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1 Introduction

In order to analyze and predict the behavior of the various systems that
make up our environment, we use models to describe them. In cases where
we need to model relationships between entities, we turn to the toolkit of
network science, especially when we need to identify groups that share
a common property. We often call these groups communities. The term
“community,” however, is not precise, as these groups are often defined
as entities with denser internal connections than external ones within a
network. Hierarchies also tend to appear together with communities, as seen
in a variety of fields, such as social sciences [9], economics [10] and ecology
[11]. In the social sciences and economics, we usually see well-defined,
formal hierarchies, e.g., with leaders in groups or levels of hierarchies in
firms. Sometimes, though, these hierarchies are not explicit, but we still
wish to identify them.

In this thesis, I introduce methods that allow detecting overlapping and
hierarchical relationships within networks. Nestedness is a famous example
that has mostly only been quantified in the literature, not detected as an
overlapping community structure [[12]. It is a special pattern where entities
(e.g., pollinators) with fewer connections are linked to the same group (of
plants, for example) as those with more connections. Information about
local nested relationships in the network can help us better understand
the role of each entity in the network. It also implies a hierarchy, where
the subset relationship naturally defines so-called generalist and specialist
entities, that have large or small neighborhoods, respectively. Similarly,
knowing what communities (and potentially hierarchies) exist in a network
turns out to be a useful piece of information in other domains as well. In
portfolio optimization, clusters of assets that are highly correlated are usually
best avoided, as investing in them increases the risk of the portfolio. Here,
methods have been introduced that use hierarchical clustering to perform
portfolio selection [[13}14], however, the Markowitz model [15], which relies
on quadratic programming, can also be improved.

The thesis presents new community detection methods and adaptations



of hierarchical clustering algorithms for special use cases. Contributions of
this work include heuristic and exact overlapping community detection al-
gorithms for finding fully nested subgraphs in networks, and specializations
of hierarchical clustering algorithms to detect nestedness and to find closely
related assets in the stock market to aid diversification in the investment
process.

The dissertation consists of two major parts. Following a brief introduc-
tion to the concepts discussed in Chapter 1, Part I presents overlapping
community detection algorithms for nestedness. Chapter 2 proposes an
edge-based heuristic for finding overlapping nested subgraphs in a network.
Following in these footsteps, Chapter 3 introduces an exact algorithm for
discovering all maximal nested subgraphs in a network. In Part II, I focus
on the problem of finding (disjoint) clusters using hierarchical clustering to
solve different problems where a known cluster structure is beneficial. In
Chapter 4,1 adapt two hierarchical clustering approaches for detecting nest-
edness. Chapter 5 presents the use of hierarchical clustering to improve the
risk estimation of the Markowitz portfolio selection model and compares it
against new, hierarchical clustering-based portfolio selection algorithms.

2 Nestedness as an overlapping community
structure

Nestedness is a property of networks that imposes stiff structural constraints.
In a fully nested graph, the vertices (in the case of bipartite graphs, the
vertices of each class) can be ordered such that the neighborhood of a lower
degree vertex is a subset of that of a higher degree vertex.

The property also implies a hierarchy, due to the relationship of the
neighborhoods. In the chains, vertices with fewer neighbors are often re-
ferred to as specialists, while vertices with large neighborhoods are called
generalists. Our goal was to detect the overlapping fully nested subgraphs,
and potentially also identify generalist and specialist vertices within the
communities. We also wanted to develop methods that do not require
graphs to be bipartite, since the definition of nestedness can be applied to
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non-bipartite graphs as well [16]. In order to measure nestedness at the local
level, we use the following metric:

IN() N N(3)|
min {|N(3)[, [N ()]}’

where N () is the neighborhood of vertex i.

First,in Chapter 2 of the thesis, a heuristic algorithm is presented that
uses the edges of a graph to detect overlapping fully nested subgraphs. The
algorithm has a parameter that allows fine-tuning its performance-accuracy
trade-off. We have evaluated the algorithm on random and real-world bi-
partite networks and showed that the size of the communities detected by
the algorithm correlates with the discrepancy nestedness measure. We also
measured the runtime and the average community sizes as a function of the
threshold parameter. We found that a large fraction of nested communities
are detected in the first few iterations of the algorithm, making the parameter
an effective tool for increasing performance while maintaining relatively
high accuracy. This is shown in Figure[]

Chapter 3 presents an overlapping community detection algorithm
for nestedness that relies on the construction of an auxiliary nestedness
graph that allows us to extract the communities and also infer the role of
each node in those communities. Additionally, we introduced a method that
can create bipartite graphs with known ground truth nested communities,
allowing us to test the community detection algorithm. Using the output
of the detection algorithm, we defined a new metric (vertex presence) to
measure graph-level nestedness. We also tested the algorithm on real-world
bipartite and non-bipartite networks. We found that the ecological bipartite
networks showed some degree of nestedness, with some networks being
highly or even fully nested. This was not true in the case of non-bipartite
networks, where there were large amounts of small fully nested subgraphs,
leading to the conclusion that the networks were not nested. One such
example is the Florentine families network seen in Figure[2]

I have published open-source reference implementations for both algo-
rithms [17].

nest(i,j) = (1
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Figure 2: The Florentine families network and its nestedness community graph.
In this network, nestedness is preferably avoided, as having only a subset of
another family’s neighbors may be highly disadvantageous in an information
spreading situation. Only some central families, such as the Medici, Albizzi,
or Strozzi, are generalists (with only incoming edges). The nestedness of the
network is low.



3 Applications of hierarchical clustering

While overlapping community detection can reveal more information about
the interaction of the different groups in a network through overlaps, clus-
tering is sometimes still the preferred approach. In cases where we want
to focus on placing entities in their dominant group, or when comparing
groupings on the same graph across algorithms, disjoint clusters are much
easier to handle. Hierarchical clustering creates an approach that is halfway
between traditional clustering and overlapping community detection meth-
ods. It constructs a merge tree representing the hierarchy of the nodes and
clusters, where every horizontal slice (level) is a clustering of the network.
The tree has n clustering levels, where n is the number of vertices in the
network. Between two adjacent levels, two clusters are merged into one
or one cluster is split into two, depending on the approach. This makes
hierarchical clustering more versatile than traditional clustering algorithms,
since its output encodes additional information that enables us to make
further adjustments to the results.

In various problems, where networks can be used as a representation,
identifying groups of similarly behaving entities is key to solving the prob-
lem itself;, either directly or indirectly. In Part II, I explore one problem in
each category: in Chapter 4,1 continue to work with nestedness, where [ use
hierarchical clustering to find disjoint fully nested subgraphs in networks,
and in Chapter 5,1 use hierarchical clustering to improve the performance
of a portfolio selection model. In the case of nestedness, it is our direct goal
to find fully nested groups of vertices,and among them, we want to find a
clustering where every cluster is a fully nested subgraph, but the number of
clusters is as small as possible. However, in portfolio selection, we want to
avoid investing heavily in stocks (the vertices) that behave similarly.

Chapter 4 introduces adaptations of two hierarchical clustering ap-
proaches for finding disjoint fully nested subgraphs of a network. We adapt
a bottom-up (agglomerative) and a top-down (divisive) algorithm, the latter
being a modification of the Girvan-Newman algorithm [18],a well-known
method for performing divisive hierarchical clustering. To select the appro-
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Figure 3: Best method based on ARI values for each p1 and p2 value on the
synthetic networks.

priate clustering level, we introduced new metrics derived from the results
of the algorithms that allow measuring the nestedness of both a nested clus-
tering and the whole graph. To evaluate the stability of the methods, we
created synthetic bipartite networks with known nestedness structures and
rewired their edges with given probabilities. Of the algorithms, the top-down
one performed better at lower permutation probabilities, and the bottom-up
approach was better at higher ones, as seen in Figure[3| Furthermore, we also
tested the algorithms on real-world bipartite and non-bipartite networks.
The experiments confirmed that the traditional benchmark non-bipartite
networks we analyzed in Chapter 3 show little nestedness overall. We
also showed that the bottom-up approaches found the largest fully nested
clusters. A comparison of how nested the clusters are on average at each
step on the real-world bipartite network dataset is shown in Figure[d] The
algorithms are also available as open source code [[19].

Chapter 5 introduces hierarchical clustering algorithms for filtering
covariance matrices in the Markowitz portfolio selection model [15]. The

6



model relies on covariance matrices to assess risk, but these matrices are
sensitive to estimation errors. However, to get a clearer picture of how the
market behaved in the recent past, we need to use a smaller sample size. The
“noise” introduced by the estimation can be reduced by filtering methods.
Here, we use hierarchical clustering to implement such filtering methods by
creating a graph from the covariance matrix, building a minimal spanning
tree-like structure with hierarchical clustering, and using the clustering
results to replace the covariances.

We also compared our methods with new portfolio selection algorithms
thatare based purely on hierarchical clustering and do not rely on covariance
matrices [13}|14]. For our experiments, we used two real-world datasets
from the assets of the Budapest Stock Exchange (BSE) and the assets of the
Standard and Poor’s 500 (S&P 500) index. A summary of the returns and
risks on the S&P 500 dataset is shown in Figure[5]

Our results show that the filtering algorithms were effective in reducing
both the realized risk and the risk estimation errors, while the new methods
realized higher returns in exchange for higher risks.
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Figure 4: Average of mean nestedness values across all graphs of the Web of Life
dataset in the function of normalized cluster counts, for all clustering algorithms.
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Figure 5: Realized returns and changes between estimated and realized risks
on the S&P 500 dataset. The arrows point towards the realized risk and their
lengths correspond to the magnitude of over- or underestimation — if red, the
method underestimated the risk, if green, it overestimated it.



4 Contributions of the thesis

In the first thesis group, the contributions are related to detecting overlap-
ping nested community structures. Detailed discussion can be found in
Chapters 2 and 3.

I/1. Iproposed an edge-based, adjustable heuristic algorithm for detecting
overlapping nested communities.

I/2. Tintroduced an exact algorithm to derive a nestedness graph from net-
works. With this graph, all overlapping communities can be detected.

I/3. Idefined metrics from the output of the overlapping nested community
detection algorithms to quantify graph-level nestedness.

I/4. Ishowed that the new algorithms (unlike most previously found in the
literature) do not require graphs to be bipartite.

I/5. I showed that common non-bipartite benchmark graphs show little,
while some bipartite ecological graphs show large amounts of nested-
ness.

In the second thesis group, the contributions are related to the applications
of hierarchical clustering. Detailed discussion can be found in Chapters 4
and 5.

II/1. T adapted two hierarchical clustering approaches to detect disjoint
fully nested subgraphs in networks.

I1/2. T created a unified approach to compare top-down and bottom-up
algorithms.

I1/3. I defined metrics based on the output of the nested hierarchical clus-
tering algorithms to quantify graph-level nestedness.
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Table 1: Correspondence between the thesis points and my publications.

T Thesis point

Publication | 1\ 1o | 13| 14 | 15 III/)i 2 | 3| 4| s
[P1] * o
P2] e
[P3] * o
[P4] ° ° ° °
[P5] ° ° hd
[P6] ° o . °
[P7] *
[P8]

I1/4. T introduced hierarchical clustering-based filtering methods to im-
prove the performance of the Markowitz portfolio selection model by
reducing noise.

I1/5. Icompared multiple hierarchical clustering-based solutions (including
filtering algorithms and models) on the portfolio selection problem
using real-world datasets, showing that the filtering algorithms are
effective in reducing risk estimation errors, while the new methods are
capable of achieving higher returns.

Table[{]summarizes the relation between the thesis points and the corre-
sponding publications.
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5 Osszefoglalas

Az értekezés 1j, specialis kozosségkeresd eljarasokat ismertet. A mddsze-
rekben ko6z6s, hogy olyan kozosségszerkezeteket keresnek, amelyekben
hierarchikus viszonyok is fellelhet6k. A bemutatott algoritmusok két f6
témakdrre bonthatok: atfedé kozosségkeresd és hierarchikus klaszterezé
eljarasok, igy a munka is két {6 részbdl all.

Az elsé rész olyan atfedd kozosségeket keresd algoritmusokat mutat be,
amelyek teljesen egymdsba dgyazott részgrafokat azonositanak hdlézatok-
ban. A 2.fejezetben el6szor egy paraméterezhet$ heurisztikus algoritmust
ismertetek, amely él-alapon keres 4tfedd, teljesen egymasba agyazott k6zos-
ségeket. A 3.fejezetben egy egzakt algoritmust mutatok be, amely minden
maximalis egymasba dgyazott kozosséget felfed a halézatokban. Az algorit-
mussal egyiitt definidlok egy j metrikat (vertex presence) is,amellyel graf
szinten mérhet§ az egymasba agyazottsag. Megidllapitottuk, hogy a vizsgalt
6koldgiai hal6zatokban magasabb, mig a hagyomanyos kdzdsségkeresési
referenciagrafokban alacsony az egymadsba agyazottsag. A szakirodalomban
tudtunkkal fellelhet6 algoritmusokkal ellentétben a mi eljarasaink nem csak
paros grafokon miikddnek.

A masodik rész hierarchikus klaszterezé algoritmusok alkalmazdsait
mutatja be. A 4.fejezetben két megkdzelités tobb valtozata is megtalalha-
t6, amelyekkel grafok egymasba dgyazottsaga derithet6 fel (nem atfedd)
klaszterek formajaban. Az algoritmusok koéziil az alulrél-felfelé (bottom-up)
modszerek taldltak meg a legnagyobb teljesen egymadsba agyazott klasztere-
ket.

Az 5. fejezet hierarchikus klaszterezésen alapulé kovarianciamatrix-
sziirési eljarasokat mutat be a Markowitz portféliomodell teljesitményének
javitasara. A sziirési eljarasokat 4j, hierarchikus klaszterezésen alapulé
portfolidkivalasztasi eljarasokkal is 6sszevetettiik. Megallapitottuk, hogy a
szlirési eljarasok hatékonyabbak voltak a kockazatbecslés hibajanak csok-
kentésében, mig az 4j eljarasok magasabb hozamokat kindltak, magasabb
kockazatok mellett.
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Nyilatkozat

Gera Imre “Beyond Dense Subgraphs: Nestedness, Hierarchies, and Com-
munity Structures in Complex Networks” cim@ PhD disszertaciéjaban a
kovetkez6 eredményekben Gera Imre hozzajarulasa volt a meghatarozo:

o A 2. fejezetben felhasznalt [P6] publikaciéoban megjelent kutatas
esetén: algoritmus megtervezése és megvaldsitasa, kisérletek eredmé-
nyeinek értelmezése és vizualizacidja.

o A 3. fejezetben felhasznalt [P4] publikaciéban megjelent kutatas
esetén: algoritmus megtervezése és megvaldsitasa, tesztgraf-generald
algoritmus megtervezése és megvaldsitasa, vertex presence metrika
definialdsa, kisérletek kiértékelése és eredmények vizualizicidja.

o A 4. fejezetben felhasznalt [P5] publikdcioban megjelent kutatds
esetén: algoritmusok adaptalasanak megtervezése és implementa-
cidja, szintetikus grafgenerald algoritmus megtervezése, egymasba
agyazottsagi metrikdk definidlasa, eredmények kiértékelése és vizua-
lizacioja.

o Az 5.fejezetben felhasznalt [P1,|P2, P3| publikdciékban megjelent
kutatas esetén: mddszerek implementacidja, adathalmazok 6sszealli-
tasa, kisérletek megtervezése és kiértékelése.



Ezek az eredmények Gera Imre PhD disszertacidjan kiviil mas tudoma-

nyos fokozat megszerzésére nem hasznalhatok fel.

Szeged, 2024.szeptember 10.
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