
Development and Application of Global
Optimization Methods

PhD Thesis

Dániel Zombori

Supervisor:
Dr. Balázs Bánhelyi

Doctoral School of Computer Science

Department of Computational Optimization

Faculty of Science and Informatics

University of Szeged

Szeged
2025

1 Introduction

Optimization and verification are closely related research fields that help in finding
and validating desired properties in a system. These ubiquitous tools are being
utilized in some way by practically every profession and research field.

In the field of optimization black-box problems are the most generic, where
properties of the optimization problem are unknown. When solving a black-box
problem, the algorithm cannot know whether optimality is reached. To acquire a
good candidate for an optimal solution, we aim to invest the available best effort.
This requires the careful balancing of algorithm efficiency and performance. While
an efficient algorithm wastes minimal resources during execution, a performant
algorithm tries to utilize all available resources with only a secondary focus on
minimizing wasted effort.

In the field of verification reliability is key, besides the secondary goals of ef-
ficiency and performance. If algorithm answers are unreliable for validating the
target properties or infeasible to obtain, verification becomes impossible.

The PhD thesis presents advances in both topics. New versions of the GLOBAL

optimizer are presented, increasing the algorithm performance in multi-threaded
environments. The results open the possibility to use GLOBAL at different scales of
optimization problems and computing resources. In neural network verification
serious flaws are uncovered that showcase problems in reliable MILP model based
verification. Based on an exploit a practical attack demonstrates the ease of fool-
ing state-of-the-art verifiers. Further problems are uncovered regarding the naive
application of interval arithmetic. Limitations are found in computing the reacha-
ble output space of floating point operations. Possible ways of strengthening MILP
and interval arithmetic based neural network verification is discussed.

2 Parallel global optimization

Unsurprisingly, those multi-thread algorithms perform the best, which are origi-
nally designed to utilize a parallel execution environment. Developing and rea-
soning about these algorithms can be much harder than their linearly executed
counterparts. A less ideal, but still valid approach is the development and rese-
arch of single-thread algorithms, where results can be extended to a multi-thread
implementation.

The obstacles in development of a multi-threaded optimizer range from simple
correctness issues where we try to avoid deadlocks, to differences in performance
that are introduced by subtle design choices. There are established strategies to
parallelize an algorithm, for example Geometric Parallelism or Task Parallelism.

1

Creating a multi-threaded version of the Global optimizer has all the usual be-
nefits in increasing the algorithm performance. With larger available computing
capacity new problems can be solved, and the currently typical computing envi-
ronment is better utilized.

Depending on the objective function characteristics, - like the required compu-
ting capacity and the amount of evaluations required for finding good candidates
for the global optimum - different parallelization strategies can be necessary. A
low-cost function with a large number of required evaluations will encounter dif-
ferent performance bottlenecks compared to a high-cost function with low number
of required evaluations.

Chapter 2. of the PhD thesis presents two largely different approaches for
a multi-thread Global implementation, SynchronizedGlobal and ParallelGlobal. A
third approach, DistributedGlobal is discussed, that is a more general version of
ParallelGlobal.

2.1 SynchronizedGlobal

SynchronizedGlobal is a multi-threaded implementation of Global that is designed
to balance performance gain and algorithmic efficiency. The single-thread Global
algorithm can maximize efficiency, SynchronizedGlobal closely resembles it to be-
nefit from the efficient use of available information. SynchronizedGlobal is based
on low inter-thread latency and short critical sections to avoid blocking both rea-
ding and writing actions on shared containers. A typical computing environment
with these characteristics is the modern computer with multi-threaded CPUs, and
high-performance computing servers. The low cost of inter-thread communication
is imperative, as idle threads reduce the algorithm performance.

To efficiently utilize the available threads, SynchronizedGlobal implements a
task-queue based system. Worker threads have a priority for each task type. They
check each type in priority order, to find the work with the highest priority. This
task distribution is based on the “pull principle”, where each worker finds the most
important work to do, resulting in the most value for performing the overall task.

SynchronizedGlobal deconstructs a Global iteration into five tasks, most of
which can be independently executed. Tasks are prioritized in reverse order, a
worker thread evaluates the task guards one-by-one to find an available unit of
work. When a unit of work is done, the worker thread restarts the search from the
highest priority.

Clustering is a special task that can be paused and resumed. The latest ver-
sion of the Global algorithm alternates the clustering and local search processes
to reduce the number of local searches as much as possible. SynchronizedGlobal
replicates this task alternation by pausing the clustering process if clustering failed

2

for all samples and resuming it if new cluster data is available.
Workers are free to enter any task at any point, given that the guard condition

is satisfied. While a long running local search is still in progress, other workers can
start sampling, clustering, or even a new round of local searches.

No

YesLocal search
has origins?

No

YesIteration limit
reached?

Create cluster

Process origin

No

YesClusterizer

active?

No

YesSamples

ready?

No

YesSample limit
reached?

Add new sample
Generate sample

Add sample to cluster

Add sample as origin

Join clustering
process

Add un-

clustered

samples

Move samples to
clustering

Read sample count Remove

samples

Samples

Remove

sample

Un-
clustered
samples

Remove origin

Local
Search
Origins

Exit

Exit

Compare

samples

Clustered

samples

Worker

Move data

Read data

Read origin count

Figure 1: SynchronizedGlobal worker algorithm

The implementation of SynchronizedGlobal was studied from the aspect of
speedup in finding a known global optimum and from the aspect of similarity to
Global in a single worker configuration. A test was also conducted on performance
of the multi-threaded clustering solution.

Figure 2 shows that Global and SynchronizedGlobal are very similar in terms
of the number of function evaluations needed in a single-thread configuration.

Table 1 shows the effects of different number of worker threads, different ob-
jective functions, and different evaluation cost of the objective function (Hard-
ness). The findings include a large dependence of NFEV on the objective function

3

combined with the number of worker threads. Depending on the hardness a de-
creased runtime with additional worker threads, and saturation effects where ad-
ditional threads only increase runtime after a point.

Clustering results show similar effects, where the parallel clustering algorithm
is tested using increasing amounts of cluster data and increasing amounts of wor-
ker threads.

-50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50%
SynchronizedGlobal NFEV relative to Global (0.83% bin width)

0

5

10

15

20

25

Bi
n

fre
qu

en
cy

Single thread comparison to Global (= 0.694%, = 7.364%)

Figure 2: Histogram on the number of function evaluations (NFEV) needed by Syn-
chronizedGlobal relative to Global, in a single thread configuration.

Hardness Threads Ackley Easom Levy 3

NFEV Runtime NFEV Runtime NFEV Runtime

1x

1 100,447 3,553.7 10,120.7 122.7 101,742 3,245.8
2 101,544 2,216.0 10,246.4 118.4 104,827 2,062.1
4 102,881 1,515.3 10,506.2 112.0 112,351 1,473.0
8 102,908 1,145.9 11,078.7 145.0 129,056 1,218.9

16 110,010 1,319.3 12,335.9 149.0 156,907 1,548.4

10x

1 100,553 5,838.5 10,141.9 165.0 102,412 5,414.6
2 101,510 3,370.6 10,273.7 132.0 106,339 3,057.4
4 103,495 2,014.7 10,524.9 111.6 114,325 2,100.8
8 105,977 1,480.0 11,096.6 135.7 126,848 1,592.3

16 112,008 1,623.1 12,308.2 157.6 155,884 1,714.4

100x

1 100,516 27,868.7 10,117.7 413.2 102,227 25,364.9
2 101,585 14,544.5 10,256.9 352.5 106,423 13,788.8
4 103,420 7,806.3 10,546.1 323.9 115,158 8,030.5
8 107,657 4,544.7 11,083.6 296.3 130,109 5,368.2

16 115,264 3,648.3 12,313.7 257.8 167,983 5,205.0

1000x

1 100,567 258,690.0 10,198.5 1,722.4 102,028 236,066.5
2 101,561 126,315.0 10,249.7 865.1 106,792 123,220.0
4 103,616 68,691.5 10,521.7 508.7 114,847 70,399.6
8 107,718 39,430.4 11,116.0 441.6 128,450 45,762.8

16 115,875 27,021.5 12,358.5 389.3 160,364 37,713.4

Table 1: Results obtained by running SynchronizedGlobal

4

2.2 ParallelGlobal

ParallelGlobal is a multi-threaded implementation of Global. It has a simpler ap-
proach that maximizes resource utilization and simple implementation instead of
algorithmic efficiency. ParallelGlobal workers share much less information than Sy-
nchronizedGlobal, to decrease inter-thread communication overhead. Depending
on the optimization task, this can be an advantage or a disadvantage.

The algorithm keeps the main steps of a Global iteration, however there are
no discrete iterations that could be counted. The worker threads are independent,
without a global state governing the algorithm steps taken. ParallelGlobal is still
meant to run in a system where access to shared containers is cheap, read and
write operations on clustering data still requires synchronization.

The ParallelGlobal worker algorithm encapsulates a Global iteration, while only
concentrating on one sample. The one sample needs to be piped through cluste-
ring, local search and clustering of the local optimum.

Sample generation creates the amount of samples that results in a reduced
sample set containing one sample, or simply ⌈1/γ⌉, where γ is the sample reducing
factor. The Samples queue is thread local, which means that each worker thread
owns a separate container, no synchronization is required to access it, and no
sample sharing happens between threads.

After sampling, the single sample is handled similarly to the Global algorithm.
Clustering happens on the shared cluster data, optimized for independent access
by multiple threads. Some efficiency is sacrificed, recently clustered samples may
be ignored in the search.

If the sample was not clustered, a local search is started with the sample as the
origin, and the resulting local optimum is considered for creating a new cluster.

The stopping criteria are evaluated by the workers at the start of each iteration,
during an iteration the worker will not stop if a criterion is met.

ParallelGlobal was evaluated with differing thread counts and hardness settings
to gain an understanding on how the algorithmic efficiency and runtime behaves.
Figure 4 shows the runtime performance of ParallelGlobal compared to Global on
a set of 14 objective functions, when finding a known optimum value. Results vary
a lot depending on the objective function. On three of the functions ParallelGlobal
produced a worse result than the single thread Global, due to the large loss in
algorithmic efficiency. On these functions a single local search is enough to find
the optimal value, therefore a single Global iteration does suffice. ParallelGlobal
however cannot limit the evaluations to a single local search, on every worker
thread a local search will be started. Even worse, if the optimal value is missed
by the first worker thread to finish local search, it will start a new iteration. The
runtime can even double or triple due to the poor algorithmic efficiency.

5

No

YesExit condition
satisfied?

Generate samples

Exit

Clusters

Worker

Samples

Thread

local

Clusterize to limit

Select best sample

Clustering
successful?

Process origin

Yes

No

Compare sample

Add new samples

Remove sample

Unclustered

sample

Add sample

to cluster

Origin

Add to cluster or

create new cluster

Shared

containerMove data

Read data

Private

container

Figure 3: ParallelGlobal worker algorithm

On the Spikes test function the algorithm has a result near the theoretical
speedup limit, finding the optimal value about 16 times faster than the single
threaded Global, using 16 threads. This is not a coincidence, Spikes is crafted such
that local searches are always very short and many iterations and local searches
are needed to find the optimal value. This enables ParallelGlobal to quit the op-
timization process almost instantly after the optimal value was found, while still
requiring a substantial amount of computing effort to utilize the worker threads.

Figure 5 shows the results for all tested configurations on the Shubert test
function, where ParallelGlobal is compared to Global. As the NFEV plot shows,
ParallelGlobal has a large increase in the number of function evaluations. Even

6

Objective function
0.0625

0.125

0.25

0.5

1

2

4

Pa
ra

lle
lG

lo
ba

l ÷
 G

lo
ba

l

Ac
kl

ey

Di
sc

us
5

Ea
so

m

Gr
ie

w2
0

Le
vy

Ra
st

rig
in

-2
0

Sc
ha

f6
_2

Sc
hw

ef
el

-6

Sh
10 Sh

5

Sh
7

Sh
ub

er
t

Za
kh

40

Sp
ike

s

ParallelGlobal runtime relative to Global (T16 H3 config)

Figure 4: ParallelGlobal runtimes compared to Global

1 2 4 8 16
Number of threads

1

2

4

8

Pa
ra

lle
lG

lo
ba

l ÷
 G

lo
ba

l

NFEV compared to Global
Hardness 0
Hardness 1
Hardness 2
Hardness 3

1 2 4 8 16
Number of threads

0.5

1

2

4
Runtime compared to Global

Hardness 0
Hardness 1
Hardness 2
Hardness 3

ParallelGlobal performance on Shubert compared to Global

Figure 5: ParallelGlobal results compared to Global on the Shubert function

in the single thread configuration it requires twice the amount as Global does, the
loss of algorithmic efficiency is intrinsic to ParallelGlobal. The efficiency loss grows
with the number of threads, in the case of Shubert the loss can be overpowered
by the additional computing resources, given a high enough computing cost. On
other objective functions ParallelGlobal can have much better or much worse cha-
racteristics, it depends on what the solving process requires most, efficiency or
performance.

7

2.3 DistributedGlobal

DistributedGlobal is a multi-threaded version of Global that can be executed in a
distributed computing environment. The need for shared containers is eliminated
so that workers have the most autonomy. DistributedGlobal retains the main cha-
racteristics of Global, a worker iteration contains the steps of a Global iteration. In
addition, a data exchange step provides the opportunity to share information with
other workers in a network. To improve clustering efficiency, shared information is
incorporated in the cluster database, enabling the more effective reduction of can-
didate samples. Similarly to ParallelGlobal, DistributedGlobal workers are inde-
pendent without a coordinated global state that would force workers to wait. With
no shared container in the algorithm, read and write operations are non-blocking,
the external information is incorporated asynchronously without disturbance.

DistributedGlobal eliminates the need for a central authority. All discussed

No

YesExit condition
satisfied?

Add new samples
Generate sample

Remove

samples

Samples

Worker

Exit

Exchange

worker data

Distributed

network Share samples?

Share clusters,

optimum, etc.

Clusters

Reduce samples?

generated and shared

Delete

samples

Clusterize samples

Add to cluster

Select origin

 Local search

Add to cluster or

create new cluster

Delete samples

Move data

Read data

Local

Local

Figure 6: DistributedGlobal worker algorithm

8

versions so far can utilize the help of a distributed network to perform expensive
function evaluations remotely, while the main algorithm has to run on a single
machine. Given a central authority, there is always a possibility of failure, where
the central node becomes unresponsive and the optimization process halts.

In a distributed algorithm every node can perform tasks on its own, while a
central bookkeeping node can conveniently store results. Even if the central book-
keeper becomes unreachable, the new information is stored on nodes and can be
extracted at a later point.

To aggregate different kinds of data, well known distributed information dis-
semination algorithms can be used. For example, at any given time the global
optimum candidate with the lower function value is the true candidate, any inco-
ming candidates with a higher value can be rejected.

An implementation of DistributedGlobal was not reached, therefore the algo-
rithm is simply stated as-is, evaluations are not available. Figure 6 shows the
proposed high-level algorithm structure.

3 Problems and solutions in neural network verification

Neural networks are well known to produce peculiar behavior on seemingly nor-
mal inputs. Neural network verification is the task of recognizing undesired ar-
tifacts in the network function. Large models are not feasible to quantitatively
verify, the network complexity is far larger than a verifier could possibly explore.
On small to medium size networks verification becomes feasible. A verifier should
be able to determine whether the network satisfies the required properties. Small
to medium sized networks are useful in tasks, where the solution to a problem is
not exact. Typical examples of such tasks are character recognition, simple classi-
fication tasks, control system implementations like ACAS Xu.

Several verifier implementations exist that aim to prove or disprove the safety
of neural networks. The mathematical models provide a solid theory for executing
a verification task, but implementations lack the rigorousness necessary for strong
statements. In average scenarios the existing verifiers do function correctly, howe-
ver many edge cases exist that can be exploited by an adversary, or just bad luck
with network structure. The currently known implementations do not differentiate
sufficiently between rigorous and heuristic results, answers seem to always suggest
rigorousness.

Chapter 3. of the PhD thesis presents findings on the vulnerability of neural
network verifiers to adversarial attacks, and discussion on how to achieve more
robust algorithms. A simple viable attack is presented, then a practical network
is extended with adversarial functionality, both of which are capable of exploi-
ting verifiers. A successful defense is presented against attacks based on perfectly

9

canceling float values. A logical flaw is uncovered in the application of interval
arithmetic for estimating reachable sets of expressions with unspecified evaluation
order. Some possibilities for strengthening the models against floating point errors
are discussed. An algorithm improvement for MIPVerify is presented, that reduces
the number of evaluated MILP models.

3.1 Neural network verification is not solved

Knowing that MILP solvers are used for verification, we are intrigued about how
these models handle with reliability issues of the calculated MILP optimum. As
we found, there are no satisfying solutions to this problem. Even mentions of
the reliability issues are hard to come by, our goal is to improve the situation by
highlighting the topic. We focus on the MIPVerify algorithm to showcase potential
issues, which is an arbitrary choice from the available options. The findings can
apply to any verifier that uses a MILP solver, or otherwise ignores floating point
rounding errors.

To show that verification algorithms are lacking the capability for mathematical
proofs we identify aspects of the algorithm that can permit adversarial behavior.
MILP solvers are known to have limits in their robustness against floating point
errors, a verifier needs explicit mechanisms to mitigate them. Floating point roun-
ding errors and under-modeled reachable sets are identified as potential issues.

Based on the findings we crafted the trivial adversarial network shown on Fi-
gure 7. It causes a floating point computation with a large rounding error to con-
fuse unsound verifiers. The network performs the classification task of deciding
whether the x ∈ [0, 1] input is above or below the 0.5 threshold. The ω parameter
controls the rounding error in the ω+1−ω computation. Given a sufficiently large
ω for the used floating point precision, the value of the C neuron becomes binary,
either 1.0, or 0.0.

The trivial adversarial network is shown to reliably exploit verifiers, where
entire network sections are made invisible. MIPVerify tasked with finding an input
that results in the y1 output being maximal reported no such regions. Of course,
it is easy to see that any x < 0.5 input is a valid example for such an output,
MIPVerify missed very distinct behavior of the network. On the given task, the
C(x) = 1.0 neuron output is not modeled, which in turn disregards the D1 neuron
and its effect in the model. On a sample of 500 combinations of σ and ω values
MIPVerify missed the adversarial region in all cases.

Based on positive results of the trivial adversarial network, it is integrated in
the WK17a MNIST classifier network to express a toy exploit. The adversarial net-
work still correctly classifies the handwritten digits, but conditionally an off-by-one
answer can be activated by a trigger on the input.

10

A B

B

C D

D

A B C D

Figure 7: Trivial adversarial network exploiting large floating point rounding errors

The exploit is shown to still effectively mislead MIPVerify on the complete
MNIST test set of 10,000 samples. Heuristic local search based methods are able
to detect the adversarial region. When the adversarial region is shrunk from half
to 1/512th of the search space, the heuristic method is no longer effective.

The trivial adversarial network has a very characteristic structure that clearly
stands out even when integrated in the WK17a network. A large contributing part
to its visibility is the large ω weight and neurons without an input. An obfuscated
version of the trivial adversarial network is presented, that has no weights lar-
ger than 10 and all neurons have non-zero weight input edges. The obfuscated
network is shown to be easily created, and over 95% of the created networks is
marked as safe by MIPVerify configured with three different MILP solvers.

Finally, a defense is presented that can defuse attacks based on the perfectly
canceling ω value method. Simply perturbing the network weights and biases
with white noise, the non-zero the perfectly canceling ω + 1 − ω calculation is
disrupted. In 50% of cases the switch is completely deactivated, the network
reverts to its original function. In the other cases the switch output is amplified.
The trivial adversarial network and the WK17a adversarial network functions are
relatively unaffected, only the output of the C neuron is larger. This widening of
the network activation allows MILP solvers to detect the adversarial behavior due
to the lessened scaling factor between model parameters. The effectiveness of this
can be seen on Table 2. As Table 3 shows, the necessary noise levels do not alter
the original network functionality, below 10−6 relative noise the test accuracy of
WK17a does not change.

11

δ 10−3 10−6 10−9 0
WK17a 4.37% 4.38% 4.38% 4.38%

WK17a-adv 75.85% 91.03% 98.3% 4.38%

Table 2: Adversarial sensitivity of the WK17a MNIST networks with perturbed para-
meters, measured by MIPVerify+Gurobi.

δ 10−1 10−2 10−3 10−4 10−5 10−6 10−9 0
WK17a 0.9788 0.9811 0.9810 0.9811 0.9811 0.9811 0.9811 0.9811

WK17a-adv 0.1118 0.3744 0.9725 0.98105 0.98105 0.9811 0.9811 0.9811

Table 3: Test accuracy of the WK17a MNIST network with perturbed parameters
(average of 10 independent perturbed networks).

3.2 Thoughts on modeling floating-point computations

It is well known, and was demonstrated by the trivial adversarial network, that
MILP solvers are sensitive to floating point rounding errors. In this application
of the solvers the accuracy of an optimum value is only a secondary goal after a
reliable bound, additional slack in the model can alleviate issues. This course of
action could yield verifiers that are heuristic in nature, but very hard to exploit
without the verifier noticing the attempt. More rigorous thought is needed on the
reliability of verification toolchains. A non-technical issue is that verifier imple-
mentations usually do not make it clear whether a verification result should be
regarded as robust with strong guarantees. Answers mainly fall into the yes/no
categories without nuance. This leads to misunderstandings about results that can
be easily prevented by crafting a better result classification system.

Limitations in the applicability of interval arithmetic for verification is shown
in a simple scenario. Given an expression with a fixed order of operations, the
interval arithmetic result will contain the floating point result. However, if the
order of operations is not fixed, the interval arithmetic result is not guaranteed to
contain the floating point result. Given a sufficiently large ω number and an order
of operations where the produced interval is not maximal, the rounding errors
can cause a significant deviation between the interval and floating point results.
Verifiers implicitly assume that interval arithmetic provides a valid bounding on
the model, as seen on Table 4 this is not necessarily the case.

MILP solvers are known to be sensitive to model scaling, Gurobi for example
applies fixed slack when computing constraints. Scaling of the reachable activati-
ons in a neural network directly drives the scaling of the built MILP models. An
adversary can directly affect the applied slack in the MILP solving process, there-
fore control the ease of finding the real optimum and affect the accuracy of a found
optimum value.

12

Expression Result with f64 Result with IA

(1 − ϵ) + ω − ω 0 [0, 2]

ω − ω + (1 − ϵ) 1 − ϵ [1 − ϵ, 1]
ω − ω + (1 + ϵ) 1 + ϵ [1, 1 + ϵ]

(1 + ϵ) + ω − ω 2 [0, 2]

Table 4: Differing results achieved by different ordering of an expression using floa-
ting point arithmetic and interval arithmetic. The ϵ removes rounding ambiguity.

A heuristic defense is presented that widens model constraints with an estima-
ted error term. The added slack amounts to an estimate on the maximum com-
mitted rounding error when computing the constraint on the modeled activation
interval. The defense should be effective against scaling attacks, and help with
attacks that force large rounding errors compared to the activation interval.

The “epsilon widening” heuristic strategy is presented for defending against
numeric errors when the MILP optimum value is computed. Widening of input
values helps interval arithmetic to incorporate all rounding errors in the result,
lowering the attack surface. The defense is capable of handling attacks based on
perfectly canceling float values. Previously the 0 + ω − ω expression produced the
[0, 0] interval, the ϵ-widened version [−ϵ, ϵ] + 0+ω−ω produces [eps(ω), eps(ω)],
where eps(ω) is the rounding error of ω.

An algorithmic improvement is presented, that reduces the number of MILP
solver runs. MILP solves dominate the cost of verification, reducing the neces-
sary amount highly affects the execution time. Efficient modeling of the ReLU
activations require knowing whether a given ReLU is stable. The MIPVerify imple-
mentation uses one or two evaluations per stable ReLU. By saving the activations
of a single neural network evaluation ReLU stability can be decided solving a sin-
gle MILP model. For tight modeling of an unstable ReLU we still need two MILP
solves. Tight modeling of ReLU constraints might not be required, however the
efficiency of model solving might decrease leading to an overall more resource
intensive verifier.

A better classification for verification answers is provided, allowing the user
to understand the implications of a specific result. In practice, it enables the as-
sessment of the replicated MIPVerify algorithm results, where information sources
disagree on the final answer. The decision can be SAFE, ADVERSARIAL, or UNKNOWN,
with an additional prefix to indicate the result strength. If the result is considered
rigorous the prefix is PROVEN, if there is a level uncertainty the prefix is POSSIBLY.
The UNKNOWN answer should indicate a complete lack of confidence in the result.

On Figure 8 five versions of MIPVerify are evaluated, the effects of a different
base implementation, a primitive rounding error heuristic, and the improved ReLU

13

modeling strategy. Runtime of the baseline re-implemented MIPVerify version is
significantly increased, the runtime with improved ReLU modeling decreased. The
cost of applying an interval arithmetic based heuristic defense against rounding
errors has no appreciable effect on the overall runtime.

The algorithm versions with improved reliability have promising results on the
WK17a adversarial network, with POSSIBLY_ADVERSARIAL answers. Rounding er-
ror compensation is capable of detecting the feasibility of an adversarial point,
however the model is still too ill-defined to locate a corresponding input.

0 20 40 60 80 100
Sorted runtime per algorithm

4

8

16

32

64

128

256

512

Ru
nt

im
e

(s
ec

on
ds

)

mip
miprep
mipplus
recrep
recmip

Runtime distribution of MIPVerify variants

Figure 8: Runtime distribution of different verifier implementations evaluating the
first 100 MNIST test set samples on the WK17a neural network. Distributions are
shown for each algorithm. Each verifier correctly found the adversarial examples.

14

4 Contributions of the thesis

In the first thesis group, my contributions are related to parallel global optimiza-
tion and improved versions of the Global optimizer algorithm. Detailed discussion
can be found in Chapter 2.

I / 1. I developed the SynchronizedGlobal and SynchronizedGlobal Clustering al-
gorithm, and showed their effectiveness in a multi-threaded execution envi-
ronment. I demonstrated that the Global and SynchronizedGlobal algorithms
have identical performance in a single thread configuration. I further impro-
ved the GlobalJ toolbox functionality. [3] [2] [1]

I / 2. I developed the ParallelGlobal algorithm and showed its effectiveness and
weakness on objective functions. I demonstrated that the objective function
structure greatly affects the effectiveness of parallelization. [5] [4]

I / 3. I designed the DistributedGlobal algorithm.

In the second thesis group, my contributions are related to MILP solver based
neural network verification, with the focus on discovering potential attack vectors
and improvements in defenses. Detailed discussion can be found in Chapter 3.

II / 1. I demonstrated the existence of an erroneously verified neural network, and
refined it to the trivial adversarial network. I conducted tests and uncovered
the exploit mechanism leading to an arbitrarily large difference between
modeled and real network output. I showed that the exploit can be applied
on a host neural network to create a backdoor that is invisible to MIPVerify.
[6]

II / 2. I demonstrated that interval arithmetic is not sufficient for modeling output
regions of arbitrary evaluation order linear expressions. I proposed several
heuristic improvements to reduce verification sensitivity to rounding errors.
I created an improved MILP solver based ReLU modeling algorithm and de-
monstrated its effectiveness. I demonstrated that a simple interval arithme-
tic based heuristic defense has little to no effect on verification runtime.

15

The author’s publications on the subjects of the thesis

Journal publications

[1] A. Mester, D. Zombori, L. Pál, and B. Bánhelyi. Efficiency improvement of
the GLOBAL optimization method by local search changes. Acta Polytechnica
Hungarica, 19(2):29–42, 2022

[2] D. Zombori and B. Bánhelyi. Effects of pooling in ParallelGlobal with low
thread interactions. Informatica, 45(2):191–196, 2021

Full papers in conference proceedings

[3] B. Bánhelyi, T. Csendes, B. Lévai, D. Zombori, and L. Pál. Improved ver-
sions of the GLOBAL optimization algorithm and the GlobalJ modularized
toolbox. In AIP Conference Proceedings, volume 2070, no. 020022, 2019

[4] D. Zombori and B. Bánhelyi. ParallelGlobal with low thread interactions.
In Proceedings of the 22nd International Multiconference Information Society,
volume I, pages 83–86, 2019

[5] D. Zombori, B. Bánhelyi, T. Csendes, I. Megyeri, and M. Jelasity. Fooling a
complete neural network verifier. In 9th International Conference on Learning
Representations. https://openreview.net/pdf?id=4IwieFS44l, 2021

Further related publications

[6] B. Bánhelyi, T. Csendes, B. Lévai, L. Pál, and D. Zombori. The GLOBAL Opti-
mization Algorithm. Springer Briefs in Optimization, 2018

16

https://openreview.net/pdf?id=4IwieFS44l

5 Összefoglalás

Az értekezés ismerteti egy optimalizáló algoritmus több szálas implementációját,
ahol főbb megoldandó problémák az algoritmus hatékonysága és teljesítménye,
valamint az algoritmus és a megoldandó célfüggvény tulajdonságai közt poten-
ciálisan fennálló negatív kölcsönhatás. Az értekezés továbbá vegyes egészértékű
lineáris programozási problémára viszavezetett neurális háló verifikáció témaköré-
ben ismerteti, illetve demonstrálja az optimalizált modell és a valós rendszer kö-
zötti különbségekből fakadó sebezhetőséget. Tárgyalja az intervallum aritmetika
felhasználhatóságát, a támadhatóságon túl különböző lehetséges védekezéseket
ismertet.

Parallel global optimization címmel a 2. fejezet három különböző több szálas
algoritmus verziót ismertet, melyek a Global optimalizáló alapján készültek. A
SynchronizedGlobal algoritmus szorosan követi a Global struktúráját és csak ott
tér el tőle, ahol ezt a több szálas futás feltétlenül megköveteli. A Synchroni-
zedGlobal algoritmus célja a hatékonyság. Minél nagyobb teljesítmény növeke-
dést próbál elérni, de a célfüggvény kiértékelések számának csökkentését helyezi
előbbre. A ParallelGlobal algoritmus a rendelkezésre álló számítási kapacitás ki-
használására fókuszál, a célfüggvény kiértékelések számát csak másodlagos cél-
ként csökkenti. A szálak közötti interakciókat igyekszik csökkenteni, elkerülve a
járulékosan kieső számítási kapacitást. A DistributedGlobal algoritmus ötlete a több
számítógépen futtatott optimalizálási problémák megoldására koncentrál. Telje-
sen független szálakkal operál, amelyek különböző számítógépen is futhatnak egy
elosztott rendszerben. Elsődlegesen a számítási teljesítmény kihasználására kon-
centrál, miközben lehetőséget biztosít a célfüggvény kiértékelések csökkentésére
is a végrehajtást nem blokkoló szálak közötti kommunikációval. Az eredmények a
több szálas algoritmusok teljesítménynövekedését és a célfüggvények karakterisz-
tikájára való érzékenységét mutatják.

Problems and solutions in neural network verification címmel a 3. feje-
zet neuronháló verifikáló algoritmusok modell kiértékelési és modellezési hibá-
kon alapuló sebezhetőségét ismerteti, valamint különböző heurisztikus stratégiá-
kat a sebezhetőségek csökkentésére. Demonstrálja a MIPVerify érzékenységét a
lebegőpontos számítások során elkövetett numerikus hibákra és a támadás kiter-
jeszthetőségét gyakorlatban előforduló neuronhálókra. A vegyes egész értékű li-
neáris programozási modellek jól ismert kiértékelési hibái mellett az intervallum
aritmetikán alapuló eredményhalmazok felhasználhatóságában is fontos limitációt
tár fel. Tört-lineáris kifejezések modellezésére új stratégiát mutat be, amely csök-
kenti MIPVerify algoritmus által felhasznált modellkiértékelések számát, ami jelen-
tős futásidő csökkenést jelent.

17

	Introduction
	Parallel global optimization
	SynchronizedGlobal
	ParallelGlobal
	DistributedGlobal

	Problems and solutions in neural network verification
	Neural network verification is not solved
	Thoughts on modeling floating-point computations

	Contributions of the thesis
	Összefoglalás

