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Introduction

Stochastic modeling of biological systems holds significant importance in the natural
sciences, as highlighted in [1]. The interest in mathematical modeling of natural
systems has significantly increased over the past century. One of the best tools
for modeling natural systems is branching processes [3]. In recent times, branching
processes have proven to be effective tools for shedding light on various challenges
across molecular biology, cell biology, developmental biology, immunology, evolution,
ecology, medicine, and related domains. One of the most frequently used types of
branching processes is represented by Galton—Watson processes.

The thesis predominantly incorporates real measurement results for modeling,
with the tested organism being the bacterial species Chlamydia trachomatis. We can
observe measurement results obtained from the Department of Medical Microbiol-
ogy and Immunobiology, University of Szeged. Chlamydia trachomatis infections,
which are sexually transmitted, pose a significant global public health challenge.
These infections affect millions of individuals worldwide, including men, women,
and children, often leading to severe medical complications.

The thesis is structured as follows. We provide a Galton—Watson model for the
growth of a bacterial population in the presence of antibiotics. We assume that
bacterial cells either die or duplicate, and the corresponding probabilities depend
on the concentration of the antibiotic. Assuming that the mean offspring number
is given by m(c) = 2/(1 + ac®) for some a, 3, where ¢ stands for the antibiotic
concentration we obtain weakly consistent, asymptotically normal estimator both for
(cr, B), and for the minimal inhibitory concentration (MIC), a relevant parameter in
pharmacology. For the measurements of Chlamydia growth quantitative polymerase
chain reaction (qPCR) technique was used. The 2-parameter model fits remarkably
well to the biological data.

Assuming other measurement results, we estimated the probability of extinction.
The model assumption is entirely similar. We assume that bacterial cells either die
or duplicate, with probabilities py(c), and py(c), where pa(c) = 1/(1 + ac?) for some
positive real numbers «, . Using measurements based on colony counting method
we obtain weakly consistent, asymptotically normal estimator for the parameters.

We explore the unique life cycle of Chlamydia. We model the population growth
by a 2-type discrete-time branching process, where the probability of duplication de-
pends on the state. Maximizing the EB production leads to a stochastic optimization
problem. Simulation study shows that our novel model is able to reproduce the main
features of the development of the population, deterministic models had not been
able to achieve until now.

Then we establish a connection with our previous findings. Specifically, at a
given antibiotic concentration, we determine the optimal transition of Chlamydia
from the RB form to the EB form. We assume that the antibiotic solely affects the
RB body, but not the EB body. This assumption is biologically plausible since EB
bodies have the capability to form inclusions, aiding their survival under adverse
conditions. In this scenario, we can numerically determine the optimal strategy.
In the alternate case, we assume that the antibiotic affects both the RB and EB
bodies. To the best of our knowledge, there is no real-world measurement data
available for these models. The dissertation is based on three articles of the author.
These publications are the following:
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Stochastic Modeling of In Vitro Bactericidal Po-
tency

We assume that the bacterial population is homogeneous, all the cells behave sim-
ilarly. In particular, there is no resistant type. As mutation is rare under normal
conditions and in short time, this is a natural assumption for our data set.

In the experiments growth of Chlamydia trachomatis bacterial population was
analyzed by quantitative PCR (qPCR) method with 12 different antibiotic concen-
trations and 2 different antibiotics. Adding a measurement error, the measurements
have the form

Ci(c,20) = a —logy Z) .+ i, 1=1,...,N,

n;C,T0

where measurement error ¢;,. is assumed to be Gaussian with mean zero, and vari-
ance o2. This simple linear model is suggested by Yuan et al. [7]. Due to the
measurement method, lower values means higher genome concentration.

We consider a simple Galton—Watson branching process where the offspring dis-
tribution depends on the antibiotic concentration ¢ > 0. Each bacteria either dies
(leaves no offspring), survives (leaves 1 offspring), or divides (leaves 2 offsprings) with
respective probabilities py = po(c), p1 = pi(c), and ps = pa(c). Let f(s) = fu(s)
denote the offspring generating function and m = m(c) the offspring mean if the
antibiotic concentration is c, i.e.

f(S) = fc(3> = Es* = Zpi(c)5i7 s € [07 1]7 (1>

m =m(c) = fi(1) = E&,

where &. is the number of offsprings. The process starts with Xy, = x¢ initial

individuals, and
Xn;c

Xn+1;c - Z 52-(:2),
=1

where {&., fl(z) 4> 1,n > 1} are iid random variables with generating function f..

Using the qPCR method the observed quantity is the genom of all individual
bacteria, which is a constant times the total number of bacteria, that is alive and



dead cells together. Therefore, we have to keep track the dead bacterias too. In order
to do this we consider a two-type Galton—Watson branching process X,, = (X,,, Y,),
n > 0, where X,,, Y,, stands for the number of alive, dead bacterias respectively, in
generation n. Then the total number of bacteria at generation n is Z,, = X,, + Y,,.
We also write Z, ,, to emphasize that X, = 2. The process evolves as

Xn

Xn+1 = Z fz(n)

=1
Y1 = Y+Zm", n >0,

(Xo,Yo) = (20,0), where (§,n), (ﬁ(n ,77Z ) n=12...17=12,...are iid random

(2

vectors such that P((¢,7) = (0,1)) = po, P((§,n) = (1,0)) = p1, P((§,n) = (2,0)) =

p2.

Lemma 1. If zy = 1 then for the mean we have EX,, = m", and EY,, = po(1+m+
o+ m"Y), thus

fn =EZ,, = {mn (+5%) =3 m# L

1+ pon, m = 1.

The strong law of large numbers and the central limit theorem imply that for
each fixed n as g — o
n,To

Zo

— [y Q.S

and p
n,ro IOMTL i) N(O O'2>7

Vo o
Estimation of the offspring mean
Put
Zé\il Cl (Cv CUO)

N
Proposition 1. As first zg — oo and then N — oo

log, fin = a — logy T —

~ P
logy fin, — logy fin,

which implies that [, is weakly consistent estimatior of j,. Furthermore, as first
To — 00 and then N — oo

1

~ D
VN, — ) 2 N0, 1).
o Tog? (Fin — ptn) —> N(0,1)

Thus we can estimate p,,. The problem is that u, does not determine uniquely
m, only gives a possible range for it, see Figure 1.

To overcome this difficulty, we assume that p; = 0. Then pu, in Lemma 1
simplifies to

m(m™—1)
Mmoo ) Sy L m# 1,
nlm)=—1(m +...+1)+1=
pn(m) = 5 ( ) {g+1, m—1.

3
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Figure 1: Upper and lower bound for log, p,, for n = 10.

Proposition 2. Assume that py = 0. As first xro — oo and then N — oo, the
estimate m is a weakly consistent estimator of m, and

RO i
Ocfin(m) logQW( ) — N(0,1).

The dependence of m on the antibiotic concentration

Assuming p; = 0 we can estimate the mean for ¢ > 0 fixed as described in Propo-
sition 2. Next we combine our estimator for different concentrations. We assume
that the offspring mean as a function of ¢ can be described by the Hill function [0].

& 2)

" 1tac?
for some unknown parameters o > 0, 8 > 0. This is a quite flexible model, and we
show that empirical data fits very well to this model. Rewriting (2)

m(c)

log a + Blogc = log (%—1). (3)

Assume that we have measurements for K > 2 different concentrations ¢; < ¢y <

... < ¢k, and we obtain the estimator for the offspring mean m(¢;), i =1,2,..., K.
Standard least square theory implies that the expression

K 9 2
Z (lOg ('f/\l(c—)—1> — 510g C; — lOg Oé)
i=1 ¢

-~

attains it minimum at («, §) = (@, 3), with

K55 hili = 35 hily ~ SK hi — BLy (4)
KL, — L2 AT e K ’

B=



where to ease notation we write h; = log <% - 1> ,and ¢; = log¢;, furthermore
Ly =YK tiand Ly =1 2.

The minimal inhibitory concentration (MIC) is the smallest antibiotic concen-
tration that stops bacteria growth. In mathematical terms ¢ := MIC = min{c :
m(c) < 1}, which, under the assumption (2) ¥ = MIC = a~'/#. Define the estima-
tor ¥ = a~V/8.

In the following statement we summarize the main properties of these estimators.
Introduce the notation

2 opin(m(c;))log 2
m(ci)(2=m(e;))  pn(m(c)
Proposition 3. Assume that first Ty — oo and then N — oo. Then the esti-

mates a, 3, and J are weakly consistent estimators of the corresponding quantities.
Furthermore, as xg — oo and then N — oo

ki =

i=12... K.

VN@—a,B - 8) = (U,V),

where (U, V') is a two-dimensional normal random vector with mean 0 and covariance

matriz
0y Oap
Oap 0% ’
where
ol = k:2
° (KL2 (KLy — 12)° Z
o
Oap = ———— Y KKl — L)) (Ly — L14;
s <KL2_L§>2; (Kl = L) (L2 = Lity)
1 K
or=—" k2 (K¢, — L 2,
B (KLQ—L%)2; z( 1)
and
VN(@D —9) 25 N(0,02),
with

0_2 _ ’192 (log Oé)2 K kQ L2 — ngz _ Kgl — Ll 2
U B2(K Ly — L2)2 ' log a 5

In Figures 2 and 3 we see the estimated means and the corresponding fitted curve
m(c), where the parameters a, § are estimated as described in (4).
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Figure 2: Estimated means and the fit- Figure 3: Estimated means and the fit-
ted curve for azithromycin. ted curve for ciprofloxacin.

Estimation of in vitro bactericidal potency based
on colony counting method

The qPCR method measures the total bacterial genom, which is the total number
of dead and alive bacterial cells multiplied by a constant. On the other hand, colony
counting gives an estimator for the extinction probability. The basic experiment is
the following. Originally, = bacterial cells (e.g. Escherichia coli) are inoculated onto
agar plates containing a series of antibiotic concentration, and after the incubation
period all the viable colonies are enumerated, see e.g. Liu et al. [5].

Consider a simple Galton—Watson branching process as in (1), where each bac-
teria either dies (leaves no offspring) or divides (leaves 2 offsprings) with respective
concentration dependent probabilities py = po(c), and py = pa(c) =1 — po(c).

Let f(s) = f.(s) = po + p2s? denote the offspring generating function and m =
m(c) = 2ps(c) the offspring mean if the antibiotic concentration is ¢. The process
starts with a single ancestor Xy, = 1, and

Xn;c

Xnt1ie = Z 52-(:2),
i=1

where {&., fl(z) :1>1,n > 1} are iid random variables with generating function f..
We further assume that the offspring distribution is given by

1

1+ ack (5)
where o > 0, 8 > 0 are unknown parameters. Note that as m = 2p, this is the
same assumption as earlier. Under this model the MIC, the smallest antibiotic
concentration preventing bacterial growth, is the smallest ¢ for which m(c) = 1,
that is o= 1/5.

If m < 1 then the process dies out almost surely, while if the process is super-
critical, i.e. m > 1 then the probability of extinction is the smaller root of f.(q) = g,
which is in our setup

pa(c)



=8Ot (o) > 172,
alc) =3 " (6)
1, if pa(c) < 1/2.

Estimation of the parameters

Assume that the initial number of bacterial cells is g, that is we observe zy inde-
pendent copies of the Galton-Watson process (X,,..). Then the number Y, of living
colonies has binomial distribution with parameters xy and 1 — g(c). Therefore, the
natural estimator for ¢(c) is

Y.
glc)=1—- =,
q(c) o
The law of large numbers and the central limit theorem implies that g(c) is a weakly
consistent estimator, and as zyg — oo

V7o q(c) — q(c) 25 N
TOIETI0) (@(c) — q(c)) — N(0,1). (7)

From (6) we see that we can estimate ps(c) only if ¢(c) < 1, or equivalently

m(c) > 1, in which case
1
(o) = — 8
pQ(C) 1 +q(c) ( )

We assume that the offspring mean as a function of ¢ satisfies (5) for some unknown
parameters o > 0, § > 0. Assume that we have measurements for K > 2 different
concentrations ¢; < ¢z < ... < ¢k, such that m(cx) > 1. As in (8), we obtain the
estimator py(¢;) at different concentrations, from which, using simple least squares
estimator we obtain the estimator

K Zfil higi B Zfil hiLl
KL, — L2 ’

K ~
SK b — BL
exp{ 1=1h2 ﬁ 1}7

@)
Il

)
I

K

where to ease notation we write h; = log <zﬁ — 1), l; =logc;, Ly = Zfil ¢; and
Ly =YK 2

=1~

Under the assumption (5) the MIC equals 9 = a~/#, therefore its natural esti-

mator is R
Joat

Using (7), as in Proposition 3 we can prove that these estimators are asymptotically
normal. Introduce the notation

ki_ﬂi))\/Q(ci)(l_Q(Ci»a =12, K.

1 pZ(Ci



Proposition 4. Assume that c; < ... < ¢k are giwen concentrations such that
m(ck) > 1. Then as xg — o0, @, f, and ¥ are weakly consistent estimators of the
corresponding quantities. Furthermore, as xqg — 00

~ 2 D
V l’o(Oé - 0575 - 6) — <U7 V)7
where (U, V') is a two-dimensional normal random vector with mean 0 and covariance

2

(o o

matriz ("), where
O'Oéﬁ UB

o’ = k2
“ (KL2 L2)? Z

(07

(KLy — L3)*

1
P k-2 Kl — L)),

O = Zk2 (Kt; — Ly)(Ly — Ly4y),

and

Va0 —9) 5 N(0,03),

as ro — 00, with

0_2 _ 792 (log OJ)Q K k‘Q LQ — ngz _ Kgl — Ll 2
' BP(KL - L2 &\ logal E

Branching model with state dependent offspring
distribution for Chlamydia spread

Chlamydiae are obligate intracellular bacteria which have a unique two-stage devel-
opmental cycle, with two forms, the elementary body (EB) and the reticulate body
(RB). The EB is the infectious form but it is incapable of reproducing. Once the
EB infects the host cell, it transforms into an RB. The RB multiplies in the host cell
by binary fission. After some time RBs redifferentiate to EBs. The EBs are then
released from the host cell ready to infect new host cells. It was shown recently by
Lee et al. [1] using 3D electron microscopy method and manual counting that this
conversion occurs asynchronously, so that some RBs are converting into EBs, while
others continue to divide.

Consider a two-type discrete-time Galton-Watson branching process X™ = (XT7),,

= (X7, Y7),, n > 0, together with a sequence of probabilities 7 = (p,),. We as-
sume that 7 is adapted to the natural filtration (F,), generated by X, ie. F, =
(X7, k <n). Initially X7 = (1,0), and the process evolves as

X7

Xr, :an,u
—Y”+Z(1—§”> >0

n+1 ) n-=.u,

8




where (&,,&,:),n=1,2,...,4=1,2,... are conditionally independent random vari-
ables given (p,),, for fix n the variables (&,,&,,),7 = 1,2,... are identically dis-
tributed, such that P(&, = 2|p,) = pn, P(&, = 0|p,) = 1 — p,. Here X7 stands for
the number of RBs and YT for the number of EBs in generation n.

The process ends at a random time 7" € {1,2,...} when the infected host cell
dies. The aim of the bacterial population is to produce as many EBs as possible,
that is to maximize E(Y]T) over all possible strategies (p,). Denoting by P the set
of all strategies, a strategy q is optimal, if

sup B(YF) = B(Y7).

TeP

Assume that the host cell’s death time T is independent of the process X7.
Introduce the notation 7, = (1,1,...,1,0,0,...), where the first £ > 0 components
are 1.

Theorem 1. Assume that T > 1 is bounded and it is independent of X™. Let { be
such that

2'P(T > () = sup 2*P(T > k).
k>0

Then m; is an optimal strateqy, with optimal value

sup E(Y}) = sup 2"P(T > k).

TeP k>0

Now we assume that 7', the death time depends on the process X™. Given that
the host cell is alive in generation n — 1, the probability that it dies in the next step
is d(X7,Y,"), that is

n’> n

P(T =n|T >n—1,F,) = d(XT,Y7T).

n’ n

Assume that
3C >0 such that d(z,y) =1 whenever z+y > C. (9)

Let X, = X, (T > n), Y, = Y,I(T > n). Note that X; = 0, Yp = Y, and
Yry1 = 0, which is convenient at the definition of the reward function in (10).
Define a Markov chain ()A(:n, ?n)n on the state space {0,1,...}?, where the possible
controls are given by the duplication probabilities p, € [0,1]. The reward function
(—1 times the cost function in [2]) gives the number of EBs upon cell’s death, that

is
y, =0,
clz,y) = 10
() {O, otherwise. (10)

Define the value function

h(z,y) = {supwePE [ZZ‘;O C()?n,Yn)\()?o,%) = (z,y)], d(z,y) <1,
v d(x,y) = 1.



Theorem 2. Assume that (9) holds. Then h(z,y) =y ifx+y > C, and h(0,y) =y
for any y. Assume that h(z,y) is determined whenever x +y > m for some m < C,
and let v +y =m — 1. Then

ad €T . i
h(z,y) = max ; (j)pj(l —p)

x [d(2j,y+x—j)y+z—7)+ (1 —d2jy+x—37)h2y+z—j),
(11)

where all the values of h on the right-hand side are determined. The mazximum in
p of the continuous function on the right-hand side of (11) is attained at p(z,y),
which gives the optimal strategy.

Branching model for the spread of Chlamydia un-
der the influence of antibiotics

Now we investigate the behavior of the combined model, specifically determining
the optimal spread of Chlamydia in the presence of antibiotic.

Consider a three-type discrete-time Galton—Watson branching process X™ =
(XM, = (XT, Y7, ZT),n > 0, together with a sequence of probabilities 7 = (p,,),.

We assume that 7 is adapted to the natural filtration (F,), generated by X7, i.e.
Fn=0(X7, k <n). Initially X7 = (1,0,0), and the process evolves as

Xn X5 X5
T § ™ T E ™ 0 E
Xn+1 - gn,ia Yn+1 = Yn + Tnis Zn+1 - Zn + Cn,h n Z 07
i=1 i=1 i=1

where (&, M, Cn)s (&niiy Mnsis Gni) n=1,2,...,4=1,2,... are conditionally indepen-
dent random variables given (py,),, for fix n the variables are identically distributed,
such that

p ((gm M <n) - (27 0, O) ’pn) = Pn,
P ((fmnna Cn) = (07 L, O)’pn) =1- Pn — De,
P ((fn; T, gn) = (07 0, 1)’pn) = Pe-

X and YT again stands for the number of RBs and number of EBs in generation
n, while Z7 denotes the number of dead bacteria in generation n. In generation n
each RB duplicates with probability p,, or die, with a predetermined probability
Pe, Or converts into EB with probability 1 — p,, — p.. The probability p. depends on
antibiotic concentration ¢ > 0.

Theorem 3. Assume that 3C such that d(z,y,z) = 1 whenever v +y + 2z > C.
Then h(zx,y,2) =y if v +y+2z > C, and h(0,y,2) = y for any y, and for any z.
Assume that h(zx,y, z) is determined whenever x +y + z > m for some m < C, and

10



letx+y+z=m—1. Then

T T—] .
h(x,y,z) = max ( > ( j)p’é(l —p—p)tIF
p€01 pe] o — k

j=
x [d2j,y+x—j—kz+k)(y+xz—3j—k)

where all the values of h on the right-hand side are determined. The maximum of

the continuous function is attained at p(x,y, z), which gives an optimal strategy.

The theoretical model, when antibiotic has effect
on both types

Now we presume that the antibiotic exerts an influence on the RB body, and on
the EB body as well. Consider a three-type discrete-time Galton—Watson branching
process X" = (XT7),, = (X],Y,7. Z7),n > 0. The process evolves as

n’ n

X7 X7 Y7 X7 Y,
X;Z-"rl = Z;fn,ia Ynﬂ+1 2%1 + z;(l - Cq,u)7 Z;Lr-Fl =2, + z; Cn,i + 2 C;ma

where (&n, 7, Gns G)s (Ensis nis Gniin Grg) @ = 1,2,..., @ = 1,2,... are conditionally
independent random variables given (p,),, for fix n the variables are identically
distributed, such that

P ((&n: s Gi) = (2,0,0)[pn) = pn,
P (671, Ga) = (0,1,0)|pn) = 1 = pn = pe,
P (&7 Go) = (0,0, 1)|pn) = pe,
and P(¢/, =0) =1—gq., P(¢), =1) = ¢.. In generation n each RB duplicates with

probability p,, or die, with a predetermined probability p., or convert into EB with
probability 1 —p, — p.. In generation n each EB dies with a determined probability
QC'

Theorem 4. Assume that 3C such that d(x,y, z) = 1 whenever z+y+ 2z > C, and
N is given. Then for anyn < N, h(z,y,z;n) = y(1 —q)V ™", ifr+y+2 > C, and
h(0,y,2;n) = y(1 — q.)N~" for any y, and for any z. Assume that h(z,y, z;n) is
determined whenever x+y+z+mn > m for somem < C+n, and let t+y+z2+n =
m — 1. Then for alln < N —1

T T—j Yy
r—J Yy
h y Y, %5 =
(z,y,2;n) per[g?i(pc]jzo k:O;( )( )(ﬁ)

X p'pi(1—p—pe)" 77 i1 — go)*
[d(Qjy—£+x—j—k,z+k+€)(y—€+x_j_k>(1_qc>N7(n+1)
+(1—d2jy—Ll+z—7j—kz+k+0))

x (h(2j,y —l+z—j—k,z+k+6n+1)(I(n+1< N)

+(y— Lo —j—RIn+1=N)),

11



where all the values of h on the right-hand side are determined. The maximum of
the continuous function is attained at p(x,y, z), which gives an optimal strategy.

(“)sszefoglalé

A disszertacié a Chlamydia baktériumfaj sztochasztikus modellezését mutatja be.
Eloszor megadunk egy Galton—Watson modellt, mely egy baktériumpopulacié no-
vekedését irja le antibiotikum jelenlétében. A sztochasztikus modelliink sokkal
természetesebb a kordbbi determinisztikus modellekhez képest (1d. Liu és munkatér-
sai cikkében [5]). Feltettiik, hogy az utédok vérhaté értékét az m(c) = 2/(1 + ac?)
formula adja meg, ahol ¢ az antibiotikum koncentracié, valamint @ > 0,8 > 0
ismeretlen paraméterek. A qPCR technikdban figyelembe véve a mérési hibat,
kiilonboz6 antibiotikum koncentracié esetén gyengén konzisztens, valamint aszimp-
totikusan normalis becsléseket kaptunk az ismeretlen («, ) paraméterekre. Szimu-
laciés eredményeink azt mutatjak, hogy a modelliink jél irja le a baktérium valodi
viselkedését.

Ezutdn a modellfeltevésiinket meghagyva, azonban mas mérési eljarast feltéte-
lezve a kihalasi valdszintiséget tudtuk becsiilni. A koloniaszamlalas soran, ha xg
szamu egyedet oltanak ra egy sor antibiotikumot tartalmazé agarlemezre, akkor az
inkubaciés idoszak végén az Osszes életképes telepet megszamoljak. Feltettiik, hogy
az utdédok eloszlasit a pa(c) = m(c)/2 formula adja meg. Gyengén konzisztens,
valamint aszimptotikusan normadlis becsléseket kaptunk az («, ) paraméterekre,
valamint a MIC-re.

A Chlamydia populacidk evolicidéjanak lefrasara egy 1j eldgazd modellt adunk
meg. Ebben a modellben az allapotfiiggé utddeloszlas meghatarozéasa sztochasztikus
optimalizaciés probléma megoldasaval torténik. A folyamatrdl az egyetlen bemeneti
informacionk a d haldlozasi fiiggvény, mely megadja annak a valdszintiségét, hogy
a gazdasejt adott allapotban meghal. Természetes haldlozasi fliggvényt valasztva,
a szimuldcids eredmények azt mutatjak, hogy a folyamat képes megfogni a bakté-
riumsejtek aszinkron viselkedését, amit nem régen kisérletekkel is alatamasztottak
[1]. A szimulalt adataink rendkiviil j6l illeszkednek a valés mért adatokhoz. Legjobb
tudomasunk szerint ez az els6 olyan matematikai modell, amely reprodukalja ezt a
jelenséget.

Végiil korabbi eredményeinket kapcsoltuk ossze. Megvizsgaltuk a Chlamydia
optimaélis terjedését abban az esetben, ha jelen van az antibiotikum. Megjegyzendo,
hogy a legjobb ismereteink szerint valds mérési adatok nincsenek. Elso esetben a
modelliinket annyiban egyszertiisitettiik, hogy az antibiotikum csupan az RB alakra
fejti ki hatasat, majd vizsgaltuk azt az esetet is, amikor mindkét tipusra hatassal
van az antibiotikum.
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