
Development and Application of
Global Optimization Methods

PhD Thesis

Dániel Zombori

Supervisor:

Dr. Balázs Bánhelyi

Doctoral School of Computer Science

Department of Computational Optimization

Faculty of Science and Informatics

University of Szeged

Szeged
2025



Acknowledgements

First and foremost I would like to thank my supervisor, Dr. Balázs Bánhelyi, who have

guided my scientific path through many stages of my academic studies. I would also

like to thank Dr. Tibor Csendes, who generously provided knowledge and expertise

in numerous topics throughout my PhD studies. Without their expertise, feedback,

and guidance my doctoral work would not have been possible.

I am grateful for the opportunity to have worked with the many colleagues from

the departments of Computational Optimization, and Technical Informatics. While a

list of everyone would not fit here, I greatly value the shared work in many projects,

the insightful lunch breaks, and the relaxing coffee breaks.

I owe gratitude toward my wife, Izabella Zombori-Benczur, for her invaluable

patience and support throughout this long project.

I am thankful for the support of colleagues and TNG Technology Consulting

GmbH as a whole, who continuously encouraged me and understood the importance

of finishing my doctoral work.

I would like to thank my sister, Dóra Zombori, for the fun illustrations that orna-

ment the chapter title pages in the personalized version of this work, which I happily

share with anyone interested.

Last, but not least, the success of this work reflects the support and encourage-

ment of my family, who have enabled my years of learning and working in academia.

i



Contents

Acknowledgements i

Abbreviations iv

Preamble v

1 Introduction 1

1.1 Global optimization on black-box functions . . . . . . . . . . . . . . . 2

1.2 Linear programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Multi-threaded computations . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Interval arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Parallel global optimization 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Contents and contributions . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 A brief overview on the history of Global . . . . . . . . . . . . . . . . . 11

2.4 The Global algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Unirandi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Global . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Going multi-threaded . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 SynchronizedGlobal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 SynchronizedGlobal worker algorithm . . . . . . . . . . . . . . 19

2.5.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.3 Improving algorithmic efficiency . . . . . . . . . . . . . . . . . 21

2.5.4 Connecting the iterations . . . . . . . . . . . . . . . . . . . . . 22

2.5.5 Results and findings on SynchronizedGlobal . . . . . . . . . . . 22

2.5.6 Stress test of synchronized clustering . . . . . . . . . . . . . . . 27

2.6 ParallelGlobal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ii



2.6.1 ParallelGlobal worker algorithm . . . . . . . . . . . . . . . . . . 29

2.6.2 Clustering and local search . . . . . . . . . . . . . . . . . . . . 31

2.6.3 Results and findings on ParallelGlobal . . . . . . . . . . . . . . 32

2.7 DistributedGlobal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7.1 Messaging in a distributed system . . . . . . . . . . . . . . . . . 37

2.7.2 DistributedGlobal worker algorithm . . . . . . . . . . . . . . . 39

2.8 Discussion and concluding remarks . . . . . . . . . . . . . . . . . . . . 42

3 Problems and solutions in neural network verification 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Contents and contributions . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Approaches to verification . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Neural network verification is not solved . . . . . . . . . . . . . . . . . 49

3.4.1 MIPVerify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Issues with floating-point computations . . . . . . . . . . . . . 55

3.4.3 The verification misalignment problem . . . . . . . . . . . . . . 57

3.4.4 A trivial adversarial attack . . . . . . . . . . . . . . . . . . . . . 58

3.4.5 New backdoors in existing networks . . . . . . . . . . . . . . . 60

3.4.6 Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.7 Defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Modeling floating-point computations . . . . . . . . . . . . . . . . . . 68

3.5.1 Is interval arithmetic always applicable? . . . . . . . . . . . . . 68

3.5.2 Combined power of interval arithmetic and MILP solvers . . . . 74

3.5.3 Rounding errors in the MILP model optimum . . . . . . . . . . 77

3.5.4 Include rounding errors of modeling constraints . . . . . . . . . 77

3.5.5 Improved ReLU stability check . . . . . . . . . . . . . . . . . . 81

3.5.6 Runtime and reliability comparison . . . . . . . . . . . . . . . . 82

3.5.7 Results on reliability . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Publications 87

Summary 88

Összefoglalás 92

Bibliography 96

iii



Abbreviations

AA Affine arithmetic vi

AI artificial intelligence 44

B&B branch and bound 48, 50

CSP constraint satisfaction problem 49

FIFO first in first out 20

GlobalJ Java implementation of Global 11

GUI graphical user interface 12

IA interval arithmetic vi, 48, 49, 68, 70, 73

JVM Java virtual machine 23

LP linear programming vi, 3, 50

MILP mixed integer linear programming vi, 4, 50, 51, 57, 68

NFEV number of function evaluations 24, 32, 102

SAT boolean satisfiability problem 50

SCIP-Ex “Solving Constraint Integer Programs” with rational arithmetic vi

iv



Preamble

"While we strive for perfection without ever reaching it,
we should not forget to accomplish the attainable."

(note to self)

As the popular saying goes,

"to reach the top of a staircase, one has to take it step by step."

Life, science, and global optimization is more akin to an Escher staircase. Before one

reaches the top, things might turn in unexpected directions, and the journey to this

dissertation is not an exception. While my former studies focused on engineering

and electronics, my scientific work started with experiments on a global optimization

algorithm, then it ventured to verification of neural networks. Through the meander

of topics, I hope to introduce the reader to these worlds, take a deep dive in some

specific questions and understand some broader connections.

Figure 1: Relativity (M.C. Escher, 1953)1

1All M.C. Escher works © 2022 The M.C. Escher Company - the Netherlands. All rights reserved.
Used by permission. www.mcescher.com
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Chapter 1 discusses introductory topics that help to understand the present work.

We start with a brief overview on global optimization and black-box optimization, to

understand the variety of problems and algorithms. A short introduction to paral-

lel computing principles will help us understand the challenges of a multi-threaded

optimization algorithm. Interval arithmetic is a cornerstone in reliable computing,

its core principles will help us in verification. Affine arithmetic is also used in ve-

rification, it’s modeling principles can be found in multiple algorithms with similar

capabilities. To understand the successes and failings of neural network verification,

we need to be familiar with linear programming (LP) and mixed integer linear pro-

gramming (MILP) problems. A brief introduction is given tailored to the topics of the

dissertation.

In Chapter 2 parallelization of the GlobalJ algorithm is presented, with multiple

approaches. An algorithm running on multiple CPU threads provides scaling for easy

to compute objective functions. Computationally hard functions might require an en-

tire computer to evaluate, we provide an integration approach of the multi-threaded

algorithm. An additional flavor of the multi-threaded approach provides a lightly

coupled algorithm, that is better for objective functions with long runtimes. Finally,

we propose a distributed algorithm skeleton for multi-computer environments, where

a single computer will not suffice for the optimization task.

Chapter 3 presents a vulnerability of neural network verification methods, that

are based on MILP problems. We can exploit roundoff errors committed in the ve-

rification algorithm and the MILP solver. These rounding errors can hide arbitrary

behavior of the neural network, therefore they break verification. There are more re-

silient and also rigorous verification methods, like Branch’&’Bound based on interval

arithmetic (IA) or Affine arithmetic (AA), error free MILP solvers like SCIP-Ex, Sym-

bolic Interval Propagation combined with an LP or MILP solver. The problem of these

algorithms is complexity, which hinders their use on practical size neural networks.

A new limitation on the usability of interval arithmetic is presented. Different error

sources are explored in algorithms based on MILP solvers, heuristic improvements

are suggested that could improve reliability of otherwise vulnerable methods. An

efficiency improvement is presented for MILP solver based verifiers, reducing the

required number of model evaluations.

vi



Chapter 1

Introduction

Computing is a widespread tool in science, that enhances our capabilities based on

mathematics, calculations, and proofs. In many applications we want to compile the

available information into simple statements, that further our understanding. One

field of research to achieve this is global optimization. Global optimizer algorithms

search for specific inputs, that are deemed “good” by an objective function, which

encodes the user’s interests. The objective function is used to guide the optimizer

in finding interesting inputs, or to find what the possible extreme outputs are. De-

pending on the form of the objective function and the specific algorithm used, the

strength of a result can range from a possibly correct guess to a definitive answer

with absolute certainty to be correct.

Global optimization is not the only field that operates on evaluations of a function

of interest. Verification answers questions about the existence of properties, that are

expressible by a model of specific form, suitable for proofs. The two fields have a

deep underlying connection. Given a strong enough global optimizer, any verification

problem would be expressible in terms of an optimization problem.

The field of numeric analysis is strongly related to scientific computations. The

results of computations not only carry useful information, but often also contain

some amount of noise. The noise can originate from the input due to uncertainties

in measurement, and propagate throughout the computations. The computations

themselves can also introduce noise, which might stay at manageable levels, or in

certain cases might grow indefinitely. Numeric analysis provides tools to estimate

and give bounds to error growth caused by the algorithms.

In both global optimization and verification, the practical problems are sizea-

ble and require large amounts of computing power. One possibility to increase the

1
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amount of available computing resources is multi-threading. Computationally ex-

pensive parts of the algorithms usually allow for parallel processing, there is an op-

portunity to scale our algorithms with the increase of available computing power.

1.1 Global optimization on black-box functions

Global optimization problems are very diverse in nature, the specific problem for-

mulation often requires a special algorithm to solve efficiently. As industries and

scientific research moves towards computational approaches, the use of simulations

and machine learning makes understanding and tackling optimization problems an

increasingly hard task.

Formally, we would like to solve optimization problems of the form

min
x

f(x)

hi(x) = 0, hi(x) ∈ H

gj(x) ≤ 0, gj(x) ∈ G

a ≤ x ≤ b,

where H and G are the sets of constraint functions, and we search for the global

minimizer point of the f(x) objective function. The hi(x) = 0 and gj(x) ≤ 0 equality

and inequality, as well as the a and b bounding vectors define the feasible search

area, where the objective function is minimized. By optionally specifying the a and b

vectors, the feasible space can be easily forced to be a finite volume, by element-wise

limiting the x vector.

In practice, finding feasible points using the hi(x) = 0 and gj(x) ≤ 0 expressions

can be extremely hard. Luckily, we have options to find practical solutions to the pro-

blem [1]. In short, we can introduce penalty functions to represent our constraints.

If modeled correctly, the penalties will guide the optimizer toward the feasible space,

without modifying function values of the feasible space. The f(x) objective function

is replaced by a new F (x) function, that contains the penalties and eliminates the

need for the hi(x) = 0 and gj(x) ≤ 0 constraints.

min
x

F (x)

a ≤ x ≤ b

The formulation with penalties allows for algorithms that are much easier to create,
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algorithms presented in this work also expect this formulation.

While a lot of problems can be described in a model suitable for well-known

efficient algorithms, in many cases the analytical form of the objective function is

unknown. Complicated simulations are infeasible to express with algebraic tools,

nonetheless we can evaluate them. The above formulation for global optimization

problems does not rely on the structure of F (x). A function where only the output can

be determined for a given input is called a black-box function, or black-box model. A

function specified by an algorithm implementation does satisfy the black-box model.

In this work we focus on black-box optimizers. They do not require knowledge

about the objective function, based on evaluations they are capable of navigating the

unknown N-dimensional landscape.

1.2 Linear programming

A special case for global optimization is linear programming (LP). Opposed to black-

box optimization LP problems are white box. The optimizer has access to an ana-

lytical formulation of the objective function. The objective function of a linear pro-

gramming problem consists of two parts. A linearly bounded search space called the

“model” given by linear inequalities specifies the feasible solutions. On the space of

feasible solutions a linear expression is evaluated. The linear expression is referred

to as the “objective function” in scope of a linear programming problem. Solvers try

to minimize or maximize the function value in the search space.

LP problems are limited in modeling capability, as the name suggests only linear

relationships can be used to define the problem. This compromise enables efficient

and guaranteed solution of the global optimization problem1. A guaranteed optimal

solution is very useful, as it ensures that the optimization process reaches a definitive

optimal result with a clear limit on how good a solution can get.

There are different kinds of algorithms to solve LP problems. The most well

known is the Simplex algorithm by Dantzig [2]. It iterates through feasible extreme

points of the search space until the optimum is reached. A class of algorithms to

solve LP problems are the interior-point methods [3], that instead of traveling on

the search space surface move into it, and take a more direct path to the optimum.

Depending on the problem size, as well as sparsity and the condition number of the

1The Simplex algorithm for solving linear programming problems is NP-complete, the average case
however is solvable in P time.
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matrix describing the problem, both pivoting methods and interior point methods

can be advantageous [4, 5, 6].

An extension of the LP problem is the mixed integer linear programming (MILP)

problem, MILP models build on LP models by enabling integer constraints. On top of

the other constraints variables can be required to have an integer value. The integer

constraint enables a vastly more diverse set of feasible spaces to be used. While LP

problems are only capable of encoding a linearly bounded convex set, MILP models

can also encode linearly bounded concave and disjoint sets.

With the more complex geometries that can be expressed solving the model also

becomes harder. The MILP model can have in the number of integer variables an

exponential number of disjoint LP models to solve. There are heuristics to reduce

the model complexity by cuts that eliminate parts of the search space, while they

preserve feasibility and optimality of the original solution [7].

There are a lot of different solvers available to tackle LP and MILP problems.

The most used commercially available ones are Gurobi and CPLEX [8, 9]. There are

also open-source solvers to use, like CBC, GLPK, and SCIP [10, 11, 12]. For specific

problems there can be significant differences in performance between solvers.

For a lot of practical problems, the solutions based on LP and MILP models satisfy

the requirements, LP and MILP solvers are considered to be robust. On the other

hand, the performant algorithms are numeric methods with varying amounts of error

in the solution. In mathematical proofs optimum candidates cannot be relied on

without accounting for the errors committed during the model creation and model

solving steps. Modeling these errors is not a trivial task, we will learn more about

their effects in Chapter 3.

1.3 Multi-threaded computations

Threads in computing represent the fundamental unit of execution. A thread opera-

tes on a single sequence of instructions that is in effect2 evaluated strictly sequenti-

ally. Modern CPU cores have a very intricate structure, where a thread is only the

fundamental unit of execution in context of the execution model, while the actual

implementation optimizes execution time.

2In modern CPUs many optimizations happen that alter the actual execution order. An important
rule is that the reordered and/or parallelized computations result in the same effects and outputs.
[13, 14, 15]
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These complications are necessary because of the technological limits in our cur-

rent hardware. Due to constraints of available electronic components and the laws

of heat dissipation, the physical volume of practical CPU designs is constrained. Heat

dissipation and signal travel times pose a limit on computing power of a single thread.

Usual CPUs run at around 3 GHz, or a 0.33 nanosecond clock cycle. As we know, phy-

sical signals need time to propagate, at this speed light in a vacuum travels around

10 centimeters. Since a CPU is not empty space and logic gates also slow down signal

propagation, electrical signals travel slower than this limit. Inside a CPU core distan-

ces are on the order of 1− 2 centimeters, but to reach memory modules, signals have

to travel on the magnitude of 10 centimeters. This already poses a hard limit on how

often we can read a random address in the available system memory. [16, 17, 18]

As the computing power of a thread is around its limits, our hardware and there-

fore software needs other strategies to enable larger volumes of computations. From

the old days of using co-processors to achieve specialized tasks, we progressed to

using multiple generic processing units called cores. Originally a core was interchan-

geable with the notion of a thread, in current CPU designs a core usually has multiple

virtual threads, further complicating the nomenclature.

In our software it is not trivial to utilize the multi-threaded environment. While

programming languages support easy creation of asynchronous threads, and there-

fore easy access to parallelization, performance is often impacted by a suboptimal

setup. The difficulty of creating a good parallel software implementation depends

on the problem at hand. For simple operations that have to act on large amounts of

data parallelization is relatively easy. “Only” a good partitioning, distribution of data,

and collection of results is required. Based on a good design implementing the paral-

lel evaluation processes is relatively easy. For a more intricate algorithm that is not

easily separated into threads acting on a separate batch of data, parallelization is a

challenging task. There are many other aspects of an algorithm that can be compiled

into a parallel version, we will discuss the relevant ones in Chapter 2.

One important aspect of parallel computations is information sharing. There are

two types of approaches, they are used depending on the problem at hand. The

conceptually and implementation-wise simpler approach is inter-process messaging.

In this information sharing model processes can send messages to other processes,

as they see fit. Either a message handler, or the recipient process has to store the

messages until they are processed, while the sender process can continue execution.

When the answer is needed, the sender wait until it is received. One drawback of
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messaging is that the active attention of the recipient process is needed to incorpo-

rate the transferred information. A more complicated approach is the use of shared

memory between multiple processes. An advantage of this approach is that the infor-

mation transferred to the shared workspace is instantly available to anyone, there are

no in-between states in the collective workspace. The drawback is that access to the

workspace has to be managed in order to avoid race conditions and the resulting data

corruption. An important topic that we will not delve into is the problem of dead-

locks, where a multi-threaded system cannot continue operation due to mishandled

access to shared resources. While any process of the system could execute on its

own, no process in the collection has control over all necessary resources. Outside of

deadlocks, other issues can also arise in a multi-threaded implementation. They lead

to slower than expected execution, we discuss the relevant issues in Chapter 2.

Many computational tasks require more resources than a single CPU can offer.

In these cases computing clusters can be utilized, where multiple processing nodes

are linked in a low-latency, high throughput network. Nodes can be purpose-built

servers, or simple computers connected in a network. This computing environment

can host a distributed system. In many aspects distributed systems are very similar to

applications on multi-threaded CPUs. The major difference in the computing model is

the lack of shared memory, and the increased communication delay. If an application

state has to be maintained that is consistent at all times, a node has to offer its

memory as the place to store the singular source of truth. Distributed systems most

often use messaging as the form of communication instead of shared memory, as it

eliminates the need for a single source of truth, and slow access to shared memory.

1.4 Interval arithmetic

Interval arithmetic [19, 20, 21] is a tool in computing that provides bounds on the

results of floating-point computations. The main problem of floating-point compu-

tations is that the numbers have a finite precision representation. A consequence is

that results of floating-point computations can, and often do differ from the algebraic

result. The introduced errors can be very small, close to the available precision, in

other cases the computing error can quickly grow with computations.

A well known example is the 2025 + 10−13 − 2025 computation. In most program-

ming languages the default implementation of this expression produces 0 as a result,

instead of the correct value of 10−13. While an error on the magnitude of 10−13 can
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be considered small – any instant in the year 2025 can be expressed with only a few

microseconds off –, compared to the analytical result this means 100% relative error.

In simple computations this is not noticed, however when high accuracy is required

or the amount of sequential computations is large, the result can be significantly off.

Even worse is the fact that this computation performed on 32-bit floating-point re-

presentation instead of 64-bits can have an error of 10−4. Using the lower resolution

only allows us to represent a time instant in the year with a resolution of one hour,

a significant drop in precision. In practical applications this difference can make a

well behaved algorithm unstable. Certain numeric problems are prone to uncertain-

ties during the computations, they are numerically unstable. Typical examples of the

affected computations are repeated operations on ill-conditioned matrices3, numeric

simulations, or digital filters from the field of signal processing.

Interval arithmetic cannot eliminate computing errors, as it has to rely on the

same floating-point arithmetic as other computations. However, it can be an alter-

native for floating-point computations, when true bounding of the analytical result

is of interest, and the exact result value is less important. Instead of using a sin-

gle floating-point value, interval arithmetic defines an interval with two of them. It

ensures that the derived result intervals always contain the exact result value.

Many software packages implement interval arithmetic [23, 24, 25], and provide

implementations from basic (+, −, ∗, /) to advanced (exp(x), sin(x), etc.) mathema-

tical operations.

A nice feature of interval arithmetic is its correctness. Since the IEEE 1788 [26]

standard for interval operations is defined using floating-point operations specified

in IEEE 754 [27], we can be sure that the given guarantees apply on most CPUs.

The interval operations are designed so that the resulting interval always contains

the analytical result, which would require infinite precision to obtain. This property

gives interval arithmetic the strength to be applied in mathematical proofs. As we

will see in Chapter 3, the ability to determine a correct bounding for the result of

floating-point computations is very important.

3The condition number is a measure for stability of computations. The conditioning of matrix
operations heavily depends on the matrix values, hence a matrix can be ill-conditioned [22].



Chapter 2

Parallel global optimization

2.1 Introduction

Black-box global optimization is a widely used tool with a diverse problem space.

Problems often arise with vast search spaces and hard to compute objective functi-

ons. With the decline of Moore’s law for single-thread CPU performance we have

to investigate the utilization of multi-thread execution. While this is not a recent

idea in global optimization [28, 29], scientific tools often focus on simplicity for ease

of research. Tools applied in practice are not always implemented to their fullest

potential, parallel execution is often overlooked. As Törn and Žilinskas state, there

are many obstacles in the parallelization of an optimizer algorithm, as optimizers

are often tailored for linear execution. They discuss principles of different strategies,

Geometric Parallelism, Task Parallelism and Algorithmic Parallelism from [30, 31], as

a new addition they introduce Monte Carlo Parallelism.

Every strategy should divide the computation tasks to disjunct pieces. A universal

limiting factor for parallelization is that some algorithms – or parts of an algorithm –

cannot run in parallel. In these cases a middle ground solution usually exists where

using limited information permits a parallel version. For example, simultaneous read

and write access to a data store can cause problems, while separating the read and

write operations gives a middle ground solution. Read operations have no effect on

each other, but a write operation has to halt any other operation to proceed. This

principle can be applied for steps of an optimization algorithm, more computing

power becomes available if the use of incomplete information is acceptable.

Geometric parallelism divides the search space so that every point is assigned to

a CPU core. When a point has to be evaluated, its position dictates the executing

8
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core. This leads to uneven loading when some areas of the search space are more

interesting than others. In their work it is not mentioned, but hashing – or another

statistics based static distribution function – could resolve the problem of uneven

CPU load, with the cost of computing the hash on all input points and increased

worker-to-worker communication. Dynamic distribution of the workload is a much

more popular solution, it guarantees the most even utilization of CPU cores.

An extension of geometric parallelism is task parallelism, where the algorithm

is divided into sub-tasks. A master coordinates the distribution of data and gene-

rates tasks to ensure the correct execution of the algorithm steps. A sub-task can

be any independent execution unit of the algorithm, while this model also permits

strong coordination of algorithm parts. The need for strong worker coordination is a

drawback of this approach.

Algorithmic parallelism executes consecutive steps in a linear fashion, but the

steps themselves are parallelized. Steps are mainly divided to equal parts of data and

assigned to threads. This guarantees good parallelism for suitable parts of the algo-

rithm, however the core utilization may be very uneven. Some parts of an algorithm

might not be suitable for any parallelism in this framework. According to [28] this

is hard to implement, but modern programming tools provide simple solutions, this

should not be a problem anymore.

Monte Carlo parallelism is a special case of parallelism. If sampling is random

and processing of a sample is independent of previous samples, then running the al-

gorithm for N samples is equivalent to running the algorithm N times for one sample.

The algorithm is similar to its parts, which results in a very easy parallel implementa-

tion. The only aspect that needs attention is collecting and merging the sub-results.

2.2 Contents and contributions

In this chapter I present the newly developed parallel implementations of the Global

algorithm. A brief overview is given on the Global algorithm’s origin, followed by

an in-depth description of the algorithm mechanics. Knowing the structure of the

algorithm is important for understanding the motivations behind the design decisions

of the parallel versions and for comparing with the single-thread version.

Next, SynchronizedGlobal – the first parallel algorithm version – is presented.

I write about the thought process leading to the concrete algorithm design, and I

describe the algorithm mechanics. After discussing the importance of algorithmic ef-
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ficiency, the computational results obtained from SynchronizedGlobal algorithm are

presented. Stress tests are evaluated using well known objective functions to deter-

mine usefulness of the algorithm in lifelike scenarios. The results contain interesting

findings on the algorithm runtime and the number of function evaluations. Single-

thread performance of SynchronizedGlobal is compared to Global, in the number of

function evaluations. For correct evaluation of the multi-threaded implementation it

is important to know what differences come from parallel execution. Stress test of

the synchronized clustering module is presented, where effects of the load size and

the number of threads are analyzed.

My contributions regarding SynchronizedGlobal with valuable input from my Su-
pervisor are construction of the main algorithm, implementation of the main algorithm
including the adaptation of the clustering and local search modules as integral parts
of the GlobalJ optimization framework. I implemented the test framework – excluding
implementation of the objective functions – and performed the algorithm evaluation.

The next presented algorithm is ParallelGlobal, another parallel algorithm based

on Global. I discuss the motivations for a second parallel algorithm version, and I

describe the algorithm mechanics. After a short summary the computational results

for ParallelGlobal are presented. A high load and high CPU count stress test is con-

ducted, with an intriguing outcome on the observed runtimes. With further analysis

the unexpected results are explained. Results for a regular test function and a test

function specially made for ParallelGlobal are explored in detail. The presented data

provides an insight to the conditions on whether parallel global optimization can be

effective.

My contributions regarding ParallelGlobal are construction of the main algorithm,
implementation of the main algorithm including the adaptation of the clustering and
local search modules as integral parts of the GlobalJ optimization framework. I imple-
mented the test framework and conducted tests using the already available test functions,
I introduced the specially made Spikes function. Evaluating the test results is mainly my
contribution.

The final work presented in this chapter is the concept of the DistributedGlo-

bal algorithm. Motivations for this algorithm are presented, alongside insights that

are gained from the strong similarities with ParallelGlobal. After a brief overview

on messaging in distributed systems, the DistributedGlobal algorithm is described.

This algorithm never had a true distributed implementation, hence we lack numeric

results.
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My contributions regarding DistributedGlobal are construction of the main algorithm
based on the existing clustering and local search modules of ParallelGlobal. As a first
step for use on computing clusters, I integrated the JPPF library [32], hence the GlobalJ
toolbox supports remote function evaluations.

Finally, I conclude the chapter with reiterating the main achievements and results.

The most important insights are shortly discussed that I gained regarding parallel

global optimization, alongside interesting research directions that could advance ca-

pabilities in this research topic.

2.3 A brief overview on the history of Global

GLOBAL is originally a Fortran subroutine (hence the upper case name) introduced by

Csendes in [33] implementing the algorithm by Boender et al. described in [34].

First implementations of the Global algorithm were written in Fortran. In that

era computing power and memory were major obstacles. This is reflected in the fact

that the original implementation hard-coded 20 stored local minima for the global

optimization process. Since then system resources became a smaller issue, however

we naturally want to solve the biggest possible problems, optimization tasks always

expand to the limits of the computer. After the Fortran version implementations in

C and MATLAB enabled the broader use of Global. The MATLAB version was still

lacking modern programming paradigms and mostly reflected the original Fortran

implementation. This includes a fixed limit of stored local minimizers and no sepa-

ration between Global and the local search method, Unirandi.

The current best implementation of Global is found in GlobalJ, a Java package

created using modern programming techniques [35, 36]. The main authors of the

package are Balázs Lévai and Balázs Bánhelyi. They converted the algorithm to a

modular system and improved the overall implementation. Besides the ancient algo-

rithm origins, several factors motivated a new version. MATLAB is oriented towards

experts, general users might not have the opportunity to use a MATLAB implemen-

tation. As it is a niche language, the user-base is relatively small. MATLAB also has

a quite significant licensing cost, not reasonable for one-off uses, especially with a

plethora of freely available mature programming languages beyond it. Speed is an

important question, depending on the type of problem MATLAB is either very fast, or

very slow. Matrix operations are highly optimized, and with a big enough problem

size MATLAB outperforms naive low level implementations. But MATLAB’s script
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language is interpreted, which makes simple control flow programs orders of magni-

tude slower than a compiled version. Another issue is its weak ability of modeling.

While any operation concerning matrices is either implemented or simple to achieve,

support for other use cases is awkward. For example the standard way to encode a po-
lynomial is to create a vector of coefficients in reverse power order, instead of an explicit
solution. Multiplying polynomials is not obvious without knowing about convolution.
But it works, and with knowledge on the mathematical background it is perfectly clear
why. Although an object-oriented system is implemented in MATLAB, it received a

lot of criticism, it is still not used very often. A clear indication of the problem is that
I have worked with MATLAB for over 5 years and just found out that it has an OOP
system by accident. In simple terms MATLAB is tailored towards experts in the field of

science and engineering with occasional exceptions. Global has potential for a much

wider audience, in this regard using MATLAB is a serious limiting factor.

The main alternative languages for re-implementing GLOBAL were C, C++, Java,

and Python. C is not an object-oriented language, without a type system its modeling

power is low compared to other languages. C++ is a good candidate, the down-

side is its high learning curve that would prevent easy accessibility for inexperienced

users. Both Java and Python are object-oriented languages that are trivial to use in

most environments. They both have a large user-base and require relatively limi-

ted knowledge of the language for effective use. Python is an interpreted language,

which inherently makes it much slower than a native binary. Java is almost as fast as

compiled languages, as it is half-compiled to an intermediate binary representation.

The byte code is executed by the Java virtual machine, which is supported on almost

any hardware platform.

Combining these factors the decision for a new implementation was made and the

chosen language was Java. This choice made it even easier to use Global. As it later

turned out, we can build algorithms from simple configuration files using the Java

reflection package. Implementing a generic algorithm configurator, with a GUI is also

a possibility. Applications can use the type information to create properly initialized

algorithm objects, without the need to hard code any parameters. Extending the

package with new algorithms including out-of-box support is very easy.
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2.4 The Global algorithm

Global is a stochastic algorithm for solving problems with black-box objective functi-

ons. Global utilizes the multi-start strategy, a simple solution to perform global op-

timization tasks with a local search algorithm. Random initial points are generated,

then evaluated using the local search algorithm of choice. Starting at the seed point,

the local search algorithm finds the local minimizer x∗ in the region of attraction.

Usually this mathematical description of local optimizers is not followed in imple-

mentation. Searching exactly on the function gradient is an expensive process, ot-

herwise known as numeric integration. The goal is to find a local minimizer with a

minimal number of function evaluations, hence both gradient descent and stochastic

methods can move between regions of attraction. Algorithms are only guaranteed to

settle near an x∗ local minimum, the region of attraction of which is not well-defined.

2.4.1 Unirandi

Global is usually used with the UNIRANDI local search algorithm, described in Algo-

rithm 1. It is a derivative free stochastic method utilizing random search directions.

Unirandi makes a compromise between descent speed and the number of function

evaluations. Instead of simply stepping in random directions with lower function

values, a line search is used to improve robustness. A line search tries to improve

the function value along a single direction, it is an optimizer for one dimensional

problems.

Unirandi is started with the x seed point and the λ initial step length parameter.

In lines 3-17 x is gradually moved towards a local minimizer. When the loop exits,

according to the convergence criteria x is near the x∗ local minimizer. In lines 4 and

5 a unit length D⃗ random direction is generated with uniform distribution on the

surface of the N-sphere. From 6 to 10 a line search is attempted first in the D⃗, then

in the opposite −D⃗ direction. If either one finds a point with lower function value

than F (x), x is updated to that point, and the λ step length is scaled up. If both the

positive and negative line search directions fail, Unirandi retries with a new random

D⃗ direction, without changing the step length. When two D⃗ directions fail, the step

length is scaled down and the process is restarted.

The line search function starting in line 18 implements the doubling stepper stra-

tegy. In line 19 the x′
k candidate point is calculated. In line 20 x′

k is bounded to the
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Algorithm 1 Unirandi (as implemented in GlobalJ)
Require: x← initial sample
1: failed-directions← 0
2: λ← InitialStepLength
3: while convergence-criteria() is not satisfied do
4: D⃗ ← normal-distribution(dim(F ), 0⃗, I)

5: D⃗ ← D⃗ · ∥D⃗∥−1
2

6: if line-search(x, D⃗, λ) is success then
7: continue
8: else if line-search(x,−D⃗, λ) is success then
9: continue

10: end if
11: failed-directions← failed-directions+ 1
12: if failed-directions < 2 then
13: continue
14: end if
15: failed-directions← 0
16: λ← λ

2
17: end while

18: function line-search(x, D⃗, λ)
19: x′

k ← λ · D⃗ + x
20: xk ← bound-elements(x′

k, [−1, 1])
21: if F (xk) ≥ F (x) then
22: return fail
23: end if
24: while F (xk) < F (x) do
25: x← xk

26: λ← 2 · λ
27: xk ← λ · D⃗ + x
28: xk ← bound-elements(xk, [−1, 1])
29: end while
30: λ← λ

2
31: return success
32: end function

search cube1. In every dimension separately x′
k is warped back to the search space.

This yields the xk point in the unit cube that is closest to x′
k.

Unirandi only stops when one of the convergence criteria is satisfied. The ρ re-

lative convergence threshold (10−12 by default) prevents further iterations when the

function value is not improving. If the relative change in function value falls below

the threshold expressed as

F (x)− F (xk)

|F (xk)|
< ρ

1For simplicity the search space is transformed to the unit cube, all algorithms and calculations
operate in this space. Results are presented in the original problem space.
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or λ < ρ becomes satisfied, then convergence is declared. For cases where Unirandi

does not converge quickly enough a limit is applied in the number of function eva-

luations. Regardless of the reason for stopping, the latest x point is considered the

local minimizer.

2.4.2 Global

A simple multi-start algorithm based on Unirandi is an effective way of solving opti-

mization problems. The number of function evaluations can be unnecessarily high,

due to duplicate work on regions of interest in the search space. Taking samples is

relatively cheap requiring one function evaluation per sample, while running a lo-

cal search method needs hundreds to thousands. Quality of the objective function

regions can have a big difference in the cost of local searches. Global reduces the

length of local searches by taking a set of samples and discarding a portion with high

function values. Starting from lower function values means fewer steps per local

search, without excluding any potential global optimum from being found.

Another possibility for reducing the number of function evaluations arises when

multiple local searches start in the same region of attraction. To solve this problem

Global uses clustering. If a sample would start a local search near an already existing

local minimizer, it is merged into the cluster preventing superfluous evaluations. A

condition is needed to decide whether the sample is close to an existing cluster. If a

constant dc distance would be used, some minimizers might be covered by neighbo-

ring clusters making them hard or impossible to discover with local searches. Instead

of setting a constant, dc is determined by the statistic formula

dc = clustering-distance(α,N, dim(F )) =
(
1− α

1
N−1

) 1
dim(F )

,

where N is the number of samples taken, dim(F ) is the number of dimensions of

the objective function, and the α ∈ (0, 1) parameter controls how fast clusters should

shrink. At first when only a few samples exist dc is large, it prevents local search

starts near each other. As more and more samples are taken dc gets smaller and close

by local searches become possible.

Algorithm 2 describes the so called “updated Global algorithm” found in GlobalJ.

Global runs in iterations. First, it creates the set of samples that will be evaluated.

Then the samples are filtered to reduce duplicate work. Finally, the remaining sam-

ples are used as seed points of a local search.
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Algorithm 2 Global (as implemented in GlobalJ)
1: while termination-criteria() is not true do
2: SampleSet← SampleSet ∪ {uniform(lb, ub) : i ∈ [1,NewSampleCount]}
3: SampleSet← sort(SampleSet, ascending)
4: ReducedSet← {si ∈ SampleSet : i ∈ [1,ReducedSetSize]}
5: SampleSet← SampleSet \ReducedSet

6: while ReducedSet is not ∅ do
7: N ← |ReducedSet|+

∑
Ck∈Clusters |Ck|

8: dc ← clustering-distance(α,N, dim(F ))

9: for Ck in Clusters do
10: NewlyClustered←

{
ri ∈ ReducedSet : ∥ri − cj∥∞ < dc ∧ F (ri) > F (cj), cj ∈ Ck

}
11: if NewlyClustered is not ∅ then
12: Ck ← Ck ∪NewlyClustered
13: ReducedSet← ReducedSet \NewlyClustered
14: repeat iteration k
15: end if
16: end for

17: if r∗ ← argmin
ri∈ReducedSet

F (ri) exists then

18: ReducedSet← ReducedSet \ {r∗}
19: x∗

local ← local-search(r∗)

20: Clocal, dmin ← argmin
Ck∈Clusters

∥∥∥∥x∗
local − argmin

ci∈Ck

F (ci)

∥∥∥∥
∞

21: if dmin < dc/10 then
22: Clocal ← Clocal ∪ {x∗

local, r
∗}

23: else
24: Clusters← Clusters ∪ {{x∗

local, r
∗}}

25: end if
26: end if
27: end while
28: end while

In lines 2-5 the sampling and reduction takes place. A number of samples con-

trolled by the NewSampleCount parameter is generated in the dim(F ) dimensional

input cuboid [Plb, Pub] with uniform distribution. The new samples are added to the

SampleSet and ReducedSetSize number of them with the lowest function values are

moved to the ReducedSet. Global processes elements of the ReducedSet, while the

SampleSet accumulates all other samples taken.

In lines 6-27 samples are taken out of the ReducedSet either by clustering, or by

local searches as seed points, until it becomes empty. The dc distance is calculated at

the start of every loop, with samples in the ReducedSet and in the clusters taken into

account. While samples removed from the ReducedSet always end up in a cluster

leaving the sum unchanged, the x∗ point increases it by one. Note that N is deter-

mined by counting, we can simply add ReducedSetSize after the sampling phase and

increment it every time a local search happens.
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The FOR cycle in 9-16 tries to clusterize the samples in ReducedSet. For every

cluster the NewlyClustered set is computed. An ri sample of the ReducedSet is mo-

ved to NewlyClustered if a close by clustered sample exists that has a lower function

value than ri. The distance is measured with the ∞-norm (Manhattan distance). If

NewlyClustered is not empty, the samples are moved to the Ck cluster and the cur-

rent k-th iteration of the FOR cycle is repeated. Repeating is necessary because Ck is

modified, and the newly clustered samples could cause further ri to join the cluster.

In lines 17-25 the r∗ seed point with the lowest function value is taken from

ReducedSet, if it is not empty. A local search is performed finding the x∗
local local

minimizer, producing the {r∗, x∗
local} cluster candidate. To avoid creating duplicate

clusters, a check has to be performed whether a cluster at the local optimum already

exists. The ci ∈ Ck point with the lowest function value is called the Ck cluster’s

center. The Clocal cluster is determined which has its center closest to x∗
local at dmin

distance. If the two center’s distance is less than dc/10, they are merged. Otherwise,

the r∗ seed point and the x∗
local minimizer create a new cluster.

After placing r∗ and x∗
local in a cluster, Global tries to process the remaining points

in ReducedSet. When it becomes empty, the main iteration is finished. The algorithm

either exits, or starts sampling, clustering, and local searches in a new iteration.

Global has several termination criteria that limit the number of iterations. As

they are evaluated in line 1, some overruns might occur. The termination criteria can

limit the number of iterations directly, or indirectly by limiting the number of samples

taken overall. The number of local searches and the number of local optima can also

be limited, Global also exits if no new local optimum is discovered in an iteration.

Global can also exit due to more general limits, like exceeding the maximum number

of function evaluations or the maximum runtime.

2.4.3 Going multi-threaded

Implementing a parallel version of Global was the next logical step to better utilize

the available resources of a typical computing environment. The Global optimizer is

a tool that can benefit from a multi-threaded system, although some limitations apply

due to the possible misalignment of optimization problems and parallel execution.

During my research I created parallel versions tailored to different environments.

Due to some poor choices in the naming of algorithms their purpose might not be

clear, hence the situation is clarified here. In the context of this dissertation I will use

the revised names.
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SerializedGlobal will be referred to as SynchronizedGlobal to reference the “syn-
chronized” keyword in Java. ParallelGlobal is used to denote two similar algorithms.

From here ParallelGlobal refers to the implementation presented in [37] and [38].

DistributedGlobal is at its core the same algorithm, however changes to accommo-

date the distributed environment induced some differences.

“ParallelGlobal with Low Thread Interactions” is the title of a conference paper

that was later extended to a journal publication. We requested a name change that

did not go through properly. As a result, [38] is referred to by the original title in

some instances. The paper itself and some automatically generated indexes use the

new "Effects of Pooling in ParallelGlobal with Low Thread Interactions" title. Please

be aware of this.

2.5 SynchronizedGlobal

SynchronizedGlobal (formerly known as SerializedGlobal) is the first parallel imple-

mentation of Global. Our goal was to utilize the resources of a multi-threaded CPU

environment. Naive parallelization techniques were ruled out because of the low

gain in efficiency. While algorithmic parallelism would be easy to implement, it has

several drawbacks that can be prevented with better algorithm design. For example,

the sampling, clustering, and local search processes all have trivial parallel versions,

we can simply process the data on multiple threads separately. Since there is no data

dependency, the implementation is quite easy. However, in an algorithm like Global

there are frequently occurring edge cases that decrease the performance significantly.

If a sample is harder to evaluate, if a local search takes much longer than others, then

the load distribution quickly becomes uneven. Besides the load being uneven it ma-

terializes the worst case scenario, where the bulk of the threads quickly enter idling

while a few perform most of the work. This greatly reduces the algorithmic efficiency,

the algorithm is not scalable.

To prevent threads unnecessarily idling, the strict notion of an iteration was sacri-

ficed. If a new iteration is allowed to start before the last one finished, all threads can

be utilized. This design decreases algorithmic efficiency, since information from an

unfinished iteration might prevent future computations. Overall, a multi-thread al-

gorithm can more effectively utilize the available resources, which is not guaranteed

to, but can result in a faster optimizer.
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2.5.1 SynchronizedGlobal worker algorithm

Task parallelism with a slightly altered approach is a fitting strategy for the problem

at hand. Instead of a master governing tasks, every thread runs the same algorithm

and communicates in shared memory. The algorithm state is shared through data

containers and variables. In most places there are no flags or state variables, workers

decide their actions based on the available data. Figure 2.1 shows the decision tree

of a worker in one loop. When a task is done the worker thread restarts the loop,

unless the termination criteria or an exit state is reached.

Three main parts of Global are identified and turned into tasks in the multi-

threaded algorithm. Sample generation is a trivial subject for creating tasks. The

worker checks if samples are needed, if yes it generates one sample. Clustering is

a good candidate for a task, but not as straightforward. Checking just one (sam-
ple, clustered sample) pair as a task would create too much overhead. Checking one

sample for a matching clustered sample in all stored clusters yields better task granu-

larity. Local searches are also trivial parallel tasks. Given an origin point they require

a non-trivial amount of computing resource, while the execution of local searches is

completely independent.

2.5.2 Clustering

Sample generation and local searches simply use data parallelism, however the exact

inner working of the clustering process is more complicated. Since local searches are

comparably very expensive, we prioritize avoiding them in the first place. Superflu-

ous local searches might occur in a situation where the clustering of sample points

depends on the order of execution. Let’s suppose there is a clustered sample C, and

unclustered samples A and B, where neighboring letters meet the criteria for clus-

tering. If the order of execution checks first A and then B, only B will be clustered

and A will become an origin of a local search. If first B is checked, it will be clus-

tered. Then A is checked, and it also meets the criteria compared to B. Depending

on the order of checks, the set of clustered samples can be different. To eliminate

sensitivity to the order of comparisons, newly clustered samples must also be taken

into account. When a new sample is clustered, all unclustered samples have to be

revisited and checked against the new cluster member. If there are no new additions

to any cluster, the clustering is complete.

In a single thread environment it is easy to implement such an algorithm. In a
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Figure 2.1: SynchronizedGlobal worker algorithm

multi-threaded environment ensuring the complete clustering is more complicated.

A good solution is possible, based on a FIFO queue of unclustered samples, with

additional information on progress. Every sample stores up to which clustered sam-

ple was it already processed. When the sample could not be clustered, it reenters
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the queue as the last element. When a sample becomes clustered, already proces-

sed elements of the queue are checked against the newly clustered point. Samples

are implicitly ordered in the queue based on how much clustered samples they were

checked against. When the next sample in the queue is already fully processed, there

is a high probability, that all remaining samples are fully processed.

When the sample taken from the queue is fully processed, threads could exit the

clustering and begin a new loop in the main algorithm. However, until clustering

is finished they cannot proceed, as they would have no seed points to start a local

search. Busy checking of algorithm conditions until the next phase begins would

create constant data races and waste CPU cycles. Instead, threads go to sleep in a

gated system until the clustering is finished. In case of a new clustered point the

threads wake up and try to resume unclustered samples. When the last active thread

finds a fully processed unclustered sample, the clustering is finished. At this point

unclustered samples are moved to the container of local search origins, the threads

are resumed and released from the clusterizer.

2.5.3 Improving algorithmic efficiency

Local searches are independent and trivially separable tasks, since they only depend

on the seed point and the immutable objective function. In contrast, the result of

the local search will influence other threads. The newly found local optimum has to

be checked against existing clusters to decide whether a new cluster is found. If a

new cluster is created, then all unclustered samples waiting to be seed points have

to reenter clustering, just as if an unclustered sample was clustered. With the system

described above this is possible, as the source of a newly clustered point is irrelevant.

Processing of local search results can be interlaced with the clustering process.

When unclustered samples are converted to local search origins, we have to be

a bit careful. If all unclustered samples are converted, there is a lot of potential for

superfluous local searches as a newly created cluster might have been able to absorb

still unclustered samples. We have to feed the local searches with smaller portions of

unclustered samples. The solution is to use a dynamic batch size. When N threads

exit clustering we have the potential to start N local searches immediately. If we start

one local search and wait for the result, the algorithmic efficiency is good, since we

execute the fewest number of local searches overall, however the use of resources

is poor. To utilize the available resources effectively, N unclustered samples will be

converted to local search origins, their evaluation starts immediately. When a local
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search is finished, the origin and the local optimum is put into a cluster and the

worker-threads starts a new algorithm loop.

Since only as many unclustered samples were converted to origins as there are

threads, the new loop can’t execute a local search. If there are still unclustered sam-

ples, the thread will reenter clustering and resume the sample comparisons. When

no unprocessed samples remain, N new samples are converted to origins, where N

is the number of threads currently in clustering. If no other thread finished in the

meantime N is one. Since there is only one thread available, a single origin is created

to keep the thread busy.

2.5.4 Connecting the iterations

As Figure 2.1 shows, workers try to execute the algorithm backwards, first the local

search, then clustering, and finally sample generation. This order of operation ensu-

res that samples are pulled through the operation pipeline, they are processed in the

first-came-first-served order.

When the clusterizer is empty and all samples are being processed by the local

searches, some threads might take a lot more time to finish than the bulk of workers.

If threads waited for all local searches to finish the effectiveness of resource usage

could be greatly reduced. Such free workers can start a new algorithm iteration,

since local searches consume unclustered samples and the resulting local optima are

incorporated in the clusters directly afterwards.

Iterations are dependent of each other because the clustering of samples and

clustering of local optima can interact with the already clustered points. Starting

a new iteration only sacrifices a small amount of algorithmic efficiency when the

next iteration’s clustering finishes before the ongoing local searches end. Clustering

phases of iterations can never mix, sampling cannot start before clustering of the

already generated samples is finished.

There is a small chance that a local optimum found by a running local search

would be in clustering distance of a new sample. If clustering finishes first a spurious

local search will be executed.

2.5.5 Results and findings on SynchronizedGlobal

We studied the implementation of SynchronizedGlobal from two aspects. First, we

verified that the parallelization beneficially affects the runtime, whether increasing
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the number of worker threads results in a speedup. Second, we executed a bench-

mark test to compare the performance of SynchronizedGlobal to Global.

Parallelization tests measure the change of runtime on problems that are equi-

valent in problem complexity but differ in computation cost. To make these mea-

surements we introduced the hardness parameter that changes the execution time

of functions. We calculate the objective function 10hardness times whenever we eva-

luate it. Thus, the numerical result remains the same, but the computing cost of

a function evaluation is multiplied approximately by the powers of 10. The actual

execution time greatly depends on how the evaluating system handles the compu-

tational hotspots. Code segments that make up significant portions of the execution

time are optimized by the Java virtual machine (JVM), the real execution time can

be lower than the theoretical 10 times slowdown. Considering a given hardness we

can only measure the speedup compared to the single-threaded executions. Another

noise factor is the nondeterministic nature of runtime. We repeated every test 10

times and calculated the average of our measurements to mitigate these interfering

factors.

Tables 2.1 and 2.2 show the number of function evaluations and runtime in mil-

liseconds, as a function of the hardness and the number of worker threads. As ex-

pected, an increase in the number of function evaluations was observed with the

increasing number of threads, due to the loss in algorithmic efficiency. The overhead

that we experienced was with a good approximation proportional to the number of

threads, due to frequent synchronization during optimization. The runtimes show

a more complex behavior, the connection to the problem hardness and algorithm

threads is not linear. Our results show that for each tested objective function the

runtime decreases up to 4 worker threads, even with the original function hardness.

This remains true for up to 8 threads in most of the examined cases. From a point

the optimization time starts to increase with the addition of threads. We call this

phenomenon the saturation of the parallel optimization process. This happens when

the synchronization overhead and algorithmic inefficiency overhead overcomes the

gains of parallel execution. Additional threads only make things worse in such cases.

The data series in Table 2.1 of the Easom function with 1x evaluation factor (zero

hardness) demonstrates this phenomenon.

Saturation starts to manifest if a greater amount of threads is used, while the

function evaluation cost is relatively low. Examination of the runtimes showed that

increasing hardness shifts the minimum runtime to a setting with more worker thre-
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Hardness Threads Ackley Easom Levy 3

NFE Runtime NFE Runtime NFE Runtime

1x

1 100,447 3,553.7 10,120.7 122.7 101,742 3,245.8
2 101,544 2,216.0 10,246.4 118.4 104,827 2,062.1
4 102,881 1,515.3 10,506.2 112.0 112,351 1,473.0
8 102,908 1,145.9 11,078.7 145.0 129,056 1,218.9

16 110,010 1,319.3 12,335.9 149.0 156,907 1,548.4

10x

1 100,553 5,838.5 10,141.9 165.0 102,412 5,414.6
2 101,510 3,370.6 10,273.7 132.0 106,339 3,057.4
4 103,495 2,014.7 10,524.9 111.6 114,325 2,100.8
8 105,977 1,480.0 11,096.6 135.7 126,848 1,592.3

16 112,008 1,623.1 12,308.2 157.6 155,884 1,714.4

100x

1 100,516 27,868.7 10,117.7 413.2 102,227 25,364.9
2 101,585 14,544.5 10,256.9 352.5 106,423 13,788.8
4 103,420 7,806.3 10,546.1 323.9 115,158 8,030.5
8 107,657 4,544.7 11,083.6 296.3 130,109 5,368.2

16 115,264 3,648.3 12,313.7 257.8 167,983 5,205.0

1000x

1 100,567 258,690.0 10,198.5 1,722.4 102,028 236,066.5
2 101,561 126,315.0 10,249.7 865.1 106,792 123,220.0
4 103,616 68,691.5 10,521.7 508.7 114,847 70,399.6
8 107,718 39,430.4 11,116.0 441.6 128,450 45,762.8

16 115,875 27,021.5 12,358.5 389.3 160,364 37,713.4

Table 2.1: Results obtained by running SynchronizedGlobal on the Ackley, Easom, and
Levy 3 (as defined in Appendix B of [35]) test functions.

ads. Saturation occurs later, as the ratio of synchronization overhead is lowered

by the increased function evaluation times. On the evaluated functions at the high

enough evaluation cost of 1000x the runtime is continuously decreasing up to 16

threads, which is not enough to reach the saturation point. The Easom and Shu-

bert functions have lower runtimes and NFEV values, the optimizer finds the known

global optimum with approximately 104 function evaluations. On other objective

functions, roughly 105 function evaluations are indicated. For those functions the

optimizer did not find the known global optimum, the 105 NFEV limit caused the ter-

mination. For the questions we want to answer about parallelization it is irrelevant

whether the optimizer found the global optimum. Measuring speedup only requires

that the evaluated computation problem is roughly identical.

On all functions and hardness values the number of function evaluations is in-

creased due to the loss in algorithmic efficiency. About 0.5% − 1.5% more function

evaluations happen per thread. The explanation is that the local searches do not

stop after the global evaluation limit is reached. Every local search that started right
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Hardness Threads Rastrigin-20 Schwefel-6 Shubert

NFE Runtime NFE Runtime NFE Runtime

1x

1 100,479 2,869.3 100,155 3,027.4 10,085.1 145.0
2 100,921 1,881.3 100,252 2,337.6 10,192.2 140.2
4 101,436 1,413.2 100,470 1,555.4 10,381.4 128.0
8 103,476 1,252.7 101,205 1,596.5 10,788.4 127.2

16 107,937 1,256.9 102,285 1,408.3 11,686.9 145.2

10x

1 100,328 4,201.9 100,189 3,484.9 10,087.0 207.6
2 101,015 2,514.4 100,362 2,334.2 10,181.5 164.9
4 102,049 1,682.6 100,616 1,738.2 10,375.3 143.3
8 104,993 1,364.4 100,691 1,586.7 10,842.9 141.8

16 106,210 1,444.7 101,445 1,487.2 11,778.9 149.8

100x

1 100,354 17,438.0 100,185 7,524.7 10,091.1 836.5
2 101,396 9,114.6 100,327 4,656.3 10,171.7 534.3
4 102,800 4,958.8 100,782 2,858.5 10,370.2 347.8
8 106,106 3,053.4 101,176 2,298.8 10,805.3 289.2

16 112,977 2,627.7 102,331 1,932.1 11,718.0 246.4

1000x

1 100,485 135,399.0 100,248 44,046.3 10,091.4 6,436.0
2 101,293 70,335.2 100,394 22,780.3 10,177.3 3,375.9
4 103,041 37,275.3 101,183 12,169.5 10,383.5 1,847.3
8 106,244 21,411.8 102,259 7,329.0 10,775.7 1,249.9

16 113,135 14,740.0 104,775 5,466.7 11,679.3 979.4

Table 2.2: Results obtained by running SynchronizedGlobal on the Rastrigin-20,
Schwefel-6, and Shubert test functions.

before the termination criteria are reached will execute normally, increasing number

of function evaluations. This behavior can be prevented if the local searches consider

the global limit of allowed function evaluations. It is not implemented in the current

optimization framework, therefore overruns are possible.

In the next test we compared the number of function evaluations needed by Syn-

chronizedGlobal and Global when only a single core is used. With no parallelization

effects we expect identical performance, as the core algorithms should be identical.

A total of 378 configurations were tested, where a configuration consists of a

global optimizer (Global, SynchronizedGlobal), a local optimizer (UnirandiCLS, NU-

nirandiCLS, RosenbrockCLS)2, and one test function of the 63 available. The opti-

mizers were run with the same parameters. The most important of which are the

400 new samples per iteration, the 15 remaining samples after sample reduction, the

α = 0.01 setting for the clusterizer, and the 10−8 relative convergence limit for the

local optimizer. A given configuration is evaluated 100 times to counter the high

2The ...CLS version of a local search algorithm is an implementation that permits configuration
of the used line search algorithm. By default, the doubling stepper algorithm from Unirandi is used.
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variance in the number of function evaluations. Figure 2.2 shows the distribution

for the number of function evaluations, on the Easom function. In this showcase

the average of an evaluation group varied between 1500 and 3300, with most values

between 2000 and 2300.

The number of function evaluations is limited for every run at 105. If an evalu-

ation exceeds the maximum, it is considered a failed attempt. We call the ratio of

successful attempts robustness of a configuration. To acquire comparable results we

only consider configurations where the robustness is 100% for both optimizers. To re-

move outliers configurations with runs exceeding the maximum number of function

evaluations are excluded. The resulting data still has high variability, but trends are

clear in an aggregated view.
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Figure 2.2: Number of function evaluations using the NUnirandiCLS local optimizer.
Colors denote the 9 groups of 100 evaluations, for which the NFEV distributions are
shown. Up to 620 evaluations the Y axis is linear, above that it is logarithmic.

Figure 2.3 visualizes the number of function evaluations needed by Global and

SynchronizedGlobal, with single-thread configuration. In theory, the single-thread

configuration should yield the same result, as the core algorithms are identical. Ex-

cept for a few outliers the equality holds with less than 2% relative error, we can

conclude the two algorithms to be identical in single-thread performance.
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Figure 2.3: Histogram showing NFEV results of SynchronizedGlobal relative to Global,
with single-thread configurations and various objective functions. The plotted values are
averages of 100 evaluations. Data points are calculated by the (nSG−nG)/nG expression.

2.5.6 Stress test of synchronized clustering

The clustering module is separately tested to study the effects of parallelization on

runtime. Although clustering is only loosely dependent on the underlying objective

function, we wanted to study it on real data. N sample points are generated on

the 5-dimensional Rastrigin function in the xi ∈ [−5, 5] interval. Random pairs are

placed in a cluster as an origin and a local optimum point would be.

This preparation results in approximately N/2 clusters of two samples. The num-

ber of clusters can be slightly decreased, since two clusters with origins close enough

origins are merged. As the second setup step the sample generation is repeated with

N points, the new samples are loaded into the clusterizer as unclustered samples.

The multi-threaded clustering is started, all threads execute the parallel clustering

procedure from Section 2.5.2, without the local search step. When a thread exits the

module it is stopped and cannot reenter the clusterizer.

Runtime of the clustering process was measured between its start and when all

threads stopped working. The presented data is the average of 10 runs. Table 2.3

shows that some improvement is achieved even in the case of only 100 initial sam-

ples. It is also shown, that clustering easily reaches thread saturation, which at

higher sample size manifests at higher thread counts. A possible solution to prevent

saturation is to limit the number of threads allowed to enter clustering. After the

test, the ratio of unclustered samples is around 93%, which means that the number

of executed comparisons is greater than 93% of the theoretical maximum. At least

0.93 ·N2 comparisons are executed. We can conclude that parallelization of the clus-
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Samples (N) Threads Runtime (ms) Unclustered samples

102

1 7.3 92.5
2 6.1 95.5
4 6.6 94.3
8 8.8 95.4

16 12.9 94.1

103

1 132.5 938.7
2 94.5 938.7
4 77.0 936.3
8 80.6 940.7

16 120.1 938.3

104

1 11,351.5 9,372.5
2 6,255.4 9,373.6
4 3,549.3 9,369.7
8 2,730.1 9,352.1

16 2,183.1 9,354.8

105

1 1,996,087.9 93,685.0
2 1,079,716.8 93,711.1
4 533,583.0 93,690.8
8 337,324.0 93,741.4

16 224,280.0 93,698.7

Table 2.3: Clusterizer stress test results showing runtime performance on different work-
loads and number of worker threads. Clustering starts from N clustered samples and N
unclustered samples, where N is the number of initial samples.

tering module is successful, while depending on the load a reduction in runtime or

saturation is observed. For lower number of clustered samples which is typical in real

configurations, saturation poses a problem. Estimating the number of comparisons

and limiting the clustering threads accordingly could provide further improvement

by mitigating this effect.

Module Parameter Value

SynchronizedGlobal NewSampleSize 400
SynchronizedGlobal SampleReducingFactor 0.03999
SynchronizedGlobal MaxFunctionEvaluations 100,000 (default)
SynchronizedGlobal LocalOptimizer NUnirandiCLS

SynchronizedGlobal Clusterizer SGSLClusterizer

SGSLClusterizer Alpha 0.01

NUnirandiCLS MaxFunctionEvaluations 10,000
NUnirandiCLS RelativeConvergence 0.00000001 (10−8)
NUnirandiCLS LineSearchFunction LineSearchImpl (default)

Table 2.4: Configuration of the SynchronizedGlobal algorithm and sub-algorithms.
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Table 2.4 shows the parameterization of SynchronizedGlobal used in tests. Global

received the same effective parameterization, with the modules coming from the

original Global ecosystem.

2.6 ParallelGlobal

While SynchronizedGlobal uses every opportunity to avoid function evaluations to

be efficient on expensive objective functions, ParallelGlobal aims to reduce the cost

of inter-thread communications. When the objective function is cheap to compute,

reducing the number of function evaluation has less relevance.

In this context thread interactions become more expensive for two reasons. First,

given the same amount of evaluations and thread interactions the relative cost of

interactions increases. Second, when an objective function is cheap we tend to use

more function evaluations to ensure a more accurate or more robust result. In cases

where the algorithm creates and tries to optimize more samples the number of thread

interactions also increases. Sample evaluation and local searches are still indepen-

dent tasks that can be executed without interactions, the choke point is in building a

common sample pool and clustering.

2.6.1 ParallelGlobal worker algorithm

Unlike SynchronizedGlobal, the ParallelGlobal algorithm should have very few inter-

actions between threads, a new approach of parallelization is needed to capture this

design decision. The clusterizer has to execute O(n ∗m) number of operations with

write locks applied m times, where m is the number of successfully clustered samples

and n is the total number of samples. In SynchronizedGlobal the threads also have

to wait for the completion of a full clustering cycle before they can continue with the

local searches. In ParallelGlobal we can skip the strict notion of a clustering phase,

hence additional function evaluations can be executed by the idling threads. We can

expect both a speedup and more actual data.

As a consequence the ParallelGlobalWorker algorithm seen on Figure 2.4 shows

much less complexity. In every loop the exit conditions and the algorithm steps

are evaluated. The three algorithm phases remain, first samples are generated, then

clustering happens, finally the local search is executed. The threads are no longer tied

together in the iteration phases. Since there is no intricate ballet of tight clustering,
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data parallelism can take over the algorithm loop from sampling to local search.

With this change iterations are harder to define, to the point where they don’t

make much sense. In ParallelGlobal the number of iterations can only be counted

per worker. On the algorithm level iteration phases are not present, the number of

samples, local searches and function evaluations can limit the algorithm instead.

In SynchronizedGlobal sample generation is independent (only insertion to the

shared container has to be synchronized). Selecting the reduced sample set (sorting

the container and moving the best samples) requires coordination, only one thread

can do this job and others have to wait for it to finish. To eliminate these interactions,

ParallelGlobal can use a local sample pool for each thread. Because of the cheap

function evaluations we expect a lot of sample generation, each thread can build up

enough samples to have diversity. The biggest change is that a worker only selects

one sample from the pool to work with in one “iteration”. Instead of generating a

set then selecting a subset based on the selection ratio, the process is reversed. The

set is generated such that selecting a single sample will result in the correct ratio. A

persistent sample pool can be utilized as well, where samples are not thrown away

between iterations. The best sample can come from a previous lucky iteration, where

multiple good candidates were generated.

2.6.2 Clustering and local search

Clustering complexity is not decreased by having independent threads, there are still

O(n∗m) comparisons and m samples inserted. With cheap evaluations m and n tend

to be even larger, however with the looser algorithm the thread interactions can be

decreased. In ParallelGlobal there is no central store of clustered samples. Instead,

a linked list of clusters is used where the individual clusters are locked on insertion,

and not the whole list of samples. The probability of collisions is much lower, given

that there are at least a few different clusters. On the rare occasion when only one

cluster exists the objective function most likely has one local minimizer, the algorithm

will exit without generating a lot of samples.

If clustering of the sample is not successful, it becomes a starting point for a local

search. When the local optimum does not fit an existing cluster a new cluster is

appended to the list. To reduce the number of locks needed as much as possible,

the “store length beforehand” approach is used, where new clusters are ignored in

already started clustering runs. When a cluster is inserted it is enough to lock the

neighboring items instead of the whole list.
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2.6.3 Results and findings on ParallelGlobal

It is clear that ParallelGlobal is a much simpler algorithm than SynchronizedGlobal.

Only the container for clusters is shared and there are very few synchronized va-

riables, mainly used in checking termination criteria. The reduced opportunity for

thread interactions highly decreases the effects of saturation in ParallelGlobal, algo-

rithmic efficiency is sacrificed for higher utilization of CPU time.

Experiments on ParallelGlobal are conducted similarly to SynchronizedGlobal.

Tests are evaluated with 1, 2, 4, 8, and 16 thread settings for ParallelGlobal. The

hardness level of functions is also altered to simulate computationally more deman-

ding problems, as described in Section 2.5.5. To gain more stable results every data

point is evaluated 100 times. A key difference to evaluations on SynchronizedGlo-

bal is that robustness was not taken into account. Tests on ParallelGlobal focus on

the parallel behavior and speed gain instead of comparison in efficiency. To reduce

computing cost, a set of 14 functions was chosen with diverse characteristics.
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Figure 2.5: ParallelGlobal runtimes compared to Global, with 16 threads and hardness
3 configuration. Plotted values are calculated by the nPG/nG expression. Results marked
with orange hatch indicate objective functions that reached the 105 NFEV soft limit.

Figure 2.5 shows interesting behaviors caused by parallelization. It shows the

ratio of runtime needed by ParallelGlobal compared to Global, with 1000x hardness.

ParallelGlobal is configured to run with 16 threads, which provides the most advan-
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tage in available resources. Conversely, it also poses the biggest challenge, as the

resource utilization must be efficient.

The functions marked with orange hatch are too difficult to solve at the given

T16H3 configuration and the limit of 105 maximum function evaluations. The Spikes
function has large variance in the results, a few evaluations have reached the NFEV

limit, however the average number of evaluations is around 30.000. Results fluctuate

from less than 103 to 105 evaluations. Since the same amount of work is expected

from ParallelGlobal and Global on functions that are not completely solved, they are

also included in the results.

On most test functions ParallelGlobal is faster with less than half runtime compa-

red to Global. On a few functions namely Discus-5, Schaffer, and Zakharov-40 the

needed runtime is higher for ParallelGlobal. Considering that ParallelGlobal has the

ability to use 16 threads and is still slower the cause has to be investigated.

Table 2.5 shows the numerical results for the three functions in question. It is

clear that the number of function evaluations increases with the number of threads.

On Schaffer the growth follows the number of threads with a low linear coefficient,

on 16 threads the NFEV is doubled. On Discus-5 the growth is greater than linear,

from 25% more function evaluations on 2 threads it grows to overall 5x evaluations

on 16 threads. ParallelGlobal shows the strongest growth on Zakharov-40. Given N

threads, the necessary NFEV is N times the single-thread amount.

With closer examination of the data the reason is clear. The number of function

evaluations used in local searches closely correlates with the overall function evalu-

ations for each configuration. The data shows that increasing the number of threads

increases the number of local searches. The high number of local searches leads to

the high number of function evaluations and in consequence low algorithmic effi-

ciency. Discus-5 and Zakharov-40 is reliably solved using 1 and 2 threads, but at 16

threads all attempts failed to stop before reaching 105 evaluations.

In contrast, the Ackley, Rastrigin-20, Schwefel-6, Shekel-7, and Shekel-10 functi-

ons show efficiency values near the theoretical limit. On these functions the runtime

is less than one eight of Global in the 16 thread case. For Ackley, Rastrigin-20, and

Schwefel-6 the reasoning is simple. The number of local searches executed is signifi-

cantly higher than the number of threads. The increase caused by additional threads

is comparably small, it has only a minor effect on algorithmic efficiency. Since Paral-

lelGlobal can execute local searches simultaneously, despite the reduced efficiency it

gains a significant speedup.
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Hardness Threads Discus-5 Schaffer Zakharov-40

NFE Runtime NFE Runtime NFE Runtime

1x

1 17,605 295.8 88,397 485.2 20,669 1,575.3
2 21,331 332.5 90,897 438.2 41,215 1,707.1
4 34,731 407.9 119,443 474.5 83,306 1,966.6
8 55,636 488.2 145,501 528.6 163,408 2,336.5
16 101,020 674.4 199,621 688.7 324,282 3,618.9

10x

1 18,876 328.5 90,423 531.4 20,641 1,603.9
2 23,075 335.3 96,158 471.2 41,176 1,746.7
4 33,302 408.5 123,748 524.3 81,237 1,901.0
8 54,584 503.6 141,006 532.8 163,904 2,369.6
16 101,805 674.6 196,040 708.4 324,783 3,620.9

100x

1 16,935 305.4 90,245 999.6 20,471 1,858.4
2 22,386 335.4 97,952 707.2 40,995 2,049.9
4 35,365 412.7 120,426 670.5 81,536 2,217.5
8 58,902 520.0 148,541 682.2 162,631 2,670.0
16 100,114 684.3 218,265 814.0 323,983 3,896.8

1000x

1 17,954 481.7 86,429 6,018.8 20,402 5,062.0
2 21,057 406.6 98,078 3,691.8 41,762 5,495.4
4 35,553 496.5 120,928 2,600.3 82,159 5,811.3
8 59,552 597.6 143,945 2,022.7 163,595 6,453.3
16 103,038 760.1 201,185 2,143.8 324,343 8,319.5

Table 2.5: Results obtained by running ParallelGlobal on the Discus-5, Schaffer, and
Zakharov-40 test functions.

The explanation for the Shekel functions is different, similarly to Discus-5 the

number of local searches grows linearly with the number of threads. However, com-

pared to Global the number of function evaluations starts from a much lower value at

1 thread, hence the number of function evaluations is still relatively low at 16 threads

and a speedup observed. ParallelGlobal and Global has roughly the same number of

function evaluations performed in local searches, but Global evaluates much more in

the sampling phase. With additional threads ParallelGlobal would reach and surpass

the function evaluations of Global causing a slowdown for these functions too.

Figure 2.6 shows the detailed results on the Shubert function. Results are shown

as function of the number of threads on the four hardness levels. Every data point is

the ratio between ParallelGlobal and Global, where lower values favor ParallelGlobal.

On the left graph the number of function evaluations are shown, they have no

difference on the different hardness levels. Due to the lower algorithmic efficiency

ParallelGlobal needs twice as many evaluations on 1 thread, which grows to four

times as many on 16 threads.
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Figure 2.6: ParallelGlobal results compared to Global on the Shubert function, with
different number of threads and hardness values. Plotted values are calculated by the
nPG/nG expression.

Not an ideal situation, but as the graph on the right shows, given a computatio-

nally expensive objective function ParallelGlobal gains advantage. At all four hard-

ness levels the 2 thread configuration reduces the runtime. H0 and H1 is immediately

saturated, additional threads increase the runtime. H2 is improved up to 8 threads,

at the 16 thread configuration the saturation is already in full effect. H3 shows im-

provement up to 16 threads, however the curve flattens out suggesting the saturation

point is around 16 threads. On H3 ParallelGlobal is effective at 2 threads, as the run-

time decreases by a factor of 2. At 16 threads despite using 8 times the computing

power as with 2 threads, the runtime is only reduced by another factor of 2. In

conclusion ParallelGlobal can be effective on Shubert, but it has significant limits.

Figure 2.7 shows the results on the Spikes function. Spikes is defined according

to Equation (2.1), and it is specially made to test an extreme case of optimization.

It has a flat global trend, meaning that the function has no slope on large scales.

Another feature of the function is that the global optimum is not only a point, but a

whole area. If a point is evaluated in this area, the optimization problem is solved.

The points next to the area do not slope towards the area, it can only be discovered

by trial and error. The only effective method is random sampling until the optimum

is found.
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Figure 2.7: ParallelGlobal results compared to Global on the Spikes function, with
different number of threads and hardness values. Plotted values are calculated by the
nPG/nG expression.

The left graph shows that the NFEV ratio is constant for all thread and hardness

settings. This is expected, as the chance of generating a point in the optimum area is

constant. The number of function evaluations matches the amount needed by Global.

The right graph shows the runtime comparison to Global. ParallelGlobal is very

effective in utilizing the additional threads, even for the lower H0 and H1 configura-

tions the saturation only occurs after 8 threads. For H2 only the start of saturation

is visible, while for H3 the efficiency is almost the theoretical maximum, 16 threads

causes an almost 16-fold decrease in runtime.

spikes(x) =

1000, if ∥x− (15.25, 15.75)∥2 ≤ 1
4

1002 + Πxi
sin(2πxi), otherwise

(2.1)

2.7 DistributedGlobal

SynchronizedGlobal and ParallelGlobal are both capable of using a computing cluster

by assigning tasks to remote computers and collecting the results. The most obvious

remote task is a function evaluation. It is an independent computation, on expen-
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sive objective functions it provides sizeable load per assignment. The drawback is

that on a cheap objective function the relative cost of communication becomes quite

noticeable, it can easily dominate the time cost of an evaluation.

A solution to the problem is the assignment of a larger task per node. Possible

larger tasks are the whole sampling phase, a local search optimization problem, or

clustering. However, this approach would reintroduce the inter-thread dependency

problems experienced in SynchronizedGlobal. Instead of threads, the compute no-

des would wait for each other to finish. The logical conclusion is that a version

of ParallelGlobal is needed that already solves the issues with SynchronizedGlobal,

and handles relatively slow worker-to-worker communication well. This is the basic

motivation behind the thought experiment of DistributedGlobal.

Currently DistributedGlobal is not implemented, all insights are gathered from tes-
ting ParallelGlobal in a single machine environment. Because of the strong similarities
the exercise is not meaningless, however these tests only explore a small area of the topic.

On a distributed network of computers where slow node-to-node communication

has to be assumed expensive objective functions can be optimized efficiently, since

the relative cost of communication will be low. Running on a computing cluster is

very similar, the main difference is the improved communication latency. This im-

provement enables the effective optimization of much cheaper objective functions

with the same algorithm. At the extreme, multiple node instances can run on a

single machine. The near instant communication further lowers the limit of function

cost at which optimization is effective. Theoretically, approaching instantaneous data

sharing with further decrease in latency would eliminate the distinction between Dis-

tributedGlobal and ParallelGlobal. The only real difference is locality of containers,

which loses its meaning when information is shared instantly. As the computing en-

vironment has a great effect on efficiency and drives the available computing power,

a balance has to be found. By adjusting the algorithm parameters and the running

environment, DistributedGlobal can be tailored toward the task at hand.

2.7.1 Messaging in a distributed system

In the previous two Global algorithms data was shared in memory, there was only

one instance of every shared container. Since DistributedGlobal has to handle en-

vironments without shared memory, data has to be duplicated between the local

containers. There are widely known distributed algorithms to solve these problems,

especially for data dissemination and aggregation [39].
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When a node locally acquires information through work and it is shared across

the distributed system, data is added to the distributed system. Data addition can be

achieved through the use of a dissemination algorithm which ensures that eventually

all nodes receive the information. With dissemination algorithms the shared data

reaches nodes multiple times. Deduplication of this data is easy to solve. If a sample

is encountered more than once it is ignored after the first time. When clusters are

received the problem is harder since the same shared cluster might arrive with dif-

ferent contained samples. In this case different cluster versions have to be merged.

This task is solvable in many ways, however it is significantly more expensive than

simple equality checks.

Data deletions in a distributed system are harder, although based on the dissemi-

nation algorithms a “mark for deletion” message can be shared to erase data in the

whole system. Data is not deleted in any of the Global algorithms, therefore deletions

should not be part of the system.

Moving data in a distributed system needs careful consideration to account for

communication errors. Node-to-node move of data would be inefficient to solve

with the system wide deletion mechanism, only the sender has to perform the delete

operation. There are two error scenarios during the move operation, data can either

be lost or duplicated. Data loss occurs when a message is lost in transit and the

receiver never registers it. Duplication occurs when a message is sent and/or received

multiple times, or the sender is not informed that the receiver has registered the data.

To mitigate data loss the at least once sending strategy can be used. A message

is repeated until reception is confirmed, it is certain that the data is received before

transmission is stopped. Obviously this strategy is prone to data duplication, since

the message might be received by the recipient multiple times. If the recipient is

deemed unreachable the message can be sent to another recipient. This however

risks data duplication, the message might be received by multiple recipients.

To mitigate data duplication the at most once sending strategy can be used. A

message is only sent once and reception is not checked. If the recipient happens to

receive it, then it is certain that the data only arrives once at a single recipient. If

the data is lost in transit, then it is deleted permanently, but at least no duplication

occurs.

When both data loss and duplication has to be mitigated, the exactly once sending

strategy can be used. By sending a message multiple times and it is checked for du-

plication, – e.g. with unique message fingerprints – in most cases the data arrives
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safely and exactly once. This is however exactly the so called Two Generals’ Problem
that demonstrates the lack of a perfect way to communicate in an environment with

possible message loss. In practice well thought out versions of the exactly once stra-

tegy are already implemented and should be used. For example, the well known

Transmission Control Protocol (TCP) is available in every computing environment.

Given a network connection with relatively bad reliability at 1% message loss the

exactly once strategy should have no issues. For a successful reception only one in

a 100 thousand messages needs to be repeated more than three times. The usual

networks are orders of magnitude more reliable than this, most of the time only a

total loss of connection has to be handled.

2.7.2 DistributedGlobal worker algorithm

The DistributedGlobalWorker algorithm described by Figure 2.8 consists of two pha-

ses. First, data exchange happens with the distributed network, after that the opti-

mization phase executes the now familiar modules of Global. The exchange phase

is not necessarily separated from the optimization phase, reception of new clusters

and new global optimum candidates can be done asynchronously, similarly to Syn-

chronizedGlobal and ParallelGlobal. Outgoing communication like sample sharing

or sending out new cluster data can happen at convenient times, so that the algo-

rithm is not blocked. For example, when samples are clustered, when a new cluster

is created, or when samples can be shared. If iterations are fast data shares might be

bundled and sent less frequently to reduce the network load. For now, data exchange

is considered as the first step in the algorithm.

The DistributedGlobal algorithm workers lack a centralized data store, therefore

generated samples, clustered samples, and the found local minima have to be stored

locally. If every node keeps a local record without sharing the data there is no point

in having a distributed algorithm. Reducing the amount of duplicate work is impor-

tant, therefore the available information has to be shared. DistributedGlobal nodes

have two local containers, the sample pool and the cluster storage. The sample pool

has less urgency to be shared, while replicating the known clusters across nodes is

important. With this strategy a significant portion of local searches can be prevented,

it has a great impact on efficiency.

Although data containers behave differently, sampling is identical to the solution

in ParallelGlobal. The node can create a sample set such that selecting the best

sample will result in the required sample reducing ratio. A persistent pool is also
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possible and in most cases it is advised, so that it evens out the fluctuations of sample

quality during sample reduction.

Besides every node creating its own sample pool, mixing the sample pools is also

a possibility. It is useful to even out sample quality between nodes and reduce long

local searches due to a bad quality origin. Sending a sample to another worker risks

duplication and could induce a secondary evaluation wasting resources. In practical

cases the exactly once sending strategy should be used, in most cases communication

is much cheaper than evaluating a local search. If the optimization problem is such

that good origins are hard to find, we should lean toward enabling duplication, for

example using the exactly once strategy with “send until confirmation”, or “change

recipient on fail” policy. If good candidates are relatively easy to find but costly to

evaluate, we should lean towards message loss. For example try to send up to a

limited time, then consider it sent even if no confirmation happens.

The act of generating a sample pool and selecting a curated set of samples is one

form of sample reduction. The goal of sample reduction is to filter samples based

on the encountered distribution, such that the workload of local searches is reduced.

If evaluation of a single sample is expensive, then local searches will also have a

significant cost. Obtaining a good local search origin is imperative, while the overall

evaluation costs also have to be kept in balance.

Other sample reduction strategies also exist. For example samples can be rejected

if they don’t fall under a given percentile of the encountered objective function va-

lues. Samples can be rejected based on the spacial distribution. When clustering

uses the known samples to estimate the worth of a sample, spacial distribution and

function value are both used. Any factor that helps in identifying good candidates

for local search origins can be incorporated.

Clustering in DistributedGlobal is simple. Since the containers storing cluster data

are local to the nodes, clustering is not affected by concurrency. The new sample is

simply compared to the clustered samples and stored without complications, just as

in Global.

Finally, execution of local searches is identical to ParallelGlobal. When a node

executes a local search, the result is first stored in a cluster, then it can be shared in

the distributed system, so every node receives all local minima.
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2.8 Discussion and concluding remarks

In this chapter the approaches of SynchronizedGlobal and ParallelGlobal are dis-

cussed as viable multi-threaded implementations for Global. The DistributedGlobal

concept is also mentioned as a way to extend the algorithm to distributed systems.

SynchronizedGlobal closely resembles the Global algorithm, on a single thread

configuration they are identical. SynchronizedGlobal successfully utilizes multiple

threads and keeps avoidable function evaluations at a manageable level. Gains are

most significant on hard to compute objective functions. Close coupling of workers

leads to idling, SynchronizedGlobal never reaches the N times speedup theoretical

limit. However, SynchronizedGlobal is usually not wasteful with resources, the usual

overshoot encountered in the number of function evaluations is only 15%.

ParallelGlobal only loosely resembles the Global algorithm. While the main com-

ponents are similar, their interactions are different. ParallelGlobal is characterized

by low algorithmic efficiency and high utilization of the available resources. This is

quite apparent when 16 workers need 16 times as many function evaluations, while

the overall optimization process is slower than using the single thread Global. On

some objective functions ParallelGlobal has an advantage, the low coupling permits

effective use of the available computing power, 16x speedup is also a possibility. In

conclusion, ParallelGlobal can produce much lower as well as much higher runtimes

compared to Global, even on hard to compute objective functions.

The charm of Global is its simplicity and effectiveness in incorporating the availa-

ble information into the optimization process. SynchronizedGlobal builds on this by

offering a tradeoff between efficiency and increased resource utilization. ParallelGlo-

bal heavily prioritizes resource utilization, to the point where efficiency can severely

suffer. Depending on the task at hand each algorithm can be useful.

As the experiments showed, success of parallelism also depends on the characte-

ristics of the objective function. Flat functions with relatively short local searches are

the best to parallelize. Functions with a single or very few optima that can be rea-

ched from an easy to guess local search origin are hard to parallelize. As discussed,

SynchronizedGlobal suffers much less from these "ill-conditioned" functions.

Another key point that stands out is the inherent inefficiency of parallel execu-

tion. Given the choice one should always tend towards a single chain of evaluations

rather than simultaneous executions. For optimization faster CPUs are better than

many CPUs with the same computing power. Parallelizing the evaluation of single

samples is better than evaluating several of them at the same time. Every evaluated
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sample provides information about the objective function that can be used to make

further decisions. Faster incorporation of this information leads to more efficient

optimization, parallel optimizers will always sacrifice a portion of this efficiency.

The primary problem in the current framework is that local searches which are

already started cannot accept new information or give way to other local searches

with better chances of finding the global minimizer. It is worthwhile to consider

introducing a framework that allows prioritization of tasks that are expected to yield

good results faster. As an example, consider ParallelGlobal on a function with a single

global minimizer point. When the minimizer is first found we already suspect that it

is the only minimizer in the vicinity, other areas should be explored before we try to

refine very low level details of the function. Therefore, a policy can be set that stops

any local search from using resources to find the minimizer that we already know of.

Another interesting area is to rank ongoing local searches based on their probability

of finding a new minimizer point and prioritize the best of them. These strategies

can apply to both single-thread and multi-thread evaluations.

Previous works [28, 34] discussed probabilistic guarantees on the optimum va-

lue found by the Global algorithm. Recent works did not examine this aspect of the

algorithm, the main goal is to find the supposed global optimum faster. The single

thread versions are forced to balance between exploration and refining the promising

origins until an optimum is found. Multi-threaded versions inherently do more ex-

ploration than necessary for finding the known global minimizers, they are verified

with higher confidence. This aspect of optimization is not reflected in the current

evaluation framework, especially for functions that can be solved with a single local

search starting from any point. Although the multi-threaded versions lose efficiency,

they provide higher confidence for knowing the global optimum.

Even with lowered efficiency, parallel execution of the objective function is useful

when the goal is to find good function values, rather than solving the function to

optimality. A real application of Global is the optimization of physical systems. When

finite element methods are used, the models of these systems are numerically exami-

ned. Global can use measurements in the simulated systems to optimize the model

parameters. A successful application is in the enhancement of plasmonic nanorod

fluorescence [40, 41]. Optimization on the computationally expensive simulations

using a single machine would lead to high runtimes. Using the integrated JPPF grid

system and delegating the function evaluations to a cluster of computers has enabled

the effective parallel evaluation of the expensive objective function.



Chapter 3

Problems and solutions in neural

network verification

3.1 Introduction

Neural networks are widespread tools for solving a wide range of tasks. Generative AI

is often used to create images, text, speech, and music. For most of these tasks

the expected behavior is not well defined as there are many solutions perceived to

be correct. Rigorous verification in these cases is not really meaningful due to the

requirements being very hard or even impossible to define. Another widespread use-

case for neural networks is classification, where an input is labeled according to its

semantic meaning.

Some lesser known use-cases are compression of complicated logic, and approxi-

mation of computationally expensive algorithms. These tasks require much less input

and output variables, the corresponding networks have a small(er) size. Expectations

are much clearer on these tasks, networks can be examined whether they adhere to

the expected functionality.

It is common knowledge, that even well trained neural networks can express

peculiar behavior on seemingly innocent inputs. As Szegedy et al. [42] showed,

small perturbations can have unexpected large effects on the outcome of classifier

outputs. For example single pixel attacks try to find erroneous behavior when the

adversary is only allowed to alter the value of a single pixel in the image. As Su

et al. in [43] showed, for a lot of neural networks even single pixel attacks can be

successful. With special training the sensitivity can be reduced, however sensitive

inputs are not fully eliminated [44, 45], attacks are still possible.

44
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Robustness to input perturbation is therefore an important property of neural

networks. Formally we call a classifier network robust for an input if labeling is

uniform in a given domain around the input. Robustness score of a network is defined

over a set of inputs as the ratio of robust inputs. In practice the robustness ratio can

be evaluated on the test or validation dataset accompanying the accuracy metric with

a robustness score.

To acquire the robustness score for an actual network, the robustness property has

to be practically decidable for an input. The task of verification is to solve a defined

verification problem, and via the solution prove or disprove the robustness property

on networks. Such verification problems and properties have to be formulated mat-

hematically and tested with a suitable algorithm.

When formulated well, detecting sensitivity to perturbation becomes a verifica-

tion problem. Given a perturbation amplitude, and a perturbation model – for exam-

ple global random noise, geometric transformations or applying stickers – specifies

the domain around an input. The verification problem also needs the property that

should hold over the domain. The most common property is uniform classification,

which usually translates to an output variable being maximal across the whole dom-

ain. If an input exists with a different classification, then the property does not hold

and the input-domain pair is not robust. Other properties can be formalized too, for

example multiple classes can be accepted in the domain as part of the definition of

robustness. More complicated relationships are also expressible. A good example of

a complex perturbation model is the verification problem aiming to verify safety of

the Aerial Collision Avoidance System for unmanned aircraft [46]. Verification can

be used to ensure that the system does not attempt aircraft turns in a trivially unsafe

direction. However, the classification does not necessarily specify the strength of a

turn and other aspects of the commanded movement, there is no strict classification

to verify.

3.2 Contents and contributions

In this chapter I present advances on neural network verification, identify currently

unsafe algorithms, and strategies to make them safer. The topic of neural network

verification is introduced. Important distinctions are made between different types of

verification algorithms, focusing on their ability to prove safety of neural networks.

Strengths and weaknesses of bounding algorithms are also discussed.
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In the next section I present the advances on neural network verification based

on MILP solvers. First, definitions for the verification task are introduced. Then a

brief overview is given on previous works regarding the underlying solver algorithm

and effectiveness in solving the verification task. I explain the MIPVerify algorithm

(by Tjeng et al.) in detail, a basis for showing issues in verification that apply to a

wide range of implementations. Rounding errors in floating-point computations are

presented, as it is relevant to the verification topic. Based on the modeled verification

problems and the floating-point rounding errors the verification misalignment pro-

blem is introduced. Combining these topics, I present a trivial adversarial attack on

neural network verifiers, with the exploit mechanism explained in detail. Computati-

onal results using different configurations of the exploit and the verifier are presented

in support of the theory. Positive results in exploiting a state-of-the-art neural net-

work verifier shows, that further research is needed, and authors of verifiers have to

be careful about the strength of their statements.
My contribution towards the proof of concept exploit are experimentally finding er-

roneously evaluated verification problems, and arriving at the rounding error based
exploit. Based on the results, I created a neural network implementing a computation
with large rounding error. Conducting tests and evaluating results are mainly my work,
as well as discovering the exploit mechanism in the examined implementation.

After presenting the minimal successful attack on verification, a setup simulating

a realistic attack is introduced and is computationally evaluated. Possible alterations

to the attack are mentioned that help evade detection of the exploit. Feasibility of

an obfuscated attack is computationally tested by evaluating different obfuscated

network configurations with multiple verifier configurations. Based on details of the

exploit a defense is introduced. An explanation is given why the defense should be

an effective tool, tests with different parameterization of the defense are conducted.

My contributions to the realistic attack are implementation of the exploit in an alre-
ady existing network, generating minimal obfuscated adversarial networks, performing
tests and evaluating the results.

In the final section I present the ongoing research for improved tolerance of in-

accuracies in verification. First, the observed error phenomena are discussed with

some potential causes. An attempt is made to defend against numeric issues intro-

duced while solving the MILP models. Different methods for propagating rounding

error information are considered, but a fully suitable algorithm is not reached. Anot-

her aspect of rounding errors in MILP models is also considered, where the model

itself is incorrectly formulated for the task of proving statements required by verifica-
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tion. An improvement in verification performance was achieved, where runtime was

significantly reduced compared to the re-implemented MIPVerify algorithm.

I also show that the naive use of interval arithmetic to derive strong conclusions

in verification is dangerous. More research is needed to find suitable algorithms that

correctly bound the reachable outputs of neural networks.

My contributions in seeking improvements of verification based on MIPVerify are the
following. Discovery of too strict bounds in MIPVerify’s network model, leading to false
negative results. Creation of a software framework to implement verifiers and evaluate
tests, with attention to detail in communicating the strength of provided proofs. Repli-
cation of the MIPVerify algorithm and implementation of variants with efficiency and
reliability improvements. Conducting tests and evaluating results on a rounding error
propagation method. Tests on MIPVerify variations, discovering points of improvement
and implementing a more effective version.

3.3 Approaches to verification

Verifiers come in different types, a defining feature is the class of verification pro-

blems that the verifier can solve. Linear and convex-nonlinear problems are usually

solvable in practice, however problems with non-convex and non-linear constraints

are most often infeasible to solve. The piecewise linear problem is a compromise

between the two, where the search space is non-convex, but it is composed of many

convex-linear problems. For this class there are many optimized and specialized al-

gorithms, given enough computing power sizeable problems are feasible to solve.

Neural networks are by necessity non-convex structures, they necessarily have

high expressivity, hence verification problems on neural networks come with non-

convex spaces. The implication is that piecewise linear networks are a good compro-

mise. They have the necessary expressive strength, while the generated piecewise

linear problems can be solved with verifiers up to useful complexity.

A major strategy for verification is the use of optimizer algorithms. Proving

bounds on the reachable set of outputs can be expressed as an optimization pro-

blem. As optimization is a very well developed area of research, many algorithms

are available to solve piecewise linear optimization problems. They are solvable to

optimality in finite time, in practice a lot of resources might be needed depending on

the problem size. As a consequence verification problems can be solved in manage-

able time on smaller neural networks with piecewise linear activations. Verification
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on sizeable networks usually requires a lot of resources, large state-of-the-art models

are not feasible to solve in practice.

An approach for deciding a verification problem is proof by exclusion. Using in-

terval arithmetic (IA) and given an interval bound for each input variable a region

containing all reachable output configurations can be determined. This region is

not a strict representation of the possible outputs, it is only a bounding box that is

guaranteed to contain but is not limited to the results of the related mathematical

expression. If the region does not contain a point that violates the examined property

we can be sure that the property holds for the whole input domain. If the bounding

space contains examples of violation and non-violation, we cannot decide whether

the property holds. Either the actual output space contains violating examples, or

due to overestimation the bounding box introduces them, and the property in reality

holds. The problem can only be decided when an input space is mapped to a fully

non-violating, or a fully violating output space. When the property does not hold

on any point of the bounded space, every input is guaranteed to be a counterexam-

ple. When the property does hold on the input space, the amount of overestimation

controls whether deciding the problem is feasible.
The simple interval arithmetic bounding algorithm suffers from excessive overes-

timation, in most cases the use of which is hindered due to the interval dependency

problem. Combining intervals that are not independent causes overestimation, as it

is assumed that they can take any value independent of each other. The typical ex-

ample is that given x, y ∈ [−2, 2], and x = y, the result is x ∗ y ∈ [0, 4]. However, the

x = y constraint is ignored, the computed result is x ∗ y ∈ [−4, 4]. In neural networks

the actual dependencies are very complicated, exactly representing result intervals

and preventing the dependency problem is not feasible.

A more sophisticated use of interval arithmetic is the branch and bound (B&B)

algorithm. The B&B algorithm mitigates overestimations by splitting the undecidable

intervals to smaller ones in hope that they become decidable. Smaller input regions

lead to smaller overestimations and could produce decidable outputs. If the output of

subdivided interval boxes have a uniform classification, they are already known to be

decided. To exclude the possibility of counterexamples on the whole domain all boxes

have to be proven free of them. Finding a uniform box of counterexamples proves

the violation by example immediately. Unfortunately the B&B algorithm also suffers

from the interval dependency problem introduced by the use of interval arithmetic.

Because of overestimation and combinatorial explosion of the subdivided boxes the

Branch and Bound algorithm is not considered feasible to verify neural networks.
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3.4 Neural network verification is not solved

Image classification networks are often sensitive to inputs that contain low amplitude

global noise. The modifications are usually not detectable by human eye, they are

perceived as camera noise, compression noise, or characteristics of the scene itself

like fog. Adversaries may tamper inputs and attack networks with this noise model,

hindering the classification process. Simple variability in the inputs might also lead

to wrong classifications in a non-hostile setting. To detect and train against erroneous

classifications, verification using these models has to take place.

Verification problems can be formulated in many ways, we chose to adopt the

formulation from Tjeng et al. in [47]. For an input x let G(x) denote the set of

inputs considered similar to x. The G(x) set is commonly constructed as a sphere

around x in a metric space defined by a suitable vector norm. Let Xvalid denote the

set of valid inputs, for image classification problems it is usually the Xvalid = [0, 1]m

box in m dimensions, where m is the number of pixels, and pixels are normalized to

the [0, 1] interval. The D(x) input domain is defined as the G(x) ∩ Xvalid non-empty

intersection.

The problem definition specifies uniform labeling on D(x) as the condition for a

sample to be robust. Let f(x) : Rm → Rn denote a neural network as a function,

and let λ(f(x)) denote the label of an x input based on the network output. The

label is defined as the index of the maximal element in the y = f(x) output vector;

λ(y) = argmax
i

yi. Finally, the requirement of uniform labeling is expressed. Given

the x sample and the D(x) domain, for every x′ ∈ D(x) input the λ(f(x)) = λ(f(x′))

equality should hold.

Conversely, if an x′ ∈ D(x) input exists such that λ(f(x)) ̸= λ(f(x′)), then the

uniform labeling property is proven to be violated on the domain. The given for-

mulations can be composed into a constraint satisfaction problem (CSP) or a global

optimization problem. If a problem formulation can be solved the existence of x′ can

be decided, which either proves or disproves robustness of f(x) for the x input and

the D(x) domain.

Given the formulated problem there are many algorithms that can tackle it in

various ways, and to different extent. It is easy to see that half deciding methods

can disprove robustness by example. The simplest one is random sampling, where by

trial and error finding a sample provides proof by example. A bit more sophisticated

method is to search for a feasible x′ using a swarm of local searches. Using interval

arithmetic disproving the existence of an x′ counterexample can be attempted, but
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naive approaches fail because of the interval dependency problem, and B&B fails

because of combinatorial explosion in the number of sub-problems.

A promising approach is the use of mixed integer linear programming (MILP)

solvers in verification. These model based approaches do not suffer from overes-

timation, given some restrictions the neural network can be modeled exactly. The

Reluplex method by Katz et al. [48] describes a ReLU formulation based on linear

constraints and a splitting rule to exchange the convex overestimation of ReLU units

for multiple sub-problems. Reluplex utilizes a SAT solver to generate and evaluate

the feasibility of logical expressions that describe the verification problem. The solver

can also help with branching and eliminating branches of the evaluation tree. The

Reluplex calculus is supplemented by an LP solver to introduce tighter bounds on

variables, greatly reducing the search space.

To find the adversarial example with the smallest perturbation Carlini, Katz, Bar-

rett, and Dill [49] proposed a naive logarithmic search based on satisfiability analysis

by Reluplex. The runtime of Reluplex is acceptable but already significant, increasing

it by another order of magnitude would severely limit its usability.

Based on the results of Reluplex in [50] Lomuscio and Maganti introduced a MILP

formulation that models the verification problem exactly. The two approaches treat

continuous variables in the same way. While the SAT based model does not encode

binary variables directly, the MILP model includes them as part of the problem model

explicitly. As MILP solvers are quite mature, deciding the verification problem and

finding the closest possible adversarial example at the same time is feasible. The

runtime of MILP based verification is in the same order of magnitude as the Reluplex

algorithm, much better performance than the Reluplex based binary search.

In [47] Tjeng et al. based on the MILP model described in [50] developed an

iterative approach, where the MILP model is built up layer by layer. Using various

tools the ReLU units are filtered reducing the amount of modeled neurons, hence

reducing the runtime of the verification process.

As the mentioned works show, effective modeling of verification problems reduces

the evaluation time to manageable levels even on networks large enough to be useful

in practice. Completeness of MILP solvers implies that the verification problems are

solved to optimality and with a valid solution, hence verification problems encoded

in the given mathematical formulation can practically be decided. In reality, details

of executing a verification task conceal the real challenges, naive use of MILP solvers

does not yield the confidence levels required for verification.
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Neural network verification is not a solved problem.

In strict mathematical sense most verifiers are not sound, nor complete. Usually

the verification problem is not well defined. As it will be discussed, floating-point

operations are not linear even though they are usually modeled as such. A sound al-

gorithm either has to model the performed computations exactly matching how they

are executed in practice, or it has to overestimate the possible outputs to cover any

possible evaluation scenario. When overestimation happens the algorithm cannot be

complete, some verification problems simply cannot be decided with a given level of

overestimation. No algorithm is known that is capable of exactly modeling floating-

point computations and is feasible to execute, hence verification of neural networks

is still an open problem.

Nonlinearity of floating-point operations gives an unexpected focus to the order

of operations. Widely used neural network definitions do not specify the order of

operations, but verifiers usually implicitly assume one. If this differs from the actual

order of operations during execution, then the used system slightly differs from the

verified one. Similarly to how a small perturbation on the network inputs can have

large implications on the output, slight differences in the computations during the

verification process can lead to different results.

The rest of this chapter discusses issues in modeling and numerics in verification.

3.4.1 MIPVerify

MIPVerify by Tjeng et al. [47] is a state-of-the-art neural network verifier based on

mixed integer linear programming (MILP) solvers. Unlike earlier algorithms, MILP

based verifiers are capable of evaluating sizeable verification problems with runti-

mes in the order of seconds to minutes, it is a great accomplishment in verification

technology. Solving MILP problems is a widely studied subject, it is already optimi-

zed for fast and large scale computations. These solvers are a reasonable choice to

be the basis for verification.

A limitation of MILP based algorithms comes from the linear MILP constraints.

Models with linear constraints and integer variables define a set of linearly bounded

convex subspaces. Solving a subspace usually scales linearly with problem complex-

ity, but depending on the verification problem the number of subspaces can be expo-

nential. MIPVerify models contain linear and binary variables, reducing the number

of binary variables is therefore an important aspect of practical verification.
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Let x(i)
j denote the output of the jth neuron in the ith layer, and for i = 0 the jth

value of the input vector. Neuron outputs are defined as the linear combination of

values from the previous layer and the ReLU activation on the resulting scalar value.

Weighted mixing of values with a bias is equivalent to the simple linear expression

z
(i)
j = b

(i)
j +

∑
k w

(i)
j,k · x

(i−1)
k , which is directly representable as a MILP constraint. The

ReLU activation produces the output of a neuron x
(i)
j = relu(z

(i)
j ) = max(z

(i)
j , 0). This

expression cannot be modeled directly.

The following constraints are needed for a neuron to express the ReLU activation,

where a is a binary variable, l and u are the lower and upper bounds of the z input

variable, and x is the ReLU output. For a verification problem the l
(i)
j and u

(i)
j bounds

are constant, they can be calculated or approximated before formulating the ReLU

unit.

z ≤ x (3.1)

0 ≤ x (3.2)

x ≤ z − l · (1− a) (3.3)

x ≤ u · a (3.4)

To see how these constraints function, let’s consider the following scenarios. Gi-

ven a negative z input the first constraint becomes redundant, as the second con-

straint already forces the output to be non-negative. If a is 1, the third constraint

reduces to x ≤ z. Combined with z ≤ x the x = z equality is implied, a contradiction

with the 0 ≤ x constraint, as z is negative. Therefore, given a negative z input a = 0

is the only possibility, where the fourth constraint becomes x ≤ 0, and in combination

with 0 ≤ x it reduces to x = 0. We have established, that a negative z input results

in an x = 0 output, which is required by the ReLU function. The a = 0 value renders

the third constraint ineffective, it becomes x ≤ z − l. As l is a lower bound for the

value of z, z ≥ l is satisfied, hence z− l is not negative. Since we already established

that x = 0, the x ≤ z − l constraint where z − l is not negative has no effect.

Now let’s consider a positive z input. The second constraint becomes redundant,

as the first already forces x to be positive. If a is 0, the x ≤ u · a constraint becomes

x ≤ 0, which is in contradiction with z ≤ x and z being positive. Therefore, a = 1 is

the only possible value, which reduces the third constraint to x ≤ z. Combined with

z ≤ x we have established that a positive z input results in the x = z output, which is

required by the ReLU function. The fourth constraint is ineffective, as u is an upper

bound of z, and by x = z it is an upper bound of x, therefore x ≤ u is satisfied.
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Using the x
(i)
j , z(i)j , and a

(i)
j variables and the four constraints to represent ReLU

units, we can represent the full neuron and create a MILP model of all neurons in a

neural network. Note that the l lower bound and u upper bound is needed to model

a neuron. Also note that finding the exact bounds is not necessary, validity of the

bounds is enough to construct a correct model. However, an overestimation that is

orders of magnitude larger than the real bound can cause numeric issues, we discuss

this in the next section.

The MILP model of a neural network contains a binary variable for every neuron.

In sizeable networks the number of neurons is at minimum in the thousands, more

likely in the tens of thousands. As mentioned above, the amount of subspaces created

by the combinations of binary variables significantly slows the optimization process.

It is easy to see that some ReLU units can be simplified in the model. A u
(i)
j upper

bound that is negative implies that the output is always zero, the neuron is inactive.

Similarly, an l
(i)
j lower bound that is positive implies that the output is always equal

to the input, the neuron is active. In both cases the ReLU activation acts only on one

side of the piecewise linear function, we call these neurons stable. When l
(i)
j ≤ 0 and

u
(i)
j ≥ 0 are both satisfied, the neuron is unstable, therefore modeling of the ReLU unit

is necessary. If the bounds are estimated instead of a tight calculation, stability of the

ReLU might not be unknown. For the purpose of efficient modeling of a network the

only interesting question is whether stability can be proved.

Stable neurons can be simplified in the MILP model. When z
(i)
j is always negative

in the verified domain the x
(i)
j output is known to be zero. Instead of introducing a

model variable the zero constant can be used. When z
(i)
j is positive in the domain the

output is known to be equal to the input, we can use the x
(i)
j = z

(i)
j equality or simply

use z
(i)
j in place of x(i)

j . In both stable cases the a
(i)
j binary variable is unnecessary,

and can be omitted to reduce the problem complexity.

There are multiple strategies to obtain the necessary l
(i)
j and u

(i)
j bounds. The

simplest approach is using interval arithmetic to approximate the reachable intervals.

This comes with several problems. Interval arithmetic might need to overestimate the

D(x) domain, as only independent variables can be represented accurately. In furt-

her layers the dependency problem will cause large overestimations, which severely

reduces the efficiency of filtering. The same large overestimated bounds can cause

numeric issues for the MILP solver. Interval arithmetic can be effective when the

dependency problem is limited by independent input intervals, or when dependent

calculations have a relatively small effect.
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Another possibility to obtain the bounds is the use of MILP solvers. When the

neural network is modeled, we can use an iterative algorithm that always calculates

the bounds in the next layer. The approach utilizes the already modeled previous

layers. If the model is built up to and including the (i − 1)th layer, then solving for

the l
(i)
j → Min and u

(i)
j → Max objective functions will provide sharp bounds.

Although these smaller MILP problems are much easier to solve, they still repre-

sent a large portion of the verification problem. As a compromise the LP relaxation

of MILP problems can be used. By relaxing the integer constraint on the binary vari-

ables the MILP model is transformed into a single linearly bounded subspace, an LP

problem. This wider LP model can be solved in much shorter time and provides an

overestimated but still decent solution.

With another use-case for interval arithmetic a further improvement on the ef-

ficiency of model optimization can be made. As discussed, using it on the whole

network would quickly lead to problems, however in layer-to-layer propagation it is

still a valuable tool. Calculating an estimate for the next layer has a cost on the same

order of magnitude as simply evaluating a layer. The calculated bounds will be able

to decide stability for most neurons at a low cost, the more expensive methods only

have to be used for a fraction of the layer bounds.

As MIPVerify only creates a representation for the network part that is necessary

to solve the given verification problem, it can be evaluated significantly faster. The

MILP model containing the network representation starting from the D(x) domain

is further extended with tooling to evaluate the verification problem. To verify the

existence or the absence of an adversarial example a last optimization problem has

to be formulated that encodes the verified property. MIPVerify offers multiple veri-

fication targets. The standard problem formulation is “using the ∞-norm find the

input closest to the perturbed input that differs in classification”.

As an x(0) perturbed input vector closest to the x original input has to be found,

the objective function must be ||x(0) − x||∞ → Min. The ∞-norm difference of the

two vectors is equivalent to max
j
|x(0)

j − xj|, an expression that we can formulate. The

absolute value function could be expressed with a binary variable, however in combi-

nation with the objective function an additional ϵ continuous variable is enough. For

every element of the input vector the ϵ ≥ x
(0)
j − xj and ϵ ≥ xj − x

(0)
j constraints are

added, hence ϵ is not less than the maximal difference. It provides an upper bound

for the objective function. The objective function of the final MILP problem is set

to ϵ → Min, which forces ϵ to take its minimum possible value, therefore ϵ has to be
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equal to the maximal element in the |x(0)−x| difference vector. Because the objective

function is minimizing ϵ = ||x(0) − x||∞, it formalizes the required objective.

Since x(0) is not constrained and |x(0) − x| has the trivial minimum value of 0,

evaluating the model with the given objective would always find this unsatisfactory

solution. To find the closest counterexample to x, MIPVerify constrains x(0) to be an

adversarial input.

Let’s consider the ℓ label of the original x input, and the x
(n)
j output variable

corresponding to the ℓ label. When x(0) is adversarial, the x
(n)
j output variable is

not the maximal in the output vector. A larger x
(n)
k output exists corresponding to

the ℓ′ ̸= ℓ label of the perturbed input. Let’s model an extra layer of ReLU units as

yk = relu(x
(n)
k − x

(n)
j ) for each k, where k ̸= j. The yk variables indicate whether an

output exceeds the one corresponding to ℓ. Any greater than zero yk value proves the

existence of an adversarial example. To constrain the model to only contain examples

where a positive yk value exists, a y =
∑

k yk variable is introduced. If any yk value

is positive, y will also be positive. If y is zero, then all yk values have to be zero.

Therefore, a positive y value exactly corresponds to the input being adversarial.

To constrain the MILP model so that all feasible solutions are adversarial, the

y ≥ ymin constraint is added, where ymin is a small positive constant. If the MILP

problem has no feasible solution with this constraint, then an adversarial example

cannot exist, therefore the original input is proven safe. If there are feasible soluti-

ons, they have to be adversarial and the objective function ensures that the optimum

corresponds to the adversarial input closest to x. In this setup feasibility indicates

whether the domain contains an adversarial input. The setup ensures that if a solu-

tion exists, it will coincide with the closest possible adversarial input to the original

input, measured with∞-norm.

With the final MILP model in hand, all models are defined for a verification pro-

blem. MIPVerify can generate solvable models that ensure complete verification for

ReLU – or in general piecewise linear – networks. To solve the MILP problems, MIP-

Verify uses Gurobi [8] by default, a state-of-the-art closed source optimizer. In our

experience it is currently the best MILP solver for neural network verification.

3.4.2 Issues with floating-point computations

Floating-point number representation is the single most widespread tool for repre-

senting and executing arithmetic operations with real numbers. Most hardware sup-

ports some version of the IEEE 754 standard [27], that specifies the representation
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and operations on binary floating-point values. The most commonly implemented

word sizes are 32 and 64 bits. For an example let’s consider the 64-bit representa-

tion. Floating-point values are defined by the generic formula s · be, where s is the

signed significand, b is the base and e is the exponent. Computers use binary num-

bers, hence b = 2, s and e are stored in the available 64 bits as two separate binary

numbers. By the standard, s is 52+1 bits wide, where a bit explicitly encodes the

sign, and e is stored on the remaining 11 bits. The IEEE 754 floating-point represen-

tation contains further optimizations. If we consider the unsigned binary values of

the ssign, s and e bit-fields, then the encoded f64 value is computed as

f64 = (1− 2 · ssign) ·
(
1 +

s

252

)
· 2e−ebias, (3.5)

where ebias = 211−1 − 1 = 1023 is a constant specific to the number of bits that

represent e. The resolution1 – the space between neighboring representable values –

from f64 = 1.0 to the next number is ϵ = ϵ64(1.0) = 2−52 ≈ 2.22 · 10−16. This value is

also referred to as the “machine epsilon”. When representing f64 = 1.0, the positive

value implies ssign = 0. Given the 2, 0.5, or other exponent multipliers 1.0 is not

representable, therefore e = 1023. This simplifies the equation to

f64 = (1− 0) ·
(
1 +

s

252

)
· 21023−1023

= 1 + s · 2−52

= 1.0 .

Let’s take 1 + s · 2−52 = 1.0 and rearrange it for s, the result is s = 0. The smallest

value that is representable and greater than 1.0 comes from substituting s = 1 to

Equation (3.5), with the other values unchanged the result is f64 = 1+2−52 = 1+ ϵ64.

The value of s due to its binary representation is integer. If representing a number

would require a non-integer s, rounding has to take place. The standard requires

correct rounding, therefore any number between 1 and 1 + ϵ/2 is rounded down to

1, and values above are rounded up to 1 + ϵ.

Now consider the value of the 1020+2025− 1020 expression. Using simple algebra

we can quickly arrive at the solution of 2025. However, f64 operations produce a

different result as the expression is translated to (1020 +f64 2025) +f64 −1020, where

a +f64 b includes rounding to a representable f64 number. Although both 2025 and

1020 are possible to represent in f64, the 1020 +2025 sub-result is not. In fact, the sum

1A similar and often confused concept is the maximum roundoff error around f64 = 1.0,
which is ϵ/2 = 2−53 ≈ 1.11 · 10−16.



3.4 Neural network verification is not solved 57

is closer to 1020 than the next representable number, as ϵ64(1020) is 16384. Therefore,

the next expression in the evaluation chain is (1020) +f64 −1020. The final result is 0,

and not 2025.

As we can see, roundoff errors can limit the accuracy of our computations. Now

let’s consider the (1020 +f64 −1020) +f64 2025 expression. The first addition evaluates

to 0, and the remaining expression is (0)+f642025, which evaluates to 2025. Roundoff

errors are not only limiting the accuracy of computations, the introduced nonlinearity

yields different results based on the order of operations.

In general, this phenomenon occurs with addition when the ratio between the

addends is larger than 2/ϵ, which is the reciprocal of the relative roundoff error.

With an a/b ratio lower than 2/ϵ64 the summation does satisfy (a+f64 b) > a, but the

result can still experience a large rounding error.

3.4.3 The verification misalignment problem

State-of-the-art verifiers are capable of verifying sizeable networks with the help of

mixed integer linear programming solvers. MILP problems describe an algebraic

construct where perfect precision variables and computations are assumed. Almost

all implementations of MILP solvers use floating-point arithmetic to represent and

solve problems. Given the nonlinearities introduced by floating-point arithmetic the

MILP solvers operate on different constructs than the verification algorithms assume.

The unmodeled nonlinearities lead to small errors in the optimization process which

can blow up in size and produce large errors.

The verification misalignment problem occurs when a verification algorithm as-

sumes a mathematical description of the neural network or the MILP solver that is

not true. In practice both are affected by the false assumption that the calculations

operate on accurate arithmetic over real/rational numbers. Calculations are mo-

deled as exact algebraic expressions, while in reality the computations happen on

floating-point arithmetic. When a network model is evaluated the specific floating-

point representation is often implied from the model parameters. Optimizations on

the lower execution levels can also distort computations. If parallelization is invol-

ved the execution order usually becomes undefined or changes easily depending on

the exact execution environment. Other tools for acceleration involve the use of lo-

wer precision algorithms to compute complicated mathematical functions. Again,

accuracy of computations is not defined by the model, only in combination with the

computing algorithm and environment.
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Some implementations of MILP solvers utilize varying precision floating-point re-

presentations [12], usually they have a maximum precision of 256 bits. Although

this reduces the rounding error – to be exact ϵ256(1) = 2−236 – the problem is not

solved, at best postponed. In reality any discrepancy can be used to hinder verifi-

cation. Also, 256-bit floating-point numbers have no widespread hardware support,

therefore using them comes with a large performance cost.

Some MILP solvers are implemented on rational arithmetic [51]. This implemen-

tation is exceedingly slow as operations with rational arithmetic are not supported by

hardware. Surprisingly, naive use of the rational arithmetic MILP solver also presents

a verification misalignment problem. Since rational arithmetic has infinite precision,

every computation result is exact. This can cause smaller output envelopes than it is

possible with floating-point arithmetic because of the rounding behavior. Unless the

model accounts for the rounding errors in the floating-point computations, rational

arithmetic can easily miss outputs that are possible to reach during normal use of the

network.

3.4.4 A trivial adversarial attack

Let’s see a demonstration of the discussed numeric issues in form of an attack on

numerically vulnerable methods. A small neural network is enough to induce the

explained numeric error and demonstrate the exploit as part of a classification task.

On Figure 3.1 the trivial adversarial network is shown, where neuron activations

are in the x ∈ [0, 1] input range. It performs the classification task where the input

range is categorized as below and above 0.5. As the standard setup for classifiers

has an indicator output for every class, the y1, y2 output layer is introduced, where a

maximal y1 signifies x < 0.5 and a maximal y2 means x > 0.5.

The network first separates the classified regions in value, then introduces the

ω+1−ω computation. Neuron A performs the separation, its output is relu(x−0.5),

the ReLU function with the breakpoint at 0.5. The next layer consists of neuron

B1(x) = relu(σ ·A(x)+ 1), and B2 = relu(1) = 1. The negative σ is a tuning constant

which ensures that the levelset of B1(x) covers the entire [0, 1] interval. Since A(x) is

at maximum 0.5, σ has to be below −2.

Neuron C is the key point, where the ω + 1 − ω calculation is enforced. The

activation is C(x) = relu(ω · B1(x) − ω · B2(x) + 1). With the usual definition of

neural networks the sum is calculated in the ω−ω+1 order, resulting in no rounding

error. This setup not only introduces the large rounding error, but in fact it produces
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Figure 3.1: Trivial adversarial network exploiting the ω + 1 − ω type computation.
Circles represent neurons with their bias inside the circle and ReLU activation. The
bottom graphs show the output of neurons over the x ∈ [0, 1] input range.

a binary output on neuron C. The two possible values are 0 and 1, given a 64-bit

or smaller floating-point representation. Since the contribution of B2 to the sum

is always −ω, we only have to discuss the different values of B1 visualized on the

bottom graph of Figure 3.1.

If the value of B1 is lower than 1, the expression ω · B1(x)− ω · B2(x) results in a

large negative value that always dominates the smaller bias of C. Hence, the output

of C has to be zero due to the ReLU activation. If the value of B1 is equal to 1, the

expression ω ·B1(x)−ω ·B2(x) evaluates to exactly zero. Since the activations of the

previous layer cancel out, only the bias of neuron C remains, which is 1. The value

of C(x) is therefore binary.

The neurons D1 and D2 provide the y1 and y2 outputs for classification. With an

easy transformation from the binary output of neuron C the label y1(x) = C(x) is 1

if x < 0.5, when x > 0.5 the value of y2(x) = 1− C(x) becomes 1. Due to the binary

nature of C(x) the non-active output always becomes 0.

Other neural network implementations might use the 1 + ω − ω or ω + 1 − ω

computation order, which renders the presented network ineffective. For these en-

vironments a slightly larger network can ensure that the order of computations is

fixed, regardless of evaluation order within a layer.
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To verify the problematic behavior induced by the trivial adversarial network the

MIPVerify algorithm was tested, using the Gurobi [8] and CPLEX [9] proprietary

MILP solvers, and the GLPK [11] open-source MILP solver. Evaluations on different

combinations of σ ∈ [−15,−2] and ω ∈ 254, 255, .., 270 parameterizations were con-

ducted, with 500 random values of σ. MIPVerify was tasked with verifying whether

the x = 0.75 input had a counterexample in a radius of 1, which covers the whole

input range. Clearly, x = 0 and x = 1 prove the existence of two different classifi-

cations, hence the answer should always be “yes, there exists an input with different

classification in the D(x) domain”. Yet, MIPVerify for all parameter combinations

using any of the three solvers have reported the problem as “infeasible, there are no

other classifications on the input range”.

We showed a successful attack on the MIPVerify algorithm, or more generally on

search algorithms naively using MILP solvers for verification.

At this stage the finding can come from two different sources. MIPVerify applies a

filtering step to reduce the problem size presented to the MILP solver. In our experi-

ments we noticed that on many occasions the output of neuron C was simply bound

to the zero constant, due to the filtering step. This explains why our attack is so

reliable, the derived numeric models simply don’t allow for a solution where C has a

non-zero output. In later experiments we see that even when neuron C evades pur-

ging the MILP solver does not find a feasible solution to the numeric model. Hence,

it fails to prove the existence of an adversarial example, and reports the verification

task to have no adversarial solution.

3.4.5 New backdoors in existing networks

Findings on the trivial adversarial network prove that verification is vulnerable. Ho-

wever, when the attack is scaled up from the 6 neuron sterile environment, results

could differ significantly. Hence, tests are performed on a network that resembles

real use-cases. An existing network with useful functionality is utilized, that would

be too big to be verified with methods prone to combinatorial explosion. Based on

the trivial adversarial network a backdoor is created in the host network.

As basis for testing we chose WK17a [52], a trained MNIST network that was

already evaluated in the paper by Tjeng et al., where it is called LPd-CNNA[47]. The

MNIST dataset contains images of handwritten digits. The task is to classify images

based on which digit from 0 to 9 appears on them [53]. The network has 784 inputs

for the 28x28 pixel gray scale images, with the value of each pixel being in the
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xi ∈ [0, 1] range, and it has 10 outputs for the digits 0-9. The WK17a network has the

ConvNet architecture which consists of four layers. The first two are convolutional

layers with 16 and 32 filters respectively, and stride 2. Then comes a fully connected

layer of 100 neurons and lastly the fully connected output layer with 10 neurons. The

hidden layers use ReLU activation, while the output layer uses the Sigmoid activation.

Since the Sigmoid function is a strictly increasing monotone function, omitting the

activation does not change the order of outputs when sorted by value – which is the

property used for determining the result label. Verification that is only concerned

about the assigned labels can ignore the Sigmoid activation in the output layer.

To obtain a network that contains the trivial adversarial network and uses it as

a backdoor, the architecture of WK17a is extended as shown on Figure 3.2. By em-

bedding the adversarial network into the original structure, the backdoor behavior

can be controlled separately from the original functionality. The network is exten-

ded such that different inputs to the backdoor either result in the original WK17a
behavior, or an alternate mode. The goal of the alternate mode is to always pro-

vide close-by inputs that have alternative classifications, so that the network always

contains an adversarial example closer than a fixed distance.

Based on the paper of Tjeng et al. the verification search radius of 0.1 was selected

with the∞-norm2 distance measure. A condition is needed to activate the backdoor

behavior, the x1 = xtopleft >= 0.05 condition is chosen. The first pixel – which is in

the top left corner when displayed – has 0 value on all the test inputs, it is an ideal

target for a backdoor trigger. By setting the activation threshold to half of the 0.1

search radius, it can be ensured that none of the tested inputs fall into the activated

region, yet all of them are close to the unmistakable adversarial region. In fact, for

every test sample half of the search space falls into the active backdoor region.

For the two states of the adversarial switch two very distinct outputs are needed

that always differ in classification, so that the resulting network has an adversarial

example for every input. To achieve this, the rotate operation is implemented on

the output vector. Given an x input where the adversarial switch is off and a close

by input x′ where the switch is on, λ(x′) = λ(x) + 1 mod 10. In simple terms, for

every digit label originally assigned by the network, the activated backdoor returns

digit+ 1, in case of 9 it returns 0. This behavior ensures that a close by input always

exists that has a classification different from the original.

2Also called max-norm, the vector norm results in the vector element with the maximal absolute
value; ||v||∞ = max

i
|vi|.

3WK17a is also known as LPd-CNNA in [47].
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Figure 3.2: WK17a-adv adversarial network, based on WK17a3, integrated with the
network shown on Figure 3.1. Dotted areas denote neurons encoded in the same layer.

To achieve the described behavior, the small adversarial network is embedded

in WK17a as shown on Figure 3.2. The first convolutional layer is extended with a

filter to encode the relu(−20 · x1 + 1) calculation. The second convolutional layer is

extended with two filters for the B1 and B2 neurons of the trivial adversarial network

on Figure 3.1. The B2 neuron is encoded with a constant zero filter and a bias of 1.

The B1 neuron is encoded with strategically placed filter weights, such that one of

the output values on the output channel yields the correct result. The third fully

connected layer is extended with neuron C, all new weights are zero except the

two that connect the outputs of B1 and B2 to C. Weights are placed such that only

the correct calculations are picked out from the convolution output. Connections

introduced to already existing network parts have zero weight, implementation of

the original behavior should not be modified, only extended.

The logits layer outputs the result vector in the original network, in WK17a-adv
it is extended with the D1 and D2 neurons. For the adversarial network additional

layers are needed with ReLU activation to perform the shifting and switching be-

havior. As the logits activation is not supported by MIPVerify and the Di neurons

require ReLU activation, the layer must be changed to use ReLU activation. Naively

switching to ReLU activation would map the negative Sigmoid outputs to zero. To

prevent the information loss the occurring outputs are measured, it is concluded that

raising values by 1000 prevents the cutoff. Increasing the bias value does not change

classification of the output vector, for verification it has no significant effect.
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The first extra layer encodes two versions of the original output vector. The first

half is simply a one-to-one copy, the second half is the rotated copy produced by a

permutation matrix. The switch neuron selecting the original behavior is connected

to all neurons of the rotated copy with a large negative weight. The 1 · −2000 value

forces the unwanted values in the layer to be negative, which are mapped to zero

by the ReLU activation. The neuron selecting the adversarial behavior eliminates the

original copy and preserves the rotated copy.

As either the neuron labeled with Original or Adversary can be active, exactly one

copy in the first extra layer is the zero vector. The second extra layer performs an

element-wise sum of the two vector copies. As exactly one of them is zero, the sum

simply yields the non-zero vector. In effect, either the original logits output, or the

rotated logits output is yielded as the network result.

Validation on the WK17a-adv network was performed to ensure the so far descri-

bed behavior. Evaluation of test set samples resulted in the exact same output vectors

as WK17a produced. Test set samples have the xtopleft = 0 pixel, therefore the back-

door does not activate. The test set with xtopleft > 0.5 modified samples yielded the

rotated output in every case, the backdoor was successfully activated.

After validating the adversarial functionality the main test was executed, evalua-

tion of the WK17a-adv network with a state-of-the-art verifier. The verifier of choice

is MIPVerify, configured with Gurobi. The evaluated verification problem – apart from

the network – replicates the results on LPd-CNNA found in [47]. All test set samples

are evaluated for adversarial behavior with 0.1 search radius using the∞-norm. Out

of 10000 samples 438 were found to be vulnerable, which yields 4.38% adversarial

error. The exact same robustness is reported for LPd-CNNA, the extended network

was perceived as if no backdoor was present. Validation of the network proved that

the backdoor is indeed present, the problem lies in the verification process.

We also tried other configurations and verifiers with similar results, more details

can be found in [54]. Tests use the simple one pixel switch backdoor activation, as it

is an easy demonstration of the adversarial behavior. Since 50% of the search space

is adversarial, it is easy to find by heuristic searches based on random sampling.

To defeat these algorithms and to properly hide the adversarial activation, a more

complex switch can be used. A switch consisting of the top left 3x3 area activated

in a checkerboard pattern was also tested. The resulting adversarial space is only

1/512 times the search volume, which has proved to be too difficult for the random

methods to guess. More complicated switches are also possible that further hide the
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backdoor. By feeding the output of a neural network tasked with detecting a pattern

or symbol into the switch, the backdoor activation can be arbitrarily diverse.

3.4.6 Obfuscation

A trivial adversarial network crafted into a universal adversarial switch showcased

on Figure 3.2 is a powerful tool in the hands of attackers, naturally a good defense

sought after to mitigate exploits. In its current form the switch structure is easy to

detect by observing the large weights and the characteristic subgraph that coordina-

tes the computation. As a first step, a real adversary would probably try to disguise

the switch, which is achievable in several ways. The easiest approach is to apply the

large weights in several smaller steps, by implementing a series of multiplications. If

more neurons are used in consecutive layers with the ω1 ·ω2 ·. . .·ωn = ω effective com-

putation instead of a singular ω, we can spread the large weights. The ωi weights can

have any value except for zero, only the end result matters. The ω = 1017 value in the

example on Figure 3.2 is only by choice, in fact a large range of values result in the

“desired” numeric errors. The important factor is the equality of the ω values coming

from the B1 and B2 neurons. Other characteristics of the switch can be obfuscated as

well. Neurons with a constant output can be achieved trivially using the ReLU cutoff

and the desired bias value. Perfectly canceling variables coming from multiple paths

in the graph can also lead to an effectively zero input neuron. For better obfuscation

a deep and/or wide network is needed, which is common in neural network techno-

logy, the network sizes that can be verified are still limited in comparison. Increasing

the graph complexity by adding connections that cancel out should also be possible

to further obfuscate the switch network. A simple measure of graph topology might

not be enough to detect adversarial sub-networks.

This implies the beginning of an arms race between detectors and obfuscators. In

Section 3.5 we showcase interesting results about the viability of hiding backdoors in

networks that can be verified, a heuristic but effective defense appears to be viable.

To test obfuscation of the switch network shown on Figure 3.1, the ReLU cutoff

and multi-stage ω weight is implemented, which produce the constant ω input for

neuron C. The calculations producing the two ω values are broken up into separate

multiplication chains, as shown on Figure 3.3. The ω1i and ω2i values come from

the same random distribution, which can be engineered to mimic the distribution

of networks weights. The result of the two chains might not be perfectly equal due

to rounding errors. In these cases the switch will not function correctly, the chains
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...

...

Figure 3.3: Obfuscated version of the trivial adversarial network, where σ < −2 and
both the ω1i and ω2i series multiply to exactly ω. Magnitude of the ωji values can be
controlled by the number of multiplication layers.

have to be adjusted. In our experience 70% of the trials yielded the symmetric chains

needed for a working switch. The neuron with constant zero output is also hidden.

Given the x ∈ [0, 1] input variable, the first neuron in the lower branch on Figure 3.3

will always evaluate to zero. The input interval of its ReLU activation is [−2,−1] < 0,

hence the output is mapped to [0, 0].

The obfuscated network switch was tested with 20 and 50 multiplication stages,

and different σ and ω parameters. The networks were evaluated with MIPVerify using

the Gurobi, CPLEX, and GLPK solvers.

When ω is above 254 MIPVerify is defeated with all configurations and networks.

At an ω value whose rounding error as a 64-bit floating-point number just exceeds

the “small value” constant in the ω + 1 − ω computation the results are mixed, they

are shown in Table 3.1. We only consider a result successful if MIPVerify using all

three solvers comes to the wrong conclusion that the network is safe. Results show

that the n and σ parameters have no effect on the verification outcomes.

σ ∈ [−15,−10] [−10,−6] [−6,−4] [−4,−3] [−3,−2]
n = 20 97.4% 97.5% 98.6% 92.3% 96.0%
n = 50 97.4% 97.3% 95.9% 97.3% 98.7%

Table 3.1: Percentage of successful attacks by the network shown on Figure 3.3, with
n, σ, and ω = 254 parameters. An attack is successful if MIPVerify considers the network
safe using any of the Gurobi, CPLEX, and GLPK solvers.

3.4.7 Defense

Although obfuscation techniques can make detection of the switch significantly har-

der, it cannot prevent anyone in the possession of the network to disrupt the advers-

arial behavior. As mentioned before, the functioning of the switch depends on the ω
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constants on the two paths being equal, down to the last bit. As an idea for defense,

the network weights and biases can be perturbed to disrupt any careful alignment

that could hide adversarial behavior. This defense is cheap, and as a precaution can

be performed without any prior knowledge whether a network is clean of backdoors.

Of course the defense does not guarantee that an ordinary backdoor or defect does

not exist in the network, verification is still an important step.

Let’s see the case when multiplicative perturbation is applied to every constant in

the network in the 1± δ range, where δ is calibrated to the floating-point resolution.

In the computation of neuron C, the ω+ positive ω coefficient and ω− negative ω

coefficient are part of a summation. When the ω+ · (1 + δ+) perturbed coefficient is

smaller than ω−·(1+δ−), the input of neuron C permanently becomes a large negative

number. As the rounding error of numbers on the same order of magnitude as ω is

very large, the miniscule difference between the two branches easily outweighs the

1 constant. The result is that C has a constant 0 output. The D1 neuron cannot

become active, therefore the backdoor behavior does not affect the network output.

The backdoor is disabled and the network becomes safe.
If the perturbation caused the ω+ · (1+ δ+) branch to be larger in value, the situa-

tion is not so clear. Although a bit modified, the backdoor functionality still remains,

especially if the backdoor implements a switch output limit in the [0, 1] interval, with

the help of a C ′ neuron. The small relative difference between the ω values will be

large compared to the bias of C, the backdoor however still functions. The slightly

smaller ω− · (1+ δ−) value still allows deactivation of the backdoor behavior, with the

active domain being slightly larger. The main advantage for verification is that the

special canceling of the ω+, ω− pair is no longer working perfectly. It is much easier

for MILP solvers to pick up on the backdoor behavior, and explore the “on state” of

the switch when searching for feasible solutions.

The backdoor either becomes a larger target for MILP solvers, or it becomes com-

pletely deactivated – with about 50% probability. The simple perturbation provides

a strong defense against backdoors that utilize rounding errors and the perfect can-

cellation of large numbers. However, a detector is only useful when it is used in

practice. The existence of a simple and strong defense is not enough to dismiss the

potential of backdoors based on rounding errors.

Tests were evaluated on the WK17a and WK17a-adv networks. A series of δ per-

turbations are tested, shown in Table 3.2 alongside the averaged test accuracy 4 of

4The ratio of correctly classified samples in the test set.
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10 independent perturbed networks. As expected, larger noise results in lower test

accuracy, a balance has to be found. For δ = 10−6 and smaller relative perturbations

the networks preserve all classifications on the test set. This is in alignment with

the number representation of network parameters, as the relative rounding error for

32-bit floating-point values is around ϵ32(1.0) = 10−6.

Interestingly, the network with a switch has much higher sensitivity to the pertur-

bations. The explanation is that noise in the logits layer bias leads to false classifica-

tion. Notice that the absolute value of every neuron in the logits layer is increased

by 1000, the stored information only amounts to 1% to 10% of the absolute value.

This answers why test accuracy falls sharply from 10−2 and above. After the fact

compensation of the constant is not possible, as the noise cannot be separated from

the activation values. Other structures that can keep noise and data separate can be

used to eliminate this sensitivity.

δ 10−1 10−2 10−3 10−4 10−5 10−6 10−9 0

WK17a 0.9788 0.9811 0.9810 0.9811 0.9811 0.9811 0.9811 0.9811
WK17a-adv 0.1118 0.3744 0.9725 0.98105 0.98105 0.9811 0.9811 0.9811

Table 3.2: Test accuracy of the WK17a and WK17a-adv networks with perturbed para-
meters (average of 10 independent perturbed networks).

Verification using MIPVerify+Gurobi shows improvement on the perturbed adver-

sarial networks. The switch network and the obfuscated switch network perturbed

with 10−3, 10−6, and 10−9 values of δ are identified as adversarial in all cases.

The WK17a-adv network was evaluated using MIPVerify with different δ pertur-

bation levels, as shown on Table 3.3. As expected, the backdoor is disabled in about

50% of the cases. To test the verification process, the networks with a still functio-

ning backdoor are selected. Tests showed 75.85% to 98.3% success rate for finding the

backdoor. Curiously, smaller scale perturbations seem to result in higher success rates

of verification. We currently do not have an explanation for this behavior. One spe-

culation is that larger perturbations create a larger ω+ − ω− difference, between 108

and 1014 order of magnitude. These values will enter the model through constraints

of the C neuron and cause issues during the MILP solving process.

Verification was also performed on the original WK17a network with the same

perturbation levels. As Table 3.3 shows, the 10−6 and 10−9 perturbation level results

matched the zero perturbation baseline of 4.38%, while the 10−3 perturbation level

even made a small accidental improvement in adversarial sensitivity to 4.37%.
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δ 10−3 10−6 10−9 0

WK17a 4.37% 4.38% 4.38% 4.38%
WK17a-adv 75.85% 91.03% 98.3% 4.38%

Table 3.3: Adversarial sensitivity of the WK17a and WK17a-adv networks with pertur-
bed parameters, measured using MIPVerify+Gurobi.

In conclusion, the results show that for a network using 64-bit floating-point re-

presentation δ = 10−9 perturbation is a good choice. In theory even smaller pertur-

bations are enough, as long as the delicate balance of the ω weights is disturbed, and

the MILP solver is able to operate on model variables with large scale differences.

3.5 Modeling floating-point computations

In this section the ongoing research topics are discussed, that naturally follow after

showing problems with MILP based neural network formulations. It is important

to acknowledge that these preliminary findings are not always refined enough to

support definitive or robust statements. I present some ideas and findings to give

a basic understanding on what is possible with the current technology using mixed

integer linear programming solvers and interval arithmetic.

As it was shown in the previous section, neural network verification based on

MILP solvers is an approach plagued by numeric errors. Errors in the MILP con-

straints and optimum values are carried over and amplified in the iterative model

construction. Inaccuracies in the model can cascade to large errors, in badly aligned

cases the errors can lead to wrong modeling of the network connectivity. In the worst

case, model errors and consequently errors in the verification process can grow to an

arbitrary amount. Numeric issues have to be accounted for to avoid misleading the

verification process.

3.5.1 Is interval arithmetic always applicable?

It is a widely applied fact that interval arithmetic is a tool capable of producing valid

bounds for floating-point arithmetic computations [21]. While this statement is true,

some nuances exist that need attention. Using pure interval arithmetic guarantees

the analytical result to fall within bounds computed for an expression.

Analytical results have infinite precision, they do not suffer from the nonlinear

behavior caused by numeric errors. In contrast, the rounding behavior of floating-
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point arithmetic introduces nonlinearity, floating-point addition and multiplication

are both nonlinear. As a consequence, the a +f64 (b +f64 c) expression might not

evaluate to the same value as (a +f64 b) +f64 c, where +f64 is 64-bit floating-point

addition. The bounds produced by interval arithmetic are intended to encapsulate

the analytical result of expressions [19]. Floating-point results may also be correctly

bounded, but new theory is needed to have conclusive statements.

Definition 3.1. Let E denote the set of finite numeric expressions that consist of the

◦ ∈ {+, ∗, /} operations, the (...) precedence operator, symbols, and signed numbers.

Symbols – for example x1, or δ – can be replaced with numbers or expressions in E .

For technical reasons the subtraction operator is not allowed in E ∈ E , but it can be

expressed, as a− b ≡ a+ (−1 ∗ b).

Definition 3.2. Let R denote the set of rigid numeric expressions. In all R ∈ R
expressions a precedence operator encapsulates each operation, R is built recursively

from expressions of the form (a ◦ b), where a and b are replaced by other expressions

in R. R ⊂ E is easy to see.

Corollary 3.1. Due to the construction of R ∈ R, it does not contain an associative

sub-expression, the order of operations is therefore defined.

Corollary 3.2. Given a P ∈ E expression where the precedence rules already define

the order of operations, the P ′ equivalent expression can be constructed, where the

order of operations is made explicit by repeated application of the precedence ope-

rator. For example the P : a + b ∗ c expression is transformed into P ′ : (a + (b ∗ c)).
As P ′ ∈ E , and all operators are encapsulated with the precedence operator, P ′ has a

form that implies P ′ ∈ R.

Definition 3.3. Let eval(E,A, I) denote the value of an E ∈ E expression, where

first the I = {s → v} set of symbol replacements is applied, then the operations in

E are evaluated as defined by the A arithmetic. The evaluation can only happen if

following the E 7→I E ′ substitution E ′ contains no symbols, the result of operations

acting on symbols is not defined. Evaluating the contents of (...) always has the

highest precedence in eval(E,A, I), then {/} has the second highest, then {∗}, and

lastly {+} has the lowest precedence. On the {+, ∗} associative operations there is no

predefined evaluation order, the evaluation may take any order, hence a unique result

is not guaranteed. Consecutive {/} operations are always performed left to right. It

is assumed that A has a symmetry on positive and negative numbers, if x and c are

representable numbers, then −x can also be represented, and −(x+ c) = −x− c.
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From Corollary 3.1 and Definition 3.3 it follows, that due to the explicit prece-

dence in R ∈ R, the eval(R,A, I) evaluation has no ambiguity. The order of operati-

ons is always defined, and a single result exists.

Lemma 3.1. Given an E ∈ E expression, the eval(E,R, I) analytical result exists and

is unique, where R denotes the arithmetic on real numbers.

Proof. In R, the {+, ∗} operations are associative, the order of same precedence ope-

rations does not matter. A sub-expression consisting of consecutive {+} or {∗} ope-

rations always yields the same result. The order of consecutive {/} operations is

defined in eval(E,R, I), therefore the result of this sub-expression is also unique.

Precedence between the {+, ∗, /} operations is also defined. Since all valid evalua-

tion orders yield the same result, the result of eval(E,R, I) is unique.

Digitally, for example with F (floating-point arithmetic) E might be evaluated in

multiple ways, yielding different results. As Moore has stated [19], the floating-point

result of E is not fixed under associative and distributive transformations.

The {+, ∗, /} operations are monotone in F. Given a δ positive number, a ◦ b ≤
(a + δ) ◦ b ≤ (a + 2δ) ◦ b. A similar inequality also holds for a negative δ, and δ

applied to the b number. When b is amended, the inequality changes in direction for

the {/} operation. This is a simple consequence of the monotonicity in R, the correct

rounding in F, and the representation of floating-point numbers.

Definition 3.4. IF denotes interval arithmetic (IA), where F is the floating-point

arithmetic used by I. Given an E ∈ E expression, the v number in E that is re-

presentable by F is implicitly handled by IF as the [v, v] zero width interval. Crucially,

in IF no refinement takes place after the bounds have been obtained with rounding.

From the IEEE 754 standard for floating-point computations [27] and the results

on interval arithmetic by Moore [19], IF can find reliable bounds for the operation

performed in R. By choosing round to −∞ mode (round down mode), a floating-

point operation results in the largest representable number, that is not greater than

the result from the same operation performed in R. This is also true for round to +∞
(round up mode), where a reliable upper bound can be obtained for the result.

Lemma 3.2. Given an X1 ◦X2, ◦ ∈ {+, ∗, /} expression, where X1, X2 are intervals

in IF, and given the x1 ∈ X1, x2 ∈ X2 numbers representable by F, it follows that

eval(x1 ◦ x2,F, ∅) ∈ eval(X1 ◦X2, IF, ∅).
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Proof. Interval arithmetic operations are constructed to bound the analytical result,

eval(x1 ◦ x2,R, ∅) ∈ eval(X1 ◦ X2, IF, ∅) holds. Given the yR = eval(b1 ◦ b2,R, ∅),
and YR = eval(X1 ◦X2, IR, ∅) evaluations, where bi is an extreme value of the corre-

sponding Xi interval, and given the ◦ monotone operation, yR ∈ {max(YR),min(YR)}
holds. If YR ⊆ YF holds5, the YF = eval(X1 ◦X2, IF, ∅) bounding is correct. Rounding

errors must be accounted for when evaluations in F are performed, when calculating

the bounds of YF, the round down and round up mode is used. As ◦ is monotone, the

bounds of YF = eval(X1 ◦ X2, IF, ∅) can be obtained in a way, where extreme points

of the input intervals are enough to consider. The bounds of YF are directly compu-

ted using evaluations like eval(b1 ◦ b2,F, I), where I substitutes bi for the necessarily

evaluated bounds. Therefore, the result of eval(x1 ◦x2,F, ∅) must be contained in YF,

where instead of the bi bounds the xi ∈ Xi contained points are substituted by I.

Theorem 3.1. Given an R ∈ R expression, eval(R,F, I) ∈ eval(R, IF, I).

Proof. Let R(i) denote a series of expressions, where R = R(0), and let I(i)F and I
(i)
I

denote the series of substitution sets for the evaluations by the F and IF arithmetic,

where I = I
(0)
F = I

(0)
I . Let a, b be values or symbols (not expressions), and let R(i) be

the expression, where in R(i−1) the first occurrence of an (a◦b) shaped sub-expression

is replaced by the s(i) symbol. Let I
(i)
F = I

(i−1)
F ∪ {s(i) → eval(a ◦ b,F, I(i−1)

F )} and

I
(i)
I = I

(i−1)
I ∪{s(i) → eval(a◦b, IF, I(i−1)

I )} be the symbol replacements for evaluations

on the R(i) expression.

As an induction step let’s assume that the I
(i−1)
F substitution set maps to the xi

numbers, and I
(i−1)
I maps to the same xi numbers, or alternatively it maps to the

corresponding Xi interval, such that xi ∈ Xi. By Definition 3.4, IF handles values

in F, such that v = eval(v,F, ∅) ∈ eval(v, IF, ∅) = [v, v]. Lemma 3.2 applies, and

establishes that eval(a ◦ b,F, I(i−1)
F ) ∈ eval(a ◦ b, IF, I(i−1)

I ). Consequently, the I
(i)
F and

I
(i)
I substitution sets retain the property assumed by the induction step.

Let’s provide an induction base case on the R(0) expression. Due to Definition 3.3,

I must replace all symbols in R(0). For the eval(R,F, I) evaluation to be valid, I can

only map to numbers that are representable by F. By Definition 3.4, IF can handle

values in F, therefore eval(R, IF, I) has to be valid. As it was pointed out in the

induction step, IF handles numbers correctly for the induction to work. Therefore,

the base case also satisfies the assumption of the induction step.

By induction, eval(R,F, I) ∈ eval(R, IF, I) holds.

5The F ⊆ G operator applied on intervals signifies that the bounds of F are between the bounds
of G. Mathematically this implies that the G interval contains the F interval.
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Definition 3.5. Let d(E,A, I) denote a valid bounding function, the result of which

contains all possible results of eval(E,A, I). More concretely, given the L(E) ⊂ R
set of all possible rigid expressions derived from E, for each L ∈ L(E) expression

eval(L,A, I) ∈ d(E,A, I) holds. Let D(E,A, I) denote the set intervals that correctly

bound all eval(L,A, I) evaluations.

Lemma 3.3. If L(G) = {G′}, where G′ ∈ R, then a d(G,F, I) interval exists, such that

d(G,F, I) ⊆ eval(G, IF, I). Interval arithmetic gives a correct bound for eval(G,F, I).

Proof. By definition, G has a unique order of operations. Applying Corollary 3.2,

the G′ equivalent expression exists, such that G′ ∈ R, and the v = eval(G,F, I) =

eval(G′,F, I) value is unique. The [v, v] zero width interval correctly bounds the v

value, therefore [v, v] ∈ D(G,F, I). From Theorem 3.1, we know that eval(G,F, I) ∈
eval(G, IF, I). Since [v, v] ⊆ eval(G, IF, I), and d(G,F, I) = [v, v] is valid, a d(G,F, I)
interval exists, such that d(G,F, I) ⊆ eval(G, IF, I).

The result of an expression calculated with infinite precision is not sensitive to

the varying evaluation order of associative expressions. Calculating the interval

arithmetic bounds of an expression in E will encapsulate the true value. However,

the floating-point value also depends on the evaluation order. As it is demonstrated

below, computing the interval arithmetic bounds for an expression does not gua-

rantee to encapsulate the floating-point value of associative variants. When interval

arithmetic bounding is used in verification algorithms, the provided bounds are im-

plicitly assumed to encapsulate the floating-point value of the evaluated expression.

This assumption is only valid in cases where the expression has no associative am-

biguity, |L(E)| = 1 therefore E ′ ∈ R exists. Verification tasks do not satisfy this

assumption. Neural network definitions usually have a lot of associative elements, at

minimum the performed vector multiplications involve associative addition.

Let’s explore an example of the problematic behavior. Let N = [n1, n2, · · · , ni] be

a list of floating-point numbers that are at an ordinary scale (for example in the same

order of magnitude as 1), and an ω large number that has a comparably significant

rounding error. Including ω and −ω in the N ′ list does not change the overall S ′ =∑
ni sum, assuming infinite precision. However, an arithmetic with rounding errors

produces very different results based on the summation order. In the S ′ = ω−ω+
∑

ni

form, where the large numbers can cancel out first, the result is just the floating-point∑
ni sum. If the summation is in the

∑
ni + ω − ω form where the large numbers

cancel out last, the result will be the multiple of eps(ω) closest to S, the resolution
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becomes degraded. The most dramatic rounding errors appear if the summation is in

the ω +
∑

ni − ω form where the canceling of the large numbers surrounds the sum.

Every ω +
∑j

1 ni sub-result will be rounded to a multiple of eps(ω). In drastic cases

the rounding always happens in the same direction. Due to the rules of the “round

to nearest” rounding applied in every summation step, the worst case scenario can

have an error equal to the S sum.

Given that all ni numbers have the same sign, and their absolute value is lower

than ϵ(ω), the rounding errors can add up to the value of S. Given any evaluation

order
∑

N ′ ni ∈ S±S = [0, 2S], where both the 0 and 2S extremes are reachable with

the correct summation order.

The expressions and their results in Table 3.4 demonstrate this behavior, where

eps(ω) = 2, and 1± ϵ are the closest values6 to 1.0 in f64. Results show that the sums

have a similar effect on interval arithmetic evaluation. This is expected, as IF is based

on the F arithmetic, and rounding errors are always taken into account by interval

arithmetic sums. However, in case of the ω− ω difference there is no rounding error,

resulting in the [0, 0] interval7. In accordance with floating-point computations, when

the ω − ω term is located at the end, the bounds will be a multiple of eps(ω) close

to the original bound. With ω at the start and −ω at the end, the resulting interval

grows fast, with every additional ni term it is widened by eps(ω).

Expression Result with f64 Result with IA

(1− ϵ) + ω − ω 0 [0, 2]

ω − ω + (1− ϵ) 1− ϵ [1− ϵ, 1]
ω − ω + (1 + ϵ) 1 + ϵ [1, 1 + ϵ]

(1 + ϵ) + ω − ω 2 [0, 2]

ω +
∑

1..M (1− ϵ)− ω 0 [0, 2 ·M ]

Table 3.4: Differing results achieved by different ordering of an expression using floating
point arithmetic and interval arithmetic.

With a large enough rounding error of the ω number, the floating-point sum can

fall in the [0, 2S] interval depending on the evaluation order. Meanwhile, when ω

values are at the beginning, interval arithmetic produces the same result as for the∑
ni sum, the resulting interval will be quite narrow compared to eps(ω).

6The ϵ is added to avoid ambiguity in the rounding direction.
7Given that ω is exactly representable in the used floating-point arithmetic, the interval represen-

tation of ω is zero width. Since the result of the subtraction is also representable, there is no widening
applied, the resulting interval has zero width.
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Table 3.4 demonstrates that in a computation where the order of associative ope-

rations is not fixed, interval arithmetic does not necessarily bound the floating-point

value of the expression, clearly the f64 = 0 result is not in the If64 = [1, 1+ ϵ] interval.

This is problematic, as the order of operations in MILP solvers and neural network

implementations can vary.

Floating-point evaluations are not always contained in interval arithmetic bounds.

A notable safe case is provided by Theorem 3.1. Given an expression with fixed

evaluation order, an IF arithmetic satisfying Definition 3.4 is guaranteed to contain

the expression value computed by the F arithmetic.

A surprising consequence is that interval arithmetic cannot be trusted to evaluate

reachability of a single neural network layer, due to the possible associative expres-

sion variants. Evaluation of a network layer with φ(A · x + b) model is ambiguous.

Unless we can guarantee that the result of all evaluation orders are bounded – either

by restricting the evaluation order, or by correct bounding –, the resulting floating-

point vector might not be contained in the output interval bounding box.

The seemingly trivial solution to the problem is to strictly define the order of

operations in the neural network model. This however leads to performance loss,

high-throughput computations benefit from a flexible evaluation order. For example

matrix multiplication is highly optimized for the trio of a given task, the running

environment and the momentarily available resources. Results may vary with GPU

model, tuning of the GPU model, current load on the system, or the input batch

size. While it would be hard to create a reliable exploit for these volatile factors,

a generally unstable neural network could be created that behaves erratically on

specific inputs.

Generally, this problem can rarely manifest on neural networks that have not

been tampered with. Overestimation in the interval arithmetic bounding typically

covers the small errors that could result from the evaluation order. However, targeted

attacks could exploit the inconsistency.

Despite the issues, interval arithmetic is still a strong tool with good applicability

in verification. Naturally, the limitations must be accounted for, or acknowledged.

3.5.2 Combined power of interval arithmetic and MILP solvers

As we have seen, verification based on MILP solvers can evaluate network models

very efficiently, however a known exploit exists, therefore the results cannot be fully
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trusted. It is also known that verification based on interval arithmetic can be sound,

but solvable verification problems are very limited in complexity. MILP solvers are

equipped with algorithms to track and simplify logical connections in a complex pro-

blem, meanwhile interval arithmetic is good at accounting for numeric issues during

a computation.

Existing algorithms – including MIPVerify – are utilizing the combination of inter-

val arithmetic and MILP solvers, however these implementations ignore the potential

rounding errors in the modeling and model solving process. In the iterative appro-

ach of MIPVerify we clearly see problems that occur due to the ill-formed model.

An adversarial network can choose the value of some parameters in the constructed

MILP model. Finding the optimum in such an ill-formed model can be difficult, pur-

posefully introduced numeric issues can trick the solver into finding a sub-optimal

solution. We demonstrated this behavior with the forced incorrect modeling of our

trivial adversarial network (Figure 3.1). Besides the ill-formed model, model sca-

ling is another attack surface, where an adversary can purposefully upscale the MILP

model parameters by a constant. Even though proportions of the model geometry

are unchanged, not every solver parameter is scaled accordingly. An adversary can

forcefully reduce the solution accuracy by a geometrically equivalent model. Slightly

tighter than necessary constraints will result in more pessimistic optimum values,

and consequently a model that omits reachable network output regions. An attacker

can amplify the effect and hide adversarial behavior in these regions.
The Gurobi Guidelines for Numerical Issues excessively writes about problems cau-

sed by ill-conditioned models. An adversary could design networks that exploit these

issues, therefore verifiers must have defenses that solve these issues. One such vul-

nerability that surfaced frequently during our research is that numeric instabilities

have led to unsatisfiable constraints in a model that modeled the adversarial space.

We had example inputs that simply proved this result wrong.

In cases where the optimum value is conservative, for example due to already

modeled constraints being too strict, the built MILP model will impose constraints

that are too narrow to correctly encapsulate all possible activations. Consequently,

in iterative construction of the network model use of the too narrow intermediate

models leads to unsatisfactory bounding of layer outputs. These bounds are used to

determine ReLU stability, some might be erroneously classified as stable. Completely

modeling stable ReLU units would introduce unnecessary binary variables reduce

solver performance, therefore only a simplified version is included in the model. This

problem allowed the trivial adversarial network to became so powerful. After the
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verifier has decided to model the most important neuron in the network as the zero
constant, any adversarial behavior was necessarily and completely missed.

If the effect of these modeling errors could be estimated, then solutions from the

MILP solver could be amended with the known uncertainties. For now, we have

to accept the fundamentally unreliable verifiers, with added protection in detecting

numeric issues and trusting solver correctness in average cases. When any issue is

detected that could lead to sub-optimal MILP solutions, the verifier must not give out

safety certificates. The optimized MILP model could be ill-formed, and the result is

unreliable. Solvers usually have built-in mechanisms to detect such issues, during

model building the constraint parameters can also be sanity checked. For example

the trivial adversarial network has parameters in the 1017 order of magnitude which is

a clear red flag. By acknowledging currently unfixable vulnerabilities and sacrificing

completeness, a heuristic, performant, and closer to sound algorithm is achievable.

Not accepting the result of MILP solvers at face value is an important step, that must

be taken to avoid the false sense of security.

The best MILP solvers are complicated closed source algorithms. It would be hard

to bound rounding errors that affect a concrete model solution even when the source

code is available. Without knowledge on the internals, we cannot provide reliable

bounds. On the other hand, some assumptions can be made that point in the right

direction, so that creation of a less vulnerable heuristic system can be attempted.

If the MILP model and optimum values are extended with heuristic error bounds,

some hard to overcome protections can be built in the verifier algorithm. Granted

that numerically unstable verification tasks are rejected, we only have to focus on

bounding the average case rounding errors. In the average case, MILP solver opera-

tion is stable, optimum values can be accepted as correct and without much error.

Error bounds for the average case computation can be relatively tight.

In verification the conservative estimation8 of reachable states is vital in every

computation step. If necessary overestimations are kept small, the completeness of

a method will only weaken a little, while correctness can be ensured. Small ove-

restimations can be indistinguishable from normal execution with rounding errors.

When large overestimations have to be used, the underlying numeric problems alre-

ady make usability of MILP solvers questionable.

8Conservative in this case means, that the estimation is wider, such that all possible states are
encapsulated. In verification false positives are tolerated, false negatives are not.
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3.5.3 Rounding errors in the MILP model optimum

When the MILP solver provides the optimum solution for a problem, the correspon-

ding value of all model variables can be retrieved. Based on the input vector, the

optimum value can be re-calculated with improved reliability, and an error estimate

can also be obtained. Based on the assumptions on how rounding errors are introdu-

ced, specific bounding algorithms are required for the error estimate. The simplest

of all is to use the unaltered standard tool, interval arithmetic, with the limitations

established in Section 3.5.1 kept in mind. Given an algorithm that can bound associ-

atively ambiguous expressions, it can be a drop-in replacement for interval arithmetic

to get safer bounds.

While an any-order bounding algorithm is not developed, we still want to use our

“verifiers” aided by an educated guess on error bounds. Simply applying interval

arithmetic does not take into account that an ω number with large rounding error

has a strong effect on our results. To mitigate this issue and lessen the attack surface,

a simple workaround can be applied. When evaluation of an expression is started,

constants in the expression can be widened by adding a minimal non-zero width

interval. For example the [−ϵ(0), ϵ(0)] or [0, ϵ(0)] interval can be used, where ϵ(0)

is the smallest representable number. Even when terms of the expression would

perfectly cancel out, at least one of the operands is a non-zero width interval, which

ensures the expression result to also have non-zero width. If the expression contains

ω, the result is guaranteed to include the effects of degraded precision caused by ϵ(ω).

Therefore, the ω+I−ω+I1 expression will result in the [1−2·ϵ(ω), 1+2·ϵ(ω)] interval.

If ω is on an average scale, the introduced error term is around 10−4 for 32-bit floating

point representation, and only 10−13 for 64-bits – a tolerable overestimation. While

this does not eliminate all problems, the attack surface is significantly reduced by the

“epsilon widening” of expressions.

3.5.4 Include rounding errors of modeling constraints

Sadly, even if a good any-order bounding algorithm is available, rigorous bounding

of the optimum value is not guaranteed. On pathological MILP models generated

by a malicious network, MILP solvers vulnerable to numeric issues do not guarantee

optimality of the solution. When solvers determine possible solutions and evaluate

their feasibility, the model constraints directly affect the result. Since the constraints

are driven by the network structure, an adversary can introduce unstable regions.
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Small discrepancies can be introduced in modeling of the linear expressions and the

ReLU units, where the constraints are stricter than necessary by just a few ϵ values.

The attack does not require large rounding errors that the optimum bounding would

account for, the exploit is encoded in the MILP model structure. Therefore, the real

optimum can still get out of bounds. If this reliably happens by even a small amount,

the exploit is feasible, and verification results cannot be trusted.

When constructing the MILP model, too strict constraints can amplify numeric

errors. A constraint can behave strict due to a rounding error changing it slightly,

two constraints in a scissor geometry are particularly sensitive to such small numeric

issues. In case of 32-bit models this effect can be quite noticeable, as the relative

error in the number representation itself is quite large. Gurobi uses 64-bit represen-

tation and by default applies 10−6 slack for the constraints and optimality condition

to reduce numeric issues. It also applies 10−5 slack for integer constraints, which me-

ans that integer values can be off by this amount. The extra tolerances help with sa-

tisfying the strict equality and integer constraints. However, according to the “Gurobi

Guidelines for Numerical Issues” in [8] and our empirical results, these tolerances do

not provide a complete solution to strictness issues.

As mentioned in Section 3.5.2, there are different ways of introducing rounding

errors in the MILP solving process. Geometry scaling is an interesting one. While

scaled up models should have equivalent satisfiability, implementation details of the

solver can be used to induce errors. Most importantly, the tolerances mentioned

above are absolute, scaling of the optimization problem matters. Therefore, geome-

try scaling can control the effective model strictness. By upscaling, or on a model

with values on a very wide scale spectrum (like the trivial adversarial network), ad-

versaries can force an overly narrow search space.
The geometry of the network activation pattern has a free scaling parameter. Va-

lues in hidden layers can be scaled up and down, while the same network outputs

are maintained as without scaling. With the naive modeling currently used by MIP-

Verify, an adversary can choose the scaling parameter, and consequently can exploit

the well-known numeric issues. It should be noted that these numeric issues are

not bugs in the MILP solvers, they come from the intrinsic behavior of floating point

computations. The currently widespread 64-bit representation gives a hard limit on

solver accuracy.

Calculating whether a solution satisfies a constraint suffers from rounding errors,

this phenomenon enables numerous attacks. Since the error occurs in the MILP

solving process, it has to be accounted for either before, or during the solving process.
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An after the fact relaxation is not suitable, as an overly strict constraint could render

a real optimum infeasible, which in turn can lead to errors of arbitrary magnitude.

Constraints can be widened by an error bound to mitigate issues in the MILP

solving process. A heuristic error profile and magnitude can be assumed that make

attacks harder to execute. One idea is to approximate accumulated rounding er-

rors with the ϵ(x) function and a magnitude value. However, the ϵ(x) function only

bounds a floating point value, and not the result of an expression. When a constraint

calculation has rounding errors, a resulting 0 value does not mean that the calcula-

tion has ϵ(0) error. The error profile and magnitude should both be deduced from the

constraint expression, and from the bounds of input variables. The constraint can be

widened with this amount.

The true error profile of linear expressions is complicated. Inputs can take any va-

lue from the determined input intervals, which yields an error function with FN → 1

dimensionality, where N is the number of inputs. It is not feasible to exactly de-

termine and model the error function, however a simple bounding is possible given

that a d(E,F, I) any-order bounding function exists. From [l, u] = d(E,F, I), we

know that eval(E,F, I) ∈ [l, u], and eval(E,R, I) ∈ eval(E, IF, I), also it is easy to

see that eval(E, IF, I) ∩ d(E,F, I) ̸= ∅. Therefore, |eval(E,R, I) − eval(E,F, I)| ≤
|[l, u]|+ |eval(E, IF, I)|, the rounding error on an E expression can be bounded.

Definition 3.6. Let I = {s→ [ls, us]} denote the set of symbol to interval mappings.

Given the I set, II is a symbol substitution set, that has a substitution for each

s ∈ key(I). Given a (s → [l, u]) ∈ I mapping, the (s → v) ∈ II substitution satisfies

v ∈ [l, u].

Definition 3.7. Let q(E,F, I) denote a valid bounding function for the maximum

rounding error that can occur when eval(E,F, II) is calculated. Formally, given

the L(E) set of all possible expressions derived from E, such that L(E) ⊂ R, let

q(E,F, I) ≥ argmax
L1,L2∈L(E)

eval(L1,F, I)− eval(L2,F, I).

Currently, a proven algorithm for calculating a valid q(E,F, I) bound is not known.

With a similar construct to interval arithmetic, where both the interval value and the

rounding error is tracked, an algorithm might be feasible.

Given the network up to the i − 1th layer and the possible intervals for all x(i−1)
j

variables, an error bound can be calculated for the z
(i)
j = b

(i)
j +

∑
k w

(i)
j,k · x

(i−1)
k expres-

sion. An assumption has to be made on how the MILP solver determines whether a

constraint is satisfied. For an A · x = b model, the A · x − b = 0 constraint test is
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assumed. A constraint takes the −bj +
∑

k Aj,k · xk = 0 form, the solver is assumed to

literally compute the left-hand side of this expression and check whether the equality

holds within the slack parameters.

Given that the MILP solver does not have a larger error in constraint calculation

than the rounding errors in this expression, the determined error bounds can be

applied as the δ = q(E,F, I) slack to the constraint. In practice, if a δ
(i−1)
j error bound

is calculated, the equality constraint has to be modeled as the z
(i)
j ≥ −δ

(i−1)
j + b

(i)
j +∑

k w
(i)
j,k · x

(i−1)
k and z

(i)
j ≤ δ

(i−1)
j + b

(i)
j +

∑
k w

(i)
j,k · x

(i−1)
k constraint pair. On constraints

modeled with ≤ and ≥, the δ
(i−1)
j value can be directly applied with the correct sign,

no re-modeling is required.

With the corrected constraints for z
(i)
j , we can proceed to model the ReLU acti-

vation. As relu(z) = max(0, z), there are no rounding errors introduced in direct

calculation of the function. However, we need to take into account that modeling

of the ReLU function requires the 3.1-3.4 constraints, rounding errors might still be

introduced.

For ease of notation, let’s make z = z
(i)
j and x = x

(i)
j , therefore x = relu(z). The

simplest of the four constraints is 0 ≤ x. As x is just a value, no calculation is needed

to determine it, q(x,F, I) = 0. The constraint is not modified.

The z ≤ x constraint will be rearranged to 0 ≤ x− z (or equivalently 0 ≥ z − x).

In this case δ = q(x − z,F, I), which depends on the intervals z and x can fall into.

The constraint becomes 0 ≤ x− z + δ.

The x ≤ u · a constraint will be rearranged to 0 ≤ u · a − x, where u is a con-

stant, therefore the expression is still linear. In this case δ = q(u · a − x,F, I). In

multiplication with the 0 and 1 theoretical values of a there is no additional rounding

error. In reality, the MILP solver introduces 10−5 slack for integer variables, there-

fore a → [0 − 10−5, 1 + 10−5] is the correct mapping in I. The constraint becomes

0 ≤ u · a− x+ δ.

The x ≤ z − l · (1− a) constraint has one key difference to the previous ones, the

expression is not in the “sum of products” form. The A · x ≤ b encoded expression

is x ≤ z − l + l · a, which is rearranged to 0 ≤ z − l + l · a − x, therefore δ =

q(z − l + l · a− x,F, I). The constraint becomes 0 ≤ z − l + l · a− x+ δ.

With this δ-widened model, the possibility of exploiting rounding errors in the

MILP solver is reduced, the problem however is most likely not eliminated.
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3.5.5 Improved ReLU stability check

Besides the question of reliability, verification speed is also an important quality.

While we examined MIPVerify, an easy to achieve performance improvement was no-

ticed. In MIPVerify the bounds for the z
(i)
j variables do not have to be strict. Within

reasonable scales the values of l
(i)
j and u

(i)
j do not matter, only correctness of the

bounds is necessary. With interval arithmetic we can easily obtain most likely overes-

timated bounds9, based on the bounds of z(i−1)
j . If the ReLU is found to be stable by

interval arithmetic, no further refinement is needed, modeling of the stable ReLU unit

is trivial. When the overestimated bounds indicate an unstable ReLU unit, a choice

can be made. Either the addition of a potentially unnecessary binary variable is tole-

rated, or by evaluating the so far built MILP model stricter bounds can be obtained,

and only necessary binary variables are added. MIPVerify chooses the latter option

in every case, therefore evaluates the MILP model numerous times.

MIPVerify first evaluates the u
(i)
j upper bound. If the upper bound is negative, the

ReLU unit is proven to be inactive. If the upper bound is positive, the l
(i)
j lower bound

also has to be sharpened. If the lower bound is positive, then the ReLU is known to be

always active, otherwise it is potentially unstable and introduction of the a
(i)
j binary

variable is necessary.

This behavior can significantly be improved. The neural network can be evaluated

at an arbitrary point and the value of all z(i)j variables for that single evaluation can be

saved. This provides a z
′(i)
j example point for all ReLU units, and the points are known

to lie between the activation bounds of the corresponding ReLU unit. When building

the network, we can have a look at the z
′(i)
j point for every ReLU that is deemed to

be unstable using interval arithmetic bounds. If z
′(i)
j is negative, we can prioritize

solving the MILP model for the upper bound. If the upper bound is negative, the

ReLU is proven to be inactive, hence introducing a binary variable is not needed. If

the upper bound is positive, the ReLU is proven to be unstable with a sharp upper

bound and an overestimated lower bound, based on which modeling of the unstable

ReLU is possible. This logic can be symmetrically applied to the case where the z
′(i)
j

point is positive. In the unstable cases only a single MILP optimization round is

needed, in some stable cases MILP optimization can be completely skipped.
In cases where the ReLU is permanently active, the original MIPVerify implemen-

tation requires two MILP evaluations. First the upper bound, which yields a positive

value, then the lower bound which also yields a positive value. Our solution alre-

9While repeating the mantra “see the limitations mentioned in Section 3.5.1”.
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ady knows that the ReLU can have a positive value, therefore it eliminates the MILP

evaluation that sharpens the upper bound. When the first MILP evaluation yields a

positive lower bound, the ReLU unit is proven to be stable.

If it turns out that the sharp bounds of the z
(i)
j variables are important, a reduction

in MILP solves is still possible. For stable ReLUs we can still ensure that only a single

MILP solve is needed, as opposed to the either one or two MILP solves required by

MIPVerify. For unstable ReLUs instead of having one sharp and one loose bound, both

are sharpened, two MILP solves are required by the updated algorithm. Depending

on the ratio of unstable ReLU units, the speedup from the network pre-evaluation

can have a very high, or almost no impact on verification performance.

By evaluating the network once, and storing the z
′(i)
j values in all layers, a signifi-

cant reduction is achievable in the number of MILP evaluations. Also, the approach

points to the possibility of a compromise between the number of MILP evaluations

and the number of superfluous binary variables. In later stages of the model building

MILP evaluations become more expensive, while the introduced binary variables take

part in fewer evaluations. It is an interesting task to find the sweet spot for the best

overall performance.

3.5.6 Runtime and reliability comparison

To gain data on effectiveness of the heuristic findings, different implementations de-

rived from MIPVerify were created. We found that extending the MIPVerify algorithm

using the published codebase by Tjeng et al. is not ideal for prototyping. Moreover,

the answers returned by MIPVerify are not nuanced enough to clearly indicate its

implications. For example a “not feasible” answer could indicate a strong guarantee

on safety, or a heuristic result based on the raw output of the MILP solver. In case

of MIPVerify it is in fact just a raw output from the MILP solver, which clearly needs

further processing to indicate a clear conclusion.

To combat these problems a new toolbox was created, that is easy to extend

with new algorithms and provides a cleaner interface for the user. Namely, we dis-

tinguish the answers PROVEN_ADVERSARIAL, POSSIBLY_ADVERSARIAL, POSSIBLY_SAFE,

PROVEN_SAFE, and UNKNOWN. The answers containing the word PROVEN should only be

used when there is evidence for the result excluding the possibility of the other ans-

wer being correct. For example the MILP solver reporting “not feasible” can at most

be categorized as POSSIBLY_SAFE, because we know that MILP solvers are fallable.

If the solver returns “feasible” the categorization should be POSSIBLY_ADVERSARIAL,
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as the MILP solver might have made a mistake. Taking the model variables corre-

sponding to the solution input and evaluating the input with the real neural network

implementation, we might get an output that is categorized as acceptable for the sa-

fety requirements. If the tested input returns an adversarial example, then we have

proof by example and can rightfully return PROVEN_ADVERSARIAL.

The PROVEN_SAFE answer needs the most care. An algorithm has to be proven

correct before this answer is considered. If algorithms use it without consideration,

trust in their correctness can be damaged. By default, the POSSIBLY_SAFE answer

should be used, it highlights that the answer is not guaranteed to be error-free. Our

algorithms never use PROVEN_SAFE as we are not comfortable issuing a strong safety

certificate when the algorithms are suspected to be vulnerable.

To evaluate the proposed improvements to MIPVerify, several algorithm versions

were created. The original MIPVerify algorithm implementation by Tjeng et al. is re-

ferred to as mip. To gain a baseline comparison, MIPVerify was reimplemented with

a reduced feature set that is essential for the conducted tests, it serves as a compa-

rison baseline. We will refer to the re-implemented algorithm as miprep. MIPVerify

(specifically miprep) was extended with the improved bounds check mentioned in

Section 3.5.5, this version is referred to as mipplus.

The miprep algorithm was also extended with a naive version of rounding error

compensation and is referred to as recrep. The currently implemented rounding er-

ror compensation applies a fixed relative widening of constraints, as a first test for vi-

ability of improved modeling. It also extends the l
(i)
j and u

(i)
j bounds using a heuristic

algorithm to estimate the rounding errors committed when calculating the network

layers. A version called recmip was also created, that besides the rounding error

compensation also implements the speed improvements described in Section 3.5.5.

Figure 3.4 shows runtime results of the MIPVerify variants. The WK17a network

(without the adversarial backdoor) and the first 100 samples of the MNIST test set

were used to evaluate the verifiers. Each run of 100 evaluations was ordered in as-

cending order of the runtime and is shown on the plot. As it is seen on Figure 3.4,

mip is about twice as fast as the miprep re-implemented algorithm. Mostly the same

packages and tools are used in the implementation of miprep and mip, the most im-

portant of which are IntervalArithmetic, JuMP, MathOptInterface. Theoretically

it should not matter, but in practice it is important that the Gurobi optimizer was

used with the Gurobi.jl package for interfacing. An important difference is that

miprep uses Flux and NNlib to evaluate neural networks, while mip has a custom
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implementation as part of the package. The observed slowdown and the difference

in the calculation of model variables establishes that mip is better optimized than

recmip in how or which model variables are created.

There is a noticeable grouping in the results, mip is the fastest, miprep and recrep

are the slowest, mipplus and recmip stand in the middle. The difference between

miprep and recrep is the added rounding error compensation in the latter. As it

appears, computing the rounding error compensation is negligible compared to the

verification process. The recmip and mipplus algorithms are consistently faster, as

they implement the improved ReLU stability check. The difference between these

algorithms is also the rounding error compensation, which is only implemented by

recmip. Again, there is no significant difference in runtime, the heuristic rounding

error compensation is very cheap to compute.

The results suggest that in average cases the improved bound check yields a con-

sistent speedup. This can most likely be transferred to any algorithm with a similar

architecture to MIPVerify. Also, the heuristic rounding error compensation – which

requires interval arithmetic evaluation of complete network layers – adds only a neg-

ligible overhead to the total computation cost. The additional workload is on par
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Figure 3.4: Runtime distribution of different MIPVerify versions evaluating the first 100
MNIST test set samples on the WK17a neural network.
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with the simplified version of the more robust rounding error compensations des-

cribed in Section 3.5.3 and Section 3.5.4. Hopefully, the described incomplete but

strong rounding error compensation will also prove to be low cost, providing an ef-

fective heuristic defense against attacks based on rounding errors.

3.5.7 Results on reliability

The recmip algorithm does not implement the comprehensive rounding error com-

pensations described, only a much simpler heuristic version. It is still not reliable

in finding the backdoor region in the WK17a-adv network. However, on the first

100 MNIST test set samples it consistently reports the POSSIBLY_ADVERSARIAL veri-

fication result. This is likely caused by numeric errors in the MILP solution process.

The verification outputs show that the final network model solving step found a fe-

asible adversarial solution, however when verifying its classification, the input was

not found to be adversarial. This is consistent with the distance to the adversarial

candidate, only 9 out of 100 results had a distance larger than 0.05, which is the

distance to the active backdoor region. This result is promising regarding the search

for backdoors based on rounding errors, even a simple heuristic was able to reliably

hint at the existence of a backdoor.

3.6 Conclusions

The chapter presented findings and thoughts on neural network verification. As we

have seen, verification is a complicated topic where algorithms with strong guaran-

tees are hard to create. Errors in modeling are non-trivial to recognize, and are even

harder to mitigate.

Performant algorithms strongly depend on MILP solvers, leading to severe issues

in reliability, as MILP solvers are not designed to be fully robust against numeric

issues. A trivial size and potent adversarial network was presented (Section 3.4.4),

which demonstrated that errors of arbitrary magnitude are possible. A real-world

adversarial network was also presented, that successfully uses the exploit to hide

some of its behavior from verification (Section 3.4.5).

In Section 3.4.7 a trivial to execute defense was introduced that is capable of

defeating the exploit in its current form, by either eliminating the backdoor or making

it visible to the previously fooled verification algorithm.
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Even though the ideas and results presented in Section 3.5 are part of currently

unfinished research, they offer an outlook on what is possible to achieve in the next

iteration of interval arithmetic and MILP solver based verifier algorithms.

These preliminary results shed light on issues in the currently used verification

algorithms. The usability of interval arithmetic for rigorous verification was discus-

sed in Section 3.5.1, where previously undocumented limitations are highlighted on

naively bounding neural network outputs with interval arithmetic.

In Section 3.5.2, Section 3.5.3, and Section 3.5.4 different failure modes of MILP

solver based verification were discussed. A cheap heuristic defense is introduced

against underestimating the rounding errors when a MILP optimum value is calcula-

ted in the network model. Another heuristic defense is introduced against rounding

errors in the MILP constraint calculation process. These improvements aim to elimi-

nate the underestimation of reachable model states, which can easily lead to subop-

timal points being reported by the MILP solver as valid solutions. Consequently, the

chance to exploit the erroneous network model should be significantly lowered, al-

ongside errors of arbitrary magnitude caused by malicious ReLU networks.

In Section 3.5.5 an efficiency improvement is presented for algorithms with si-

milar architecture to MIPVerify. A more efficient ReLU stability check is discussed,

that can significantly reduce the number of necessary MILP optimization processes.

Section 3.5.6 and Section 3.5.7 discuss the results obtained by evaluating different

versions of MIPVerify on a sizeable network. While the original algorithm version

is the fastest, there are promising signs for the version with improved reliability to

operate with a negligible slowdown. Besides the additional cost of stronger bound

computations, the more efficient ReLU modeling could even lead to both a more

robust and faster algorithm.

A key takeaway of the presented research is that verification algorithms can be

misleading. We often believe them to be more secure and reliable than they actually

are. This emphasizes the need for thorough evaluation of their capacity to prove

statements definitively.

Even though the partial results of Section 3.5 do not have the capacity for guaran-

teed definitive proofs, they show a promising path forward. The lack of an any-order

expression bounding algorithm does not mean that we cannot improve the current

best verification algorithms. While they still have no proving strength in all cases,

reliability of these methods should be significantly improved as many error sources

are eliminated by the corrections.
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Summary

Optimization tasks have many faces. As we have seen, interactions between the op-

timizer and the optimized model can be non-intuitive and lead to problems. An ab-

normally high number of function evaluations, and underutilized computing threads

hint at harmful interplay between the optimizer and the optimized function. Depen-

ding on the requirements for an acceptable solution, a number of different challenges

can arise. The amount of tolerated error in the optimum and the acceptable compu-

tational cost will limit the choice in the available optimizers.

In my dissertation I discussed the multi-threaded implementations of a global

optimizer, where the main challenges concerned balancing between algorithmic effi-

ciency and performance, and interplay of the multi-threaded algorithm and objective

function characteristics. Regarding the usage of MILP optimizers to perform verifi-

cation tasks, I discussed the mismatch between an optimization model and the real

system, the reliability of optimal solutions, alongside the applicability of interval

arithmetic in verification.

Parallel global optimization

The Global algorithm originates from research on stochastic multi-start optimization.

As it is an effective derivative-free method to solve various black-box problems, re-

search was also performed on it in the past few years, improving the algorithm. To

ease the usage and development of Global, an optimizer toolbox was created capable

of configuring and assembling algorithm components. Easy reusability enabled the

development of algorithm variants that better suit specific optimization tasks. One

area where the toolbox and specifically the Global algorithm had room for impro-

vement was the utilization of a multi-threaded computing environment. Creating an

effective multi-thread Global variant is not a trivial task, it has lead to the research

presented in this dissertation.

88



Summary 89

In Chapter 2 three approaches are discussed to create multi-threaded algorithm

versions of Global, which in general are applicable to similar multi-start optimization

methods.

The SynchronizedGlobal version has a close resemblance to the original Global

algorithm, on a single thread the two algorithms closely match. While execution

happens on multiple threads, SynchronizedGlobal tries to preserve the main charac-

teristics of Global. In effect SynchronizedGlobal tries to utilize the available threads,

but it prioritizes the reduction in the number of function evaluations when the two

are in direct conflict.

The ParallelGlobal version aims to maximize the utilization of computing power

while trying to incorporate efficiency improvements applied in the single thread al-

gorithm. Rather than waiting for other threads, the evaluation does not stop, at any

point the best available information is used to guide the algorithm.

The idea of a fully distributed version of Global is captured in DistributedGlobal,

providing the means to run Global threads in a loosely coupled computing envi-

ronment. When a single computer does not have enough resources to perform an

optimization task in acceptable time, the computations can be executed on a distri-

buted system. Communication times in these systems can easily dominate the evalu-

ation time of cheaper objective functions, therefore simply delegating the evaluations

would not always be efficient. Instead, the workers can run on compute nodes with

loose coupling, where information is disseminated asynchronously, without blocking

other workers. In addition, DistributedGlobal does not necessarily need a central

information authority, results can be shared using distributed algorithms.

The algorithms were tested to assess how successful they are at decreasing op-

timization time, increasing the algorithm performance, and how closely they match

the efficiency of the single thread version.

Tests on SynchronizedGlobal showed that the algorithm can be effective at re-

ducing the necessary runtime. Given a large enough task per thread, the multi-

threaded implementation can be more effective, while an overabundance of threads

will cause slowdown. Using SynchronizedGlobal with a multi-threaded configuration

was found to increase the number of function evaluations. This is countered with a

significant decrease in runtime, when the objective function is computationally ex-

pensive.

Tests on ParallelGlobal showed a much more varied result. While objective functi-

ons favoring the algorithm are solved quickly and efficiently, some objective functions
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posed a serious issue. The reduced algorithmic efficiency of ParallelGlobal – depen-

ding on the objective function – has lead from 0% to 1500% increase in the number

of function evaluations, heavily affecting the runtime. For some objective functions

the single thread Global algorithm was faster, even on the most expensive evaluation

setting.

In conclusion, multi-thread implementation of multi-start optimizers is viable and

yields useful algorithms. Optimizers are sensitive to the characteristics of the ob-

jective function, in multi-thread algorithms these effects are even stronger. For some

problems they provide a valuable increase in performance, for others they can per-

form worse than the single-thread version.

Problems and solutions in neural network verification

Neural networks are versatile tools to solve complex problems, where requirements

are rather fuzzy in nature than precise. While large models are out of reach for useful

verification, the small to mid-sized networks are on the edge of possible verification.

These models are large enough to perform single cutout tasks, like character recog-

nition or collision avoidance control. Since these networks can be used as building

blocks in more complex algorithms, it is important to acquire reliable implementati-

ons. Recently, numerous verification algorithms were proposed to ensure correctness

of these networks. As we found, there are two categories of verification algorithms,

direct solver algorithms that are not fast enough to verify 1000 neuron networks,

and fast algorithms that use MILP solvers to at least aid, but more often to solve veri-

fication tasks. It is well known that numeric algorithms are prone to numeric errors,

MILP solvers also suffer from this issue. Directly using results from a MILP solver to

decide reachability of adversarial inputs is therefore dangerous.

In Chapter 3 MIPVerify – a verifier relying on MILP solvers – is examined in detail,

to provide a showcase of exploiting the known issues. Numeric issues are uncovered

in its implementation regarding modeling of the network and the output reachability.

An exploit for MIPVerify+Gurobi is presented, that an attacker could use to evade de-

tection of a backdoor during verification, while freely choosing the network output

in a subspace. The exploit can be fine-tuned for other verifier+solver combinations,

as long as they are sensitive to the numeric issues affecting the MILP solver. A two

part neural network is presented, that performs classification on the MNIST dataset,

and has an attached backdoor. Tests showed that MIPVerify reliably misses the ad-



Summary 91

versarial behavior in the tampered network, and incorrectly yields the same result as

for the clean version.

To counter the attack, a defense is introduced that is trivial to execute, cheap to

apply, and can disrupt exploits based on perfectly canceling numbers. It however

does not defend against classic problems in neural network verification.

In addition to discovering potential issues with using MILP solvers in verification,

the usability of interval arithmetic is also discussed. The findings uncover a limita-

tion of interval arithmetic, that affects reliability of verifiers, and which the verifier

implementations consistently ignore.

Potential ways to improve robustness of MILP models in verification is discussed.

The main focus is on countering numeric issues that can affect the calculation of an

optimum point, and issues that can lead to numerically unstable models by affecting

constraints. Heuristics are introduced that can render MILP models more robust

against numeric errors.

A simple and widely applicable improvement was found in verification of ReLU

networks using MILP models. By better utilization of the available information, a

significant reduction in MILP model solves is achieved, without compromising reli-

ability. In verification the majority of computing power is used by the MILP model

solves, the speedup is therefore significant.

In conclusion, verification of neural networks is still not a solved problem. Reli-

able solvers can only handle very small networks, while verifiers claiming to tackle

larger networks have serious flaws that prevent reliable verification. As MILP sol-

vers are unlikely to improve in their sensitivity to numeric issues, other approaches

are needed to speed up reliable verification, or harden fast and currently unreliable

verifiers against exploits.



Összefoglalás

Az optimalizálási feladatok sokrétűek. Ahogy az előző fejezetekben láttuk, az op-

timalizáló algoritmus és az optimalizált probléma közötti bonyolult kölcsönhatások

problémákhoz vezethetnek. A függvénykiértékelések kiugróan magas száma és a ki-

használatlan processzorszálak ilyen problémákra utalnak. Attól függően, hogy egy

potenciális megoldásnak milyen követelményeket kell teljesítenie, számos kihívás

adódhat. Az optimális megoldásban megtűrt hiba mértéke és a rendelkezésre álló

számítási teljesítmény behatárolja a felhasználható optimalizáló algoritmusokat.

Disszertációmban tárgyaltam egy globális optimalizáló többszálas implementáció-

ját, ahol legfőbb kihívásként az algoritmus teljesítmény és hatékonyság közötti egy-

ensúly, valamint a többszálas algoritmus és a célfüggvény közötti kölcsönhatás jelent

meg. A vegyes egészértékű lineáris optimalizálókon alapuló neuronháló verifikálás

témakörben tárgyaltam az optimalizált modell és a valós rendszer közötti különb-

ségek problémáját, valamint az optimálisnak gondolt megoldások megbízhatóságát.

Az intervallum aritmetika felhasználásával kapcsolatban is történt egy kitekintés.

Párhuzamos globális optimalizálás

A Global algoritmus a sztohasztikus multi-start optimalizálók kutatásából származik.

Mivel egy hatékony algoritmusról van szó, ami az ismeretlen célfüggvények optima-

lizálásához nem igényli a derivált függvény meglétét, az utóbbi években is születtek

eredmények az algoritmussal kapcsolatban. Hogy a Global könnyebben fejleszthető

és felhasználható legyen, egy olyan optimalizáló toolbox lett létrehozva, ami konfi-

gurálható komponensekből építi fel az algoritmust. A könnyű újra-felhasználhatóság

lehetővé tette a konkrét optimalizálási feladatokra szabott algoritmus létrehozását.

A toolbox és a Global algoritmus továbbfejlesztésére a többszálas számítási környe-

zet kihasználásában nyílt lehetőség. Egy többszálas Global verzió megalkotása nem

triviális feladat, eredménye a disszertációban bemutatott kutatás.
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A 2. fejezet a többszálas Global algoritmus megalkotására három megközelítést

tárgyal, amik alkalmazhatók más, hasonló felépítésű optimalizálóknál.

A SynchronizedGlobal verzió az eredeti Global algoritmushoz nagyon hasonló,

egy szálon futtatva a kettő megegyezik. A SynchronizedGlobal algoritmus többszálas

futtatás esetén igyekszik megőrizni a Global lehető legtöbb tulajdonságát. A teljesít-

mény növeléséért a processzorszálak legnagyobb kihasználtságára törekszik, azon-

ban a célfüggvény kiértékelések számának csökkentése prioritást élvez. Ha ez a két

hatás konfliktusban áll, utóbbit részesíti előnyben.

A ParallelGlobal többszálas verzió a processzorszálak legnagyobb kihasználtságát

részesíti előnyben, miközben az egyszálas algoritmus verzió hatékonyságot növelő

megoldásait is igyekszik integrálni. Ahelyett hogy a szálak egymásra várakoznának,

a pillanatnyilag elérhető információk alapján hoznak döntést.

A teljesen elosztott rendszeren futtatható Global ötletét a DistributedGlobal algo-

ritmus írja le, lehetővé téve a Global algoritmus szálak gyengén összefüggő rendszer-

eken történő futtatását. Amennyiben egy számítógép nem rendelkezik elég számítási

kapacitással egy optimalizálási feladat kivárható elvégzéséhez, a számítások több,

hálózatba kötött számítógépen is elvégezhetők. Ilyen hálózatokban a kommuniká-

cióra szánt idő könnyű célfüggvényeken meghaladhatja a célfüggvény kiértékelés-

ekre szánt időt, ezért a kiértékelések delegálása nem feltétlenül hatékony. Ehelyett

a szálak között laza a kapcsolat, külön számítógépeken futnak. A szálak közötti

kommunikációt elosztott információmegosztó algoritmusok végzik, az optimalizáló

szálak akadályozása nélkül. Az elosztott információmegosztó algoritmusok miatt a

DistributedGlobal-nak nincs szüksége központi szerverre.

Az többszálas algoritmus tesztek vizsgálták az optimalizáláshoz szükséges idő vál-

tozását, az algoritmus teljesítményének növekedését és az algoritmus hatékonyságát

az egyszálas teljesítményhez képest.

A SynchronizedGlobal algoritmuson futtatott tesztek megmutatták, hogy az ké-

pes hatékonyan csökkenteni a szükséges futási időt. Amennyiben a szálakra megfe-

lelő méretű feladat jut, a többszálas algoritmus növeli a teljesítményt, miközben túl

kis részproblémák az egyszálas verzióhoz képest is rosszabb eredményt érhetnek el.

A SynchronizedGlobal algoritmus növeli a szükséges függvénykiértékelések számát,

ennek ellenére nagyobb számításigényű célfüggvényeken a teljesítmény növekedése

csökkentett futásidőt eredményez.

A ParallelGlobal algoritmuson végzett tesztek nagyobb változatosságot mutat-

tak. Miközben az algoritmusnak kedvező célfüggvények kiértékelése gyors és ha-
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tékony, néhány célfüggvény jelentős problémát okoz. Az algoritmus hatékonysága

célfüggvénytől függően csökkent, 0% és 1500% közötti növekedést okozva a kiérté-

kelések számában, ami jelentősen növelte a futási időt is. Néhány célfüggvényen még

a legnagyobb számítási igény esetén is az eredeti Global verzió volt gyorsabb.

Levonható konklúzió, hogy a multi-start optimalizálók többszálas implementá-

ciója kivitelezhető és hasznos algoritmusokat eredményez. Az optimalizálók érzéke-

nyek a célfüggvény tulajdonságaira, többszálas algoritmusok esetén ez az érzékeny-

ség még erősebben fennáll. Bizonyos problémák esetén a többszálas algoritmusok

képesek növelni a hasznos teljesítményt, más problémákon még az egyszálas ver-

ziónál is rosszabb eredményt érnek el.

Problémák és megoldások a neurális hálók verifikáció-

jában

A neurális hálók sokrétű eszközök bonyolult problémák megoldására, amik inkább

zavaros mint egyértelmű követelményrendszerrel rendelkeznek. A nagy modellek

elérhetetlen távolságban vannak verifikáció szempontjából, azonban a kis és közepes

modellek az értelmes számítási kapacitás határán vannak. Ezek a modellek képe-

sek egy behatárolt feladat elvégzésére, mint a karakterfelismerés, vagy az ütközés-

elkerülési vezérlés. Mivel ezek a neurális hálók nagyobb rendszerek építőelemeiként

funkcionálnak, fontos hogy a megbízhatóságuk ellenőrizhető legyen. A közelmúltban

számos verifikáló algoritmus született az ilyen hálók helyességének ellenőrzésére.

Mint kiderült, ezek az algoritmusok két csoportra oszthatók. A direkt algoritmusok,

amik potenciálisan megbízhatóak, de nincs elég teljesítményük 1000 neuronból álló

hálózatok ellenőrzésére sem, valamint a vegyes egészértékű lineáris modelleken ala-

puló algoritmusok, amik nagy teljesítményű, azonban nem megbízható algoritmusok.

Közismert tény, hogy a numerikus módszerek alkalmazásánal a numerikus hibák

elkerülhetetlenek, a vegyes egészértékű megoldók szintén kitettek a problémának.

Emiatt direktben egy megoldó által szolgáltatott eredményre alapozva eldönteni az

adverzális halmaz elérhetőségét veszélyes.

A 3. fejezet a vegyes egészértékű (MILP) modelleken alapuló MIPVerify algorit-

must részletesen vizsgálja, hogy az említett támadási felületek kihasználására egy

mintapéldát adjon. Az algoritmus implementációjában a numerikus problémák nem

megfelelő kezelésére derült fény, ami befolyásolja a neurális háló modellezését és

az elérhető kimeneti halmaz helyességét. Egy sebezhetőség kerül bemutatásra a
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MIPVerify+Gurobi verifikálón, amit kihasználva egy támadó elkerülheti a beépített

hátsó ajtók felfedezését, miközben az adverzális altérben a neurális háló kimenetét

szabadon megválaszthatja. A sebezhetőség más – akár több – verifikáló és MILP meg-

oldó kombinációra is hangolható. Bemutatásra kerül egy két részből álló neuronháló,

ami az MNIST adathalmazon végez osztályozást és rendelkezik egy beépített hátsó

ajtóval. Tesztekkel igazoltuk, hogy a MIPVerify nem veszi észre a hátsó ajtót és hibá-

san ugyanazt a választ adja mint a hátsó ajtóval nem rendelkező neuronháló esetén.

A sebezhetőség javítására egy védekezés is bemutatásra kerül, ami könnyen alkal-

mazható, minimális számításigényű és képes megzavarni az egymással tökéletesen

megegyező számpáron alapuló támadásokat. A neuronhálók viselkedésében fellépő

klasszikus problémákkal szemben azonban nem alkalmazható.

A MILP megoldók verifikációban történő problémás felhasználásán túl az inter-

vallum aritmetika alkalmazhatóságával kapcsolatban is kérdések merültek fel. Az

eredmények egy fontos korlátozást mutatnak, ami befolyásolja a verifikálók megbíz-

hatóságát és amit a vizsgált verifikálók rendre megszegnek.

A MILP megoldók megbízhatóságának javítására több lehetőség is felmerült. Főbb

pontok a numerikus problémák kezelése a MILP optimum kiszámításánál és a nume-

rikus problémák miatt instabil modellekhez vezető MILP korlátok javítása. A felme-

rült problémák enyhítésére heurisztikus algoritmusok lettek javasolva.

Egy egyszerű, széles körben alkalmazható algoritmus fejlesztést is bemutatunk,

ami a ReLU hálózatok MILP modellen alapuló verifikációjában jelent előrelépést.

A rendelkezésre álló információ hatékonyabb kihasználásával a MILP modell meg-

oldások számában sikerült jelentős csökkenést elérni, a megbízhatóságot nem csök-

kentve. Mivel a verifikáció számítási igényének túlnyomó részét a MILP megoldások

adják, a sebességnövekedés szignifikáns.

Levonható konklúzió, hogy a neurális hálók verifikációja nem megoldott prob-

léma. A megbízható verifikálók csak kis méretű neuronhálókat képesek kezelni, mi-

közben a nagyobb hálók kezelésére is alkalmas verifikálók jelentős sebezhetőségekkel

rendelkeznek, így az általuk adott válaszok nem megbízhatóak. Mivel a MILP meg-

oldók nem várható hogy jelentős javulást érnek el a numerikus hibák elleni küzde-

lemben, más megközelítés szükséges hogy felgyorsítsuk a megbízható verifikálókat,

vagy megbízhatóbbá tegyük a gyors, de nem megbízható verifikálókat.
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