strategies in section 5.5.2) challenges
the conventional reliance on only the most common statistical aggregations. It
is comprehensively evaluating diverse aggregation methodologies for Wav2Vec
2.0 embeddings. It evaluates 11 different aggregation functions across two
model architectural designs and three paralinguistic tasks. It examines both
individual and combined configurations to establish optimal aggregation com-
binations as well.
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Our first results demonstrate the influence of architectural design choices of
Deep Neural Networks. Convolutional embeddings behaved more robustly than
transformer embeddings, showing consistent global patterns across different
databases. But Wav2Vec 2.0 embeddings could frequently contain outlier val-
ues that negatively impact classification performance.

Our next results demonstrated that percentile-based aggregations significantly
outperform traditional mean calculation. Non-traditional metrics, particularly
the 75th percentile, proved highly effective for diverse paralinguistic subtopics.
Aggregation methods sensitive to extreme values (minimum/maximum) less
robust than alternatives like 1st and 99th percentiles.

Our third results demonstrated that a combination of 3-4 aggregation tech-
niques consistently improved performance while maintaining feature dimen-
sionality below 2048, enabling practical implementation without excessive,
computational overhead. This trend also showed up across various paralinguis-
tic tasks. These representations demonstrated competitive performance across
diverse paralinguistic attributes.

In summary, Deep Neural Networks represent a powerful method in computa-
tional paralinguistics, particularly when proper preprocessing and aggregation strate-
gies are employed. The contribution of these researches are about establishing pre-
processing guidelines for paralinguistic applications, demonstrating the effective-
ness of percentile-based aggregations, and revealing the importance of architectural
choices. These results serve as valuable references for both academic researches and
practical implementations. However, their effectiveness remains highly dependent on
careful optimisation, highlighting the importance of comprehensive methodological
tests in the case of deep learning approaches for paralinguistic analysis.
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Key Findings of the Thesis - Guidelines

Traditional Method - BoAW - Importance of Parameter Optimisa-
tion

• The first focus was on exploring the possibilities within different parameter op-
timisation strategies and investigating the following parameters: feature trans-
formation (delta features), database scaling (normalisation, standardisation,
upsampling), codebook size, clustering and quantisation.

• The second focus was on testing whether corpus-independent processing is
achievable with proper parameter optimisation.

• The third focus was on handling stochastic behaviours.

Revealed Guidelines:

– Preprocessing is always a good choice. Transform the input dataset to the
same scale by normalisation or standardisation.

– For greater generalisation ability, it is worth including more neighbours in
the quantising step, such as 5 or 10.

– It is worth choosing the size of codebook from a medium-large range (e.g.
between 128 and 4 096). If possible, try to keep the codebook size low to
get a better generalisation.

– Clustering with the k-means or with the k-means++ algorithms could be
equally good.

– By balancing the frequency of classes seen during learning, we can im-
prove our generalisation ability. Upsampling can help to achieve it.

– We should calculate and use ∆values. With them, we can reduce the num-
ber of necessary codewords to a moderate size, and the training trends are
more consistent than before.

– Codebooks have practical corpus independence. Each predefined code-
book can be successfully used to extract BoAW feature representations of
other databases.

– We can control stochastic behaviour to ensure more reliable processing.
Prediction ensembling or feature ensembling is a good choice.

Hybrid Method - Importance of Feature Aggregation

• The focus is on exploring different feature aggregation strategies.
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Revealed Guidelines:

– Extracting embeddings from the 4th layer of a HMM/DNN model is always
gives the best performance scores.

– Combining three aggregation techniques will always improve the results
in any paralinguistic task. But we should carefully select the aggregation
techniques used, as the best combination may be task-dependent.

– When choosing the number of aggregations to combine, take into account
Occam’s razor principle.

– Always consider including the mean, standard deviation and/or zero ratio
in the combination.

– The ratio of non-zero activations as an aggregation function proved to
be useful in combination. Mean and standard deviation consistently per-
formed best, while non-traditional techniques can enhance their perfor-
mance.

DNNs - Seq. Autoencoder/Wav2Vec 2.0 - Architecture Dependence

• Seq. Autoencoder - The focus was on audio preprocessing and on different
feature aggregation strategies.

Revealed Guidelines:

– Audio preprocessing can increase the performance. Removing background
noise by clipping power levels below -75 dB enhances classification accu-
racy.

– Among various power-level clipping strategies, individual threshold con-
ditions outperform combined feature sets.

– Aggregation strategies are crucial, but different methods of aggregating
chunk-level predictions (arithmetic mean, median, geometric mean, har-
monic mean) showed varying robustness. Median worked better for two-
class tasks, while harmonic mean improved three-class distinctions. It is
highlighting the need for task-specific aggregation selection.

– A cross-corpus training technique for Sequence-to-Sequence Autoencoders
is feasible and beneficial.

• Wav2Vec 2.0 - The focus was on different layers and different feature aggrega-
tion strategies.

Revealed Guidelines:



5.6 Concluding Remarks 79

– Convolutional embeddings behave more robustly and have a global pat-
tern in different databases

– The mean aggregation is always a good choice, but it is not the only one.
Our first results indicate that middle percentile aggregations are competi-
tive techniques.

– The traditional standard deviation and median aggregations are heavily
topic dependent.

– Wav2Vec 2.0 embeddings can contain outlier values, which are not really
useful for classification. As a result, aggregation methods that are sensitive
to outliers may perform less robustly. Obvious examples are the minimum
and maximum, which were clearly outperformed by the first and 99th
percentiles.

– Choosing only one aggregation technique leads to a suboptimal classifica-
tion performance. The peak of performance fell on the combination of the
first 3-4 techniques. The best combinations typically include the mean,
a non-traditional percentile value below and/or above the median. This
combination can improve the generalisation ability of the model, while
keeping the feature space below 2048.

Unified Cross-Thesis Insights

• Aggregation strategies are crucial across all methodologies. More than one
strategy always improves, but the actual set of selected strategies can vary for
different paralinguistic use cases.

• The combination of different aggregation strategies always improves.

• Parameter optimisation principles scale from traditional to deep learning ap-
proaches, but applying normalisation/standardisation and noise reduction is
always a good choice.

• Ensemble methods prove a valuable impact in the case of stochastic behaviour.

• In case of Deep Neural Networks, it is important to investigate the output of
different layers for embedding extraction.

• Just as neural networks do not always provide the best solution for everything,
traditional techniques are not always the most effective. We are highlighting
the importance of fusing traditional and modern approaches. Traditional and
deep-learning methodologies can boost each other.
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[13] José Vicente Egas-López and Gábor Gosztolya. Deep Neural Network embed-
dings for the estimation of the degree of sleepiness. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing, ICASSP, pages 7288–7292,
06 2021.
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Summary

This PhD thesis presents a comprehensive research in the field of computational par-
alinguistics through a systematic investigation of feature extraction methodologies.
Despite the growing number of studies in this area, there is still no consensus on a set
of architectural design patterns that can be applied universally. For example, there
is no consensus on whether specific methods, such as Wav2Vec 2.0 networks, are
universally applicable as feature extractors for different paralinguistic tasks. Some
approaches may work well for specific datasets, yet fail to generalise across multi-
ple use-cases. This gap in the literature motivated our study. This research aims
to establish global guidelines for processing various paralinguistic corpora. Exper-
iments were conducted in tasks such as emotion recognition, cognitive impairment
detection, and other speech-based classification and regression tasks. These use cases
often suffer from inconsistent performance across datasets and limited consensus in
the case of best practices.

Fundamental challenges were encountered while attempting to develop robust
extraction strategies applicable across various datasets. First of all, most paralin-
guistic corpora remain small (less than 100 hours), making it harder to observe and
conclude global trends. On the other hand, the extremely low amount of data is lim-
iting the training of Deep Neural Networks. Moreover, cross-cultural generalisation is
a huge challenge. For example, models trained on Western speech underperform on
tonal languages (e.g., Mandarin). It highlights the necessity of multilingual speech
features. Last, but not least, unified evaluation metrics play a crucial role in the
realistic and comparable evaluation of research paper results. We have to promote
standardised metrics (e.g., Pearson or Spearman correlation for regression) across
tasks to enable direct comparisons. Lastly, computational costs play a crucial role in
real-life applications. Deep Neural Networks require more GPU resources than tra-
ditional methods, making edge or low-resource deployment more difficult. Compre-
hensive researches in this field are crucial for the everyday development of paralin-
guistic systems. In this thesis, two main challenges were highlighted: the importance
of parameter optimisation (such as hyperparameters and other architectural design
choices) and the selection of aggregation strategies. A focus on these two aspects was
chosen to enhance the understanding of features within paralinguistic analysis and
to identify methods that could overall enhance the effectiveness of computational
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[94] [55] [92] [91] [93] [96] [90] [46] [95]
I/1. • •
I/2. • •
I/3. •
II/1. •
III/1. • •
III/2. •

Table 5.7: The relation between the theses and the corresponding publications

models. The thesis contributes to creating practical guidelines for the three main cat-
egories of machine learning approaches (traditional, deep learning-based and hybrid
methodologies).

The dissertation consists of five major parts. In Chapter 1, a short introduction
of the thesis points and the contribution of the author is provided. In Chapter 2, a
brief introduction to the history of computational paralinguistics is provided, along
with a description of the main technical challenges in the field (such as varying-
length recordings and small corpora). This chapter also gives an overview of com-
monly used methodologies. In the next three chapters, different machine learning ap-
proaches are explored across the three interconnected research streams: traditional
methodologies in Chapter 3, hybrid methodologies in Chapter 4, and State-of-the-Art
deep learning approaches in Chapter 5. It reflects the three-stage progression of evo-
lutionary development of the field of artificial intelligence. Traditional methods, for
example, the Bag-of-Audio-Words (BoAW) technique, serve as our foundational base-
line, establishing performance benchmarks while demonstrating the core principles
of parameter optimisation, corpus independence, and robust feature extraction un-
der resource constraints. Building upon these insights, hybrid methodologies bridge
the gap between traditional approaches and modern deep learning solutions by com-
bining Hidden Markov Models with Deep Neural Networks. It demonstrates how the
integration of traditional statistical methods with neural architectures can achieve re-
source efficiency while maintaining competitive performance. Finally, the SotA DNN
approaches, including the Sequence-to-Sequence Autoencoder and the Wav2Vec 2.0
model, reveal the full potential of automatically learned data features. At the same
time, it validates and extends the universal principles discovered in these different
streamlines. The methodological progression of the thesis points is designed to re-
veal comprehensive principles for feature extraction that involve specific algorithmic
choices. It ultimately contributes to the development of globally applicable guidelines
that researchers and developers can use, based on their specific resource constraints,
dataset characteristics, and performance requirements.
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Thesis Group I.

In the first thesis group, the key findings are related to forming general rules for
traditional machine learning approaches. Detailed discussions can be found in Chap-
ter 3. The Bag-of-Audio-Words (BoAW) technique was investigated for this purpose.
The processes of parameter optimisation, the nature of corpus independence, and
stochastic behaviour were explored. Three different databases were used to provide
a comprehensive overview: the Hungarian emotion database, EmoDB, and Sleepi-
ness.

Thesis Point I/1.

In Chapter 3, the Bag-of-Audio-Words technique was explored as a feature extrac-
tion method for speech emotion recognition. BoAW provides a structured way to
address the issue of handling varying-length recordings for classification. It is clus-
tering frame-level features into ”codebooks” and creating histogram representations
in fixed-sized feature vectors. The focus was placed on exploring the possibilities
within different parameter optimisation strategies and investigating the following pa-
rameters: feature transformation (delta features), database scaling (normalisation,
upsampling), codebook size, clustering and quantisation. Experiments conducted
on a Hungarian emotion database demonstrate that BoAW enhances classification
accuracy, though some parameters require further tuning for optimal results. Guide-
lines such as applying normalisation/standardisation and upsampling, using delta
features and codebook sizes (128–4096 clusters) significantly improve our results.
In conclusion, proper parameter optimisation has a high impact on the performance
of Bag-of-Audio-Words and gold standards were defined to narrow the pool of possi-
ble hyperparameters [55, 94].

Contribution in Thesis Point I/1.

The author implemented the Bag-of-Audio-Words feature-extraction pipeline for e-
motion recognition, including parameter optimisation for preprocessing, codebook
generation, quantisation, and feature transformation. She has taken care of the ex-
perimental setup, ensuring speaker-independent evaluation and systematic testing of
parameter ranges such as codebook size, neighbour count, clustering algorithms, and
delta feature computation. The author performed data preparation, feature extrac-
tion using openSMILE and openXBOW, and integrated the output into SVM-based
classification. She conducted multiple iterations of experiments to analyse the ef-
fect of each parameter on classification accuracy, performed statistical comparison
of configurations, and identified optimal parameter settings, while also documenting
the findings.
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Thesis Point I/2.

In Chapter 3, the exploration of the BoAW technique was continued, with a focus
on the corpus-independent capabilities. The research investigates whether BoAW
feature extraction can be applied across different datasets without requiring dataset-
specific parameter optimisation. Emotion recognition was performed on a Hungar-
ian emotion database, with codebooks calculated from different databases: the same
Hungarian emotion database, a German emotion database, and a general Hungar-
ian speech database. Results show that classification accuracy remains consistent
across different codebooks, suggesting that BoAW is practically corpus-independent.
Codebooks trained on unrelated datasets achieved comparable or superior perfor-
mance to corpus-specific codebooks, enabling cross-dataset generalisation. These
findings support that the BoAW technique is a robust feature extraction method that
can be applied across multiple datasets without significant performance loss. In con-
clusion, the traditional approach was challenged, where the initial clustering step
was typically corpus-dependent and performed on the training set of each investi-
gated database. This study demonstrates the importance of corpus independence.
It proves that the BoAW feature extraction method can be applied across different
datasets without requiring dataset-specific parameter optimisation [91, 92].

Contribution in Thesis Point I/2.

The author implemented an experimental framework for analysing corpus indepen-
dence in Bag-of-Audio-Words feature extraction. She preprocessed the three differ-
ent databases, constructed cross-corpus codebooks, and ran systematic tests with an
emotion recognition task, while documenting all the results and conclusions.

Thesis Point I/3.

In Chapter 3, the traditional BoAW methodology was refined to investigate its stoc-
hastic nature and how its variability affects global guidelines. Since it relies on
randomised clustering, it can produce different results even when using the same
settings, leading to inconsistencies. This research explores the average aggregation
technique to ensemble different features from multiple BoAW models. While ensem-
bling enhances robustness, it also increases feature space size, which can negatively
impact classification efficiency. To counteract this, Principal Component Analysis di-
mensionality reduction was applied. It can help maintain accuracy while reducing
computational complexity. The findings suggest that BoAW’s stochastic behaviour
can be controlled, making our guidelines more reliable for paralinguistic tasks. In
conclusion, this study highlighted that in addition to establishing general parameter
settings and reusable codebooks for emotion recognition, the stochastic behaviour of
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the BoAW method should be handled. This research highlights and demonstrates the
importance of the ensemble strategy when a machine learning approach has stochas-
tic behaviour [93].

Contribution in Thesis Point I/3.

The author implemented the experimental framework for the stochastic variability
of Bag-of-Audio-Words feature extraction, while documenting all of the results. She
developed an infrastructure for repeated feature extraction with multiple random
seeds. The author implemented various aggregation strategies and addressed the
data dimensionality issue using Principal Component Analysis.

Thesis Group II.

In the second thesis group, the key findings are related to the aggregation strategy
selection. The study in this section explores the nature of five different strategies.
Three different databases were used to cover multiple paralinguistic use-cases: AIBO,
URTIC, and iHEARu-EAT. Detailed discussion can be found in Chapter 4.

Thesis Point II/1.

In Chapter 4, the hybrid HMM/DNN methodology was refined to demonstrate best
practices and global guidelines for combining traditional methods with deep neural
networks. HMM/DNN is a hybrid approach that combines a Hidden Markov Model
with a Deep Neural Network for speech processing tasks. The DNN component
excels in feature extraction and non-linear mapping, while the HMM component
handles temporal modelling of speech sequences. An Automatic Speech Recogni-
tion technique and a paralinguistic feature extraction were combined by training a
HMM/DNN hybrid acoustic model. This model was used to generate embeddings,
which serve as features for various paralinguistic tasks, including emotion recogni-
tion, illness detection, and recognising eating conditions. This study discovers task-
dependent guidelines for all these different tasks. On the one hand, the main focus
was on exploring different feature aggregation strategies, including the mean, stan-
dard deviation, skewness, kurtosis, and the ratio of non-zero activations. Parallel
with that, another investigation was conducted about architectural choices in the
case of the DNN. The embeddings were extracted from five different layers. Results
showed that there are best practices that can improve classification results. Pretrain-
ing DNNs on large ASR corpora allowed effective embedding extraction. In addition,
the following guidelines were formulated: when extracting embeddings the 4th layer
could be an optimal choice; when choosing the number of aggregations to combine,
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it is worth taking into account Occam’s razor principle; combining three techniques
will always improve the results in multiple paralinguistic tasks; mean and standard
deviation consistently performed best across different aggregations; the ratio of non-
zero activations proved useful in certain cases, particularly in combinations. In con-
clusion, this research has revealed the difficulty of selecting the most reliable embed-
dings and the optimal aggregation strategy. Always using only one aggregation is not
robust enough. Just as neural networks do not always provide the best solution for
everything, traditional techniques are not always the most effective. It is essential to
highlight the importance of fusing traditional and modern approaches. Traditional
and deep-learning methodologies can boost each other. These policies can be com-
petitive design choices of hybrid systems in computational paralinguistics [96].

Contribution in Thesis Point II/1.

The author implemented an aggregation pipeline, which included various aggrega-
tions, feature transformations, and classification. She has taken care of this exper-
imental setup, ensuring systematic testing in different databases. The author per-
formed data preparation and integrated the output into SVM-based classification.
She conducted multiple iterations of experiments to analyse the effect of layers and
aggregations. She performed the comparison of configurations and identified optimal
parameter settings while also documenting the findings.

Thesis Group III.

In the third thesis group, the key findings are related to the investigation booth
parameter optimisation and aggregation strategy selection in the case of Deep Neural
Network (DNN) methodologies. These studies are exploring the effectiveness of noise
reduction and the nature of 10 aggregation strategies. Four different databases were
used in this section: a Hungarian Mild Cognitive Impairment (MCI) database, AIBO,
URTIC, iHEARu-EAT. Detailed discussion can be found in Chapter 5.

Thesis Point III/1.

In Chapter 5, a Deep Neural Network methodology was used to demonstrate global
guidelines. The use of Sequence-to-Sequence Autoencoders was investigated for as-
sessing Mild Cognitive Impairment. It is a deep learning-based feature extraction
method, trained to reproduce its input, forcing the data through a lower-dimensional
“bottleneck” layer. Its encoder can map each frame-level raw audio feature to a fixed-
size embedding. Two aspects were explored. The first experiment focused on the
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influence of the audio preprocessing, especially the minimum power level of record-
ings. The experiments involved removing background noise by clipping power levels
to a given dB value (-30, -45, -60, -75). The best performance was achieved with a
-75 dB threshold, suggesting the first guideline. The second experiment focused on
different feature aggregation strategies. Four aggregation methods were evaluated
on chunk-level posteriors to obtain speaker-level scores. The aggregations were:
arithmetic mean, median, geometric mean, and harmonic mean. In conclusion, this
study highlights the importance of noise reduction and demonstrates the effect of dif-
ferent aggregation strategies. It established a noise-related guideline, connected to
the best performance that was achieved with a -75 dB threshold. It also established
a few aggregation guidelines: in case of 2-class tasks, the median marginally outper-
formed the arithmetic mean, while for 3-class tasks, the harmonic mean proved to be
the most effective [46, 90].

Contribution in Thesis Point III/1.

The author implemented a classification pipeline that included various prediction-
level aggregations and feature transformations. Based on already calculated poste-
rior values, she has taken care of this experimental setup, ensuring systematic testing.
The author performed data preparation and evaluated the posteriors. She conducted
multiple iterations of experiments to analyse the effect of noise reduction and ag-
gregations. She performed a comparison of configurations, identifying optimal noise
reduction settings and aggregation techniques, while also documenting her findings.

Thesis Point III/2.

In Chapter 5, the State-of-the-Art Wav-to-Vec 2.0 Neural Network was investigated.
It is a self-supervised deep learning model that learns speech representations directly
from raw audio waveforms. It first uses a CNN with dilated convolutions to en-
code the waveform into latent feature vectors, then applies a transformer network
to generate contextualised embeddings. To investigate architectural design options,
frame-level embeddings were extracted from both the final convolutional layer and
the last transformer layer. This study has two main focuses: architectural choices
and aggregation techniques. First, the given results showed that convolutional-layer
embeddings consistently outperformed transformer-layer embeddings. Secondly, ag-
gregation techniques for Wav2Vec 2.0 embeddings were explored, ensuring robust
feature extraction across different paralinguistic tasks. IT evaluates 11 different ag-
gregation functions: mean, standard deviation, skewness, kurtosis, percentiles (1st,
25th, 75th, 99th), minimum and maximum. These methods were tested individually
and in combined configurations. The results highlight multiple guidelines. Non-
traditional metrics, especially percentiles, provide notable performance improve-
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ments over standard mean-based aggregation. Lower percentile values worked better
for food classification tasks, while higher percentiles proved more effective for emo-
tion recognition and speech distorting infection assessments. Using three to four
aggregation techniques together resulted in increased performance, highlighting the
value of combining statistical measures rather than relying solely on traditional ag-
gregation methods. It highlights the importance of non-traditional metrics, especially
percentiles, that provide notable performance improvements over standard mean-
based aggregation. These experiments have established multiple global guidelines;
however, different paralinguistic tasks can differ in what constitutes the optimal set
of strategies [95].

Contribution in Thesis Point III/2.

The author implemented the classification pipeline, which included various aggrega-
tions and feature transformations. Based on already calculated frame-level feature
vectors, she has taken care of the experimental setup, ensuring systematic testing in
different databases. The author performed data preparation and integrated the out-
put into SVM-based classification. She conducted multiple iterations of experiments
to analyse the effect of aggregation methodologies and the features given by differ-
ent layers. She performed a comparison of configurations, identifying optimal layer
settings and aggregation techniques, while also documenting her findings.



Összefoglalás

Ebben a PhD értekezésben átfogó kutatásokat mutatok be a számı́tógépes paraling-
visztika területén, a jellemző-kinyerési módszerek szisztematikus vizsgálatán keresz-
tül. A terület növekvő számú tanulmánya ellenére még mindig nincs konszenzus
olyan metodikai és tervezési mintákról, amelyek univerzálisan alkalmazhatók len-
nének. Például nincs konszenzus arról, hogy olyan specifikus módszerek, mint a
Wav2Vec 2.0 hálózatok, univerzálisan alkalmazhatók-e jellemző-kinyerőként külön-
böző paralinguisztikai feladatokhoz. Egyes megközeĺıtések jól működhetnek speci-
fikus adathalmazokon, mégis kudarcot vallanak több használati eset általánośıtásá-
ban. Ez az irodalmi űr motiválta tanulmányunkat. Ez a kutatás globális irányelvek
megállaṕıtását célozza különböző paralinguisztikai korpuszok feldolgozásához. Ḱı-
sérleteket végeztünk olyan feladatokban, mint az érzelemfelismerés, kognit́ıv károso-
dás észlelése és egyéb beszéd-alapú osztályozási és regreziós feladatok. Ezeknél a fel-
használási eseteknél gyakran inkonzisztens a teljeśıtmény különböző adathalmazok
között és korlátozott konszenzus van a bevált gyakorlatok esetében.

Különböző kih́ıvásokkal találkoztunk, miközben robusztus kinyerési stratégiák ki-
fejlesztésére törekedtünk, amelyek különböző adathalmazokra alkalmazhatók. Min-
denekelőtt a legtöbb paralinguisztikai korpusz kicsi (kevesebb mint 100 óra), ami
megneheźıti a globális trendek megfigyelését és következtetését. Másrészt a rendḱı-
vül alacsony adatmennyiség korlátozza a mélytanuló hálózatok tańıtását. Ezen túl-
menően a kultúrákon át́ıvelő általánośıtás hatalmas kih́ıvás. Például a nyugati beszé-
den képzett modellek alulteljeśıtenek tonális nyelveken (pl. mandarin). Ez kiemeli a
többnyelvű beszédjellemzők szükségességét. Végül, de nem utolsósorban, az egysé-
ges értékelési metrikák kulcsszerepet játszanak a kutatási cikk eredmények realisz-
tikus és összehasonĺıtható értékelésében. Szabványośıtott metrikákat kell támogat-
nunk (pl. Pearson vagy Spearman korreláció regresszióhoz) a feladatok között a
közvetlen összehasonĺıtások lehetővé tétele érdekében. Végül a számı́tási költségek
kulcsszerepet játszanak a valós alkalmazhatóságban. A mélytanuló hálózatok több
GPU erőforrást igényelnek, mint a tradicionális módszerek, ami megneheźıti az ala-
csony erőforrású környezetekben való felhasználást. Az átfogó kutatások ezen a
területen létfontosságúak a paralinguisztikai rendszerek mindennapi használatához.
Ebben az értekezésben két fő kih́ıvást emelünk ki: a paraméter-optimalizálás fon-
tosságát és az aggregációs stratégiák kiválasztását. E két szempont hangsúlyozását
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választottuk a paralinguisztikai anaĺızisben található jellemzők megértésének kieme-
lésére és olyan módszerek azonośıtására, amelyek összességében jav́ıthatják a gépi
modellek hatékonyságát. Az értekezés hozzájárul a gyakorlati irányelvek kidolgozá-
sához a gépi tanulási megközeĺıtések három fő kategóriájában (hagyományos, mély-
tanulás alapú és hibrid módszerek).

A disszertáció öt fő részből áll. Az 1. fejezetben rövid bevezetést adunk a tézispon-
tokról és a szerző közreműködéséről. A 2. fejezetben rövid bevezetést nyújtunk a
számı́tógépes paralinguisztika történetéről, valamint a terület fő technikai kih́ıvásai-
nak léırásáról (mint például a változó hosszúságú felvételek és kis méretű korpu-
szok). Ez a fejezet áttekintést ad a gyakran használt módszerekről is. A követ-
kező három fejezetben különböző gépi tanulási megközeĺıtéseket vizsgálunk, három,
összekapcsolt kutatási ágon keresztül: hagyományos módszerek a 3. fejezetben, hib-
rid módszerek a 4. fejezetben, és a legmodernebb mélytanulási megközeĺıtések az 5.
fejezetben. Ez tükrözi a mesterséges intelligencia területének evolúciós fejlődésének
háromfázisú progresszióját. A hagyományos módszerek, például a Bag-of-Audio-
Words (BoAW) technika, alapvető referenciapontokként szolgálnak, teljeśıtménymér-
céket álĺıtva, miközben bemutatják a paraméter-optimalizálás, a korpusz-független-
ség és a robusztus jellemző-kinyerés alapelveit. Ezekre az ismeretekre éṕıtve a hib-
rid módszerek áthidalják a szakadékot a hagyományos megközeĺıtések és a modern
mélytanulási megoldások között, például Hidden Markov Modelleket kombinálva
mélytanuló hálózatokkal. Ez bemutatja, hogyan érhető el erőforrás-hatékonyság a
hagyományos statisztikai módszerek és neurális architektúrák integrációjával, miköz-
ben versenyképes teljeśıtményt tartunk fenn. Végül a legmodernebb DNN megközeĺı-
tések, beleértve a Sequence-to-Sequence Autoencodert és a Wav2Vec 2.0 modellt,
feltárják az automatikusan tanult adatjellemzők teljes potenciálját. A tézismunka
egyidejűleg validálja és kiterjeszti az ezekben a különböző vonulatokban felfede-
zett univerzális elveket. Az értekezés pontok módszertani progressziója úgy van ki-
alaḱıtva, hogy átfogó elveket tárjon fel a jellemző-kinyeréshez, amelyek specifikus
algoritmikus választásokat foglalnak magukban. Végső soron hozzájárul a globálisan
alkalmazható irányelvek kifejlesztéséhez, amelyeket kutatók és fejlesztők használhat-
nak specifikus erőforrású, adathalmazú és teljeśıtménykövetelményű környezetek-
ben.

A disszertáció 1. tézise

Az első téziscsoportban a kulcsfontosságú megállaṕıtások a hagyományos gépi ta-
nulási megközeĺıtések általános szabályainak kialaḱıtásához kapcsolódnak. Részletes
léırások találhatók a 3. fejezetben. A Bag-of-Audio-Words (BoAW) technikát vizsgál-
tuk erre a célra. A paraméter-optimalizálás folyamatait, a korpusz-függetlenség ter-
mészetét és a sztochasztikus viselkedést kutattuk. Három különböző adatbázist hasz-
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náltunk átfogó áttekintés biztośıtására: a magyar érzelemadatbázist, az EmoDB-t és
a Sleepiness adatbázist.

I/1. Tézispont

A 3. fejezetben a Bag-of-Audio-Words technikát vizsgáltuk beszéd érzelemfelismerési
jellemző-kinyerési módszerként. A BoAW strukturált módot biztośıt a változó hosszú-
ságú felvételek kezelésének problémájára osztályozáshoz. Keret-szintű jellemzőket
klaszterez ”kódkönyvekbe” és hisztogram reprezentációkat hoz létre rögźıtett méretű
jellemző-vektorokban. A hangsúlyt különböző paraméter-optimalizálási stratégiák
lehetőségeinek feltárására helyeztük, a következő paraméterek vizsgálatával: jel-
lemző-transzformáció (delta jellemzők), adatbázis-skálázás (normalizálás, felülmin-
tavételezés), kódkönyv mérete, klaszterezés és kvantálás. A magyar érzelemadatbázi-
son végzett ḱısérletek azt mutatják, hogy a BoAW jav́ıtja az osztályozási pontosságot,
bár egyes paraméterek további hangolást igényelnek az optimális eredményekhez.
Az olyan irányelvek, mint a normalizálás/standardizálás és felülmintavételezés al-
kalmazása, delta jellemzők használata és kódkönyv méretek (128–4096 klaszter) je-
lentősen jav́ıtják eredményeinket. Következtetésként a megfelelő paraméter-optima-
lizálás nagy hatást gyakorol a Bag-of-Audio-Words teljeśıtményére, és egységes stan-
dardokat határoztunk meg a lehetséges hiperparaméterek körének szűḱıtésére.

I/2. Tézispont

A 3. fejezetben a BoAW technika vizsgálata folytatódott, a korpusz-független képes-
ségekre fókuszálva. A kutatás azt vizsgálta, hogy a BoAW jellemző-kinyerés alkalmaz-
ható-e különböző adathalmazokon anélkül, hogy adathalmaz-specifikus paraméter-
optimalizálást igényelne. Érzelemfelismerést végeztünk egy magyar érzelemadatbá-
zison, különböző adatbázisokból számı́tott kódkönyvekkel: ugyanaz a magyar érze-
lemadatbázis, egy német érzelemadatbázis és egy általános magyar beszédadatbázis.
Az eredmények azt mutatják, hogy az osztályozási pontosság konzisztens marad a
különböző kódkönyvek között, ami arra utal, hogy a BoAW gyakorlatilag korpusz-
független. A nem kapcsolódó adathalmazokon képzett kódkönyvek hasonló vagy
jobb teljeśıtményt értek el, mint a korpusz-specifikus kódkönyvek, lehetővé téve a
kereszt-adathalmazos általánośıtást. Ezek a megállaṕıtások alátámasztják, hogy a
BoAW technika robusztus jellemző-kinyerési módszer, amely több adathalmazon al-
kalmazható jelentős teljeśıtményveszteség nélkül. Következtetésként megkérdője-
leztük a hagyományos megközeĺıtést, ahol a kezdeti klaszterezési lépés tipikusan
korpusz-függő volt és minden vizsgált adatbázis, tańıtó halmazán végezték. Ez a
tanulmány bemutatja a korpusz-függetlenség fontosságát. Bizonýıtja, hogy a BoAW
jellemző-kinyerési módszer alkalmazható különböző adathalmazokon anélkül, hogy
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adathalmaz-specifikus paraméter-optimalizálást igényelne.

I/3. Tézispont

A 3. fejezetben a hagyományos BoAW módszertan finomı́tására került sor: a szto-
chasztikus természetének és változékonyságának globális irányelvekre gyakorolt ha-
tásának vizsgálatára. Mivel randomizált klaszterezésre támaszkodik, különböző ere-
dményeket produkálhat még akkor is, ha ugyanazokat a beálĺıtásokat használjuk,
inkonzisztenciákhoz vezetve. Ez a kutatás feltárja az átlagos aggregációs technikát
különböző jellemzők együttesére több BoAW modellből. Bár ez növeli a robusz-
tusságot, növeli a jellemzőtér méretét is, ami negat́ıvan befolyásolhatja az osztályozá-
si hatékonyságot. Ennek ellensúlyozására Principal Component Analysis dimenzió-
csökkentést alkalmaztunk. Ez seǵıthet a pontosság fenntartásában a számı́tási komp-
lexitás csökkentése mellett. A megállaṕıtások azt sugallják, hogy a BoAW szto-
chasztikus viselkedése kontrollálható, megb́ızhatóbbá téve irányelveinket paralin-
guisztikai feladatokhoz. Következtetésként ez a tanulmány ráviláǵıtott arra, hogy
az általános paraméter-beálĺıtások és újrafelhasználható kódkönyvek megállaṕıtása
mellett az érzelemfelismeréshez a BoAW módszer sztochasztikus viselkedését is ke-
zelni kell. Ez a kutatás kiemeli és bemutatja az együttes stratégia fontosságát, amikor
egy gépi tanulási megközeĺıtés sztochasztikus viselkedéssel rendelkezik.

A disszertáció 2. tézise

A második téziscsoportban a kulcsfontosságú megállaṕıtások az aggregációs stratégia
kiválasztásához kapcsolódnak. Az ebben a részben szereplő tanulmány öt különböző
stratégia természetét vizsgálja. Három különböző adatbázist használtunk több para-
linguisztikai használati eset lefedésére: AIBO, URTIC és iHEARu-EAT. Részletes léırás
található a 4. fejezetben.

II/1. Tézispont

A 4. fejezetben a hibrid HMM/DNN módszertan finomı́tására került sor, a bevált gya-
korlatok és globális irányelvek bemutatására, a hagyományos módszerek mélytanuló
hálózatokkal való kombinálásához. A HMM/DNN egy hibrid megközeĺıtés, amely a
Hidden Markov Model és a Mély Neurális Háló kombinációját alkalmazza beszédfel-
dolgozási feladatokhoz. A DNN komponens kiválóan teljeśıt a jellemzők kivonásában
és a nemlineáris leképezésben, mı́g a HMM komponens a beszédszekvenciák időbeli
modellezését végzi. Automatikus beszédfelismerési technikát és paralinguisztikai jel-
lemző-kinyerést kombináltunk egy HMM/DNN hibrid akusztikus modell képzésével.
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Ezt a modellt beágyazások generálására használják, amelyek különböző paralinguisz-
tikai feladatok jellemzőiként szolgálnak, beleértve az érzelemfelismerést, betegség-
észlelést és étkezési körülmények felismerését. Ez a tanulmány feladat-függő irány-
elveket tár fel, a különböző feladatokhoz. Egyrészt a fő hangsúly különböző jel-
lemző-aggregációs stratégiák feltárásán volt, beleértve az átlagot, szórást, skewness-
t, kurtózist és a nem-nulla aktivációk arányát. Ezzel párhuzamosan egy másik vizsgá-
latot végeztünk a DNN esetében a strukturális választásokról. A beágyazásokat öt
különböző rétegből nyertük ki. Az eredmények azt mutatták, hogy vannak bevált
gyakorlatok, amelyek jav́ıthatják az osztályozási eredményeket. A DNN-ek nagy ASR
korpuszokon való előtańıtása lehetővé tette a hatékony beágyazás-kinyerést. Emel-
lett a következő irányelveket fogalmaztuk meg: beágyazások kinyerésekor a 4. réteg
lehet optimális választás; az aggregációk számának kiválasztásakor érdemes figye-
lembe venni Occam borotvájának elvét; három technika kombinálása mindig jav́ıtja
az eredményeket több paralinguisztikai feladatban; az átlag és szórás konzisztensen
a legjobban teljeśıtett a különböző aggregációk között; a nem-nulla aktivációk aránya
bizonyos esetekben hasznosnak bizonyult, különösen a kombinációkban. Következ-
tetésként ez a kutatás feltárta a legmegb́ızhatóbb beágyazások és az optimális agg-
regációs stratégia kiválasztásának nehézségét. Mindig csak egy aggregáció használa-
ta nem elég robusztus. Ahogy a neurális hálózatok nem mindig nyújtják a legjobb
megoldást mindenre, a hagyományos technikák sem mindig a leghatékonyabbak. Ki-
emelhetjük a hagyományos és modern megközeĺıtések ötvözésének fontosságát. A
hagyományos és mélytanulási módszerek erőśıthetik egymást. Ezek az irányelvek
versenyképes tervezési választások lehetnek hibrid rendszerekben a számı́tógépes pa-
ralinguisztikában.

A disszertáció 3. tézise

A harmadik téziscsoportban a kulcsfontosságú megállaṕıtások mind a paraméter-
optimalizálás, mind az aggregációs stratégia kiválasztásának vizsgálatához kapcso-
lódnak mélytanuló hálózatok esetében. Ezek a tanulmányok a zajcsökkentés haté-
konyságát és 10 aggregációs stratégia természetét vizsgálják. Négy különböző adat-
bázist használtunk ebben a részben: egy magyar enyhe kognit́ıv károsodás (MCI)
adatbázist, AIBO-t, URTIC-et, iHEARu-EAT-et. Részletes léırás található az 5. fejezet-
ben.

III/1. Tézispont

Az 5. fejezetben egy mélytanuló módszertant használtunk a globális irányelvek be-
mutatására. A Sequence-to-Sequence Autoencoderek használatát vizsgáltuk az eny-
he kognit́ıv károsodás értékeléséhez. Ez egy mélytanulás-alapú jellemző-kinyerési
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módszer, amelyet úgy tańıtanak, hogy reprodukálja a bemenetét, az adatokat egy
alacsonyabb dimenziós ”szűk keresztmetszet” rétegen átv́ıve. Az encoder minden
keret-szintű audio jellemzőt, rögźıtett méretű beágyazásra képez. Két szempon-
tot vizsgáltunk. Az első ḱısérlet az audio előfeldolgozás hatására összpontośıtott,
különösen a felvételek minimum hangszintjére. A ḱısérletek a háttérzaj eltávoĺıtását
foglalták magukban, a hangszintek adott dB értékre való vágásával (-30, -45, -60, -
75). A legjobb teljeśıtményt -75 dB küszöbértékkel értük el, ami az első irányelvet ad-
ja. A második ḱısérlet különböző jellemző-aggregációs stratégiákra összpontośıtott.
Négy aggregációs módszert értékeltünk, chunk-szintű posteriori becsléseken beszélő-
szintű eredmények megszerzéséhez. Az aggregációk a következők voltak: aritmeti-
kai átlag, medián, geometriai átlag és harmonikus átlag. Következtetésként ez a ta-
nulmány kiemeli a zajcsökkentés fontosságát és bemutatja a különböző aggregációs
stratégiák hatását. Egy, zajjal kapcsolatos irányelvet állaṕıtottunk meg, amely a -
75 dB küszöbértékkel elért legjobb teljeśıtményhez kapcsolódik. Néhány aggregációs
irányelvet is megállaṕıtottunk: 2-osztályos feladatok esetében a medián marginálisan
felülmúlta az aritmetikai átlagot, mı́g 3-osztályos feladatok esetében a harmonikus
átlag bizonyult a leghatékonyabbnak.

III/2. Tézispont

Az 5. fejezetben a State-of-The-Art Wav-to-Vec 2.0 neurális hálózat vizsgálata olvas-
ható. Ez egy önfelügyelt mélytanulási modell, amely beszéd reprezentációkat tanul
közvetlenül nyers audio felvételekből. Először CNN-t használ dilatált konvolúciókkal
a látens jellemző-vektorokká kódoláshoz, majd transzformer hálózatot alkalmaz kon-
textualizált beágyazások generálására. Az strukturális tervezési opciók vizsgálatához
keret-szintű beágyazásokat nyertünk ki, mind a végső konvolúciós rétegből, mind
az utolsó transzformer rétegből. Ennek a tanulmánynak két fő fókusza van: struk-
turális választások és aggregációs technikák. Először az adott eredmények azt mu-
tatták, hogy a konvolúciós réteg beágyazásai konzisztensen felülmúlták a transzfor-
mer réteg beágyazásait. Másodszor, a Wav2Vec 2.0 beágyazások aggregációs tech-
nikáit vizsgálták, biztośıtva a robusztus jellemző-kinyerést különböző paralinguiszti-
kai feladatok között. 11 különböző aggregációs függvényt értékeltünk: átlag, szórás,
skwness, kurtózis, percentilisek (1., 25., 75., 99.), minimum és maximum. Ezeket
a módszereket egyenként és kombinált konfigurációkban teszteltük. Az eredmények
több irányelvet emelnek ki. A nem hagyományos metrikák, különösen a percenti-
lisek, jelentős teljeśıtményjavulást nyújtanak a standard átlag-alapú aggregációhoz
képest. Az alacsonyabb percentilis értékek jobban működtek étel-osztályozási felada-
toknál, mı́g a magasabb percentilisek hatékonyabbnak bizonyultak érzelemfelismerés
és beszédet torźıtó betegségek értékelésénél. Három-négy aggregációs technika e-
gyüttes használata növekedett teljeśıtményt eredményezett, kiemelve a statisztikai
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számı́tások kombinálásának értékét, ahelyett, hogy kizárólag hagyományos aggregá-
ciós módszerekre támaszkodnánk. Kiemeli a nem hagyományos metrikák, különösen
a percentilisek fontosságát, amelyek jelentős teljeśıtményjavulást nyújtanak a stan-
dard átlag-alapú aggregációhoz képest. Ezek a ḱısérletek több globális irányelvet
állaṕıtottak meg; azonban a különböző paralinguisztikai feladatok eltérhetnek ab-
ban, hogy mi alkotja a stratégiák optimális halmazát .

Első kontribúció

Az első téziscsoportban a hozzájárulásaim a hagyományos gépi tanulási módszerek
általános szabályainak kialaḱıtásához kapcsolódnak. A részletes bemutatás a 3. feje-
zetben található.

I/1. A szerző implementálta a Bag-of-Audio-Words jellemzőkinyerési folyamatot
érzelemfelismeréshez, beleértve a paraméter-optimalizálást, az előfeldolgo-
zást, kódkönyv generálást, kvantálást és jellemző-transzformációt. Gondos-
kodott a ḱısérleti beálĺıtásokról, biztośıtva a beszélőfüggetlen értékelést és a
paramétertartományok szisztematikus tesztelését, mint például a kódkönyv
mérete, szomszédszám, klaszterező algoritmusok és delta jellemzők számı́tá-
sa. A szerző elvégezte az adatelőkésźıtést, jellemzőkinyerést az openSMILE
és openXBOW programok használatával, és integrálta a kimenetet SVM-alapú
osztályozásba. Többszörös iterációs ḱısérleteket végzett az egyes paraméterek
osztályozási pontosságra gyakorolt hatásának elemzésére, statisztikai össze-
hasonĺıtást végzett a konfigurációk között, és azonośıtotta az optimális pa-
raméterbeálĺıtásokat, miközben dokumentálta a megállaṕıtásokat.

I/2. A szerző implementált egy ḱısérleti keretrendszert a Bag-of-Audio-Words jel-
lemzőkinyerés korpuszfüggetlenségének elemzésére. Előfeldolgozta a három
különböző adatbázist, kereszt-korpusz kódkönyveket éṕıtett fel, és szisztema-
tikus teszteket futtatott érzelemfelismerési feladattal, miközben dokumentálta
az összes eredményt és következtetést.

I/3. A szerző implementálta a BoAW jellemzőkinyerés sztochasztikus változékony-
ságának ḱısérleti keretrendszerét, miközben dokumentálta az összes ered-
ményt. Kifejlesztett egy infrastruktúrát a többszörös véletlenszerű seedekkel
történő ismételt jellemzőkinyeréshez. A szerző implementálta a különböző
aggregációs stratégiákat és kezelte az adatdimenzionalitás problémáját Prin-
cipal Component Analysis seǵıtségével.

Második kontribúció

Az második téziscsoportban a hozzájárulásaim a hibrid gépi tanulási módszerek
általános szabályainak kialaḱıtásához kapcsolódnak. A részletes bemutatás a 4. feje-
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zetben található.

II/1. A szerző implementálta az aggregációs folyamatokat, beleértve a különböző
aggregációkat, jellemzőtranszformációt és osztályozást. Gondoskodott a ḱı-
sérleti beálĺıtásokról, biztośıtva a szisztematikus tesztelést különböző adatbá-
zisokon. A szerző elvégezte az adatelőkésźıtést és integrálta a kimenetet
SVM-alapú osztályozásba. Többszörös iterációs ḱısérleteket végzett a rétegek
és aggregációk hatásának elemzésére. Elvégezte a konfigurációk összeha-
sonĺıtását és azonośıtotta az optimális paraméterbeálĺıtásokat, miközben do-
kumentálta a megállaṕıtásokat.

Harmadik kontribúció

Az harmadik téziscsoportban a hozzájárulásaim a mély neurális gépi tanulási mód-
szerek általános szabályainak kialaḱıtásához kapcsolódnak. A részletes bemutatás a
5. fejezetben található.

III/1. A szerző implementálta az osztályozási folyamatot, beleértve a különböző pre-
dikciószintű aggregációkat és jellemzőtranszformációkat. A már kiszámı́tott
poszterior értékek alapján gondoskodott a ḱısérleti beálĺıtásról, biztośıtva a
szisztematikus tesztelést. A szerző elvégezte az adatelőkésźıtést és imple-
mentálta a poszteriorok értékelését. Többszörös iterációs ḱısérleteket végzett
a zajcsökkentés és aggregációk hatásának elemzésére. Elvégezte a konfigu-
rációk összehasonĺıtását és azonośıtotta az optimális zajcsökkentési beálĺıtá-
sokat és aggregációs technikákat, miközben dokumentálta a megállaṕıtásokat.

III/2. A szerző implementálta az osztályozási folyamatot, beleértve a különböző
aggregációkat és jellemzőtranszformációkat. A már kiszámı́tott frame-szintű
jellemzővektorok alapján gondoskodott erről a ḱısérleti beálĺıtásról, biztośıtva
a szisztematikus tesztelést különböző adatbázisokon. A szerző elvégezte az
adatelőkésźıtést és integrálta a kimenetet SVM-alapú osztályozásba. Többszö-
rös iterációs ḱısérleteket végzett az aggregációs módszerek és a különböző
rétegek által nyújtott jellemzők hatásának elemzésére. Elvégezte a konfi-
gurációk összehasonĺıtását és azonośıtotta az optimális rétegbeálĺıtásokat és
aggregációs technikákat, miközben dokumentálta a megállaṕıtásokat.
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Egas-López, J. V., Vetráb, M., Tóth, L., & Gosztolya, G. (2021b). Identifying Con-
flict Escalation and Primates by Using Ensemble X-Vectors and Fisher Vector Features.
Interspeech 2021, 476–480 [14]
https://doi.org/10.21437/Interspeech.2021-1173



Acknowledgments

First of all, I would like to thank my supervisor, Gábor Gosztolya, for directing my
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