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Introduction

Stochastic modeling of biological systems holds significant importance in the natural
sciences, as highlighted in [1]. The interest in mathematical modeling of natural
systems has significantly increased over the past century. One of the best tools
for modeling natural systems is branching processes [3]. In recent times, branching
processes have proven to be effective tools for shedding light on various challenges
across molecular biology, cell biology, developmental biology, immunology, evolution,
ecology, medicine, and related domains. One of the most frequently used types of
branching processes is represented by Galton–Watson processes.

The thesis predominantly incorporates real measurement results for modeling,
with the tested organism being the bacterial species Chlamydia trachomatis. We can
observe measurement results obtained from the Department of Medical Microbiol-
ogy and Immunobiology, University of Szeged. Chlamydia trachomatis infections,
which are sexually transmitted, pose a significant global public health challenge.
These infections affect millions of individuals worldwide, including men, women,
and children, often leading to severe medical complications.

The thesis is structured as follows. We provide a Galton–Watson model for the
growth of a bacterial population in the presence of antibiotics. We assume that
bacterial cells either die or duplicate, and the corresponding probabilities depend
on the concentration of the antibiotic. Assuming that the mean offspring number
is given by m(c) = 2/(1 + αcβ) for some α, β, where c stands for the antibiotic
concentration we obtain weakly consistent, asymptotically normal estimator both for
(α, β), and for the minimal inhibitory concentration (MIC), a relevant parameter in
pharmacology. For the measurements of Chlamydia growth quantitative polymerase
chain reaction (qPCR) technique was used. The 2-parameter model fits remarkably
well to the biological data.

Assuming other measurement results, we estimated the probability of extinction.
The model assumption is entirely similar. We assume that bacterial cells either die
or duplicate, with probabilities p0(c), and p2(c), where p2(c) = 1/(1 +αcβ) for some
positive real numbers α, β. Using measurements based on colony counting method
we obtain weakly consistent, asymptotically normal estimator for the parameters.

We explore the unique life cycle of Chlamydia. We model the population growth
by a 2-type discrete-time branching process, where the probability of duplication de-
pends on the state. Maximizing the EB production leads to a stochastic optimization
problem. Simulation study shows that our novel model is able to reproduce the main
features of the development of the population, deterministic models had not been
able to achieve until now.

Then we establish a connection with our previous findings. Specifically, at a
given antibiotic concentration, we determine the optimal transition of Chlamydia
from the RB form to the EB form. We assume that the antibiotic solely affects the
RB body, but not the EB body. This assumption is biologically plausible since EB
bodies have the capability to form inclusions, aiding their survival under adverse
conditions. In this scenario, we can numerically determine the optimal strategy.
In the alternate case, we assume that the antibiotic affects both the RB and EB
bodies. To the best of our knowledge, there is no real-world measurement data
available for these models. The dissertation is based on three articles of the author.
These publications are the following:
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Stochastic Modeling of In Vitro Bactericidal Po-

tency

We assume that the bacterial population is homogeneous, all the cells behave sim-
ilarly. In particular, there is no resistant type. As mutation is rare under normal
conditions and in short time, this is a natural assumption for our data set.

In the experiments growth of Chlamydia trachomatis bacterial population was
analyzed by quantitative PCR (qPCR) method with 12 different antibiotic concen-
trations and 2 different antibiotics. Adding a measurement error, the measurements
have the form

Ci(c, x0) = a− log2 Z
(i)
n;c,x0

+ εi;c, i = 1, . . . , N,

where measurement error εi;c is assumed to be Gaussian with mean zero, and vari-
ance σ2

ε . This simple linear model is suggested by Yuan et al. [7]. Due to the
measurement method, lower values means higher genome concentration.

We consider a simple Galton–Watson branching process where the offspring dis-
tribution depends on the antibiotic concentration c ≥ 0. Each bacteria either dies
(leaves no offspring), survives (leaves 1 offspring), or divides (leaves 2 offsprings) with
respective probabilities p0 = p0(c), p1 = p1(c), and p2 = p2(c). Let f(s) = fc(s)
denote the offspring generating function and m = m(c) the offspring mean if the
antibiotic concentration is c, i.e.

f(s) = fc(s) = Esξc =
2∑
i=0

pi(c)s
i, s ∈ [0, 1],

m = m(c) = f ′c(1) = Eξc,

(1)

where ξc is the number of offsprings. The process starts with X0 = x0 initial
individuals, and

Xn+1;c =

Xn;c∑
i=1

ξ
(n)
i;c ,

where {ξc, ξ(n)i;c : i ≥ 1, n ≥ 1} are iid random variables with generating function fc.
Using the qPCR method the observed quantity is the genom of all individual

bacteria, which is a constant times the total number of bacteria, that is alive and
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dead cells together. Therefore, we have to keep track the dead bacterias too. In order
to do this we consider a two-type Galton–Watson branching process Xn = (Xn, Yn),
n ≥ 0, where Xn, Yn stands for the number of alive, dead bacterias respectively, in
generation n. Then the total number of bacteria at generation n is Zn = Xn + Yn.
We also write Zn,x0 to emphasize that X0 = x0. The process evolves as

Xn+1 =
Xn∑
i=1

ξ
(n)
i

Yn+1 = Yn +
Xn∑
i=1

η
(n)
i , n ≥ 0,

(X0, Y0) = (x0, 0), where (ξ, η), (ξ
(n)
i , η

(n)
i ), n = 1, 2, . . ., i = 1, 2, . . . are iid random

vectors such that P((ξ, η) = (0, 1)) = p0, P((ξ, η) = (1, 0)) = p1, P((ξ, η) = (2, 0)) =
p2.

Lemma 1. If x0 = 1 then for the mean we have EXn = mn, and EYn = p0(1 +m+
. . .+mn−1), thus

µn := EZn,1 =

{
mn
(
1 + p0

m−1

)
− p0

m−1 , m 6= 1,

1 + p0n, m = 1.

The strong law of large numbers and the central limit theorem imply that for
each fixed n as x0 →∞

Zn,x0
x0
→ µn a.s.

and
Zn,x0 − x0µn√

x0

D−→ N (0, σ2
n),

Estimation of the offspring mean

Put

log2 µ̂n = a− log2 x0 −
∑N

i=1Ci(c, x0)

N
.

Proposition 1. As first x0 →∞ and then N →∞

log2 µ̂n
P−→ log2 µn,

which implies that µ̂n is weakly consistent estimatior of µn. Furthermore, as first
x0 →∞ and then N →∞

1

σεµn log 2

√
N (µ̂n − µn)

D−→ N (0, 1).

Thus we can estimate µn. The problem is that µn does not determine uniquely
m, only gives a possible range for it, see Figure 1.

To overcome this difficulty, we assume that p1 ≡ 0. Then µn in Lemma 1
simplifies to

µn(m) =
m

2

(
mn−1 + . . .+ 1

)
+ 1 =

{
m(mn−1)
2(m−1) + 1, m 6= 1,
n
2

+ 1, m = 1.
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Figure 1: Upper and lower bound for log2 µn for n = 10.

Proposition 2. Assume that p1 = 0. As first x0 → ∞ and then N → ∞, the
estimate m̂ is a weakly consistent estimator of m, and

µ′n(m)

σεµn(m) log 2

√
N(m̂−m)

D−→ N (0, 1).

The dependence of m on the antibiotic concentration

Assuming p1 ≡ 0 we can estimate the mean for c > 0 fixed as described in Propo-
sition 2. Next we combine our estimator for different concentrations. We assume
that the offspring mean as a function of c can be described by the Hill function [6].

m(c) =
2

1 + αcβ
(2)

for some unknown parameters α > 0, β > 0. This is a quite flexible model, and we
show that empirical data fits very well to this model. Rewriting (2)

logα + β log c = log

(
2

m(c)
− 1

)
. (3)

Assume that we have measurements for K ≥ 2 different concentrations c1 < c2 <
. . . < cK , and we obtain the estimator for the offspring mean m̂(ci), i = 1, 2, . . . , K.
Standard least square theory implies that the expression

K∑
i=1

(
log

(
2

m̂(ci)− 1

)
− β log ci − logα

)2

attains it minimum at (α, β) = (α̂, β̂), with

β̂ =
K
∑K

i=1 hi`i −
∑K

i=1 hiL1

KL2 − L2
1

, α̂ = exp

{∑K
i=1 hi − β̂L1

K

}
, (4)
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where to ease notation we write hi = log
(

2
m̂(ci)

− 1
)
, and `i = log ci, furthermore

L1 =
∑K

i=1 `i, and L2 =
∑K

i=1 `
2
i .

The minimal inhibitory concentration (MIC) is the smallest antibiotic concen-
tration that stops bacteria growth. In mathematical terms ϑ := MIC = min{c :
m(c) ≤ 1}, which, under the assumption (2) ϑ = MIC = α−1/β. Define the estima-

tor ϑ̂ = α̂−1/β̂.
In the following statement we summarize the main properties of these estimators.

Introduce the notation

ki =
2

m(ci)(2−m(ci))

σεµn(m(ci)) log 2

µ′n(m(ci))
, i = 1, 2, . . . , K.

Proposition 3. Assume that first x0 → ∞ and then N → ∞. Then the esti-
mates α̂, β̂, and ϑ̂ are weakly consistent estimators of the corresponding quantities.
Furthermore, as x0 →∞ and then N →∞

√
N(α̂− α, β̂ − β)

D−→ (U, V ),

where (U, V ) is a two-dimensional normal random vector with mean 0 and covariance
matrix (

σ2
α σαβ

σαβ σ2
β

)
,

where

σ2
α =

α2

(KL2 − L2
1)

2

K∑
i=1

k2i (L2 − L1`i)
2

σαβ =
α

(KL2 − L2
1)

2

K∑
i=1

k2i (K`i − L1)(L2 − L1`i)

σ2
β =

1

(KL2 − L2
1)

2

K∑
i=1

k2i (K`i − L1)
2 ,

and

√
N(ϑ̂− ϑ)

D−→ N (0, σ2
ϑ),

with

σ2
ϑ =

ϑ2 (logα)2

β2(KL2 − L2
1)

2

K∑
i=1

k2i

(
L2 − L1`i

logα
− K`i − L1

β

)2

.

In Figures 2 and 3 we see the estimated means and the corresponding fitted curve
m(c), where the parameters α, β are estimated as described in (4).
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Figure 2: Estimated means and the fit-
ted curve for azithromycin.

Figure 3: Estimated means and the fit-
ted curve for ciprofloxacin.

Estimation of in vitro bactericidal potency based

on colony counting method

The qPCR method measures the total bacterial genom, which is the total number
of dead and alive bacterial cells multiplied by a constant. On the other hand, colony
counting gives an estimator for the extinction probability. The basic experiment is
the following. Originally, x0 bacterial cells (e.g. Escherichia coli) are inoculated onto
agar plates containing a series of antibiotic concentration, and after the incubation
period all the viable colonies are enumerated, see e.g. Liu et al. [5].

Consider a simple Galton–Watson branching process as in (1), where each bac-
teria either dies (leaves no offspring) or divides (leaves 2 offsprings) with respective
concentration dependent probabilities p0 = p0(c), and p2 = p2(c) = 1− p0(c).

Let f(s) = fc(s) = p0 + p2s
2 denote the offspring generating function and m =

m(c) = 2p2(c) the offspring mean if the antibiotic concentration is c. The process
starts with a single ancestor X0;c = 1, and

Xn+1;c =

Xn;c∑
i=1

ξ
(n)
i;c ,

where {ξc, ξ(n)i;c : i ≥ 1, n ≥ 1} are iid random variables with generating function fc.
We further assume that the offspring distribution is given by

p2(c) =
1

1 + αcβ
, (5)

where α > 0, β > 0 are unknown parameters. Note that as m = 2p2 this is the
same assumption as earlier. Under this model the MIC, the smallest antibiotic
concentration preventing bacterial growth, is the smallest c for which m(c) = 1,
that is α−1/β.

If m ≤ 1 then the process dies out almost surely, while if the process is super-
critical, i.e. m > 1 then the probability of extinction is the smaller root of fc(q) = q,
which is in our setup
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q(c) =


1−p2(c)
p2(c)

, if p2(c) > 1/2,

1, if p2(c) ≤ 1/2.
(6)

Estimation of the parameters

Assume that the initial number of bacterial cells is x0, that is we observe x0 inde-
pendent copies of the Galton–Watson process (Xn;c). Then the number Yc of living
colonies has binomial distribution with parameters x0 and 1− q(c). Therefore, the
natural estimator for q(c) is

q̂(c) = 1− Yc
x0
.

The law of large numbers and the central limit theorem implies that q̂(c) is a weakly
consistent estimator, and as x0 →∞

√
x0√

q(c)(1− q(c))
(q̂(c)− q(c)) D−→ N (0, 1). (7)

From (6) we see that we can estimate p2(c) only if q(c) < 1, or equivalently
m(c) > 1, in which case

p̂2(c) =
1

1 + q̂(c)
. (8)

We assume that the offspring mean as a function of c satisfies (5) for some unknown
parameters α > 0, β > 0. Assume that we have measurements for K ≥ 2 different
concentrations c1 < c2 < . . . < cK , such that m(cK) > 1. As in (8), we obtain the
estimator p̂2(ci) at different concentrations, from which, using simple least squares
estimator we obtain the estimator

β̂ =
K
∑K

i=1 hi`i −
∑K

i=1 hiL1

KL2 − L2
1

,

α̂ = exp

{∑K
i=1 hi − β̂L1

K

}
,

where to ease notation we write hi = log
(

1
p̂2(ci)

− 1
)

, `i = log ci, L1 =
∑K

i=1 `i and

L2 =
∑K

i=1 `
2
i .

Under the assumption (5) the MIC equals ϑ = α−1/β, therefore its natural esti-
mator is

ϑ̂ = α̂−1/β̂.

Using (7), as in Proposition 3 we can prove that these estimators are asymptotically
normal. Introduce the notation

ki =
p2(ci)

1− p2(ci)
√
q(ci)(1− q(ci)), i = 1, 2, . . . , K.
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Proposition 4. Assume that c1 < . . . < cK are given concentrations such that
m(cK) > 1. Then as x0 → ∞, α̂, β̂, and ϑ̂ are weakly consistent estimators of the
corresponding quantities. Furthermore, as x0 →∞

√
x0(α̂− α, β̂ − β)

D−→ (U, V ),

where (U, V ) is a two-dimensional normal random vector with mean 0 and covariance

matrix

(
σ2
α σαβ

σαβ σ2
β

)
, where

σ2
α =

α2

(KL2 − L2
1)

2

K∑
i=1

k2i (L2 − L1`i)
2,

σαβ =
α

(KL2 − L2
1)

2

K∑
i=1

k2i (K`i − L1)(L2 − L1`i),

σ2
β =

1

(KL2 − L2
1)

2

K∑
i=1

k2i (K`i − L1)
2 ,

and √
x0(ϑ̂− ϑ)

D−→ N (0, σ2
ϑ),

as x0 →∞, with

σ2
ϑ =

ϑ2 (logα)2

β2(KL2 − L2
1)

2

K∑
i=1

k2i

(
L2 − L1`i

logα
− K`i − L1

β

)2

.

Branching model with state dependent offspring

distribution for Chlamydia spread

Chlamydiae are obligate intracellular bacteria which have a unique two-stage devel-
opmental cycle, with two forms, the elementary body (EB) and the reticulate body
(RB). The EB is the infectious form but it is incapable of reproducing. Once the
EB infects the host cell, it transforms into an RB. The RB multiplies in the host cell
by binary fission. After some time RBs redifferentiate to EBs. The EBs are then
released from the host cell ready to infect new host cells. It was shown recently by
Lee et al. [4] using 3D electron microscopy method and manual counting that this
conversion occurs asynchronously, so that some RBs are converting into EBs, while
others continue to divide.

Consider a two-type discrete-time Galton–Watson branching process Xπ = (Xπ
n)n

= (Xπ
n , Y

π
n )n, n ≥ 0, together with a sequence of probabilities π = (pn)n. We as-

sume that π is adapted to the natural filtration (Fn)n generated by X, i.e. Fn =
σ(Xπ

k , k ≤ n). Initially Xπ
0 = (1, 0), and the process evolves as

Xπ
n+1 =

Xπ
n∑

i=1

ξn,i,

Y π
n+1 = Y π

n +

Xπ
n∑

i=1

(
1− ξn,i

2

)
, n ≥ 0,
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where (ξn, ξn,i), n = 1, 2, . . . , i = 1, 2, . . . are conditionally independent random vari-
ables given (pn)n, for fix n the variables (ξn, ξn,i), i = 1, 2, . . . are identically dis-
tributed, such that P(ξn = 2|pn) = pn, P(ξn = 0|pn) = 1− pn. Here Xπ

n stands for
the number of RBs and Y π

n for the number of EBs in generation n.
The process ends at a random time T ∈ {1, 2, . . .} when the infected host cell

dies. The aim of the bacterial population is to produce as many EBs as possible,
that is to maximize E(Y π

T ) over all possible strategies (pn). Denoting by P the set
of all strategies, a strategy q is optimal, if

sup
π∈P

E(Y π
T ) = E(Y q

T ).

Assume that the host cell’s death time T is independent of the process Xπ.
Introduce the notation π` = (1, 1, . . . , 1, 0, 0, . . .), where the first ` ≥ 0 components
are 1.

Theorem 1. Assume that T ≥ 1 is bounded and it is independent of Xπ. Let ` be
such that

2`P(T > `) = sup
k≥0

2kP(T > k).

Then π` is an optimal strategy, with optimal value

sup
π∈P

E(Y π
T ) = sup

k≥0
2kP(T > k).

Now we assume that T , the death time depends on the process Xπ. Given that
the host cell is alive in generation n− 1, the probability that it dies in the next step
is d(Xπ

n , Y
π
n ), that is

P(T = n|T > n− 1,Fn) = d(Xπ
n , Y

π
n ).

Assume that

∃ C > 0 such that d(x, y) = 1 whenever x+ y ≥ C. (9)

Let X̃n = XnI(T > n), Ỹn = YnI(T ≥ n). Note that X̃T = 0, ỸT = YT , and

ỸT+1 = 0, which is convenient at the definition of the reward function in (10).

Define a Markov chain (X̃n, Ỹn)n on the state space {0, 1, . . .}2, where the possible
controls are given by the duplication probabilities pn ∈ [0, 1]. The reward function
(−1 times the cost function in [2]) gives the number of EBs upon cell’s death, that
is

c(x, y) =

{
y, x = 0,

0, otherwise.
(10)

Define the value function

h(x, y) =

{
supπ∈P E

[∑∞
n=0 c(X̃n, Ỹn)|(X̃0, Ỹ0) = (x, y)

]
, d(x, y) < 1,

y, d(x, y) = 1.
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Theorem 2. Assume that (9) holds. Then h(x, y) = y if x+y ≥ C, and h(0, y) = y
for any y. Assume that h(x, y) is determined whenever x+ y ≥ m for some m ≤ C,
and let x+ y = m− 1. Then

h(x, y) = max
p∈[0,1]

x∑
j=0

(
x

j

)
pj(1− p)x−j

× [d(2j, y + x− j)(y + x− j) + (1− d(2j, y + x− j))h(2j, y + x− j)] ,
(11)

where all the values of h on the right-hand side are determined. The maximum in
p of the continuous function on the right-hand side of (11) is attained at p(x, y),
which gives the optimal strategy.

Branching model for the spread of Chlamydia un-

der the influence of antibiotics

Now we investigate the behavior of the combined model, specifically determining
the optimal spread of Chlamydia in the presence of antibiotic.

Consider a three-type discrete-time Galton–Watson branching process Xπ =
(Xπ

n)n = (Xπ
n , Y

π
n , Z

π
n ), n ≥ 0, together with a sequence of probabilities π = (pn)n.

We assume that π is adapted to the natural filtration (Fn)n generated by Xπ, i.e.
Fn = σ(Xπ

k , k ≤ n). Initially Xπ
0 = (1, 0, 0), and the process evolves as

Xπ
n+1 =

Xπ
n∑

i=1

ξn,i, Y π
n+1 = Y π

n +

Xπ
n∑

i=1

ηn,i, Zπ
n+1 = Zπ

n +

Xπ
n∑

i=1

ζn,i, n ≥ 0,

where (ξn, ηn, ζn), (ξn,i, ηn,i, ζn,i) n = 1, 2, . . ., i = 1, 2, . . . are conditionally indepen-
dent random variables given (pn)n, for fix n the variables are identically distributed,
such that

P ((ξn, ηn, ζn) = (2, 0, 0)|pn) = pn,

P ((ξn, ηn, ζn) = (0, 1, 0)|pn) = 1− pn − pc,
P ((ξn, ηn, ζn) = (0, 0, 1)|pn) = pc.

Xπ
n and Y π

n again stands for the number of RBs and number of EBs in generation
n, while Zπ

n denotes the number of dead bacteria in generation n. In generation n
each RB duplicates with probability pn, or die, with a predetermined probability
pc, or converts into EB with probability 1− pn − pc. The probability pc depends on
antibiotic concentration c ≥ 0.

Theorem 3. Assume that ∃C such that d(x, y, z) = 1 whenever x + y + z ≥ C.
Then h(x, y, z) = y if x + y + z ≥ C, and h(0, y, z) = y for any y, and for any z.
Assume that h(x, y, z) is determined whenever x+ y+ z ≥ m for some m ≤ C, and
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let x+ y + z = m− 1. Then

h(x, y, z) = max
p∈[0,1−pc]

x∑
j=0

x−j∑
k=0

(
x

j

)
pj
(
x− j
k

)
pkc (1− p− pc)x−j−k

× [d(2j, y + x− j − k, z + k)(y + x− j − k)

+ (1− d(2j, y + x− j − k, z + k))h(2j, y + x− j − k, z + k)],

where all the values of h on the right-hand side are determined. The maximum of
the continuous function is attained at p(x, y, z), which gives an optimal strategy.

The theoretical model, when antibiotic has effect

on both types

Now we presume that the antibiotic exerts an influence on the RB body, and on
the EB body as well. Consider a three-type discrete-time Galton–Watson branching
process Xπ = (Xπ

n)n = (Xπ
n , Y

π
n , Z

π
n ), n ≥ 0. The process evolves as

Xπ
n+1 =

Xπ
n∑

i=1

ξn,i, Y π
n+1 =

Xπ
n∑

i=1

ηn,i +

Y πn∑
i=1

(1− ζ ′n,i), Zπ
n+1 = Zπ

n +

Xπ
n∑

i=1

ζn,i +

Y πn∑
i=1

ζ ′n,i,

where (ξn, ηn, ζn, ζ
′
n), (ξn,i, ηn,i, ζn,i, ζ

′
n,i) n = 1, 2, . . ., i = 1, 2, . . . are conditionally

independent random variables given (pn)n, for fix n the variables are identically
distributed, such that

P ((ξn, ηn, ζn) = (2, 0, 0)|pn) = pn,

P ((ξn, ηn, ζn) = (0, 1, 0)|pn) = 1− pn − pc,
P ((ξn, ηn, ζn) = (0, 0, 1)|pn) = pc,

and P(ζ ′n = 0) = 1 − qc, P(ζ ′n = 1) = qc. In generation n each RB duplicates with
probability pn, or die, with a predetermined probability pc, or convert into EB with
probability 1− pn− pc. In generation n each EB dies with a determined probability
qc.

Theorem 4. Assume that ∃C such that d(x, y, z) = 1 whenever x+ y+ z ≥ C, and
N is given. Then for any n ≤ N , h(x, y, z;n) = y(1− qc)N−n, if x+ y+ z ≥ C, and
h(0, y, z;n) = y(1 − qc)N−n for any y, and for any z. Assume that h(x, y, z;n) is
determined whenever x+y+z+n ≥ m for some m ≤ C+n, and let x+y+z+n =
m− 1. Then for all n ≤ N − 1

h(x, y, z;n) = max
p∈[0,1−pc]

x∑
j=0

x−j∑
k=0

y∑
`=0

(
x

j

)(
x− j
k

)(
y

`

)
× pjpkc (1− p− pc)x−j−kq`c(1− qc)y−`

× [d(2j, y − `+ x− j − k, z + k + `)(y − `+ x− j − k)(1− qc)N−(n+1)

+ (1− d(2j, y − `+ x− j − k, z + k + `))

× (h(2j, y − `+ x− j − k, z + k + `;n+ 1)(I(n+ 1 < N)

+ (y − `+ x− j − k)I(n+ 1 = N)))],
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where all the values of h on the right-hand side are determined. The maximum of
the continuous function is attained at p(x, y, z), which gives an optimal strategy.

Összefoglaló

A disszertáció a Chlamydia baktériumfaj sztochasztikus modellezését mutatja be.
Először megadunk egy Galton–Watson modellt, mely egy baktériumpopuláció nö-
vekedését ı́rja le antibiotikum jelenlétében. A sztochasztikus modellünk sokkal
természetesebb a korábbi determinisztikus modellekhez képest (ld. Liu és munkatár-
sai cikkében [5]). Feltettük, hogy az utódok várható értékét az m(c) = 2/(1 + αcβ)
formula adja meg, ahol c az antibiotikum koncentráció, valamint α > 0, β > 0
ismeretlen paraméterek. A qPCR technikában figyelembe véve a mérési hibát,
különböző antibiotikum koncentráció esetén gyengén konzisztens, valamint aszimp-
totikusan normális becsléseket kaptunk az ismeretlen (α, β) paraméterekre. Szimu-
lációs eredményeink azt mutatják, hogy a modellünk jól ı́rja le a baktérium valódi
viselkedését.

Ezután a modellfeltevésünket meghagyva, azonban más mérési eljárást feltéte-
lezve a kihalási valósźınűséget tudtuk becsülni. A kolóniaszámlálás során, ha x0
számú egyedet oltanak rá egy sor antibiotikumot tartalmazó agarlemezre, akkor az
inkubációs időszak végén az összes életképes telepet megszámolják. Feltettük, hogy
az utódok eloszlását a p2(c) = m(c)/2 formula adja meg. Gyengén konzisztens,
valamint aszimptotikusan normális becsléseket kaptunk az (α, β) paraméterekre,
valamint a MIC-re.

A Chlamydia populációk evolúciójának léırására egy új elágazó modellt adunk
meg. Ebben a modellben az állapotfüggő utódeloszlás meghatározása sztochasztikus
optimalizációs probléma megoldásával történik. A folyamatról az egyetlen bemeneti
információnk a d halálozási függvény, mely megadja annak a valósźınűségét, hogy
a gazdasejt adott állapotban meghal. Természetes halálozási függvényt választva,
a szimulációs eredmények azt mutatják, hogy a folyamat képes megfogni a bakté-
riumsejtek aszinkron viselkedését, amit nem régen ḱısérletekkel is alátámasztottak
[4]. A szimulált adataink rendḱıvül jól illeszkednek a valós mért adatokhoz. Legjobb
tudomásunk szerint ez az első olyan matematikai modell, amely reprodukálja ezt a
jelenséget.

Végül korábbi eredményeinket kapcsoltuk össze. Megvizsgáltuk a Chlamydia
optimális terjedését abban az esetben, ha jelen van az antibiotikum. Megjegyzendő,
hogy a legjobb ismereteink szerint valós mérési adatok nincsenek. Első esetben a
modellünket annyiban egyszerűśıtettük, hogy az antibiotikum csupán az RB alakra
fejti ki hatását, majd vizsgáltuk azt az esetet is, amikor mindkét t́ıpusra hatással
van az antibiotikum.

References

[1] N. S. Goel and N. Richter-Dyn. Stochastic models in biology. Elsevier, 2013.

[2] O. Hernández-Lerma and J. B. Lasserre. Discrete-time Markov control processes:
basic optimality criteria, volume 30. Springer Science & Business Media, 2012.

12



[3] M. Kimmel and D. E. Axelrod. Branching processes in biology, volume 19 of In-
terdisciplinary Applied Mathematics. Springer, New York, second edition, 2015.

[4] J.K. Lee, G.A. Enciso, D. Boassa, C.N. Chander, T.H. Lou, Pairawan S.S.,
M.C. Guo, Wan F.Y.M., M.H. Ellisman, C. Sütterlin, and M. Tan. Replication-
dependent size reduction precedes differentiation in chlamydia trachomatis. Na-
ture Communications, 45(9):3884–3891, 2018.

[5] Y. Q. Liu, Y. Z. Zhang, and P. J. Gao. Novel concentration-killing curve method
for estimation of bactericidal potency of antibiotics in an in vitro dynamic model.
Antimicrobial Agents and Chemotherapy, 48(10):3884–3891, 2004.

[6] M. Santillán. On the use of the Hill functions in mathematical models of gene
regulatory networks. Mathematical Modelling of Natural Phenomena, 3(2):85–97,
2008.

[7] J. S. Yuan, A. Reed, F. Chen, and C. N. Stewart. Statistical analysis of real-time
PCR data. BMC Bioinformatics, 7(85), 2006.
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