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Abstract: Background/Objectives: Ghrelin and growth hormone-releasing peptide 6 (GHRP-6)
are peptides which can stimulate GH release, acting through the same receptor. Ghrelin
and its receptor have been involved in reward sensation and addiction induced by natural
and artificial drugs, including nicotine. The present study aimed to investigate the impacts
of ghrelin and GHRP-6 on the horizontal and vertical activity in rats exposed to chronic
nicotine treatment followed by acute nicotine withdrawal. Methods: Male and female
Wistar rats were exposed daily to intraperitoneal (ip) injection with 2 mg/kg nicotine
or saline solution for 7 days, twice a day (at 8:00 and at 20:00). In parallel, the rats
were exposed daily to an intracerebroventricular (icv) injection with 1 µg/2 µL ghrelin or
1 µg/2 µL GHRP-6 or saline solution for 7 days, once a day (at 8:00). On the morning of
the eighth day (12 h after the last ip administration) and the ninth day (24 h after the last ip
administration), the horizontal and vertical activity were monitored in a conducta system.
Results: On the eighth day, in nicotine-treated rats a significant hyperactivity was observed,
that was reduced significantly by ghrelin and GHRP-6. On the ninth day, in nicotine-treated
rats a significant hypoactivity was assessed that was reversed significantly by ghrelin and
GHRP-6. Conclusions: Based on the present results, the changes in horizontal and vertical
activity observed after 12 and 24 h of nicotine withdrawal can be attenuated by ghrelin
and GHRP-6.
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1. Introduction
Nicotine is the main psychoactive component in tobacco that is responsible for the

reward sensation and addiction produced by smoking [1]. During smoking, nicotine is
rapidly absorbed from the lung alveoli into the systemic circulation; it passes the blood–
brain barrier and reaches the midbrain, where it activates the nicotinic acetylcholine re-
ceptors (nAchRs) and stimulates the release of dopamine causing reward sensation and
addiction [2,3]. The nAchR can be inhibited by mecamylamine, a non-selective and non-
competitive nAchR antagonist that is usually administered orally in humans and subcuta-
neously (sc) or intracerebroventricularly (icv) in rodents, precipitating the symptoms of
nicotine withdrawal [4–6] (Figure 1).
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competitive nAchR antagonist that is usually administered orally in humans and subcu-
taneously (sc) or intracerebroventricularly (icv) in rodents, precipitating the symptoms of 
nicotine withdrawal [4–6] (Figure 1). 

 

Figure 1. The actions of nicotine and mecamylamine on the brain. During smoking, nicotine reaches 
the brain and activates the nicotinergic acetylcholine receptor (nAchR) in the ventral tegmental area 
(VTA) and substantia nigra (SN), stimulating the release of dopamine in the nucleus accumbens 
(NAcc) and caudate–putamen (CP). Mecamylamine can inhibit the nAchR and precipitate the symp-
toms of nicotine withdrawal. 

The nAchRs can be classified into two major subtypes, the muscle-type nAchRs, 
found in the neuromuscular junctions, and the neuronal-type nAchRs, shown on the neu-
ronal bodies and nerve terminals [7]. Nicotine exerts its psychoactive effects via the neu-
ronal-type nAchRs which are ligand-gated ion channels that normally respond to acety-
choline and allow natrium or calcium ions to enter the neurons. Additionally, activation 
of the nAchR, located both pre- and postsynaptically, can influence the release of other 
neurotransmitters, including dopamine, glutamate and γ-aminobutyric acid (GABA) [7]. 
As regards dopamine, there are five subtypes of dopamine receptors grouped in two types 
with different functions (D1-type and D2-type) and two major dopaminergic pathways in 
the midbrain, the nigrostriatal and the mesolimbic pathway [8,9]. The nigrostriatal path-
way arises from the dopaminergic neurons situated in the substantia nigra (SN) and ter-
minates in the putamen and nucleus caudatus (caudate–putamen, CP), which constitute 
the dorsal striatum, modulating motor behavior and posture and contributing to the 
learning of motor programs and habits [8,9]. The mesolimbic pathway emerges from the 
dopaminergic neurons situated in the ventral tegmental area (VTA) and ends in the nu-
cleus accumbens (NAcc) that represents the ventral striatum, but these neurons also send 
dopaminergic projections to the amygdala and prefrontal cortex, mediating reward sen-
sation, emotion and motivation [8,9]. 

Ghrelin is a natural orexigenic peptide that can stimulate the growth hormone (GH) 
release [10,11]. Originally isolated from the rat stomach, ghrelin is released from the walls 
of the empty stomach during hunger, from where it is absorbed into the blood and reaches 
the brain, more specifically the ghrelin receptor found in the nucleus arcuatus (Arc) of the 

Figure 1. The actions of nicotine and mecamylamine on the brain. During smoking, nicotine reaches
the brain and activates the nicotinergic acetylcholine receptor (nAchR) in the ventral tegmental
area (VTA) and substantia nigra (SN), stimulating the release of dopamine in the nucleus accum-
bens (NAcc) and caudate–putamen (CP). Mecamylamine can inhibit the nAchR and precipitate the
symptoms of nicotine withdrawal.

The nAchRs can be classified into two major subtypes, the muscle-type nAchRs, found
in the neuromuscular junctions, and the neuronal-type nAchRs, shown on the neuronal
bodies and nerve terminals [7]. Nicotine exerts its psychoactive effects via the neuronal-
type nAchRs which are ligand-gated ion channels that normally respond to acetycholine
and allow natrium or calcium ions to enter the neurons. Additionally, activation of the
nAchR, located both pre- and postsynaptically, can influence the release of other neuro-
transmitters, including dopamine, glutamate and γ-aminobutyric acid (GABA) [7]. As
regards dopamine, there are five subtypes of dopamine receptors grouped in two types
with different functions (D1-type and D2-type) and two major dopaminergic pathways in
the midbrain, the nigrostriatal and the mesolimbic pathway [8,9]. The nigrostriatal pathway
arises from the dopaminergic neurons situated in the substantia nigra (SN) and terminates
in the putamen and nucleus caudatus (caudate–putamen, CP), which constitute the dorsal
striatum, modulating motor behavior and posture and contributing to the learning of
motor programs and habits [8,9]. The mesolimbic pathway emerges from the dopaminergic
neurons situated in the ventral tegmental area (VTA) and ends in the nucleus accumbens
(NAcc) that represents the ventral striatum, but these neurons also send dopaminergic
projections to the amygdala and prefrontal cortex, mediating reward sensation, emotion
and motivation [8,9].

Ghrelin is a natural orexigenic peptide that can stimulate the growth hormone (GH)
release [10,11]. Originally isolated from the rat stomach, ghrelin is released from the walls
of the empty stomach during hunger, from where it is absorbed into the blood and reaches
the brain, more specifically the ghrelin receptor found in the nucleus arcuatus (Arc) of the
hypothalamus [10,11]. Reaching the hypothalamus, ghrelin activates the central orexigenic
mediators of food intake, neuropeptide Y (NPY) and agouti-related peptide (AgRP), and
consequently, the central orexigenic regulators, orexin and melanin-concentrating hormone
(MCH) to stimulate food intake [10,11] (Figure 2).
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and activates the ghrelin receptor (GHSR1a) in the hypothalamus. In the hypothalamus, it activates 
the orexigenic mediators, neuropeptide Y (NPY) and agouti-related peptide (AgRP), expressed in 
the nucleus arcuatus (Arc), and consequently, the orexigenic regulators, orexin and melanin-con-
centrating hormone (MCH), expressed in the lateral hypothalamus, leading to increased food intake 
and body weight. Growth hormone-releasing peptide 6 (GHRP-6) is considered an antagonist of the 
GHSR1a, although it can act as an agonist stimulating the GH release and mimicking the orexigenic 
effects of ghrelin. 

Growth hormone-releasing peptide 6 (GHRP-6) is a synthetic Met-enkephalin deriv-
ative that can also stimulate the GH release acting through the same receptor [12,13]. 
GHRP-6 is usually considered an antagonist of the ghrelin receptor, but it can also act as 
an agonist, stimulating the GH release and even food intake [12,13]. The ghrelin receptor, 
previously known as the growth hormone secretagogue receptor (GHSR), is a G protein-
coupled receptor that binds GH secretagogues, such as ghrelin and GHRP-6 [14,15]. Clas-
sically, the GHSR was classified in two subtypes, GHSR1a and GHSR1b, with GHSR1a 
regulating food intake and with GHSR1b inhibiting the activity of GHSR1a [16]. GHSR1a 
can found both in the central nervous system (CNS) and the periphery [17]. Centrally, it 
is expressed in the Arc of the hypothalamus, but also the laterodorsal tegmental nucleus 
(LDT) of the brainstem that has connections with the mesolimbic pathway [14,15]. There-
fore, ghrelin and its receptor have been involved in reward sensation and addiction in-
duced by natural and artificial drugs, including nicotine, but the picture regarding the 
interaction between ghrelin and nicotine is not clear [3,18–22]. 

In the present study, we aimed to investigate the impacts of ghrelin and GHRP-6 on 
the horizontal and vertical activity in rats exposed to chronic nicotine treatment followed 
by acute nicotine withdrawal. In one of our previous studies we have already investigated 
the participation of corticotropin-releasing factor (CRF) receptors (CRF1 and CRF2) in the 
changes in locomotor activity and the those of striatal dopamine release in rats exposed 

Figure 2. The actions of ghrelin and GHRP-6 on the brain. During hunger, ghrelin reaches the brain
and activates the ghrelin receptor (GHSR1a) in the hypothalamus. In the hypothalamus, it activates
the orexigenic mediators, neuropeptide Y (NPY) and agouti-related peptide (AgRP), expressed
in the nucleus arcuatus (Arc), and consequently, the orexigenic regulators, orexin and melanin-
concentrating hormone (MCH), expressed in the lateral hypothalamus, leading to increased food
intake and body weight. Growth hormone-releasing peptide 6 (GHRP-6) is considered an antagonist
of the GHSR1a, although it can act as an agonist stimulating the GH release and mimicking the
orexigenic effects of ghrelin.

Growth hormone-releasing peptide 6 (GHRP-6) is a synthetic Met-enkephalin deriva-
tive that can also stimulate the GH release acting through the same receptor [12,13]. GHRP-6
is usually considered an antagonist of the ghrelin receptor, but it can also act as an agonist,
stimulating the GH release and even food intake [12,13]. The ghrelin receptor, previously
known as the growth hormone secretagogue receptor (GHSR), is a G protein-coupled
receptor that binds GH secretagogues, such as ghrelin and GHRP-6 [14,15]. Classically,
the GHSR was classified in two subtypes, GHSR1a and GHSR1b, with GHSR1a regulating
food intake and with GHSR1b inhibiting the activity of GHSR1a [16]. GHSR1a can found
both in the central nervous system (CNS) and the periphery [17]. Centrally, it is expressed
in the Arc of the hypothalamus, but also the laterodorsal tegmental nucleus (LDT) of the
brainstem that has connections with the mesolimbic pathway [14,15]. Therefore, ghrelin
and its receptor have been involved in reward sensation and addiction induced by natural
and artificial drugs, including nicotine, but the picture regarding the interaction between
ghrelin and nicotine is not clear [3,18–22].

In the present study, we aimed to investigate the impacts of ghrelin and GHRP-
6 on the horizontal and vertical activity in rats exposed to chronic nicotine treatment
followed by acute nicotine withdrawal. In one of our previous studies we have already
investigated the participation of corticotropin-releasing factor (CRF) receptors (CRF1 and
CRF2) in the changes in locomotor activity and the those of striatal dopamine release in
rats exposed to similar in vivo conditions [23]. In the previous experiments, only male
Wistar rats were used, because at that time, we believed that the behavior of females would
be affected by too many variables, including hormonal fluctuations associated with the
female reproductive cycle [24,25]. However, a meta-analysis demonstrated that female
rats were not more variable regarding behavioral, electrophysiological, neurochemical and
histological measures at any stage of the estrous cycle, than male rats [26]. Therefore, in the
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present experiments both male and female rats were used, and the stage of reproductive
cycle of female rats was not taken into consideration. Nevertheless, the effects of chronic
nicotine treatment and acute nicotine withdrawal on locomotion could be influenced by
many factors, including sex, strain, age and housing conditions [27–31]. In general, female
animals are less sensitive to the effect of nicotine, but more sensitive to the impact of acute
nicotine withdrawal, compared to males [24,26,27,29,32]. Furthermore, different strains of
rats react differently to nicotine: when Long–Evans and Sprague Dawley male and female
rats were compared, the horizontal activity was more enhanced in Long–Evans females,
and the vertical activity was unchanged in Sprague Dawley males [27]. In addition, rats of
adolescent age exhibit increased sensitivity to the positive, rewarding effects of nicotine
and decreased sensitivity to the negative, aversive effects of nicotine withdrawal, which
may contribute to the higher risk to develop nicotine addiction in adolescents, compared to
adults [31,33]. Moreover, the effects of nicotine on locomotion seems to be influenced by
the housing conditions, as well [28]: the horizontal and vertical activity increased in male
rats exposed to chronic nicotine treatment when they were housed together, and decreased
when they were housed individually [28]. In contrast, chronic nicotine treatment did not
induce any change in the horizontal and vertical activity of female rats, compared to control
rats [28]. The influence of housing conditions were manifested even more robustly during
acute nicotine withdrawal, at least in males [28].

2. Materials and Methods
2.1. Animals

The male and female Wistar rats used were provided by Toxi-Coop, Toxicological
Research Center Zrt., Budapest, Hungary (N = 97). The rats were of adolescent age
(about 6–7 weeks), but sexually maturized, weighing 150–250 g upon arrival. Before
the experiments, the rats were housed together and kept at a constant temperature on
a standard illumination schedule with 12 h light and 12 h dark periods (lights on from
6:00). Commercial food and tap water were available ad libitum. To minimize the effects
of non-specific stress the rats were handled daily. During the experiments, the rats were
treated in accordance with the instructions of the Ethical Committee for the Protection of
Animals in Research, University of Szeged, Hungary.

2.2. Surgery

The rats were implanted with a stainless steel Luer cannula (10 mm long), aimed at
the right lateral cerebral ventricle (LCV) under anesthesia with 60 mg/kg pentobarbital
sodium (Euthanasol, CEVA-Phylaxia, Budapest, Hungary). The stereotaxic coordinates
were 0.2 mm posterior and 1.7 mm lateral to the bregma, 3.7 mm deep from the dural
surface, according to the stereotaxic atlas of the rat brain [34]. Cannulas were secured to
the skull with acrylate and dental cement (Spofa Dental Adhesor, Prague, Czech Republic).
The rats were allowed to recover for 7 days before the actual experiments started. After
the experiments, the rats were decapitated, and 10 µL of methylene blue (Reanal Ltd.,
Budapest, Hungary) at 1 g/100 mL was injected icv and then the position of the cannula
was inspected visually. Animals without the dye (3 out of 100) in the LCV were excluded
from the final statistical analysis. There was no animal loss following anesthesia or surgery.

2.3. Treatments

The rats were exposed daily to intraperitoneal (ip) injection with 2 mg/kg nicotine
(Sigma-Aldrich Inc., St. Louis, MO, USA) or 0.9% saline solution (B. Braun Inc., Melsun-
gen, Germany) for 7 days, twice a day (at 8:00 and at 20:00). This dose and schedule of
administration of nicotine usually produce a plasma nicotine level in rats similar to that
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found in individuals who smoke 1–2 packs of cigarettes a day [35]. In parallel, the rats were
also exposed daily to icv injection with 1 µg/2 µL ghrelin or 1 µg/2 µL GHRP-6 or 2 µL of
0.9% of saline solution for 7 days, once a day (at 8:00). The doses of ghrelin and GHRP-6
were based on our previous studies from which the most effective doses were chosen. On
the mornings of the 8th day (12 h after the last ip administration) and the 9th day (24 h
after the last ip administration), the horizontal and vertical activity were monitored in
a conducta system.

2.4. Behavioral Tests

The conducta system (Experimetria Ltd., Budapest, Hungary) was based on the
principle of the open-field test that was described in our previous studies [36,37]. The main
apparatus was a square open-field black box with a side length of 60 cm, surrounded by a
40 cm high wall and enlightened by a 60 W light bulb that was situated 1 m above the arena
floor of the box. The arena floor was divided into 36 (6 × 6) small squares. Each animal was
carried to the experimental room in their home cage and placed in the center of the arena,
with which they were familiarized for 5 min. Then, the horizontal and vertical activity
of the rats was monitored using five-by-five rows of photocell beams and registered by a
computer for 10 min each. The horizontal activity measured the overall activity and arousal,
while the vertical activity was a measure of exploratory and stereotype behavior. The box
was cleaned between sessions with 96% ethyl-alcohol (Reanal Ltd., Budapest, Hungary).

2.5. Statistical Analysis

Statistical analysis of the results was performed by analysis of variance (Prism 7 Statis-
tics, GraphPad Inc., La Jolla, CA, USA). The differences between groups were determined
by one-way ANOVA followed by Tukey’s post hoc test and the Kruskal–Wallis test, fol-
lowed by the Dunn post hoc test, which were preceded by the Shapiro–Wilk normality test.
A probability level (p value) of 0.05 or less was accepted as indicating a statistically signifi-
cant difference. The p values for pairwise comparison between the groups are summarized
in Table 1.

Table 1. The summary of the statistical analysis (F, female; M, male; p, probability value; T, total).

Parameter p for Nicotine
vs. Control

p for Nicotine + Ghrelin vs.
Nicotine

p for Nicotine + GHRP-6 vs.
Nicotine

Horizontal
activity

after 12 h

<0.001 (T)
<0.001 (M)

0.001 (F)

0.016 (T)
0.031 (M)
0.742 (F)

0.006 (T)
0.019 (M)
0.679 (F)

Vertical
activity

after 12 h

0.001 (T)
0.007 (M)
0.002 (F)

0.019 (T)
0.133 (M)
0.062 (F)

0.026 (T)
0.476 (M)
0.342 (F)

Horizontal
activity

after 24 h

<0.001 (T)
0.016 (M)
0.002 (F)

<0.001 (T)
0.001 (M)
<0.001 (F)

<0.001 (T)
<0.001 (M)
<0.001 (F)

Vertical
activity

after 24 h

0.006 (T)
0.036 (M)
0.038 (F)

0.006 (T)
0.084 (M)
0.231 (F)

0.001 (T)
0.075 (M)
0.876 (F)

3. Results
On the eighth day (12 h after the last ip administration), in nicotine-treated rats a

significant hyperactivity was observed (F(5,45) = 17.28; p < 0.001 for horizontal activity and
(F(5,45) = 1.97; p = 0.024 for vertical activity), that was reduced significantly by ghrelin and
GHRP-6 (Figures 3 and 4). When the rats were separated into male and female groups, the
horizontal activity increased more significantly in males (F(5,25) = 9.04; p = 0.001), than
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females (F(5,20) = 7.86; p = 0.008) and accordingly, the impacts of ghrelin and GRHP-6 were
statistically significant only in males, not females (Figure 3).
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11.67; p = 0.004) and females F(5,20) = 10.872; p = 0.050), but the effects of ghrelin and 
GRHP-6 were statistically insignificant in both sexes (Figure 4). 

Figure 3. The horizontal activity determined on the 8th day in rats exposed to 7 days of nicotine
treatment. Values are presented as means ± SEM. The numbers in parentheses represent the number
of animals in each group. A statistically significant difference was accepted for p < 0.05 and indicated
with * for nicotine ip + saline icv vs. saline ip + saline icv and with # for nicotine ip + ghrelin or
GHRP-6 icv vs. nicotine ip + saline icv.
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In comparison, the vertical activity increased significantly in both males F(5,25) = 11.67;
p = 0.004) and females F(5,20) = 10.872; p = 0.050), but the effects of ghrelin and GRHP-6
were statistically insignificant in both sexes (Figure 4).
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On the ninth day (24 h after the last ip administration), in nicotine-treated rats a
significant hypoactivity was assessed (F(5,45) = 19.11; p < 0.001 for horizontal activity and
(F(5,45) = 4.94; p = 0.013 for vertical activity), that was reversed significantly by ghrelin
and GHRP-6 (Figures 5 and 6). This time, when the rats were separated in two groups,
the horizontal activity decreased significantly in both males (F(5,25) = 7.94; p < 0.001) and
females (F(5,20) = 12.05; p < 0.001) treated with nicotine, and subsequently, the effects of
ghrelin and GHRP-6 were significant in both sexes (Figure 5).
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In contrast, even if the vertical activity decreased more remarkably in males
(F(5,25) = 2.81; p = 0.045) than females (F(5,20) = 2.48; p = 0.079), the effects of ghrelin and
GHRP-6 were similarly insignificant in both males and females (Figure 6).

4. Discussion
On the eighth day, the horizontal and vertical activity increased in rats exposed to

7 days of nicotine treatment. This finding is concordant with previous studies in which
locomotor hyperactivity was reported on the fourth, the eighth and the tenth day of chronic
nicotine exposure [23,38,39]. The locomotor hyperactivity observed can be explained by the
increase in the concentration of dopamine and the density of dopamine receptors (D1-type
and D2-type) in the striatum, but also the supersensitivity of the midbrain dopamine
receptors that develops usually after a few days in response to nicotine [23,40]. Acute
administration of nicotine stimulates the release of dopamine in both the dorsal and ventral
striatum and this can cause reward sensation and locomotor hyperactivity in rats, as it was
indicated by both in vivo and in vitro studies [41,42]. For example, nicotine infused into
the striatum increased the dopamine output and the locomotor activity in freely moving
rats, which were reduced by administration of mecamylamine [23,43]. In addition, superfu-
sion of nicotine to the striatum increased the dopamine release in rats [44,45], which was
reduced by the administration of mecamylamine [43,46]. During acute nicotine exposure
both the mesolimbic and nigrostriatal dopaminergic pathways are activated, but usually
there is a higher dopamine release in the NAcc than the CP [47–50]. This can be explained
by the different expression of dopamine receptors (D1-type versus D2-type) in the two sub-
divisions of striatum, exerting distinct, stimulatory and inhibitory effects on the dopamine
release [38,51]. During chronic nicotine exposure, the dopamine output can be decreased or
increased in the striatum leading to different behavioral outcome, depending on whether
tolerance or sensitization to nicotine would develop [8,9]. Tolerance is more likely to occur
due to continuous infusion of nicotine, while behavioral sensitization develops typically
due to intermittent injection of nicotine, and the sum of these competing phenomena can
be manifested as locomotor hyperactivity or hypoactivity [8,9]. Also, chronic stimulation
of the nAchR can influence the release of other neurotransmitters, including acetylcholine,
glutamate and GABA, with diverse impacts on locomotor activity [7].

On the ninth day, the horizontal and vertical activity decreased in rats exposed to
1 day of acute nicotine withdrawal. The nicotine withdrawal syndrome has a somatic
component, characterized by locomotor hypoactivity, increased appetite and weight gain,
and an affective component, represented by dysphoria, anxiety and depression [52]. The
physical signs start promptly within a few hours and peak around 24 h following nicotine
cessation [52]. The affective symptoms may start early, but can persist from days to months,
resulting in chronic nicotine withdrawal characterized by craving and increased risk to
relapse [52]. Nicotine addiction develops due to a combination of the rewarding, positive
actions produced by nicotine, and the avoidance of the aversive, negative effects induced by
nicotine withdrawal [7]. This is reflected by our previous and present findings, according
to which reward deficit and locomotor hypoactivity appear following 24 h, but not 12 h, of
nicotine withdrawal, along with the signs of anxiety and depression [23,53]. Nevertheless,
in the present study a general hypoactivity was assessed, while in our previous study, only
the vertical activity and the ventral striatal dopamine release were decreased, while the
horizontal activity and the dorsal striatal dopamine release were still increased following
1 day of nicotine withdrawal [23]. This can be explained by the different abilities of the
two major subtypes of nAchR expressed in the dorsal and ventral striatum (α5 versus α6
subunits) for tolerance or behavioral sensitization to nicotine that can also be affected by
daily peptide injection [47,48].
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The locomotor hyperactivity observed in nicotine-treated rats on the eighth day was
reduced significantly by ghrelin and GHRP-6. Also, the locomotor hypoactivity assessed
in nicotine-treated rats on the ninth day was reversed significantly by both the natural
and synthetic peptide acting through ghrelin receptor. GHRP-6 is usually considered
an antagonist of the ghrelin receptor, but it can also act as an agonist in many aspects,
including the stimulation of GH release and food intake [12,13]; thus, the similar impacts
of ghrelin and GHRP-6 on the locomotor effects of nicotine are not surprising and could
be related to the neuroprotective effects of GH secretagogues that were demonstrated
in the hypothalamus and cerebellum [54,55]. Therefore, the interaction between ghrelin,
nicotine and GHRP-6 may occur in various brain regions, including the hypothalamus
and cerebellum [56–59], but it is most probably mediated by the cholinergic–dopaminergic
reward link, which encompasses the afferent cholinergic projection from the LDT to the
VTA, and the mesolimbic dopaminergic pathway [1,60–65]. This observation is supported
by in vivo studies in which ghrelin injected peripherally or directly into the VTA increased
the dopamine release in the NAcc, locomotor activity and food consumption in rats [66–69],
but also in vitro studies in which ghrelin administered locally produced a concomitant
release of acetylcholine in the LDT and dopamine in the NAcc in rats [63–65,70–72]. The
interaction between ghrelin and nicotine may also take place in the extended amygdala,
a functional unit that includes anatomical regions, such as the central amygdala (CeA),
the bed nucleus of stria terminalis (BNST) and the shell of the NAcc. This speculation is
based on in vivo studies in which ghrelin and nicotine stimulated the dopamine release in
the midbrain, including the amygdala and striatum [23,73–75], but also in vitro studies in
which ghrelin and nicotine stimulated the dopamine release in the amygdala, BNST and
striatum [76–78]. Moreover, when administered together, ghrelin amplified the nicotine-
induced release of dopamine in the BNST and striatum, and this effect was reversed partly
by mecamylamine and partly by GHRP-6 [76,78]. We presume that the excess dopamine
in the ventral and dorsal striatum may promote the positive, rewarding actions produced
by chronic nicotine administration, whereas the deficiency of dopamine in the central
amygdala, the BNST and the shell of NAcc may mediate the negative, aversive symptoms
induced by acute nicotine withdrawal [79,80].

In the present study, the rats were of the same strain, age and housing conditions,
so the only factor that could influence the horizontal and vertical activity was sex. As
regards horizontal activity, female rats were less sensitive to the locomotor effects of
nicotine and this finding has been indicated by previous studies [24–26,81–83]. As regards
vertical activity, female rats were more sensitive to the locomotor effects of nicotine and
this finding also has been suggested by previous studies [27–29,31,84–86]. When the rats
were separated in male and female groups, it was only the horizontal activity that was
decreased significantly by nicotine withdrawal and was reversed significantly by ghrelin
and GHRP-6 treatment in both sexes. The lack of statistically significant effect in the case
of the other parameters of locomotion could be related to the relatively small sample size
achieved after dividing the rats into two separate groups. In humans, women exhibit more
rapid escalation from casual drug taking to drug addiction, express a wider range of drug
withdrawal symptoms when drug taking stops, and tend to exhibit greater vulnerability
than men in terms of treatment outcome [26,81]. In rodents, short-term estradiol intake in
female rats enhances acquisition and escalation of drug taking, motivation for addictive
drugs, and relapse-like behaviors, that can be explained by a sex difference in the dopamine
response in the ventral and dorsal striatum [26,81]. For instance, estradiol treatment of
ovariectomized female rats enhances the dopamine release in the dorsolateral striatum, but
not in the NAcc, and when drug taking becomes habitual, dopamine release increases in
the dorsolateral striatum and decreases in the NAcc [26,81]. Therefore, the sex difference
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in the balance between the two dopaminergic pathways projecting to the CP and NAcc
may underlie the sex differences in addiction [26,81]. The sex differences in the CRF
system regulating the hypothalamic–pituitary–adrenal (HPA)-axis and the locus coeruleus-
norepinephrine (LC-NE) arousal system may explain why female rats are more sensitive to
the effects of nicotine withdrawal that results in activation of both these systems [24,25]. For
example, there are significant sex differences in CRF functions ranging from its presynaptic
regulation to its postsynaptic efficacy, but also in CRF receptor expression, distribution,
trafficking and signaling that results in increased reactivity to stress in females during drug
withdrawal [24,25]. In addition, there are important sex differences in the structure and
function of the LC-NE system and its projections, as estrogen administration increases the
capacity for NE synthesis and decreases NE degradation, potentially increasing arousal in
females during drug withdrawal [24,25].

In addition to the relatively small sample size of the male and female groups after
separation, our study may also have other limitations [87]. For example, instead of repeated
ip or sc injections, other animal models of nicotine dependence and withdrawal, such as
continuous nicotine infusion via osmotic minipumps, oral nicotine intake (drinking), nico-
tine vapor exposure and tobacco smoke exposure, could be considered more appropriate
regarding construct validity, face validity and predictive validity [87]. When using ip
injections, at least 4 days of repeated nicotine injections are required to induce dependence
in mice and rats [87]. The advantage of this method is that the dose and time of nicotine
administration are well controlled and produce fluctuating plasma nicotine levels, similarly
to a smoker who smokes cigarettes at certain intervals which leads to fluctuating plasma
nicotine levels [87]. The disadvantage of this method is that the rate of nicotine absorption
from ip or sc injections is slower compared to when nicotine is inhaled, and therefore
nicotine injections might be less rewarding than the inhalation of nicotine [87]. In addition,
repeated ip or icv injection of nicotine can lead to the accumulation of nicotine in the system
producing toxicity [87]. Rats are less sensitive to the toxic effects of nicotine, but repeated
injections with high doses of nicotine (6 mg/kg, sc; 3 injections per day for 7 days) can
lead to a relatively high mortality rate, which is not observed when lower doses of nicotine
(1–3 mg/kg sc, 2 injections per day for 7 days) are administered [87]. Repeated ip or sc
injections may also be a source of stress, although this was demonstrated to be compensated
by the daily handling of the animals [88]. The implantation of icv cannula by surgery and
the repeated icv injections may be also stressful for the animals, however this was also
partly ameliorated by the 7 days of recovery before the actual experiments had started.
To accurately model human smoking, the blood nicotine and cotinine levels in rodents
must be similar to those in smokers, but in the present study these were not measured.
Also, we could not determine exactly the extent of the positive euphoric state and the
negative dysphoric state that occurred in rats after 7 days of nicotine treatment and 1 day of
acute nicotine withdrawal, respectively. Furthermore, the impacts of ghrelin and GHRP-6
on the locomotor activity were observed only after 7 days of nicotine treatment during
spontaneous nicotine withdrawal in two time points and observation of the withdrawal
symptoms earlier or later, and their precipitation with mecamylamine or comparison with
the effects of drugs with therapeutic potential, such as bupropion and varenicline, were
not studied. Since in the present study the rats were of the same strain, age and housing
conditions, the impact of these factors on horizontal and vertical activity, and the effect of
ghrelin and GHRP-6 when these conditions vary, was not determined either.

Nevertheless, one of our previous studies using male Wistar rats, and including both
in vivo and in vitro experiments, indicated that different doses (0.5–5 µg) of ghrelin admin-
istered icv cause significant increases in both horizontal and vertical activity monitored by
the conducta apparatus, while only the dose of 5 µg evokes a significant increase in sponta-
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neous locomotor activity recorded by telemetry, which was associated with dose-dependent
increases in plasma corticosterone concentration reflecting the activation of the HPA-axis.
The locomotor hyperactivity observed was diminished by the non-selective CRF antagonist
α-helical CRF(9-41) and the non-selective dopamine antagonist haloperidol, with higher
affinity for D2 receptors, suggesting that both CRF release and dopaminergic neurotrans-
mission are involved in the ghrelin-evoked locomotor responses [69]. Administration of
GHRP-6 at 10 µg intravenously (iv) can also activate the HPA-axis resulting in small, but
significant, increases in plasma concentrations of ACTH and corticosterone in rats [89].
As these GH secretagogues do not release ACTH directly, they probably interact with the
hypothalamic neurohormones regulating ACTH release, such as CRF and arginine vaso-
pressin (AVP), but, the ability of GHRP-6 to modulate the dopaminergic neurotransmission,
just like ghrelin does, cannot be excluded [89]. Taken together, the present and previous
studies suggest that ghrelin and GHRP-6 may modulate the acetylcholine release in the
LDT and consequently, the release of dopamine in the NAcc and CP, compensating for
the excess and deficiency of dopamine in periods of chronic nicotine treatment and acute
nicotine withdrawal, respectively (Figure 7). In this order of thoughts, ghrelin receptor may
represent a new target in the therapy of nicotine addiction.
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Figure 7. The interaction of ghrelin and nicotine in the brain. Chronic nicotine treatment is associated
with general hyperactivity, whereas acute nicotine withdrawal with general hypoactivity can be
attenuated by ghrelin and growth hormone-releasing peptide 6 (GHRP-6). Both ghrelin and nicotine
can stimulate the dopamine release in the striatum, represented by nucleus accumbens (NAcc) and
caudate–putamen (CP). The interaction between nicotine and ghrelin is most probably mediated by
the cholinergic–dopaminergic reward link, which encompasses the afferent cholinergic projection
from the laterodorsal tegmentum (LDT) to the ventral tegmental area (VTA), and the mesolimbic
dopaminergic pathway that emerges from the dopaminergic neurons situated in the VTA and ends in
the NAcc.

5. Conclusions
Based on the present study, we conclude that the changes in horizontal and vertical

activity observed after 12 h and 24 h of nicotine withdrawal can be attenuated by ghrelin
and GHRP-6.
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