
Graph-based maximization algorithms for
submodular functions and influence

maximization on social networks

PhD Thesis

Eszter Csókás
Supervisor: Tamás Vinkó, PhD

Doctoral School of Computer Science
Department of Computational Optimization

Faculty of Science and Informatics
University of Szeged

Szeged
2025

1 Submodular function maximization based on graph proper-
ties

Submodular function maximization Let N = {1, . . . ,n} be a finite set. The function f : 2N→R
is called submodular if it fulfills f (S)+ f (T)≥ f (S∩T)+ f (S∪T) for all S,T ⊆N. Perhaps more
intuitive is the following equivalent definition: f ({i} | S)≥ f ({i} | T) holds for every S ⊆ T ⊆ N
and i ∈ N \ S where f ({i} | S) := f (S∪ {i})− f (S). A submodular function f is called non-
decreasing if f (S)≤ f (T) holds for all S ⊆ T ⊆ N. In the rest of the thesis it is assumed that f is
a non-decreasing submodular function.

The submodular maximization problem with a cardinality constant k (where 0 < k ≤ n) is
defined in the following way:

max f (S)
subject to |S| ≤ k, S⊆ N.

(1)

Solvability The greedy method for solving the non-decreasing, monotone submodular maxi-
mization problem with cardinality constraint was proposed in [11]. They showed that the greedy
strategy achieves an (1−1/e)-approximation of the optimal solution.

Although this is a simple and efficient technique for solving many optimization problems and
is therefore very commonly used, the global optimum is often more needed in real-world applica-
tions, which was the motivation for a new solution method proposed in [10]. This is based on a
mixed integer programming (MIP) model:

max z
s.t. z≤ f (S)+ ∑

i∈N\S
f ({i} | S) · yi, S ∈ F,

∑
i∈N

yi ≤ k,

yi ∈ {0,1}, i ∈ N,

(2)

where f (T | S) := f (S∪T)− f (S) for all S,T ⊆ N and F denotes the set of all feasible solutions
satisfying the cardinality constraint | S |≤ k.

Since the number of constraints increases exponentially in (2), this motivated a new procedure,
the so-called constraint generation (CG) algorithm, proposed in [10]. CG is an iterative algorithm
that starts with solving a reduced problem. The reduced problem consists of a set of constraints
generated from the initial set, which is extended on demand at each iteration by the addition of
a feasible solution. So in essence it solves many reduced MIP problems, which are not always
sufficiently efficient in applications. For this reason, the branch-and-bound algorithmic approach
is often used, which exploits the relaxation of MIP.

1.1 Constraint generation approaches
I/1, I/2 and I/3 contribute to the research effort invested into submodular function maximization
with cardinality constraints by introducing efficient variations of a recently proposed constraint
generation (CG) algorithm [12]. More precisely, we introduce variants of the CG algorithm which
take into account certain properties of the input graph aiming at informed selection of the con-
straints.

1

Algorithm 1 CG(S(0))

Input The initial feasible solution S(0).

Output The optimal solution S∗ of problem (2).

Step 1: Set Q← S(0), S∗← S(0) and t← 1.

Step 2: Solve MIP(Q). Let z(t) be the optimal value of MIP(Q) and S(t) is the set corresponding to the
optimal solution y(t) of MIP(Q).

Step 3: If f (S(t))> f (S∗), then let S∗← S(t).

Step 4: If z(t) = f (S∗) holds, then output the solution S∗ and exit.

Step 5: Set Q← Q∪{S(t)}, t← t +1 and return to Step 2.

Constraint generation algorithm (CG) A constraint generation algorithm was proposed in
[10], which starts from a reduced MIP problem to start with a few constraints to solve. It is an
iterative algorithm, and in every iteration solving the reduced MIP problem while adding a new
constraint. Let define the reduced problem MIP(Q), where Q⊆ F is a set of feasible solutions:

max z
s.t. z≤ f (S)+ ∑

i∈N\S
f ({i} | S) · yi, S ∈ Q,

∑
i∈N

yi ≤ k,

yi ∈ {0,1}, i ∈ N.

(3)

The pseudo code of CG is shown in Algorithm 1. The starting point of the algorithm is a set
Q = {S(0)

[0] , . . . ,S
(0)
[k] }, where S[i] is the first i elements of a feasible solution S(0) which comes from

the order of the greedy algorithm’s solution. In the t-th iteration we solve the problem MIP(Q), Q=

{S(0)
[0] , . . . ,S

(0)
[k] , . . . ,S

(t−1)} to obtain the optimal solution y(t) = (y(t)1 , . . . ,y(t)n) and z(t) the optimal
value which gives an upper bound of the problem (2). Let S∗ be the best feasible solution of
problem (2) up to this point and S(t) ∈ F be the set which is generated the optimal solution y(t) of
MIP(Q), i.e., y(t) is the characteristic vector of S(t). When f (S(t)) > f (S∗) holds, then update S∗

with S(t). If z(t) > f (S∗) ≥ f (S(t)) holds, then we have that S(t) /∈ Q, so (in Step 5) add S(t) to Q.
This effectively adds the following constraint to MIP(Q):

z≤ f (S(t))+ ∑
i∈N\S(t)

f ({i} | S(t)) · yi. (4)

The algorithm stops when z(t) = f (S∗) is satisfied which means that it is proven that the optimal
solution is found.

ICG In [12], the authors proposed an improved generation method based on CG, where not one
but several constraints are added per iteration. It complements Algorithm 1 by creating a new set
Q+ containing the elements of the set Q and the result of the internal sub-algorithm (SUB-ICG).

2

Step 5 of the CG algorithm is completed by calling SUB-ICG and adding its return value to the
set Q+. If a solution is found in this part of the algorithm whose function value is greater than the
current f (S∗), it is also updated.

The SUB-ICG is an iterative algorithm that generates λ = 10 · k new feasible solutions (i.e.,
k vertices are selected). To do this, it uses a heuristic method to assign a value pi to the vertices
i ∈ N. This is based on the number of times the vertices i ∈ N appear in the sets S ∈ Q. These
are recalculated after updating the set Q. Finally, the final selection order is given by ri, which is
generated randomly such that 0≤ ri ≤ pi.

We propose three modifications of ICG in which either certain characteristics of the graph
describing the problem is used or the submodularity property of the function to be maximized is
exploited.

ICG with reduced k (ICG(k−1)) We created ICG with reduced k. What has been changed from
the ICG is that in SUB-ICG we choose k− 1 nodes for the constraints. Thus, the function value
calculated in (3) computes the value of the k-th vertex when adding it to the set. We have kept this
change for the remaining algorithm variants, i.e., we choose k−1 nodes for the constraints in both
GCG and ECG, which are presented below.

ICG using graph structure (GCG) In this variant of ICG(k− 1), we changed the heuristic
that calculated the value pi to select the nodes in the SUB-ICG. The new heuristic is based on
the structure of the input graph. If the graph is fully connected, then we do not consider all of the
edges. Specifically, we compute the median of the outgoing edges’ weights for every vertex j ∈M.
Edges with weights less than the median are ignored. The pi value is the sum of the weights of the
incoming edges at node i ∈ N normalized with the degree of the node in M corresponding to the
edge:

pi =


∑

j:(j,i)∈E(G),
w ji≥m j

w ji

d j
if G is fully connected bipartite graph,

∑
j:(j,i)∈E(G)

w ji

d j
otherwise,

(5)

where G is the input graph of the optimization problem, E(G) is the set of edges of G, the edges
have w ji weights and d j is the degree of the node j ∈M. This defines the value of pi and based on
this we set the value of ri by uniformly at random such that the relation 0≤ ri ≤ pi holds.

We also use the concept coming from ICG(k−1), so we select k−1 nodes.
As an illustrative example, see the graph on Figure 1, where the labels of the nodes are indicated

as black numbers. The results of equation (5) are shown in Figure 1: the value of pi for the node
is to the left.

ICG using enumeration (ECG) In contrast to ICG and GCG, in this variation no sub-algorithm
is repeated within the main algorithm, which can result in less computation time. Instead of the
sub-algorithm, we add a few additional steps to the Algorithm 1 so that we still generate λ con-
straints per iteration. We choose some nodes from the union of the set S(t) and a randomly chosen
set Q of feasible solutions satisfying certain conditions. The choice is based on a graph structure
according to the largest pi values. From these we generate subsets with cardinality at most k− 1

3

4

3

2

1

7pi = 0.97

6pi = 0.53

5pi = 0.36

0.40

0.33

0.74
0.69

0.01

0.03

0.43

0.55

0.64

Figure 1: Example graph to calculate the pi values

and compute their function values. Of these we keep λ subsets with the smaller function values.
These correspond to the return sets of SUB-ICG.

Conclusion We use 3 different benchmark instances for testing and comparison. According to
our benchmarking results, we cannot declare a clear winner among the algorithms and it is not
surprising as the investigated problem is NP-hard. However, for every instances there exists at
least one of our algorithms which is computationally more efficient than the ICG algorithm.

1.2 On the initial set of constraints
It can be observed that the choice of the starting point plays a role in the efficiency (i.e., its runtime)
of the CG algorithm. More precisely, starting from a high function-valued initial point might not
provide the fastest runtime. This effect is illustrated in Figure 2.

We created 250 test cases, part of which started from a random starting point, while in the other
part we chose 3 of the best 5 vertices belonging to the global optimum, fixed them and randomly
added 2 other nodes. The reason for this is that we did not get an initial set with a larger function
value in the random choices, so we have also biased the sensitivity analysis a bit towards the more
interesting scenarios.

Figure 2 shows the scatter plot of the 250 test cases. It is important to note that in this figure,
the x-axis shows the runtime of the CG algorithm and the y-axis shows the function value of the
initial set. In the figure, two sets of points can be roughly separated, due to the semi-random
chosen test cases. The green dot indicates the original CG algorithm starting from the initial point
proposed by greedy. Note that for the other results, we used all subsets of randomly generated
points as starting point since we did not have any order. This setup is appropriate, because for the
NS method, which will be presented later, the starting point is all the subset of the selected vertices.
This figure perfectly illustrates that the running time of a CG algorithm can be very different even
if the function value of the initial points are similar.

The phenomenon introduced informally above is the main motivation for Thesis I/4 and I/5.

4

Figure 2: Visualization of the sensibility of the starting point: starting points with similar function
values can have rather different running times

New centrality values To find a new starting point for a CG-type algorithm we use the input
graph’s structure.

To choose k node as a new starting point, first of all, we calculate a new centrality value nsi
to every node i ∈ N. This centrality is adding up the weights of the incoming edges at node i ∈ N
normalized with the degree of the targets node, then multiplying the sum with the degree of the
source node:

nsi = di · ∑
j:(j,i)∈E(G)

w ji

d j
, (6)

where G is the input graph of the optimization problem, E(G) is the set of edges of G, the edges
have w ji weights, d j is the degree of the node j ∈M and di is the degree of node i ∈ N.

Choose node i with highest nsi value and delete node i with their edges and recalculate all the
nsi for every node i ∈ N. The next vertex is chosen for the starting point based on the recomputed
centrality value. Repeat this method until k nodes are selected.

See the graph on Figure 3 as a small illustrative example, where the labels of the nodes are
marked with black numbers. The vertices signed by their labels and their corresponding nsi values
calculated by (6) are shown next to them highlighted by tanning color. Taking the nsi values into
account, we first choose node 7 and then delete this vertex with its edges. Then, the result graph is
shown on Fig. 4 with its recalculated nsi values. Accordingly, the next selected vertex is 5 and not
node 6, but note that in the first step it seemed that node 6 is the better choice.

With this procedure we choose k of vertices.
Finally, we generate all subsets from the k vertices proposed by the new centrality metric. We

start a CG-type algorithm from the constraints defined by these subsets.

5

4

3

2

1

7ns7 = 4.89

6ns6 = 1.07

5ns5 = 1.01

0.28

0.83

0.13

0.93

0.73

0.94

0.75

Figure 3: Example graph to calculate the nsi values; initial step

3

2

1

6ns6 = 1.20

5ns5 = 1.29

0.28

0.130.73

0.94

Figure 4: Example graph to calculate the nsi values; result of the first iteration

Conclusion We used five different algorithm variants for the non-decreasing submodular func-
tion maximization problem based on a MIP formulation using constraint generation approach
which we started from the greedy’s solution and also from the new starting point proposed by the
centrality metric. Furthermore, we used two modern implementations of Nemhauser and Wolsey’s
MIP model for submodular function maximization problem based on lazy constraint generation,
which we started from the GRASP heuristic and also from the new starting point proposed by the
centrality metric. According to our benchmarking results, algorithms starting from the new initial
set reduced the runtime by a factor of 5.37 for all test cases. Overall, we can conclude the initial
set suggested by the new centrality metric is worth using, as shown by our run-time tests and, in
their absence, the relative gap tests.

6

2 Influence maximization under deterministic linear threshold
model

Influence maximization (IM) is a combinatorial optimization problem in which, given a weighted
directed graph G, a diffusion (or spreading) model, and an integer k ≥ 1, it is required to identify
the so-called seed nodes v1, . . . ,vk ∈ V which can make the largest influence in the network [8].
Formally, the optimization problem can be described as

max
S⊂V,|S|=k

σ(S).

[8] investigated the influence maximization problem using spreading models with stochastic pa-
rameters.

Several diffusion models have been proposed in the literature. We use the linear threshold
model [6], where let bi, j ∈ (0,1) be the edge weight between node i and j, θi ∈ (0,1] be the thresh-
old of node i, and set N̂(i) be the already influenced in-neighbors of node i. In the deterministic
LT model (DLTM) all the θi threshold values are fixed.

The second group of thesis was inspired by the model proposed in [9], where two integer linear
programming formulations of influence maximization based on the DLTM were recently proposed
and studied.

2.1 An exact method
Thesis points II/1, II/2 and II/3 are obtained from the analysis and correction of the algorithm
proposed in [9].

A 0-1 linear programming model The formulation of the basic model is a special 0-1 LP, in
which x ∈ {0,1}n×T is the decision variable, n = |V |, and the index T > 1 is also part of the
optimization problem. Hence, x is a binary matrix in which choosing the rows in the first column
to be equal to 1 represents the selection of the seed nodes. This should be done in such a way that,
given certain constraints dictated by IM, the sum of the last column is to be maximized.

Assuming that T > 1 is a given integer constant, let T = {2, . . . ,T } be the set of time periods
describing the diffusion process. Let integer k > 0 be the number of seed nodes to be selected. The
set of in-neighbors of node i is denoted by Nin(i).

In the following the binary LP formulation is given, inspired by the basic model of [9], where
the cost of selecting a seed node is equal to 1.

max
n

∑
i=1

xi,T (7)

n

∑
i=1

xi,1 ≤ k (8)

∑
j∈Nin(i)

b j,ix j,t−1 ≥ θixi,t ∀(i ∈V, t ∈ T) (9)

∑
j∈Nin(i)

b j,ix j,t−1 ≤ θi + xi,t ∀(i ∈V, t ∈ T) (10)

xi,t−1 ≤ xi,t ∀(i ∈V, t ∈ T) (11)

x ∈ {0,1}n×T . (12)

7

The objective function in fact has the form

min
T

max
n

∑
i=1

xi,T

and together with constraints (8) - (12) we have a bilevel optimization problem. It is shown that
linear bilevel problems are strongly NP-hard [7].

The AMPL modeling language [5], which we used for implementation and numerical exper-
iments is not suitable for directly describing bilevel optimization models. Hence, we need to
consider and treat T as a constant.

An iterative algorithm The solution method for the bilevel optimization problem proposed in
[9] is shown in Algorithm 2.

Algorithm 2
Step 1 Start the iteration from T := 2.

Step 2 Solve the optimization problem (7) - (12) with fixed T .

Step 3 If xi,T = xi,T −1 ∀(i ∈ V), i.e., the last two columns of x are the same then STOP, the
optimum is found. Otherwise, let T := T +1 and go back to Step 2.

Analysis In the following, I give the steps needed to obtain theoretical results, without providing
proofs of them.

For a start, it turns out that the optimization problem (7)-(12) needs to be modified.

Proposition 1. For the correctness of Algorithm 2, the constraint (9) has to be replaced by

∑
j∈Nin(i)

b j,ix j,t−1 ≥ θi(xi,t− xi,t−1) ∀(i ∈V, t ∈ T). (13)

Remark 1. Note that constraint (13) is equivalent to constraint (9) together with adding loop
edges to all the nodes. However, it turns out that from the computational efficiency point of view
using (13) directly is more beneficial.

In the following we show that Algorithm 2 can get stuck in locally optimal solution even if the
newly added constraint (13) is taken into account.

Proposition 2. For the optimization problem (7), (8), (10) - (13), there is a graph for which

(σ ,T) = (σ ,T +1) and (σ ,T +1)< (σ ,T +2).

We conclude that an extension of the optimization model (7), (8), (10) - (13) is needed in order
to have a strategy about when to stop the iterative algorithm to be sure that it indeed reached the
globally optimal solution. At that end, the following constraint is added:

n

∑
i=1

xi,T −1 +1≤
n

∑
i=1

xi,T . (14)

8

The purpose of constraint (14) is to force that for a given T , the last step of the diffusion must have
at least one more influenced node than in the previous step. We can thus guarantee no repetition in
the last two columns of matrix x.

The following proposition claims that although constraint (14) guarantees no repetition in the
last two columns of x, we can obtain such result in which column duplication appears inside the
solution matrix.

Proposition 3. For increasing T values the solutions of (7), (8), (10) - (14) do not necessarily
form a monotonically increasing sequence. Moreover, it can also happen that repetition occurs for
consecutive columns in matrix x.

This can be avoided by changing constraint (10) into

∑
j∈Nin(i)

b j,ix j,t−1 ≤ θi + xi,t− ε ∀(i ∈V, t ∈ T), (15)

where ε > 0 is a small constant to make sure that the node is activated when the sum of the edge
weight of the already influenced in-neighbors of node is equal to the threshold. The following
proposition claims that adding constraint (14) to the ILP model does not prune the globally optimal
solution.

Proposition 4. The globally optimal solution of (7), (8), (11) - (13), (15) satisfies constraint (14)
as well.

In addition to the previous proposition, it can also be shown that adding constraint (14) to the
ILP model does not change the globally optimal solution.

Proposition 5. The diffusion value T ∗ and influence value σ∗ corresponding to the globally op-
timal solution of (7), (8), (11) - (13), (15) are respectively the same as the values T ∗∗ and σ∗∗

corresponding to the global optimum of (7), (8), (11) - (15).

Now we need to find stopping conditions to the iterative procedure. Clearly, one of them is
when all nodes are influenced. The other one is when the model becomes infeasible.

Proposition 6. If the problem (7), (8), (11) - (15) becomes infeasible for a given T value, then it
remains to be infeasible for the further iteration steps as well.

Finally, implicated by Proposition 5 and 6 we have the following consequence.

Corollary 7. The problem (7), (8), (11) - (15) is feasible in the iteration steps 2, . . . ,T ∗, i.e., before
finding the global optimum.

9

Conclusion Summarizing the above analysis, the correct model is:

max
n

∑
i=1

xi,T (16)

n

∑
i=1

xi,1 ≤ k (17)

∑
j∈N(i)

b j,ix j,t−1 ≥ θi(xi,t− xi,t−1) ∀(i ∈V, t ∈ T) (18)

∑
j∈N(i)

b j,ix j,t−1 ≤ θi + xi,t− ε ∀(i ∈V, t ∈ T) (19)

xi,t−1 ≤ xi,t ∀(i ∈V, t ∈ T) (20)
n

∑
i=1

xi,T −1 +1≤
n

∑
i=1

xi,T (21)

x ∈ {0,1}n×T . (22)

The correct iterative algorithm to find the globally optimal solution of the influence maximiza-
tion problem under deterministic linear threshold diffusion model is given in Algorithm 3.

Algorithm 3
Step 1 Start the iteration with T := 2.

Step 2 Solve the problem defined by the set of equations {(16) - (22)} for the diffusion time value
T .

Step 3 If the solution becomes infeasible or all the nodes are influenced then STOP, the global
optimum is found. Otherwise, let T = T +1 and go back to Step 2.

2.2 A heuristic for seeds selection
The aim is to find a correlation between the input graph and the solution method. More precisely,
whether the seed vertices selected at initial time have some distinguishable property; or whether
we can exclude vertices from the initial set based on a feature. A good approach to this can be to
use graph centrality, which establishes an ordering between nodes based on the values assigned to
the vertices.

Combining these, I created two new centrality metrics that can be computed from the structure
of the input graph. These can be used to minimize the number of possible seed nodes. The solver
then chooses from the reduced set of possible seed nodes provided by the centrality metrics. By
solving the problem in this way, the solution time is reduced. What makes them distinguished from
other centralities is that they take into account not only the direction and the weight of the graph
edges, but also the weight, i.e. threshold, of the nodes.

10

Influenceability (Iin) It measures how easy is to activate a node. To calculate this, we examine
the incoming edges from the neighbours, namely which edges and combinations of edges are able
to reach or exceed the threshold value of the node. We define the weighted incidence, denoted by
wto as follows. Take the number of edge combinations that are able to activate the node by dividing
by the number of edges in the edge combination and all occurrences of a given number of edge
combinations. Finally, sum the wto values and obtain I(p)

in = ∑wto(i), where i ∈V (G).
The final centrality metrics are obtained by combining with the measure of node and its neigh-

bors. The influenceability value of a node is obtained by adding to the value of I(p)
in the approxi-

mation of the influenceability of its in-neighbours:

Iin(i) = I(p)
in (i)+ ∑

j∈Nin(i)

I(p)
in (j)

|Nout(j)|−1
∀(i ∈V). (23)

Note that if |Nout(j)| ≤ 1, then let |Nout(j)|= 2 for the divisor to be 1.

Ability-to-influence (Iout) This indicates the influencing role of the node on its neighbors. Specif-
ically, we look at all the combinations of incoming edges to the neighbourhood which include the
edge from the investigated node. Of these, we count the ones whose sum of weights reaches the
threshold value of the node and calculate the weighted incidence value for this case, denote w f rom.
As calculated for the influenceability, we divide the number of infecting edges by the number
of edges in the edge combination and all occurrences of a given number of edge combinations.
Finally, summarized w f rom for each investigated combinations of edges.

The ability-to-influence value of a vertex is obtained by adding to the value of I(p)
out the approx-

imation of the ability-to-influence of its out-neighbors:

Iout(i) = I(p)
out (i)+ ∑

j∈Nout(i)

I(p)
out (j)

|Nin(j)|−1
∀(i ∈V). (24)

Note that if |Nin(j)| ≤ 1, then let |Nout(j)|= 2 for the divisor to be 1.

Potential seed selections Using the two centrality values, we want to determine which vertices
can be seeds. Therefore, first, the centrality values are normalized between 0 and 1 in a way
that all the elements are divided with the maximum. Such normalization is denoted in each case
by ||.||. Then, we sort the nodes according to their centrality value. We put them in descending
order according to their ability-to-influence value, since seed vertices should have good ability-to-
influence’s value. Conversely, we rank the vertices in ascending order according to their influence-
ability value, since seed vertices are unlikely to be easily infected. We take the weighted sum of
the two order values for each node to get I. This is shown in equation (25):

I(i) = α ·ord(||Iout(i)||)+(1−α) ·ord(||Iin(i)||) ∀(i ∈V). (25)

Finally, to form the set of potential seed nodes, choose the subset of V (G) according to I. This
is controlled by a parameter 0 < r < 1, thus the cardinality of the candidate seeds set is r · |V (G)|.

11

Proposed heuristic: IAtI Here we describe our proposal for a heuristic which selects a candidate
seeder set of graph nodes based on the new centrality metrics. Since it is using the Influenceability
and the Ability-to-Influence measures we refer to it as IAtI-heuristic. The method is described in
Algorithm 4.

Algorithm 4 IAtI-heuristic(r,α)
Input A directed graph G with edge weights and node threshold values.

Step 1 Calculate I(p)
in and I(p)

out for all i ∈V and then Iin and Iout using Eq. (23) and (24), respec-
tively.

Step 2 Form I for each vertex according to the Equation (25) using the input parameter α .

Step 3 Define S⊆V (G) to be the set of possible seeds: choose the top r · |V (G)| number of nodes
from I.

Step 4 Let T := 2 and start the iteration.

Step 5 Solve the ILP defined by {(16) - (22)} for the diffusion time value T , so that the seed
vertices can be chosen exclusively from the set S.

Step 6 If all the nodes are influenced or the solution becomes infeasible then stop the iteration.
Otherwise, let T = T +1 and go back to Step 5.

Conclusion Using the two centrality metrics, we selected vertices that have a high probability
of being seed nodes. The solver now selects seed vertices only among these. This reduces the
computational complexity of the task and therefore, compared to running the ILP solver on the
unrestricted model, it speeds up the procedure. IAtI algorithm was compared with Greedy and
with the global optimum, also. The IAtI algorithm is slower than Greedy, but in many cases it
gives a better solution and in most cases it finds the global optimum.

12

3 Contributions of the thesis

In the first thesis group, the contributions are related to Part I, the maximization of submodular
functions. A detailed presentation is given in Chapters 2 and 3.

I/1. I developed a version of the constraint generating algorithm that works with subsets of k−1
elements.

I/2. I created another version of the constraint generation algorithm, GCG, which exploits the
structure of the graph in a heuristic step.

I/3. I described another version of the constraint generating algorithm, ECG, which generates
subsets directly.

I/4. I introduced a new centrality metric, which is an initial point selection strategy for solving
submodular function maximization.

I/5. I show that the new starting point selection strategy is better than the commonly used greedy
method or the recently published GRASP heuristic.

In the second thesis group, the contributions are related to Part II, the maximization of influence
spread. A detailed presentation is given in Chapters 4 and 5.

II/1. I discovered that the integer model proposed in [9] is not correct in all cases.

II/2. I showed that the model needs to be completed to get the correct fit.

II/3. I demonstrated step-by-step that the new model we have constructed is correct.

II/4. By examining the step-by-step solution of the correct model, I presented two new centrality
metrics for Influenceability and Ability-to-influence.

II/5. I demonstrated that by using a combination of the two centrality metrics, we can reduce the
number of possible seed nodes at the initial moment.

Table 1 summarizes the relation between the thesis points and the corresponding publications.

Table 1: Correspondence between the thesis points and my publications.

Publication Thesis point
I/1 I/2 I/3 I/4 I/5 II/1 II/2 II/3 II/4 II/5

[P1] • • •
[P2] • • •
[P3] • •
[P4] • •

13

The author’s publications on the subjects of the thesis

[P1] Eszter Csókás and Tamás Vinkó. An exact method for influence maximization based on
deterministic linear threshold model. Central European Journal of Operations Research, 31,
269-286, 2023.

[P2] Eszter Csókás and Tamás Vinkó. Constraint generation approaches for submodular function
maximization leveraging graph properties. Journal of Global Optimization, 88, 377-394,
2024.

[P3] Eszter Csókás and Tamás Vinkó. A heuristic for influence maximization under deterministic
linear threshold model. Informatica, 48, 4, 2025.

[P4] Eszter Csókás and Tamás Vinkó. On the initial set of constraints for graph-based submodu-
lar function maximization. Acta Cybernetica, 2024.

Other References

[5] Robert Fourer, David Gay, and Brian Kernighan. AMPL. A modeling language for mathemat-
ical programming. Thomson, 1993.

[6] Mark Granovetter. Threshold models of collective behavior. American Journal of Sociology,
83(6):1420–1443, 1978.

[7] Pierre Hansen, Brigitte Jaumard, and Gilles Savard. New branch-and-bound rules for linear
bilevel programming. SIAM Journal on Scientific and Statistical Computing, 13(5):1194–
1217, 1992.

[8] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a
social network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 137–146, 2003.

[9] Muhammed Emre Keskin and Mehmet Güray Güler. Influence maximization in social net-
works: an integer programming approach. Turkish Journal of Electrical Engineering & Com-
puter Sciences, 26(6):3383–3396, 2018.

[10] George Nemhauser and Laurence Wolsey. Maximizing submodular set functions: formula-
tions and analysis of algorithms. Studies on Graphs and Discrete Programming, pages 279–
301, 1981.

[11] George Nemhauser, Laurence Wolsey, and Marshall Fisher. An analysis of the approxima-
tions for maximizing submodular set functions. Mathematical Programming, 14:265–294,
1978.

[12] Naoya Uematsu, Shunji Umetani, and Yoshinobu Kawahara. An efficient branch-and-cut
algorithm for submodular function maximization. Journal of the Operations Research Society
of Japan, 63(2):41–59, 2020.

14

4 Összefoglalás
Ez a disszertáció az optimalizálás és a hálózattudomány területén végzett kutatásaim eredményeit
mutatja be. Célkitűzéseim közé tartozott, hogy az irodalmi áttekintést követően továbbfejlesszem
az adott problémák megoldására szolgáló algoritmusokat az input gráfok különböző tulajdonságainak
figyelembevételével. Az ilyen tı́pusú megközelı́tés egyre nagyobb népszerűségnek örvend, és
számomra is jelentős inspirációt nyújtott a kutatás során.

A dolgozatom két fő részből áll. Az első részben a szubmoduláris függvények maximalizá-
lásával foglalkoztam, ezen belül olyan feladatokkal, melyek rendelkeznek gráfos reprezentáció-
val. A második részben a befolyásterjedés maximalizálásával foglalkoztam, amit szintén gráfokon
értelmezünk.

Az első fejezetben a dolgozat értéséhez szükséges optimalizálási és a gráfelméleti bevezető
található. A 2. fejezetben korlátozó feltétel generáló megközelı́tésekről van szó. A szakirodalom-
ban található megoldó eljárást tanulmányoztam és készı́tettem el annak három további változatát.
Kifejlesztettem a korlátozó generáló algoritmus azon változatát, amely k− 1 elemszámú részhal-
mazokkal dolgozik. Valamint egy másik változatát hoztam létre, a GCG-t, mely egy heurisztikus
lépésben kihasználja a gráf szerkezetét. Végül megalkottam a korlátozó generáló algoritmus azon
változatát, az ECG-t, ami közvetlen módon generálja a részhalmazokat. A 3. fejezetben a szub-
moduláris függvények maximalizálására szolgáló eljárások kezdőpont választását vizsgáltuk meg.
Kidolgoztam egy új stratégiát, amely egy új centralitási metrika alapján választ kiindulási pon-
tot. A kezdőpont választási stratégiát a saját korlátozó feltétel generáló algoritmusainkkal és
egy modern megoldó algoritmussal, mely a szakirodalomban fellelhető. Bemutattam, hogy az
új kezdőpont választási stratégia jobb, mint az általában használt mohó eljárás vagy a nemrég
publikált GRASP heurisztika.

A dolgozat második felében a befolyásterjedés maximalizálásával foglalkoztam, azon belül
is azokkal a modellekkel, amelyek a determinisztikus lineáris küszöbmodellt használják terjedési
modellként. Ebben a részben is gráfos reprezentációval bı́ró feladatokat vizsgáltam, egész pon-
tosan azok megoldó algoritmusait. A 4. fejezetben egy 0-1 tı́pusú programozási modellt analizál-
tam, amelyről beláttam, hogy nem helyes minden gráfpéldány esetén. Lépésenként bizonyı́tottam
be a hibákat és azok javı́tásit, végül megalkottam a helyes modellt, melynek helyességét igazoltam.
Az 5. fejezetben a helyes modell segı́tségével kapott eredményeket vizsgáltam és kerestem a kap-
csolatot a megoldás és a kiindulási (seed) csúcsok között. Végül két centralitási metrikát javasol-
tam a befolyásolhatóságra és a befolyásoló képességre. Kimutattam, hogy a két centralitási metrika
kombinációját használva, redukálni lehet a kezdeti pillanatban lehetséges seed csúcsok számát.
Ezzel pedig csökkenthető az egzakt megoldó futási ideje.

15

