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1 Forewords

The aim of this research is twofold: first, it involves developing deterministic and
stochastic models to simulate the spread of infectious diseases. Second, inspired by
COVID-19, we aim to explore how immunity, shaped by pathogen evolution, influ-
ences the dynamics of outbreaks.

In Chapter 1, we begin with an overview of the fundamental SIR epidemiologi-
cal model, followed by a detailed discussion of its key features, such as equilibrium
points and stability, which are essential for analyzing the model’s behavior. The chap-
ter also addresses the evolutionary dynamics of infectious diseases, with a particular
focus on viral evolution in the context of COVID-19.

In Chapter 2, we propose two epidemiological models of disease transmission
dynamics that accounts for the emergence of new strains through virus mutations,
inspired by the COVID-19 pandemic. We analyze how time varying social distancing
measures and differing assumptions about cross-immunity affect disease prevalence
and strain dynamics. Our findings highlight that while a sequential pattern of strain
replacement occurs when immunity is only against earlier strains, more complex
dynamics, such as the co-circulation of multiple strains, emerge when immunity is
strain-specific. These results are compared with genomic patterns observed during
the COVID-19 pandemic.

Chapter 3 of this thesis explores the application of the SIR model within network
structures. The chapter emphasizes the need for stochastic modeling to capture the
complexities of disease transmission, particularly in the context of COVID-19. By
analyzing the dynamics of virus spread across different network, it investigates how
network features influence disease propagation. The chapter also examines the ef-
fects of viral mutations and immunity on transmission patterns and evaluates the
efficacy of global social distancing strategies in controlling outbreaks.

Chapter 4 addresses the challenge of predicting viral evolution by developing
a novel model by considering a trade-off between immunity evasion and transmis-
sibility. The model identifies that highly transmissible strains tend to evolve toward
immune evasion, while less contagious strains shift toward increased transmissibility.
By assuming a linear trade-off, we derive a non-linear difference equation to describe
long-term evolutionary patterns. Our analysis provides criteria for evolutionary con-
vergence, identifies cyclical patterns in strain evolution, and reveals conditions under
which viral evolution becomes chaotic. Visualization through bifurcation diagrams
highlights complex dynamic behaviors, offering new insights into the interplay be-
tween immune evasion and transmissibility in viral evolution.
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2 Introduction

Infectious diseases have been intertwined with the story of humanity from the very
beginning, leaving lasting marks on human civilization. The Athens plague of 430
BC and the 14™-century Black Death—which wiped out nearly one-third of Europe’s
population—are prime examples of how these diseases have critically influenced hu-
man history. The 1918 influenza pandemic, also known as the Spanish flu, is an
example of such devastating effects, with an estimated 50 million fatalities globally
[51,/81]. In the modern era, notable events include the emergence of HIV/AIDS, the
Ebola outbreaks in West Africa, and the COVID-19 pandemic, with the latter having
significantly reshaped the world since it began.

However, the mathematical analysis of infectious diseases and their spread is
relatively recent, spanning approximately 350 years. The process of mathematical
modeling begins with a clear description of infectious diseases, followed by the iden-
tification of key factors that influence real-life behavior. This process involves simpli-
fication and logical analysis, which are essential for creating useful models. Mathe-
matical modeling offers a powerful tool for analyzing the complexities of infectious
diseases, allowing researchers to gain insights into their dynamics and develop strate-
gies for control and prevention [51].

Significant advancements in the mathematical modeling of infectious diseases
were made in the early twentieth century. William Hamer’s work on explaining the
recurrence of measles marked a notable milestone in this field [18]. Since then,
mathematical models have become essential tools in epidemiological research, of-
fering frameworks to understand disease spread. One of the most widely used ap-
proaches is compartmental modeling, where the population is divided into different
groups based on their disease status. These models are particularly useful for pro-
viding simplified insights into the dynamics of infectious diseases. For example, the
SIR (Susceptible, Infectious, Removed) model divides individuals into three distinct
categories to track the progression of an outbreak in a population [35, 42].

However, not all models fit neatly into the compartmental framework. More com-
plex models, such as agent-based models (ABMs), simulate the behavior of individ-
uals or agents within a population to capture the stochastic and spatial aspects of
disease transmission [26), [76]. ABMs offer a more granular approach, representing
interactions at an individual level and allowing for heterogeneity in behaviors and
outcomes.

Within the broader class of compartmental models, the SIR model serves as a
foundational example, offering a clear structure to study the transmission dynamics
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6 Introduction

of infectious diseases. This model simplifies real-world complexities but has proven
invaluable in understanding the basic mechanisms of disease spread and control
strategies.

Within the SIR model framework:

* Susceptible individuals are those not yet immune to the disease, placing them
at risk of infection upon exposure.

* Infectious individuals are actively carrying the disease and are capable of
spreading it to susceptible contacts.

* Removed individuals have acquired immunity, either through recovery or vac-
cination, and therefore no longer contribute to the transmission of the disease.

This structured approach has profoundly influenced our understanding of how dis-
eases spread and the effectiveness of interventions to control outbreaks.

The number of individuals in each of these classes changes with time, that is, S(t),
I(t), and R(t) are functions of time ¢. The total population size N is the sum of the
sizes of these three classes and remains constant over time, i.e.,

N =S(t)+ 1(t) + R(t),

where N can be assumed to be normalized to N = 1.

A simple SIR model with incorporation of demographic term is given by the
following system of ODEs where each differential equation shows how the classes
change over time [18]. The generation of susceptible individuals in this model is
given by recruitment rate y > 0, which is also equal to the per capita death rate.
Upon infection, these susceptible individuals move to the infected compartment
at a rate denoted by 5S(t)I(t). Here, parameter J signifies the transmission rate of
the disease. Subsequently, the infected individuals undergo recovery at a rate I (t),
where v > 0 is the disease recovery rate, leading them to transition to the class R:

S(t) = =BSHI(t) + p— pS(t),
I(t) = BS(t)I(t) — ~vI(t) — pl(t), 2.1
R(t) = yI(t) — pR(t).

One essential tool in understanding the dynamics of infectious diseases is the
basic reproduction number which indicates whether a disease will persist in a popu-
lation or diminish over time. This value represents the average number of secondary
cases generated by a single infectious individual in a population where everyone is
susceptible.

Given the assumption that initially the whole population is susceptible, the basic
reproduction number, denoted as R, measures the ability of the pathogens to invade
the susceptible population. When R, < 1, it leads to a gradual decline in the num-
ber of infected individuals, eventually resulting in the disease’s eradication from the
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population. Conversely, an R, > 1 indicates the disease’s capability to maintain its
presence and become endemic within the population.

To interpret R of Model (2.1)), we consider that the number of new cases per unit
of time generated by all infectious individuals is given by 5S1. When there is a few
infectious individual (i.e., I = ¢), and the entire population consists of susceptible
individuals (i.e., S = N = 1), then the number of secondary cases produced by one
infectious individual in a unit of time is 5. Considering that one infectious individual
remains infectious for ﬁ time units, the total number of secondary cases that it will

produce during its lifespan on average is Ry = %
Now, we can explore some properties of the system. This model has been excep-
tionally valuable, especially for (1) determining disease prevalence at equilibrium

and (2) identifying the conditions required for the stability of endemic equilibrium.

2.1 The Equilibrium Points of the SIR Model with De-
mography

Incorporating host demographic dynamics into models enables a disease to sustain
itself within a population over an extended period.

Equilibrium points are crucial for understanding the long-term behavior of dy-
namical systems, including the analysis of biological models. They help predict the
conditions under which a system can maintain stability or experience change, provid-
ing insights into system behavior under various initial conditions and perturbations.
To explore when the system is at equilibrium, we equate each equation to zero and
solve for the equilibrium values of the variables. The disease-free equilibrium, which
emerges trivially, refers to a state in the model where the entire population is suscep-
tible to the disease, and there are no infected or infectious individuals present. This
equilibrium is mathematically denoted as (S*, I*, R*) = (1,0,0).

To determine the endemic equilibrium, where the disease persists within the pop-
ulation, we begin by setting the infection rate equation to zero:

I(t) = BS(I(t) = 7I(t) — ul(t) = 0.
By factoring I, we have
I(1)(BS() = — 1) = 0,
which leads to either /* = 0 or S* = ”T“ = L. I* = ( implies the disease-free equi-

Ro
librium, so we focus on the second condition and substitute it into the first equation

of Model (2.1) for I*. After some calculation, we finally have:

I = %(RO —1).

Having 5" + I* 4+ R* = 1, we can easily obtain R* = Z(R, — 1). The endemic equilib-



8 Introduction

rium can, therefore, be described by:

L gl

S I'R)=(=—,5(Ro—1),5(Ro— 1 2.2

( ) ) ) (RO’B( 0 )76( 0 ))7 ( )

Note that the condition R, > 1 necessitates the relation § > v + u. This assump-
tion ensures that the endemic steady state exists and is biologically meaningful.

2.1.1 Stability Analysis for the SIR Model with Demography

Now, we will provide conditions on the parameter values that are necessary for the
equilibrium to be (asymptotically) stable to small perturbations.

Definition 2.1.1 (Lyapunov Stability). Consider an ordinary differential equation
= f(x), z=e€R" (2.3)

Let x* be an equilibrium point, i.e., f(z*) = 0. The equilibrium z* is said to be
(Lyapunov) stable if for every ¢ > 0, there exists a § > 0 such that if ||z(0) — z*|| < 0,
then for all t > 0,

|lz(t) — 2*|| <e. 2.4

This means that trajectories starting sufficiently close to x* remain close for all time.
If, in addition, there exists ¢’ > 0 such that ||x(0) — z*|| < ¢’ implies

lim z(t) = x*, (2.5)
t—o0
then x* is called asymptotically stable.
If x* is not stable, it is called unstable.

Thus, if the equilibrium is asymptotically stable, small perturbations or devia-
tions from this point will decay over time, leading the system back to its equilibrium
state. Conversely, if the equilibrium is unstable, these deviations will grow over time,
causing the system to diverge from the equilibrium [39].

To find the stability of equilibrium points corresponding to Model (2.1)), we de-
termine the eigenvalues of the Jacobian matrix at the equilibrium. Stability is guar-
anteed if the real part of all eigenvalues are negative. The matrix at equilibrium is
given by:

—BI* — p —B3S* 0
J=| -prr pS*—(u+vy) O
0 gl —p

The eigenvalues of this matrix, \;, for i = 1,2, 3, are the solutions of det(J — AI) = 0;
where [ is the identity matrix. This gives:

[(BI* — = N)(BS* — i+~ + A) + B2I"S*] (—p — A) = 0.
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Now, to obtain the three eigenvalues, we need to substitute both the disease-free
equilibrium and the endemic equilibrium into S*, I*, and R*.

Let us first consider the disease-free equilibrium. After few lines of algebra, we
obtain the three eigenvalues \; » = —p and A3 = 8 — (¢ + ). To achieve stability in
this equilibrium, it is imperative that all eigenvalues are negative. This requirement
establishes the stability criterion as § < (u + 7). In practical terms, this means that
the condition for stability is ensuring that the basic reproduction number, R, is less
than 1.

To further investigate the endemic equilibrium, we substitute the expressions for
S* and I* into equation (2.2). Our goal is to determine the conditions under which
all the eigenvalues have negative real parts. After simplifications, we obtain the
following eigenvalues:

AL = —H,
v R V(R —4u(Ro — (v + )
2 — = + 3
2 2
v HRo V(R0)® — 4pu(Ro — 1)(y + 1)
’ 2 2 '
The first eigenvalue, \; = —pu, is always negative. The behavior of )\, and A3

depends on the expression under the square root, which is

V(1R0)2 — 4u(Ro — 1)(v + p).

If this expression is positive, then A\, and A3 are real. In this case, )\, 3 are clearly
negative when R, > 1, ensuring asymptotic stability. On the other hand, if the ex-
pression under the square root is negative, the square root term becomes imaginary,
and the eigenvalues form a complex conjugate pair. The real part of both eigenvalues
in this case is

iR

5

Since 1R, is always positive, the real part of the complex eigenvalues remains
negative, implying that the endemic equilibrium is asymptotically stable. Thus, for
Ro > 1, all eigenvalues have negative real parts, confirming that the endemic equilib-
rium is asymptotically stable. This implies that the disease persists in the population
at a stable endemic level.

R,e()\g) = Re()\g) =

2.2 Evolutionary Dynamics

Viral evolution is the process by which virus populations change over time due to
mutations, recombination, and reassortment, and can lead to the emergence of new
infectious diseases or change the epidemiology of existing ones. Antigenic drift and
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shift in influenza viruses are prime examples of how viral evolution can affect disease
patterns, leading to seasonal epidemics and occasional pandemics [41], [64].

Emerging infectious diseases often arise from zoonotic transmissions, where
viruses evolve the ability to infect new host species, including humans. The spillover
of SARS-CoV, MERS-CoV, and SARS-CoV-2 from animal hosts to humans exemplifies
the critical role of viral evolution in infectious disease emergence. Mathematical
modeling in viral evolution helps in quantifying these changes and predicting their
impact on disease dynamics. Models can range from simple equations representing
the basic reproduction number (R,) to complex simulations that account for genetic
diversity within viral populations [[11} 84].

In this section, our goal is to explore the evolution of parasites (including viruses)
through the examination of the epidemiological dynamics when at least two parasite
strains compete for the same host.

Consider the following equation where the two strains differ in their infectivity,
B1, and (35, and in their degree of virulence, v;, and vs.

S(t) = S(t)(Bil(t) + B2 1a(t)) — pS(2),
Li(t) = (75)]1( ) — pl(t) — o1 (2), (2.6)
Iy(t) = BaS(t)Io(t) — pl(t) — vala(t),

with A specifying the constant birth rate and . their natural death rate.

The basic reproduction number of the two strains are given by Ry; = Mf’m e where
i = 1,2. If Roa > Ry, then all infected individuals will eventually be infected with
strain 2, leading to the extinction of strain 1. Consequently, evolutionary processes
will prefer mutations that exhibit a higher basic reproduction number. In the ab-
sence of any trade-off between infectivity and virulence, evolutionary dynamics are
expected to enhance the transmission rate while diminishing virulence (Chapter 11
of [64]]).

Most public health concerns related to infectious diseases surprisingly do not con-
form to the anticipated patterns. This inconsistency has led to extensive research
efforts, focusing on the trade-offs between a pathogen’s transmission rate and the
duration of its infectious phase [2], 37, [44]. The concept of a transmission-virulence
trade-off suggests that infections that produce a high number of pathogenic parti-
cles, and thus are easily transmitted, tend to be more harmful to the host, potentially
leading to rapid death of the host as outlined in [10} [20]. Depending on the relation-
ship between transmission rate § and virulence v, there might be an evolutionarily
stable level of virulence that maximizes the basic reproduction number Ry. In some
scenarios, evolution may favor either extremely high or low levels of virulence. The
specifics of these dynamics depend on the relationship between 5 and v. For exam-
ple, a linear relationship implies that R, or the potential for an infection to spread,
increases with virulence. Thus, in such scenarios, natural selection tends to favor
more virulent, and by extension, more infectious strains. When the transmission rate
is described by the saturating function -2 dependent on virulence with constant
parameters a and ¢, it follows that the ba51c reproduction number exhibits a one-

A
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peaked relationship with virulence (Fig. [2.1). The peak, representing the maximum
value of Ry, occurs at an intermediate virulence level, specifically at v"** = | /cp.
For a parasite population with virulence exceeding v, evolutionary pressures tend
to decrease virulence. Conversely, if the population’s virulence is below this optimal
level, virulence is likely to increase [64].

Basic Reproduction Number

Vivlonce
Figure 2.1: The basic reproduction number distribution of strains with different range
of virulence defined by the transmission rate-virulence trade-off: 3 = “*. With this
trade-off, the basic reproduction number R, for each strain of Model @ is given by
Roi = %, when A = 1, a = 8§, and ¢ = u = 1. Hence, within the competitive
dynamics of these two strains, evolution favors the strain whose virulence is nearest to
1, as it exhibits the greatest R,.

In Chapter |5, we present a novel model of viral evolution that incorporates the
trade-off between immune evasion and transmissibility. Our analysis begins with
the baseline Model (2.1I)), which considers a single resident strain in isolation. New
strains emerge as mutations when the system is at endemic equilibrium (2.2)). This
chapter explores the long-term evolutionary dynamics of these emergent viral strains
and examines the intricate relationship between transmissibility and immune eva-
sion, highlighting the impact of this trade-off on viral persistence and adaptation.

2.3 COVID-19

The COVID-19 pandemic, caused by the severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2), has proved to be exceptionally contagious, sparking a global
health crisis unparalleled since the 1918 flu pandemic [23]]. The pandemic has, as
of March 2024, led to over 750 million cases and more than 20 million deaths, as
reported by the World Health Organization’s (WHO) COVID-19 dashboard [83]].
Since its onset, the pandemic has been compounded by the emergence of multiple
variants of concern (VOC). These variants, including Alpha, Beta, Gamma, Delta,
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and Omicron, have presented distinct challenges in disease transmission and vaccine
efficacy [31},32].

The Alpha variant (B.1.1.7), first detected in the United Kingdom, exhibited in-
creased transmissibility and the potential to evade immune defenses. Similarly, the
Beta variant (B.1.351), originating in South Africa, raised concerns about reduced
vaccine efficacy and the risk of reinfection. The Gamma variant (P.1), identified in
Brazil, showed heightened transmissibility and an increased risk of severe outcomes.
The Delta variant (B.1.617.2), originating in India, demonstrated even greater trans-
missibility and partial immune evasion, necessitating enhanced public health mea-
sures. Most recently, the Omicron variant (B.1.1.529), discovered in South Africa,
has presented as the most infectious variant yet, with significant mutations in the
spike protein [7, 69]].

In the midst of the global spread of these variants, mathematical models have
played a crucial role in informing public health responses. Classical SIR models,
commonly used during epidemics [5] [25], have been adapted to incorporate nuances
specific to COVID-19, including asymptomatic and symptomatic infections, hospital-
izations, and quarantine measures [38], [71]. These models have been instrumental
in evaluating the effectiveness of non-pharmaceutical interventions (NPIs) imple-
mented by governments worldwide.

Social distancing stands out as a key strategy among NPIs for combatting the
spread of COVID-19. Despite its efficacy in reducing transmission rates, social dis-
tancing measures have sparked apprehensions regarding their economic repercus-
sions. However, rigorous mathematical modeling has illuminated the comparative
economic benefits of social distancing over other measures like quarantine or isola-
tion. By quantifying the economic costs and benefits associated with various inter-
vention strategies, these models assist policymakers in crafting nuanced approaches
that strike a balance between public health protection and economic stability [66].

In Chapter (3, we introduce two different scenarios for COVID-19 that include
emergence of new strains due to mutations. We then explore how social distancing
affects the spread of the virus in each case. Chapter 3| examines the effects of social
distancing by introducing a threshold based on the total number of infected individ-
uals, providing insight into how such measures influence the course of an epidemic.
In Chapter [4, we extend this analysis by modeling individuals as nodes within a net-
work. We then study how social distancing impacts the spread of infection across
two different network structures under both scenarios.



3 Epidemic patterns of emerging
variants with dynamical social dis-
tancing

Motivated by the emergence of new variants during the COVID-19 pandemic, we
investigate an epidemiological model of disease transmission dynamics that incorpo-
rates the appearance of novel strains through virus mutations. In our analysis, social
distancing measures significantly influence the prevalence of the disease within the
population. We explore various patterns that arise under different assumptions re-
garding cross-immunity. If recovery from a specific strain provides immunity against
all previous strains but not against newer ones, we observe a consistent sequential
pattern of strain replacement, with newer strains prevailing over older ones. How-
ever, if immunity upon recovery is strain-specific, without protection against other
strains, we observe more intricate dynamics, including the potential recurrence of
earlier strains and the co-circulation of multiple strains. We compare these observed
patterns with genomic analyses conducted during the COVID-19 pandemic in the
Netherlands.

In [48]], the authors investigated the evolution of resistance to COVID-19 vaccina-
tion in the presence of social distancing. They derived a formula for the probability
of the emergence of vaccine resistance over time for a model with two strains: WT
(wild-type virus) and a vaccine-resistant mutant virus (MT). In their simulations, the
social activity level (contact numbers) is adjusted such that the number of infected
individuals remains constant over time (i.e., the effective reproduction number is
modulated to one). They found that under slow vaccination, resistance is more likely
to emerge even if social distancing is maintained, while in the case of rapid vacci-
nation, the emergence of mutants can be prevented if social distancing is observed
during vaccination.

In this chapter, we develop a model similar to existing frameworks, but with an
added dimension: the emergence of n (n € N) new strains through mutations. Our
primary objective is to explore emerging dynamics, particularly focusing on cross-
immunity patterns between strains, while considering the influence of dynamically
changing social distancing measures.

The structure of our work is as follows: Section provides an overview of
our general model. We present two distinct scenarios within this model. The first

13
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scenario, detailed in Section assumes one-way cross-immunity, where recovered
individuals develop immunity against the strain that infected them and all preceding
strains, yet remain susceptible to newly emerging strains. We compute the time-
varying effective reproduction number for each strain (Subsection [3.2.3)) and analyze
the patterns observed in consecutive waves through numerical simulations.

In Section we introduce and contrast the second scenario with the first. In
this scenario, recovered individuals acquire immunity solely against the strain that
infected them, while remaining susceptible to both new and prior strains. This leads
to more intricate dynamics compared to the first scenario.

Finally, in Section (3.4, we compare our findings with data on COVID-19 vari-
ants in the Netherlands, providing insights and implications drawn from our model’s
predictions.

3.1 Model Description

We construct a compartmental model to describe a general model of an infectious
disease with multiple variants. In our model, the population N is divided into the
following three main classes, tracking the disease status of individuals: S denotes
susceptible individuals; / denotes infected individuals; and R represents the popula-
tion of recovered individuals. This classical SIR-setting is extended to accommodate
multiple strains. We use the notation [} for the class of individuals infected by strain
k (k= 1,2,...,n). Upon recovery, individuals move to compartment R;. As a sim-
plification, individuals in R, are those who recovered from infection %, and they all
possess the same type of immunity, regardless of whether they may have been in-
fected in the past by other strains. The model neglects any changes in the population
due to birth, death, or migration during the period under consideration. Thus, the
total population (V) remains invariant for all ¢.

S(t) + i (Ix(t) + Ri(t)) = N.
k=1

We introduce the general cross-immunity matrix C' = ¢;; (4,7 = 1,2,...,n) as
the relative immunity to strain ; after recovering from strain j and transitioning into
the R; state. With this notation, ¢;; = 0 denotes full immunity of R; individuals
to strain ¢, while ¢;; = 1 indicates no immunity at all (full susceptibility) to the
strain. If the value of ¢;; is between 0 and 1, then there is partial immunity to strain
i. In the model equations, the coefficients ¢;; will appear as a reduction factor in
the transmission rate between compartments R; and /;. The strains are assumed to
share the same epidemiological parameters (transmission and recovery rates); they
only differ in terms of population immunity against them.
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The proposed model is governed by the following system of differential equations:

S(t) = —Bo(t) ZI

I4(t) = Bo(t)(1 = a)S(t)1 <>+60() S(t) k- 1()_7]k<>
+ Bo(t)(1 — a)L(t chm ) + Bo(t)ady(t chm . @B

n

Ri(t) = vIu(t) — Bo(t)Re(t) > cinli(t),

=1

Lo (t) = Bo(t)aS(t) ] - ()+50()()1()—71()
+ po(t) Zcm () + Bo(t)ad, (¢ ch“ .

Ru(t) = 7La(t) — Bo(t)Ra(t) Z cinli(t)

where k =2,3,...,n— 1.

In the given system, parameters  and v represent the average transmission rate
and recovery rates, respectively. In this model, a mutation occurs with a small proba-
bility & when exposure to an infected individual with strain ¢ results in transmission
of strain 7 4+ 1. Thus, mutations are assumed to be sequential, generating the subse-
quent variant (¢ = 1,2,...,n). Additionally, individuals recovered from strain i are
assumed to be fully protected from strain /; but susceptible or immune to others, as
determined by the elements of matrix C.

In System[3.1} the parameter o = o(¢) represents a time-varying social distancing
measure, ranging from O to 1, indicating the reduction in contacts compared to base-
line. A value of 0 = 1 implies no social distancing, while o = 0 indicates complete
lockdown. Social distancing plays a crucial role in controlling the infected popula-
tion within acceptable limits. Denoted by L, the daily new infection threshold, o(¢)
is adjusted to ensure that the infectious population does not exceed L/v. (Refer to
Table for parameter details.)

In the following, we explore two scenarios for matrix C: (i) if recovery from strain
i provides immunity against previous strains, C' is a triangular matrix (Section [3.2),
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and (ii) if recovery from strain i confers immunity only against strain 7, individu-
als remain susceptible to earlier and subsequent strains, then matrix C' is 0 in the
diagonal, and 1 in all off-diagonal elements (Section [3.3)).

Parameter Interpretation Values
B Transmission rate 7.5 x 1077
y Recovery rate (day ') 0.25
o Mutation probability 10-¢
o Social distancing parameter (reduction in contacts) 0,1]
N Total population 106
L Number of daily new infected (allowed incidence) | 900, 1500, 3500

Table 3.1: Parameters and values applied in the simulations. The parameters are set to
give Ry = 3.

3.2 First Scenario: One-Way Cross-Immunity Towards
Earlier Variants

3.2.1 Model Equations and the Cross-Immunity Matrix

In this scenario, individuals who have recovered from strain j (j = 1,2,...,n) are
fully immune to any strain ¢ where i < j, but they have no immunity to subsequent
strains. The cross-immunity matrix C reflects this condition. For example, a recov-
ered individual from strain two is immune to strain two and all preceding strains
(ci2 = 0,4 = 1,2), but remains susceptible to new strains, therefore can be infected

by them at the same rate as susceptible individuals (¢;» = 1,7 = 3,...,n). Hence,
000 ---0
1 00 0
c.=1110 0
111 -0

is a lower triangular cross-immunity matrix, with zeros on the diagonal.
In order to derive the model equations, the following assumptions are considered:

* Each strain can infect susceptible individuals S.
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* Recovered individuals from strain j are susceptible to strain 7, where i > j, and
immune to previous ones.

* Individuals infected by strain i can transmit strain i + 1 due to mutation with a
mutation probability .

Based on these assumptions, the system of differential equations for the model is
given by:

S(t) = —Bo(t) Zf

L(t) = Bo(t)(1 - 04)5( Ma(t) —v1i(t),

n

Ry(t) = vL(t) = Bo(t)Ra(t) > Li(t),

=2

L(t) = Bo(t)(1 — a)S(1)] (>+50() S(t) I 1()-%()
+ Bo(t)(1 — a) (¢ ZR )+ Bo(t)ad,_(t ZR ), (3.2)

n—1 n—2

+ Bo(t)1,(t) > Ri(t) + Bo(t)al,—1(t) Y Ri(t),

i=1 =1
Ro(t) = 71n(t)
where k =2,3,...,n— 1.

3.2.2 Epidemiological Dynamics

We have numerically solved System (3.2)), and Fig. displays the number of in-
fected individuals over time for each strain. Initially, we assume a population of
N = 10°, with 1000 individuals infected by strain 1. In the early stage of the epi-
demic, no social distancing measures are in place (¢ = 1). Subsequently, when the
infected population reaches a threshold of L/~ (corresponding to a daily incidence
of L), we implement social distancing measures to stabilize the infected population
at this fixed level, 77| I; = L/~. Under this assumption, the effective reproduction
number during these periods is equal to one (it will be explained in detail in the next
subsection). As the number of infections from the initial strain diminishes due to
recoveries, the newly emerged strains will sequentially replace the previous ones in
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Figure 3.1: Infections behavior over time of Scenario 1; N = 10, L = 1500, v = 0.25,
f=75x10"".

dominance. This transition is evident in Fig. where the emerging strains have a
similar slope to the old declining strains.

Fig. illustrates the impact of the daily number of allowable new infections
on the implementation of social distancing measures over time: a higher number of
newly infected individuals per day corresponds to a higher o(¢), indicating milder
interventions for social distancing. It is also noticeable that as a dominant strain
wanes, we can relax the measures to some extent. However, as new strains emerge
and gain prominence, stricter measures become necessary once again, leading to an
oscillatory pattern in the intensity of interventions.

Looking at Fig. a natural question arises: do newer strains exhibit the same
dominance period as earlier ones, given their similar appearance on the graph? To
address this, we compare the dominance periods of each strain within the population
across three different values of L. The interesting outcome is depicted in Fig.

This figure illustrates that allowing more new individuals to be infected by a strain
results in a shorter duration of dominance and quicker fade-out of that strain. To
compute the dominance period of a variant in the population, we measure the time
difference when the number of infected individuals with each strain reaches L/(2).
As observed in Fig. the number of people infected with strain i (: = 1,2,...,n)
reaches L/(2v) at two distinct times: when strain ¢ is emerging (while strain i —
1 is dying out) and when it is fading out (while strain i + 1 is emerging). Thus,
the dominance period is defined as the time difference between these two points,
representing the duration for a strain to maintain a higher number of infections than
L/(27). As illustrated in Fig. under this scenario, each subsequent strain exhibits
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Figure 3.2: Relation between social distancing parameter, o(t), and L for ten strains of
the first scenario.
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a shorter period of dominance compared to the previous ones. Conversely, a higher
allowed incidence corresponds to shorter dominance periods and a faster emergence
of novel strains.

3.2.3 Reproduction Numbers

Effective Reproduction Ratio

Time (year)

Figure 3.4: Effective reproduction number for each strain of System

Fig. illustrates the effective reproduction number for each strain over time. Ini-
tially, all strains have the potential to infect the entire population. However, as time
progresses, each strain infects fewer individuals due to recovery from the infection
caused by that strain. Despite this, new mutations can still potentially infect every
individual in the population, as recovered individuals from previous strains remain
susceptible to new ones.

According to our basic assumption, the social distancing parameter is manipu-
lated to maintain a fixed number of infected individuals (3_7_, I; = L/7), resulting
in an effective reproduction number of 1 for Model 1 (depicted by the dashed line in
Fig. [3.4).

The overall effective reproduction number is calculated as the weighted average
of all strain reproduction numbers, where the weights are determined by the number
of infected individuals for each strain. Specifically, to compute these reproduction
numbers, we construct the next-generation matrix F'V ~!, where matrices F' and V/
are defined as described by [80]:

Let [ = (I, I,,...,I,)T denote the number of individuals in infection compart-
ments in System (3.2). We express the corresponding equations in the form of
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I; = Fi(I) = Vy(I) for i = 1,2,...,n, where F; represents the appearance of new
infections in compartment i, and V; denotes the rate of transitions between com-
partment ;¢ and other infected compartments. We define the non-negative matrix

F = 8%(_1) and the non-singular matrix V' = 6’541(_1) for 1 < i,7 < n. This formulation
yields:
(1—a)4, 0 0 0 0
O[Al (1 — OZ)AQ 0 0 0
0 OCAQ (1 — Q)Ag 0 0
Fon = 0 0 ads 0o 0|
0 0 0 oA, A,
and
a 0 0 0
0 a0 -0
v, |00 0]
000 -+ a

where A, = oS and A; = Bo(S + 3;_} Ry) for i = 2,3,...,n. At the next step, we
generate the next generation matrix £’V ! as

(1*?)141 0 0 . 0 0
ady (=) 0 0
v 5
FV_ln n — 0 aT/-h (l_j)A3 o 0 0
0 0 0 oo, oAnaa Ay
v v

The eigenvalues of the next-generation matrix provide the effective reproduction
numbers for each strain, which vary over time. The eigenvalues

1—a)Bo(t)S(t)
Y

R(1) = .
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and

gote) (50 + S )

k=1

R(n) = >

are effective reproduction numbers corresponding to the first and last strains, respec-
tively, and

(1 —a)po(t) (S(t) + ;ill Rk(t))

Y
is the effective reproduction number for infection compartments I, i = 2,3,...,n—1.

R(i) =

Moreover, the overall effective reproduction number for the first scenario of our
model can be calculated as:

RScenariol =

It is important to note that in general, the next-generation matrix is calculated at
a steady state. However, to determine the effective reproduction numbers at every
time point ¢, we freeze the values of S(¢), o(t), and Ry(¢) for the duration in which the
subsequent infected generation is being created. This approach allows us to ignore
short-term changes in these values and treat them as steady states, enabling us to
perform the same formal calculations as in the classical case.

3.3 Second Scenario: Absence of Cross-Immunity

3.3.1 Model Equations and the Cross-Immunity Matrix

Let us now consider a scenario where protection upon recovery from one strain pro-
vides immunity only against that particular strain. In this scenario, individuals who
have recovered from a specific strain remain susceptible to both old and new strains.
This is reflected in the cross-immunity matrix, where only the diagonal elements are
zero, indicating full immunity to the recovered strain, while all other elements are
one, signifying no protection against other strains. Thus, the cross-immunity matrix
can be defined as follows:
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011 1
101 1
c.—|110 1
111 -0

The second scenario is based on the following assumptions:

* Each strain can infect susceptible individuals S.

* Recovered individuals from strain 7 are only resistant to this strain and not
protected against other strains.

* Individuals infected by strain i can transmit strain 7 + 1 due to mutation.

The dynamics of the epidemic model we described can be summarized by the
following equations for k = 2,3,...,n — 1:

S(t) = ~Bo(t)S() 3 L),

n

L(t) = Bo(t)(1 = a)S()L(t) + Bo(t)(1 — a)Li(t) Y Ri(t) — 7L (1),

=2

Ry(t) = y11(t) — Bo(t)Ru(t) Z Ii(t),

iu(t) = Bo(t)(1 — a)S(OL(t) + Bo(H)aS () Tr () — vIu()

+Bo(t) (1= a)Ik(t) Y Rilt) +fo(t)alia(t) Y Rill), (3.3
i=1,i#k i=1,i#k—1
Ri(t) = v1i(t) = Bo()Ri(t) Y L(t),
i=1,i#k

Lu(t) = Bo(t)aS () Lu-r(t) + Bo(t)S(E)Iu(t) — v1a(t)

+ Bo(t)1,(t) i Ri(t)+ Bo(t)al,1(t) Y Rilt),
i=1 i=1,i#n—1

Folt) = 71(0) = Bo(t) Ralt) 3 1(1).

=1
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3.3.2 Epidemiological Dynamics

In this case, unlike in Scenario 1, recovered individuals are not immune to old vari-
ants. Consequently, the behavior of the infected populations in Fig. is not as
regular as those in Fig.

As depicted in Fig. for each strain, the infections settle around the value
L/~vn over time. In other words, for large ¢, we have:

This phenomenon can be intuitively explained as follows: In the first scenario,
susceptibility is limited to the new strains only, meaning recovered individuals cannot
be infected with old strains, and there is no mutation from new strains to previous
ones. Consequently, the earlier strains cannot compete with newer ones and converge
to zero, while the new ones rise to L/~.

However, in Scenario 2, each strain infects all recovered individuals, who have
recovered from both new and old strains (except from the very same strain), equal-
izing their potential pools. Moreover, the total number of infected individuals is
constrained to L /v, which is now distributed among n equally competitive strains.

As a result, the effective reproduction numbers hover around one, since the num-
ber of infected individuals neither increases nor decreases during these times (see

Fig. [3.6).
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Figure 3.5: Infected population of each strain of Scenario 2, that are approaching
L/ (yn).
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Figure 3.6: Effective reproduction numbers for each strain approach one as the infected
population approaches L/(yn).

3.3.3 Effective Reproduction Numbers

To determine the effective reproduction number for each strain in this scenario,
we follow the procedure outlined in Subsection [3.2.3} first, we construct the next-
generation matrix, and then we compute its eigenvalues, which correspond to the
effective reproduction numbers for each strain.

We express the equations for the infected compartments I = ([, ,,...,I,)" in
System [3.3] as

Here, F; and V; are defined in the same manner as described in Subsection
We define the non-negative matrix F = 22i!) and the non-singular matrix V =
J

al,
for 1 <1, j < n as follows:
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(1—a)B; 0 0 0 0
OéBl (1 - O[)BQ 0 0 0
0 OéBQ (1 — Oé)Bg 0 0
P = 0 0 aBs 0o 0|

0 0 0 T aBn—l Bn

v 0 0 0

Vn,n = 00 " 0 ;
000 - ~

n

where B, = Bo(S+ > Ry)fori=1,2,...,n. Then we create the matrix F'V !

k=1#i
=B 0 0 0
ob LB 0 0
vt =] 0O afz (b 0 0
0 0 0 oot Ba
vy v

The eigenvalues of this matrix give us the effective reproduction numbers for each
strain. In particular, the eigenvalue

Bo(t)(S(t) + 3 Re(t))
R(n) = . it

is the effective reproduction number that corresponds to the last strain, and

(1—a)Bo(t)(S(H) + > Rult))
R(i) = k=1+£i

v

is the effective reproduction number corresponding to straini, i =1,2,...,n — 1.
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3.4 Discussion

The emergence and persistence of novel mutations in infectious diseases, particularly
COVID-19, necessitate the implementation of a general model incorporating multiple
strains emerging through mutations. For simplicity, we assume that the strains share
identical epidemiological parameters, differing only in the target populations they
can infect, as determined by a cross-immunity matrix. In this chapter, we consider
two scenarios focusing on immune evasion by newer strains resulting from virus
mutations.

In the first scenario, recovery from a strain confers full protection against pre-
vious strains but provides no immunity to novel strains. Simulation results reveal
a highly structured sequential pattern of strain replacement, where newer strains
predominate over older strains but persist in the population for increasingly shorter
periods.

Conversely, in the second scenario, immunity upon recovery is specific to a given
strain and does not confer immunity against others. As a result, the population
infected by each strain exhibits an erratic pattern over time, with recurrence of past
strains and co-circulation of multiple strains without clear dominance.

In the following example, we compare our model results with reported data on

SARS-CoV-2 variants in the Netherlands.
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Figure 3.7: Variants of the coronavirus SARS-COV-2 in the Netherlands from
30/11/2020 to 14/12/2022.

Fig. illustrates the frequency of COVID-19 variants in the Netherlands during
2021-2022, based on data from [70]. The graph depicts the emergence and dom-
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inance of variants Alpha and Delta, which closely mirrors the patterns observed in
Scenario 1 of our model. Notably, the durations of dominance for these variants ex-
hibit striking similarities between the model and the empirical data. However, start-
ing from June 2022, a significant shift occurs, with the Omicron lineage accounting
for the majority of SARS-CoV-2 variants. Within the Omicron lineage, sub-variants
such as BA.5 remain prevalent, while newer sub-variants like BQ.1 are on the rise.

The emergence of these Omicron sub-variants is cause for concern, as they have
been shown to possess immune-evading properties [82]. This could potentially un-
dermine the efficacy of current COVID-19 vaccines and compromise existing natural
immunity, leading to increased rates of infections and reinfections. This evolving
situation bears resemblance to Scenario 2 in our model, where irregular circulation
patterns are observed over time, akin to the fluctuations depicted in Fig. and
reflected in the Netherlands data shown in Fig. These parallels affirm that our
model captures essential aspects of variant dynamics observed during the course of
the COVID-19 pandemic.



4 Modeling Network Epidemics with
Mutation and Cross-Immunity: A
Stochastic Approach

Exploring scenarios concerning the mutation and immunity of viral strains has be-
come crucial to understanding the different patterns of virus spread. This chapter
gains insight into the application of continuous-time stochastic epidemic models on
network structures, focusing on the SIR framework to simulate and analyze these
scenarios. By examining the effects of viral mutations and cross-immunity, this study
shifts its attention from the broader dynamics of disease spread across various net-
work models to the nuanced interactions between viral evolution and immune re-
sponse, using the Gillespie algorithm for the simulations.

4.1 Introduction to Network Science in Epidemiology

Networks offer a natural way to represent systems made up of many interacting parts.
In the context of infectious disease modeling, individuals can be represented as nodes
and their contacts as edges in a network. This approach helps capture the structure
of real-world interactions and has become widely used across many fields, including
epidemiology, biology, computer science, and social sciences.

Using real contact network data and a careful analysis of how diseases spread
through populations, researchers have shown that networks can provide important
insights that simpler models may miss. Traditional models like the well-mixed SIR
assume that everyone in a population mixes randomly. While this assumption simpli-
fies analysis and often works well for large, homogeneous populations, it can over-
look important details about how people actually interact. For example, people do
not all have the same number of contacts, and some interactions—Ilike those within
households or between close partners—can last much longer than others. These dif-
ferences matter for how diseases spread. In particular, the duration of partnerships
can have a strong influence on transmission, especially for infections that require
close or prolonged contact, such as respiratory or sexually transmitted diseases.

Network-based models take these factors into account by representing individuals
and their specific contacts directly. This makes it possible to study how local patterns
of interaction affect the timing and size of outbreaks, as well as the impact of immu-

29
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nity and viral mutation. These models are especially useful when studying smaller
communities, or when individual variation in contact patterns plays a major role in
transmission.

4.1.1 A Framework for Simulating Epidemics on Networks

In this work, we use a network-based SIR model to study how infectious diseases
spread through structured populations. The simulations are carried out using
continuous-time stochastic processes, with the Gillespie algorithm used to model the
random timing of infection and recovery events.

Unlike classical models that assume random mixing across the entire population,
network models make the contact structure explicit. Here, each node represents
an individual, and edges represent fixed connections through which infection can
pass. The main type of variation considered in this framework is the number and
arrangement of these contacts.

One important difference between network and well-mixed models is how they
handle the depletion of susceptible individuals. Classical well-mixed models assume
that every individual in the population has an equal chance of coming into contact
with any other, regardless of location or social structure. As a result, they treat the
depletion of susceptible individuals as a global process—susceptibles are assumed to
be removed evenly across the population as the epidemic progresses. This leads to
the assumption that, early in the epidemic, each infected individual is surrounded by
a fully susceptible neighborhood, which can result in an overestimation of the early
spread of the disease.

In contrast, infections in real-world contact networks often occur in localized
clusters. Once an infected individual has transmitted the disease to their nearby
contacts, the local pool of susceptibles is quickly reduced, slowing the spread in that
area. Well-mixed models do not capture this effect, leading to faster-than-realistic
early growth.

Later in the epidemic, individuals who are infected at later stages may belong to
parts of the network that have not yet been exposed to the disease. Their surrounding
contacts may still be largely susceptible, allowing transmission to continue even when
the total number of susceptibles in the population is relatively low. Since well-mixed
models do not consider these local variations, their predictions may also become
inaccurate in the later phases of an outbreak.

By modeling these effects directly, network-based approaches provide a more de-
tailed view of how contact patterns shape the course of an epidemic. This is especially
important when studying complex processes such as mutation and cross-immunity,
which depend not only on who is infected, but also on how individuals are connected.

This recognition of spatial heterogeneity and complex interactions among individ-
uals highlights the necessity for a more sophisticated approach to modeling epidemic
spread. In this context, continuous-time stochastic epidemic models on network
structures present a promising alternative. In these models, individuals are con-
sidered as nodes, and the interactions among them are illustrated through the edges
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of the network. Within the SIR framework, each node is categorized into one of three
states: susceptible (.5), infected and infectious (/), or recovered/immune/removed
(R). The dynamics (without demography) are primarily governed by two processes:
(a) the transmission of infection across the edges of the network which is modeled
as a Poisson process with a transmission rate 3, and (b) recovery, which is indepen-
dent of the network’s structure and follows a Poisson process with a recovery rate ~y
(Fig. [4.1). Therefore, when a susceptible node has k infectious contacts, it becomes
infected through a Poisson process with rate kf.

§——0—®
P — @

Figure 4.1: In this SIR model, a susceptible node, who is in contact with an infected in-
dividual, will be infected at rate 3. An infected node recovers with rate , independently
of the status or number of their contacts.

4.1.1.1 Stochastic simulation

The initial phase of exploring the stochastic dynamics of epidemic spread across
a network involves individual-based stochastic simulations. This approach meticu-
lously tracks every potential event and its occurrence rate within the network.

A common strategy for these simulations involves progressing through time in
small increments At¢, which is not a fixed time step; rather, it is a random variable
generated from an exponential distribution. Each infection event occurs at a specific
time ¢, where an individual instantly transitions from the susceptible state to the in-
fectious state. Such jumping processes occur according to Poisson processes [52]].
One widely used and computationally efficient approach for simulating such pro-
cesses is the Gillespie algorithm, also known as the stochastic simulation algorithm.
This method includes two variants: the first reaction method and the direct method.
In this work, we focus on the direct method and describe it in more detail. We will
focus on the latter one and explain it more. In this algorithm for the SIR model, the
Poisson processes are used to model the occurrences of events, such as transmission
of infection and recovery, over time.

Deciphering Epidemics with the Gillespie Algorithm

The Gillespie algorithm plays a critical role in simulating the stochastic dynamics
of epidemic spread. Below, we present a detailed pseudocode tailored to an SIR
model in network contexts, where two events—infection and recovery—occur based
on Poisson processes. The rate of infection is given by:
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N N
BY N SsiGyr (4.1)
j=1 i=1
where [ is the transmission rate, and G = (G;;) is an adjacency matrix representing
the network structure among N nodes (individuals). In this matrix, G;; = Gj; =
1 if nodes i and j are connected, and (;; = 0 otherwise. The state vectors S =
(St,...,SN)yand I = (I',...,I") are binary indicators: S = 1 if node i is susceptible,
and I' = 1 if node i is infected; otherwise, the values are zero. The waiting times At
between consecutive events in a Poisson process follow an exponential distribution.
Specifically, At is drawn from: At = —+log(u), where A = A; + X, and u ~ U(0,1),
based on the Superposition Theorem [52]. Here, A\, = ﬁZ;V:l SV, SiGi,; I, and
Ao = 72?[: I are the rate of infection and total recovery rate, respectively, with
~ denoting the recovery rate per infected node.

Algorithm 1: SIR Network Gillespie Simulation Pseudocode

Input:
e N: Number of nodes in the network
* tend - Maximum time to run the simulation
e [3: Transmission rate per edge
* ~: Recovery rate per infected individual
e Jy: Initial list of infected nodes
Output:
* out: A list containing the number of Susceptible, Infected, and Recovered individuals at
each time step
1: procedure SIR GILLESPIE SIMULATION
2: Initialize random network G, Initialize time ¢ to O, transmission rate 3, and recovery rate ~y
3 Set the initial state of nodes: Infected I, Susceptible S, Recovered R
4: Record the initial state in out
5: Define time points T to record the epidemic spread
6 while there are infected nodes in the network do
7 Calculate probability of each event (infection and recovery)
8 Determine next time event At

: Call a random number and select the next event based on the events’ probabilities
10: if the event is an infection then
11: Infect the susceptible node by randomly selecting one of its
12: connected infectious neighbors, and update its state to infected
13: else (if the event is recovery)
14: Recover the infected node and update its state to Recovered
15: end if
16: Update counters for Infected, Susceptible, and Recovered nodes
17: Record current state in out
18: end while
19: Plot the epidemic curve from out

20: end procedure
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4.2 Understanding Network Topologies: Scale-Free
and Random Spatial-Geometric network

To comprehend the spread of infectious diseases within different populations, it is
pivotal to explore the structure of networks that represent these populations. Two
fundamental types of random networks, Scale-Free networks (SF) and Random Spa-
tial Geometric networks (RSG), offer contrasting perspectives on network topology
and its impact on disease dynamics.

In a random spatial geometric network, nodes are positioned within a defined
spatial domain, often arranged on a square lattice. This network model incorporates
randomness in the spatial distribution of nodes while retaining the underlying geo-
metric structure. Each node represents a distinct entity or location, and the edges
between nodes are determined by proximity within a specified distance threshold
r. This network finds applications in various fields, including telecommunications,
transportation, and epidemiology, where spatial interactions play a crucial role in net-
work dynamics and phenomena. For instance, in epidemiology, these networks are
particularly valuable for understanding the patterns of disease transmission within
communities, as they capture the spatial proximity between individuals and facilitate
the exploration of disease spread pathways within geographic areas.

Scale-free networks, generated using models like the Barabasi—Albert model [14],
are widely used to explore how infectious diseases spread across populations. These
networks are characterized by a small number of highly connected nodes, or hubs,
and a large number of nodes with few connections. This structure mirrors the un-
even contact patterns found in real-world settings, making scale-free networks espe-
cially useful for capturing the influence of individuals with high contact rates, often
referred to as super-spreaders. By simulating infectious disease spread on scale-
free networks, we can explore the impact of network topology on epidemic dynam-
ics, identify key transmission pathways and hub nodes driving epidemic outbreaks,
and evaluate the effectiveness of targeted control strategies aimed at disrupting dis-
ease transmission within highly connected sub-networks. Additionally, scale-free net-
works allow for the investigation of emergent phenomena such as the “small-world”
effect, where short average path lengths facilitate rapid epidemic dissemination, and
the “preferential attachment” mechanism, where new infections are preferentially ac-
quired by highly connected individuals, influencing epidemic dynamics and control
measures. This network offers insights into the complex interplay between network
structure, individual behavior, and disease transmission, informing the development
of more effective public health interventions and strategies for infectious disease con-
trol [[15].

Fig. provides a visual comparison of these two networks, illustrating our in-
vestigation into how the type of network influences the spread of infectious diseases.
Both networks possess an equal number of connections and nodes: 400 nodes an
expected degree of 6 for both networks. All simulations presented in this chapter are
based on these two specific network structures, and all figures are plotted using the
same graphs to ensure consistency throughout the analysis.
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In the random spatial geometric network, nodes are uniformly distributed across
a unit square lattice (size 1 x 1), with connections established between node pairs
if the Euclidean distance between them is less than a specified neighborhood radius
r = 0.07. Since the nodes are randomly placed, the grid resolution (i.e., the density
of nodes) is not fixed, but instead depends on the number of nodes N. The value of
r = 0.07 represents the maximum connection distance, and it influences how densely
the network is connected. Smaller values of r will result in fewer connections, while
larger values will create more densely connected networks.

For the Barabasi—Albert model, we initialize with my = 3 nodes and iteratively
introduce one new node at each step, connecting it to m = 3 existing vertices selected
with a probability proportional to the number of links those nodes already possess.
All simulations in this chapter were conducted using these two types of networks.

Scale-Free network, N = 400, my =3, m =3 Random Spatial-Geometric network, r = 0.071
T T T T T

Figure 4.2: Comparison of network models: Panel (a) depicts the scale-free network
generated using the Barabdsi-Albert model, while panel (b) shows the random spatial-
geometric network. Both networks consist of 400 nodes and 1200 edges. In the SF
model, nodes are initialized with mq, = 3 nodes and iteratively introduce one new node
at each step, connecting it to m = 3 existing vertices selected with a probability propor-
tional to the number of links those nodes already possess. In the RSG model, nodes are
distributed across a square lattice, with connections established between nodes within a
specified neighborhood radius (r = 0.07) based on Euclidean distance.

4.3 Case Study: Tracking Infectious Diseases Across
Networks

This section investigates the spread of infectious diseases by comparing two dis-
tinct scenarios described in Chapter (3} involving the mutation and immunity of viral
strains and analyzing the transmission dynamics across two different network struc-
tures. The primary aim is to understand how these scenarios and network topologies
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collectively influence the patterns of disease spread and the effectiveness of interven-
tions such as social distancing.

In both scenarios, the population is modeled as N nodes (individuals) within
a randomly interconnected graph. The two network structures under considera-
tion—SF and RSG—offer contrasting features in terms of connectivity and clustering,
which significantly impact the transmission dynamics.

In these scenarios, viral strains are arranged in a circular network structure, where
each strain is positioned on a unit circle at equal intervals. This circular layout is
not only a topological feature of the mutation network (allowing strain k£ to mutate
to strain 1 and vice versa), but it also encodes antigenic distance. Specifically, in
our simulations, the antigenic distance d;; € [0, 1] between strains is defined as the
shortest arc length between two strain positions on a circle with circumference of
length one. This formulation ensures circular continuity (e.g., strain 1 is adjacent
to strain k), and captures the minimal antigenic separation in any direction around
the circle. Mathematically, for strains located at positions p; and p; on the circle, we
define:

dij = min (|p; — p;l, 1= [pi — pjl) -

This distance modulates reinfection risk: the greater the distance between two
strains, the more antigenically distinct they are. Accordingly, the infection rate is
modified by including d;; as a scaling factor in the reinfection term. For individuals
with no prior exposure, d;; is set to 1, corresponding to the maximum susceptibility,
since they lack any prior immunity. In contrast, for previously infected individuals,
d;; reflects the antigenic similarity between the infecting strain and the previously
encountered strain, with smaller values indicating greater similarity and thus
stronger partial immunity.

In the first scenario, similar to the second scenario in the previous chapter (Sec-
tion [3.3), viral strains exhibit dynamic mutation abilities, where each strain can ei-
ther transition to a subsequent strain or revert to a previous one. This mutational
flexibility is coupled with partial cross-immunity, meaning that recovery from one
strain does not ensure immunity from other strains, particularly those that are anti-
genically distinct and connected within the network (i.e., there exists a direct connec-
tion or edge between them in the network model). In this scenario, d;; is important
because people can still get reinfected by other strains.

This scenario highlights the difficulty in predicting immunity, as individuals who
recover from one strain may still be susceptible to other strains.

In this model, strains are arranged in a loop, so strain ¢ can mutate both forward
to strain 7 + 1 and backward to strain ¢ — 1, with the circular structure allowing for
a transition from the last strain £ back to strain 1. This flexibility leads to the con-
tinuous circulation of various strains within the population. Similar to Fig. from
the previous chapter, in Fig. the infected populations corresponding to adjacent
strains converge over time, as strains share a common infectivity pool. The partial
cross-immunity between antigenically distinct strains further facilitates reinfection
cycles, perpetuating the circulation of multiple viral variants.

Conversely, the second scenario, which is similar to the one proposed in Section
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presents a more linear mutation pattern, where each strain mutates strictly to the
next in sequence. In this model, one-way cross-immunity is present, meaning that re-
covery from any given strain confers immunity to all preceding strains, but does not
protect against strains that come after it in the mutation sequence. This setup reflects
a more predictable and sequential progression of immunity, allowing for easier track-
ing of immunity acquisition across the population and potentially facilitating more
effective management of outbreak dynamics. Even though cross-immunity moves in
one direction and makes the spread more predictable, d;; still matters by determining
the reinfection risk from later strains that individuals have not yet encountered, with
d;; = 0 when ¢ > j due to full immunity to earlier strains.

In the second scenario, the strains are also arranged in a loop, but mutation
occurs in only one direction: from strain 7 to strain ¢ + 1, and the last strain £ can
mutate only to strain 1. This unidirectional mutation process leads to a sequential
progression of immunity development, where each strain is gradually replaced by the
next in line. As immunity builds up in the population, the pool of susceptible hosts
for each subsequent strain decreases, leading to the eventual extinction of the strains.
As shown in simulations (Fig. [4.4), each strain emerges, peaks, and then disappears
as immunity builds against it, following a predictable sequence of infection.

In our stochastic SIR model, simulations begin with a single infection event: node
1 is initially infected with strain 1. To capture the intricate dynamics of the disease
spread, we incorporate three crucial parameters:

* The transmission rate () determines the rate at which susceptible individuals
contract the disease upon exposure to infected individuals. For our simulations,
we set 5 to 0.1.

* The recovery rate () represents the rate at which infected individuals recover
from the disease and subsequently develop immunity. We assign v a value of
0.08, indicating a moderate recovery rate consistent with typical disease pro-
gression dynamics, meaning that the average recovery time is 1 /v = 12.5 days.

* Additionally, we define the mutation rate («) as the frequency at which viral
strains acquire genetic changes. At each time step, a viral strain mutate into
another strain with the mutation rate «.. This parameter, set to 1072, captures
the evolutionary dynamics of the virus, reflecting its ability to adapt and evolve
over time.

Furthermore, the possible states of a node in our model are clearly defined. Each
individual may be in exactly one of the following states at any given time:

e S: A susceptible individual (can become infected).

 I;: Aninfected individual with strain j (can transmit the infection to susceptible
individuals).

* R;: A recovered individual from strain j (immune to strain j but may be sus-
ceptible to other strains).
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Here, j = 1,..., k, where k represents the total number of strains in the system.
This system of states ensures that the model tracks the progression of each individual
through different infection states, with potential for mutation to other strains over
time.

These parameter choices align with realistic scenarios encountered in the epi-
demiology of respiratory infections, providing a meaningful framework for studying
disease dynamics. Notably, under these parameter settings, the basic reproduction
number exceeds one for the analyzed examples, indicating the potential for sustained
transmission within the population. This metric serves as a critical determinant of
epidemic potential and informs public health interventions aimed at disease control
and prevention.

As evidenced in Figs. and which present the above scenarios in the two
networks through multiple simulations implemented via the Gillespie algorithm (see
Pseudocode Algorithm (1| where it has been sketched for a simple SIR model with
a single strain and no mutation), the dynamics of disease spread vary significantly
between these network models.

In the RSG network model (depicted in panel (b) of both figures), nodes are ar-
ranged based on their physical proximity, with edges representing spatial connections
rather than preferential attachment according to node degree. This spatial arrange-
ment results in nodes that are physically close to each other being more likely to be
connected by edges, reflecting the underlying geography or spatial distribution of the
nodes. Consequently, the network exhibits a more homogeneous distribution of con-
nections compared to networks generated by preferential attachment mechanisms
like the Barabdsi—Albert model.

This uniform connectivity pattern in the RSG network leads to a lack of highly
connected hubs or nodes with exceptionally high degrees. In contrast, the SF model
(panel (a)) forms hubs through preferential attachment, resulting in highly con-
nected nodes that act as hotspots for disease transmission. These hubs facilitate rapid
disease propagation by enabling infections to spread efficiently through densely con-
nected regions of the network.

As a result, disease transmission within the RSG network, despite possessing an
equal number of connections (edges) to the SF network, exhibits lower efficiency. In-
fections progress more gradually through the RSG network due to the lack of highly
connected hubs, which typically serve as primary pathways for transmission. In con-
trast to the SF network, where rapid transmission occurs via these hubs, in the RSG
network, infection spread is constrained by the spatial proximity of nodes and the
density of connections within their immediate surroundings. To ensure the reliability
and consistency of our results, each simulation scenario was repeated multiple times.
In all iterations, the network structure—whether SF or RSG—was kept fixed, main-
taining consistent node connectivity and topology. Furthermore, each iteration was
initialized identically, with node 1 infected by the first strain, providing a uniform
baseline for evaluating the effects of network topology and mutation dynamics on
disease spread.
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Figure 4.3: Scenario 1 Analysis: This figure presents a comparison of epidemic spread
dynamics across scale-free networks in panel (a) and random spatial-geometric network
in panel (b), with N = 400 and 100 simulations using the Gillespie algorithm, where
strains can mutate to either the preceding or following strain, and recovery does not
guarantee immunity against other variants. Despite both networks having an equal
number of connections (edges), the spatial network exhibits slower infection spread due
to the absence of highly connected hubs, which act as primary pathways for transmission
in the SF network. In the spatial network, infection spread is constrained by the spatial
proximity of nodes and the density of connections within their immediate surroundings.
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Figure 4.4: Scenario 2 Analysis: Comparison of epidemic spread dynamics between
Scale-Free networks (panel a) and Random Spatial-Geometric networks (panel b) with
N=400 nodes and 100 simulations using the Gillespie algorithm. Under conditions
where strains mutate sequentially and recovery only provides immunity against previous
strains, the spatial network demonstrates slower infection spread despite possessing an
equal number of connections (edges) to the SF network. This difference can be attributed
to the absence of highly connected hubs in the spatial network, which serve as primary
pathways for transmission in the SF network. In the spatial network, infection spread is
constrained by the spatial proximity of nodes and the density of connections within their
immediate surroundings.



40 Modeling Network Epidemics with Mutation and Cross-Immunity

4.3.1 Control Strategies for Disease Spread

In this section, we aim to control the spread of disease by employing global social dis-
tancing strategy (SDS). Control measures, including this strategy, reflect a concerted
effort to suppress or at least slow down the spread of the virus. Social distancing min-
imizes opportunities for virus transmission by maintaining physical distance between
individuals and reducing the frequency of gatherings in large groups. [8].

Various social distancing measures have been implemented in response to the
COVID-19 pandemic. These measures include the closure of schools, workplaces,
and certain businesses, as well as the cancellation of events to prevent large gather-
ings. In some countries, initial measures involved the prohibition of mass gatherings
exceeding 1000 people. However, as the situation evolved, this limit was progres-
sively reduced to 500 and then further down to 50 individuals. Additionally, cine-
mas, restaurants, gyms, and places of worship were closed in some regions. Germany;,
for instance, opted to close most non-essential shops while extending the operating
hours of supermarkets. This adjustment aimed to minimize crowding by spreading
out customer visits. Furthermore, certain countries implemented special measures
to protect vulnerable populations, such as reserving the first hours of business for
elderly customers who are at higher risk of severe illness [24].

While social distancing as a non-pharmaceutical intervention has been incorpo-
rated into network-based epidemic models in several studies [50, 61], this section
distinguishes itself by implementing social distancing within the two specific scenar-
ios proposed in this work.

We analyze the impact of this intervention by modeling a global social distanc-
ing strategy. In this strategy, social distancing is activated when the virus preva-
lence—that is, the proportion of infected individuals in the population—reaches a
predetermined threshold. Once this threshold is crossed, all individuals in the pop-
ulation are required to reduce their contacts, regardless of their infection status. In
the network model, this is implemented by randomly removing a fraction o of all
edges, including connections between any combinations of individuals.

The timing of this intervention—that is, when social distancing is actually trig-
gered—is shown by a vertical dashed line. Each figure shows the average result from
several simulation runs. In some of these runs, the total number of infected individ-
uals never reaches the threshold, because the outbreak fades out due to recovery. In
such cases, social distancing is not applied at all. As a result, the average number
of infected individuals under social distancing conditions might appear lower than
the threshold, even though the intervention is meant to begin when that threshold is
crossed.

It is also important to note that the dashed line in the figures represents the
average time at which social distancing is applied across all simulations. In some
runs, the threshold is reached quickly, while in others it takes longer. When we
average the timing across all these cases, the dashed line may end up appearing after
the peak of the outbreak. This can give the impression that social distancing was
applied too late. However, in the runs where the threshold was actually reached, the
intervention was applied promptly.
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In our model, social distancing is simulated by randomly removing network con-
nections by a specified percentage, which is adjustable. This method allows us to
explore the effects of varying intensities of non-pharmaceutical interventions on the
spread of the virus. By adjusting the extent to which these connections are cut,
we can assess the effectiveness of different levels of intervention rigor. This approach
provides valuable insights into how varying degrees of social distancing can influence
the dynamics of disease transmission and inform optimal public health strategies. For
example, in very large population countries such as India and Brazil, adopting stricter
social distancing measures will play a crucial role in preventing the overwhelming of
healthcare services and averting thousands of deaths due to inadequate care for se-
vere cases of the disease [8]. We present three distinct degrees of social distancing:
no social distancing (o = 0), the results shown in the previous section; a moderate
degree of SD (0 = 0.4); and a high degree of SD (o0 = 0.7).

Similarly to the previous subsection, we implement the simulations for two dif-
ferent random graphs: Scale-Free network and Random Spatial-Geometric network.

4.3.1.1 Global Social Distancing

We first examine the impact of a moderate degree of global social distancing (o =
0.4) on our two scenarios, comparing it with the results observed in the previous sec-
tion where no social distancing measures were in place. Initially, we use a 'null net-
work’ configuration, which represents the societal state before any stringent global
distancing measures were introduced [12, 43[]. This baseline scenario allows us to
observe the natural progression of the disease without interventions. Once the num-
ber of infected individuals reaches 5% of the total population, we implement global
social distancing. This intervention transitions the simulation to a network where
connections per agent are significantly reduced, representing a moderately reduced
interaction model.

The implementation of this control strategy yielded distinct outcomes across the
two scenarios and network topologies. Figs. and illustrate these effects, high-
lighting the nuanced interplay between social distancing, network structure, and the
characteristics of viral mutation and immunity in each scenario.

In the second scenario (Fig. [4.6), characterized by sequential viral mutation and
cumulative immunity, the introduction of global social distancing significantly altered
disease transmission dynamics. The reduction in global contacts among individuals
led to a noticeable decrease in the infection levels across the network. Compared to
the baseline scenario without interventions (Fig. [4.4), the infected population was
reduced by more than 70% when social distancing was applied. This pronounced
effect reflects the way in which intervention strategies interact with the structure of
viral mutation and host immunity.

One possible explanation for this is that, in this scenario, the emergence of new
viral strains occurs sequentially through mutation, with individuals infected by ear-
lier strains gaining immunity to later strains. As a result, the epidemic trajectory
is tightly coupled to the success of early strains in establishing transmission chains.
Social distancing not only reduces the initial strain direct spread but also indirectly
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preventing or delaying the appearance of subsequent variants. Furthermore, due
to the one-way cross-immunity, individuals exposed to the primary strain become
protected against the secondary strain, narrowing the susceptible population avail-
able for future transmission. This combination of slowed primary transmission and
immunological shielding amplifies the overall effect of social distancing.

In the first scenario (Fig. [4.5), which involves dynamic viral mutation and partial
cross-immunity patterns, also exhibited a substantial decline in infection levels un-
der global social distancing (compare with Fig. [4.3]). However, the relative reduction
was smaller than in the second scenario. In this setting, strains can evolve and circu-
late independently, and the absence of cross-immunity allows for repeated infections
across different strains. As a result, while social distancing still reduces contact rates
and slows transmission across the network, it does not disrupt any directional depen-
dency or protection between strains. Each strain retains access to a largely unaffected
susceptible population, making the intervention less efficient in limiting cumulative
infections.

These results highlight how the interaction between viral mutation dynamics and
host immunity influences the effectiveness of non-pharmaceutical interventions. In
scenarios with constrained mutation pathways and cumulative immunity, social dis-
tancing has amplified effects by disrupting not just immediate transmission but also
the conditions for future strain emergence. Conversely, when strains are immunolog-
ically and evolutionarily independent, interventions must work harder to suppress
each wave individually. This insight supports tailoring control strategies to the un-
derlying viral dynamics and host immune interactions.
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Figure 4.5: Implementation of global social distancing in Scenario 1 on SF and RSG
networks, depicted in panels (a) and (b) respectively, with a population size of N = 400
and 100 simulations. Upon reaching a threshold where the total infected population con-
stitutes 5% of the entire population (dashed line), a moderate social distancing strategy
is initiated, involving the removal of 40% of all connections.

In Figs. 4.7 and we analyze the total infected populations across three lev-
els of social distancing intensity: no social distancing, moderate social distancing
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Figure 4.6: Implementation of global social distancing in Scenario 2 on SF and RSG
networks, in panels (a) and (b) respectively. The population size is N = 400. Once the
total infected population reaches 5% of the entire population (dashed line), a moderate
social distancing strategy is enacted, entailing the removal of 40% of all connections.

(o¢ = 0.4), and high social distancing (o = 0.7). The results reveal a clear gradient
in infection outcomes, with progressively lower infected populations as the intensity
of social distancing increases. This trend underscores the critical role of interven-
tion measures in mitigating disease spread and their effectiveness across different
network structures.

No Social Distancing: In the absence of any social distancing measures, the in-
fected population remains consistently high across both the SF and RSG networks.
This case reflects the rapid and uncontrolled spread of the virus, particularly in en-
vironments lacking intervention. The SF network, with its highly connected hubs,
facilitates efficient transmission, making it especially vulnerable to widespread out-
breaks under these conditions. Similarly, the RSG network, while less efficient in
spreading the virus due to its spatial constraints, still experiences significant infec-
tion levels when no control measures are implemented. The simulations with no
social distancing are shown in previous section in Figs. and

Moderate Social Distancing (o = 0.4): The introduction of moderate social
distancing has a substantial impact on disease dynamics. In both networks (Figs. 4.7
and [4.8)), moderate social distancing effectively reduced the infected population com-
pared to the no-intervention scenario. By targeting and reducing connections, this
intervention significantly disrupts transmission pathways, curbing the virus’s ability
to propagate. In the RSG network in particular, the impact of moderate social dis-
tancing is more pronounced.

High Social Distancing (0 = 0.7): High social distancing measures result in a
dramatic reduction in the infected population, especially in the SF network. By re-
moving a substantial fraction of connections, this intervention nearly eliminates the
influence of highly connected hubs, effectively severing the primary pathways for vi-
ral transmission. As shown in panel (a) of Figs. 4.7|and this level of intervention
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disrupts the transmission chain so thoroughly that it leads to a precipitous drop in in-
fections, demonstrating the unparalleled efficacy of stringent measures in scale-free
networks.

However, in the RSG network (panel (b) of Figs. and [4.8), the difference
between moderate and high social distancing is relatively minor. Nevertheless, it is
evident that implementing a high degree of social distancing leads to the extinction
of the infected population significantly earlier compared to the moderate degree.
Due to the uniform distribution of connections and the absence of highly influential
nodes, increasing the intensity of social distancing beyond a certain threshold yields
diminishing returns. The infection levels remain lower than in the no-intervention
scenario, but the relative gain between moderate and high distancing is less signifi-
cant than in the SF network.

The differing responses of the SF and RSG networks to varying levels of social
distancing highlight the importance of network topology in determining the effec-
tiveness of intervention strategies. The SF network, characterized by its hubs, ex-
hibits a clear benefit from increasing the intensity of social distancing. Disrupting the
hubs has a disproportionate impact, as these nodes are responsible for the majority
of transmissions. On the other hand, the RSG network, with its homogeneous con-
nectivity and reliance on spatial proximity, demonstrates a more uniform response
to interventions. Once a certain level of distancing is achieved, further reductions in
connectivity do not significantly enhance control efforts.
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Figure 4.7: Comparison of total infected populations under varying degrees of global
social distancing in SF and RSG networks in Scenario 1, depicted in panels (a) and (b)
respectively. The simulations were conducted with a total population size of N = 400,
where global social distancing measures were implemented once 5% of the population
was infected (dashed line). Three degrees of social distancing were examined: no social
distancing (o = 0), moderate social distancing (o = 0.4), and high social distancing
(0g = 0.7). Each simulation was run for 50 iterations to observe the effects on the total
infected populations.

These findings emphasize the necessity of tailoring social distancing policies to
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Figure 4.8: Total infected populations under varying degrees of global social distancing
in (a) SF and (b) RSG networks for Scenario 2. Simulations were performed with a
population size of N = 400, where global social distancing measures were initiated once
5% of the population became infected (dashed line). Three levels of social distancing
were analyzed: no social distancing (o = 0), moderate social distancing (o = 0.4),
and high social distancing (o = 0.7). Each simulation ran for 50 iterations to assess
the impact on the total infected population size.

the underlying network structure of a population. In environments resembling SF
networks, where a few individuals or locations serve as major transmission hubs,
high-intensity social distancing can be an exceptionally effective strategy for control-
ling outbreaks. Although, moderate social distancing is still impactful. Conversely,
in settings similar to RSG networks, where connectivity is more evenly distributed,
moderate social distancing may suffice to achieve substantial reductions in infection
levels, minimizing the need for overly restrictive measures.

This analysis reinforces the critical role of social distancing as a non-
pharmaceutical intervention, especially during epidemic peaks. By adapting
the intensity of distancing measures to the specific characteristics of the population’s
interaction network, public health officials can maximize the effectiveness of these
interventions while minimizing societal disruption.

The strategic timing of implementing social distancing measures is pivotal in the
effective management of infectious disease outbreaks. Initiating these interventions
right after the onset of an outbreak can significantly influence their efficacy. This
principle is supported by our simulations presented in Figs. [4.944.10, which are
conducted across the two networks in Scenarios 1 and 2, and highlight the criti-
cal importance of timely action. The results specifically illustrate that implementing
social distancing measures when only 2.5% of the population (i.e., 10 individuals)
is infected, as opposed to waiting until 5% or 10% are infected, can significantly
accelerate the control of the disease outbreak.

Our comparative analysis underscores a notable divergence in infection dynam-
ics between the SF and RSG networks when social distancing measures are imple-
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Figure 4.9: Analysis of global social distancing timing in SF and RSG networks (left
and right panels, respectively) under Scenario 1 with (a) moderate social distancing
(0 = 0.4) and (b) high social distancing (o = 0.7). Simulations were conducted
with N = 400 nodes and 50 iterations. Early interventions (2.5% infected) significantly
reduce epidemic peaks in both networks compared to delays at 5% and 10% infected.
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mented. Specifically, in the RSG network (panel (b) of Figs. corresponding
to both Scenario 1 and Scenario 2), as well as in the SF network under Scenario 1,
delays in enforcing social distancing lead to higher infection peaks and prolong the
duration of the virus within the community. Thus, the precision in timing these in-
terventions is critical for minimizing both the peak and the duration of an epidemic

in these networks.
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Figure 4.10: Analysis of global social distancing timing in SF and RSG networks (left
and right panels, respectively) under Scenario 2 with (a) moderate social distancing
(0g = 0.4) and (b) high social distancing (o = 0.7). Simulations were conducted with
N = 400 nodes and 50 iterations. (a) In the SF network, the epidemic trajectory is
largely unaffected by intervention timing, while delayed interventions in the RSG net-
work lead to higher peaks and longer outbreaks. (b) Early interventions (2.5% infected)
significantly reduce epidemic peaks in both networks compared to delays at 5% and 10%
infected under higher degree.

Our simulations on the SF network under Scenario 2 reveal that when a moder-
ate degree of social distancing is applied (left panel of Figs. 4.9(a) and 4.10|(a)),
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the timing of these interventions—whether at 2.5%, 5%, or 10% of the popula-
tion infected—does not significantly change the epidemic’s trajectory. However, this
changes markedly with the application of more stringent social distancing measures
(see Fig.[4.9|(b) and Fig.[4.10|(b)). Under highly intensive interventions, the timing of
implementation becomes crucial. Specifically, initiating strict social distancing earlier
in the epidemic’s course—such as when only 2.5% of the population is infected—can
significantly reduce the peak of the epidemic. This indicates that while moderate
social distancing may be ineffective in altering the spread in highly interconnected
networks like the SF under Scenario 2, the strategic timing of more severe measures
can mitigate the epidemic’s impact.

The difference in the impact of timing social distancing measures between cases
with different levels of edge removal (moderate and high) can be attributed to how
effectively the interventions disrupt transmission pathways in the SF network, par-
ticularly in the presence of highly connected hubs. Therefore, even when social dis-
tancing measures are implemented relatively early in the outbreak (say 2.5% of the
population is infected), the remaining network structure still facilitates considerable
transmission, leading to a relatively modest decrease in the outbreak peak compared
to when social distancing is implemented later (when 10% of the population is in-
fected).

However, in the case with a 0.7 fraction of edge removal (high degree), a larger
proportion of the network’s edges are removed, including many of the highly con-
nected hubs. As a result, the network becomes more disconnected, with fewer ways
for the disease to spread. When social distancing measures are implemented early in
the outbreak, the reduced connectivity of the network limits the spread of the virus
more effectively, resulting in a lower outbreak peak. Conversely, when social distanc-
ing measures are implemented later, the virus has already spread extensively through
the network, and the remaining connectivity still allows for significant transmission,
leading to a higher outbreak peak compared to the earlier implementation.

The reason why the timing of social distancing appears less impactful under Sce-
nario 2 compared to Scenario 1 is likely due to the way infections initially spread in
the network. In Scenario 2, the early infections tend to remain more localized within
smaller clusters rather than spreading quickly throughout the entire network. As a
result, the outbreak grows more slowly at the beginning, which reduces the urgency
and effectiveness of early intervention—especially when moderate social distancing
is applied. This means that whether social distancing starts when 2.5% or 10% of the
population is infected makes less of a difference to the overall outcome. However,
when stronger social distancing measures are used—particularly those that remove
a large number of connections including key hubs—the timing becomes much more
important. In these cases, acting early helps cut off major transmission routes before
the virus spreads widely, significantly lowering the outbreak peak.



5 Evolution into chaos — implications
of the trade-off between transmis-
sibility and immune evasion

Predicting the evolution of viruses is both a significant challenge and a major public
health concern. Numerous studies have investigated virus evolution by introducing a
trade-off between pathogens’ epidemiological traits (virulence, transmissibility, and
clearance). However, the majority of these investigations have primarily focused
on the trade-off between virulence and the transmissibility. Anderson and May [9]]
argued that a parasite cannot increase its transmission rate without shortening its in-
fectious period by harming its host, and they showed that the parasite should adopt
an optimum intermediate level of virulence. This trade-off approach inspired many
subsequent works. This phenomenon is explored in detail in Chapter 11 of the book
“Evolutionary Dynamics” [64], where the epidemiological dynamics of at least two
parasite strains competing for the same host have been studied. If transmissibility
is proportional to virulence, the basic reproduction number is an increasing func-
tion of virulence, and selection favors strains with higher virulence and thus higher
infectivity. However, when transmissibility is a saturating non-linear function of viru-
lence, the basic reproduction number becomes a hump-shaped function of virulence,
maximized at an optimal intermediate level. Therefore, if the virulence of a parasite
population is greater than this value, then selection will reduce virulence; otherwise,
it will increase it.

The study [2]] investigated the emergence of a convex trade-off between transmis-
sion and virulence, utilizing a model that explicitly incorporates within-host dynam-
ics. Their analysis indicated the robustness of this convex trade-off. Additionally, they
demonstrated that small variations among parasites or hosts might blur the trade-off
curve, as parasites with the same within-host growth rate can express different vir-
ulence or transmission values for each host they infect. Further in-depth discussion
of the transmission—-virulence trade-off can be found in [1, 3, 57, /68]] and references
thereof.

Other models have been developed that incorporate trade-offs between additional
traits. For instance, [47]] modeled an inherent trade-off between contact and trans-
missibility using a basic susceptible-infected-recovered (SIR) framework by differ-
entiating between mild and severe infections to indicate that increasing symptom

49
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severity will tend to decrease contact rates and increase the probability of trans-
mission given contact. The work [79] studied the host-pathogen interaction for the
case in which hosts may become at most doubly infected. It was discovered that in
the presence of frequent double infections, increased virulence is favored; but when
pathogens become more virulent, the force of infection will decrease, followed by
lower virulence again. They concluded that the endemic steady state of the viru-
lence depends on the interaction within hosts as well as on the interaction at the
population level.

On 12 March 2020, the World Health Organization (WHO) declared a new world-
wide pandemic, COVID-19, which originated in China in December 2019 and rapidly
spread around the world, causing millions of deaths [[60]. The most common SARS-
CoV-2 variants of concern, including the wild type, Alpha, Beta, Gamma, Delta, and
Omicron, show great diversity in their transmissibility and virulence [40, 45|, 59].

This diversity, and the need to assess the evolutionary trajectory of new variants,
urged scientists to re-examine the potential trade-off between virulence and trans-
missibility of SARS-CoV-2 [44]]. Other studies of SARS-CoV-2 evolution explore how
different vaccination strategies could impact infection dynamics and antigenic evolu-
tion in partially immune populations [[72], or discuss the impacts of immune escape
and transmissibility on the endemic load of SARS-CoV-2 [[65]. A major concern re-
lated to new variants was their ability to evade immunity and its potential impact on
the severity of upcoming waves [[16, [73, [78]. According to [21], antibody resistance
may compromise viral fitness, such as in the B.1.351 variant, which resists neutral-
ization by antibodies but also loses enhanced transmissibility as a consequence of
the immune-escape mutations. The JN.1 variant showed higher immune evasion
compared with BA.2.86 and other strains, at the expense of reduced human ACE2
binding, and this evolutionary pattern has been observed in the previous transition
from BA.2.75 to XBB [[86]. Hence, it is natural to consider a potential trade-off be-
tween immune evasion and transmissibility. Such a trade-off is further supported by
the analysis published in [67].

While the classical trade-offs have been extensively investigated, there remains a
significant gap in the mathematical understanding of the implications of a trade-off
between transmissibility and immune evasion. Viral evolution often operates under
selective pressures that favor maximizing the basic reproduction number R, which
measures the average number of secondary infections caused by a single infected
individual in a fully susceptible population. In our framework, however, optimal
evolutionary strategy depends on the resident strain, and refers to the evolutionary
pathway that maximizes the invasion fitness of a viral strain balancing the trade-off
between immune evasion and transmissibility. Understanding this balance is crucial
for predicting the long-term behavior of pathogens and developing effective public
health interventions.

To account for such a trade-off in viral evolution, we construct a novel evolution-
ary model by the following steps (Fig.[5.1):

1. We initiate our analysis by investigating an SIR system with a single strain in
an endemic steady state.
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2. Upon the emergence of new strains distinct from the previous strain, we in-
troduce a parameter p € [0, 1] to denote their immune-evasive property, which
represents the fraction of recovered individuals from the resident strain that
can be infected by the new strain. Strains with p = 0 are unable to infect
anyone with prior immunity, while strains with p = 1 can infect all individu-
als. Additionally, we assume a trade-off between transmissibility and immune
evasion, making the transmission rate of new strains dependent on p. Subse-
quently, our focus shifts to the introduction of novel strains, aiming to ascertain
whether their emergence is attributed to their ability to evade immunity or their
heightened transmissibility.

3. Next we select the fittest strain by maximizing the invasion fitness, and the
system goes to the new endemic steady state characterized by this new strain
with a new transmission rate determined by the trade-off function.

4. Return to step 1 and continue the evolutionary process.

This evolutionary process is depicted in Fig. Although many adaptive dy-
namics frameworks emphasize the role of small mutational steps in evolutionary pro-
cesses [[17], our model distinguishes itself by allowing larger evolutionary jumps with
significant differences between resident and invader strains. This reflects real-world
observations such as the COVID-19 pandemic, where, from a given host population’s
perspective, the evolution was characterized by the emergence of vastly different
strains with the ability of replacing the resident strain without a gradual sequence of
mutations (which may have occurred elsewhere). An important aspect of our model
is the difference between the epidemiological dynamics of the resident and invader
strains. Specifically, the resident strain cannot infect recovered individuals due to ac-
quired immunity. In contrast, invader strains may exhibit varying degrees of immune
evasion, which allows them to re-infect a part of the recovered population. This
asymmetry is important to shape the invasion fitness of new strains and influences
the direction of their evolutionary trajectory.

Through our theoretical framework, we shall investigate whether in the short
term such evolution points towards enhanced transmissibility or enhanced immune
evasion (Theorem [5.1.1). We analyze the transmissibility and the immune evasion
capability of successive invading strains, and explore this evolution over the long
term as well. We provide explicit conditions when the evolution converges to a cer-
tain transmissibility (Theorem [5.2.2)), but we also find situations when there exists
an alternating pattern of period two where highly transmissible and immune eva-
sive strains repeat (Theorem [5.2.8). The most interesting case is when the evolu-
tion exhibits chaotic behaviour, thus making viral evolution unpredictable (Theorem
[5.2.13). Our findings are illustrated by corresponding figures, charts and the bifur-

cation diagram (see Figs. 5.6)).
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Figure 5.1: The model outline flowchart: Beginning with the SIR model with a trans-
mission rate (3, while the system is in an endemic steady state (red). New strains with
immune-evasive property p, where p € [0,1], emerge. Assuming a trade-off between
transmissibility and immune evasion, denoted by f(p), the transmission rates of these
new strains are 3, = [ + f(p) (blue). As the evolution tends to favor the strain with
maximal invasion fitness (maximizing the invasion reproduction number), we consider
the newly emerging strain which is the fittest with a transmission rate 3, = 5+ f(p™®)
(green). The system transitions to a new endemic steady state characterized by a novel
transmission rate determined by the trade-off function. The process returns to the initial
step and the evolutionary process is continued.

5.1 Direction of the viral evolution: higher transmis-
sibility or immune evasion?

In this section, we aim to ascertain the direction of the virus’s evolution. We seek to
identify the circumstances under which the virus’s evolutionary path inclines toward
heightened transmissibility or increased immune evasion. Additionally, we investi-
gate the conditions under which a newly emerging strain can successfully invade the
resident strain.

Consider the SIR Model from Chapter We introduce invader strains,
denoted by the index v into the system, we aim to discern whether the emergence of
this invader strain is attributable to its capacity to evade immunity or its enhanced
transmissibility. This introduction is made under the assumption that the system
attains its endemic steady state:

R L p gl
(S*, I*,R") = (Ro’ﬁ(RO 1)’E(RO 1)), (5.1)
where the basic reproduction number R, = % > 1 ensures that the endemic steady
state exists and is globally attractive.

In contrast to the slow mutation process inherent in many evolutionary models,
our model distinguishes itself by allowing for the invasion of strains by a diverse
array of variants, rather than solely mutants of the resident strain with very similar
parameters. Many populations experienced such situation during COVID-19, where
the evolution progressed to many different directions in other parts of the world, and



5.1 Direction of the viral evolution: higher transmissibility or immune evasion?
53

countries were facing a large number of new strains originated from elsewhere, and
some of those were able to invade and replace the previously dominant strain. These
newly emerging strains, referred to as invader strains, differ from the resident strain
in two distinct ways:

* Immune Evasion: Invader strains have the capability to evade immunity and
infect individuals who have recovered from the resident strain (R). To quantify
this, we introduce the parameter p € [0,1] which represents the fraction of
recovered individuals from the resident strain that can be infected by the new
strain.

* Transmissibility: Invader strains may exhibit either heightened or diminished
contagiousness relative to the resident strain. This is delineated by the pa-
rameter 3, =  + f(p), where f(p) represents the trade-off function between
transmissibility and immune evasion. A positive value of f(p) indicates an en-
hanced transmissibility of the invader strain compared to the resident strain,
while a negative f(p) suggests a reduction in transmissibility. This trade-off
function operates under the following assumptions:

(H1) f is continuously differentiable on [0, 1];
(H2) f'(p) <0, for p € [0,1];
(H3) £(0) > 0and f(1) < 0.
The early dynamics associated with the invader strain, represented by lineariza-

tion at the endemic equilibrium, and characterized by the transmission rate f,, can
be expressed as follows:

1,(t) = BuS7L,(t) + BpR* I, (t) — vI,(t) — ul,(1). (5.2)

Therefore, the invasion reproduction number for the invader strains when the
resident strain is in its endemic steady state, is

B+ f@)ES"+pRY) _ B+S0) [ty  pr(B— (k7))
T+ u v+ h p Bl +7)

R = , (5.3)

which denotes the number of secondary infections produced by an individual in-
fected with the invasive variant over the course of their infectious period, within a
population where resident strains have achieved equilibrium [58]]. This can be in-
terpreted as follows: An infectious individual remains infectious for 1/(x + ) time
units. The number of new infections produced by a single infected host is given by
(B+ f(p))(S*+pR*) per unit time, since the available pool for infection with immune
evasion parameter p is S* + pR*. The product of these two quantities is the num-
ber of secondary infected cases that are caused by one infection. The equilibrium
abundance of uninfected hosts prior to the arrival of the infection compartment by
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invader strains is given by (5.1). Hence represents the invasion reproductive
ratio, which is a crucial quantity that determines whether a virus can spread in a host
population. If R < 1, the population infected by the invader is expected to diminish
over time, whereas, R > 1 measures the potential for the novel strain to continue
spreading and potentially invade the population.

In the subsequent theorem, we will show that when £ is small, the invasion repro-
duction number is a monotone decreasing function of p, indicating the emergence of
a new strain with a higher transmission rate. Conversely, in case of high transmis-
sion rate (3, circumventing the immune system is the most advantageous evolutionary
strategy for the invader strain.

Theorem 5.1.1. Let f satisfy|(H1)H(H3), We assume the resident strain of Model (2.1))
is in its endemic steady state, as given by (5.1). Then, there exists sufficiently small

0 > 0 such that if € (u+ v, + v + ), then the invasion reproduction number R(p)
decreases on |0, 1], and it attains its maximum at p = 0 and 8, =  + f(0). For large
values of B, R is an increasing function of p on |0, 1], hence the maximum of R(p) occurs

atp=1land g, =5+ f(1).

Proof. To prove the theorem, it is enough to show that for small 3, R'(p) is negative,
and for large /3, R/(p) is positive on [0, 1] (here ' denotes the derivative with respect
to p).

Straightforward calculation yields

(B = (+7) B+ f®) + ((n+7)>+py(B = (n+7)f ()

Rip) = Bu+7)? G4
_ 0 5, U )~ (kt )y
(1 +7)? (1 + )2
N P+ 7)* =y + 7)) =1 ) +7) (5.5)
Blp+7)?

Since f € C'|0, 1], there exist positive constants k¥ and K such that |f(p)| < K and
—K < f'(p) < —Fk hold for all p € [0,1]. Combining this with (5.4), it follows that
if 8 — (v + p) is sufficiently small, then R’(p) < 0 holds for all p € [0, 1], since with
f — p+ v we are left with f'(p)/5 < —k/p < 0. This implies that the function R is
decreasing throughout and the maximum of R occurs at p = 0.

On the other hand, considering the boundedness of both f and f’, we observe
that for sufficiently large 3, the first term dominates in (5.5), hence R'(p) is positive
for all p € [0, 1] and it attains its maximum at 1. O

The result of this theorem is intuitive: if the reproduction number is very large,
then the recovered population at the steady state is also large, hence immune evasion
can be very beneficial for a new strain. However, it does not gain much from immune
evasion when the reproduction number is only slightly larger than one, since in this
case the recovered population is small.
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5.2 Analysis of the evolutionary process: global sta-
bility, periodicity, and chaos

Thus far, we have seen that a diminished transmission rate of the resident strain leads
to the emergence of novel strains characterized by heightened transmissibility rather
than increased immune evasion. Conversely, when f is large, the invading strains
exhibit an increased capability to evade immunity.

In this section, we direct our attention towards identifying and closely examining
the most invasive strain, i.e. the strain with the maximal invasion fitness. Therefore,
we focus on answering the question of how this strain can maximize its reproduction
number in presence of the resident strain.

To facilitate the mathematical analysis throughout the remainder of this research,
we employ a linear trade-off f with transmission advantage parameter a, and cost
parameter b representing the expense of immunity evasion: f(p) = a — bp, where
0<a<b.

In this case, the invasion reproductive number at the endemic steady state of the
resident strain can be explicitly expressed as a function of p, and is characterized as
a downward parabola of the form R(p) = Ap? + Bp + C, where

L B+ aBraB-w+) b Bta
Blu+y)? 7 B+ 7)? B’ B
The maximum point of R(p) is given by
0, B < 51
pr(B) = B;Za - %7 B1 < B < B (5.6)
1, B > 527
where
s pty—a /Pty +a)?+aby(p+)?
b=t 2
Y
and
5 u+’y—a+26+\/72(u+’y+a—2b)2+4b7(u+'y)2
2 = .

2 27y

This new fittest strain is characterized by a novel transmission rate denoted as (3, =
B + a — bp™**, and from this point on, it takes the place of the resident strain in the
system.

Fig. presents a graphical representation of the invasion reproduction number
R(p) for three distinct values of the transmission rate §. Each value corresponds to
distinct behaviors exhibited by the invasion reproduction function when its maximum
value occurs at p™** = 0, p™* = 1, and p™* € (0, 1), depicted as filled dots in the
figure.



56 Evolution into chaos
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Figure 5.2: Panel (a) shows the invasion reproduction number with respect to p for
three distinct values of the transmission rate parameter (3, 0.26, 0.296, and 0.35 (curves
red, green, and blue respectively). Each value corresponds to distinct behaviors exhib-
ited by the invasion reproduction function when its maximum value occurs at p™** = (,
p* =1, and p™*> € (0, 1), respectively. Panel (b) shows the function p™**(/3) with re-
spect to transmission rates of the resident strain. When the transmission rate 3 surpasses
(5, the maximum invasion reproduction number exhibits an increasing trend with max-
imum at p = 1 (p™> = 1), and for 3 close enough to v + u, p™® = 0. In both panels,
1=35-10"% a=0.02,b=0.1and v = 0.2.

By considering p™** as a function of 3 , the relationship between them is illus-
trated in Fig.[5.2b. This figure aligns with the implications of Theorem [5.1.1], indi-
cating that as  increases, immune evasion becomes more favorable. Consequently,
the invader strain is anticipated to propagate employing a strategy centered around
immunity evasion, rather than exhibiting heightened transmissibility.

By iterating this procedure, we obtain a sequence of transmission rates driven by
the difference equation

Bn-‘rl - g(ﬂn)a 60 >y + H, (57)
where g : (v + p,00) = (7 + 1, 00),

ﬁ_l_aa 1fﬁ<61a
98) = 5* + sty B <B< By (5.8)
B+a—b, if B> B,

The following proposition contains some basic properties of the map g, which can
be verified by straightforward calculation.

Proposition 5.2.1. For any b > a > 0, function g defined in (5.8)),
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(i) possesses a unique fixed point 3* € (51, 5’2) defined as

atpty | VAPala=2n+7) F10E ) (p+9)
2 2y

B = , (5.9)

(i) is linear and strictly increasing with constant slope 1 within the intervals (y+, Bl]
and [ﬁg, OO),

(iii) is convex on [31, BQ]L moreover, it is st;:ictly decreasing on (5’1, Pmin) and strictly
increasing on (Sumin, 52), where By € (01, 52] is defined by

by +w)? iy s atytR
Bmin—{~+“+ LA (5.10)

- : +
Pa, ifa<b< “HE

In the following subsections, we demonstrate a variety of behaviors, from stability,
through periodicity, to chaos.

5.2.1 Global Convergence

Through the mathematical framework presented below, Theorem we investi-
gate the conditions under which transmissibility is stabilized, implying that over the
long term, emerging variants will have approximately the same transmission rate. We
illustrate this by providing explicit conditions under which the emergence of forth-
coming strains, characterized by the sequence of transmission rates {3, }, converges
to the fixed point.

Theorem 5.2.2. The unique fixed point 3* of the difference equation (5.7) is

(i) locally asymptotically stable (LAS) if

3ﬂv+u—af}.

b>a>y+pu or b>max{a,
16+ pp?

(ii) locally unstable if a < b < % and a < v+ u;

(iii) globally asymptotically stable (GAS) (i.e. LAS and globally attractive) if

%W+u—aV3W—J+MV+M%}_

b>a>~vy+p or b>max{a, ,
Ay + p)? 16(y + p)?

Before we prove Theorem |5.2.2] let us recall some results and tools related to
local and global stability.
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Theorem 5.2.3 ([6, Theorem 2.1]). If z* is a fixed point of f : (¢,d) — (c,d), then
the fixed point is locally asymptotically stable if |f'(x*)| < 1, and locally unstable if
/(@) > 1.

Definition 5.2.4 ([27]). A function ¢(x) envelops a function f(x) on the interval (c, d)
if and only if for the unique fixed point =*

(1) ¢(z) > f(x) forx e (c,x*), and (2)¢(z)< f(x) forx € (z*,d).

Theorem 5.2.5 ([28, Theorem 3]). Assume that f maps the open interval (c,d) into
itself. (The map f(x) may be discontinuous and/or multi-valued). Furthermore, assume
that f(z*) = x* is the unique fixed point of f, and that there is a continuous self-inverse
function ¢(x) which envelops f(x) on (c,d). Then if x is any initial point and {x,} is
any sequence consistent with z,,, = f(x,), then {x, } converges to x*.

Proof of Theorem (i) From Theorem [5.2.3| the local asymptotic stability of the
function ¢(p) is established when the condition |¢'(5*)| < 1 is satisfied. An ele-
mentary calculation shows that if « > v + p, then ¢/(5*) € (0,1). Moreover, if

b> 20t and g < v+ p, then ¢'(5*) € (—1,0), concluding the proof of statement

A(y+n)?
2

(ii) Similarly, when a < b < % and a < v + pu, then ¢'(5*) < —1. Thus,
according to Theorem the fixed point is locally unstable.

(iii) Assume that the condition of statement holds. To establish global sta-
bility, in view of Theorem and statement it suffices to construct a suitable
function which envelopes the function g. To accomplish this, we introduce the self-
inverse function ¢(5) = 24* — . We claim that ¢ is an enveloping function for g
on (7 + i, 00). Without loss of generality, we show that ¢ envelopes function g over
the interval (ﬁl, BQ) (since ¢ is strictly decreasing and g(ﬁl) > g(B) for g < 1, and

(62) < g(5), when By < f3). Given that the function ¢ is convex on [61, 62] ¢ =

and ¢'(5*) > —1, hence, to fulfill the first condition of Definition it sufﬁces to

show that g(f;) < ¢(5;). This inequality holds exactly when b > %fl;”‘))
Finally, this condition always holds when b > a > v + u, because v + u >

% This completes the proof of statement |(iii)} O

Fig. shows that ¢(3) is enveloped by the linear function ¢(3) = 25* — .
In this example, we have a > u + v, thus global asymptotic stability follows from
Theorem [5.2.2

Fig. illustrates the bifurcation diagram of the function ¢(f) with b serving as
the bifurcation parameter. This diagram reveals how varying the parameter b leads
to changes in solutions of the difference equation (5.7), representing the sequence
of transmission rates of emerging fittest strains. The pink and orange lines mark the
critical points of b for local and global stability, respectively (under the condition a <
~v+u). Surpassing the threshold of local stability given by Theorem [5.2.2{(i), solutions
demonstrate convergence towards the fixed point. This means, over a sufﬁciently
long period, all prevailing strains will practically have the same transmission rate.
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Figure 5.3: Graph of ¢(3) = [ + a — bp™* plotted with the enveloping function ¢(/3) =
2p3* — [ (red line) and identity line 3, = [ (dashed line). In panel (a), the parameter
b = a + 0.05 is chosen such that g(f1) > g(B2), and in panel (b), g($1) < g($3) for
b = 0.55. In this example, a = 1.6(y + 1) > p + 7, thus global asymptotic stability
follows from Theorem Other parameters are v = 0.2, = 3.5 - 107°.

This is also illustrated in Fig. where any chosen initial point leads to a solution
converging to this fixed point. These numerical evidences indicate that the notable
gap between the mentioned thresholds (cf. statements [(i)] and [(ii)| of Theorem
could be filled. In other words, we conjecture that local asymptotic stability of the
fixed point in fact implies its global stability. In the bifurcation diagram, a lower
punishment (cost) parameter b is associated with increased complexity in behavior,
as detailed in Section [5.2.3]

Fig. also illustrates the bifurcation diagram for the immune evasion parame-
ter p via equation (5.6]), with b serving as the bifurcation parameter. When b reaches a
value where the system exhibits a two-periodic transmission rate, p™®* also alternates
between two values: p™* = 0 and some p™®* € (0, 1). This means that strains with a
higher transmission rate will be followed by a strain having smaller transmission rate
but with the ability to potentially reinfect a significant proportion of the recovered
population (30-50% in this parameter region). Conversely, strains with lower  will
be followed by p™®* = 0, where the next strain will have the advantage of having
a higher transmission rate, but in return, it will not be able to reinfect individuals
recovered from the previous strain at all.

5.2.2 Attracting Interval

In the upcoming theorem, we identify an interval into which all solutions of the
difference equation enter and do not leave thereafter. This implies that, over
an extended period, the transmission rates of the new strains remain within this
specified interval.

Theorem 5.2.6. Let 5, > supg((y + i, 8*]) and v + p < B < inf g([8*, B4]). Then
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9([8-,B+]) C [B-,B4], and every solution of (5.7) enters [3_, 3.] without leaving it
again.

Proof. This theorem is a direct application of Proposition 9.5 of [77]]. O

Remark 5.2.7. The supremum of the function g on (v + pu, *] is easily observed to be
g(B1) = B1 + a. The determination of the infimum depends on the parameters and may
manifest as g(ﬁl + a), or g(Bmin), where B, was defined in (5.10).

When f1+a < B, S— can be chosen arbitrarily from (y+ i, (51 +a)). Conversely,
for instances where 31 + a > PBumm, [S_ can be selected arbitrarily within the interval

(7 + 11, 9(Brmin))-

We depict the bounded interval, denoted as [5_, 5, ], within the bifurcation dia-
gram showcased in Fig. This illustration offers a visual confirmation that the
transmission rates associated with the newly emerging strain will persist within this
designated interval over an extended period.

5.2.3 Periodic Solutions and Complex Dynamics

In this section, we demonstrate that, in cases where the fixed point is locally unstable,
there is at least one two-periodic solution. This is observed in the depicted solutions
presented in Fig. [5.4al and [5.5b| for specific values of the parameter b. These findings
indicate that, despite multiple iterations and the emergence of numerous subsequent
strains, only two transmission rates are repeated alternately in the system over the
long term. In addition, within Theorem |5.2.13| we demonstrate that the difference
equation (5.7), under specific conditions, exhibits chaotic behavior. This implies that
the system’s dynamics is unpredictable, making it challenging to forecast whether the
emergence of the next strain will be attributed to a heightened transmission rate or
its capability to evade the immune system.

Theorem 5.2.8. If a < b < % and a < ~y + u, then, there exists at least one

two-periodic solution of the difference equation (5.7) different from [*.
To prove this theorem, we use the following concepts and results of [77].

Assumption 1. The function f : (c,00) — (c,00) is continuous, with a unique fixed
point x* > ¢, and is bounded on (c, 00). Moreover; there exist x1 and xs, ¢ < 11 < T* <
Ty < 00, such that f(xy) > zy and f(z3) < ws.

Theorem 5.2.9 ([[77, Theorem 9.6]). Assume that Assumption |1| holds and there is
no fixed point of f? different from the unique fixed point x*. Then all solutions of the
difference equation x,, = f(z,), i.e. {x,} with n € Nwith z, > ¢, converge to z*, as
n — OQ.

Definition 5.2.10. For any y € (c, 00), let M_(y) represent the set of initial conditions
x that are mapped onto y by the iterative application of the function f, i.e.

M_(y) = (J{z € (¢,00) : f"(z) = y}.
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(a) Bifurcation diagram for the difference equation (5.7). The diagram
captures the diverse behaviors—chaotic, periodic, and convergent—
across a range of values for b. On the left side of the “LAS Condition”-
line, the fixed point is unstable and on the right side of the “GAS
Condition™-line, the fixed point is globally asymptotically stable (Theo-
rem|5.2.2(iii)]). All trajectories are confined within the interval [3_, f4]

(Theorem and Remark .

LAS GAS
Condition | Condition
0.2
.‘ :
0.0 “ —

0.05 0.10 0.15 0.20
Bifurcation Parameter: b

(b) Bifurcation diagram for immune evasion p via the equation ([5.6).

Figure 5.4: Bifurcation diagram for the equations and (5.6). The system was
iterated for n = 1000 steps from ten initial values for each b in between 0.02 and 0.21
with step-size 0.0005, and the last 50 iterations are displayed in the plot. Here, 1 =
3.5-1075%, v = 0.2, and a = 0.02.
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(a) Cobweb plot for with initial
value 5 = 0.258 and parameter b =
0.155 tends to the unique fixed point.
This diagram illustrates the case when
the fixed point (3* is globally asymptot-
ically stable.
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(b) The cobweb plot with initial value
B = 0.254 and b = 0.11 illustrates the
manifestation of a two-cycle within the
system. With multiple iterations, only
two transmission rates are repeated al-
ternately.
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(c¢) The cobweb plot, initialized with
B = 0.2227 and parameter b = 0.03,
reveals a 3-periodic solution, as also

proved in Theorem|5.2.13

Figure 5.5: The cobweb plots correspond to three distinct behaviors of (5.7). u =
3.5-107°, v = 0.2, and a = 0.02
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Proposition 5.2.11 ([77, Proposition 9.11]). Assume that f~'({x}) is countable for
every x € (¢,00). Then M_(y) is countable for every point y € (c, o).

Remark 5.2.12. Assumption (1} Theorem and Definition |5.2.10| provided above,
are found in [77] with ¢ = 0. However, this can be easily addressed through a trivial
change of variables.

Now, we are in position to prove Theorem|[5.2.8]

Proof of Theorem Considering Theorem [5.2.9) and the fulfillment of Assump-
tion |1} it is adequate to demonstrate the existence of a solution that does not con-

verge to [3*. According to Theorem |5.2.2) when a < b < % and a < v + pu, 8*

is locally unstable and ¢/(5*) < —1. Since 3* € (B4, 52), S0 ¢ is continuous in a small
neighborhood of the fixed point, therefore, there exists some ¢ € (0, 5* — (y+ )] such
that ¢'(8) < —1forall § € (8*—¢, B*+¢). Furthermore, since any point 5 € (y+pu, o)
has a countable inverse set, more precisely, the cardinality of the set g~'({3}) is at
most three (see Proposition @ (ii)-(iii)), it follows that the set M_(f) is also
countable as per Proposition [5.2.11] Consequently, there exists 3, € (v + u, o), such
that gy ¢ M_(p3*). Assuming to the contrary that lim,_,, 3, = 5%, there exists some
m € N such that |8, — f*| < e for all n > m and B, # (%, since By ¢ M_(5%).
However, by the mean value theorem, for all n > m, |8,.1 — 8*| = |9(B.) — 9(5%)| =
l9(&)11 8 — 5% > |5 — %] > 0 holds for some &, between §* and £3,,. This contradicts
the convergence of 3, towards §*, proving our statements. O

Theorem 5.2.13. Let 0 < a < b. If g(B1 +a) < B1 —aor fo+b—a < g(Bo+a—)
holds, then the difference equation (5.7)) is chaotic in the sense of Li and Yorke [46], i.e.

1. for every positive integer k there is a periodic point in (v + u, o0) having period k;

2. there is an uncountable set S C (y + p, 00) with no periodic points which satisfies
the following conditions:

(i) forevery p,q € Swith p # q,

limsup [¢"(p) —g"(¢)| >0 and liminf|g"(p) —g"(¢)| = 0;

n—oo
(i) for every p € S and periodic point q € (v + pu, 00),

limsup [¢"(p) — ¢"(q)| > 0.

n—o0

Proof. By virtue of [46, Theorem 1] it suffices to identify a 3, that fulfills condition

9*(Bo) < Bo < 9(Bo) < g*(Bo) or g*(Bo) > Bo > g(bo) > g*(bo)-
When ¢(f; +a) < 1 —a, then let 8y = 51 — a. Note that, since g maps the interval
(v + p, 00) into itself, v + u < By must hold. Then the inequalities

Bo < g(Bo) = 51 <Bi+a= 9*(Bo) and g¢*(Bo) = 9(31 +a) < Bi—a=p
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clearly hold, so ¢°(5) < By < g(B0) < g°(Bo) is satisfied. )
Similarly, if s + b —a < g(B2 + a — b) is fulfilled, then setting 5y = 2 + b — a leads
to

Bo > g(Bo) = B > Pa+a—b=g*(B)

and
9 (Bo) :9(62-1-@—17) > By +b—a=f,

that is, ¢*(8y) > Bo > g(B0) > ¢*(By) holds, just as required. O

Corollary 5.2.14. If either B, — 31 < a < Yora+ By — B <b< 34 is satisfied, then
the difference equation (5.7)) is chaotic in the sense of Li and Yorke.

Proof. Assuming f,—f; < a < 2 yields g(8;+a) = f1+2a—b < $; —a, while condition
a+ B — B < b < 2 immediately implies g(32 +a —b) = B +2a —b > By + b — a.
Hence, conditions of Theorem [5.2.13| are satisfied in both cases. O

A straightforward implication of Theorem [5.2.13| is the existence of a three-
periodic solution. Fig. offers numerical validation of this phenomenon, pre-
senting evidence that corroborates the theoretical predictions made by the theorem.

Fig. illustrates four distinct regions, each representing a different dynami-
cal behavior of the equation (5.7). The blue and yellow regions denote the do-
mains where the fixed point is globally and locally asymptotically stable, respec-
tively, whereas the green region highlights areas of instability where 2-periodic or-
bits emerge, as delineated in Theorems|5.2.2|and |5.2.8] The gray region (obtained in
Theorem (gray) and Corollary[5.2.14] (light gray region)) reflects the chaotic
aspects of the difference equation (5.7)), within which predicting the behavior of sub-
sequent strains becomes challenging.

Fig. illustrates the prevalence of infection for each strain within the context
of the presented Model (2.1)), following the scheme presented in Fig. This illus-
trative figure was constructed by integrating the SIR model, and when the solution
approached the endemic steady state, we switched to a new strain (i.e., new [3) se-
lected by maximizing invasion fitness via the trade-off. Depending on the immune
evasion parameter p of the new strain, we reallocated recovered and susceptible indi-
viduals to create the initial state for the next period. Then we repeated the procedure
by newer and newer strains.

Panel (a) corresponds to the conditions outlined in Theorem where the
transmission rates of strains converge to an equilibrium. Under these conditions, a
stable transmission rate ensures a uniform steady-state prevalence across all strains.
As observed, the infection levels for all strains remain consistent over time, showing
a stable and predictable pattern of infection dynamics.

Panel (b) corresponds to a stable 2-periodic scenario. After the first wave, we
experience a fast convergence in the trajectory of the dynamics of transmission rates
to a 2-periodic pattern. This periodicity in transmissibility leads to alternating preva-
lence levels. Higher prevalence corresponds to a greater proportion of the infected
population, indicating a more harmful evolutionary outcome.
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In panel (c) each strain possesses a different transmission rate, resulting in a
highly irregular and unpredictable pattern of infection prevalence. This behavior
corresponds to the chaotic regime of the difference equation (5.7)). The figure high-
lights how variations in transmissibility across strains can drive complex outcomes in
infection prevalence, making it challenging to predict long-term dynamics.

0.20
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Locally Unstable & Periodic

« 0.10

Chaotic Behavior
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0.00t £
0.0 0.05 0.10 0.15 0.20
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Figure 5.6: The figure delineates four distinct regions, each corresponding to a unique
dynamical behavior of the system as defined by the difference equation (5.7). The regions
colored in blue and yellow represent domains where the fixed point exhibits global and
local asymptotic stability, respectively. The green regions are zones of instability, as given
in Theorem The area depicted in gray encapsulates chaotic dynamics of (5.7).
Here v = 0.2 and p = 3.5-1075.

5.3 Discussion

Gaining insights into the evolution of pathogens’ traits is significant not only in the
context of evolutionary dynamics but also holds crucial implications for epidemi-
ology and public health. These evolutionary traits include virulence, transmission
efficiency, replication rate, resistance to stress and antimicrobials, etc. Mechanisms
that allow pathogens to avoid, suppress, or manipulate the host’s immune system
are also vital for their long term survival. Understanding the evolution of host im-
mune evasion is central to designing influenza vaccines, since influenza strains in
subsequent years may evade prior immunity [[19, 33]], and this issue gained attention
during the COVID-19 pandemic as well [[73].

The evolution of these traits is often intertwined via various trade-offs. Most
notably, the trade-off between virulence and transmissibility has been investigated
in numerous research papers. In comparison, the immune evasion-transmissibility
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(a) Stable transmission rates yield similar waves and the same preva-
lence at steady state (shown in the inset) across subsequent strains. Here
b=10.208, 8 = 0.404, and a = 0.2.

Figure 5.7: Prevalence dynamics of infection under varying transmission rate scenarios.
The initial value of S, I, and R are 0.999, 0.001, and 0 respectively; u = 3.5 - 1075,
v =0.2.
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Figure 5.7: Prevalence dynamics of infection under varying transmission rate scenarios.
The initial value of S, I, and R are 0.999, 0.001, and 0 respectively; u = 3.5 - 1075,

v =0.2.
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trade-off received less attention, and has not been explicitly considered in mathemati-
cal models of viral evolution. By incorporating this trade-off into a novel evolutionary
model, we explored the emergence of new variants and their long term evolutionary
patterns.

Our starting point was an epidemiological Model considering a single resi-
dent strain. Novel strains emerge with a transmission rate denoted by 5, = 5 + f(p),
where p € [0, 1] is the immune-evasion, and f(-) is a decreasing function expressing
the trade-off. Strains with p = 0 lack the ability to evade the immune response in
individuals who have acquired immunity and currently belong to the recovered (R)
compartment. Conversely, strains with p = 1 are capable of infecting all individuals
who have recovered from the previous strain. As demonstrated in Theorem 5.1.1]
when the transmission rate of the resident strain, 3, is sufficiently close to v + u, the
invasion reproduction number R(p) decreases across the range of p. Consequently,
the new strain exhibits a higher transmission rate, and invasion fitness is maximized
at p = 0. Conversely, for cases where 3 > (v + ), immune evasion becomes ad-
vantageous and invasion fitness is maximized at p = 1. For intermediate values of 3,
invasion fitness is maximized at some 0 < p < 1.

We assume that evolution selects the most invasive strain (with maximal invasion
reproduction number), characterized by a transmission rate 5, = § + f(p™*). This
new variant replaces the resident strain, and we let the system into the new endemic
steady state, initiating a cycle of strain replacements. This process can be reduced
mathematically to a difference equation (see (5.7))). For the sake of analytic results,
we focused on a linear trade-off function f(p) = @ — bp. Our findings reveal that this
methodological simplification does not compromise the complexity of the observed
dynamics, which range from the global stability of the fixed point to the emergence
of periodic and even chaotic behavior.

To find conditions for the global stability of the unique fixed point of (5.7), we
applied the enveloping technique of [27]]. Our investigation uncovered that, within a
specific parameter range for b, the fixed point is globally asymptotic stable. This sug-
gests that over time, new variants consistently exhibit similar intrinsic transmission
rates of infection. Additionally, our analysis has demonstrated that the emergence of
instability is accompanied by both periodic and chaotic behaviors. Specifically, The-
orem 5.2.6| establishes the existence of at least one two-periodic solution, suggesting
that the system can alternate between only two transmission rates over extended
periods. Theorem delineates the conditions under which the solutions of the
difference equation exhibit chaotic behavior. This chaotic nature renders the
system’s dynamics inherently unpredictable in the long run. These diverse behav-
iors are visually represented in Fig. where each colored region corresponds to
one of the following dynamics of the equation (5.7): GAS, LAS, locally unstable,
and chaotic/periodic. Bifurcation diagram and cobweb plot offer a visu-
alization of the evolution of the given model across successive iterations, depicting
its dynamics from an initial value. In Fig. (and a segment of Fig. [5.4a), the
convergence to the fixed point is evident, however, it is not universal. When the con-
ditions outlined in Theorem [5.2.2] are not met, the system may exhibit periodic and
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even chaotic behaviors, as depicted in Figs. and the left side of Fig.

for b < W. In the bifurcation diagram, one can see that reducing the cost
parameter b is directly correlated with an escalation in behavioral complexity. This
dynamics fosters a more unpredictable and complex pattern of viral evolution. As
it was observed during the pandemic, SARS-CoV-2 viral evolution is inherently un-
predictable [22]]. Our results offer a mechanism via a simple trade-off that naturally
leads to such unpredictability.

Naturally, there are several limitations to this approach. To focus on the impact of
the transmissibility/immune evasion trade-off, we ignored other complex phenom-
ena that influence the disease transmission dynamics, and restricted ourselves to a
simple SIR model. We assumed that the most invasive strain replaces the resident
strain. This is a strong assumption which simplifies our framework, but it might
not capture the full range of potential evolutionary behaviors. For instance, relaxing
this assumption could lead to scenarios where multiple strains co-circulate with sig-
nificant prevalences, or where the success of invasion is influenced by factors such
as host immune landscapes, heterogeneity in immunity in the population, or other
selection pressures. Additionally, we ignored superinfection, competition between
multiple strains, or immune memory from previous infections, which could alter the
observed dynamics. However, in the context of SARS-CoV-2 evolution during the
COVID-19 pandemic, in the first few waves we have not observed significant coexis-
tence of strains (see Fig for example). Instead, new variants have quickly and
consistently outcompeted the previous strains and established dominance, as seen
with the successive emergence of variants like Alpha and Delta. This offers that, at
least for this particular scenario, the evolutionary trajectory aligns with the domi-
nance of the fittest strain, possibly driven by its higher transmissibility or immune
evasion capabilities. Nevertheless, our results point out that assuming such simple
mechanisms and even a linear trade-off can lead to complicated dynamics.

Predicting the emergence of new viral strains is a major challenge. Our results
indicate that even under a simplified model, where we assume a linear trade-off be-
tween transmissibility and immune evasion, the dynamics of strain emergence can
be highly unpredictable and even chaotic in certain conditions. This suggests that,
despite the simplicity of our model, the emergence of new strains can exhibit com-
plex and erratic behaviors for a range of pathogens as well. Such findings highlight
the inherent unpredictability in viral evolution, which is especially relevant when
considering real-world scenarios, such as the evolution of SARS-CoV-2 during the
pandemic.

Future research may consider more complicated disease dynamics models, in par-
ticular, our method is applicable to any compartmental model (which may include
even differential delay equations) that has a unique, globally asymptotically stable
endemic equilibrium. It would also be interesting to study other functional forms of
trade-off, or multiple trade-offs between various traits. This way one can potentially
assess the robustness of these results as well as gain further insight into viral evo-
lution. Furthermore, the bifurcation diagram in Fig. suggests that our result on
global stability in Theorem is not sharp. A potential avenue for future research
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is the application of different enveloping functions, which may result in sharper con-
ditions for global stability. We conjecture that local stability of the equilibrium of the
difference equation (5.7) always implies its global stability as well.



Summary

This thesis addresses two pivotal aspects of infectious disease dynamics: the develop-
ment of mathematical models for disease spread and the exploration of immunity’s
role in viral evolution.

We investigate epidemic patterns of emerging variants under dynamic social dis-
tancing measures. We study the various patterns that are generated under different
assumptions of cross-immunity. If recovery from a given strain provides immunity
against all previous strains, but not against more novel strains, then we observe a
very regular sequential pattern of strain replacement where newer strains predomi-
nate over older strains. However, if protection upon recovery holds only against that
particular strain and none of the others, we find much more complicated dynamics
with potential recurrence of earlier strains, and co-circulation of various strains. We
also compare the observed patterns with genomic analysis we have seen during the
COVID-19 pandemic in the Netherlands.

Network-based approaches to disease transmission are then explored using
stochastic models within network structures, with a focus on the SIR model. This
includes analyzing the dynamics of virus spread across various networks to investi-
gate the impact of network structure on disease propagation. We also examine the
effect of viral mutations and immunity on transmission patterns and evaluate the
efficacy of global social distancing strategies in controlling outbreaks. We show how
the strategic timing of implementing global social distancing measures is pivotal in
the effective management of infectious disease outbreaks.

Further, gaining insights into the trade-off between pathogens’ traits is signifi-
cant not only in the context of evolutionary dynamics but also holds crucial impli-
cations for epidemiology and public health. In Chapter |5/ we aim to investigate the
implications of a trade-off between immune evasion and transmissibility, motivated
by COVID-19, but potentially applicable to other infectious diseases as well. While
other trade-offs (most commonly between transmissibility and virulence) have been
widely studied and discussed in the literature, immune evasion as an evolutionary
trait has been mostly ignored in theoretical frameworks. By exploring this trade-off
in a novel evolutionary model, we explored the emergence of new variants and their
long term evolutionary patterns. This new model reveals that highly transmissible
strains often evolve towards greater immune evasion, while less contagious strains
may increase in transmissibility. By deriving a non-linear difference equation from
a linear trade-off assumption, we examine long-term evolutionary patterns, criteria
for convergence, and cyclical strain dynamics. Our analysis also uncovers conditions
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that lead to chaotic evolution, illustrated through bifurcation diagrams that showcase
complex and unpredictable behaviors.

Overall, this thesis provides valuable insights into the mechanisms driving viral
evolution and the effectiveness of various control measures, offering a comprehensive
understanding of how pathogens evolve in response to immunity and transmission
dynamics.
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