
Enhancements of Automated Test
Case Reduction

Summary of the Ph.D. Dissertation

by

Dániel Vince

Supervisor:
Dr. Ákos Kiss

Doctoral School of Informatics

Department of Software Engineering

Faculty of Science and Informatics

University of Szeged

Szeged
2024

Introduction

Our modern lives are driven by software. It has become so obvious that we often do not even
notice the programs around us; they collect and process data and then tell us to get up and
walk around for a few minutes during our long office hours. In an ideal world, the software
is perfect, the business logic fully covers the customer’s expectations and produces the right
output for every possible combination of inputs so it “cannot be fooled”.

Unfortunately, we do not live in an ideal world. We also know from Murphy’s Law that
if something can go wrong, it will. Most likely at the worst possible time. And then, we
will notice – or worse, remember – the software, and its failure. In the world of software
development, this can set off a chain of events that ends with an engineer being given the
noble task of fixing the bug.

The first challenge on this not-so-easy path is to find the relevant part of the input that
is responsible for the error. If that input is “large” (or noisy), then this activity can consume
valuable human time. Although it is possible to perform this task manually, we should
automate it, at least to increase our own productivity. Consider a safety-critical project that
is continuously tested by a random test case generator every single hour of the day, and
then, automatically reports the bugs it finds. In such a case, it is really expensive to spend
engineering time searching for the minimal replication package.

To reduce the cost, the discipline of automatic test case reduction researches algorithms
that can reduce any kind of input to a smaller, some kind of “minimal” form, while main-
taining a well-defined condition. The most well-known of these algorithms are minimizing
Delta Debugging (DDMIN) and Hierarchical Delta Debugging (HDD), which are discussed in
detail in this study. Several functional and non-functional properties and their improvements
are detailed in the following booklet. Some of them result in smaller output, while others
aim to reduce the memory footprint or the time required by the process.
The author identifies four main findings, which are listed below:

1. Cache Optimizations: Defined, implemented, and evaluated three cache optimiza-
tions for automatic test case reduction algorithms,

2. Iterating the Minimizing Delta Debugging Algorithm: Defined, implemented,
and evaluated the fixed-point iteration of DDMIN that achieves smaller outputs,

3. Parallel Optimizations of DDMIN*: Defined, implemented, and evaluated a new
parallel variant of the DDMIN algorithm that can perform reduction faster than before,

4. Extending Hierarchical Delta Debugging with Hoisting: Defined, implemented,
and evaluated the transformation-based minimization framework for hierarchical reduc-
tion, and an example transformation, the Hoisting.

1

1 Cache Optimizations

The main purpose of using cache memory in test case reduction algorithms is to avoid running
the same test multiple times as the algorithm tries different configuration combinations.
On the other hand, the reduction should somehow be completed, even if we run out of
resources (RAM). Several techniques are available for cache replacement, the most widespread
algorithms for it are Least Frequently Used (LFU), Most Frequently Used (MFU), and Least
Recently Used (LRU), however, these classic techniques do not make use of the knowledge
of the underlying algorithms, and evict elements from the cache that might be needed later.
Therefore, the caching solutions of minimizing Delta Debugging (DDMIN) and Hierarchical
Delta Debugging (HDD) were investigated, and based on the preliminary research, the
“content-based” technique was chosen to work on, as it performed best with both algorithms.

The basic concept of DDMIN is that when it finds a failing configuration that results in
a serialized test case of size n, it starts a new iteration with that to reduce it further. After
that, configurations that result in test cases larger than n would not be tested, since the new
iteration splits that configuration into smaller fragments. This observation can be written
as follows, using the notation introduced in the publication of DDMIN [12]:

cx, cy ⊆ c✗

∥.∥ : size of the serialized configuration

∃cx : test(cx) → ✗ found

∀cy : ∥cy∥ > ∥cx∥ : out of search space

(1)

It is known that after a failing configuration is found, its subsets would be reduced further
via DDMIN, so theoretically, there is no chance of getting a failing outcome back from the
cache. Suppose we have a configuration of size n, and before testing it, a cache lookup is
performed. The cache may contain smaller entries, however, if a smaller entry (m < n)
would be in the cache with a failing outcome, then the current state could not have occurred,
since DDMIN would have split that m-sized entry into even smaller chunks. Therefore,
when a cache hit occurs, we can be sure that it was the result of a passing test. Thus, the
first proposal, as shown in (2), is to add only passing tests to the cache which may reduce
the memory footprint of the minimization algorithm. Furthermore, cache lookups might
be quicker since the queries are performed in a smaller search space. The insert to cache
function inserts an element into the cache, while serialize performs the serialization of test
cases as discussed in [3].

cx ⊆ c✗

when ∃cx : test(cx) → ✓ found

insert to cache (serialize(cx))

(2)

Another benefit of (1) is that when a failing test case is found, we can be sure that no
cache entry corresponding to test cases larger than the currently found one will be queried
during the remaining reduction process. Therefore, when a new failing test case is found,
the entries that store the result of test cases larger than the currently investigated one can
be evicted from the cache, as shown in (3). This eviction process will be referred to as the
second proposal. The delete from cache function implements the removal of an item from the
cache.

2

cx, cy ⊆ c✗

when ∃cx : test(cx) → ✗ found

∀cy : serialize(cy) ∈ cache ∧ ∥cy∥ > ∥cx∥ :
delete from cache (serialize(cy))

(3)

If the above-described proposals are applied, the cache will only contain passing tests
and will be cleared after each successful reduction step. However, the lengths of the cached
entries will vary, i.e., they will be larger at the beginning of the reduction (proportional to
the size of the initial failing test case) and will become smaller as the process progresses
towards the 1-minimum. The third proposal is the following: the cache should not store the
serialized contents of the configurations, but their transformed form as shown in (4).

cx ⊆ c✗,M : M ∈ N
transform(cx) : 2

N 7→ 2M bijection

when ∃cx : test(cx) → ✓ found

insert to cache (transform(serialize(cx)))

(4)

The proposal is functional only if the transformation is bijective, i.e., each test case has its
own transformed form, each transformed element corresponds to exactly one test case, and
unpaired elements are forbidden. From a practical point of view, the bijection is not possible,
since an infinite set would have to be mapped to a finite one. Therefore, a sufficiently large
M and a suitable transform function must be chosen to minimize the possibility of cache key
collisions, e.g., a SHA-3-256 cryptographic hash function1. On the other hand, if the chosen
M is too large, the desired positive effect on memory usage is lost.

Results: With the optimizations combined, DDMIN requires 96% and HDD requires 85%
less memory than the baseline implementation. In support of the scalability issue, the size
of the input affected the results: the average improvement was 63% for smaller tests, while
it was 99% for larger inputs. Furthermore, as a side effect, the reduction becomes faster by
10% with DDMIN. In our experiments, the result of the reductions did not change after the
optimizations.

2 Iterating the Minimizing Delta Debugging Algorithm

Minimizing Delta Debugging is already more than twenty years old and still widely used
because it works on any kind of input. Many approaches have tried to work smarter since
DDMIN first appeared, but they typically needed some extra information about the structure
of the test case, usually a grammar. This additional requirement can act as a blocker for
some users of test case reducers: a grammar may not be readily available, and writing (or
maintaining) one may not be a practical option. In such cases, the structure-unaware nature
of DDMIN is proven to be very useful.

The program in Figure 1 is a variant of a classic example of program slicing [5]. It
computes both the sum and the product of the first ten natural numbers in a single loop.

1https://csrc.nist.gov/projects/hash-functions/sha-3-project

3

Using slicing terminology, we can say that we want to compute the (so-called static backward)
slice of this program with respect to the criterion (19, prod), thus creating a sub-program
that does not contain statements that do not contribute to the value of prod at line 19.

int add(int a, int b)

{

return a + b;

}

int mul(int a, int b)

{

return a * b;

}

void main()

{

int sum = 0;

int prod = 1;

for (int i = 1; i <= 10; i++)

{

sum = add(sum , i);

prod = mul(prod , i);

}

printf("sum: %d\n", sum);

printf("prod: %d\n", prod);

}

Figure 1: Example C program that computes the sum and product of the first ten natural
numbers, and the execution of DDMIN on it while keeping 10! on the output.

This can be computed either by analyzing the control and data dependencies of the
program – which is the classic slicing way – or by following the approach of observation-
based slicing [1] that performs a systematic removal of code parts based on trial and error,
similar to what DDMIN does on its input. In fact, even DDMIN can be applied to such tasks.
The two things to keep in mind are that in such reduction scenarios, the inputs or test cases
are also programs, and the interesting properties to preserve are not program failures (but
it is still an ✗ that represents that the property is kept). Thus, we reformulate the classic
slicing example as a test case minimization task, where the program in Figure 1 is the input
(the lines are the units) and the testing function is given as

test(c) =

✓ if c is syntactically incorrect

✓ else if execution of c does not terminate

✓ else if execution of c does not print prod: 3628800

✗ otherwise.

The gray bars to the right of the program code show the progress of DDMIN from left to
right. Each set of vertically aligned bars corresponds to a configuration of the algorithm and
shows how that configuration is split into subsets. This example shows that DDMIN could
“slice away” the lines of the main function that did not contribute to the calculation of prod.
However, the algorithm could not remove the add function, because when the configuration
no longer contained a call to it (at line 15), the granularity had already reached the line (i.e.,
unit) level. But add could only be removed as a whole, not line by line, as removing any

4

int add(int a, int b)

{

return a + b;

}

int mul(int a, int b)

{

return a * b;

}

void main()

{

int prod = 1;

for (int i = 1; i <= 10; i++)

{

prod = mul(prod , i);

}

printf("prod: %d\n", prod);

}

Figure 2: The output of DDMIN on the program of Figure 1, and the re-execution of
DDMIN.

single line would cause syntax errors. (This is one of the shortcomings of DDMIN that the
grammar-based reducers wanted to fix.) So, DDMIN has produced a 1-minimal result (shown
in Figure 2), but it is clearly not a global minimum. What we can realize when looking
at this result is that we could run DDMIN again on this program with the same testing
function as the first time, and we might be able to remove the superfluous add function as
well. Again, the gray bars to the right of the program code show the progress of DDMIN,
and indeed, the subsets of the second configuration aligned well with the structure of this
input and allowed for further reduction. The result of the second execution of DDMIN is
shown in Figure 3. This is the global optimum for this example, so further executions of
DDMIN are not visualized.

int mul(int a, int b)

{

return a * b;

}

void main()

{

int prod = 1;

for (int i = 1; i <= 10; i++)

{

prod = mul(prod , i);

}

printf("prod: %d\n", prod);

}

Figure 3: The output of DDMIN on the program of Figure 2.

Motivated by this example, we can formalize the intuition that DDMIN could be executed
multiple times. Since it is not known a priori how many executions are needed for a given
input, we propose to iterate DDMIN until a fixed point is reached. We will denote the
fixed-point iteration of DDMIN as DDMIN* – following the notation used for HDD and

5

HDD* [4] – and define it as follows:

ddmin∗(c✗) =

{
c′✗ if c✗ = c′✗
ddmin∗(c′✗) otherwise

where c′✗ = ddmin(c✗).

Although the asterisk notation is the same for both algorithms and even its meaning is
identical in both cases (i.e., fixed-point iteration), its purpose is fundamentally different for
HDD and DDMIN. A single execution of HDD has no minimality guarantees, only HDD*
produces 1-tree-minimal results. However, even a single execution of DDMIN is guaranteed
to give a 1-minimal result. The purpose of further iterations is to find an even better 1-
minimum. (Re-executing DDMIN does not guarantee better results in all cases, only if the
configuration aligns well with the structure of the input.)

Results: First, the reduction of test cases was performed with character level granularity
on a smaller test suite, the output became smaller by 68% on average. Then, the reduction
was performed with line granularity, and the experiments show that DDMIN* can produce
48% smaller outputs on average (69% on a larger test suite and 19% on a smaller one).
The price of this improvement is an increase in the number of steps, which was 66% on
average. A “combined” two-pass reduction was then performed, where test cases were first
reduced with line granularity, and then these intermediate results were reduced further with
character granularity as fine-tuning. DDMIN* outperformed DDMIN even with this setting,
and was able to further reduce inputs by an average of 46%. Surprisingly, some inputs
could be reduced faster with DDMIN*, as the line-level reduction produces results in a
reasonable number of steps, and then the character-level reduction can work further from
this smaller input configuration. Encouraged by the promising results, we compared the
output of DDMIN* with the output of HDD*, to see whether a structure-unaware algorithm
could compete with a “more clever” one. In terms of required testing steps, the answer is
simply no; however, in terms of size, DDMIN* brought the results much closer, from 9 times
larger outputs (DDMIN) to only 3 times larger ones.

3 Parallel Optimizations of DDMIN*

We have investigated whether it would be possible to make DDMIN itself work faster without
compromising its minimality guarantees. One technique that has already been proven useful
for speeding up DDMIN is parallelization [2]. The question we sought the answer to was
whether it was possible to make the parallel DDMIN even faster without losing the 1-minimal
property of its output.

Hodován et al. [2] noticed that the original implementation of DDMIN used sequential
loops to realize the “reduce to subset” and “reduce to complement” phases, however, the
potential for parallelization is present in the formalization of DDMIN. Since the size of the
initial configuration can be large for real inputs (and testing a configuration is considered
to be an expensive part of the algorithm), they rewrote DDMIN to use parallel loops. As
testing different configurations is independent, their proposal worked well in practice and
achieved 75-80% less runtime in their experiments. Figure 4a shows how sequential loops

6

test(∆1) test(∆2) test(∆4) test(∆3) test(∆5)
start finish

(a)

test(∆1)

test(∆2)

test(∆3)

test(∆4)

test(∆5)

start finish

(b)

Figure 4: (a) Sequential execution of “reduce to subset”. (b) Parallel execution of “reduce
to subset”.

iterate through five configurations: if we assume that each test takes the same amount of
time t, then checking all of them takes 5t. However, if the loops are implemented in a
parallel way, as shown in Figure 4b, checking the configurations takes only t, which might
bring a significant speedup in reduction. For the formal definition of their parallel DDMIN
formulation, the reader is referred to [2]. Three assumptions were made regarding correctness
and effectiveness, of which the following is relevant to this study: When a fail is found in a
parallel loop, the other active loop bodies should be aborted even if their computation has
not finished yet. This might cause computation results to be thrown away, but it does not
violate the minimality guarantees of the algorithm.

Let j be the parallelization capabilities of the algorithm, i.e., how many test(∆i) or
test(∇i) jobs can be started concurrently (five was used in Figure 4). Let T be the testing
window (|T | = j), i.e., j tests are executed and j results (✓, ✗, or ?) are produced. Let F
denote the set of configurations with a fail outcome in T ; if |F | > 1 then the behavior of
parallel DDMIN [2] becomes unstable: it will choose among the interesting configurations
based on which produced its fail outcome first. Therefore, different test reductions can
yield different outcomes, which is not appropriate for carrying out reproducible experiments.
(Note that the 1-minimality of the algorithm is not harmed, since multiple local minima
might exist.)

The “reduce to subset” and “reduce to complement” phases iterate through configura-
tions in a forward or backward syntactic order; it is known which configuration should be
investigated first. To stabilize the algorithm, the following changes must be made: if a fail
is found in T , then no new parallel loop bodies are started (no change), and the active test
executions should be awaited (i.e., computation results are not thrown away). If multiple
fails are found, the syntactic order must be taken into account when choosing which one to
reduce further.

When multiple fails are found in T and the algorithm chooses one of them based on the
iterator, the results from other configurations are discarded, even if they could have been
useful. This results in unnecessary test executions on configurations that have already been
tested (and failed). The following strategy can help minimize the number of test executions:

7

greeDDy(c′✗) = greeDDy2(c
′
✗, 2) where

greeDDy2(c
′
✗, n) =

greeDDy2(
⋂
i∈F

Ci,max(n− |F |, 2)) if |F | > 1 ∧ test(
⋂
i∈F

Ci) = ✗ (”reduce greedily”)

greeDDy2(Ci, 2) else if ∃i ∈ F · Ci ∈ {∆1, ...,∆n} (”reduce to subset”)

greeDDy2(Ci,max(n− 1, 2)) else if ∃i ∈ F · Ci ∈ {∇1, ...,∇n} (”reduce to complement”)

greeDDy2(c
′
✗,min(|c′✗|, 2n)) else if n < |c′✗| (”increase granularity”)

c′✗ otherwise (”done”).

where C is a sequence of C, such that {∇1, ...,∇n} ⊆ C ⊆ {∆1, ...,∆n,∇1, ...,∇n},
∇i = c′✗ −∆i, c

′
✗ = ∆1 ∪∆2 ∪ . . . ∪∆n, all ∆i are pairwise disjoint, and ∀∆i · |∆i| ≈ |c′✗|/n holds.

F is a set of indices over C such that ∀i ∈ F · test(C) = ✗ and F = ∅ ⇐⇒ ∄Ci · test(Ci) = ✗.

Figure 5: GreeDDy: the greedy extension of minimizing Delta Debugging.

If a testing window has multiple fails, then it is worth trying to combine the configurations
that yielded them and check whether those combinations also result in a fail. If yes, several
test executions are saved in one step. If no, then select the first fail (based on the syntactic
order) and try to combine the other interesting configurations one by one. In this case, test
steps can also be saved since only configurations with a fail outcome are retested in the next
parallel loop iteration, instead of the whole testing window. Figure 5 formalizes our proposed
optimization using the notations discussed earlier.

Results: The modified parallel DDMIN – called GreeDDy – is presented, evaluated on a
subset of a publicly available dataset and found that GreeDDy* could save 31% of the testing
steps of DDMIN* which resulted in 40% less runtime.

4 Extending Hierarchical Delta Debugging with Hoist-

ing

Although HDD and its variants perform better on structured inputs than DDMIN, there
is still room for improvement. Several improvements have already been proposed, often by
preprocessing the tree representation that HDD is working on, e.g., by hiding some tokens
from HDD to reduce the number of nodes that have to be considered, by collapsing multiple
nodes into one for the same reason, or by rotating recursive structures of the tree to reduce
its height. However, these transformations do not change the core structure of the tree, i.e.,
the test case serialized from the preprocessed tree will still be the same as the original input.
Because of this, and because of the way HDD variants work, an HDD-reduced test case
(even if it is 1-tree-minimal) may contain structural elements that a human expert would
still remove.

A simple example of this suboptimal structure-preserving behavior is shown in Figure 6.
The C program in Figure 6a prints the classic “Hello world!” message, and the printing is
wrapped in an if statement where the predicate always evaluates to true. If we take this
program as a test case and define the printing of the “Hello world!” message as interesting,
then we can try and minimize it. (This is an example where the interesting property of
the test case is not a program failure.) Figure 6b shows the parse tree of the program,
generated by a parser using a context-free grammar of the C programming language and

8

preprocessed for compactness (most notably, squeezing and recursion flattening have been
applied). Unfortunately, none of the HDD-based algorithms can reduce this test case further
as removing any of the nodes would either yield a syntactically incorrect test case or one
that does not print the message, making it uninteresting.

There are recurring structures in the parse tree, subtrees rooted at nodes with identical
labels, denoting the derivation of the same non-terminal of the grammar. The assumption
of hoisting is that one such subtree can be replaced by another without losing syntactic
correctness, and that subtrees whose roots are in an ancestor-descendant relationship are
good candidates for reduction. In the tree in Figure 6b, there is a pair of such subtrees, those
rooted at nodes labeled as compoundStatement. Figure 7a shows a transformed tree where
the descendant subtree is hoisted to replace all the structures that enclosed it. When this
tree is serialized in the form of a C program (see Figure 7b), it becomes apparent that this
transformation was indeed useful in this case and we have a smaller but still interesting test
case. The testing function must confirm (or reject) whether such a transformation keeps the

int main() {

if (1) {

printf("Hello world!\n");

}

}

(a) A “Hello World” program in C.

*

externalDeclaration

functionDefinition

typeSpecifier

’int’

directDeclarator

Identifier
’main’

*

’(’ ’)’

compoundStatement

’{’ selectionStatement

’if’ ’(’ primaryExpression

Constant
’1’

’)’ statement

compoundStatement

’{’ *

expressionStatement

postfixExpression

Identifier
’printf’

*

’(’ StringLiteral
’\Hello world!\n"’

’)’

’;’

’}’

’}’

(b) Parse tree of the “Hello World” program.

Figure 6: An overly complicated “Hello World” program in C and its parse tree.

9

resulting test case interesting.
To formalize the ideas motivated and described above, the notations and terminology of

DDMIN have been extended to introduce transformation-based minimization. In the context
of DDMIN, a test case is always composed of a subset containing elements of the initial
configuration. The testing function is also defined only for the subsets of c✗. However, the
outcome of a program composed of a set of elements must be determined, even if some of
them are not part of the initial configuration. In the case of hoisting, when an element (a
node) is replaced by another element (another node further down the hierarchy), which is
part of the tree, but is not a member of the initial set. Therefore, the definitions of DDMIN
are generalized as follows.

Let D denote the set of all potential test case elements, and let δ ∈ D denote an element of
this set, i.e., a test case element. A test case or configuration is denoted by c ⊆ D. A testing
function test : 2D → {✗,✓, ?} shall determine for any test case whether it produces the
failure in question. The initial failing configuration is denoted by c✗ = {δ1, . . . , δn} ⊆ D, and
test(c✗) = ✗ holds. Since c✗ is a subset of a potentially larger set D, we allow transformations
that can not only remove but also replace elements in the configuration. The following
definitions and notations are used for transformations:

A function t : D → D is a transformation of test case elements, and the identity
transformation is idD : D → D; δ 7→ δ. The application of a transformation to configurations

*

externalDeclaration

functionDefinition

typeSpecifier

’int’

directDeclarator

Identifier
’main’

*

’(’ ’)’

compoundStatement

’{’ *

expressionStatement

postfixExpression

Identifier
’printf’

*

’(’ StringLiteral
’\Hello world!\n"’

’)’

’;’

’}’

(a) Parse tree minimized with hoisting applied to keep printing
the “Hello world!” message.

int main() {

printf("Hello world!\n");

}

(b) The C program serialized from the
minimized tree.

Figure 7: Motivational Example for Hoisting.

10

Let D denote the set of all potential test case elements, and let δ ∈ D denote one element of that set.
Let test and c✗ = {δ1, . . . , δn} ⊆ D, and test(c✗) = ✗ holds.
Let τ and ∥ · ∥ be given such that ∀δ ∈ D · ∀δ′ ∈ τ(δ) · ∥δ′∥ < ∥δ∥ holds.
The goal is to find t✗ = tminτ (c✗) such that test(t̄✗(c✗)) = ✗ and t✗ is 1-maximal.
The transformation-based minimizing algorithm tminτ (c) is

tminτ (c✗) = tminτ
2 (c✗, idD) where

tminτ
2 (c✗, t

′
✗) =

{
tminτ

2 (c✗, t
′
✗[δ 7→ δ′]) if ∃δ ∈ c✗ · ∃δ′ ∈ τ(t′✗(δ)) · test(t̄′✗[δ 7→ δ′](c✗)) = ✗

t′✗ otherwise.

The recursion invariant (and thus precondition) for tminτ
2 is test(t̄′✗(c✗)) = ✗.

Figure 8: The Transformation-based Minimizing Algorithm.

is defined as t̄ : 2D → 2D; c 7→ {t(δ) : δ ∈ c} (e.g., idD(c✗) = c✗).
And a transformation that is derived from another transformation by changing the

mapping of one test case element is defined as

t[δ′ 7→ δ′′] : D → D; δ 7→

{
δ′′ if δ = δ′

t(δ) otherwise.

The transformations that could be applied were quite straightforward in the presented
example. There was only one compoundStatement that could potentially replace its parent.
In a general case, a test case element may have multiple replacement candidates (or none
at all). This is formalized by a function τ : D → 2D that maps test case elements to their
transformed candidates.

Finally, since test cases are not necessarily subsets of the initial failing configuration,
minimality can no longer be defined in terms of the subset relation. Thus, a ∥ · ∥ measure is
expected to exist on the set D. If all transformation candidates in τ potentially reduce the
size of a configuration according to the measure ∥ · ∥, i.e., ∀δ ∈ D · ∀δ′ ∈ τ(δ) · ∥δ′∥ < ∥δ∥
holds, then in order to minimize the test case, the replacements applied to the elements
of the initial configuration must be maximized (even transitively) while ensuring that the
so-transformed test case remains interesting. Just as it is true for DDMIN that searching
for the global optimum is impractical, it is also true for transformation-based minimization.
Therefore, the goal is to find a local optimum, a 1-maximal transformation t✗ such that
∀δ ∈ c✗ · ∀δ′ ∈ τ(t✗(δ)) · test(t̄✗[δ 7→ δ′](c✗)) ̸= ✗ holds.

Figure 8 formalizes the transformation-based minimizing algorithm TMINτ , worded in
the likeness of DDMIN.

The transformation-based minimization algorithm provides a framework for formulating
hoisting as a transformation of tree nodes. More precisely, those nodes in the tree repre-
sentation of the input that can act as replacement candidates for their ancestors must be
defined. The formula in Figure 9, χ(n), is one possible way to define these candidates, i.e.,
the hoistable descendants of a node n. χ(n) is given in terms of two auxiliary functions, of
which children(n) is trivial, giving the direct descendants of a node, whereas compatible(n, n′)
leaves some space for interpretation. In an extreme case, any two nodes could be considered
compatible, but that would rarely be useful. If the tree representation of the input is built
using a context-free grammar, then a natural interpretation is to regard identically labeled
nodes (i.e., subtrees of derivations of the same non-terminal of the grammar) as compatible.

11

χ(n) =
⋃

n′∈children(n)

χ′(n, n′)

χ′(n, n′) =

{n′} if compatible(n, n′)⋃
n′′∈children(n′)

χ′(n, n′′) otherwise

Figure 9: χ(n), the potentially hoistable descendants of node n.

A basic measure for nodes of a tree is based on the size of their subtrees, i.e., the
number assigned by the measure to a node n equals the number of nodes in the subtree of
n. It is obvious that all transformation candidates returned by χ(n) reduce the size of the
configuration according to this measure, as expected by the definition of TMIN.

Now, with the help of TMINχ, a hierarchical algorithm called Hoist can be introduced,
which works its way through the tree from the root to the leaves, using TMINχ to find the
hoisting transformations at each level. Candidates found by TMINχ are prioritized by their
distance to the ancestor, with further nodes getting higher priority. The pseudocode of the
algorithm is shown in Figure 10a. The structure of Hoist is similar to HDD: both contain a
loop to iterate through the levels of a tree and inside the loop, both perform a minimization
step (TMINχ vs. DDMIN) and the application of its result to the tree (via the transform
and prune auxiliary functions).

Hoist can achieve reduction on its own, although it is expected to work best if used in
combination with HDD, e.g., by using Hoist as a preprocessing step. However, inspired by the
similarities between the variants of these two algorithms, they can be combined as well. E.g.,
the bodies of the loops can be interlaced, performing both the DDMIN and TMINχ-based
minimization at each iteration. One way to formulate this idea is shown in Figure 11, where
HDD and Hoist are interlaced in the algorithm named HDDH.

Because of the similarities between HDD variants and the Hoist algorithm, a recursive, a
coarse, and a coarse recursive variant of the hoisting algorithm can be defined. These are given
in Figures 10b, 10c, and 10d, and are named Hoistr, Coarse Hoist, and Coarse Hoistr, respec-
tively. Similarly, we can create new combined algorithms from HDDr, and Hoistr (HDDHr),
from Coarse HDD, and Coarse Hoist (Coarse HDDH), and from HDDr and Coarse Hoist
(Coarse HDDHr). These combinations are trivial following the example of HDDH, therefore,
they are not shown to avoid unnecessary repetition.

Results: On real-world inputs, hoisting combined with HDD gives generally smaller, or
at least as small outputs as HDD alone. Bigger outputs are rare. Minimized test cases can
be as small as 1⁄5 of the output given by traditional HDD. The effects of hoisting to HDD
and HDDr are similar: the majority of the test cases could be reduced further with hoisting.
Coarse HDD and Coarse HDDr show similar patterns to the non-coarse variants with respect
to the output size: test cases could be reduced further with hoisting. However, hoisting had no
effect on the Coarse HDDH and Coarse HDDHr algorithm variants, furthermore, algorithms
performed the reduction exactly the same way when hoisting was a preprocessing step. The
effect of hoisting on the efficiency of the reduction highly depends on the height of the input

12

1 procedure Hoist(input tree)
2 level← 0
3 nodes← tagNodes(input tree, level)
4 while nodes ̸= ∅ do
5 hoisting← TMINχ(nodes)
6 transform(input tree, level, hoisting)
7 level← level+ 1
8 nodes← tagNodes(input tree, level)
9 end while

10 end procedure

(a) Hoisting.

1 procedure Hoistr(root node)
2 queue← ⟨root node⟩
3 while queue ̸= ⟨⟩ do
4 current node← pop(queue)
5 nodes← tagChildren(current node)
6 hoisting← TMINχ(nodes)
7 transformChildren(current node, hoisting)
8 append(queue, tagChildren(current node))
9 end while

10 end procedure

(b) Recursive Hoisting.

1 procedure CoarseHoist(input tree)
2 level← 0
3 nodes← tagNodes(input tree, level)
4 while nodes ̸= ∅ do
5 nodes← filterEmptyPhiNodes(nodes)
6 if nodes ̸= ∅ then
7 hoisting← TMINχ(nodes)
8 transform(input tree, level, hoisting)
9 end if

10 level← level+ 1
11 nodes← tagNodes(input tree, level)
12 end while
13 end procedure

(c) Coarse Hoisting.

1 procedure CoarseHoistr(root node)
2 queue← ⟨root node⟩
3 while queue ̸= ⟨⟩ do
4 current node← pop(queue)
5 nodes← tagChildren(current node)
6 nodes← filterEmptyPhiNodes(nodes)
7 if nodes ̸= ∅ then
8 hoisting← TMINχ(nodes)
9 transformChildren(current node, hoisting)

10 end if
11 append(queue, tagChildren(current node))
12 end while
13 end procedure

(d) Recursive Coarse Hoisting.

Figure 10: Proposed Hoisting algorithm and its variants.

1 procedure HDDH(input tree)
2 level← 0
3 nodes← tagNodes(input tree, level)
4 while nodes ̸= ∅ do
5 minconfig← DDMIN(nodes)
6 prune(input tree, level,minconfig)
7 hoisting← TMINχ(minconfig)
8 transform(input tree, level, hoisting)
9 level← level+ 1

10 nodes← tagNodes(input tree, level)
11 end while
12 end procedure

Figure 11: The Hierarchical Delta Debugging and Hoisting algorithm.

tree. If the height of the tree is small (below 50), hoisting increases the required testing steps.
However, if the height of the tree is big enough (above 150), test cases can be reduced faster
with hoisting. The Hoist* + HDDH* and Hoistr* + HDDHr* algorithm variants produced
the smallest output among the tested ones, and the Coarse variants performed the reduction
requiring the fewest steps (at the cost of bigger outputs).

13

Table 1: Summary of thesis topics and corresponding publications

[11] [6] [9] [10] [7] [8]

1 •
2 • •
3 •
4 • •

The Author’s Contributions

The author had a decisive role in the design, implementation and evaluation of a significant
proportion of the above presented findings.

1. Cache Optimizations: The author analyzed the state-of-the-part caching solutions
that have been used in reduction, then designed and implemented three optimizations
for reducing the memory footprint of the reduction. Then, he evaluated the effects of
proposals with different reduction approaches, on multiple test suites.

2. Iterating the Minimizing Delta Debugging Algorithm: The author designed and
prototyped the fixed-point iteration of the DDMIN algorithm.

3. Parallel Optimizations of DDMIN*: The author analyzed the weaknesses of the
parallel DDMIN, then designed, implemented and evaluated a solution to it.

4. Extending Hierarchical Delta Debugging with Hoisting: The author investigated
the structure of the inputs (abstract syntax trees) of HDD searching for optimization
possibilities. He found that identically labeled nodes can be replaced without loosing
the syntactic correctness. Then, he prototyped the transformation-based minimization
framework, implemented the hoisting as an example transformation, and evaluated it on
publicly available test suites.

Furthermore, the supporting replication package has been published at the time of each
publication. The author has been responsible for the redesign and implementation of the
algorithms that stand their ground in the world of open-source. The publications related to
the thesis points are the following:

[11] Dániel Vince and Ákos Kiss. Cache Optimizations for Test Case Reduction. In
Proceedings of the 22nd IEEE International Conference on Software Quality, Reliability,
and Security (QRS 2022), pages 442-453, Guangzhou, China (Virtual), December 2022.
IEEE.

[6] Dániel Vince. Iterating the Minimizing Delta Debugging Algorithm. In Proceedings
of the 13th International Workshop on Automating Test Case Design, Selection and
Evaluation (A-TEST’22), pages 57-60, Singapore, November 2022. ACM.

[9] Dániel Vince and Ákos Kiss. Evaluation of the fixed-point iteration of minimizing
delta debugging. In Journal of Software: Evolution and Process, 2024. Wiley.

14

[10] Dániel Vince and Ákos Kiss. GreeDDy: Accelerate Parallel DDMIN. In Proceedings
of the 15th ACM International Workshop on Automating Test Case Design, Selection
and Evaluation (A-TEST ’24), pages 1-4, Vienna, Austria, September 2024. ACM.

[7] Dániel Vince, Renáta Hodován, Daniella Bársony, and Ákos Kiss. Extending Hi-
erarchical Delta Debugging with Hoisting. In Proceedings of the 2nd ACM/IEEE
International Conference on Automation of Software Test (AST 2021), pages 60-69,
Madrid, Spain (Virtual), May 2021. IEEE.

[8] Dániel Vince, Renáta Hodován, Daniella Bársony, and Ákos Kiss. The effect of
hoisting on variants of Hierarchical Delta Debugging. In Journal of Software: Evolution
and Process, 34(11):e2483:1-e2483:26, November 2022. Wiley.

15

Summary

When a new bug is found in software, it is usually reported in the project’s bug tracking
system with a test case. At the end of the process, it is sent to an engineer who reproduces
it and then fixes it. In the debugging process, it does matter how many irrelevant parts are
in a test case; the noisier it is, the more valuable time is spent filtering out the parts that
actually caused the bug.

Fortunately, this does not need to be done manually; algorithms are available and became
important when the random test case generation (fuzz-testing) became popular. This thesis
discusses two major algorithms of automatic test case reduction, minimizing Delta Debugging
(DDMIN) and Hierarchical Delta Debugging (HDD), and their optimization possibilities. The
study can be divided into two main parts: either making the output of the algorithm smaller
or making the reduction process more lightweight.

Reduction algorithms do not aim to find a global optimum; finding one would take too
long from a practical point of view. However, the property of a local optimum is that a
better one can potentially be found. This feature is used in both algorithms. For DDMin,
we proposed the use of a so-called fixed-point iteration: as long as the algorithm can reduce
its input, it is repeated, and the input of the next iteration is the output of the current
one. Experiments show that there are at least two iterations on the datasets used, and on
average the output is 68% smaller with character-based reduction. For HDD, transformations
have been proposed on the tree structure that forms its input. It is easy to construct an
example that cannot be reduced by the prune-based HDD algorithm. This problem has been
investigated and a hoisting transformation has been proposed that can replace one node of
the tree with another if the two nodes have identical labels and are in an ancestor-descendant
relationship.

When running these algorithms, it is possible for multiple configurations to result in the
same serialized test case, therefore, the same test executions are checked multiple times. To
avoid this duplication, a cache is used to store the generated test cases and their results.
However, the cache itself can consume a lot of memory, which is not good either. In order
to optimize this memory consumption, the study proposes three solutions, the combined use
of which achieved a 96% improvement for DDMIN and an 85% improvement for HDD. A
technique that has already been proven useful for speeding up DDMIN is parallelization, but
the published concepts still have some room for improvement: The stability issues of the
algorithm are described, then a potential solution is outlined. A greedy approach is proposed
that reduces the number of required test runs by 31% and the runtime by 40%.

Acknowledgments

Firstly, I would like to thank Dr. Ákos Kiss, my supervisor, for his professional help and
unique opinions during my PhD studies. I will not forget my colleagues who gave valuable
feedback on the manuscript: Dr. Dombi József Dániel, Zsolt Borbély, and Edit Szűcs. I
would like to express my gratitude for the continuous support of my family. Then, I would
like to thank Amanda, my wife, who supported me all the way, even though I spent the
evenings quietly on the sofa, writing this text. Finally, I am really grateful to Noel, my son,
whose arrival put a hard deadline to my writing.

16

One or more research papers, the result of which were used in this thesis, were partially
supported by

• GINOP-2.3.2-15-2016-00037: the EU-supported Hungarian national grant,

• NKFIH-1279-2/2020: of the Ministry for Innovation and Technology, Hungary,

• TKP2021-NVA-09: implemented with the support provided by the Ministry of In-
novation and Technology of Hungary from the National Research, Development and
Innovation Fund, financed under the TKP2021-NVA funding scheme,

• ÚNKP-22-3-SZTE-469 and ÚNKP-23-3-SZTE-536: New National Excellence Program
of the Ministry for Culture and Innovation from the source of the National Research,
Development and Innovation Fund.

References

[1] David Binkley, Nicolas Gold, Mark Harman, Syed Islam, Jens Krinke, and Shin Yoo.
ORBS: Language-independent program slicing. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE 2014),
pages 109–120. ACM, November 2014.

[2] Renáta Hodován and Ákos Kiss. Practical improvements to the minimizing delta debug-
ging algorithm. In Proceedings of the 11th International Joint Conference on Software
Technologies (ICSOFT 2016) – Volume 1: ICSOFT-EA, pages 241–248. SciTePress,
July 2016.

[3] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. Tree preprocessing and test outcome
caching for efficient hierarchical delta debugging. In Proceedings of the 12th IEEE/ACM
International Workshop on Automation of Software Testing (AST 2017), pages 23–29.
IEEE, May 2017.

[4] Ghassan Misherghi and Zhendong Su. HDD: Hierarchical delta debugging. In Proceedings
of the 28th International Conference on Software Engineering (ICSE ’06), pages 142–151.
ACM, May 2006.

[5] Frank Tip. A survey of program slicing techniques. Journal of Programming Languages,
3(3):121–189, 1995.

[6] Dániel Vince. Iterating the minimizing delta debugging algorithm. In Proceedings of the
13th International Workshop on Automating Test Case Design, Selection and Evaluation
(A-TEST’22), pages 57–60. ACM, November 2022.

[7] Dániel Vince, Renáta Hodován, Daniella Bársony, and Ákos Kiss. Extending hierarchical
delta debugging with hoisting. In Proceedings of the 2nd ACM/IEEE International
Conference on Automation of Software Test (AST 2021), pages 60–69. IEEE, May 2021.

17

[8] Dániel Vince, Renáta Hodován, Daniella Bársony, and Ákos Kiss. The effect of hoisting
on variants of hierarchical delta debugging. Journal of Software: Evolution and Process,
34(11):e2483:1–e2483:26, November 2022.

[9] Dániel Vince and Ákos Kiss. Evaluation of the fixed-point iteration of minimizing delta
debugging. Journal of Software: Evolution and Process, (n/a):e2702.

[10] Dániel Vince and Ákos Kiss. Greeddy: Accelerate parallel ddmin.

[11] Dániel Vince and Ákos Kiss. Cache optimizations for test case reduction. In Proceedings
of the 22nd IEEE International Conference on Software Quality, Reliability, and Security
(QRS 2022), pages 442–453. IEEE, December 2022.

[12] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering, 28(2):183–200, February 2002.

18

Összefoglaló

Amikor egy új hibát találnak egy szoftverben, azt bejelentik a projekt hibakezelő rendszerében.
A folyamat végén valaki reprodukálja és kijav́ıtja azt A hibakeresés során nem mindegy, hogy
mennyi irreleváns rész van egy tesztesetben, minél zajosabb, annál több értékes idő megy el
a hibát kiváltó részek megkeresésével.

Szerencsére ezt nem kell manuálisan elvégezni, algoritmusok állnak rendelkezésünkre. A
dolgozat az automatikus tesztesetredukció két elterjedt algoritmusát, a “minimizing Delta
Debugging”-ot (DDMIN) és a “Hierarchical Delta Debugging”-ot (HDD), és az ezekhez
kapcsolódó optimalizációkat tárgyalja. A dolgozat két nagyobb részre bontható: vagy az
algoritmus kimenetét teszi kisebbé, vagy a redukció folyamatát könnyedebbé.

A redukciós algoritmusok nem globális optimum elérésére törekszenek, a lokális opti-
mum tulajdonsága, hogy potenciálisan mindig lehet jobbat találni. Ez a tulajdonság került
kihasználásra. A DDMIN esetében egy fixpont iteráció használatát javasoltuk: amı́g egy
algoritmus redukálni képes, addig iteráljuk azt; a következő iteráció bemenete az előző
eredménye. Legalább két iteráció mindig lefut és átlagosan 68%-kal lett kisebb a kimenet
karakteralapú redukciót használva. HDD-nél a bemenetet képző fán lettek transzformációk
javasolva. Javasoltuk a Hoist transzformációt, ami a fa egy csomópontját képes helyetteśıteni
egy másikkal abban az esetben, ha a két csomópont ćımkéje megegyezik és ős-leszármazott
viszonyban vannak egymással.

Az algoritmusok futása során előfordul, hogy több konfiguráció ugyanazt a tesztesetet
eredményezi, ı́gy többször újra kell futtatni őket. Ezt oldja meg a gyorśıtótár alkalmazása,
ami tárolja a teszteseteket és azok eredményeit, a duplikált futtatásokat kiküszöbölve. A
gyorśıtótár viszont sok memóriát használhat fel. A memóriafogyasztás csökkentésére több
megoldást is javasol a tanulmány, melyek együttesen 96%-os javulást értek el a DDMIN-nél
és 85%-os javulást a HDD-nél. Az futásidő csökkentésére jó opció lehet a párhuzamośıtás,
melynek koncepcióiban volt optimalizálható elem: stabilizációs problémák kerültek ismerte-
tésre, majd egy megoldás került felvázolásra. Javasolva lett egy mohó megközeĺıtés, mely
csökkentette a szükséges tesztvégrehajtások számát 31%-kal és a futásidőt 40%-kal.

19

	Cache Optimizations
	Iterating the Minimizing Delta Debugging Algorithm
	Parallel Optimizations of DDMIN*
	Extending Hierarchical Delta Debugging with Hoisting

