
Graph-based maximization algorithms
for submodular functions and influence

maximization on social networks

PhD Thesis

Eszter Csókás
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Chapter 1

Introduction

Discrete optimization and graph-related problems are central topics in applied mathematics
and computer science, with numerous practical applications in fields such as network anal-
ysis, social networks, and the optimization of complex systems. This dissertation addresses
two fundamental problems: the submodular function maximization and the influence max-
imization, both framed within a graph-theoretic context. Accordingly, the thesis is divided
into two parts along these two topics.

The first part of the dissertation focuses on the maximization of submodular functions,
which is an attractive optimization model and also a well-studied problem with a variety
of algorithms available. Constraint generation (CG) approaches are appealing techniques
to tackle the problem with, as the mixed-integer programming formulation of the problem
suffers from the exponential size of the number of constraints. Most of the problems in these
topics are of combinatorial nature and involve graphs on which the maximization is defined.
The first aim is to improve the runtime of existing solution algorithms by exploiting the graph
structure of the problem and the inherent submodular properties. Therefore, in Chapter 2 we
introduce variants of the CG algorithm which take into account certain properties of the input
graph aiming at informed selection of the constraints.

In Chapter 3, we continued this theme, but shifted the focus a little. The greedy strategy
quickly finds a feasible solution that guarantees an approximation of (1−1/e) of the optimal
solution. However, there are many applications that expect an optimal result within a rea-
sonable computational time. Traditionally, the initial feasible solution of CG is given by the
greedy algorithm. Thus, a new centrality metric is presented that proposes an initial starting
point based on the structure of the input graph.

The second part of the thesis deals with influence maximization, which is a crucial prob-
lem in network analysis, mainly in the context of viral marketing, opinion formation, and
information diffusion. It is a challenging combinatorial optimization problem on (social)
networks given a diffusion model and limited choice for initial seed nodes. In Chapter 4, a
solver algorithm is considered, which proposes a procedure with an integer program formal-
ism. The correctness of the program is proved, and its efficiency is empirically demonstrated.
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4 Introduction

In addition, in Chapter 5, a new centrality-based metric was developed to identify seed
nodes in the network, where two features are a combination: the susceptibility of the nodes
to influence and their potential to spread the influence. This metric can be exploited to reduce
the number of possible seed nodes, and finally from this smaller set the solver selects initial
seed nodes, thus reducing the runtime.

Taken together, each of the 4 main chapters deals with an optimization problem for which
a solver algorithm exists and for which the problem instances have a graph representation.
These chapters are, naturally, divided into two parts by topic. However, another type of or-
dering can be observed, which does not come so naturally. Chapter 2 and Chapter 4 are based
on recently published work that includes algorithms for solving the problem at issue. These
methods and further work on them are presented. Chapter 3 and Chapter 5 are connected by
the centrality metric. In both of them, taking into account the structure of the input graph, a
new centrality metric is developed to assist the exact solver, thus reducing the running time
of the algorithm.

The latter, “non-naturally” obtained entanglement is also reflected in the title, i.e., the
focus is on maximizing procedures using graph instances.

However, it was necessary to split the thesis into two main parts because the influence
propagation maximization is sub-modular, depending on the propagation model. The bipar-
tite influence shown in the first part of the thesis is submodular, while the influence propa-
gation considered in the second part, with a deterministic threshold model, does not show
submodular properties. For this reason, I have found it necessary to separate the thesis into
two parts, so that the results can be easily distinguished.

1.1 Optimization

1.1.1 Brief historical overview

Many people have asked when and by whom the first linear optimization problem was writ-
ten. The ancient Greeks were looking for the best solutions to geometric problems. One
interesting formulation of the problem leading to the linear programming problem was the
so-called money-change problem, which was recorded by money-changers in 12th century in
Italy. Its formal mathematical foundation came in the 17th century with the work of Newton
and Leibniz. Furthermore, French military engineers in the 18th century also used the prob-
lem to address the issue of optimal material transport in the context of fortress construction.

Later, modern linear programming also came about through a series of steps. In 1902,
Gyula Farkas published the Farkas lemma, which, although much later, played an important
role in the theory of duality and its proof [35]. Significant progress was made when George
B. Dantzig introduced the simplex algorithm in 1947 [20], which proved that it could be
used to solve systems of linear inequalities. Finally, his method was published only in 1951.
Since many practical problems could be formulated as LPs and experience showed that they
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could be solved very quickly, the simplex algorithm soon became widespread.
In 1984, N. Karmarkar developed a new method, the so-called interior point method

[61]. This algorithm is a theoretically and practically efficient procedure for solving LP in
polynomial time. In contrast, the simplex iteration cannot be constrained by any polynomial
of the task’s dimensions, but nevertheless works reliably in practice.

Numerous Nobel Prizes in public science have been awarded for achievements in the
field of operations research. Prominent among these is the 1975 Nobel Prize in Economics
of Linear Programming, shared by Kantorovich and Koopmans.

1.1.2 Linear Programming (LP)

The aim of mathematical optimization is to support decision-making using mathematical
methods. It is a fundamental topic in operations research whose basic task is, for a system
of linear inequalities, to minimize a linear objective function. So we want to choose the best
element among the possible configurations based on some criterion. Geometrically, we are
interested in the extremal value of a linear function in a convex polyhedron. The standard
formulation of a system of linear program is:

min cTx (1.1)

subject to Ax ≥ b (1.2)

x ≥ 0, (1.3)

where A ∈ Rm×n, c, x ∈ Rn and b ∈ Rm. The vector x contains the decision variables.
The objective function is described by equation (1.1), which specifies the function to be
minimized (or maximized). The associated constraints are inequalities (1.2) and (1.3), which
determine the bounds of the set of possible solutions. The feasible solution is the point that
satisfies the constraints and the optimal solution is the best available feasible solution.

The set of possible solutions is closed, given by non-strict constraints, and we know
that a continuous function on a non-empty, bounded and closed set X ⊂ Rn takes absolute
minimum and maximum [103]. Thus, LP tasks can be classified into three classes with
respect to the solution: either the task has an optimal solution; or it has no possible solution
(infeasible); or the objective function is unbounded on the set of feasible solutions.

Optimization models can be classified according to several criteria. Of these, we will
consider here the classification in terms of decision variables:

• Continuous, if each decision variable can take any value in a (not necessarily finite)
interval, this is the general case.

• Integer Linear Programming (ILP), if the decision variables are integers, so it is satis-
fied that

x ∈ Zn. (1.4)
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• A restricted version of ILP, where the decision variables can only take a value of zero
or one, i.e. they are binary, is called Binary Integer Linear Programming (BILP). That
is, for the variable x the following is fulfilled:

x ∈ {0, 1}n. (1.5)

• Mixed Integer Linear Programming (MILP) is when some of the decision variables are
continuous and the others are integers:

min cTx+ dTy

subject to Ax+Dy ≥ b

x, y ≥ 0

x ∈ Zn.

(1.6)

1.1.3 Heuristics and metaheuristics

Heuristic solution methods are used to simplify a problem solution or even to solve problems
that do not have an exact solving algorithm. In many cases, exact solution methods, while
giving optimal results, may be computationally expensive, may take too long to run, may
be prohibitive for large instances, and may require significant storage resources. In contrast,
heuristic methods provide an approximate solution, where the goal is not necessarily to find
the optimum, but to find a good enough result in a shorter, foreseeable time. It may also be
useful to use heuristics to ”help” the exact solver, i.e., either to provide a good initial solution
or to improve an intermediate step of the algorithm. If the method fails to find a solution, we
cannot be sure why: there is no feasible solution, or the algorithm just did not find it. In other
words, we do not know how close the resulting solution is to the optimum, and, in general,
there is no guarantee that the heuristic will find a ”good” solution. Perhaps the best known
heuristic is the greedy algorithm [107] and another very famous approach is hill climbing
[57].

Similarly, metaheuristics is used when complex optimization problems need to be ap-
proximated. A good overview of metaheuristics is given in [6]. It employs two main strate-
gies: exploiting the current search region for the most promising solution and exploring
new search regions for efficient solution finding. They are adaptable and thus applicable to
various optimization problems, such as in combinatorial optimization, continuous optimiza-
tion, and multi-objective optimization. Perhaps the best known example of metaheuristic
optimization algorithms is the genetic algorithm [38].

The main difference between heuristics and metaheuristics is that while heuristics are
designed for specific problems, metaheuristics are used as general-purpose algorithms, re-
gardless of the specifics of the optimization problem.
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1.2 Graphs

1.2.1 A historical overview

Graph theory is one of the few research areas where we know exactly when and where it was
born. In Königsberg, the capital of East Prussia, a heavy fleet boosted traffic and 7 bridges
were built over the river that crossed the city. This gave rise to the riddle of the time: could
the seven bridges be traveled over without crossing each one more than once? In 1735, the
mathematician Leonhard Euler proved that no such road could be made [34]. To solve this
problem, Euler modeled the problem where the different parts of the city were vertices and
the bridges were the edges between the vertices. The term graph itself was finally introduced
in 1878 by J. J. Sylvester. The first book on graph theory was later written by the Hungarian
mathematician Dénes Kőnig in 1936.

In the first half of the 20th century, remarkable results were achieved using graphs in
certain specific contexts. Mathematicians started to study graphs in terms of their structure:
following the work of Pál Erdős and Alfréd Rényi, they began to use probability theory to
study graphs. Their efforts gave rise to the theory of random graphs and introduced a model
for generating random graphs, the Erdős-Rényi model [26, 27]. Another direction was also
developing at this time, based on the results of László Lovász [74, 75] and Tibor Gallai [42]:
perfect graphs were introduced.

Later, however, it turned out that the structures of real networks are very different from
the random graph defined by Erdős and Rényi. With the technological development of the
1990s, it became possible to analyze more real data. Stanley Milgram started small-world
experiments that led to a further analysis of real-world networks. It was then that the study
of complex networks evolved and Watts and Strogatz’s network model was born in 1998
[109], which attempts to describe small-world networks. Furthermore, a year later, in 1999,
Barabási and Albert published a paper describing a preferential attachment algorithm [3].
This model can generate scale-free meshes characterized by a power-law degree distribution.

These models form the basis of the network science we know today. In the last few
decades, mainly subfields related to real networks have emerged. Important to highlight are
community detection, core/periphery network structures, social network analysis, diffusion
models and controllability.

1.2.2 Basic definitions

Formally, a pair G = (V,E) is called a graph if V is a finite set and E ⊆
(
V
2

)
, where G is

the graph, V is the set of vertices, and E is the set of edges of the graph. The vertices are
connected by edges, i.e., they fit on vertices such that each edge has at least one and at most
two vertices. If a graph has no parallel edges and no loop edges, then it is called a simple
graph.

A directed graph G can be described by the quadruple (V,E,K,B). V is the set of
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vertices, E is the set of edges; K and B are relations between V and E. Let v ∈ V , then
every e ∈ E is an edge: if vKe, then we say that v is the starting point of edge e. If
vBe, then we say that v is the ending point of edge e. So, if we distinguish the starting and
ending points of the edges of the graph, we speak of a directed graph, otherwise the graph is
undirected. An edge loops if its starting and ending points are the same.

A graph G is called a weighted graph if its edges are assigned to real numbers. The real
numbers assigned to the vertices are called the threshold of the vertex.

A graph G is called connected if any two points in G can be connected by a path. A
(sub)graph whose any two points are connected by a path is called a component.

A graph G = (V,E) is called bipartite if its vertices can be classified into disjoint sets
A and F such that each edge E has one endpoint in A and one endpoint in F . A graph G

is a complete bipartite graph or biclique if it is a special kind of bipartite graph where every
vertex of the first set is connected to every vertex of the second set.

A lattice graph is a graph built over an n-dimensional grid that induces regular tiling of
the space.

A walk describes a sequence of vertices and edges that traverse the graph, permitting
revisits to both vertices and edges. A walk is called a trace if it does not contain repeated
edges. A path is a walk where there are no repeated vertices or edges. The length of a path
is determined by the number of edges it includes.

1.2.3 Centrality in general

A centrality measure shows the nodes’ importance in a graph which is based on the location
of the nodes within the graph. Accurately, if given a weighted graph G = (V,E,W ), a
centrality measure is a function C : V → R+, i.e., it assigns a non-negative centrality
value to every node. The order of the nodes formed by the centrality values is usually more
important than the centrality value itself [23, 99].

There are two main categories of centralities. One is based on shortest path, which
includes closeness [94] and betweenness [41], among others. The other one is based on
neighborhoods, where the centrality metrics, just to mention the most frequently used ones,
are degree [100], eigenvector [7], and PageRank [8].

1.2.4 Random graphs

Random graph models are essential for graph generation. In my thesis, I use some of these
models, which are briefly summarized below.

Erdős-Rényi model (ER) The model is the result of remarkable publications by Erdős
and Rényi [26, 27, 28, 29, 30, 31, 32, 33]. From a modeling aspect, networks are made
up of nodes and connections. If we want to reproduce the complexity of real networks, the
important question is where should we make the connections. The idea of random networks
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is to randomly create connections between nodes. A random network has N vertices and
between each pair of nodes there is an edge with probability p.

Watts-Strogatz model (WS) Watts and Strogatz extended the random network model in
[109]. It is also called the small-world model, since it is characterized by the small-world
property and high clustering. Thus, it is typical for WS graphs to fall into the category of
random networks and regular lattices. This is because random graphs have the small-world
property but low clustering, while regular lattices have no small-world phenomenon but high
clustering [87].

Lancichinetti-Fortunato-Radicchi benchmark (LFR) The LFR method creates networks
in which both the degree number distribution and the size distribution of the clusters in the
networks follow a power law distribution [71]. Networks, benchmarks in which the commu-
nity structure is predefined can be used to test the accuracy of a community search algorithm
[87]. In this work we exploit the community nature of the generated benchmark.

1.3 Combinatorial Optimization

Combinatorial optimization is a well-known discipline in operations research and computer
science. It is the corresponding subfield of discrete optimization with many real-world ap-
plications. Its goal is to find an optimal object from a finite set of objects [24].

Graphs are central objects of study in combinatorial optimization due to the discrete na-
ture of most problems and the ubiquity of network data in the real world [9]. Accordingly,
combinatorial optimization problems over graphs are encountered in many application areas,
such as scheduling, transportation, and social networks. Over the years, they have attracted
significant attention from theoretical and algorithmic researchers, as they are mostly NP-hard
problems. In fact, 10 of the 21 problems in [62] by Karp are decision versions of graph opti-
mization problems, while most of the other problems can naturally be formulated on graphs.
For the solution methods of such NP-hard graph optimization problems, there are tradition-
ally 3 main directions: exact solution methods, approximate algorithms, and heuristics. The
exact algorithms are mostly based on branch-and-bound or enumeration with an integer pro-
gramming formulation. These are not efficient for large instances, i.e., the solution time can
be prohibitively long. Approximate algorithms are polynomial-time, which may be desir-
able, but the optimality guarantee is not always satisfactory, or the approximation method
for the problem does not exist. Heuristics have no theoretical guarantees, but are mostly
fast solving procedures. Achieving adequate efficiency usually requires a problem-specific
approach in the algorithm, which requires in-depth knowledge and often even trial-and-error
[66].

This includes the two main topics of this thesis: influence maximization and maximiza-
tion of submodular functions. These topics are described and the necessary concepts are
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introduced in the beginning of the parts. The chapters of the thesis also contain different
solution concepts, exact solvers and heuristics/heuristic steps for these problems.

1.4 Contributions

The focus of this dissertation is on maximization of submodular functions and maximization
of influence propagation using a deterministic linear threshold model. There are two chapters
on each topic, containing ideas and results that have been published in scientific papers.

Chapter 2: I present a constraint generation algorithm (CG) to solve the submodular
function maximization problem. Three further versions of this solver algorithm are devel-
oped, based on the definition of submodular maximization and the structure of the input
graph; these were constructed jointly with my supervisor. The effectiveness of the proce-
dures is demonstrated by numerical testing, which I performed. The chapter is based on [17]
publications.

Chapter 3: Selection of the initial constraint set is crucial when solving an integer linear
programming model. Therefore, this chapter focuses on the selection of initial constraint
conditions when using constraint generation type algorithms. A centrality metric was devel-
oped in collaboration with my supervisor, which proposes initial constraints given the input
graph. I compare this starting point with other strategies: the greedy solution and a recently
proposed GRASP heuristic. I conducted numerical tests to demonstrate the validity of the
method. The results of this chapter are published in [18].

Chapter 4: I point out the flaws of an integer linear programming model to maximize
influence propagation, introduced in a recent paper [65]. After the detection of the problem,
the model is corrected and its correctness was demonstrated by theoretical investigations.
Proposing and proving the theorems was an inseparable collaborative work with my super-
visor, while I did the algorithm implementation and the numerical testing. We published the
related results in [16].

Chapter 5: For the influence maximization problem, it is a research question of great in-
terest whether we can find a vertex ranking (i.e., centrality) value that can be used to predict
which vertices to choose as the seed set at the initial moment. We constructed two centrality
metrics that can provide a ranking that helps to select relevant seed nodes using a deter-
ministic linear threshold model (DLTM). The basic idea and formulation of the centrality
metric was developed together with the supervisor. I was responsible for the technical parts:
implementation and numerical testing. [19] contains the results of this chapter.



Part I

Submodular function maximization
based on graph properties
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Basic concepts and definitions

Submodular function maximization

A crucial problem in combinatorial optimization is the submodular function maximization,
and in many cases it involves graphs on which the maximization is specified. The problem
is well-studied and hence there are several proposed algorithms in the literature.

Let N = {1, . . . , n} be a finite set. The function f : 2N → R is called submodular if
it fulfills f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) for all S, T ⊆ N . There are many natural
linkage between submodular functions and both convexity and concavity, see, e.g., in [68].
Perhaps more intuitive is the following equivalent definition: f({i} | S) ≥ f({i} | T ) holds
for every S ⊆ T ⊆ N and i ∈ N \S where f({i} | S) := f(S∪{i})−f(S). A submodular
function f is called non-decreasing if f(S) ≤ f(T ) holds for all S ⊆ T ⊆ N . In the rest
of the thesis it is assumed that f fulfills this property, i.e., it is a non-decreasing submodular
function.

An important property of submodular functions is that the sum of two submodular func-
tions is also submodular. To prove it, let f1, f2 : 2N → R be two submodular function. Then
f : 2N → R with f(A) = f1(A) + f2(A) is submodular:

f(A) + f(B) = f1(A) + f2(A) + f1(B) + f2(B)

≥ f1(A ∪B) + f2(A ∪B) + f1(A ∩B) + f2(A ∩B)

= f(A ∪B) + f(A ∩B).

(1.7)

That is, it holds for each component of f in each member of the inequality.

The submodular maximization problem with a cardinality constant k (where 0 < k ≤ n)
is defined in the following way:

max f(S)

subject to |S| ≤ k, S ⊆ N.
(1.8)

13
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Solvability

Interestingly, the submodular function minimization problem can be solved in polynomial
time [49, 55, 98], whereas the non-decreasing submodular function maximization is NP-hard
[36, 69]. The greedy strategy is an often applied approach to solve (1.8) as it guarantees the
(1− 1/e) approximation of the optimal solution [83], however, it might be computationally
inefficient for large-scale instances. Although this is a simple, easy-to-implement technique
for solving many optimization problems and is therefore very commonly used, the global
optimum is often more needed in real-world applications, which was the motivation for a
new solution method proposed in [82]. This is based on a mixed integer programming (MIP)
model:

max z

s.t. z ≤ f(S) +
∑

i∈N\S

f({i} | S) · yi, S ∈ F,∑
i∈N

yi ≤ k,

yi ∈ {0, 1}, i ∈ N,

(1.9)

where f(T | S) := f(S ∪ T ) − f(S) for all S, T ⊆ N and F denotes the set of all feasible
solutions satisfying the cardinality constraint |S| ≤ k. For the proof for problem (1.9) being
a reformulation of problem (1.8) the reader is referred to [82].

Since the number of constraints increases exponentially in (1.9), this motivated a new
procedure, the so-called constraint generation (CG) algorithm, proposed in [82]. CG is an
iterative algorithm that starts with solving a reduced problem. The reduced problem consists
of a set of constraints generated from the initial set, which is extended on demand at each
iteration by the addition of a feasible solution. So in essence it solves many reduced MIP
problems, which are not always sufficiently efficient in applications. For this reason, the
branch-and-bound algorithmic approach is often used, which exploits the relaxation of MIP.

Constraint generation algorithm (CG)

A constraint generation algorithm was proposed in [82], which starts from a reduced MIP
problem with a few constraints to solve. It is an iterative algorithm, and in every iteration it
solves the reduced MIP problem while adding a new constraint. Let us define the reduced
problem MIP(Q) of (1.9), where Q ⊆ F is a set of feasible solutions:

max z

s.t. z ≤ f(S) +
∑

i∈N\S

f({i} | S) · yi, S ∈ Q,∑
i∈N

yi ≤ k,

yi ∈ {0, 1}, i ∈ N.

(1.10)
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Algorithm 1 CG(S(0))

Input The initial feasible solution S(0).

Output The optimal solution S∗ of problem (1.9).

Step 1: Set Q← {S(0)
[0] , . . . , S

(0)
[k] }, S

∗ ← S(0) and t← 1.

Step 2: Solve MIP(Q). Let z(t) be the optimal value of MIP(Q) and S(t) is the set corresponding to
the optimal solution y(t) of MIP(Q).

Step 3: If f(S(t)) > f(S∗), then let S∗ ← S(t).

Step 4: If z(t) = f(S∗) holds, then output the solution S∗ and exit.

Step 5: Set Q← Q ∪ {S(t)}, t← t+ 1 and return to Step 2.

The pseudo code of CG is shown in Algorithm 1. The starting point of the algorithm
is a set Q = {S(0)

[0] , . . . , S
(0)
[k] }, where S[i] is the first i elements of a feasible solution S(0)

which comes from the order of the greedy algorithm’s solution. In the t-th iteration we
solve the problem MIP(Q), Q = {S(0)

[0] , . . . , S
(0)
[k] , . . . , S

(t−1)} to obtain the optimal solution

y(t) = (y
(t)
1 , . . . , y

(t)
n ) and z(t) the optimal value which gives an upper bound of the problem

(1.9). Let S∗ be the best feasible solution of problem (1.9) up to this point and S(t) ∈ F be the
set which generated the optimal solution y(t) of MIP(Q), i.e., y(t) is the characteristic vector
of S(t). When f(S(t)) > f(S∗) holds, then update S∗ with S(t). If z(t) > f(S∗) ≥ f(S(t))

holds, then we have that S(t) /∈ Q, so (in Step 5) add S(t) to Q. This effectively adds the
following constraint to MIP(Q):

z ≤ f(S(t)) +
∑

i∈N\S(t)

f({i} | S(t)) · yi. (1.11)

The algorithm stops when z(t) = f(S∗) is satisfied which means that it is proven that the
optimal solution is found.

Small illustrative example For an easier understanding of the formalisms introduced and
the CG procedure, a small example exercise is used to illustrate the CG procedure. The
example graph is shown in Figure 1.1, and the table with the weights of the edges is shown
in Table 1.1. The test benchmark is the example of a facility location, a typical submodular
function, which will be discussed later. Let k = 2 be the cardinality constant. The CG
algorithm solves the problem in 2 iterations, both iterations and the constraints obtained by
condition (1.11) are included in the description below.
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Table 1.1: Edge weights of the graph used to
illustrate the CG algorithm

7 8 9 10 11

1 0.32 0.59 0.02 0.14 0.02
2 0.46 0.41 0.36 0.51 0.06
3 0.09 0.12 0.05 0.12 0.23
4 0.38 0.05 0.58 0.67 0.14
5 0.58 0.23 0.46 0.17 0.09
6 0.28 0.45 0.60 0.73 0.59

Figure 1.1: Example graph to demonstrate
the CG algorithm

6

M

5

4
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1
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N
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9

8
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Input The solution of Greedy: S(0) = 7, 10.

Iteration 1:
set Q[1]← 10

set Q[2]← 7, 10

S∗ ← 7, 10 f(S∗) = 2.93

constraints[1]: −0.59 · y[7]− 0.51 · y[8]− 0.29 · y[9]− 0.11 · y[11] + z ≤ 2.34

constraints[2]: −0.27 · y[8]− 0.11 · y[11] + z ≤ 2.93

S(1) ← 7, 8 f(S(1)) = 2.58

z(1) = 3.20

Iteration 2:
set Q[1]← 10

set Q[2]← 7, 10

set Q[3]← 7, 8

f(S∗) = 2.93

constraints[1]: −0.59 · y[7]− 0.51 · y[8]− 0.29 · y[9]− 0.11 · y[11] + z ≤ 2.34

constraints[2]: −0.27 · y[8]− 0.11 · y[11] + z ≤ 2.93

constraints[3]: −0.35 · y[9]− 0.62 · y[10]− 0.25 · y[11] + z ≤ 2.58

S(2) := 7, 9 f(S(2)) = 2.63

z(2) = 2.93 which is equivalent to f(S∗)



Chapter 2

Constraint generation approaches

2.1 Introduction

In recent years, the theory of submodular maximization has been improved and it has played
a key role in extraordinarily varied application areas [45]. Examples include several classes
of important combinatorial optimization problems [45], namely, the Simple or “uncapaci-
tated” Plant (facility) Location Problem (SPLP) and its competitive version [4], the Quadratic
Cost Partition Problem (QCP) with non-negative edge weights, and its special case – the
Max-Cut Problem [46], the generalized transportation problem. Many different problems
of data mining and knowledge discovery in biomedical and bioinformatics research (e.g.,
diagnostic hypothesis generation, logical methods of data analysis, conceptual clustering,
and protein functional annotations) as well as applied to statistics, machine learning and ex-
perimental design [47, 70], multiobject tracking [101], sparse reconstruction [22], influence
spread [64], and also combining multiple heuristics online [68]. There are models in mathe-
matics [45], including the rank function of elementary linear algebra, which is a special case
of matroid rank functions [25, 40] that require the solution of a submodular maximization
problem.

Solving submodular optimization problems on graphs are also a popular line of study as
set functions can easily be defined on graphs. The objectives in these graph based problems
vary from simultaneous localization and mapping problem for robots [12], route planning,
such as mobile robot sensing and door-to-door marketing [115], and investigation of more
general classes involving, e.g., s-t path constraint [96].

This chapter contributes to the research effort invested into submodular function max-
imization with cardinality constraints by introducing efficient variations of a recently pro-
posed constraint generation algorithm [106]. More precisely, we introduce variants of the
CG algorithm which take into account certain properties of the input graph aiming at in-
formed selection of the constraints.

Roadmap: The rest of the chapter is organized as follows. First, we discuss the relevant
literature for the non-decreasing submodular function maximization in Section 2.2. Then,

17
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Section 2.3 is about the problem instances that we use for testing the algorithms. In Section
2.4 we describe the algorithms. The first one is the improved constraint generation (ICG)
algorithm proposed in [106]. This is followed by the introduction of our ICG modifications,
where we motivate and describe three variants. The numerical experiments are presented
in Section 2.5, including the description of the computational environments, the properties
of the test graphs and finally the details and discussion of the benchmarking results. The
chapter is concluded in Section 2.6.

2.2 Related works

Optimization of submodular functions has been actively studied. In this section we discuss
the relevant contributions for the non-decreasing submodular function maximization.

The paper [68] provides analysis on the theoretical approximation guarantees of the
solver algorithms (greedy as well as more complex methods). The authors also considered
the different types of extensions of submodular optimization such as the online settings and
adaptive optimization problems. In contrast to our work, the entire paper is dedicated to
approximation (incomplete) algorithms.

An A∗ search algorithm was proposed in [11]. More precisely, it is a framework for solv-
ing non-decreasing submodular optimization problems. The approximate guarantee based
on submodularity property is also provided for non-submodular functions. In principle, the
A∗ algorithm is a heuristic, whereas our approach solves the problem to optimality.

A new implementation of the CG approach was proposed in [97] to solve the problem
using the formalism (1.9). The implementation uses lazy constraints, and heuristics are used
to select the starting point. This work is discussed in more detail in Section 3.3, furthermore
numerical tests for starting point selection are also presented in Chapter 3.

The paper [85] formulated the submodular maximization under submodular cover prob-
lem and proposed an approximation framework to solve it. The algorithm provably produces
nearly optimal solutions. As this paper aims at solving a specified version of (1.8) its appli-
cability differs from those of our approaches.

A deterministic algorithm based on a new greedy strategy for solving problem (1.8) was
proposed by [76]. It is shown by a mathematical proof that this new strategy outperforms the
traditional greedy algorithm provided that the function f fulfills certain assumptions.

Finally, [106] presented an improved constraint generation (ICG) algorithm. Being an
iterative method, it starts from a small subset of constraints and repeatedly solves relaxed
problems while adding a promising set of constraints at each iteration. The ICG method
was included into a branch-and-cut algorithm to attain good upper bounds while solving a
smaller number of reduced MIP problems. Computational results were obtained for well-
known benchmark instances. In Section 2.4 we present this ICG algorithm because our work
is based on it. In fact, we created three variants of it with the aim of even better computational
efficiency. Note that we did not use the branch-and-cut algorithm.
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2.3 Benchmark sets

We use 3 types of well-known and frequently used examples which have the non-decreasing
submodular property, termed by facility location (LOC), weighted coverage (COV) and bi-
partite influence (INF), see [63, 68, 95]. These are the standard benchmarks that are com-
monly used for testing in the literature. It is important to mention that LOC and COV exam-
ples have straightforward MIP formulations, which can be solved by standard MIP solvers
quite efficiently, see [106]. On the other hand, the INF problem, to be introduced below
cannot be formulated as straightforward MIP and this gives reasons for the attempt to make
the universal submodular maximization framework more efficient [97].

Facility location (LOC) Let n be the number of locations and m be the number of clients.
The set of locations N = {1, . . . , n} and the set of clients M = {1, . . . ,m} are given.
Define gi,j > 0 as a non-negative profit when client i ∈ M is served by location j ∈ N , for
all possible pairs. We select a set of k locations S ⊆ N to build the facilities. Each client
i ∈ M gets the profit from the best opened facility, and we want to maximize the overall
profit, so the total benefit is defined as:

f(S) =
∑
i∈M

max
j∈S

gi,j. (2.1)

The submodular property of the problem can be proved in the following way: f(S) can
be written as f(S) =

∑
i∈M fi(S), i.e., according to (1.7), if fi(S) = maxj∈Sgi,j (the

maximum of the i-th vector) is submodular then f can be written as the sum of submodular
functions, so f is submodular. For the proof we will now use only the i-th vector of the
matrix g. Consider

max
j∈A

gj +max
j∈B

gj ≥ max
j∈A∪B

gj + max
j∈A∩B

gj

which follows since we have that

max(max
j∈A

gj +max
j∈B

gj) = max
j∈A∪B

gj and min(max
j∈A

gj +max
j∈B

gj) ≥ max
j∈A∩B

gj.

Weighted coverage (COV) Let n be the number of sensors and m be the number of items.
The set of sensors N = {1, . . . , n} and the set of items M = {1, . . . ,m} are given. Each
sensor j ∈ N covers the subset of items Mj ⊆ M and each item i ∈ M has a non-negative
weight wi. To cover the items we select a set of sensors S ⊆ N . We have ai,j = 1, if i ∈Mj

and ai,j = 0 otherwise. Then, the total weighted coverage is:

f(S) =
∑
i∈M

wi max
j∈S

ai,j. (2.2)
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It can also be interpreted as a special case of the LOC problem, where gij = wiaij , though
note that the LOC problem is constrained to be gij ̸= 0. Therefore, the proof of the submod-
ularity of the function is analogous to the LOC problem.

Bipartite influence (INF) Let M = {1, . . . ,m} be the set of targets, where m is the
number of targets and N = {1, . . . , n} be the set of items, where n is the number of items.
Define an influence maximization problem on a bipartite graph G = (M,N ;E), where
E ⊆M ×N is a set of directed edges. The activation probability pj ∈ [0, 1] of every j ∈ N

item is given. Let 1 −
∏

j∈S(1 − qij) be the probability that a set of items S ⊆ N activates
a target i ∈ M , where qij = pj if (i, j) is a directed edge in E, otherwise qij = 0 holds. The
definition of the number of targets activated by the element set S ⊆ N is:

f(S) =
∑
i∈M

(
1−

∏
j∈S

(
1− qij

))
. (2.3)

To prove the submodularity of the function, it is sufficient to consider the submodularity of
the function fi(S) = 1−

∏
j∈S
(
1− qij

)
due to (1.7). The proof is done with q matrix for a

fixed value i, namely the i-th vector. Then, we will prove the following inequality:(
1−

∏
j∈A

(1− qj)
)
+
(
1−

∏
j∈B

(1− qj)
)
≥
(
1−

∏
j∈A∪B

(1− qj)
)
+
(
1−

∏
j∈A∩B

(1− qj)
)
.

Subtracting the constants from both sides and rearranging them:∏
j∈A∪B

(1− qj) +
∏

j∈A∩B

(1− qj) ≥
∏
j∈A

(1− qj) +
∏
j∈B

(1− qj). (2.4)

In order to simplify the notation, let us define the followings:

r =
∏

j∈A\B

(1− qj), s =
∏

j∈B\A

(1− qj) and t =
∏

j∈A∩B

(1− qj).

Then, for A and B: ∏
j∈A

(1− qj) = r · t and
∏
j∈B

(1− qj) = s · t.

For A ∪B, since A ∪B = (A \B) ∪ (B \A) ∪ (A ∩B):
∏

j∈A∪B(1− qj) = r · s · t. Let’s
substitute these into the 2.4 inequality:

r · s · t+ t ≥ r · t+ s · t.
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The inequality is divisible by t, since t ≥ 0 ((1 − qij) ∈ [0, 1] and if t = 0 the inequality
holds trivially):

r · s+ 1 ≥ r + s.

Rearrange this we obtain 1− r − s+ r · s ≥ 0 and the final formula is

(1− r)(1− s) ≥ 0.

Since r and s are the results of the product of the expressions 1 − qi,j where qi,j ∈ [0, 1],
then r, s ∈ [0, 1]. Therefore, both (1 − r) and (1 − s) are nonnegative, which makes their
multiplication nonnegative. This proves the inequality.

Note that the INF problem as a submodular function given in formula (2.3) contains a
product involving elements from the set S, which, in case of formulating it using binary vari-
ables corresponding to set element selections would result in a polynomial type non-linear
program. That might be possibly converted into MILP using, e.g., McCormick formalism,
but it is neither straightforward nor promising with respect to its solvability.

2.4 Algorithms

In this section, first we describe the so-called improved constraint generation (ICG) solution
method which was introduced recently by [106]. We propose three modifications of ICG
in which either certain characteristics of the graph describing the problem is used or the
submodularity property of the function to be maximized is exploited.

2.4.1 Improved constraint generation (ICG)

An improved constraint generation (ICG) algorithm was proposed in [106] and is shown in
Algorithms 2 and 3. This algorithm variant is as appropriate for maximizing non-decreasing
submodular functions as the CG algorithm.

What follows is that we give a quick overview and summary of the most important con-
cepts and notations of ICG, the reader is referred to the paper of [106] for the full details.
Note that we changed Step 5 in Algorithm 2 to expand the set Q with S(t) only after execut-
ing Algorithm 3 (SUB-ICG) since for the inputs it is assumed that S(t) /∈ Q.

The ICG algorithm refers to a reduced problem of (1.9) as MIP (Q), where Q is a set of
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feasible solutions, and it is defined as1:

max z

s.t. z ≤ f(S) +
∑

i∈N\S

f({i} | S) · yi, S ∈ Q,∑
i∈N

yi ≤ k,

yi ∈ {0, 1}, i ∈ N.

(2.5)

Using the CG algorithm of [82] as baseline, in the t-th iteration let the optimal solution be
y(t) = (y

(t)
1 , . . . , y

(t)
n ) and let the optimal value of the problem MIP (Q) be z(t). In this

case z(t) is an upper bound for problem (1.9), and that is what we aim to decrease in the
subsequent iterations. In order to do so, it is required to add a new feasible solution S ′ ∈ F

to the set Q to fulfill the inequality:

z(t) > f(S ′) +
∑

i∈N\S′

f({i} | S ′)y
(t)
i . (2.6)

By solving MIP (Q) we obtain at least one feasible solution S♮ ∈ Q which satisfies the
equation

z(t) = f(S♮) +
∑

i∈N\S♮

f({i} | S♮)y
(t)
i . (2.7)

Algorithm 2 ICG(S(0), λ)

Input The initial feasible solution S(0) and the number of feasible solutions to be generated
at each iteration λ.

Output The optimal solution S∗.

Step 1: Set Q← S(0), Q+ ← {S(0)
[0] , . . . , S

(0)
[k] }, S∗ ← S(0), and t← 1.

Step 2: Solve MIP (Q+). Let S(t) and z(t) be, respectively, an optimal solution and the
optimal value of MIP (Q+).

Step 3: If f(S(t)) > f(S∗), then let S∗ ← S(t).

Step 4: If z(t) = f(S∗) holds, then output the solution S∗ and exit.

Step 5: Set Q+ ← Q+ ∪ {S(t)} ∪ SUB-ICG(Q,S(t), λ), Q← Q ∪ {S(t)}, and t← t+ 1.

Step 6: For each feasible solution S ∈ SUB-ICG(Q,S(t), λ), if f(S) > f(S∗) holds, then
set S∗ ← S. Return to Step 2.

1Note that problem (2.5) is referred as BIP (Q) in [106]
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Algorithm 3 SUB-ICG (Q,S(t), λ)

Input A set of feasible solutions Q ⊆ F , a feasible solution S(t) /∈ Q and the number of
feasible solutions to be generated λ.

Output A set of feasible solutions Q′ ⊆ F .

Step 1: Set Q′ ← ∅ and h← 1.

Step 2: Select a feasible solution S♮ ∈ Q satisfying the equation (2.7) at random, therefore
solve MIP (Q). Set a random value ri (0 ≤ ri ≤ pi) for i ∈ S♮ ∪ St.

Step 3: If | S♮ |= k holds, then take the k largest elements i ∈ S♮ ∪S(t) with respect to ri to
generate a feasible solution S

′ ∈ F . Otherwise, take the largest element i ∈ S(t) \ S♮

with respect to ri to generate a feasible solution S
′
= S♮ ∪ {i} ∈ F .

Step 4: If S ′
/∈ Q

′ , then set Q′ ← Q
′ ∪ {S ′} and h← h+ 1.

Step 5: If h = λ holds, then output Q′ and exit. Otherwise, return to Step 2.

For all i ∈ N let qi be the number of feasible solutions S ∈ Q including an element i.
Using this quantity the occurrence rate pi of element i is calculated as:

pi =
qi∑

j∈N qj
(2.8)

For the heuristic part of the algorithm, meaning selecting the added nodes, we use ri that is
generated uniformly at random from 0 and pi, i.e., 0 ≤ ri ≤ pi. We choose one solution at
random from S♮ ∈ Q in that case when multiple feasible solutions exist which are satisfying
equation (2.7).

2.4.2 ICG with reduced k (ICG(k − 1))

As a first variation of the ICG, we modified Step 3 of Algorithm 3 to select not the k largest
elements if S♮ = k holds, but the k − 1 largest elements (i ∈ S♮ ∪ S(t) with respect to ri).
Considering the reduced problem’s definition in (2.5), with this modification we get the k-th
element’s function value when we add it to the set. Thus the problem class does not change,
ICG(k − 1) is a general solution method for non-decreasing submodular functions.

According to our empirical investigations, to be shown in Section 2.5, ICG(k−1) is more
efficient in terms of average running time than ICG, thus in the following we use this version
of the algorithm as a base for further improvements.
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2.4.3 ICG using graph structure (GCG)

Our second variant uses the structure of the input graph instances to calculate the pi value
in (2.8) that is needed to generate ri by random, see Step 2 in Algorithm 3. For this we
distinguish the problems defined on fully connected graphs (that is the LOC problem in our
case) and on non-fully connected graphs (those are the COV and INF problems we consider).
Therefore, the problem class is changed here, and the algorithm is applied to maximize non-
decreasing submodular functions with graph representation.

In the case when the problem is a fully connected bipartite graph, for every vertex j ∈M

we calculate the median mj of the outgoing edges’ weights. Recall that M refers to the set
of nodes with outgoing edges only. To calculate the value of pi, we add up the weights of the
incoming edges at node i ∈ N normalized with the degree of the node in M corresponding
to the edge:

pi =



∑
j:(j,i)∈E(G),

wji≥mj

wji

dj
if G is fully connected bipartite graph,

∑
j:(j,i)∈E(G)

wji

dj
otherwise,

(2.9)

where G is the input graph of the optimization problem, E(G) is the set of edges of G, the
edges have wji weights and dj is the degree of the node j ∈ M . This defines the value of
pi and based on this we set the value of ri by uniformly at random such that the relation
0 ≤ ri ≤ pi holds.

As an illustrative example, see the graph on Figure 2.1, where the labels of the nodes are
indicated as black numbers and the sets N and M are marked above the vertices. The results
of equation (2.9) are shown in Figure 2.1: the value of pi for the node is to the left.

4

M

3

2

1

7pi = 0.97

N

6pi = 0.53

5pi = 0.36

0.40

0.33

0.74

0.69

0.01

0.03

0.43

0.55

0.64

Figure 2.1: Example graph to calculate the pi values
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Although we choose k nodes from N we give a selection probability pi by using nodes
in M . The weight of outgoing edges of j ∈M are divided by the degree of j, which is used
to normalize the effect of the edges. We sum this normalized edges weights for each node
i ∈ N , which expresses the average impact of selecting node i ∈ N relative to the other N
nodes.

Let’s revisit the example in Figure 2.1. There is only one edge from node 4 to node 7

so node 7 is important: node 4 can be served only if node 7 is selected. For this reason,
we add to the selection probability value (pi) an edge weight divided by 1 (i.e., it remains
itself), so that the probability of selection of node 7 becomes high. In contrast, node 1 is
connected to three nodes, indicating that it can be reached from nodes 5, 6, and 7. These
nodes are interchangeable for reaching node 1 and therefore less important. If we investigate
the pi value which are in Figure 2.1, next to the nodes, then we can see that those values
are corresponding to the number and the weight of edges from nodes in set N . Accordingly,
node 7 has the highest value because node 3 and 4 have one and two edges, respectively.
Node 5 has the smallest pi value since node 2 and 1, which are connected to it have edges to
all vertices in N .

2.4.4 ICG using enumeration (ECG)

The formal description of our third approach is shown in Algorithm 4. The first four steps,
namely Step 1 - 4 are similar to those used in the previous variants. Step 5 selects a feasible
solution S♮ ∈ Q uniformly at random which satisfies the equation (2.7). Then, in Step 6 the
set Σ is initialized as the union of the sets S♮ and S(t). The size of Σ is controlled by the
parameter κ. In the subsequent steps the algorithm deals with the subsets of Σ (this is the
enumeration part), where we need to balance between computational cost and the benefit of
obtaining lower bounds of high quality. Thus, if | Σ |> κ, then we keep at most κ elements
with the largest pi values which is given by equation (2.9). Step 7 defines the set Pk−1 ⊆ 2Σ.
From all elements in Pk−1 we keep only those with cardinality at most k − 1 and calculate
their function values. In Step 8, based on their function values we keep at most λ elements
in Pk−1, where λ is another control parameter of the algorithm.

The motivation behind Steps 5 - 8 is based on the following facts. Firstly, in contrast to
ICG and GCG, we do not iterate any sub-algorithm inside the main algorithm, which could
lead to less computational time. Secondly, in order to select the elements (i.e., nodes of the
input graph) for Σ we use the pi values, which are based on the degree properties of the input
graph. Finally, the algorithm generates a good amount of promising feasible solutions, and,
similar to ICG, these solutions can help decreasing the upper bound of problem (1.9), see
(2.6). This depends on the strategy to be used for keeping the elements in Pk−1 in Step 8.
Note that in our experiments we used the strategy of keeping the elements with the smallest
function values, as this turned out to be numerically efficient, see Section 2.5.

Since the algorithm also uses the basic idea of GCG, i.e., graph structure, it is also appli-
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cable to non-decreasing submodular functions with graph representation.

Algorithm 4 ECG (S(0), λ, κ)

Input The initial feasible solution S(0), the number of feasible solution λ, and κ is the
number of the elements of Σ.

Output The optimal solution S∗.

Step 1: Set Q← S(0), Q+ ← {S(0)
[0] , . . . , S

(0)
[k] }, S∗ ← S(0), and t← 1.

Step 2: Solve MIP (Q+). Let S(t) and z(t) be an optimal solution and the optimal value of
MIP (Q+).

Step 3: If f(S(t)) > f(S∗), then set S∗ ← S(t).

Step 4: If z(t) = f(S∗) holds, then output the solution S∗ and exit.

Step 5: Select a feasible solution S♮ ∈ Q satisfying the equation (2.7) at random.

Step 6: Set Σ = S♮ ∪ S(t). If | Σ |> κ then let Σ be the first κ elements with the largest pi
values from S♮ ∪ S(t), where pi is defined in (2.9).

Step 7: Let Pk−1 be the set of all the subsets of the power set of Σ which have at most k− 1
elements and assign the corresponding function values to these subsets.

Step 8: Keep at most λ elements in Pk−1. So at this point | Pk−1 |≤ λ.

Step 9: Set Q← Q ∪ {S(t)}, Q+ ← Q+ ∪ {S(t)} ∪ Pk−1 and t← t+ 1.

Step 10: For each feasible solution S ∈ Pk−1, if f(S) > f(S∗) holds, then set S∗ ← S.
Return to Step 2.

2.5 Numerical experiments

2.5.1 Computational environment

The implementation of all the investigated algorithms and models were done in AMPL [39].
For the numerical experiments the solver CPLEX 20.1.0.0 was used with the default options.
The computer used had Intel Core CPU i5-6500 at 3.20GHz with 64G memory running
Ubuntu Linux 22.04.
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2.5.2 Test graphs

The authors of [106] made the graphs they used in their paper available online, thus for
benchmarking the proposed methods we used those instances for the LOC and the COV
problems. For the INF problems we generated new random graphs because the original
graphs become rather easy to solve, all of the algorithms attain the optimal solutions. Our
bipartite INF graphs were generated using the Erdős-Rényi (ER) model with probability
p = 0.3. Note that [95] also used p = 0.3 in their experiments, whereas in [106] the
parameter p = 0.1 was applied resulting sparser graphs.

Following the approach in [106] we had:

• N = 20, 30, 40, 50, and 60 for LOC instances and N = 20, 40, 60, 80, and 100 for
COV and INF instances;

• M = N + 1 and k = 5, 8 for LOC, COV, and INF.

• For LOC instances, gij is a random value taken from the interval [0, 1];

• for COV instances, a sensor j ∈ N randomly covers an item i ∈ M with probability
0.15, and wi is a random value taken from the interval [0, 1]; and

• for INF instances, pj is a random value taken from the interval [0, 1].

• We had λ = 10 · k.

• Finally, for controlling the cardinality of set Σ in ECG we had κ = 12 based on
computational results of prior experiments.

• Note that all the random parameters were generated with uniform distribution.

Regarding the analysis of the parameters λ and κ we have created a Supplementary In-
formation file which is available online [14].

2.5.3 Benchmarking results

The results are summarized in Tables 2.1 - 2.8. For each class 5 problem instances were
tested, indicated in the last digit of the name of the instance. For every instance all the
algorithms were run 5 times using different random seeds for the heuristics choices. The
time limit was set to two hours (7 200 seconds). The solution of the greedy algorithm was
the input initial feasible solution S(0) for every algorithm.

Tables 2.1 - 2.6 report the average running times (in seconds) and the mean values of
the number of iterations (in brackets). The cases when an algorithm was running out of the
time limit are indicated by the � symbol. Note that in these cases the number of iterations
is not reported. Those cases when an algorithm was able to solve the problem for less than
5 different runs are indicated with a star (⋆) next to the reported running time. Only those
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instances are reported for which we had at least one algorithm solving the problem at least
one of the cases.

Tables 2.7 and 2.8 report the mean relative gap2 and how many times the algorithm was
not able to solve the instance out of the 5 independent runs (in brackets). Note that only
those instances are reported for which we had at least one algorithm which was running out
of time at least once. For clarity, the results 0.00 (0) are replaced by the symbol ♢.

In the following we give detailed analysis of the reported results. The performance met-
rics of the proposed algorithms are discussed for the benchmark problems. For the different
k values we compare our methods with ICG. The result of the fastest algorithm is indicated
with boldface.

LOC, k = 5 The results are reported in Table 2.1. The ICG(k − 1) algorithm reduced the
running time for almost all the cases (except once). To be precise, it was 3.46 times faster
on average than ICG and it reduced the number of iterations to 82.62%. Furthermore, GCG
was 4.49 times faster on average and reduced the number of iterations to 64.77%, while ECG
was 6.10 times faster than ICG and the number of iterations were almost halved (53.71%).
There are three cases where GCG was faster than ECG.

The relative gap values for those three graphs for which the ICG did not get the results
are reported in Table 2.7. We can see that the gaps were below 1%.

LOC, k = 8 The results are reported in Table 2.2. Generally, the ICG(k − 1) obtained
the result 1.79 times faster while the number of iteration was 94.76% of the ICG’s iterations.
GCG was 2.58 times faster and the number of iterations was reduced to 76.83%. Note that
while ECG reduced the iterations to a similar extent (76.21%), it was faster only by 1.86

times compared to ICG. This confirms the fact that the technical time for generating the set
of sets in the ECG increases when k = 8 (compared to k = 5), since GCG is faster with
almost the same number of iterations.

For the unresolved instances, Table 2.7 shows the relative gap values. Note that none
of the algorithms were able to solve the N = 60 problems. Most of the cases all of our
algorithms achieved a smaller gap than ICG. Overall, the relative gaps remained below 1%

for all reported problems.

COV, k = 5 The results are reported in Table 2.3. All of our proposed algorithms were able
to solve the instances within the time limit, whereas ICG was running out of time for 7 cases,
mostly for the largest dimensional problems (for these problems the relative gaps are reported
in Table 2.7). For the successful instances, GCG was able to speed-up the running time the
most, it was 5.10 times faster, while the iterations were decreased to 48.39% compared to
ICG. Next was ICG(k − 1) with 3.79 times speed-up and 70.82% reduction in the number

2(zUB−zLB)/zLB×100, where zUB and zLB are the upper and lower bounds reported by the algorithms,
respectively
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Table 2.1: Results for LOC k = 5. Mean running time in seconds (average number of
iterations in brackets)

graphs ICG ICG(k − 1) GCG ECG

L.20.5.1 0.96 (9.4) 0.75 (8.6) 0.50 (5.6) 0.49 (5.0)
L.20.5.2 0.34 (5.8) 0.29 (5.0) 0.27 (3.8) 0.21 (3.0)
L.20.5.3 0.34 (5.8) 0.23 (4.4) 0.25 (4.0) 0.15 (2.0)
L.20.5.4 0.16 (3.4) 0.19 (4.0) 0.18 (3.0) 0.12 (2.0)
L.20.5.5 0.36 (5.6) 0.33 (5.0) 0.29 (4.2) 0.24 (3.0)

L.30.5.1 8.24 (17.8) 3.75 (12.8) 3.42 (10.4) 2.31 (8.0)
L.30.5.2 5.33 (16.6) 1.89 (10.8) 1.76 (8.6) 1.15 (6.0)
L.30.5.3 4.16 (14.4) 1.85 (10.4) 1.78 (8.2) 1.35 (6.0)
L.30.5.4 6.94 (18.4) 3.26 (13.2) 2.24 (9.6) 2.59 (10.0)
L.30.5.5 2.34 (12.2) 1.39 (10.0) 1.21 (7.0) 1.48 (7.0)

L.40.5.1 50.97 (27.6) 22.63 (22.0) 15.39 (16.2) 13.77 (15.0)
L.40.5.2 267.48 (49.0) 54.18 (30.0) 43.23 (25.6) 26.36 (21.0)
L.40.5.3 531.63 (54.4) 79.39 (32.4) 66.00 (27.4) 30.49 (19.0)
L.40.5.4 95.76 (38.2) 28.15 (24.8) 19.96 (19.0) 12.44 (15.0)
L.40.5.5 469.13 (58.4) 57.55 (31.2) 50.59 (26.6) 39.25 (24.0)

L.50.5.1 836.00 (57.2) 180.02 (35.2) 109.65 (28.2) 107.15 (25.0)
L.50.5.2 2 502.17 (81.8) 423.52 (47.0) 300.89 (37.0) 185.98 (29.0)
L.50.5.3 4 206.50 (89.8) 511.73 (46.4) 413.37 (38.0) 396.25 (37.0)
L.50.5.4 183.40 (35.8) 51.46 (25.2) 31.78 (18.6) 26.12 (16.0)
L.50.5.5 6 621.33 (22.4) 1 079.33 (64.4) 776.84 (52.0) 490.68 (42.4)

L.60.5.1 � (−) 6 016.81 (84.6) 4 988.19 (96.6) 3 217.13 (75.0)
L.60.5.2 � (−) 1 643.06 (69.4) 1 351.41 (60.8) 1 030.39 (52.0)
L.60.5.3 485.37 (40.8) 184.59 (30.4) 128.39 (24.0) 143.99 (27.0)
L.60.5.4 � (−) 4 394.68 (92.4) 3 075.40 (75.4) 1 968.20 (62.0)
L.60.5.5 170.65 (30.4) 66.25 (22.0) 49.76 (16.6) 51.67 (19.0)

of iterations. ECG was 3.23 times faster and solved the problems in slightly less than half
(49.46%) iterations.

COV, k = 8 The results are reported in Table 2.4. In this scenario GCG is the only one
which is overall faster than ICG. Namely, GCG was 1.06 faster and reduced the number of
iterations to 93.56%. ICG(k − 1) was 0.87 slower whereas ECG was 0.49 slower than ICG.
Even the number of iterations increased. Note that this is the only group of problems where
the baseline ICG algorithm showed better performance metrics in some of the cases.

The same phenomenon can be seen when examining the relative gap values, see Table
2.7. Compared to ICG, the ICG(k − 1) and ECG resulted in larger average gaps, only GCG
ended up with smaller gaps on average.
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Table 2.2: Results for LOC k = 8. Mean running time in seconds (average number of
iterations in brackets)

graphs ICG ICG(k − 1) GCG ECG

L.20.8.1 0.34 (3.6) 0.31 (4.0) 0.26 (3.2) 0.78 (2.0)
L.20.8.2 0.27 (3.2) 0.30 (4.0) 0.27 (3.0) 1.75 (4.0)
L.20.8.3 0.20 (2.2) 0.19 (3.0) 0.15 (2.0) 0.81 (2.0)
L.20.8.4 0.24 (3.0) 0.25 (4.0) 0.25 (3.0) 1.43 (3.0)
L.20.8.5 0.23 (3.0) 0.20 (3.0) 0.26 (3.0) 0.97 (3.0)

L.30.8.1 35.93 (25.6) 14.65 (17.0) 10.04 (13.8) 17.15 (12.0)
L.30.8.2 2.30 (7.0) 1.65 (6.8) 1.44 (5.4) 6.69 (6.0)
L.30.8.3 2.62 (7.8) 2.05 (7.8) 1.81 (6.4) 6.65 (7.0)
L.30.8.4 8.56 (12.6) 7.08 (12.4) 5.18 (10.2) 14.48 (10.0)
L.30.8.5 1.45 (6.2) 1.45 (6.6) 1.15 (5.2) 5.24 (5.0)

L.40.8.1 1 502.32 (48.0) 563.23 (34.2) 323.94 (29.8) 568.86 (35.4)
L.40.8.2 3 831.26 (71.8) 1 108.92 (46.4) 598.51 (35.8) 429.17 (35.0)
L.40.8.3 76.76 (18.4) 35.70 (15.8) 19.96 (13.0) 38.46 (13.0)
L.40.8.4 229.16 (30.0) 78.09 (23.0) 47.64 (19.2) 76.09 (20.0)
L.40.8.5 147.42 (28.2) 56.17 (20.8) 47.54 (18.4) 55.27 (14.0)

L.50.8.1 � (−) � (−) 6 357.27 (47.2) 6 186.57 (62.0)
L.50.8.2 3 483.92 (50.0) 1 359.93 (37.6) 1 010.56 (33.8) 946.79 (31.0)
L.50.8.3 556.33 (24.2) 360.34 (21.6) 218.02 (18.2) 149.28 (17.0)
L.50.8.5 � (−) � (−) 6 936.66⋆ (64.5) � (−)



2.5 Numerical experiments 31

Table 2.3: Results for COV k = 5. Mean running time in seconds (average number of
iterations in brackets)

graphs ICG ICG(k − 1) GCG ECG

C.20.5.1 0.11 (3.0) 0.11 (3.0) 0.08 (2.0) 0.10 (2.0)
C.20.5.2 0.10 (3.0) 0.10 (3.0) 0.07 (2.0) 0.11 (2.0)
C.20.5.3 0.15 (4.4) 0.09 (3.0) 0.09 (2.0) 0.09 (2.0)
C.20.5.4 0.14 (4.0) 0.10 (3.0) 0.08 (2.0) 0.08 (2.0)
C.20.5.5 0.10 (2.4) 0.10 (3.0) 0.08 (2.0) 0.10 (2.0)

C.40.5.1 1.49 (8.4) 0.77 (6.0) 0.68 (4.4) 1.33 (5.0)
C.40.5.2 2.04 (9.0) 0.95 (7.2) 1.02 (5.2) 1.32 (5.0)
C.40.5.3 1.48 (9.0) 0.73 (6.0) 0.52 (3.8) 0.93 (4.0)
C.40.5.4 4.07 (13.0) 1.16 (7.4) 1.23 (6.0) 1.29 (5.0)
C.40.5.5 3.11 (11.8) 0.79 (6.4) 0.81 (4.6) 1.01 (4.0)

C.60.5.1 36.29 (20.6) 9.39 (13.0) 8.11 (9.2) 11.02 (9.0)
C.60.5.1 29.78 (18.6) 11.54 (14.2) 8.23 (9.4) 8.79 (8.0)
C.60.5.1 22.26 (16.2) 8.37 (11.4) 4.19 (6.8) 8.43 (8.0)
C.60.5.1 34.15 (20.6) 8.43 (12.2) 6.21 (8.6) 10.73 (9.0)
C.60.5.1 95.97 (29.0) 18.70 (16.8) 11.08 (10.6) 24.61 (14.0)

C.80.5.1 5 296.05 (85.6) 339.04 (34.8) 273.19 (29.0) 398.06 (29.0)
C.80.5.2 � (−) 666.73 (48.8) 489.90 (39.4) 941.31 (44.0)
C.80.5.3 168.03 (26.4) 26.40 (15.4) 19.08 (10.4) 43.37 (12.0)
C.80.5.4 � (−) 718.39 (46.2) 523.22 (35.4) 780.66 (38.0)
C.80.5.5 534.24 (38.6) 63.66 (19.8) 37.34 (12.6) 69.62 (15.0)

C.100.5.1 � (−) 676.98 (41.2) 377.66 (28.2) 756.57 (35.0)
C.100.5.2 � (−) 904.86 (44.0) 452.01 (28.2) 1 018.30 (35.4)
C.100.5.3 � (−) 498.38 (36.8) 405.62 (28.6) 555.21 (29.0)
C.100.5.4 � (−) 1 331.61 (49.0) 973.07 (37.0) 2 906.53 (49.0)
C.100.5.5 � (−) 1 446.34 (52.8) 997.95 (39.0) 1 781.81 (43.0)
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Table 2.4: Results for COV k = 8. Mean running time in seconds (average number of
iterations in brackets)

graphs ICG ICG(k − 1) GCG ECG

C.20.8.1 0.14 (2.2) 0.08 (2.0) 0.11 (2.0) 0.62 (2.0)
C.20.8.2 0.05 (1.0) 0.05 (1.0) 0.05 (1.0) 0.05 (1.0)
C.20.8.3 0.05 (1.0) 0.05 (1.0) 0.05 (1.0) 0.05 (1.0)
C.20.8.4 0.10 (2.0) 0.07 (2.0) 0.10 (2.0) 0.21 (2.0)
C.20.8.5 0.09 (2.0) 0.08 (2.0) 0.13 (2.0) 0.20 (2.0)

C.40.8.1 1.23 (4.6) 1.24 (4.8) 0.80 (3.2) 9.20 (4.8)
C.40.8.2 0.42 (3.0) 0.39 (3.2) 0.35 (2.4) 5.15 (3.4)
C.40.8.3 1.24 (4.4) 8.76 (6.8) 4.23 (4.2) 14.97 (5.6)
C.40.8.4 0.88 (4.0) 1.12 (4.6) 0.81 (3.2) 7.41 (4.2)
C.40.8.5 0.06 (1.0) 0.06 (1.0) 0.06 (1.0) 0.07 (1.0)

C.60.8.1 21.25 (7.0) 44.72 (8.4) 32.16 (6.6) 136.43 (10.8)
C.60.8.2 0.09 (1.0) 0.08 (1.0) 0.08 (1.0) 0.09 (1.0)
C.60.8.3 0.08 (1.0) 0.08 (1.0) 0.08 (1.0) 0.09 (1.0)
C.60.8.4 7.63 (6.6) 12.43 (7.2) 10.94 (5.4) 52.95 (8.0)
C.60.8.5 11.78 (6.8) 11.16 (7.6) 7.09 (5.6) 51.11 (8.4)

C.80.8.1 284.70 (10.4) 621.12 (14.2) 276.53 (9.6) 705.20 (13.4)
C.80.8.2 470.94 (14.0) 579.62 (16.2) 380.11 (13.8) 721.66 (17.4)
C.80.8.3 199.77 (11.4) 362.43 (14.4) 221.57 (11.4) 546.51 (15.2)
C.80.8.4 1 529.46 (18.4) 2 067.69 (22.2) 1 010.48 (17.8) 2 382.21 (22.6)
C.80.8.5 188.68 (11.4) 361.91 (15.0) 194.43 (11.0) 473.23 (14.6)

C.100.8.1 2 797.19 (19.0) 4 166.53 (22.8) 2 054.98 (17.8) 5 078.67 (24.6)
C.100.8.2 5 483.76 (22.4) � (−) 4 686.29 (23.8) 6 596.13⋆ (27.0)
C.100.8.3 � (−) � (−) � (−) � (−)
C.100.8.4 � (−) � (−) � (−) � (−)
C.100.8.5 � (−) � (−) 6 113.83⋆ (−) � (−)
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INF, k = 5 The results are shown in Table 2.5. The ICG algorithm could not solve the
cases where N = 60, 80, and 100 (except one of them). Notably, the most efficient algorithm
on these problems were ECG in terms of overall running time and success rate, as it was able
to solve all the instances. Compared to the baseline (where ICG was able to finish within
the time limit) the average running time of ECG was 296.24 times faster, and the iteration
number decreased to 24.09%. The other two variants, ICG(k − 1) and GCG also had nice
results: ICG(k−1) was 14.94 times faster and the number of iterations decreased to 39.23%,
while the speed up of GCG was 20.26 with iteration’s ratio of 27.30%.

Investigating the gap values, as reported in Table 2.8, we can see that the results of ICG
show the biggest gaps, for the larger dimensional instances they even go above 10%. The
ICG(k − 1) variant resulted in much smaller relative gaps, and GCG also had tighter final
results than ICG.

INF, k = 8 These are the problem instances which were the most difficult ones for the
tested algorithms. As it can be seen in Table 2.6, the algorithms could solve only the smallest
graphs (N = 20) and some of the graphs with N = 40. ECG is the only one which could
solve all the problems where N ≤ 40. However, examining the relative gap values in Table
2.8 we can see that the results of the ECG were not the smallest ones and even ICG obtained
tighter gaps in some instances. Overall, GCG achieved the best gap values.

2.6 Conclusions

We proposed three different algorithm variants for the non-decreasing submodular function
maximization problem based on a MIP formulation using constraint generation approach.
The work was inspired by a recent paper[106], the algorithm introduced here is named as
ICG as it is an improved version of the standard constraint generation method. We presented
an algorithm, ICG(k − 1), which uses sets of cardinality k − 1, where we calculate the case
when adding the k-th element to the set with (2.7). The results of ICG(k − 1) are notable
because they work in the general case, for non-decreasing submodular functions with no
graph representation, and are faster in run-time than ICG. Another idea was to exploit the
structural properties of the input graph to select nodes, we called this algorithm as GCG.
Finally, we proposed ECG procedure which generates the subsets of sets instead of using an
iterative sub-algorithm.

According to our benchmarking results, we cannot declare a clear winner among the
algorithms and it is not surprising as the investigated problem is NP-hard. However, for
every instances there exists at least one of our algorithms which is computationally more
efficient than the ICG algorithm.
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Table 2.5: Results for INF k = 5. Mean running time in seconds (average number of
iterations in brackets)

graphs ICG ICG(k − 1) GCG ECG

I.20.5.1 0.35 (7.2) 0.14 (4.0) 0.06 (2.0) 0.16 (4.0)
I.20.5.2 2.71 (16.0) 0.65 (7.8) 0.45 (5.4) 0.23 (5.0)
I.20.5.3 0.83 (9.6) 0.27 (5.0) 0.14 (3.0) 0.17 (4.0)
I.20.5.4 1.12 (13.4) 0.21 (5.0) 0.17 (3.2) 0.10 (3.0)
I.20.5.5 0.63 (9.8) 0.12 (3.4) 0.10 (2.6) 0.09 (3.0)

I.40.5.1 � (−) 211.64 (57.4) 155.88 (45.4) 5.91 (17.0)
I.40.5.2 1 230.13 (101.0) 68.32 (35.4) 51.35 (29.2) 5.91 (16.0)
I.40.5.3 2 517.61 (114.6) 77.88 (35.4) 62.79 (29.4) 2.57 (11.0)
I.40.5.4 2 036.73 (131.2) 62.04 (37.2) 42.11 (27.8) 3.51 (13.0)
I.40.5.5 2 420.70 (121.6) 84.12 (38.8) 71.94 (33.0) 3.84 (13.0)

I.60.5.1 � (−) 1 872.07 (87.4) 1 447.89 (71.6) 14.06 (19.0)
I.60.5.2 � (−) � (−) � (−) 99.67 (41.0)
I.60.5.3 � (−) � (−) 7 122.45⋆ (138.0) 46.91 (31.0)
I.60.5.4 4 115.66 (112.0) 239.77 (42.2) 158.94 (30.2) 7.81 (15.0)
I.60.5.5 � (−) 5 101.47 (132.2) 4 346.57 (117.2) 38.17 (30.0)

I.80.5.1 � (−) � (−) � (−) 63.90 (29.0)
I.80.5.2 � (−) � (−) � (−) 631.07 (73.0)
I.80.5.3 � (−) � (−) � (−) 137.34 (42.0)
I.80.5.4 � (−) � (−) � (−) 543.79 (70.0)
I.80.5.5 � (−) � (−) � (−) 137.87 (43.0)

I.100.5.1 � (−) � (−) � (−) 693.71 (66.0)
I.100.5.2 � (−) � (−) � (−) 1 674.73 (99.0)
I.100.5.3 � (−) � (−) � (−) 655.78 (65.0)
I.100.5.4 � (−) � (−) � (−) 1 715.59 (98.0)
I.100.5.5 � (−) � (−) � (−) 636.56 (64.0)
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Table 2.6: Results for INF k = 8. Mean running time in seconds (average number of
iterations in brackets)

graphs ICG ICG(k − 1) GCG ECG

I.20.8.1 4.44 (12.6) 1.97 (8.6) 2.10 (8.0) 1.87 (8.0)
I.20.8.2 1.58 (8.0) 0.95 (6.4) 0.64 (4.6) 2.80 (11.0)
I.20.8.3 1.28 (7.4) 0.71 (5.6) 0.97 (6.0) 1.34 (7.0)
I.20.8.4 2.61 (10.6) 1.27 (7.6) 1.01 (5.8) 0.93 (6.0)
I.20.8.5 13.37 (21.6) 3.91 (11.8) 2.67 (9.0) 3.28 (11.0)

I.40.8.1 � (−) � (−) � (−) 4 111.21 (60.0)
I.40.8.2 � (−) � (−) 6 658.51 (78.0) 2 538.11 (55.0)
I.40.8.3 � (−) � (−) � (−) 6 242.53 (78.0)
I.40.8.4 � (−) � (−) � (−) 2 256.41 (56.0)
I.40.8.5 � (−) 6 871.58 (81.0) 5 548.98 (73.0) 1 369.95 (50.0)

Table 2.7: Relative gaps for LOC and COV problems (the number of unsuccessful runs in
brackets)

graph ICG ICG(k − 1) GCG ECG

L.60.5.1 0.58 (5) ♢ ♢ ♢
L.60.5.2 0.12 (5) ♢ ♢ ♢
L.60.5.4 0.46 (5) ♢ ♢ ♢

L.50.8.1 0.27 (5) 0.10 (5) ♢ ♢
L.50.8.4 0.26 (5) 0.22 (5) 0.11 (5) 0.20 (5)
L.50.8.5 0.22 (5) 0.02 (5) 0.02 (2) 0.09 (5)

L.60.8.1 0.39 (5) 0.33 (5) 0.17 (5) 0.29 (5)
L.60.8.2 0.33 (5) 0.38 (5) 0.16 (5) 0.18 (5)
L.60.8.3 0.26 (5) 0.25 (5) 0.21 (5) 0.34 (5)
L.60.8.4 0.77 (5) 0.93 (5) 0.50 (5) 0.70 (5)
L.60.8.5 0.77 (5) 0.71 (5) 0.62 (5) 0.57 (5)

C.80.5.2 0.76 (5) ♢ ♢ ♢
C.80.5.4 0.55 (5) ♢ ♢ ♢

C.100.5.1 0.43 (5) ♢ ♢ ♢
C.100.5.2 0.42 (5) ♢ ♢ ♢
C.100.5.3 0.28 (5) ♢ ♢ ♢
C.100.5.4 1.33 (5) ♢ ♢ ♢
C.100.5.5 1.69 (5) ♢ ♢ ♢

C.100.8.2 ♢ 0.13 (5) ♢ 0.15 (3)
C.100.8.3 1.49 (5) 1.79 (5) 1.41 (5) 1.29 (5)
C.100.8.4 1.84 (5) 2.94 (5) 1.96 (5) 2.55 (5)
C.100.8.5 0.54 (5) 0.93 (5) 0.45 (4) 0.95 (5)
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Table 2.8: Relative gaps for INF problems (the number of unsuccessful runs in brackets)

graph ICG ICG(k − 1) GCG ECG

I.40.5.1 0.29 (5) ♢ ♢ ♢

I.60.5.1 2.94 (5) ♢ ♢ ♢
I.60.5.2 6.39 (5) 1.35 (5) 1.02 (5) ♢
I.60.5.3 5.92 (5) 1.17 (5) 0.82 (4) ♢
I.60.5.5 4.71 (5) ♢ ♢ ♢

I.80.5.1 5.38 (5) 1.27 (5) 0.71 (5) ♢
I.80.5.2 9.91 (5) 5.39 (5) 4.83 (5) ♢
I.80.5.3 8.26 (5) 3.74 (5) 3.16 (5) ♢
I.80.5.4 10.89 (5) 6.19 (5) 5.46 (5) ♢
I.80.5.5 7.83 (5) 3.26 (5) 2.67 (5) ♢

I.100.5.1 11.48 (5) 1.42 (5) 6.16 (5) ♢
I.100.5.2 11.44 (5) 1.58 (5) 6.72 (5) ♢
I.100.5.3 10.79 (5) 1.60 (5) 7.43 (5) ♢
I.100.5.4 13.31 (5) 1.79 (5) 8.43 (5) ♢
I.100.5.5 10.98 (5) 1.36 (5) 6.00 (5) ♢

I.40.8.1 2.33 (5) 1.07 (5) 0.89 (5) ♢
I.40.8.2 1.10 (5) 0.19 (5) 0.07 (3) ♢
I.40.8.3 1.83 (5) 1.04 (5) 0.80 (5) ♢
I.40.8.4 1.03 (5) 1.02 (5) ♢ ♢
I.40.8.5 0.91 (5) 0.62 (3) ♢ ♢

I.60.8.1 7.36 (5) 6.79 (5) 6.23 (5) 6.50 (5)
I.60.8.2 7.98 (5) 7.68 (5) 7.31 (5) 8.95 (5)
I.60.8.3 8.57 (5) 8.16 (5) 7.50 (5) 8.43 (5)
I.60.8.4 3.35 (5) 2.96 (5) 2.66 (5) 3.51 (5)
I.60.8.5 6.21 (5) 5.65 (5) 5.36 (5) 6.59 (5)

I.80.8.1 9.12 (5) 8.57 (5) 8.15 (5) 9.23 (5)
I.80.8.2 10.21 (5) 9.91 (5) 9.35 (5) 11.06 (5)
I.80.8.3 9.33 (5) 9.19 (5) 8.72 (5) 10.22 (5)
I.80.8.4 8.58 (5) 8.23 (5) 7.79 (5) 9.56 (5)
I.80.8.5 10.24 (5) 10.18 (5) 9.49 (5) 10.45 (5)

I.100.8.1 14.12 (5) 14.11 (5) 13.40 (5) 15.29 (5)
I.100.8.2 12.59 (5) 13.01 (5) 12.56 (5) 14.49 (5)
I.100.8.3 13.87 (5) 13.78 (5) 13.17 (5) 15.78 (5)
I.100.8.4 13.06 (5) 13.01 (5) 12.51 (5) 14.65 (5)
I.100.8.5 13.50 (5) 13.41 (5) 13.08 (5) 15.24 (5)



Chapter 3

On the initial set of constraints

3.1 Introduction

Nemhauser and Wolsey concluded in their seminal paper [82] that four problems are fun-
damental to solving an integer linear problem in terms of practicality: formulation of the
model, selection of an initial set of constraints, decisions in a branch-and-bound algorithm,
and finding good feasible solutions. Among these essential issues, we are concerned with
that of the starting point selection, i.e., the selection of initial constraints that would make
the algorithms more efficient in terms of runtime.

There are integer or mixed-integer linear programs that require exponentially large num-
ber of linear constraints. A well-known example is the traveling salesman problem, which
has exponentially many constraints to eliminate subtours [21]. A general group of these
problems are mixed integer linear programs to be solved by Benders decomposition. The
basic approach is to start with a reduced relaxed problem with a small number of constraints.
During the algorithm, additional constraints are generated if the existing ones are violated.
When selecting the initial constraints, care should be taken to ensure that they are important
or significant in some sense during the solution process. The recommended initial constraints
are the solution of the greedy algorithm [80, 82].

3.1.1 From where to start the CG algorithm?

It can be observed that the choice of the starting point plays a role in the efficiency (i.e., its
runtime) of the CG algorithm. More precisely, starting from a high function-valued initial
point might not provide the fastest runtime. This effect is illustrated in Figure 3.1. Exact
details of the test problem (called C.60.5.3) will be given later in Section 3.5, right now it is
enough to understand that the task of the CG algorithm was to select the optimal k = 5 nodes
from a graph of 60 vertices. The globally optimal solution for this benchmark example was
known.

37
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We created 250 test cases, part of which started from a random starting point, while in
the other part we chose 3 of the best 5 vertices belonging to the global optimum, fixed them
and randomly added 2 other nodes. The reason for this is that we did not get an initial set
with a larger function value in the random choices, so we have also biased the sensitivity
analysis a bit towards the more interesting scenarios.

Figure 3.1: Visualization of the sensibility of the starting point: starting points with similar
function values can have rather different running times

Figure 3.1 shows the scatter plot of the 250 test cases. It is important to note that in this
figure, the x-axis shows the runtime of the CG algorithm and the y-axis gives the function
value of the initial set. In the figure, two sets of points can be roughly separated, due to the
semi-random chosen test cases. The green dot indicates the original CG algorithm starting
from the initial point proposed by the greedy algorithm. Note that for the other results, we
used all subsets of randomly generated points as starting point since we did not have any
order. This setup is appropriate, because for the NS method, which will be presented later,
the starting point is all the subset of the selected vertices. This figure perfectly illustrates that
the running time of a CG algorithm can be very different even if the function value of the
initial points are similar.

The phenomenon introduced informally above is the main motivation for this work.
Roadmap: The relevant literature summary follows in Section 3.2. The algorithms in-

vestigated in this chapter (and previously not presented) are reviewed in Section 3.3. A new
starting point generation rule for accelerating the algorithms is discussed in Section 3.4. In
Section 3.5, we present our numerical experiments, the benchmark instances that we used for
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testing the algorithms, including a description of the computational environment, the proper-
ties of the test graphs and then the benchmarking results. Finally, Section 3.6 concludes the
work.

3.2 Related work

CG-type algorithms are often used to solve mixed-integer linear problems (MILP), hence
their efficiency is of high interest. A popular approach is to use machine learning to improve
the speed of these algorithms. By achieving a good initial set, the number of iterations is re-
duced, which reduces the computational cost. In this spirit, a learning strategy was proposed
in [86] that employs a modified nearest neighbor method to filter out redundant constraints
in the Unit Commitment (UC) problem. In [56], a machine-learning-aided warm-start con-
straint generation algorithm was introduced which speeds up the search for the optimal solu-
tion of a MILP. The method is based on the offline detection of the invariant constraint sets
of earlier occurrences of the target MILP. This significantly improves the prediction of the
invariant constraint sets for instances that have not yet been seen. Thus, much fewer iter-
ations are required to run the constraint generation algorithm and the online computational
burden is significantly reduced. A similar idea for solving MIP problems can be found in
[111], where a machine learning technique has been proposed. This is based on extracting
efficient data from previous instances in order to improve the solution for similar instances.
Good initial feasible solutions, affine subspaces, and redundant constraints were predicted
based on statistical data, leading to a significant reduction in problem size.

Focusing on the submodular function maximization problem, most solution algorithms
use the result of the greedy approach as a starting point, i.e., the constraints of the initial set,
as proposed in [80, 82]. Correspondingly, in [106], the constraint generation procedure and
its improved versions used the subsets generated from the greedy result as starting points.
The study in [108] investigated fairness and balancing utility in submodular maximization,
which was formulated as a bicriteria optimization problem. For this, two instance-dependent
approximation algorithms were introduced. In these solving methods, the initial set is also
the solution of the greedy algorithm. The well-known benchmarks (maximum coverage,
influence maximization and facility location) were used to test the efficiency.

A cutting-plane algorithm for submodular maximization problems was described in [63],
which is in fact an iterative binary-integral linear programming model. They used a so-
called submodular cut plane, based on the submodularity of a set function via the Lovász
extension, which ensures that the algorithm converges to the optimum in finite iterations. In
the experiments, they used the solution by a greedy algorithm as initial subset.
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3.3 A modern implementation

In this subsection, we would like to present a brief summary of a relevant and efficient
method for submodular maximization, as found in [97]. A modern implementation of the
MIP model of Nemhauser and Wolsey based on lazy constraint generation was presented.
These procedures were also used to test the new initial point selection strategy. An anal-
ogy was discovered between the MIP model of submodular function maximization and the
Benders decomposition [5]. Specifically, they were able to exploit some of the algorithmic
improvements proposed for the Benders decomposition. That is, they took advantage of the
support of modern MIP solvers for lazy constraints, so they could provide a stronger initial
primal constraint and could also improve the dual constraint faster.

In terms of runtime, these algorithms are much faster than the algorithms presented pre-
viously, as can be seen from the numerical results. However, we would like to note that
we are not demonstrating the effectiveness of the solution algorithms, but to show how the
starting point selection strategy works.

3.3.1 GRASP heuristic

At the end of the greedy phase, a local search was inserted using a neighborhood structure.
This was based on the fact that replacement neighbourhoods were examined: subsets of
elements that had been dropped and a new element not yet in the set added. The GRASP
heuristic can be obtained with the greedy algorithm extended by local search, based on [37].
Then, a randomized component is added to the greedy procedure, i.e., a candidate is chosen
randomly, which is then corrected by local search. This is iterated until an iteration/resource
limit is reached.

3.3.2 Separating fractional solutions

Separating fractional solutions is not trivial, but separating integer solutions is easy. This
is because for fractional solutions, the point to be cut cannot be mapped to a subset of the
ground set. This was the motivation for proposing two heuristic solutions for decomposition
in [97]. One is based on the greedy algorithm, while the other is based on the Lovász-
expansion.

Of the methods summarized above, 3 algorithms have been constructed and tested in
[97]: base is the basic constraint generation method, bc has constraints separated as lazy
constraints on the fly without using custom branching, while bc+ is the improved version of
bc and custom branching are included. bc and bc+ use GRASP as a warm start, so we used
these algorithms to test our new starting point selection strategy.
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3.4 A new starting point for constraint generating algo-
rithms

To find a new starting point for a CG-type algorithm we use the input graph’s structure. The
idea is based on our work presented in the previous chapter, more specifically on the proce-
dure for computing the value pi, where we use the bipartite graph structure G = (M,N ;E).
Thus, the algorithm presented below is appropriate for the maximization of non-decreasing
submodular functions with graph representation (the benchmarks typically used in the litera-
ture and presented earlier were used for testing). But the procedure used there is not directly
appropriate and in this method, the nodes are dynamically selected.

To choose k node as a new starting point, first of all, we calculate a new centrality value
nsi to every node i ∈ N . This centrality is adding up the weights of the incoming edges at
node i ∈ N normalized with the degree of the targets node, then multiplying the sum with
the degree of the source node:

nsi = di ·
∑

j:(j,i)∈E(G)

wji

dj
, (3.1)

where G is the input graph of the optimization problem, E(G) is the set of edges of G, the
edges have wji weights, dj is the degree of the node j ∈ M and di is the degree of node
i ∈ N . Observe that this formula works well for graphs that are not fully connected, because
weighting by the degree of the vertices only makes sense then.

Choose node i with highest nsi value and delete node i with their edges and recalculate
all the nsi for every node i ∈ N . The next vertex is chosen for the starting point based on
the recomputed centrality value. Repeat this method until k nodes are selected.

See the graph on Figure 3.2 as a small illustrative example, where the labels of the nodes
are marked with black numbers and the sets N and M are marked above the vertices. The
vertices signed by their labels and their corresponding nsi values calculated by (3.1) are
shown next to them highlighted by tanning color. Taking the nsi values into account, we first
choose node 7 and then delete this vertex with its edges. Then, the result graph is shown on
Figure 3.3 with its recalculated nsi values. Accordingly, the next selected vertex is 5 and not
node 6, but note that in the first step it seemed that node 6 is the better choice.

Although we choose k nodes from N , we also use the vertices from M to calculate the
new centrality metric. We divide the weight of the outgoing edges j ∈M by the degree of j,
which is used to normalize the effect of the edges. We sum this normalized incoming edge
weights for each i ∈ N nodes, which expresses the average effect of selecting i ∈ N nodes
relative to the other nodes. This is weighted by the degree of node i, which helps to better
scale the effect of the N vertices.

Let’s revisit the example in Figure 3.2. Node 4 can be served only if node 7 is selected,
because there is only one edge from node 4 to node 7, so node 7 is important. When comput-
ing the centrality metric, we add an edge weight to the value of this node, which is divided
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Figure 3.2: Example graph to calculate the nsi values; initial step

by 1 (i.e., it remains itself), thus greatly increasing the value of ns7. There are two other
vertices connected to vertex 7 with two edges, but in both cases the edge with the higher
weight is connected to the node 7. This effect is further increased by multiplying the value
by the degree of the node.

Next, we delete node 7 with its edges, thus obtaining a new graph showing the case where
vertex 7 no longer serves a function. This is the reason why, in the case of the graph in Figure
3.3, we now choose vertex 5. In the current state of the graph, the value of ns5 is larger, i.e.,
the vertex is more important, because there is only one edge coming out of vertex 1, and
its value is larger than the edge coming into vertex 6 from vertex 2. Notice that we always
choose the most important vertex of the current ones. This is regardless of the edge weight
going to the previously selected vertex from vertices j ∈ M (e.g., the vertex 7 has a high
weight edge going to it from 3). This is crucial for the strength of the method.

Finally, we generate all subsets from the k vertices proposed by the new centrality metric.
We start a CG-type algorithm from the constraints defined by these subsets.

3.5 Numerical experiments

3.5.1 Computational environment

The implementation of the above proposed new centrality was made in R version 4.3.2 using
its igraph 1.4.2 package. For numerical experiments, CG-type algorithms [17] are im-
plemented in AMPL [39], using the original code with the parameters in [17]. The solver
CPLEX 22.1.1.0 was called from AMPL using default options. The modern implementa-
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Figure 3.3: Example graph to calculate the nsi values; result of the first iteration

tions, the bc and bc+ algorithms, were previously provided by the author of [97]. Thus the
original C++ code was used for testing and the settings in [97] were not changed. The MIP
solver is IBM ILOG CPLEX 22.1.1 [54]. The computer used had Intel Core CPU i5-6500 at
3.20 GHz with 64 G memory running Ubuntu Linux 22.04.3.

3.5.2 Problem instances

Among the problem instances detailed in Section 2.3, we used weighted coverage (COV)
and bipartite influence (INF). Note that the facility location problem has a complete bipartite
graph representation and is therefore not suitable for testing this heuristic.

3.5.3 Test graphs

All the algorithms presented in Section 2.4 and Algorithm 1 were re-run during testing to
ensure a fair comparison with the procedures started from the new point (i.e., same config-
urations and software versions). We also tested the algorithms used in [97] and his versions
started from a new initialization point, a short summary of this is given below. For both
problems we used the benchmarks from [106], since they are available online.

Following the approach in [106] we had:

• N = 20, 40, 60, 80, and 100;

• M = N + 1 and k = 5, 8.

• For COV instances, a sensor j ∈ N randomly covers an item i ∈ M with probability
0.15, and wi is a random value taken from the interval [0, 1]; and

• for INF instances, an edge is randomly generated with probability p = 0.1 and pj is a
random value taken from the interval [0, 1].
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• We had λ = 10 · k.

• The cardinality of set Σ in ECG: κ = 12, see [17] for details.

• Finally, all the random parameters were generated with uniform distribution.

3.5.4 Benchmarking results

Detailed results are available in an electronic supplement [15] containing 24 tables, for the
transparency of the publication. The average results for each instance are given in Table 3.1
and Table 3.2.

Five instances were tested for each class, indicated by the last digit of the instances. All
algorithms, for each task, were run 5 times using different random seeds for the heuristic
choices. The time limit used for the runs was 7,200 seconds (2 hours). If, for any instance,
not all of the 5 runs were completed within the time limit, the number of successful runs was
indicated in brackets. The instances that did not run within the limit were described by the
the mean relative gap1 with the average number of cases counted in brackets behind it.

The following is a textual assessment of the tables. We denote new start algorithms with
NS prefix. Where all of the instances were successfully solved, we have highlighted in the
table the one that was faster. In the textual evaluation, we use the ratio (time/NS-time) and
(NS-cons.nr./cons.nr.) to express the change in time and the number of constraints. For
the comparison of iteration numbers, we used (NS-iter.nr./iter.nr.)× 100 percent.

For the average values in Table 3.1, only graph instances were considered which could
ran within the given time limit in all 5 cases using the given algorithm and its NS variant.
The table shows that the NS algorithm was faster on average in most cases.

COV, k = 5 The results are reported in Tables 3-8 in the supplement [15]. Considering all
of these methods together, the algorithms started from the new point were able to solve the
problems within the time limit in more cases. For the successful instances, NS-CG was able
to speed-up the running time the most, it was 2.46 times faster, while the number of iterations
were decreased to 68.22% and the number of constraints was 1.70 times more compared to
CG. Next was NS-ECG with 2.00 times faster, 71.06% reduction in the number of iterations
and 1.54 times the number of constraining conditions. NS-ICG was 1.54 times faster and
reduced the number of iterations to 85.85%, while using 1.05 times more constraints to solve
the problem. NS-ICG(k−1) and NS-GCG achieved similar results: NS-ICG(k−1) achieved
1.37 times faster with less iterations (90.23%) and 1.05 times more constraints; NS-GCG
was 1.32 times faster, reduced the number of iterations to 93.41% and used 1.07 times more
constraints.

1(zUB−zLB)/zLB×100, where zUB and zLB are the upper and lower bounds reported by the algorithms,
respectively
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Table 3.1: Summary of results: starting from greedy versus NS (using CG-type algorithms)

inst., k algorithm time iter.nr. cons.nr. NS-time NS-iter.nr. NS-cons.nr.

COV, 5 CG 478.14 95.65 100.65 115.82 63.00 94.00
ICG 302.05 17.80 597.28 204.51 15.92 542.02
ICG(k − 1) 261.33 20.53 715.82 186.86 18.80 664.24
GCG 184.53 14.79 649.67 138.70 14.09 628.55
ECG 955.36 45.38 383.42 583.16 36.92 363.92

COV, 8 CG 290.41 22.78 30.78 565.18 24.17 279.17
ICG 541.56 7.11 432.98 666.79 7.85 707.11
ICG(k − 1) 441.73 7.61 478.57 427.16 8.85 778.79
GCG 394.74 6.39 442.13 542.99 7.37 767.75
ECG 591.54 8.65 398.30 494.53 8.31 745.98

INF, 5 CG 426.19 197.00 203.00 243.38 104.10 135.10
ICG 904.53 51.76 1 219.89 15.92 13.75 300.24
ICG(k − 1) 560.43 38.77 1 025.61 68.78 15.20 388.13
GCG 591.83 33.28 1 086.53 72.16 14.18 460.08
ECG 0.86 3.68 88.68 0.85 3.00 93.60

INF, 8 CG 20.52 81.00 90.00 2.93 14.33 269.33
ICG 524.63 26.04 1 194.26 6.66 7.56 441.08
ICG(k − 1) 202.74 18.12 917.20 4.10 5.30 425.83
GCG 947.46 25.21 1 486.46 40.66 9.86 770.40
ECG 442.63 17.22 1 322.61 36.65 6.52 703.26

Table 3.2: Summary of results: starting from GRASP versus NS (using the modern imple-
mentation)

inst., k algorithm time NS-time

COV, 5 bc 3.04 2.40
bc+ 2.84 1.66

COV, 8 bc 49.09 48.18
bc+ 34.31 33.34

INF, 5 bc 0.35 0.11
bc+ 0.32 0.13

INF, 8 bc 3.62 4.31
bc+ 5.96 9.80
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Examining the bc and bc+ algorithms, we can see that by replacing the GRASP heuristic
with the NS starting point, bc is 3.56 times faster, while bc+ is 3.53 times faster on average.
In the case of bc, there are 2 graph instances where the GRASP heuristic algorithm runs
faster.

COV, k = 8 The results are reported in Tables 9-14 in the supplement [15]. The results
obtained for this instance are very interesting. Although we started all NS algorithms from
the same new point, we did not achieve improvements in many cases. One reason for this is
that the number of all the subsets of the k = 8 selected vertices is large, so there are already
many constraints when starting the reduced MIP problem. Another reason is that algorithms
generate new constraints in different ways per each iteration after the initialization. This
results in an average 1.01 times faster for NS-ECG, while no speedup was achieved for
the other algorithms. For NS-ECG, there were 176.15% more iterations and 15.08 times
more constraint conditions compared to ECG. NS-CG was 0.38, NS-ICG was 0.57, NS-
ICG(k − 1) was 0.59 whereas NS-GCG was 0.61 slower than the corresponding greedy
initiated methods. Even the number of iterations and constraints has increased. Note that
this is the only group of problems where the algorithms from the new starting point did not
show absolute success. Much the same phenomenon can be observed when examining the
relative gap values.

Using the NS starting point instead of the GRASP heuristic, the average speedup is 3.58
for bc and 4.25 for bc+. Note that, there are a few cases where bc, bc+ runs faster than NS-bc,
NS-bc+; to be precise, 8 graphs for bc and 8 graphs for bc+.

INF, k = 5 The results are reported in Tables 15-20 in the supplement [15]. The best
results were obtained for NS-ICG, an average 32.11 times faster, 32.66% reduction in the
number of iterations and 80.28% reduction in the number of constraints. As with NS-ICG,
NS-ICG(k − 1), and NS-GCG ran faster than the original algorithm for all examples and
reduced both the number of iterations and the number of constraints. In numerical terms,
ICG(k−1) achieved 8.84 times faster runtime and reduced the number of iterations to 40.71%

and the number of constraint conditions to 66.54%; GCG similarly achieved 6.82 times faster
runs and reduced the number of iterations to 40.71% and the number of constraint conditions
to 54.99%. NS-CG and NS-ECG did not win in terms of runtime for all graphs, but when
looking at the average runtime results, they still ran faster. CG achieved a 3.82 times faster,
while increasing the number of iterations and constraint conditions (by 1.08 times and 1.82

times, respectively). For ECG, on average 1.18 times faster, but note that the ECG solution
time for these examples is under 5 seconds.

The gap values are similar: the gap values of the NS algorithms are smaller, and note
that there were several times when the original algorithm could not run within the time limit,
while the NS algorithms solved the problem in a short time.
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For these cases, bc achieved 3.31 times faster running times from the new starting point,
while bc+ achieved 2.64 times faster.

INF, k = 8 The results are reported in Tables 21-26 in the supplement [15]. For these
instances, there were many cases where the algorithms could not solve within the time limit.
That is why we can see several instances which only the NS procedure solved. The best
average speedup here was also achieved with NS-ICG, exactly 8.33 times, while the number
of iterations was less than halved (44.41%), but the number of constraints was almost 4 times
more (3.89). We achieved similarly good results with NS-ICG(k−1), with 15.50 times faster
runs. NS-GCG also achieved 9.63 times faster results with half as many iterations (50.44%).
ECG ran the most graphs, so we were able to make the most comparisons here and was
6.84 times faster with NS-ECG with no increase in the number of constraints (99.07%).
In contrast, CG used 9.04 more constraints but also achieved a run time 8.33 times faster.
Comparing the gap values, we can see that in most cases the NS algorithms achieved smaller
gap values. In fact, there were 23 cases where the NS ran within the time limit in all 5 cases,
while starting from greedy, the algorithm could not.

For the bc and bc+ algorithms, the average speedup is 2.09 and 2.04, respectively. For
these instances, both for the bc and bc+ algorithms, the average runtime is lower when start-
ing from the GRASP heuristic. Accordingly, this is the situation, where most of the graph
instances were where the GRASP heuristic algorithm proved to be faster (7 cases for bc and
8 cases for bc+).

3.6 Conclusion

A new centrality metric based on the input graph structure was proposed. The graphs under
consideration are not fully connected bipartite graphs, for which we have used both the edge
weights and the degrees, taking into account the baseline problem. The centrality metric
is dynamically recalculated after selecting and deleting a vertex, and the resulting node or-
dering is used to select the initial set of submodular function maximization problems. The
importance of the choice of the starting point was already stated by Nemhauser and Wolsey
in [82]. In most cases, the solution proposed by the greedy method or randomly selected
feasible solution is used as the starting point for solving algorithms. But there are other pro-
posals in the literature, more precisely, we have presented here the GRASP [97] heuristic.

We used five different algorithm variants for the non-decreasing submodular function
maximization problem based on a MIP formulation using constraint generation approach
which we started from the greedy’s solution and also from the new starting point proposed
by the centrality metric. Furthermore, we used two modern implementations of Nemhauser
and Wolsey’s MIP model for submodular function maximization problem based on lazy con-
straint generation, which we started from the GRASP heuristic and also from the new starting
point proposed by the centrality metric. According to our benchmarking results, algorithms
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starting from the new initial set reduced the runtime by a factor of 5.37 for all test cases.
Overall, we can conclude the initial set suggested by the new centrality metric is worth us-
ing, as shown by our run-time tests and, in their absence, the relative gap tests.



Part II

Influence maximization under
deterministic linear threshold model
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Basic concepts and definitions

Influence maximization (IM)

Influence maximization is a combinatorial optimization problem and perhaps one of the most
actively studied problems in network science. It studies a social network represented as a
graph G = (V,E,W ), where V is the set of nodes in G, E is the set of directed edges in G

and W : E → R+ is a non-negative weight function. The goal of the problem is to find a
k ≥ 1 sized set of so-called seed nodes v1, . . . , vk ∈ V with the maximum influence in graph
G in such a way that a weighted directed graph G, a diffusion (or spreading) model and the
integer k are given [64].

The following notations will be used: n = |V |, for a node j ∈ V the set of its out-
neighbors is denoted by Nout(j), and for j ∈ V the set of in-neighbors is denoted by Nin(j).
Let S ⊂ V of size 0 < k ≤ n be the set of seeds and the function σ(S) is the number of
influenced nodes started from S ⊂ V seeds by executing the diffusion model. The formal
definition of the optimization problem is therefore

max
S⊂V,|S|=k

σ(S).

Diffusion models are usually used with stochastic parameters to solve influence maximiza-
tion [64]. Thus, σ(S) is the expected number of influenced nodes. The nodes with influenced
and uninfluenced states will also be called as active and inactive nodes, respectively.

Diffusion models

Several relevant diffusion models can be found in the literature, among which the inde-
pendent cascade model [44], triggering model [64], time-aware model [73], and the linear
threshold model [48] are the most popular ones. Our model is based on the linear threshold
model (LTM) which solves the problem by iterating over a t ∈ N value, starting with t = 1.
Let bi,j ∈ (0, 1) be the edge weight between node i and j, θi ∈ (0, 1] be the threshold value
for each i ∈ V that determines how easy it is to make the vertex active, and set N̂in(i) be the
already influenced in-neighbors of node i. The steps of the LTM is shown in Algorithm 5.

The value of σ in the LTM is estimated by executing R runs using θi values uniform at

51



52

Algorithm 5 Linear threshold diffusion model

Step 1 Let t = 1, 0 < k ≤ n be fixed and V0 be a seed set containing k nodes, V1 = ∅.

Step 2 If ∑
j∈N̂in(i)

bj,i ≥ θi

holds for any i ∈ V uninfluenced nodes, then put node i into the set Vt. Mark those
nodes as active at the end of this step.

Step 3 If there is no chance to influence more node that is Vt = ∅ holds, then STOP. V =
V0 ∪ . . . ∪ Vt−1 and σ(V0) = |V| by this time.

Otherwise, let t := t+ 1 and go back to Step 2.

random, then taking the average value of the influence to obtain the expected value of σ.
The threshold value θi determines the influenceability of node i. According to the original

paper of [64], it is arguably difficult to measure (e.g., in social networks) the value of this
thresholds. Hence, the evaluation of the LT model is done by executing it R times and then
the average influence value is taken; this is how expected value of σ is obtained. In this
case it can be shown that the function σ(·) has submodularity property [64], which has the
important consequence that a greedy algorithm guarantees that

σ(S) ≥ (1− 1/e) · σ(S∗)

holds for any seed set S, where S∗ is the optimal seed set [83].

Deterministic linear threshold model (DLTM)

In our work we used the deterministic linear threshold model (DLTM). It differs in that the
θi values of the nodes are fixed, and thus no need for running the diffusion model multiple
times. Note, that in [48] the original LT model is also deterministic. DLTM has been inves-
tigated also in the recent years, see e.g. in [1, 60, 77, 78, 112]. One of the key properties of
DLTM is that the submodularity property does not hold [2], so there is no guarantee of the
efficiency of the greedy algorithm.

Note that IM under DLTM is a bilevel optimization problem since we need to find the
maximum number of active nodes together with the minimum time t. Even using state-
of-the-art optimization methods it is not possible to solve this kind of problem. Hence, an
iterative solution method needs to be applied using the binary linear program which details
are given later.



Chapter 4

An exact method

4.1 Introduction

Social networks have become increasingly popular in recent years and their use is grow-
ing. With the help of modern technology, the use of online social networks for various
purposes, such as the diffusion of information, ideas, influences, advertisements and many
others through networks has become commonplace. There are many instances when an idea
or trend starts to spread in the community, such as a mobile app, a political movement, an
ideal and even the challenges that are popular nowadays. Their lifetime is not necessarily
predictable: some end quickly, while others take a long time. An interesting topic is the study
of these phenomena, for example, the extent to which people influence each other, how dif-
ferent friends, neighbours, colleagues influence an individual’s opinion on a particular issue.
One question is whether information reaches people and, if so, from where. There has been
a lot of related research, for example on the spread of innovation around the world or the
study of viral marketing. A related research model on the spread of influence has inspired
the work in this chapter.

In a recent paper [65] an integer programming formalization of IM using the so-called
deterministic linear threshold diffusion model was proposed. In fact, it is a special 0-1 lin-
ear program in which the objective is to maximize influence while minimizing the diffusion
time. In this chapter, by rigorous analysis, we show that the proposed algorithm can get stuck
in locally optimal solution or cannot even start on certain input graphs. The identified prob-
lems are resolved by introducing further constraints which then lead to a correct algorithmic
solution.

Roadmap: In this chapter, Section 4.2 summarizes the related works. Section 4.3 intro-
duces the original model and a proposed algorithm, followed by Section 4.4, which contains
the analysis of this model and the verification of the correctness of the model. Numerical
results are given in Section 4.6 and final thoughts are summarized in Section 4.7.
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4.2 Related works

Among the vast amount of scientific contributions related to the IM problem, the most rel-
evant publications to our work are the ones using ILP models and/or based on the DLT
diffusion model.

For influence minimization [113] gives an ILP model, which is another problem. Using
the LT model [90] gives such ILP formalism in which the aim is to determine the set of nodes
which will never get influenced. This information might be used for solving the original
problem. The already mentioned paper of [2] considers the problem as constraint satisfaction
and investigates the efficiency of belief propagation algorithm.

In [50] a binary integer program is developed that approximates the IM using independent
cascade diffusion model (which is different from the one used in this chapter) by Monte Carlo
sampling together with a linear programming relaxation based method with a provable worst
case bound.

The stochastic version of the IM problem was investigated by [110]. They developed
a two-stage stochastic programming framework using a delayed constraint-generation algo-
rithm. The paper [59] focuses on competitive IM based on probabilistic independent cascade
model in which the seed individuals of one entity is already known, while another entity
wants to choose its seed set of individuals that triggers an influence cascade of maximum
impact. An algorithmic framework based on a Benders decomposition is developed which
enables to handle graphs with thousands of nodes and edges. Note that the full ILP model in
[65] also considers competition explicitly. Another reformulation based on Benders decom-
position of the IM problem using probabilistic independent cascade model was developed in
[51].

The paper [81] investigates a robust optimization problem using the IM. It is assumed that
the nodes’ thresholds and the edge weights can change within a certain domain. The problem
what we are studying is a special version of this general one. They construct such an ILP
model in which the time parameter t does not play a role (in contrast to our work), moreover,
the number of variables grow exponentially. The IM was also used in [10] where an arc-based
mixed-integer programming model has been developed for the so-called Least Cost Influence
Maximization Problem and thus it is a different problem. A possible extension of the IM
problem was defined in [52]. Namely, the Targeted and Budgeted Influence Maximization
problem under IM was developed, which allows different nodes to carry different cost and
return values. This problem was investigated by using a scalable greedy approach.

In [43] a new approach was presented called MLPR (matrix multiplication, linear pro-
gramming, randomized rounding) with linear programming used as its core in order to solve
the IM problem with LT model. Although the method was shown to be efficient both in
running time and in the quality of the result, it does not have an approximation guarantee.

It was shown by [13] that the IM problem using LT diffusion model is equivalent to the
so-called targeted immunization problem. A mixed-integer linear programming formalism
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was developed together with Benders decomposition approach. A much more general IM
problem was introduced by [114] to study the spread of infectious disease process. The
considered model takes the cumulative effect of LT into account.

The paper [58] studied three new variants of the competitive influence maximization
problem (CIMP) which consider passive (viewing-only) nodes, node resistance, and cus-
tomer choice behavior. For solving these problems a mixed-integer nonlinear programming
model was proposed.

Obtaining realistic parameters, such as nodes’ threshold values and edge weights for
real-world graphs could be challenging. A mixed-integer linear programming model and
an approximate method using an artificial neural network have been proposed to learn the
edge weights in the LTM for synthetic and real data by [88]. Regarding the estimation of
threshold values [105] comprehensively surveys the different threshold values used in various
IM models and develops four threshold estimation models based on edge weight and degree
distribution.

Finally, for a detailed overview on the IM problem and its definitions, computational
complexities, heuristic solution methods the reader is referred to the survey [72].

4.3 A model and a proposed algorithm

4.3.1 A 0-1 linear programming model

Two integer linear programming formulations of influence maximization based on the IM
were recently proposed and studied in [65]. The first one, referred as basic model, includes
a single party trying to find the initial seed nodes to maximize the spread of influence; while
the second one, referred as competition model, extends the first one by introducing an enemy
trying to spread its own influence. In the current chapter, we investigate the basic model of
[65], without considering the cost of selecting a seed node.

The formulation of the basic model is a special 0-1 LP, in which x ∈ {0, 1}n×T is the
decision variable, n = |V |, and the index T > 1 is also part of the optimization problem.
Hence, x is a binary matrix in which choosing the rows in the first column to be equal to
1 represents the selection of the seed nodes. This should be done in such a way that, given
certain constraints dictated by IM, the sum of the last column is to be maximized.

Assuming that T > 1 is a given integer constant, let T = {2, . . . , T } be the set of time
periods describing the diffusion process. Let integer k > 0 be the number of seed nodes to
be selected. The set of in-neighbors of node i is denoted by Nin(i).

In the following the binary LP formulation is given, inspired by the basic model of [65],
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where the cost of selecting a seed node is equal to 1.

Smax
n∑

i=1

xi,T (4.1)

n∑
i=1

xi,1 ≤ k (4.2)∑
j∈Nin(i)

bj,ixj,t−1 ≥ θixi,t ∀(i ∈ V, t ∈ T ) (4.3)

∑
j∈Nin(i)

bj,ixj,t−1 ≤ θi + xi,t ∀(i ∈ V, t ∈ T ) (4.4)

xi,t−1 ≤ xi,t ∀(i ∈ V, t ∈ T ) (4.5)

x ∈ {0, 1}n×T . (4.6)

In the objective function (4.1) the number of influenced nodes are maximized in the last
time period. The constraint (4.2) limits the number of seed nodes to be selected initially.
The constraint (4.3) guarantees that node i cannot be influenced at time period t if the total
weighted in-degree from the already influenced neighbors is below the threshold value of
node i. Furthermore, by constraint (4.4), if node i’s threshold at time period t is exceeded
by the weighted in-degree from the already influenced neighbors, aims to enforce that node i
gets influenced. In terms of the correctness of the model, the constraint can be omitted, only
constraining the search space by forcing propagation if the conditions are satisfied. This will
be discussed in more detail later in the thesis. It is important to emphasize here that it is
assumed that the sum of in-weights of nodes cannot exceed 1. The constraint (4.5) ensures
that influenced nodes remain to be so in later time periods, whereas constraint (4.6) restricts
the solution matrix to be binary.

The objective function in fact has the form

min
T

max
n∑

i=1

xi,T

and together with constraints (4.2) - (4.6) we have a bilevel optimization problem. It is shown
that linear bilevel problems are strongly NP-hard [53].

The AMPL modeling language [39], which we used for implementation and numerical
experiments (see Section 4.6), is not suitable for directly describing bilevel optimization
models. That would require to have declarations as var T; var x{n,T}; which is not
supported. Hence, we need to consider and treat T as a constant.

Remark 1. The globally optimal solution for the bilevel problem is when we have the max-
imal influence within the shortest diffusion time. This will be referred as (σ∗, T ∗) in the
following.
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4.3.2 An iterative algorithm

The solution method for the bilevel optimization problem proposed in [65] is shown in Al-
gorithm 6.

Algorithm 6
Step 1 Start the iteration from T := 2.

Step 2 Solve the optimization problem (4.1) - (4.6) with fixed T .

Step 3 If xi,T = xi,T −1 ∀(i ∈ V ), i.e., the last two columns of x are the same then STOP,
the optimum is found. Otherwise, let T := T + 1 and go back to Step 2.

The subsequent two sections investigate the correctness of Algorithm 6 in which it ap-
pears that several corrections are needed. This iterative procedure would allow to find the
minimum T value. Thus the value of T ∗ is given by the cycle variable T . The correct
algorithm is given towards the end of this chapter.

4.4 Analysis

In this section a thorough analysis of Algorithm 6 proposed in [65] and shown in Section
4.3.2 is given.

For a start, it turns out that the optimization problem (4.1)-(4.6) needs to be modified.

Proposition 4.4.1. For the correctness of Algorithm 6, the constraint (4.3) has to be replaced
by ∑

j∈Nin(i)

bj,ixj,t−1 ≥ θi(xi,t − xi,t−1) ∀(i ∈ V, t ∈ T ). (4.7)

Proof. The model (4.1)-(4.6) dictates that the optimal seed nodes are those which have the
maximal number of influenceable neighbors. However, by constraint (4.3) these seed nodes
need also be influenced, which is only possible if these selected seed nodes form a set of
size k in which the node’s weighted in-degree is larger than its threshold. This cannot be
held in general, thus it might happen that we obtain sub-optimal solution or it even becomes
impossible to select seed nodes, and hence the influence spreading cannot be started.

On the other hand, by replacing constraint (4.3) with (4.7) all nodes could be selected as
seed node, and thus the optimal solution could be found.

As an illustrative example, see the graph on Figure 4.1. The labels of the nodes are
indicated as red numbers. By constraint (4.3) the influence spreading cannot be started. The
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Figure 4.1: Example graph to show the need of the new constraint (4.7)

matrix x corresponding to the correct global optimum for this graph is

x =


0 1 1

1 1 1

1 1 1

0 0 1

 .

As it can be seen, the nodes represented by row 2 and row 3 are selected as seed nodes, which
both have threshold value 0.01. These two nodes are not connected to each other, hence the
model (4.1)-(4.6) is infeasible at time T = 2.

Remark 2. Note that constraint (4.7) is equivalent to constraint (4.3) together with adding
loop edges to all the nodes. However, it turns out that from the computational efficiency point
of view using (4.7) directly is more beneficial.

In the following we show that Algorithm 6 can get stuck in locally optimal solution even
if the newly added constraint (4.7) is taken into account.

Proposition 4.4.2. For the optimization problem (4.1), (4.2), (4.4) - (4.7), there is a graph
for which

(σ, T ) = (σ, T + 1) and (σ, T + 1) < (σ, T + 2).

Proof. Such a graph is shown on Figure 4.2, the solution matrix for T = 3 is

x =


1 1 1

0 1 1

0 0 0

1 1 1

0 1 1

 .

By choosing nodes {1, 4} as seed nodes, for T = 2 we have σ = 4 and the algorithm cannot
increase the number of influenced nodes from T = 2 to T = 3 because the graph structure
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does not allow to increase the number of active nodes by changing the seed nodes. Moreover,
any other seed nodes result less or equal number of active nodes at T = 3. On the other hand,
it can increase the number of active nodes at T = 4 by changing the seed nodes to {1, 3}
and on this case, all of the nodes will be active.
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Figure 4.2: Example graph for Proposition 4.4.2

We conclude that an extension of the optimization model (4.1), (4.2), (4.4) - (4.7) is
needed in order to have a strategy about when to stop the iterative algorithm to be sure that it
indeed reached the globally optimal solution. At that end, the following constraint is added:

n∑
i=1

xi,T −1 + 1 ≤
n∑

i=1

xi,T . (4.8)

The purpose of constraint (4.8) is to force that for a given T , the last step of the diffusion
must have at least one more influenced node than in the previous step. We can thus guarantee
no repetition in the last two columns of matrix x.

Remark 3. Note that adding constraint (4.8) to the binary ILP model is in a direct contra-
diction to Algorithm 6, thus from now on we are developing an alternative version.

Remark 4. The constraint (4.8) can easily be extended to any two consecutive columns in
matrix x. The overall performance of that version is discussed in Section 4.6.

Remark 5. On Figure 4.3 the graph is the same as that on Figure 4.2. By choosing {1, 3}
as seed nodes, all of the nodes are active at T = 4 with using constraint (4.8). The gray
shading of the nodes indicate the time when the node gets activated.

The following proposition claims that although constraint (4.8) guarantees no repetition
in the last two columns of x, we can obtain such result in which column duplication appears
inside the solution matrix.
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Figure 4.3: Solution of example graph for Proposition 4.4.2 with (4.8)
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Figure 4.4: Example graph for Proposition 4.4.3

Proposition 4.4.3. For increasing T values the solutions of (4.1), (4.2), (4.4) - (4.8) do not
necessarily form a monotonically increasing sequence. Moreover, it can also happen that
repetition occurs for consecutive columns in matrix x.

Proof. As an example we refer to the graph shown in Figure 4.4. The global optimum needs
T = 4 diffusion steps. By allowing further iteration steps to be taken by the algorithm, we
expect to obtain an infeasible solution. However, the solution matrix for T = 5 is

x =



1 1 1 1 1

1 1 1 1 1

0 1 1 1 1

0 0 0 1 1

0 0 0 0 1

0 0 0 0 0


,

which contains repetition in its second and third column, hence lengthening the spreading
up to T = 5. This column repetition could go on forever. Note that this solution matrix
is not representing the global optimum simply because the minimum time is T ∗ = 4. This



4.4 Analysis 61

phenomenon is caused by constraints (4.4) and (4.7), which is explained in the graph shown
on Figure 4.4. According to matrix x reaching the node with the threshold value 0.25 could
be delayed, thus we examine that case. Before reaching that node, constraint (4.7) always
gets trivially satisfied, given the fact that its right hand side equals to 0. When the neighbor
of the node in question is already activated, then on the left hand side of the constraint (4.4)
the weight of the incoming edge appears, while we have either 0 or the threshold of the node
on its right hand side. Since both values satisfy constraint (4.4), the algorithm allows to have
the activation of the node after getting the global optimum.

The example above shows that adding (4.8) to the ILP model can cause infinite loop in
the iterative approach. It is caused by the possibility of column repetition inside the matrix
x, as it is explained in the proof of Proposition 4.4.3. This can be avoided by changing
constraint (4.4) into ∑

j∈Nin(i)

bj,ixj,t−1 ≤ θi + xi,t − ε ∀(i ∈ V, t ∈ T ), (4.9)

where ε > 0 is a small constant to make sure that the node is activated when the sum of the
edge weight of the already influenced in-neighbors of node is equal to the threshold. The
choice for ε is discussed in Section 4.6.

The following proposition claims that adding constraint (4.8) to the ILP model does not
prune the globally optimal solution.

Proposition 4.4.4. The globally optimal solution of (4.1), (4.2), (4.5) - (4.7), (4.9) satisfies
constraint (4.8) as well.

Proof. The globally optimal solution (σ∗, T ∗) of (4.1), (4.2), (4.5) - (4.7), (4.9) cannot con-
tain repetitions in the last m > 1 columns in its matrix x because in that case (σ∗, T ∗−m+1)

would be a better solution. Due to constraint (4.9) matrix x cannot contain more column rep-
etitions. Thus constraint (4.8) is satisfied.

In addition to the previous proposition, it can also be shown that adding constraint (4.8)
to the ILP model does not change the globally optimal solution.

Proposition 4.4.5. The diffusion value T ∗ and influence value σ∗ corresponding to the glob-
ally optimal solution of (4.1), (4.2), (4.5) - (4.7), (4.9) are respectively the same as the values
T ∗∗ and σ∗∗ corresponding to the global optimum of (4.1), (4.2), (4.5) - (4.9).

Proof. By introducing the constraint (4.8) such an optimization problem is obtained in which
the value of T cannot be increased forever: at a certain point it gets an infeasible solution.

Firstly, let us see if σ∗∗ = σ∗ holds. We have to check two cases.

• Assume that σ∗ < σ∗∗. By dropping the constraint (4.8), we have a better solution for
the problem (4.1), (4.2), (4.5) - (4.7), (4.9), which is not possible, since (σ∗, T ∗) is the
globally optimal solution.
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• Assume that σ∗ > σ∗∗. By Proposition 4.4.4 we know that a solution of (4.1), (4.2),
(4.5) - (4.7), (4.9) also satisfies constraint (4.8) as well. Thus σ∗ would be a better
solution for the problem (4.1), (4.2), (4.5) - (4.9), which is not possible as σ∗∗ is
maximal.

We have contradictions for both cases, thus σ∗ = σ∗∗.
Secondly, we check whether T ∗∗ = T ∗ holds. We have to check again two cases.

• Assume that T ∗ < T ∗∗. By Proposition 4.4.4 this is not possible as constraint (4.8)
would not be satisfied.

• Assume T ∗ > T ∗∗. We know that σ∗ is global optimum for the problem (4.1), (4.2),
(4.5) - (4.9) as well. This solution cannot be found with smaller amount of iteration
steps under the constraints (4.8).

We have contradictions again, thus T ∗ = T ∗∗.

Now we need to find stopping conditions to the iterative procedure. Clearly, one of them
is when all nodes are influenced. The other one is when the model becomes infeasible.

Proposition 4.4.6. If the problem (4.1), (4.2), (4.5) - (4.9) becomes infeasible for a given T
value, then it remains to be infeasible for the further iteration steps as well.

Proof. We show that if a solution is feasible then it was so in earlier iteration steps.

• T = 2: The algorithm was able to do the first iteration, thus it could select the seed
nodes. Hence, it has a feasible solution at T = 1.

• T = 3: By constraint (4.8) the last two columns cannot be the same. The first two
columns of matrix x are certainly feasible, the corresponding nodes can be reached
within this time frame.

• T = m: In case we remove the m-th column (where m > 3), a feasible solution is
obtained since the nodes in the (m − 1)-th column could be reached and activated in
T − 1 steps. It is important to see that this solution is not necessarily globally optimal
for all t ∈ T .

Finally, implicated by Proposition 4.4.5 and 4.4.6 we have the following consequence.

Corollary 4.4.6.1. The problem (4.1), (4.2), (4.5) - (4.9) is feasible in the iteration steps
2, . . . , T ∗, i.e., before finding the global optimum.
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4.5 A correct model and the solution algorithms

Model Summarizing the above analysis, the correct model is:

max
n∑

i=1

xi,T (4.10)

n∑
i=1

xi,1 ≤ k (4.11)∑
j∈N(i)

bj,ixj,t−1 ≥ θi(xi,t − xi,t−1) ∀(i ∈ V, t ∈ T ) (4.12)

∑
j∈N(i)

bj,ixj,t−1 ≤ θi + xi,t − ε ∀(i ∈ V, t ∈ T ) (4.13)

xi,t−1 ≤ xi,t ∀(i ∈ V, t ∈ T ) (4.14)
n∑

i=1

xi,T −1 + 1 ≤
n∑

i=1

xi,T (4.15)

x ∈ {0, 1}n×T . (4.16)

The iterative algorithm The correct iterative algorithm to find the globally optimal so-
lution of the influence maximization problem under deterministic linear threshold diffusion
model is given in Algorithm 7.

Algorithm 7
Step 1 Start the iteration with T := 2.

Step 2 Solve the problem defined by the set of equations {(4.10) - (4.16)} for the diffusion
time value T .

Step 3 If the solution becomes infeasible or all the nodes are influenced then STOP, the
global optimum is found. Otherwise, let T = T + 1 and go back to Step 2.

Greedy Although the so-called submodularity property does not hold for the DLTM, the
greedy approach [64] is still a favorable method for solving the IM problem. We have adapted
the greedy strategy into our ILP framework. The formal description of the greedy approach
is given in Algorithm 8.
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Algorithm 8 Greedy algorithm using the ILP model
Step 1 Let k := 1 be the number of seed nodes.

Step 2 Let T := 2 and start the iteration with diffusion time.

Step 3 Solve the ILP defined by {(4.10) - (4.16)} for the diffusion time value T .

Step 4 If all the nodes are influenced or the model becomes infeasible then the optimum is
found and stop the iteration with T and go to Step 5. Otherwise, let T = T + 1 and
go back to Step 3.

Step 5 If k = |S|where S is set of seeds, then stop the algorithm. Otherwise, fix the selected
seed nodes for the remaining iterations. Let k := k + 1 and go to Step 2.

Random In this simple method, seed nodes were randomly selected 20 times. Starting the
solution method from those random nodes get the number of influenced vertices. As the final
result the best solution was selected from those.

4.6 Numerical experiments

4.6.1 Computational environment

The implementation of all the investigated ILP models were done in AMPL [39]. For
the numerical experiments the solver Gurobi 9.5 was used with the non-default options:
threads=1 lpmethod=0 cuts=0 mipgapabs=1e-2, which, compared to the de-
fault options, turned out to be much more efficient for these particular models. The computer
used had Intel Xeon CPU E5-2660 at 2.00 GHz with 64 G memory running Ubuntu Linux
18.04.5.

4.6.2 Test graphs

For benchmarking the proposed algorithm some random graphs were generated. Two types
of random graphs were used: Watts-Strogatz (WS) small-world graphs [109] and so-called
LFR graphs with prescribed community structures [71]. For both types 5−5 graph instances
were generated.

WS graphs These graphs were generated by using the package R/igraph. The parame-
ters were:

• number of nodes is 60,
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• number of neighbors in the starting graphs are s = 4, 8, and 12,

• and the rewiring probabilities (i.e., the probability of changing a directed edge (v1, v2) ∈
E into a new edge (v1, v3), where v1 ̸= v2 ̸= v3) are β = 0.1 and 0.3.

The mutual parameter was used which makes the graphs directed by doubling the undi-
rected edges. Then 45% of randomly selected edges got removed. The edge weights were
assigned as follows.

• First, for each edge a uniform at random number were generated in the interval [0, 1].

• Nodes with larger than 1 in-weights were normalized to 1.

• Moreover, we applied a multiplication with a factor rw which was a uniform random
number in the interval [0.6, 1].

The threshold values of the nodes were generated uniform at random in the interval [0.15, 0.4].
Using this particular procedure we were able to find such WS graphs on which the greedy

algorithm found suboptimal solutions.

LFR graphs These graphs were generated by the code from [71], obtaining weighted di-
rected graphs with community structure (thus, resembling social networks). The weights
were assigned to the edge using the followings.

• Nodes with in-weights larger than 1 (generated by the LFR method) were normalized
to 1.

• Moreover, we applied a multiplication with a factor rw which was a uniform random
number in the interval [0.6, 1].

The threshold values of the nodes were generated uniform at random in the interval [0.05, 0.4].
Two configurations were made:

• number of nodes is fixed to n = 120,

• average degree avgk = 6, 7,

• maximum degree maxk = 13, 10,

• mixing parameter µw = 0.1,

• minimal community size minc = 7, 5,

• maximal community size maxc = 21, 42.
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4.6.3 Benchmarking results

The testing of Algorithm 6 using (4.7) and Algorithm 7 is shown by not only comparing the
execution times of these two versions but also the results obtained by the greedy and random
algorithms presented in the 4.5 Section. In all experiments the number of seed nodes were
fixed to k = 2.

Constraint (4.9) needs to set up the constant ε > 0. Practically, this should be fixed
to slightly bigger than the constraint tolerance value for the solver in use. Since in Gurobi
9.5 the default value for both the feasibility of primal constraints and feasibility of dual
constraints is 1e-6 we chose ε =1e-5 in our experiments.

General observations We have done some experiments on different formalism and found
the following results.

• As it was remarked after the proof of Proposition 4.4.1 constraint (4.8) can be replaced
by (4.3) together with adding for each node i a loop edge with weight equal to θi. This
version was about 18% longer than using Algorithm 7 as proposed.

• We also investigated the idea of replacing (4.8) and (4.9) by

n∑
i=1

xi,t−1 + 1 ≤
n∑

i=1

xi,t (∀t ∈ T ).

This formalism, on average, resulted in about two times less running time.

WS graphs The results obtained for the Watts-Strogatz test graphs are reported in Table
4.1 and 4.2.

The random algorithm were able to find the optimal σ∗ value in 6.6% of the cases. How-
ever, it always missed the minimal diffusion time T ∗. The greedy algorithm found the glob-
ally optimal (σ∗, T ∗) pairs in 33% of the cases. Note the effect of the fact that the submodu-
larity (see the introduction in Part II) does not hold for the greedy algorithm due to the DLT
diffusion model. Algorithm 6 from [65] using constraint (4.7) missed the globally optimal
solution in 5 cases (meaning 83.3% success rate).

Regarding the running time, see Table 4.2, obviously the random and the greedy algo-
rithms were really fast. Comparing Algorithm 6 and 7 it can be seen that the corrected version
resulted in usually much longer running time. Our Algorithm 7 can be up to 31 times slower.
Closer inspection into the results reveal that, for example, for the case s = 4, β = 0.1, i = 3

our proposed algorithm needed 1, 271 seconds to prove that there is no better solution than
(59, 15). For t > 15 values the σ value got decreasing. Note that there are cases where the
optimal seed set can make the entire graph influenced, i.e., where σ∗ = 60, yet, our proposed
algorithm is much slower. For example, in the case s = 12, β = 0.3, i = 5 it turns out
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Table 4.1: Benchmarking results for the small-world Watts-Strogatz graphs; optimum values

random greedy Alg. 6+ (4.7) Algorithm 7
s β i. σ T σ T σ T σ T

4 0.1 1 58 15 60 14 58 8 60 14
2 60 14 60 9 60 9 60 9
3 2 1 59 15 59 15 59 15
4 59 15 60 11 59 9 60 11
5 4 2 60 10 58 8 60 10

4 0.3 1 60 13 60 7 60 7 60 7
2 3 2 59 12 58 9 59 12
3 3 2 58 8 58 8 58 8
4 6 3 58 13 58 9 58 9
5 58 11 58 9 58 9 59 11

8 0.1 1 2 1 58 10 60 10 60 10
2 2 1 11 4 60 11 60 11
3 3 2 60 10 60 10 60 10
4 3 2 60 9 60 9 60 9
5 3 2 33 6 60 10 60 10

8 0.3 1 5 4 48 7 60 8 60 8
2 2 1 60 7 60 7 60 7
3 2 1 12 5 60 11 60 11
4 2 1 7 3 60 12 60 12
5 2 1 6 2 60 9 60 9

12 0.1 1 2 1 4 2 60 9 60 9
2 2 1 3 2 60 10 60 10
3 3 2 4 2 60 11 60 11
4 2 1 2 1 60 12 60 12
5 2 1 5 2 7 3 7 3

12 0.3 1 3 2 4 2 7 4 7 4
2 2 1 4 2 8 5 8 5
3 2 1 4 2 60 10 60 10
4 2 1 8 3 60 9 60 9
5 2 1 8 4 60 10 60 10

that our algorithm was struggling in the very last iteration – this is certainly caused by the
constraint (4.8). On the other hand, there are five problem instances where our Algorithm 7
was faster.

LFR graphs The results obtained for the LFR graphs are shown in Tables 4.3 and 4.4.
The random and greedy algorithms were able to find the optimal σ∗ value in 20% and

80% of the cases, respectively. However, the random selection of seed nodes always missed
the corresponding minimal diffusion time T ∗. The greedy algorithm found the globally



68 An exact method

Table 4.2: Benchmarking results for the small-world Watts-Strogatz graphs; running times
in seconds

s β i. random greedy Alg. 6+ (4.7) Algorithm 7

4 0.1 1 0.28 4.55 8.8 16.5
2 0.23 2.66 25.9 32.9
3 0.01 7.55 105.4 1 271.6
4 0.22 5.18 15.2 15.8
5 0.01 3.17 22.9 21.1

4 0.3 1 0.19 2.22 8.3 9.3
2 0.01 5.24 17.3 407.5
3 0.02 4.75 6.9 220.6
4 0.02 6.25 34.6 635.0
5 0.18 5.70 12.2 70.3

8 0.1 1 0.01 4.06 212.3 704.4
2 0.01 0.52 1 311.8 1 849.9
3 0.02 3.83 2 354.0 1 391.3
4 0.02 3.11 130.2 149.8
5 0.02 1.25 480.3 1 651.4

8 0.3 1 0.04 1.91 112.8 87.6
2 0.01 1.96 38.7 30.0
3 0.01 0.78 1 233.4 5 569.3
4 0.01 0.30 6 878.8 13 981.4
5 0.01 0.12 196.6 212.9

12 0.1 1 0.01 0.12 650.1 1 026.1
2 0.01 0.12 2 066.8 9 343.7
3 0.02 0.13 5 346.7 22 485.2
4 0.01 0.03 23 832.7 103 358.9
5 0.01 0.13 13.2 32.2

12 0.3 1 0.02 0.13 39.3 43.4
2 0.01 0.13 85.8 45.3
3 0.01 0.13 3 549.9 4 640.9
4 0.01 0.30 712.4 871.3
5 0.01 0.52 974.5 8 511.0

optimal (σ∗, T ∗) pairs in 70% of the cases. Note that greedy reported larger diffusion time
than the optimal one in two cases. We can see that Algorithm 6 using (4.7) missed the
globally optimal solution for 3 graphs.

Regarding the running times, see Table 4.4, the random and greedy algorithms were again
really fast. Comparing Algorithm 6 and 7 we can see that our proposed version can be up
to 10 times slower. This is due to the same fact as mentioned for the WS graphs: it takes
considerable time to prove the optimality of the found solution.
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Table 4.3: Benchmarking results for the LFR graphs; optimal values

random greedy Alg. 6+ (4.7) Algorithm 7
avgk maxkµw minc maxc i. σ T σ T σ T σ T

6 10 0.1 5 42 1 110 13 120 13 110 9 120 13
2 103 12 103 10 103 10 103 10
3 120 12 120 9 120 8 120 8
4 19 6 91 12 90 10 91 12
5 49 15 101 11 101 11 101 11

7 13 0.1 7 21 1 75 10 94 11 96 10 96 10
2 62 13 120 13 120 13 120 13
3 23 6 120 15 120 15 120 15
4 2 1 83 8 83 8 83 8
5 51 9 111 10 111 10 120 18

Table 4.4: Benchmarking results for the LFR graphs; runnig times in seconds

avgk maxkµw minc maxc i. random greedy Alg. 6+ (4.7) Algorithm 7

6 10 0.1 5 42 1 0.62 19.77 330.4 413.6
2 0.49 20.05 785.6 5 099.7
3 0.42 11.39 190.7 193.9
4 0.19 11.37 135.8 398.8
5 0.68 30.39 1 886.5 18 279.5

7 13 0.1 7 21 1 0.36 10.19 200.6 1 214.2
2 0.59 23.74 320.0 388.9
3 0.21 23.79 451.4 579.6
4 0.02 15.16 108.2 979.8
5 0.33 29.67 219.5 420.4

4.7 Conclusions

We proposed an exact 0-1 linear programming model for the influence maximization problem
based on deterministic linear threshold model. By rigorous analysis the correctness was
shown. The work was inspired by a recent paper [65]. In fact, our proposed model is an
improved version in a sense that the model in [65] does not always find the global optimum.
We demonstrated this fact in our analysis and by numerical testings.

According to our benchmarking results, even for relatively small graphs, finding the exact
solution can only be done in very pessimistic running times. In one hand this is not surprising
as the problem is strongly NP-hard. On the other hand, our exact model is the first one to
computationally demonstrate how difficult is to find the global solution.
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Chapter 5

A heuristic for seeds selection

5.1 Introduction

This chapter continues with the task of maximizing influence in a slightly different aspect.
Chapter 4 shows a correct algorithm for solving this problem using a deterministic linear
threshold model. This served as motivation, since although it gives the global optimum of
the problem, we only obtain results for small graphs within a reasonable run-time. Since the
solution describes how the diffusion happens for different time constraints, it is of interest to
investigate how the various characteristics of the underlying graph relate to the result.

The aim is to find a correlation between the input graph and the solution method. More
precisely, whether the seed vertices selected at initial time have some distinguishable prop-
erty; or whether we can exclude vertices from the initial set based on a feature. A good
approach to this can be to use graph centrality, which establishes an ordering between nodes
based on the values assigned to the vertices.

Combining these, this chapter introduces two new centrality metrics that can be computed
from the structure of the input graph. These can be used to minimize the number of possible
seed nodes. The solver then chooses from the reduced set of possible seed nodes provided
by the centrality metrics. By solving the problem in this way, the solution time is reduced.

Roadmap: The structure of the chapter is the following. A short review of the literature
is presented in Section 5.2. The demonstration of the new centrality metrics and the seed
selection method are presented in Section 5.3, while the algorithm used with the heuristic is
in the Section 5.4. Then, we apply our methods on different benchmark sets: LFR-type and
real-world graphs. The graph instances used for testing, the detailed and the discussion of
the results are given in Section 5.5. The final thoughts are summarized in Section 5.6.

71
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5.2 Related Works

In this section, we would like to present the related works that are relevant, i.e., those based
on the deterministic linear threshold model using heuristics.

A fast algorithm for finding the most influential people was proposed in [89]. First, they
were looking for communities of the graph and examining their limited number to reduce im-
plementation time. The nodes to be excluded were selected using centrality measurements,
community detection and new set computation. They then bounded the search space of the
input network using the new set. The main advantage of it is that it reduces the number of
nodes to be tested without compromising quality in order to reduce execution time.

The threshold-based greedy approach was presented in [67] for solving IM under DLTM.
The greedy approach allows to obtain very good results compared to other combinatorial
algorithms. It can also be used with the genetic algorithm and significantly improve its
efficiency.

A new hybrid centrality metric based on closeness (harmonic) and decay measures was
proposed in [102]. Two main application areas were presented. One hybridization was used
to solve the coverage problem, while the other tries to find the most ideal node to reach the
most people in the population, using the deterministic threshold model. In both cases, the
centrality metric is based on a formulation of the weighted centrality measure of nodes.

The complexity of the IM under DLTM is studied in [78]. It is shown that for DLTM,
active nodes are not approximable in n1−ε -factor polynomial time unless P=NP. In contrast,
they are well approximable in the linear threshold model and the independent cascade model.
It has also been demonstrated that for a given set of seeds, the number of influenced nodes
can be determined in polynomial time.

The fact that the DLTM has no polynomial time n1−ε approximation unless P=NP, even
when a person needs at most two active neighbors to become active was shown in [77].
However, there exists an ε/(ε− 1) polynomial-time approximation in the case where one of
the neighbours has already become active and the person can be activated. It is shown to be
the best approximation under plausible Complexity-Theoretic assumptions.

In [52], the authors have created Targeted and Budgeted Influence Maximization for
DLTM. They advanced a scalable algorithm that allows some optional methods to solve the
problem, it is the TArgeted and BUdgeted Potential Greedy (TABU-PG) algorithm. It is
an iterative and heuristic algorithm that relies on investing in potential future gains when
choosing seed nodes.

In [104], the selection of top-k nodes is investigated based on the measure corresponding
to the social network under consideration. It relies on the Shapley measure to efficiently
compute an approximate solution to the problem. Although explicitly not using DLTM, the
algorithm is general in the sense that it does not exploit the submodular property of the
function.
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Figure 5.1: Example graph

5.3 New centralities

Two new centrality measures are proposed. Both of them are specifically developed for
solving IM problem under DLTM. What makes them distinguished from other centralities is
that they take into account not only the direction and the weight of the graph edges, but also
the weight, i.e. threshold, of the nodes. To make it easier to understand our metrics and the
calculation, we have made a small graph, which is shown in Figure 5.1.

5.3.1 Influenceability

Our first centrality is the influenceability, denoted by Iin, which measures how easy is to
activate a node. To calculate this, we examine the incoming edges from the neighbours,
namely which edges and combinations of edges are able to reach or exceed the threshold
value of the node. We define the weighted incidence, denoted by wto as follows. Let P(i)
be the set of all possible combinations of edges coming into the vertex i ∈ V (G), except
the empty set. Take the number of edge combinations that are able to activate the node by
dividing by the number of edges in the edge combination and all occurrences of a given
number of edge combinations:

wto(i) =
∑

K∈P(i)

([∑
bji∈K bji > θi

]
|K| ·

(|Nin(i)|
|K|

) )
∀i ∈ V (G), (5.1)

where if
[∑

bji∈K bji > θi
]

is true, then its value is 1, otherwise it is 0. Finally, sum the wto

values and obtain I(p)in =
∑

wto(i), where i ∈ V (G). The label (p) indicates that this is a
”preliminary” value, which is then adjusted by the values of its neighbors.
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Table 5.1 shows the calculation of I(p)in (including 5.1) for vertex 8 of the graph in Figure
5.1. The in-neighbors of vertex 8 are nodes 9, 4, and 3. Note that vertex 4 can influence vertex
8 by itself, so combinations where vertex 4 is included will certainly be able to influence
vertex 8.

Table 5.1: The I(p)in value of node 8 of the graph in Figure 5.1

combinations of edges P(8) sum θ wto(8)

9→ 8 0.05 0.27 0
4→ 8 0.27 0.27 1/(1 · 3)
3→ 8 0.18 0.27 0

9→ 8, 4→ 8 0.31 0.27 1/(2 · 3)
9→ 8, 3→ 8 0.23 0.27 0
4→ 8, 3→ 8 0.44 0.27 1/(2 · 3)

9→ 8, 4→ 8, 3→ 8 0.49 0.27 1/(3 · 1)

I(p)in (8) = 1

Table 5.2 shows the calculated I(p)in values for the vertices of the small graph in Figure 5.1.

Table 5.2: The I(p)in values for the graph in Figure 5.1

node: 1 2 3 4 5 6 7 8 9
I(p)in : 0 1 1 0 1 1.5 1.5 1 0

The final centrality metrics are obtained by combining with the measure of node and its
neighbors. The influenceability value of a node is obtained by adding to the value of I(p)in the
approximation of the influenceability of its in-neighbours:

Iin(i) = I(p)in (i) +
∑

j∈Nin(i)

I(p)in (j)

|Nout(j)| − 1
∀(i ∈ V ). (5.2)

Note that if |Nout(j)| ≤ 1, then let |Nout(j)| = 2 for the divisor to be 1.

5.3.2 Ability-to-influence

The second centrality is the ability-to-influence, denoted by Iout. This indicates the influ-
encing role of the node on its neighbors. Specifically, we look at all the combinations of
incoming edges to the neighbourhood which include the edge from the investigated node.
Of these, we count the ones whose sum of weights reaches the threshold value of the node
and calculate the weighted incidence value for this case, denote wfrom. As calculated for
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the influenceability, we divide the number of infecting edges by the number of edges in the
edge combination and all occurrences of a given number of edge combinations. Finally,
summarized wfrom for each investigated combinations of edges.

The calculation of I(p)out value for node 4 is shown in Table 5.3. To do this, we need to
look at the neighbours of node 4, i.e., the edges coming into the vertices 8 and 2. We have
seen the combinations of edges coming into vertex 8 in Table 5.1, but only those that involve
the edge coming from vertex 4 are needed.

To calculate this efficiently, we create a table with rows and columns representing the
vertices of the graph. Row i and column j show the role of vertex j in the contamination
of vertex i. The column sum of the table gives the I(p)out value of the vertices. We see this
counting table in Table 5.4 which also shows the calculated I(p)out values for the vertices of the
small graph in Figure 5.1.

Table 5.3: The I(p)out value for node 4 of the graph in Figure 5.1.

combinations of edges sum θ wfrom(4)

4→ 8 0.27 0.27 1/(1 · 1)
9→ 8, 4→ 8 0.31 0.27 1/(2 · 2)
4→ 8, 3→ 8 0.44 0.27 1/(2 · 2)

9→ 8, 4→ 8, 3→ 8 0.49 0.27 1/(3 · 1)

4→ 2 0.34 0.31 1/(1 · 1)

I(p)out(4) = 2.83

Table 5.4: The I(p)out values for the graph in Figure 5.1.

1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0
2 0 0 0 1.00 0 0 0 0 0
3 0 0 0 0 0 0 1.00 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 1.00 0
6 1.50 0 0 0 1.50 0 0 0 0
7 1.50 0 0 0 0 1.50 0 0 0
8 0 0 0.58 1.83 0 0 0 0 0.58
9 0 0 0 0 0 0 0 0 0

I(p)out 3.00 0.00 0.58 2.83 1.50 1.50 1.00 1.00 0.58
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The ability-to-influence value of a vertex is obtained by adding to the value of I(p)out the
approximation of the ability-to-influence of its out-neighbors:

Iout(i) = I(p)out(i) +
∑

j∈Nout(i)

I(p)out(j)

|Nin(j)| − 1
∀(i ∈ V ). (5.3)

Note that if |Nin(j)| ≤ 1, then let |Nout(j)| = 2 for the divisor to be 1.

5.3.3 Potential seed selection

Using the two centrality values, we want to determine which vertices can be seeds. There-
fore, first, the centrality values are normalized between 0 and 1 in a way that all the elements
are divided with the maximum. Such normalization is denoted in each case by ||.||. Then, we
sort the nodes according to their centrality value. We put them in descending order according
to their ability-to-influence value, since seed vertices should have good ability-to-influence’s
value. Conversely, we rank the vertices in ascending order according to their influenceability
value, since seed vertices are unlikely to be easily infected. We take the weighted sum of the
two order values for each node to get I. This is shown in equation (5.4):

I(i) = α · ord(||Iout(i)||) + (1− α) · ord(||Iin(i)||) ∀(i ∈ V ). (5.4)

The normalized values of influenceability and ability-to-influence for the graph in Figure
5.1 are shown in Table 5.5. Also, the I values are calculated from them.

Finally, to form the set of potential seed nodes, choose the subset of V (G) according to
I. This is controlled by a parameter 0 < r < 1, thus the cardinality of the candidate seeds
set is r · |V (G)|.

Table 5.5: The value of ||Iin||, ||Iout||, and I(i) with α = 0.0 and α = 0.8 for the graph in
Figure 5.1

node ||Iin|| ||Iout|| I(i), α = 0.0 I(i), α = 0.8

1 0.00 1.00 1 1.0
2 0.33 0.11 3 7.8
3 0.83 0.20 7 7.0
4 0.00 0.61 2 2.0
5 0.67 0.55 5 3.4
6 0.83 0.45 8 4.8
7 1.00 0.29 9 6.6
8 0.67 0.45 6 5.2
9 0.33 0.20 4 7.2
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5.4 Algorithms

Before details are given about our new heuristic method it needs to be emphasized that due
to the nature of our problem, namely finding the maximum number of influenced nodes
with minimum diffusion time steps, all algorithms work iteratively and use the ILP model
(4.10)− (4.16) and their stopping criteria is to run until infeasibility. This usually leads to a
long running time.

5.4.1 Proposed heuristic: IAtI

Here we describe our proposal for a heuristic which selects a candidate seeder set of graph
nodes based on the new centrality metrics introduced in Section 5.3. Since it is using the
Influenceability and the Ability-to-Influence measures we refer to it as IAtI-heuristic.

The method is described in Algorithm 9. In its precondition phase, in Step 1 and 2 it
calculates the two centrality metrics and the combination of them using the formulae given
in Section 5.3. In Step 3 the algorithm collects the set of possible seed nodes. It is a parameter
0 < r < 1 which controls the ratio of the nodes to be selected. Higher r value leads to higher
probability for the seed nodes corresponding to the global optimum to be selected into the
candidate set. However, high r value also leads to higher execution time, thus it needs to be
set up with care. Steps 4 − 6 describe the iterative part of the algorithm. This is essentially
the same as the algorithm we proposed in Chapter 4. Note that the algorithm usually iterates
until the ILP model becomes infeasible, as there is no other stopping criteria, unless all the
nodes become active.

Algorithm 9 IAtI-heuristic(r, α)
Input A directed graph G with edge weights and node threshold values.

Step 1 Calculate I(p)in and I(p)out for all i ∈ V and then Iin and Iout using Eq. (5.2) and (5.3),
respectively.

Step 2 Form I for each vertex according to the Equation (5.4) using the input parameter α.

Step 3 Define S ⊆ V (G) to be the set of possible seeds: choose the top r · |V (G)| number
of nodes from I.

Step 4 Let T := 2 and start the iteration.

Step 5 Solve the ILP defined by {(4.10) - (4.16)} for the diffusion time value T , so that the
seed vertices can be chosen exclusively from the set S.

Step 6 If all the nodes are influenced or the solution becomes infeasible then stop the itera-
tion. Otherwise, let T = T + 1 and go back to Step 5.
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Discussion on parameters’ choice for IAtI Now that we have Algorithm 9, let us see how
to set up its parameters in order to have high chance to include the seed nodes of the global
optimum and exclude those which might not be good candidates. As we have calculated the
centrality metrics for the small test graph from Figure 5.1 as well as the globally optimal
solution using k = 2 seed nodes, the scatterplot shown in Figure 5.2 clearly suggests that
we shall aim for larger ability-to-influence value together with low influenceability. The
explanation is that the seed nodes of the global optimum are colored red (node 4 and 1).
Larger circle represents later activation in the diffusion in the globally optimal solution1.
Obviously, this landscape of the centrality values is quite simple as our small test graph is of
special structure. Discussion on some larger graphs will be given in Section 5.5.3.
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Figure 5.2: Visualization of the new centralitites for the small test graph

Two different α values were used from which potential seeds were selected in equal
proportions. In the first case, the weight of the ability-to-influence property is set to a higher
value, so α = 0.8 and select elements with a ratio r = 0.2 which are the best elements
according to I. Moreover, we add the vertices with ability-to-influence value equal to 1.
This is necessary because it has the highest chance of infection, yet in many cases it will not
be the seed. There could be several reasons for this, for example another node could reach the
same global optimum or such a node could be a neighbour of the seed that could infect the
seed. In any case, choosing these nodes gives a better chance for finding the global optimum.
Denote this set by S1. In the second case, we select based on the influenceability value

1It must be emphasized here that the size of the circles on Figure 5.2 represents the activation time in the
globally optimal solution. For non-optimal T value we might obtain different times.
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alone, so α = 0 and added nodes with 0 influenceability value. This is because nodes with
an influence value of 0 can never be influenced unless they become seed nodes themselves.
Therefore, any vertex with an influence value of 0 is chosen to be a seed vertex. The resulting
set is denoted by S2. Finally, take the intersection of S1 and S2 and obtain the set S. The
seed nodes are chosen from this set S.

5.5 Numerical experiments

5.5.1 Computational environment

The implementation of the above proposed new centralities was done in R version 4.1.2 using
its igraph 1.3.5 package. The numerical experiments were executed with Gurobi 10.0
called from AMPL [39] using non-default options: threads=8 lpmethod=0 cuts=0

mipgapabs=1e-2. The computer used had Intel Core i7-10700 CPU at 2.90 GHz with
16 GB memory running Ubuntu 22.04.2. Note that we used the multi-core setup of Gurobi
(i.e., for solving the ILP models), whereas R was used with single threading. In the R
implementation of the new centrality metrics we used the different apply functionalities to
process matrices and lists efficiently.

5.5.2 Test graphs

Synthetic random graphs To generate random test graphs we used the LFR scheme,
which creates networks with prescribed community structures [71]. Note that this proce-
dure only provides the graphs of social-network type, the edge weights and node thresholds
needed to be assigned in the second phase. Similarly to our previous work (in Chapter 4),
the following procedure was used.

• Regarding the edge weights: nodes with in-weights larger than 1 (given by the LFR
method) were normalized to 1; and we applied a multiplication with a factor rw which
was a uniform random number in the interval [0.6, 1].

• The nodes’ threshold values were generated with uniform random distribution in the
interval [0.05, 0.6].

• From the LFR method three parameters were fixed: mixing parameter µw = 0.1,
minimal community size minc = 5, and maximal community size maxc = 42.

• Three parameters were varied in the experiments: number of nodes n, the average
degree avgk, and the maximum degree maxk.
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Table 5.6: A selection of real-world test graphs

name N M dmax

soc-dolphins [79] 62 159 5
ca-sandi-auths 86 124 12
retweet [92, 93] 96 117 17
ca-netscience [84] 379 914 34

Real-world graphs We have tested our proposed method on a small set of real-world
graphs [91], see Table 5.6 for the details. Note that the last column indicates the maxi-
mum degree of the given graph. For our problem setup dmax needs to be relatively small,
since the exact ILP solver as well as our heuristic does not scale efficiently. Nevertheless,
for these four social networks we did the following experiments.

The real graphs were undirected and unweighted graphs. The mutual parameter was
used which makes the graphs directed by doubling the undirected edges. We then created 3
groups according to the percentage of edges that were deleted randomly and how we gener-
ated weight of edges and threshold values. These groups and their corresponding generating
parameters are shown in Table 5.7. The edges and weights were generated uniform at ran-
dom in the given interval. As for the weights of the edges, similar to the LFR graphs, nodes
with weights greater than 1 were normalized to 1 and multiplied by a factor rw which were
randomly chosen from the interval [0.6, 1].

Table 5.7: The parameters used to generate real-world test graphs

group % of edges deleted threshold weights

#1 45 [0.05, 0.5] [0.01, 0.6]
#2 50 [0.1, 0.5] [0.05, 0.5]
#3 50 [0.07, 0.55] [0.075, 0.55]

5.5.3 Results

For all the test graphs we ran the new IAtI-heuristic and compare its results with those ob-
tained by Greedy, see Section 4.5. For reference we also solved the smaller sized problems
with Gurobi to get the global optimal solution. Note that we fixed the seed set size to 2.

LFR graphs The results are reported in Table 5.8 and 5.9. If the obtained results (with
respect to σ and T ) were different, then the better solution is emphasized in boldface. For
the smaller sized problems we can see that there were 3 cases when neither our heuristic nor
the greedy approach was able to find the global optimum, see Table 5.8. Greedy found better
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solutions than our heuristic in 7 cases. Also in 7 cases (that is 23%) our heuristic missed the
global optimum. On the other hand, Greedy lost the global optimum in 11 cases (37% of the
cases). Regarding the running time, the greedy approach is by far the quickest method. On
the other hand, the IAtI-heuristic is faster than the exact method, usually around 4−12 times.

Table 5.8: Benchmarking results for the LFR graphs; time in seconds

graph parameters IAtI-heuristic greedy global opt.
n avgk maxk σ T time σ T time σ∗ T ∗ time

100 3 8 87 13 22.2 87 13 11.9 87 13 164.2
100 4 8 74 17 77.1 74 17 7.6 74 17 1 442.3
100 4 10 100 15 11.7 100 15 5.5 100 15 20.6
100 5 8 88 24 339.1 88 24 12.4 88 24 4 287.9
100 5 10 89 10 168.7 89 10 5.9 89 10 1 742.7
100 6 8 88 17 348.1 88 17 9.6 88 17 4 353.3
105 3 8 58 11 8.9 58 11 5.4 58 11 92.0
105 4 8 57 10 15.5 57 10 2.4 57 10 169.0
105 4 10 80 15 16.0 79 14 6.2 80 15 42.2
105 5 8 85 16 20.1 85 16 7.4 85 16 86.9
105 5 10 66 20 41.7 66 20 8.7 66 20 108.0
105 6 8 61 14 27.7 61 14 4.8 61 12 119.5
110 3 8 75 20 110.0 75 20 10.7 75 15 655.8
110 4 8 96 23 411.9 87 15 9.4 96 23 5 510.2
110 4 10 91 16 20.9 91 16 10.1 91 16 188.0
110 5 8 90 18 38.9 90 18 9.4 90 18 313.7
110 5 10 70 15 236.5 70 15 7.1 70 15 430.7
110 6 8 95 15 221.0 95 19 16.6 95 15 1 085.0
115 3 8 56 13 6.6 56 13 4.6 56 13 59.3
115 4 8 49 18 13.5 45 14 6.4 49 18 170.5
115 4 10 43 11 12.3 49 13 4.2 49 13 64.3
115 5 8 25 18 24.9 21 7 1.1 25 18 219.5
115 5 10 78 20 81.7 68 14 6.3 78 20 193.1
115 6 8 49 13 18.2 46 11 4.3 49 13 292.7
120 3 8 86 26 59.7 86 25 23.4 86 25 1 402.6
120 4 8 77 17 30.9 75 15 6.9 77 17 307.2
120 4 10 113 20 36.4 113 14 18.2 113 14 274.9
120 5 8 70 12 97.0 70 14 9.6 70 11 469.5
120 5 10 82 11 67.6 83 17 9.9 83 17 326.7
120 6 8 98 15 113.7 98 17 12.5 98 15 1 160.0

For the larger graphs, reported in Table 5.9 we can see that the in terms of running time
Greedy is much faster than our heuristic. Greedy found in only 7 cases better solution than
our heuristic. On the other hand the IAtI-heuristic was in 13 cases more successful than the
greedy approach and among these there are several where it was much better.
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Table 5.9: Benchmarking results for the LFR graphs for larger instances; time in seconds

graph parameters IAtI-heuristic greedy global opt.
n avgk maxk σ T time σ T time σ∗ T ∗ time

125 3 8 116 17 35.5 116 17 13.4 116 17 1 356.2
125 4 8 102 24 407.1 102 24 25.6 118 34 73 866.8
125 4 10 93 22 115.0 98 27 25.1 99 28 1 586.1
125 5 8 81 15 303.7 81 15 16.9 81 15 69 321.4
125 5 10 99 19 220.9 99 18 29.4 99 18 9 840.2
125 6 8 104 13 406.1 104 14 15.2 104 13 464 737.9
130 3 8 121 28 604.7 121 28 90.4 121 28 13 254.5
130 4 8 96 14 266.5 84 10 11.7 96 14 7 326.2
130 4 10 51 9 80.6 51 10 5.9 51 9 903.1
130 5 8 130 20 116.5 130 19 16.3 130 19 1 172.9
130 5 10 114 16 355.2 116 16 27.1 116 16 8 064.3
130 6 8 130 15 54.2 130 15 11.9 130 15 285.5
135 3 8 129 19 22.7 135 18 10.6 135 18 71.6
135 4 8 117 13 215.9 117 13 22.7 117 13 1 834.9
135 4 10 93 14 65.4 93 14 15.8 93 14 1 116.3
135 5 8 74 21 864.4 55 16 12.1 74 21 68 639.3
135 5 10 81 13 234.5 81 13 15.5 81 13 2 597.7
135 6 8 113 23 1 059.6 97 18 36.3 113 23 144 091.6
140 3 8 57 11 17.6 57 11 18.4 57 11 2 166.3
140 4 8 116 20 247.9 114 16 13.3 116 20 1 040.8
140 4 10 82 17 32.5 82 17 14.0 82 17 641.3
140 5 8 93 18 369.2 72 16 22.7 93 18 34 445.7
140 5 10 111 17 172.8 111 17 21.9 111 17 3 063.2
140 6 8 130 32 1 283.5 103 17 17.5 130 32 472 788.0
145 3 8 70 16 34.6 70 16 14.0 70 16 963.9
145 4 8 100 21 273.4 100 21 45.2 100 21 11 683.2
145 4 10 60 18 123.8 76 19 17.2 84 17 1 767.4
145 5 8 58 20 134.7 44 14 7.8 87 26 10 491.1
145 5 10 110 21 621.5 108 20 30.0 110 21 11 133.9
145 6 8 101 25 885.1 101 25 31.1 101 25 63 067.0
150 3 8 72 12 107.1 72 12 17.2 72 12 1 496.5
150 4 8 66 13 167.3 66 12 9.8 66 12 5 819.6
150 4 10 84 16 78.6 83 17 13.9 84 16 2 212.3
150 5 8 123 21 290.5 118 19 28.2 123 20 47 651.9
150 5 10 89 27 1 067.1 89 27 61.5 89 27 444 340.0
150 6 8 130 22 1 207.6 124 18 20.6 130 22 1 063 868.0

To discuss a particular example at which the IAtI-heuritic lost the globally optimal so-
lution, whereas Greedy was able to find it, see Figure 5.3. The scatterplot shows the two
centralities of the nodes together with their activation time at the optimal T ∗. The empty
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Figure 5.3: Visualization of the new centralitites for the LFR.135.3.8 graph

circles correspond to those nodes which were not selected by our heuristic to be candidates
for seeds. As shown by the blue circles, we can see that IAtI dropped the optimal seed set,
as only those were selected to be candidates which are shown with magenta color. Note
that Greedy, instead, found those blue-colored nodes. The seed nodes chosen by the IAtI-
heuristic are shown as green colored circles. It would be possible to parameterize the IAtI-
heuristic in such a way that it would include the optimal seeds in the candidate set. Figure
5.3 suggests that in that case the cardinality of the candidate seed set would be necessarily
larger which would result in much longer running time.

Real-world graphs Our experiments on some selected real world graphs are reported in
Table 5.10. As in the earlier tables it is shown in boldface if a method obtained a better
solution than the other one. We can observe that the trend of the IAtI-heuristic being much
slower than Greedy remains to be the case also here. There was only one case when the
greedy approach found a better solution than our heuristic. On the other hand, IAtI-heuristic
was able to find better solution in 5 cases (out of 12), which corresponds to 42%.
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Table 5.10: Results for the small real-world graphs; time in second

IAtI-heuristic greedy
graph σ T time σ T time

soc-dolphins #1 45 18 11.9 41 10 5.1
ca-sandi-auths #1 34 9 6.9 30 9 1.7
retweet #1 22 7 5.5 22 7 0.9
ca-netscience #1 63 9 319.5 63 9 183.6
soc-dolphins #2 34 9 6.9 24 5 0.5
ca-sandi-auths #2 13 5 5.5 12 4 0.3
retweet #2 19 6 4.8 19 6 0.7
ca-netscience #2 25 7 3 047.7 25 6 13.8
soc-dolphins #3 27 8 5.5 27 8 1.5
ca-sandi-auths #3 14 5 7.6 14 5 0.5
retweet #3 17 6 4.9 17 6 0.6
ca-netscience #3 41 11 300.1 30 5 10.2

Finally, let us demonstrate again the seed node selection strategy of the IAtI-heuristic on
the ca-sandi-auths graph as shown in Figure 5.4. The blue colored circles represent the nodes
found by the Greedy approach, leading to a suboptimal result. The blue circle on the left was
exluded by the IAtI-heuristic from the possible set of seed nodes. As before, the candidate
set of seed nodes are colored with magenta. Among them, there are the two optimal seed
nodes shown as green circles. Note that there are quite many nodes with 0 influenceability
value. Those are definitely selected by IAtI as possible seed nodes as they are impossible to
be activated by other nodes. As we can observe, one of them is indeed part of the optimal
seed set.
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Figure 5.4: Visualization of the new centralitites for the ca-sandi-auths #1 real graph

5.6 Conclusion

We proposed two new centrality metrics for the influence maximization under deterministic
linear threshold model. These metrics take into account the structure of the input network,
more precisely the weight of edges, the combinations of edges and the threshold value of
vertices. This is a great advantage of our method, because it is not usual to include the node’s
threshold in the centrality measure. Using the two centrality metrics, we selected vertices
that have a high probability of being seed nodes. The solver now selects seed vertices only
among these. This reduces the computational complexity of the task and therefore, compared
to running the ILP solver on the unrestricted model, it speeds up the procedure. Using those
metrics, we created the so-called IAtI algorithm. This was compared with Greedy and with
the global optimum, also. The IAtI algorithm is slower than Greedy, but in many cases it
gives a better solution and in most cases it finds the global optimum. Although most real-
world networks are sparse graphs, for which our method works well, the disadvantage of this
method is that it takes a lot of computing time to generate and use edge combinations for
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large degree of nodes. Thus, it may take a long time for pre-processing and is therefore, in
its current form, not well scalable. Our future work is to develop a version of the method
that can handle graphs including nodes with relatively large degree.
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Summary

This dissertation summarizes the results of my work in the field of optimization and net-
work science. Among my main goals was to improve existing solver algorithms for specific
problems using input graphs after reviewing the literature. It is becoming a popular method
nowadays to combine these two research areas in this way, which was a motivating force for
me.

My thesis consists of two main parts. In the first one, I dealt with the maximization
of submodular functions on problems that have graph representations. First, I presented the
variants of our constraint generating algorithm, and then proposed a centrality metric to serve
as a starting point for solving algorithms.

In the second part, I considered the influence propagation maximization, which is also
interpreted in terms of a graph. First, we analysed in detail the exact solving procedure
published in the literature, which turned out in the end to be not always correct, thus we pre-
sented a possible improvement. Finally, for this work, we have also constructed a centrality
metric based on the input graph that proposes the vertices that can be chosen at the initial
moment of propagation.

Submodular function maximization based on graph proper-
ties

For the submodular function maximization studied in the first part of this dissertation, we
considered functions with even graph representation. We considered different solving algo-
rithms, which are constraint condition generating type algorithms. The basis of this type
of solvers is a reduced mixed integer problem, which is augmented with a new constraint
condition at each iteration.

Constraint generation approaches

This work is inspired by a recent publication [106], which includes the Improved Constraint
Generation (ICG solution method, an improved version of the standard constraint generation
method. The idea is to add several constraints to the problem per iteration instead of just
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one, thus speeding up the solution process. Based on this, we have developed three different
algorithm variants for the maximization problem of nondecreasing submodular functions.

First, we present the ICG(k− 1) algorithm, which works with subsets of k− 1 elements,
thus investigating the value of adding the kth element to the set. Another approach was to
exploit the structural properties of the input graph. We use a centrality metric for node selec-
tion to generate the constraints; we call this algorithm GCG. Finally, we proposed the ECG
algorithm, which directly generates the subsets of the sets, that is, the constraint conditions,
instead of the iterative internal algorithm embedded in the algorithm.

Based on the experiments, we cannot highlight only one algorithm as the best, which can
be explained by the fact that the problem is NP-hard. However, in all tested cases we had at
least one algorithm that proved to be computationally more efficient than the ICG algorithm.

On the initial set of constraints

The importance of choosing the starting point, or initial constraints, has already been em-
phasized by Nemhauser and Wolsey in their article [82], which served as a motivation for
our work. In the literature, in most cases, the solution generated by the greedy algorithm or
a randomly chosen set of feasible solutions is used as a starting point. However, alternative
proposals can also be found in the literature, such as the GRASP heuristic [97], which was
also tested in our work.

In order to introduce a new centrality metric, we further investigated the structure of the
input graph: in this case, the graphs we consider are not fully-connected bipartite graphs,
where we consider both the weights of the edges and the degree values of the vertices, ac-
cording to the specificity of the input problem. The values are dynamically recalculated, i.e.,
after a vertex is selected, we then remove it and its associated edges from the graph. This
recalculated centrality was used to determine the order of the initial vertices, which was used
as the starting point when solving to maximize submodular functions.

In our research, we tested our initial selection strategy in different ways. First, we tested
five algorithm variants, which are constraint-generating solver methods for maximizing non-
decreasing submodular functions, as presented in Chapter 4. The algorithms are started both
from the solution of the greedy procedure and from the starting point suggested by the new
centrality metric. In addition, we used two state-of-the-art implementations of Nemhauser
and Wolsey’s MILP model proposed in [97], which use a lazy constraint generation ap-
proach. These were tested starting from the starting point obtained with the GRASP heuristic
and the new centrality metric.

Based on our results, the runtime of algorithms started from the initial set proposed by
the new centrality metric showed an average improvement of 5.37 times in all test cases.
Based on the results, it can be concluded that the use of the starting point proposed by the
new centrality metric provides a significant advantage, which is confirmed not only by the
reduction in runtime, but also by the analysis of the relative gap values.
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Influence maximization under deterministic linear threshold
model

In the second part of the thesis, we dealt with the maximization of influence propagation,
including models that use the deterministic linear threshold model as a propagation model. In
this section we also considered problems with graphical representation, and more specifically
their solution algorithms, which thus appear in all four main chapters.

An exact method

For this problem, a linear programming model of type 0-1 has been proposed in the paper
[65]. This attracted our interest in the topic and motivated us to work on it. We performed a
thorough analysis of the model, which allowed us to prove that the model presented by [65]
does not always find the global optimum.

We have examined the proposed constraints and found them to be both appropriate and
necessary. The research revealed that the model is not complete, including the possibility
of graphs that cannot start infection or are stuck at local optimum. This is what led us to
argue that the constraints need to be extended to achieve the correct model. To change the
constraints and find the global optimum, the correct stopping condition is very important. To
do this, we introduced a new constraint that forces the value of the influence to be larger at
the last moment than the one before; we then modified the stopping criterion accordingly.
Thus, in fact, the model we propose is an improved version of the model presented by [65].

From our extensive numerical results, it can be concluded that even for relatively small
graphs, we can find an exact solution with extremely unfavorable running times. This fol-
lows from the fact that the problem is highly NP-complete and is a good illustration of how
difficult it is to find the global optimum even with computational methods. These results
have provided the motivation not to stop at this point in the research, but to look for ways to
reduce the runtime. It can be seen that this is not an easy challenge, success is not guaran-
teed, but a detailed examination of the algorithm eventually provided the idea for developing
a heuristic step.

A heuristic for seeds selection

The research question whether it is possible to find a vertex ranking (i.e. centrality) value
that can be used to predict which vertices to select (as seed vertices) at the initial moment is
very interesting and has attracted many researchers [52, 67, 89, 102].

Based on the deterministic linear threshold model, we proposed two new centrality met-
rics to maximize the influence spread. These take into account the structure of the input
network, in particular the weight of edges, the combinations of edges and the threshold of
vertices. This approach is unique in a sense that the threshold of the nodes is rarely taken
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into account when determining centrality measures.
Based on the two centrality metrics, we selected vertices that have a high probability

of being good choices for spreading influence at the initial moment as seed vertices. The
optimization procedure then selects the seed nodes from these only. Using centrality metrics,
we generated the IAtI algorithm, which was compared to both the Greedy algorithm and the
global optimum. The IAtI algorithm is slower than the Greedy algorithm, but in many cases
it provides a better solution and in most cases it finds the global optimum.

Choosing from a reduced set significantly decreases the computational complexity and
thus the runtime of the solver algorithm. However, the current version of the method does
not scale well, since generating and handling combinations of edges for vertices with a large
number of degrees requires significant computation time, and therefore the preprocessing
time can be long. Note, however, that the sparsity of graphs in the majority of real networks
contributes to the robustness of our method. Our future goal is to develop a version that can
efficiently handle graphs with a large number of degree vertices.
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Contributions of the thesis

In the first thesis group, the contributions are related to Part I, the maximization of submod-
ular functions. A detailed presentation is given in Chapters 2 and 3.

I/1. I developed a version of the constraint generating algorithm that works with subsets of
k − 1 elements.

I/2. I created another version of the constraint generation algorithm, GCG, which exploits
the structure of the graph in a heuristic step.

I/3. I described another version of the constraint generating algorithm, ECG, which gener-
ates subsets directly.

I/4. I introduced a new centrality metric, which is an initial point selection strategy for
solving submodular function maximization.

I/5. I show that the new starting point selection strategy is better than the commonly used
greedy method or the recently published GRASP heuristic.

In the second thesis group, the contributions are related to Part II, the maximization of
influence spread. A detailed presentation is given in Chapters 4 and 5.

II/1. I discovered that the integer model proposed in [65] is not correct in all cases.

II/2. I showed that the model needs to be completed to get the correct fit.

II/3. I demonstrated step by steps that the new model we have constructed is correct.

II/4. By examining the step-by-step solution of the correct model, I presented two new
centrality metrics for Influenceability and Ability-to-influence.

II/5. I demonstrated that by using a combination of the two centrality metrics, we can reduce
the number of possible seed nodes at the initial moment.
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Összefoglalás

Ez a disszertáció az optimalizálás és a hálozattudomány területén végzett munkám ered-
ményeit foglalja össze. Fő céljaim között volt, hogy a szakirodalom áttekintése után, az
adott feladatokra meglévő megoldó algoritmusokat fejlesszem az input gráfok használatával.
Egyre népszerűbb módszer napjainkban összekötni ilyen módon ezt a két kutatási területet,
ami rám is motiváló erővel hatott.

A dolgozatom két fő részből áll. Az első részben a szubmoduláris függvények ma-
ximalizálásával foglalkoztam. Először az általunk létrehozott feltétel generáló algoritmus
változatokat mutattam be, majd egy centralitási metrikát javasoltam, ami kiindulási pontként
szolgálhat a megoldó algoritmusoknál. A tesztelést olyan szubmoduláris függvényeket hasz-
náltam, melyek rendelkeznek gráfos reprezentációval (ezt néhány megoldó algoritmus igény-
li).

A második részben a befolyásterjedés maximalizálásával foglalkoztam, amit szintén grá-
fokon értelmezünk. Először részletesen elemeztünk egy a szakirodalomban megjelent egzakt
megoldó eljárást, amiről kiderült a munkánk során, hogy nem minden esetben helyes, ı́gy
ennek javı́tási lehetőségét mutattuk be. Végül ehhez a munkához is készı́tettünk egy olyan
centralitási metrikát, amely az input gráfon alapszik és javaslatot tesz a terjedés kezdeti pil-
lanatában választható csúcsokra.

Szubmoduláris függvények maximalizálása

A disszertáció első felében vizsgált szubmoduláris függvény maximalizálásnál olyan függvé-
nyeket vizsgáltunk, melyek páros gráfos reprezentációval rendelkeznek. Különböző megoldó
algoritmusokkal foglalkoztunk, melyek korlátozó feltétel generáló tı́pusú eljárások. Az ilyen
tı́pusú megoldók alapja, hogy egy redukált vegyes egész értékű feladatból indulnak ki, mely
minden iterációban bővül egy új korlátozó feltétellel.

Korlátozó feltétel generáló megközelı́tések

Ezt a munkánkat egy közelmúltbeli publikáció [106] inspirálta, amiben szerepel az ICG
(Improved Constraint Generation) megoldó eljárás, ami a standard feltétel generáló módszer
továbbfejlesztett változata. Ennek lényege, hogy nem egy, hanem több korlátozást ad hozzá
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a feladathoz iterációnként, ezzel gyorsı́tva a megoldás menetét. Erre alapozva, három külön-
böző algoritmusváltozatot dolgoztunk ki a nem csökkenő szubmoduláris függvények maxi-
malizálási problémájára.

Elsőként az ICG(k−1) algoritmust mutattuk be, amely k−1 elemszámú részhalmazokkal
dolgozik. Ezzel azt tudjuk vizsgálni, hogy mi az értéke annak, ha a k-adik elemet adjuk
hozzá a halmazhoz. Egy másik megközelı́tésünk a bemeneti gráf szerkezeti tulajdonságainak
kihasználása volt. A feltételek generáláshoz szükséges csúcs választáshoz egy centralitási
metrikát használunk; ezt az algoritmust GCG-nek neveztük el. Végül javasoltuk az ECG al-
goritmust, amely az eljárásba beágyazott iteratı́v belső algoritmus helyett közvetlenül generál-
ja a halmazok részhalmazait, azaz a korlátozó feltételeket.

A tesztek alapján nem tudjuk csak az egyik algoritmust kiemelni, mint a legjobbat, ami
azzal magyarázható, hogy a feladat NP-nehéz. Azonban minden tesztelt esetben volt leg-
alább egy algoritmusunk, amely számı́tási szempontból hatékonyabbnak bizonyult az ICG
eljárásnál.

A kezdeti korlátozó feltételek választása

A kezdőpont, avagy kezdeti korlátozó feltételek megválasztásának fontosságát már Nem-
hauser és Wolsey is kiemelte [82] a cikkében, ami motivációként szolgált munkánk során.
A szakirodalomban, a legtöbb esetben a mohó algoritmus által generált megoldás vagy egy
véletlenszerűen kiválasztott fizı́bilis megoldás halmaz szolgál kiindulópontként. Azonban az
irodalomban alternatı́v javaslatok is találhatóak, például a GRASP heurisztika [97], amelyet
szintén teszteltünk munkánk során.

Egy új centralitási metrika bevezetése érdekében az input gráf szerkezetét tovább vizs-
gáltuk: ebben az esetben az általunk vizsgált gráfok nem teljes páros gráfok. A metrika során
mind az élek súlyait, mind a csúcsok fokszámait figyelembe vesszük, a kiindulási probléma
sajátosságainak megfelelően. Az értékeket dinamikusan újraszámı́tjuk, azaz miután egy
csúcsot kiválasztottunk, azután a gráfból eltávolı́tjuk azt és a hozzátartozó éleket. Ezt az
újraszámı́tott centralitást használtuk fel a kezdeti csúcsok sorrendjének meghatározásához,
amelyet szubmoduláris függvények maximalizálására irányuló problémák megoldása során
kezdeti halmazaként alkalmaztunk.

Kutatásunk során a kiindulópont választási stratégiánkat különböző módon teszteltük.
Egyrészt vizsgáltunk öt különböző algoritmus változatot, amelyek a 4. Fejezetben bemuta-
tott, nem-csökkenő szubmoduláris függvények maximalizálására alkalmas, korlátozó felté-
teleket generáló megoldó metódusok. Az algoritmusokat mind a mohó eljárás megoldásából,
mind pedig az új centralitási metrika által javasolt kezdőpontból indı́tottuk. Emellett két
modern implementációt alkalmaztunk Nemhauser és Wolsey MILP modelljéből, amiket a
[97] cikkben javasoltak, amelyek lusta korlátozó generálási megközelı́tést használnak. Ezeket
a GRASP heurisztikával, illetve az új centralitási metrikával kapott kezdőpontból indı́tva
teszteltük.
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Eredményeink alapján az új centralitási mutató által javasolt kezdőhalmazból indı́tott
algoritmusok futási ideje átlagosan 5.37-szeres javulást mutatott az összes tesztesetben. Az
eredmények alapján megállapı́tható, hogy az új centralitási metrika által javasolt kiindulási
pont alkalmazása jelentős előnyt nyújt, amit nemcsak a futási idő csökkenése, hanem a relatı́v
eltérés értékeinek elemzése is alátámaszt.

Befolyásterjedés maximalizálása determinisztikus lineáris kü-
szöbmodell használatával

A dolgozat második felében a befolyásterjedés maximalizálásával foglalkoztunk, azon belül
is azokkal a modellekkel, amelyek a determinisztikus lineáris küszöbmodellt használják ter-
jedési modellként. Ebben a részben is gráfos reprezentációval bı́ró feladatokat vizsgáltunk,
egész pontosan azok megoldó algoritmusait.

Egy egzakt modell megoldásairól

A feladatra egy 0-1 tı́pusú lineáris programozási modellt javasoltak a [65] publikációban.
Ez keltette fel az érdeklődésünket a témával kapcsolatban és adott motivációt munkánkhoz.
Alapos elemzést végeztünk a modellen, ami által sikerült igazolni, hogy a [65] által bemuta-
tott modell nem minden esetben találja meg a globális optimumot.

Megvizsgáltuk a javasolt korlátozó feltételeket, majd beláttuk, hogy azok helyesek és
szükségesek is. A kutatás során kiderült, hogy a modell nem teljes, többek között előfordulhat
olyan gráf, amin el sem tudja kezdeni a fertőzést, vagy beragad lokális optimumban. Ez
vezetett minket arra az állı́tásra, hogy a korlátozó feltételeket ki kell egészı́teni a helyes
modell eléréséhez. A korlátozó feltételek változtatása és a globális optimum megtalálása
érdekében nagyon fontos a helyes megállási feltétel. Ehhez bevezettünk egy új korlátozó
feltételt, ami kikényszerı́ti azt, hogy a befolyás értéke az utolsó pillanatban nagyobb legyen,
mint az azt megelőzőben; majd ennek megfelelően módosı́tottuk a megállási kritériumot is.
Így valójában az általunk javasolt modell egy továbbfejlesztett változata a [65] által bemuta-
tott modellnek.

A részletes numerikus eredményeinkből azt a következtetést lehet levonni, hogy még vi-
szonylag kis gráfok esetén is csak rendkı́vül kedvezőtlen futási idővel tudunk pontos megol-
dást találni. Ez következik abból, hogy a feladat erősen NP-teljes és jó illusztráció arra, hogy
számı́tógépes eszközökkel is milyen nehéz megtalálni a globális optimumot. Ezek az ered-
mények szolgáltattak motivációt arra, hogy ne álljunk meg a kutatás ezen pontján, hanem
vizsgáljunk olyan lehetőségeket, amelyek csökkentik a futási időt. Látható, hogy ez nem
könnyű feladat, nem biztosı́tott a siker, de az algoritmus részletes vizsgálata nyújtott végül
ötletet heurisztikus lépés kidolgozásához.
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Heurisztika a kezdő csúcsok választásához

Nagyon érdekes és sokakat megmozgató az a kutatási kérdés, hogy lehet-e találni olyan
csúcsrangsorolási (azaz centralitási) értéket, amellyel megjósolható, hogy a kezdeti pillanat-
ban mely csúcsokat válasszuk ki (ún. seed csúcsnak). Az ötlet számos kutatót vonzott
[52, 67, 89, 102].

A determinisztikus lineáris küszöbmodell alapján két új centralitási mutatót javasoltunk
a befolyásterjedés maximalizálásához. Ezek a számı́tás során figyelembe veszik az input
hálózat szerkezetét, különösen az élek súlyát, az élek kombinációit és a csúcsok küszöb-
értékét. Ez a megközelı́tésünk egyedi abban az értelemben, hogy a centralitási mértékek
meghatározásakor ritkán veszik figyelembe a csúcsok küszöbértékét.

A két centralitási mutató alapján olyan csúcsokat választottunk ki, amelyek nagy való-
szı́nűséggel jó választások lehetnek a kezdeti időpillanatban (seed csúcsként) a befolyáster-
jedéshez. Az optimalizáló eljárás aztán kizárólag ezekből választja ki a kezdeti csúcsokat. A
centralitási metrikák alkalmazásával hoztuk létre az IAtI algoritmust, amit összehasonlı́tot-
tunk a mohó algoritmussal és a globális optimummal is. Az IAtI algoritmus lassabb, mint a
Mohó, azonban sok esetben jobb megoldást ad, és a legtöbb esetben meg is találja a globális
optimumot.

A szűkı́tett halmazból történő választás jelentősen csökkenti a számı́tási bonyolultságot,
ı́gy a megoldó algoritmus futási idejét. Ám a módszer jelenlegi formája nem jól skálázható,
hiszen a nagy fokszámú csúcsok esetén az élek kombinációinak generálása és kezelése je-
lentős számı́tási időt igényel, és emiatt az előfeldolgozás ideje hosszú lehet. Azért vegyük
észre, hogy a valós hálózatok többsége ritka gráf, ami hozzájárul a módszer sikerességéhez.
Jövőbeni célul azt tűztük ki, hogy egy olyan verziót fejlesszünk, amely képes hatékonyan
kezelni a nagy fokszámú csúcsokat tartalmazó gráfokat is.
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A disszertáció tézisei

Az első téziscsoportban a hozzájárulásaim az I. részhez, a szubmoduláris függvények ma-
ximalizálásához kapcsolódik. A részletes bemutatás a 2. és 3. fejezetben található.

I/1. Kifejlesztettem a korlátozó generáló algoritmus azon változatát, amely k − 1 el-
emszámú részhalmazokkal dolgozik.

I/2. A korlátozó generáló algoritmus egy másik változatát hoztam létre, a GCG-t, mely
egy heurisztikus lépésben kihasználja a gráf szerkezetét.

I/3. Megalkottam a korlátozó generáló algoritmus egy további változatát, az ECG-t, ami
közvetlen módon generálja a részhalmazokat.

I/4. Új centralitási metrikát vezettem be, mely kezdőpont választási stratégia a szub-
moduláris függvények maximalizálásának megoldásához.

I/5. Bemutattam, hogy az új kezdőpont választási stratégia jobb, mint az általában használt
mohó eljárás vagy a nemrég publikált GRASP heurisztika.

A második téziscsoport a II. részhez, a befolyásterjedés maximalizálásához kapcsolódik. A
részletes bemutatás a 4. és 5. fejezetben található.

II/1. Beláttam, hogy a [65]-ben javasolt egész értékű modell nem helyes minden esetre.

II/2. Bemutattam, hogy a modellt ki kell egészı́teni a helyes műkődéshez.

II/3. Lépésenként igazoltam, hogy az ily módon általunk felállı́tott új modell helyes.

II/4. A helyes modell lépésenkénti megoldását vizsgálva, a befolyásolhatóságra és a be-
folyásoló képességre két új centralitási metrikát alkottam meg.

II/5. Kimutattam, hogy a két centralitási metrika kombinációját használva, redukálni tudjuk
a kezdeti pillanatban lehetséges (seed) csúcsok számát.
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