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Chapter 1
Introduction

This dissertation is built around four of the author’s papers. In these papers,
we count specific objects of lattice theory, answering the following questions. What
is the number of (the isomorphism classes of) slim rectangular lattices of a given
length? How many elements does a minimum-sized generating set of a given qua-
siorder lattice have? How many congruences can a finite lattice have? The answer
to the first question gave us an integer sequence not added previously to The
On-Line Encyclopedia of Integer Sequences, OEIS for short. We were the first to
publish it there; see A273988 at https://oeis.org/A273988. As in general, the mo-
tivation to enumerate mathematical objects (lattices, generating elements, lattice
congruences in our case) is two-fold. First, research of this kind can, sometimes,
contribute to a better insight into the objects we count. Second, the numbers we
obtain can occur (now or possibly in the future) in the OEIS. If so, then the nu-
merical coincidence can be accidental but it can also be a sign of a previously not
known relation between distinct mathematical topics. For example, in a related
paper, Czédli, Dékany, Ozsvért, Szakics and Udvari [34, Proposition 3.4] (so not
in one of the author’s papers), the number of some lattices with a given parameter
n turned out to be the n-th Catalan number. At the time of writing, the search
for “Catalan number” in the OEIS returns 3356 results. Several of these research
results are in connection with mathematical structures. It remains a task for the

future whether the lattices enumerated in Czédli et al. [34] have some contentful
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connection with the just-mentioned mathematical structures. When the numbers
of our sequence A273988 appear in the OEIS more than once, they might offer

analogous tasks to deal with.

In the second chapter, we present our result about slim rectangular lattices
from the paper [33]. Slim rectangular lattices are special planar semimodular lat-
tices introduced by Gréatzer and Knapp in [62]. After describing these lattices by
permutations, we determine the number of these lattices of a given length n. Be-
sides giving formulas, which are effective up to about n = 1000, we also prove that
the number of these lattices of a given length n is asymptotically (n — 2)! - e2/2,

where e is Euler’s famous number, e ~ 2.71828.

In Chapter 3, we aim at finding the sizes of minimum-sized generating sets of
some well-known lattices, which consist of some relations. For every set A occurring
in the description of Chapter 2, unless it is explicitly stated otherwise, we assume
that A satisfies the condition that

there is no inaccessible cardinal A such that A\ < |A]. (1.0.1)

In connection with this (possibly strange) condition, one of Kuratowski’s results

is worth mentioning here. Namely, Kuratowski [73] has proved the following:

If ZFC is consistent, which is generally believed, then ZFC augmented
with the axiom that “there is no inaccessible cardinal at all” is also
consistent. In other words: in ZFC, we cannot prove the existence of (1.0.2)
inaccessible cardinal numbers, simply because in the so-called Kura-

towski’s model of ZFC, there is no inaccessible cardinal.

Being in the Bolyai Institute, we point out that (1.0.2) shows some similarity with
Janos Bolyai’s famous result (proved also by Nikolai Lobachevsky, independently);
indeed, the “existence of inaccessible cardinals” in the (appropriately reformulated
version of) (1.0.2) corresponds to “the failure of Euclid’s fifth postulate” in Bolyai’s
result.

By Strietz [83] and [84], Zadori [87], and Czédli [7], the complete lattice Equ(A)

of all equivalences on a set A is four-generated, provided that A satisfies (1.0.1).



CHAPTER 1. INTRODUCTION

Also, Equ(A) cannot be generated by less than four elements if |A| > 4; here we
do not have to assume (1.0.1). A quasiorder (relation), also known as a preorder,
is a reflexive and transitive relation. The quasiorders on a set A form the complete
lattice Quo(A) with respect to set inclusion. Results of Chajda and Czédli [4],
Takéch [85], and Dolgos [48] show that both the lattice Quo(A) of all quasiorders
on a set A satisfying (1.0.1) and, for |A| < Vo, the lattice Tran(A) of all transitive
relations on A have small generating sets.

In Chapter 3, based on our papers [72] and [37], we improve these results about
the lattices of quasiorders and those of transitive relations by allowing larger sets
A, but not larger than what (1.0.1) allows, and/or finding smaller generating sets.
First, generalizing the 1996 result of Chajda and Czédli, and the 2015 result of
Dolgos, we prove that (1.0.1) implies that the lattice of quasiorders on A is five-
generated, as a complete lattice. Then, based on complicated earlier constructions,
we derive some new results in a concise but not self-contained way. These results
include showing that Quo(A) is four-generated if |A| # 4, furthermore it is (14 1+
2)-generated in many (however not all) cases; of course, (1.0.1) is assumed; in fact,
we do not know any idea how to attack the case when A fails to satisfy (1.0.1).
Although (1.0.1) would mean no restriction at all if we worked in Kuratowski’s

model of ZFC, we admit that set theory usually assumes the opposite of (1.0.1).

In Chapter /4, for a fixed natural number n, we investigate the largest possible
values of the numbers of congruences of n-element lattices; this section is taken
from our paper [77]. Motivated by a result of Freese and continuing Czédli [21],
we determine the third, fourth and fifth largest numbers of congruences of an
n-element lattice. Furthermore, we determine the structures of those n-element

lattices that witness these numbers.



Chapter 2

The number of slim rectangular

lattices

This chapter is based on [33]. Compared to [33], which appeared in 2016, the
introductory part of the chapter has changed a lot. The rest of the section is

practically unchanged.

2.1 Outline and related results

The key definitions are given in Section 2.2. Some concepts in this historical
mini-survey will not be defined with full details; their role is only to give a vague
idea about motivations and earlier results.

Unless otherwise stated, all lattices occurring in this chapter are finite.

A lattice L is semimodular if for every x,y,z € L such that x < y, we have
that  V 2z < y V z. Slim rectangular lattices and, in particular, slim patch lattices
are of particular importance, because each planar semimodular lattice can be ob-
tained from them easily; see Grétzer and Knapp [61], Czédli and Schmidt [46],
and Grétzer [55]. (We say more about their importance later in the section.) The
present chapter describes slim rectangular lattices by permutations. Using this
description, we are going to enumerate slim rectangular lattices and slim patch

lattices of a given length n. Also, we enumerate their planar diagrams in a rea-
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sonable sense. We give precise, however, involved formulas and asymptotic ones.
By means of computer algebra, the precise formulas lead to concrete numbers for
n < 1000.

The rest of this section gives a brief historical overview of planar semimodular
lattices, including slim rectangular and slim patch lattices. Section 2.2 recalls the
main concepts and some tools we need from the theory of planar semimodular lat-
tices. In Section 2.3, we describe slim rectangular lattices by certain permutations,
and we prove several auxiliary statements that could be of separate interest. We
count these lattices of a given height n and their diagrams in Section 2.4, and we
give these numbers asymptotically for n — oo in Section 2.5. Finally, Section 2.6

contains some concrete numerical values.

The concept of slim semimodular lattices and that of rectangular lattices ap-
peared first in Grétzer and Knapp’s pioneering papers [61] and [62]. These lattices
are planar!. So far, the just-mentioned two papers have been followed by more

than four dozen others devoted to planar semimodular lattices; see the

Appendix in Czédli’s paper https://arxiv.org/abs/2107.10202v1
for the 2021 list; for the up-to-date and longer list, see (2.1.1)
http://www.math.u-szeged.hu/ "~ czedli/m/listak /publ-psml.pdf

(Note that the paper occurring in the first line of (2.1.1) is the extended arXiv
version of [28]; only this extended version contains the list in question.)

Next, we briefly discuss the role of planar semimodular lattices in lattice theory
and related mathematical fields. By a classical (1942) result of N. Funayama and
T. Nakayama, the congruence lattice Con(L) of a lattice L is necessarily distribu-
tive. For the finite case, the converse was first published by Gratzer and Schmidt
[68]: for any finite distributive lattice K, there exists a finite lattice L such that
K = Con(L). Following the terminology of Grétzer [57], we will reference this result

as the Basic Representation Theorem. Note that in his monograph [57], Grétzer

!They are planar by their original definition given in Gritzer and Knapp [61]. Later, we
will go by Czédli and Schmidt’s setting, [43], where the concept of slimness is extended to all
finite lattices including the non-semimodular ones, and planarity is a consequence of this general
notion of slimness.


https://arxiv.org/abs/2107.10202v1
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declares the Basic Representation Theorem in [68] as a rediscovery of an unpub-
lished result of R. P. Dilworth. Later, some authors, mainly Gratzer and Schmidt,
improved the Basic Representation Theorem by tailoring extra conditions to L
and/or simultaneously representing two finite distributive lattices together with
a function between them by means of lattice congruences; discussing such results
would be very far from our targets. What is important in our aspect is that the
Basic Representation Theorem remains true if we say “finite planar semimodular
lattice L” instead of a “finite lattice L” in it; this was proved by Gratzer, Lakser,
and Schmidt [65].

The first motivation for studying planar semimodular lattices is due to G.
Gratzer and it is in connection with the Basic Representation Theorem: Can we
put further restrictions on the finite lattice L (in addition to being planar and
semimodular)? And if we put certain further restrictions on L, then what further
properties will Con(L) have? So the first motivation is in connection with the
congruence lattices of some special planar semimodular lattices. Indeed, 23 out of
the 56 items on the list mentioned in (2.1.1) contain “congruence” in their titles.
For brevity, we will refer to the first motivation as “understanding the congruence
lattices” (of slim semimodular lattices).

The second motivation is that some special planar semimodular lattices, which
we will call slim semimodular lattices, appeared to be the right tools in generalizing
the classical Jordan—Hélder theorem for groups, see Czédli and Schmidt [43] and
Gratzer and Nation [66]. That is, slim semimodular lattices have been applied in
group theory.

The third motivation is that the purely lattice theoretic topic of slim semimod-
ular lattices has lead to several papers in geometry; see the survey part of one of
these papers, Czédli and Kurusa [38]; this paper is also on the list mentioned in
(2.1.1).

The fourth motivation is somewhat weaker than the preceding three but it is
still worth mentioning. At some cases, even though slim semimodular lattices are
not applied at other fields of mathematics, they still have some connections with
these fields: model theory and category theory; the titles of Czédli [27] and Czédli
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and Molkhasi [39] speak for themselves.

Based on the four motivations mentioned above, the class of planar semimod-
ular lattices, that of slim planar semimodular lattices, and two other subclasses to
be discussed later are natural classes of structures to study. Note at this point the
just-mentioned classes contain only finite lattices, since any planar lattice is finite
by definition.

To prove results about planar semimodular lattices and to apply these lattices
outside lattice theory (see the second and third motivation), one should understand
their structures. There are several approaches that offer insight into these lattices.

First of all, each planar semimodular lattice L has its slimming, which we ob-
tain by removing the “inner doubly irreducible elements” of the cover-preserving
M3-sublattices of L. Here “inner” is understood in the geometric sense with re-
spect to a fixed planar diagram of L. Thus, this concept and some other con-
cepts that come later depend on a planar diagram of L rather than on L itself.
In most of the cases, the choice of the diagram is irrelevant, at least up to left-
right symmetry. Hence, we usually drop that “a fixed planar diagram of”. Accord-
ing to Gritzer and Knapp [61], a planar semimodular lattice is slim if it is its
own slimming. (Latter, we will define slimness in another but—in the presence of
semimodularity—equivalent way.) We know from Grétzer and Knapp [61] that, to
understand planar semimodular lattices, it suffices to describe the slim semimodu-
lar ones. This explains the importance of slim planar semimodular lattices among
planar semimodular lattices.

Another important subclass of planar semimodular lattices is formed by rec-
tangular lattices; see Grétzer and Knapp [62]. Slim rectangular lattices are also
important. First, because we can obtain the slim semimodular lattices from slim
rectangular ones; actually, we can do this in two ways. Namely, to obtain a slim
semimodular lattice L, either we start with a “large” slim rectangular lattice L'
and we can obtain L from L’ in a particular way as a sublattice, see Czédli and
Schmidt [44, Lemma 21], or we can glue “small slim rectangular lattices” (in fact,
some rather special slim rectangular lattices called slim patch lattices) together,

see Czédli and Schmidt [46]. As the construction and the concept on which it relies
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are quite involved in [46], it is worth noting that the patch lattices are exactly the
Hall-Dilworth-gluing irreducible lattices in the class of the at least four-element
planar semimodular lattices; see Czédli and Schmidt [46, Theorem 3.4].

In view of the paragraph above, the problem of understanding planar semi-
modular lattices has been reduced to the task of understanding slim semimodular
and slim rectangular lattices. Partly, this task is reduced to understanding slim
patch lattices, too. The tools for this task fall into two categories.

The tools in the first category yield a slim rectangular lattice L step-by-step,
inductively. These steps either remove some special bundles of elements, see Czédli
and Grétzer [35], or (and more importantly) the steps add special bundles of new
elements, see Czédli and Schmidt [44, Lemma 22] and, for a more useful tool, Czédli
[13, Theorem 3.7]. (In both cases, the bundles are called forks.) This step-by-step
approach has often been useful in proving properties of slim rectangular or slim
semimodular lattices.

The second category consists of two known tools that describe slim semimod-
ular lattices by matrices or by permutations in an explicit way; see Czédli [11]
and Czédli and Schmidt [45], respectively. The idea of using permutations for this
purpose goes back to Abels [1].

This section uses permutations, the most advanced tool in the “explicit” cate-
gory to describe slim semimodular lattices. We have not investigated whether the
other explicit tool, the description by matrices, could be useful for our purpose,
but note that matrices were used in another paper that enumerated some slim
semimodular lattices; see Czédli, Ozsvart, and Udvari [42]. (The title of this paper
shows that, in addition to those two mentioned earlier, [42] is also a paper showing
that slim semimodular lattices are applicable in group theory.) The advantage of
permutations over matrices is that there is a considerable knowledge about the
“Combinatorics of Permutations” (this is the title of the monograph of Béna [3]).

The second and the third out of the four motivations, that is, the applicability in
group theory and geometry, might look more interesting than the first motivation,
understanding the congruence lattices (of slim semimodular lattices). To dispel

this feeling and to strengthen the reputation of the first motivation, we mention

10



CHAPTER 2. THE NUMBER OF SLIM RECTANGULAR LATTICES

that the tools outlined above were developed for the sake of understanding the
congruence lattices of slim semimodular lattices. For example, Gratzer and Knapp

[62] introduced slim rectangular lattices simply because:
e slim rectangular lattices are easier to describe than slim semimodular lattices;

e however, to describe the congruence lattice of slim semimodular lattices, it

suffices to deal with the congruence lattices of slim rectangular lattices.

Indeed, it is implicit in Gratzer and Knapp [62] (and it is explicitly mentioned,
say, in the Abstract of Czédli [26]), that the congruence lattices of slim semi-
modular lattices are, up to isomorphism, the same as the congruence lattices of
slim rectangular lattices, provided that we disregard lattices with less than four
elements.

The enumeration of slim semimodular lattices and their planar diarams start-
ed in Czédli, Ozsvart and Udvari [42], and continued in Czédli, Dékany, Ozsvért,
Szakacs and Udvari [34], and Czédli [16]. There are several earlier papers on count-
ing other particular lattices; for example, see Erné, Heitzig and Reinhold [49] and
[70], and Pawar and Waphare [78].

2.2 Preliminaries

Here, we overview some concepts and facts we need in the present chapter. For
a more complex overview (but only up to 2014), the reader might be interested in
Grétzer [54] and Czédli and Grétzer [36]. An element of a lattice is join-irreducible
if it has exactly one lower cover. A finite lattice L is slim, if Ji L, the set of the
join-irreducible elements of L, is included in the union of two chains of L; see
Czédli and Schmidt [43]. Note that, in the semimodular case, this concept was
first introduced by Grétzer and Knapp [61] in a different way. We know from
Czédli and Schmidt [43] that slim lattices are planar, that is, they possess planar
diagrams. Remember that all lattices, and thus all diagrams, in this chapter are
assumed to be finite. If D; and D, are planar diagrams and ¢: D; — Dy is a

bijective map such that ¢ is a lattice isomorphism and it preserves the left-right

11
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order of (upper) covers and that of lower covers of each element of Dy, then ¢ is
called a similarity map. Two planar diagrams are similar if there exists a similarity
map between them. We treat similar diagrams as equal ones. Therefore, when we
count planar diagrams, we always do it up to similarity. Adjectives typically used
for lattices, like semimodularity, will also be used for their planar diagrams; in this
case the diagram is automatically a planar lattice diagram.

A minimal non-chain region of a planar lattice diagram D is called a cell. A
four-element cell is a 4-cell. 4-cells are covering squares, that is, cover-preserving
four-element Boolean sublattices. A diagram is a 4-cell diagram if all of its cells are
4-cells. The following statement was proved in Gréatzer and Knapp [61, Lemmas 4

and 5]; see also Czédli and Schmidt [44, Proposition 1] for the present form.

Lemma 2.2.1. If D is a slim semimodular diagram, then it is a 4-cell diagram,
and no two distinct 4-cells have the same bottom. Conversely, if D is a 4-cell lattice
diagram in which no two distinct 4-cells have the same bottom, then D 1is a slim

semimodular diagram.

Following Grétzer and Knapp [62], a semimodular diagram D is rectangular
if its left boundary chain, denoted by C;(D), has exactly one doubly irreducible
element, lc(D), its right boundary chain, C,(D), has exactly one doubly irreducible
element, rc(D), and these two elements, called the corners of D, are complemen-
tary, that is, lc(D) Arc(D) = 0 and le(D) Vre(D) = 1. It was noticed by Schmidt,
see Czédli and Grétzer [36, Exercise 1.58], that a slim semimodular lattice L is
rectangular iff Ji L is a union of two chains such that no element in the first chain
is comparable with some element of the second chain. Associated with a slim rec-
tangular diagram D, the following three numerical parameters will be of particular

interest.

Notation 2.2.2. As usual, the length of D is denoted by length D. The left upper
length and the right upper length of D, denoted by Mlen D and ™len D, are the
length of the interval [lc(D), 1] and that of [rc(D), 1], respectively; see Figure 2.1

for illustration.

12
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Figure 2.1: A rectangular diagram with length D = 8, ™len D = 2, and ™len D = 3.

A rectangular diagram D is a patch diagram if le(D) and rc(D) are coatoms.
Equivalently, if "len D = ™len D = 1. A patch lattice is a lattice that has a patch
diagram.

Two prime intervals of a slim semimodular diagram D are consecutive if they
are opposite sides of a 4-cell. By Czédli and Schmidt [43, Lemma 2.3|, covering
squares and 4-cells in a slim semimodular diagram are the same, whence the previ-
ous sentence can be rephrased as follows: two prime intervals of a slim semimodular
diagram D are consecutive if they are opposite sides of a covering square. There-
fore, the consecutiveness of two prime intervals in slim semimodular lattice L does
not depend on the planar diagram chosen. Maximal sequences of consecutive prime
intervals form a trajectory, see Czédli and Schmidt [43]. In other words, a trajec-
tory is a class of the equivalence relation generated by consecutiveness. In [43,

Lemma 2.8], the following statement was derived from (the present) Lemma 2.2.1.

Lemma 2.2.3. If T s a trajectory of a slim semimodular diagram D, then T
contains exactly one prime interval of C\(D), and the same holds for C.(D). Going
from left to right, T does not branch out. First T goes up (possibly in zero steps),
then it may turn to the lower right, and finally it goes down (possibly, in zero

steps). In particular, at most one turn is possible.

Notation 2.2.4. We denote the set of (the similarity classes of) slim rectangular

13
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diagrams of length n and that of slim semimodular diagrams of length n by the
acronyms SRectD(n) and SSmodD(n), respectively. Similarly, the set of the iso-
morphism classes of slim rectangular lattices of length n, that of slim semimodular
lattices of length n, and that of slim patch lattices of length n are denoted by
SRectL(n), SSmodL(n), and SPatchL(n).

For a given n € {1,2,...} = N, these five sets above are finite, since we do not
make a distinction between similar diagrams or between isomorphic lattices.
Jordan—Holder permutations associated with semimodular lattices appeared
first in Abels [1] and Stanley [82]. Here, following Czédli and Schmidt [45], we define
them by means of trajectories. For a slim rectangular diagram D, let n = length D,
and let
Ci(D)={0=cy<c1 < <¢, =1},
Ci(D)={0=dy<dy <---<d, =1}.
The set of all {1,...,n} — {1,...,n} permutation is denoted by S,,. The (Jordan—
Hélder) permutation m = mp € S, is defined by the rule 7 (i) = j iff [¢;_1, ¢;] and

(2.2.1)

[d;j_1,d;] belong to the same trajectory. The following statement was proved in

Czédli and Schmidt [45].
Lemma 2.2.5. The map SSmodD(n) — S,,, defined by D — mp, is a bijection.

In what follows in this chapter, since this lemma above is obvious for n = 1 and
since the length of a slim rectangular lattice is at least 2, we always assume that n
denotes an integer greater than 1. Combining Lemma 2.2.5 with [45, Lemma 4.6]

and the definition of 7p, we obtain that

Lemma 2.2.6. Let Dy and Dy be slim rectangular diagrams. They determine the

same lattice iff wp, € {mp,, 7, }.

Planar lattice diagrams have several properties that are easy to believe but
not so easy to prove. What we need from them is given by the following lemma,
taken from Kelly and Rival [71, Lemmas 1.2 and 1.5, Propositions 1.6 and 1.7, and
Theorem 2.5].

Lemma 2.2.7. Let D be a planar lattice diagram, and let a,b € D.

14
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(i) If a < b and a and b are on different sides of a mazximal chain C, then there

exists an x € C such that a < x < b.
(ii) A closed interval of D is a planar subdiagram.

(iii) If |D| > 3, then D contains a doubly irreducible element distinct from 0 and
1 on its left boundary.

(iv) If a || b, then either a is on the left of all mazimal chains through b, or b
15 on the left of all maximal chains through a. The same holds with “right”

instead of “left”.

Based on Lemma 2.2.7(iv), if @ || b and a is on the left of some (equivalently,
all) maximal chains through b, then we say that a is on the left of b; analogous

terminology is used if “left” is replaced by “right”.

2.3 Description by permutations

For convenience, we introduce the following concept; it is visualized by Fig-

ure 2.2, and our terminology will be explained by Proposition 2.3.3.

Definition 2.3.1. A permutation 7= € S, is called rectangular if it satisfies the

following three properties.
(i) For all ¢ and j, if 771(1) <i < j < n, then 7(i) < ().
(ii) For all 7 and j, if m(1) <i < j <mn, then 7 1(z) < 7 1(4).
(iii) m(n) < m(1).

Clearly, 77*(1) < i and 7(1) < 7 above can be replaced by 7~'(1) < i and
7(1) < i, respectively. In Figure 2.2, where n = 16, a permutation 7 is given as
a bipartite graph; however, not all the 16 edges are drawn. The rectangularity of
7 means that neither the edges denoted by (i) nor those denoted by (ii) intersect,
but the two thick solid edges do. (According to Remark 2.3.2 below, the two thick

dotted edges also intersect.)

15
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Edges (i
(i)

Figure 2.2: The rectangularity of a permutation

Remark 2.3.2. If 7 € S, is rectangular, then we have
(iv) 71 (n) < 7 1(1).

1

So, 7 is rectangular iff 7™ is rectangular.

Proof of Remark 2.3.2. Assume that T € S, satisfies (i)—(iii). Since 7 and 7~! are

injective, (iii) implies that
1 < w(1), m(n) < n, 1 <7 1), 7 (n) < n. (2.3.1)

Suppose, for a contradiction, that (iv) fails. Then n > 2, and we have that 7—!(1) <
7~1(n). By the last inequality of (2.3.1), (i) applies for the pair (i, j) = (x~!(n), n),

and we obtain that n = 7(7~'(n)) < 7(n), a contradiction. O
Now, we are in the position to formulate the main result of this section.

Proposition 2.3.3. A slim, semimodular, planar diagram D of length n > 2
1s rectangular if and only if # = wp € S, is rectangular. Furthermore, if D 1is

rectangular, then
7p(1) =length D —™len D + 1, w5'(1) = length D — "len D + 1.

This proposition trivially implies the following statement.

16
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Corollary 2.3.4. A slim, semimodular, planar diagram D of length n is a patch
diagram if and only if Tp(1) = n = 75" (1). Therefore, the number of these dia-

grams is (n — 2)!.

Combining Proposition 2.3.3 and Corollary 2.3.4 with Lemmas 2.2.5 and 2.2.6,
we obtain a new description of slim rectangular (or patch) diagrams and lattices
by permutations. This description is effective, because Czédli and Schmidt [45,
Proposition 2.7 and Theorem 3.3] tell us how to construct D from 7p; however,
we do not need these long details here.

The rest of this section is devoted to the proof of Proposition 2.3.3. The fol-

lowing definition is taken from Grétzer and Quackenbush [67].

Definition 2.3.5. An element x of a lattice L is called a narrows if L = Jx U Tx.
If, in addition, = ¢ {0,1}, then x is a proper narrows. The set of narrows of L is
denoted by Nar(L). A lattice L is called (glued sum) indecomposable if |L| > 3 and
Nar(L) = {0, 1}.

We know from Czédli and Schmidt [45, after (1.2)] that the set Nar(D) of nar-
rows of D is C;(D)NC,(D). Note that, by definitions, a glued sum indecomposable
diagram is of length at least 2.

Obviously, Lemma 2.2.1 implies the following statement.

Corollary 2.3.6. If D is a (glued sum) indecomposable, slim, semimodular di-
agram, then for each ¢ € C\(D) \ {0, 1}, there ezists a unique ¢’ such that {c A

dye,d eV Y is ad-cell

Lemma 2.3.7. If D is an indecomposable, slim, semimodular diagram, a < b, and

a,b € C|(D), then exactly one of the following two possibilities holds.

(i) a is meet-reducible and b is join-irreducible. (In this case, we say that |a, b

is an up-edge.)

(i) a is meet-irreducible and b is join-reducible. (In this case, we say that |a, b]

is an down-edge.)
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Proof. Since D is indecomposable, the trajectory starting at [a, b] is not a singleton.
In other words, [a, b] is a left edge of a 4-cell S. This implies that a is meet-reducible
or b is join-reducible. Hence, Czédli and Schmidt [44, Lemma 4], which says that

each of these two cases excludes the other one, completes the proof. O
The name “down-edge” is motivated by the following lemma.

Lemma 2.3.8. Let D be a slim semimodular diagram of length n, and assume

that 1 <i < j <n.

(i) If D is glued sum indecomposable and, with the notation given in (2.2.1),

[ci—1, ¢i] is a down-edge, then wp(i) < mp(j) and wp(i) < i.

(i) If ¢; is a narrows, then mp(i) < wp(j).

Figure 2.3: Illustrating the proof of Lemma 2.3.8

Proof. (i): Assume that D is indecomposable. Denote mp by 7. Let T; be the
trajectory that contains [¢;_1,¢;]; see Figure 2.3, where T; consists of the thick
edges. Note that T; consists of at least two edges, because D is indecomposable.
Since [¢;_1,¢] is a down-edge, T; launches to the lower right, and keeps going to
this direction without any turn by Lemma 2.2.3. Hence, the top elements of the
edges of T;, which are the black-filled elements in the figure, form a descending,

nontrivial chain. This implies that d.;) < ¢;, and we conclude that 7(7) < 7.

18
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Suppose, for a contradiction, that 7(i) > m(j). This implies that ¢;_1 > ¢; >
dr(i) > dx(j)- Hence, [c;_1, ¢j] and [dr(j)—1, dx(;)] are two comparable prime intervals
of the same trajectory. This is a contradiction, since a trajectory cannot have
comparable prime intervals by Czédli [12, Lemma 3.3]. This proves (i).

(ii): Assume that ¢; is a narrows. Clearly, for every 4-cell S, either we have that
SN \{e}) =2, 0r SN (Te; \{e:}) = . Hence, no trajectory can cross ¢;, and
part (ii) follows immediately. O

Next, we generalize some parts of Grétzer and Knapp [62, Lemmas 3 and 4].

By Lemma 2.2.7(iii), the element ¢ in the following lemma exists.

Lemma 2.3.9. Let D be a glued sum indecomposable, planar lattice diagram. If ¢
15 the least doubly irreducible element on the left boundary of D, then the ideal |c

s a chain.
Proof. Let Ci(D)Nle={0=cy <1 <--- < ¢, = c}. It suffices to prove that
{c1,... 6} CJiD.

Suppose, for a contradiction, that there is an i € {1,...,k} such that ¢; is join-
reducible. Let 7 be minimal with respect to this property. The ideal |¢; is a planar
subdiagram by Lemma 2.2.7(ii). Let U = C,(l¢;). Take the largest j € {0,...,i—1}
such that ¢; € U; this j exists, since ¢p = 0 € U. Note that j < i — 2, since ¢; is
join-reducible. By Lemma 2.2.7(ii), D’ := [¢;, ¢;] is a planar subdiagram. Clearly,
|D'| > 3, Ci(D') = {¢;, ¢js1s-- -, ¢}, and Co(D') = UN|ej, ¢;]. By Lemma 2.2.7(iii),
there is an s € {j + 1,...,7 — 1} such that ¢, is doubly irreducible in D’. By the
choice of k, the element ¢, is not doubly irreducible in D. The minimality of
i yields that ¢, is meet-reducible in D. By Czédli and Schmidt [44, Lemma 4],
mentioned already in the proof of Lemma 2.3.7, the join-reducibility of ¢; implies
that s # ¢ — 1. Hence, s < i — 2. The element ¢, has a cover v € D, distinct
from c,y1. Since ¢4 is meet-irreducible in D', we have that v ¢ D’. We have that
height v = s + 1 < ¢ = height ¢;, whence ¢; f v. We also have that v ﬁ ¢;, since
v ¢ D' = ¢, ¢). Thus, ¢; || v. We conclude from Lemma 2.2.7(iv) that ¢; is on the

left of v. That is, v is on the right of all maximal chains through ¢;. In particular,
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if we extend C,(D’) to a maximal chain V' of D, then v is strictly on the right
of V. On the other hand, ¢,, which belongs to C\(D’) \ C.(D’), is strictly on the
left of C,(D’), whence it is strictly on the left of V. Thus, ¢s and v are strictly on
different sizes of V' while ¢; < v. This contradicts Lemma 2.2.7(i). O

Lemma 2.3.10. Let D be a glued sum indecomposable, slim semimodular diagram
of length n. If, with notation (2.2.1), ¢ is the least doubly irreducible element of
D on the left boundary chain, then wp(k+ 1) = 1.

Proof. Clearly, k > 1. We prove the lemma by induction on k.
First, assume that & = 1. Since D is indecomposable, 0 ¢ Mi D. By Czédli and
Schmidt [44, Lemma 2],

each element of a slim lattice has at most two covers. (2.3.2)

Hence, there are exactly two atoms, and ¢, = ¢; is one of them. This clearly implies
that mp(k+ 1) = mp(2) = 1.

Next, assume that & > 1, and the lemma holds for smaller values. Let u = ¢},
by Corollary 2.3.6. Since ¢, has only one cover, and this cover belongs to C(D),

we have that ¢, V u = ¢,y 1. Similarly, ¢z A u = ¢_1. Hence,
S ={ck_1,Ck u,crr1} s a 4d-cell. (2.3.3)

This 4-cell (or Lemma 2.3.7) shows that ¢,_; is meet-reducible; see Figure 2.1 for an
illustration. Let D’ = D\ {¢}; it consists of the empty-filled elements in the figure.
Clearly, cx_1 € C|(D’). By (2.3.2), cx_1 € MiD’. We also have that ¢;_; € Ji D',
because cx_1 € Ji D by Lemma 2.3.9. Thus, ¢;_; is a doubly irreducible element
in D'.

Suppose, for a contradiction, that there exists an ¢+ < k — 1 such that ¢; is
doubly irreducible in D’. Obviously, it is join-irreducible in D. By the choice of k,
¢; is meet-reducible in D. However, its covers are of height ¢ + 1, which is less than
k = height ¢;. Hence, these covers belong to D', contradicting the assumption that
¢; is doubly irreducible in D’. This proves that ¢;_; is the least doubly irreducible
element of D' that belongs to Ci(D’).
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Let T" be the trajectory of D’ such that T" contains [c_1,u]. Obviously, or
by Czédli [12, Lemma 3.1], the trajectory of D that contains [cg,cpi1] is T :=
T"U{[ck, ck+1]}- Note that the element of height k in C,(D’) is u. By the induction
hypothesis, mp/(k) = 1. This means that [dy, d;] € T". Thus, [do, d;] € T, proving
that 7p(k+1) = 1. O

Proof of Proposition 2.3.3. By definitions, SRectD(n) C SSmodD(n). Therefore,
by Lemma 2.2.5, it suffices to prove that, for D € SSmodD(n), the diagram D is
rectangular iff so is the permutation 7p.

To prove the “only if” part of Proposition 2.3.3, assume that D € SRectD(n).
Let k € {1,...,n — 1} denote the height of lc(D), that is, lc(D) = ¢. By the
rectangularity of D, ¢ is the only doubly irreducible element that belongs to the
left boundary chain. Thus, Lemma 2.3.10 yields that

m(k+1) =1, that is, k + 1 = 7 *(1). (2.3.4)

Next, to verify condition 2.3.1(i), assume that 77!(1) < ¢ < j < n. That is, we
assume that £k +1 < i < 7 < n. Since le(D) = ¢, < ¢; and ¢ is the only doubly
irreducible element on the left boundary chain, the element ¢; is join-reducible by
Grétzer and Knapp [62, Lemma 3|. Hence, [¢;_1, ¢;] is a down-edge by Lemma 2.3.7.
Thus, Lemma 2.3.8(i) yields that 7(i) < m(j), proving that 7 satisfies 2.3.1(i).

Next, let ¢ be the height of rc(D). Again by [62, Lemma 3|, d; is join-reducible
for all ¢ < j < n. Hence, for these j, no trajectory can arrive at [d;_;,d;] from
the upper left. On the other hand, ¢,_; is meet-irreducible and 1 = ¢, is join-
reducible by [62, Lemma 3]. Hence, [c,_1,¢,] is a down-edge, and the trajectory
T, containing this edge goes downwards by Lemma 2.2.3. Hence, 7T,, arrives at
the right boundary chain from the upper left. Consequently, it cannot arrive at
ldj_1,d;] if t < j, and we conclude that m(n) < ¢. If we interchange (left, 7, k)
and (right, 71 ¢) in the argument proving (2.3.4), we obtain that (1) = ¢ + 1.
Consequently, 2.3.1(iii) holds.

Similarly, interchanging (left, 7) and (right,7!) in the proof of 2.3.1(i), we
obtain that 2.3.1(ii) holds. Therefore, if D is rectangular, then so is mp.
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Next, to prove the “if” part of Proposition 2.3.3, assume that D € SSmodD(n)
but D ¢ SRectD(n). We have to prove that m = 7p is not rectangular.

First, we assume that D has a nontrivial narrows v. Since v € C(D) N C,(D),
it is of the form v = ¢, = ds for some s € {1,...,n — 1}. Let 7] denote the
trajectory of the subdiagram |v that begins with the prime interval [cg, ¢;] of the
left boundary chain. It reaches the right boundary of Jv at some [d;_1, d;], where
i <s. Clearly, T} is also a trajectory of D, and so (1) = ¢ < s. The dual argument
shows that m(n) > s. (Note, however, that the concept of slim rectangular lattices
is not selfdual.) Hence, 2.3.1(iii) fails and = is not rectangular.

Next, we can assume that D is glued sum indecomposable. Since n > 2, we
conclude that 0 is meet-reducible and 1 is join-reducible. By Lemma 2.2.7(iii), each
of Ci(D) and C,(D) has at least one doubly irreducible element. Since D is not
rectangular, we obtain from Gréatzer and Knapp [62, Lemma 6] that at least one
of Ci(D) and C,(D) has at least two doubly irreducible elements. Note that if we
reflect D to a vertical axis, then 7 turns into 7—!. Thus, since the rectangularity of
7 is equivalent to that of 7—! by Remark 2.3.2, we can assume that, with notation
(2.2.1), there are 1 <14 < j < n such that ¢; and ¢; are the smallest and the largest
doubly irreducible elements that belong to Cy(D), respectively. We have that

(1) =i+1 (2.3.5)

by Lemma 2.3.10. To prove that 7 is not rectangular, we intend to show that
2.3.1(i) fails.

First of all, we show that 1+ 1 < j. Suppose, for a contradiction, that j =i+ 1.
Then [¢;, ¢;] is a prime interval. Let T" denote the trajectory that begins with
i, ¢;]. Since ¢; is meet-irreducible, T' cannot make its first step to the upper right.
Similarly, it cannot make the first step to the lower right since c; is join-irreducibly.
Thus, T makes no first step, and it consists only of [¢;,¢;]. By Lemma 2.2.3,
{ci,c;} € Ci(D). Hence, ¢; and ¢; are nontrivial narrows of D, contradicting our
assumption. This proves that i + 1 < j.

Next, let ¢ be as in Lemma 2.3.6, that is, ¢; = lc(S) and ¢; = rc(S) for a
unique 4-cell S. Since ¢; is doubly irreducible, the subdiagram D' = D\ {¢;} is a

slim semimodular lattice diagram by Lemma 2.2.1. Similarly to (2.3.3), we have
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that {c;_1 = ¢; A ¢}, ¢j, ¢, cjp1 = ¢; V ¢} is a 4-cell. Let T, and T} denote the
trajectories of D beginning with [c¢;, ¢;4+1] and with [¢;_1, ¢;], respectively. Also, let
T7., and T be the trajectories of D' through [c;_y,c}] and [, ¢j;1], respectively.
Clearly,

Ty =T; U{lcj-1, 5]} and Tja =T75 U{[ej, cinl}- (2.3.6)

By Lemma 2.3.7, the double irreducibility of ¢; in D yields that [¢;_1, ¢;] is an up-
edge and [c;, ¢j4+1] is a down-edge. Hence, by Lemma 2.2.3, Tj41 goes down, without

any turn. This, together with (2.3.6), yields that 77, is also a “down-going”

trajectory of D'. Thus, either D' is indecomposable and [¢;_1, c}] is a down-edge,

or ¢ is a narrows of D'. In both cases, Lemma 2.3.8 implies that 7p/(j) < 7ps(j+1).

This inequality and (2.3.6) imply that
mo(j +1) = 7 (j) < 7o (j +1) = 7p(j)-

This, together with (2.3.5) and ¢ + 1 < j, shows that 2.3.1(i) fails. O

2.4 Enumeration
For a rectangular permutation © € S,,, we let
Menm =n+1—7(1) and ™lenw=n+1—7(1).

By Proposition 2.3.3, "len7p = Mlen D and ™len7p = "™len D hold for all D €
SRectD(n). For 2 <n € N and a,b € N, we let

RPerm(n) = {m € S,, : 7 is rectangular} and

RPerm(n;a,b) = {7 € RPerm(n) : "len7 = a and ™len7 = b}.
It follows from Definition 2.3.1 that RPerm(n;a,b) # @ iff a +b < n.

Lemma 2.4.1. For a,b,n € N with a+ b < n,

IRPerm(n; a, b)| = (” ;f; 1) (” —b- 1) (n—a—b). (2.4.1)

a—1
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Proof. For m € RPerm(n;a,b), we have 77'(1) =n—(n+1—-n"'(1))+1 = n—a+1
and, similarly, 7(1) = n—b+1. Since 7(n) < m(1) and 7~ !(n) < 7~ (1) by 2.3.1(iii)
and 2.3.2(iv), conditions 2.3.1(i) and 2.3.1(ii) can be rephrased as follows:

mTn—a+1l)=1<m(n—a+2)<---<7(n)<n—>b+1, and (2.4.2)
'n—b+1)=1<na'n—-b+2)<---<7'(n)<n—a+l (2.4.3)

Conversely, if 7 € S, satisfies (2.4.2) and (2.4.3), then 7 € RPerm(n;a,b). The
first and the second binomial coefficients in (2.4.1) show how many ways conditions
(2.4.3) and (2.4.2) can be fulfilled, respectively. These conditions take care of the
images of a + b elements in {1,...,n}. Hence, there are (n — a — b)! possibilities

for the rest of elements. O]

From Lemmas 2.2.5 and 2.4.1 and Proposition 2.3.3, we immediately obtain
that
|SRectD(n)| = Z |RPerm(n; a, b)|. (2.4.4)

a+b<n
a,beN

Consequently, the following statement holds.

Proposition 2.4.2. For 2 < n € N, the number of slim rectangular diagrams of

length n s

n—a—1\(n—-5b—1
SRectD = —a—0b)!.
[SRectD(n)| = > < b1 )( o >(n a—Db)
a+b<n
a,beN
The following lemma belongs to the folklore; see the first sentence in the proof
of Proposition 7.13 in Béna [3, page 256], or see Czédli, Ozsvart and Udvari [42,
Lemma 6.1]. As usual, (2t — 1)!! denotes 1-3-5----- (2t —1) = (2t)!/(2" - t!). Note
that (—1)!! = 1 by definition. An involution is a permutation 7 such that 7~ = 7.

Let Invl(k) = {m € Sy : # = 7'} denote the set of involutions acting on the set
{1,...,k}.
Lemma 2.4.3. For k € N, the number of involutions in Sy, is
[k/2] 2
Ivl(k)| = (25 — DI
] = 3 (1) ei-
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Now, after that [SRectD(n)| has been determined by Proposition 2.4.2 and we

also have Lemma 2.4.3, we formulate the following statement.

Proposition 2.4.4. For 2 < n € N, the number of (the isomorphism classes of)
slim rectangular lattices of length n is

[n/2]
1 n—a—1
|SRectL(n)| = 3 (]SRectD(n)| + ;1 ( 51 ) - Invl(n — 2a)|>. (2.4.5)

Proof. By Lemmas 2.2.5 and 2.2.6, two distinct slim rectangular diagrams, D; and
D,, determine the same rectangular lattice iff 7p, = (7p,)"'. Hence, if we count
every involution twice and any other permutation once, then we count each lattice

in question twice, that is,

2 - |[SRectL(n)| = |[RPerm(n) \ Invl(n)| + 2 - [RPerm(n) N Invl(n)|
= |RPerm(n)| 4+ |[RPerm(n) N Invl(n) (2.4.6)
= |SRectD(n)| + |RPerm(n) N Invl(n)].

Therefore, to obtain (2.4.5), it suffices to prove that

2l
[RPerm(n) NInvi(n)| = > (“ o 1) - Invl(n — 2a)|. (2.4.7)

a=1
The argument we need is similar to the one used in the proof of Lemma 2.4.1. If
m=m"', then a = b < n/2. Hence, an involution 7 is in RPerm(n) iff it satisfies
(2.4.2) with b = a. There are (", %]") ways to select the values 7(n — a +2) <
-+- < m(n) from {2,...,n — a}. Since 7 is an involution, each of these selections

determines the action of m on the 2a-element set

{l=m(n—a+1)<mn—a+2)<---<m(n)
<m(l)=7'1)=n—-a+l<n—-a+2<---<n}
Clearly, m acts as an involution on the n — 2a remaining elements. Hence, there
are |Invl(n — 2a)| ways to continue the above-mentioned selection to an involution

on the whole set {1,...,n}. Finally, 2a = a + b < n gives that a < [n/2], and we
conclude (2.4.7). O
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The situation for slim patch lattices is much easier.

Proposition 2.4.5. For 2 < n € N, the number of (the isomorphism classes of)
slim patch lattices of length n is |SPatchL(n)| = ((n — 2)! + [Invl(n — 2)|) /2.

Proof. A permutation 7 from Corollary 2.3.4 is an involution iff so is its restric-
tion to {2,...,n — 2}. Hence, using the idea of (2.4.6) with “patch” instead of
“rectangular”, we can obviously conclude our statement from Lemma 2.2.5 and
Corollary 2.3.4 . O]

2.5 Asymptotic results

For functions f,g : N — {z € R: 2 > 0}, we say that f is asymptotically g,
denoted by f(n) ~ g(n), if lim,_,« (f(n)/g(n)) = 1. In this section, a and b always
denote positive integers. Hence, we will not indicate a, b € N in range specifications.
As usual, e denotes Y - (k)1 &~ 2.7182818285.

Proposition 2.5.1. The number of slim rectangular diagrams of length n is asymp-
totically (n — 2)! - €2, that is, |SRectD(n)| ~ (n — 2)! - 2.

Proof. Based on (2.4.1), we can compute as follows.

[RPerm(n: a, b)| — <”;f;1) ("‘ b= 1) (n—a—b)

a—1
(n—a-1)---(n—a—-b+1) (n-b—-1)---(n—a—-b+1)
(b—1)! (a—1)!

X (n—a—"b)!
(n—a-1)---(n—a—-b+1) (n—2)!
B '(5_1)! '(a—1)!(n—2)-..(bn—b)

n—2)! n—a—1 n—a—-2 n—-a—->0+1
—(a—(l)!(b)—l)!. n-2  n-3 n—>b ' (2:5.1)

Denote by ¢(n,a,b) the product of the last b — 1 factors in (2.5.1), that is, the
product of all but the first factor. In particular, ¢(n,a,1) = 1. Hence,

(n—2)!
(a—D! -1

|RPerm(n; a,b)| = q(n,a,b) - (2.5.2)
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Since 1 < a, q(n,a,b) is the product of factors not greater than 1. Hence,
q(n,a,b) <1 and |[RPerm(n;a,b)| < (n—2)!((a — 1)! (b — 1)1)~!. Combining this
estimate with (2.5.2) and using (2.4.4), we obtain that

[SRectD(n)| “2" 37 [RPerm(n;a0)| < 3 ¢ n—2)

a+b<n a+b<n a-= 1)' (b N 1>'
~ - _1 (2.5.3)
—2)!. =(n—2)-¢°
<(n-—2) Za—l Z(b—l)!_(n 2)! - e
a=1 b=1
Next, let € be an arbitrary (small) positive real number. Since
— — 1) — — D=1
pt (a oy (b—1) e (a—1)!(b-1)
there exists an r; € N such that
1
2
(1—¢)e* < Z TR for all n > . (2.5.4)

a+b<n

Since each of the b — 1 factors of ¢(n,a,b) tends to 1 as n — oo while a and b are
fixed, and since there are finitely many pairs (a,b) € {1,...,7r1}?, there exists an

ro € N such that
1—e<q(n,a,b) foralla<ry,b<r;andn >rs. (2.5.5)

By the previous achievements as indicated below, if n is an arbitrary integer greater

than r = max{ry, o}, then

|SRectD(n) (244) Z |RPerm(n; a, b)|

a+b<n
(2.5.2) q(n,a,b) q(n,a,b)
=" (n—2)! > (n—2)!
a—;gn (a—1)(b—1)! a;ﬁ (a—1)(b—-1)!
(2.5.5) 1—¢ (2.5.4)
> (n—2)! > (n—2)!-(1—¢)
a;ﬁ (a—1)!(b-1)!
This and (2.5.3) imply Proposition 2.5.1, since (1 —¢)*> — 1 as ¢ — 0. O

Now, we are in the position to formulate and prove our main result.
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Theorem 2.5.2. The number of (the isomorphism classes of) slim rectangular
lattices of length n is asymptotically (n — 2)! - €*/2, that is,

lim |SRectL(n)| _

n—oo (n —2)!-e2/2
Proof. Tf we divide (2.4.5) by (n—2)!-€?/2, then the theorem follows from Propo-
sition 2.5.1, provided we can show that

. f(n) n o2l —a—1
im 7 =0, where f(n) = Z ( 41 ) - [Invl(n — 2a)|. (2.5.6)

n—00 (n — 2). —

Hence, it suffices to deal with (2.5.6). In order to prove it, recall from Chowla,

Herstein and Moore [5, Theorem 8] that

vl (k)| ~ \/% (k/e)*? . eVF. (2.5.7)

Since vk < k/2 for k > 4, (2.5.7) implies that
[Tnvl(k)| < k¥/2, for all sufficiently large k € N. (2.5.8)
Stirling’s formula, k! ~ v/27k - (k/e)*, implies that
(k/e)F < k! < (k/e)*™ | for all sufficiently large k € N. (2.5.9)

Denote n — 2 by m, and assume that m is sufficiently large. Besides (2.5.8) and
(2.5.9), the following obvious estimates are also needed below. Since the sum of
the () is 2™, we have that ("_%;") < 2™. Since |Invl(k)| is clearly an increasing
function of k, we obtain that [Invl(n—2a)| < |[Invl(m)|. Clearly, m-2™ < 2™.2™ =

4™ and |[n/2] < m. Let us compute:

[n/2]
f(n) n—a—1 |Invl n — 2a)| |Inv1
— VR~ 2 om IITATYT
(n—2)! Z a—1 (n—2)! Z

a=1
Invl (2.5.8,2.5.9) m/2
=m- 2" fvitm)] < m-2m. (2.5.10)
g (m/e)"
(vm)™ 1
=4 - =0 — 0. 2.5.11

> (m/e)m <\/ﬁ>m y  as N o0 ( )

de
This completes the proof. 0
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Remember that SSmodD(n) and SSmodL(n) denote the set of slim semimod-
ular diagrams of length n and that of slim semimodular lattices of length n, re-
spectively. In Czédli, Ozsvart and Udvari [42, Proposition 7.1], it was proved that
|SSmodL(n)| ~ n!/2. This result, (n — 1)/n ~ 1, Lemma 2.2.5 and Theorem 2.5.2

immediately yield the following statement.

Corollary 2.5.3.

|SRectD(n)|
|SSmodD(n)|

|SRectL(n)|

~ (e/n)? and 19SmodL(n)] ~ (e/n)?.

Next, we give the asymptotic number of slim patch lattices.

Proposition 2.5.4. The number |SPatchL(n)| of (the isomorphism classes of)
slim patch lattices of length n is asymptotically (n — 2)!/2.

Proof. That |Invl(n —2)|/((n —2)!) = [Invl(m)|/(m!) — 0 as n — oo follows from
(2.5.10) and (2.5.11). This and Proposition 2.4.5 imply the statement. O

2.6 Results by computer algebra

Based on Propositions 2.4.2 and 2.4.4, |SSmodD(n)| and |SSmodL(n)| can eas-
ily be determined for n < 1000. Appropriate programs (Maple 5) are available from
the website of the first author of [33]. The numbers in the first two rows of Table 2.1
are also given in https://oeis.org/A273596 and https://oeis.org/A273988, respec-
tively. For much more extensive lists, see https://oeis.org/A273596/b273596.txt
and https://oeis.org/A273988/b273988.txt. Our computer algebraic calculations
show that |1 — [SPatchL(n)|/((n—2)!/2)| and |1/2 —|SRectL(n)|/|SRectD(n)|| are
smaller than 10710 for n € {64, ...,100,200,600,1000}. This fact and Table 2.2
indicate (but do not prove) that the convergence in Proposition 2.5.4 is much faster
than that in Proposition 2.5.1 and Theorem 2.5.2.
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n 2 34 5 6 7 8 9
[SRectD(n)] 1 3 9 32 139 729 4515 32336
ISRectL(n)] 1 2 6 19 78 387 2327 16334
ISPatchL(n)] 1 1 2 5 17 73 398 2636

n 10 11 12

[SRectD(n)] 263205 2401183 24275037

ISRectL(n)| 132336 1203145 12146959

ISPatchL(n)| 20542 182750 1819148

Table 2.1: Computational results for 2 < n < 12

600

1000

n 200
|SRectD(n)|  1.4568041 - 10°™
ISRectL(n)|  7.2840205 - 1037
ISPatchL(n)|  9.9077622 - 103

SRectLm)l ) 99496907

(n—2)!-e2/2

2.5975960 - 101403
1.2987980 - 1093
1.7606738 - 10102

0.99832914

2.9732576 - 102792
1.4866288 - 102562
2.0139503 - 102°6!

0.99899847

Table 2.2: Computational results for n € {200,600, 1000}
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Chapter 3

Small generating sets of lattices
of quasiorders and transitive

relations

3.1 Basic concepts and historical overview

Quasiorders, also known as preorders, on a set A form a complete lattice
Quo(A). So do the transitive relations on A; their complete lattice is denoted
by Tran(A). Similarly, Equ(A) will stand for the lattice of all equivalences on A.
The natural involution, which maps a relation p to its inverse, p* := p~ = {(z,y) :
(y,x) € p}, is an automorphism of each of the three lattices mentioned above. If,
besides arbitrary joins and meets, the involution is an operation of the structure,
then we speak of the complete involution lattices Quo(A) and Tran(A). However,
it would not be worth considering the involution on Equ(A), because it is the
identity map.

As usual, A, stands for the diagonal relation {(x,z) | z € A} on the set A.
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Fora #be A, let

{a,0)" ;
(a,0) :
{(a, b}"

{( a, )’ (b7 a)} U AA S Equ(A),
{(a,0)} UA4 € Quo(A), and
{(a,b)} € Tran(A);

they are the smallest equivalence, the smallest quasiorder, and the smallest tran-
sitive relation, respectively, containing the ordered pair (a,b). While {(a,b)}"" is
always an atom of Tran(A) and all atoms of Tran(A) are of this form, (a,b)¢ is an
atom of Equ(A) iff (a,b) is an atom of Quo(A) iff a # b, and all atoms of Equ(A)
and Quo(A) are of this form. Typically, we use the notation (a, b) only for a # b.

Unless otherwise stated, generation is understood in the complete sense. That
is, for a subset X of Equ(A4), Quo(A), or Tran(A), we say that X generates the
complete (involution) lattice in question if the only complete sublattice (closed
with respect to involution) including X is the whole lattice itself. For k € N :=
{1,2,3,...}, we say that a complete lattice L is k-generated if it can be generated
by a k-element subset X; k-generated complete involution lattices are understood
similarly. Since the involution commutes with infinitary joins and meets, we obtain

easily that

if a complete involution lattice L is k-generated and
|L| > 2k, then the complete lattice we obtain from L (3.1.1)
by disregarding the involution is 2k-generated.

Note that when dealing with finite sets A or finite lattices, then the adjectives
“complete” and “infinitary” are superfluous; this trivial fact will not be repeated
all the time later.

If a complete lattice is generated by a four-element subset X = {x1, 29, x3, 4}
such that z; < x5 but both {zy,z3, 24} and {zy, x5, 24} are antichains, then we
say that this lattice is (1 + 1 4 2)-generated.

Next, we introduce the concept of accessible cardinals. Shortly saying, a car-
dinal k is accessible if there is no inaccessible cardinal A such that A < k. (So
the adjective “accessible” in this chapter is not the opposite of “inaccessible”.)

Instead of recalling the concept of inaccessible cardinals from, say, the monograph
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of Levy [74], we define accessible cardinals directly. A cardinal x is accessible if it

is finite, or it is infinite and for every A < k,
e cither A < 2* for some cardinal p < A,

e or there is a set I = I(A) of cardinals such that A < 37 _; p, [I| < A, and
pw<Aforall pel.

In this chapter, all sets will be assumed to be of accessible cardinalities. As we
mentioned in (1.0.2), it impossible to prove in ZFC that there are other cardinals.
For more about other (that is, inaccessible) cardinals, the reader can resort to

standard textbooks on set theory, for example, to Levy [74, pages 138-141].

3.2 The history of motivating results

3.2.1 Related results from the twentieth century

In 1975 and 1977, Strietz [83] and [84] proved that for a finite set A with at
least 3 elements, the lattice Equ(A) of all equivalences on a set A, the equivalence
lattice of A for short, is four-generated. (If |A| < 2, then |Equ(A)| < 4, so this
is not an interesting case.) Furthermore, these two papers prove also that, for
10 < [A] € N, Equ(A) is (1 + 1+ 2)-generated and, for 3 < |A] € N, Equ(A) is not
three-generated.

In 1983, Zadori [87] gave a new proof of Strietz’s above-mentioned results; in
fact, he proved a stronger statement instead of the second result by showing that
Equ(A) is (1 + 1 + 2)-generated for 7 < [A| € N. His proofs are visual, and they
are simpler and more powerful than Strietz’s ones. It is Zadori’s idea that many
of the subsequent proofs in this topic develop further.

To formulate the next result in the chronological order, define the cardinal
number J, for n € Ny = {0,1,2,...} by induction: Jy := 8y and J,,4; := 2. In
their 1996 paper, Chajda and Czédli [4] proved that if A is a set with at least two
elements such that |A] < 3, for some n € Ny, then Quo(A) is three-generated as

a complete involution lattice, and so it is six-generated as a complete lattice by
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(3.1.1). Their result was soon generalized by Takéch [85], appeared in 1996; this
paper replaces the assumption “|A| < 3, for some n € Ny’ with the much less
restrictive assumption that “|A| is an accessible cardinal”. The year 1996 brought
some progress for the equivalence lattices, too: Czédli [7] proved that Equ(A) is
four-generated, provided that 3 < |A] is an accessible cardinal. In the same year,
Czédli [8] proved that if B is a countably infinite set, then Equ(B) has a four-
generated sublattice S such that S contains all atoms of Equ(B); here “generated”
has its usual meaning based on the binary join and the binary meet. Finally, in
his 1999 paper, Czédli [9] proved that if A is a set with accessible cardinality and
7 < |A|, then Equ(A) is (1 + 1 + 2)-generated.

3.2.2 Results from 2015-2016

The first results in the twenty-first century were proved by Dolgos [48], an M.Sc.
student of that time supervised by Miklés Mardéti. Subsequent results came so soon
that, exceptionally, we give the precise dates of the relevant papers. These dates
are taken from the “Submitted” or “Received” lines from the published papers
and from the “declaration page” (last page) of Dolgos [48].

Dolgos [48], submitted on May 16, 2015, proved that for a set A with 2 <
|A] < Ny, the quasiorder lattice Quo(A) is five-generated while the lattice Tran(A)
of transitive relations of A is eight-generated.

We proved in [72], submitted on October 29, 2015, that if A is a set with at least
two elements such that |A| is an accessible cardinal, then Quo(A) is five-generated
as a complete lattice; see Theorem 3.3.1 later. This result improves both Takach’s
“six-generated” from 1996 and Dolgos’s “< Ny”.

Czédli [19], submitted on November 6, 2015, observed that in some cases, even

the number 5 can be reduced. Namely, he proved that if
|Ale{neN:n>11}U{2,3,5,7,9,8}, (3.2.1)

then Quo(A) has a four-generated sublattice (in the ordinary, non-complete sense)
that contains all atoms of Quo(A). Therefore, (3.2.1) implies that Quo(A) is four-

generated as a complete lattice. Moreover, it is implicit in Czédli [19] that whenever
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|A| > 3 and S is a 3-generated sublattice of Quo(A) in the complete sense, then
S cannot contain all atoms of Quo(A) and, in particular, S cannot be Quo(A).

Finally, in our joint paper [37], submitted on October 4, 2016, we managed to
combine the merits of [72] and Czédli [19] by proving that Quo(A) is four-generated
as a complete lattice for all non-singleton sets A with accessible cardinalities ex-
cept for |A| = 4. [37] contained some other results on Quo(A), too; see Theorem
3.4.9 later. Furthermore, [37] improved Dolgos’s result on Tran(A) by reducing the
number of generators by 2 and allowing that A is of an accessible cardinality not
just at most Ny; see Lemma 3.4.10.

The most recent related results will be surveyed later, in Section 3.5.

3.2.3 The aim of (this) Chapter 3

We are going to present the results and the proofs published in [72] and [37].
This target needs some explanation, as we know from Subsection 3.2.2 that [37]
supersedes [72] in several aspects.

According to its title, [37] gives a concise approach. In this case, conciseness
means that [37] is far from being self-contained. Although the proofs given in [37]
are short, sometimes very short, these proofs rely on nontrivial earlier constructions
mentioned in Subsection 3.2.1. To give self-contained proofs of the theorems of [37],
one should add several additional pages to each of these proofs; about dozen pages
to a proof dealing with all accessible cardinals.

As opposed to [37], [72] is a self-contained and single-authored paper. A state-
ment of [72], which is Lemma 3.3.2 here, was needed in [37]. These facts explain

that, in addition to [37], [72] is also included in the dissertation.

3.3 Quasiorder lattices are five-generated

Apart from introductory features and the fact that now Lemma 3.3.2 is an
explicit statement rather than an implicit one hidden in a proof, (this) Section 3.3

is almost the same as [72]. We are going to prove the following theorem.
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Theorem 3.3.1. Let A be a set with at least three elements.

(i) If |A| is an accessible cardinal, then Quo(A) is five-generated as a complete

lattice.
(ii) If Ng < |A| < 2% then Quo(A) is five-generated as a complete lattice.

Of course, part (ii) is a particular case of part (i). While the proof of (i) relies
heavily on Czédli [7], which is a long paper, the proof of (ii) is self-contained.
Even (ii) strengthens the corresponding result of Dolgos [48]. Developing the proof
of (ii) to a self-contained proof of (i) would probably be possible, but this is not
targeted.

First of all, we prove the following lemma; it will be needed also in (the next)
Section 3.4. Following the traditions of lattice theory, C stands for proper set
inclusion, that is, X CY <= (X CY and X #Y).

Lemma 3.3.2. If 3 < |A| and L is a complete sublattice of Quo(A) such that
Equ(A) C L, then L = Quo(A).

Proof. For the sake of contradiction, suppose that L # Quo(A). We know that
o = \V{{z,y) : (z,y) € p} for every p € Quo(A). Hence, if L contained all the
atoms of Quo(A), that is, all (x,y) with x # y € A, then L would equal Quo(A)
and this would be the required contradiction to complete the proof.

Observe that, for any p,q,z € A such that |{p,q,z}| =3,

(p,z) = (p, ) A ({p,q) V (¢, 7)°) and
(z,q) = (z,q)° N ((z,p)° V (P, q))-

Thus, since all equivalences belong to L, we obtain that, for pairwise distinct
P g,z €A,
(p,q) € L= ({p,z) € L and (z,q) € L). (3.3.1)

Next, we show the following rule, in which a and b denote distinct elements of

A.
If (a,b) € L and ¢ € A\ {a,b}, then (x,y) € L

(3.3.2)
for all =,y € {a,b,c} such that x # y.
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Indeed, (3.3.1) applied to (a,b) € L yields that (a,c), (c,b) € L. This allows us to
apply (3.3.1) to (a,c) € L and (c¢,b) € L to obtain that (b,c) € L and (c,a) € L,
respectively. Finally, (3.3.1) applied to (b, ¢) implies that (b, a) € L, proving (3.3.2).

Pick a p € L\Equ(A). As p is not symmetric, there is a pair (a,b) € p such that
(b,a) ¢ p. Since (a,b)* € Equ(A) C L, we obtain that (a,b) = p A {(a,b)* € L. Let
(p, q) be an arbitrary atom of Quo(A). There are two cases. First, if {p, ¢}N{a, b} #
@, then (3.3.2) immediately implies that (p, q) € L. (Here we exploit that |A| > 3.)
Second, assume that {p,q} N {a,b} = @. Letting ¢ := ¢, (3.3.2) implies that
(a,q) € L. From now on, b and ¢ play the same role. Thus, we can assume that
q = b, whereby (p, q) € L follows by the first case. We have shown that L contains
all atoms of Quo(A), as required. ]

Proof of part (i) of Theorem 3.53.1. We know from Czédli [7] that Equ(A) is gen-
erated by a four-element set X as a complete lattice. Pick a quasiorder p €
Quo(A)\ Equ(A). By Lemma 3.3.2, Quo(A) is generated by its five-element subset
X U{p} as a complete lattice. O

Next, we give a self-contained proof for part (ii).

Proof of part (ii) of Theorem 3.3.1. Let Ay = {ao, by, a1, b1, a9,bs,...}. The sub-
sets {ag, a1, as, ...} and {bg, b1, bs,...} are called rows, the a-row and the b-row,
respectively. For a technical reason, which will be clear soon, we denote as;, 19 and
bsi+11 by e; and e}, respectively; these elements will be black-filled in our figures. In
Figure 3.1, e; and €} are connected by a dotted edge whose role will be explained in
due time. Furthermore, sometimes we even use the notation (e_y, e’ ) for (arz, bg)
in our computations.

We are going to define five quasiorders on Ay, denoted by af, a?, a9, 5%, and
0.

* 7

in fact, the first three will be equivalences. (The upper subscripts 0 refer to
the fact that they are defined on Ay; later we will also introduce «q, oy, s, 3, and
Bs, which will be defined on a larger set A.) Besides (or instead of) their formal

definition below, the reader is advised to understand them from Figure 3.1. For
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i € {0,1,2}, we define a? by the corresponding partition

{{a3k+i ke Z}} U {{a3k+i+1, a3k+i+2} ke Z}U

(3.3.3)
{{bskrir1 : k € Z}} U {{bskriz1+1, bksrisiso} : k € Z}.

Also, let

BY = {ag,az) V (b, ba) V (as, bs) V (bs, ar)

and, finally, let
Bl =)

For 6 € {al,af,a3,8°} and x,y € Ay, we have (x,y) € § iff the vertices z and y
can be connected by a d-colored directed path in Figure 3.1; this is the meaning of
the figure. (Almost all edges but (ag, as), (bo, b2), (a4, bs) and (bs, a7) are directed
in both ways.) Since 3 is the inverse of 5%, the 3%-colored edges are not indicated.
At present, the dotted edges belong neither to 3%, nor to 8%; however, some of

these edges (directed upwards or downwards) will be added to 3° or 3° at a later

stage of the construction.

Notation: af: —, a¥: M, ad: , and Boz\J,\

Figure 3.1: Quasiorders on Ay

Later we will need x < 2% copies of Ay. Note that Dolgos [48] used only the
upper row of a single copy of Ag. When we work in a single row, we often follow

his arguments.
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N NI A ’ A /A /A
o€y o1 e €3¢ €10 €50 Cge C€re

€oe Cle €2e C3e Ci@ C5@ Cie €7@ é

Figure 3.2: Ag in a concise form

Ao(@) €p® €18 €2 €3 es er
/ ol /j‘.eg i A R O T LR IO

B B
Ao({2,3})
eO:p ed e 630 ,8 e4§ﬁ egwﬂ 66‘/8 7¥ﬂé |
e oc) €
B B
AO({27 47 5})

eo‘. 61\0.6162&’6 ;3. :&ﬂ €5KIB 67 é )

Figure 3.3: A part of 8 € Quo(A) if H = {@,{2,3},{2,4,5}}

Starting from the Ng-sized graph Ay, we are going to define a more involved
graph. (Note at this point that our graphs and their vertex sets are usually denoted
in the same way.) Let xk be an arbitrary cardinal such that Xy < k < 2% et
I =1{2,3,4,...}, and take a subset H of P(I) such that |H| = k. For simplicity,
assume that @ € H. Next, for U € H, we modify the graph A, to obtain a
colored graph Ay (U) with vertex set {ao(U), bo(U),ar(U),b1(U),as(U),by(U),. ..}
as follows. When it is not confusing, we drop the parameter U and simply write
ap, bo, ai, by, .... In particular, ¢;(U) and €}(U) are denoted by e; and €, in our
figures. However, Ay(U) is given in the figures and it refers to all these elements. Of
course, we assume that Ag(U) N Ag(V') = @ whenever U # V € H. Now, to obtain
Ap(U) from A, we replace the dotted edges with “real” edges (e}, e;) for i € U
and (e;,e;) fori € I\ U. For U € H, the set Ag(U) is called a box. In Figure 3.3,
boxes are grey. For example, the lower grey box in our figure is Ag({2,4,5}).

Now, we are in the position to define a new colored graph, A, as follows. Its
vertex set is the union of the disjoint sets Ay(U), that is, A = {A¢(U) : U € H}.
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Besides that all the previous edges are preserved, we add the (-colored directed
edges (eg(@),e0(U)) and (e1(U),e1(2)) for all U € H. In this way, we obtain our
new graph, A; see Figure 3.3 for the particular case H = {@,{2,3}, {2,4, 5}}
As before, for 0 € {ap, aq,aq, f}, we let (z,y) € J iff the vertices z and y can
be connected by a d-colored directed path in the graph A. In this way, we have
defined four quasiorders, ag, a1, ae, and 3 on A; the fifth one is 3, := B~!. Notice
that if 6, € {ap, a1, as, B, 5.} and § # ¢, then 6 Ae = A 4. Notice also that all the
«; are row-preserving; this means that whenever (z,y) € a; for some i € {0, 1,2},
then there is a unique U € H such that either z,y € {ao(U),a1(U),...}, or
x,y € {bg(U),b1(U),...}. For an equivalence o on A and x € A, the p-block
{y € A: (z,y) € o} will be denoted by x/p.

Now, let L denote the smallest complete sublattice of Quo(A) such that {«y, a7,
ag, 3, B} C L; our task is to show that L = Quo(A). As it was pointed out at
the beginning of the previous proof, it suffices to show that L contains all atoms
(x,y), where x # y € A.

For U € H and distinct z,y € A(U), we introduce the notation

(o =\ (@(V), y(V)).

VeH

Let us emphasize that this notation is only permitted if x and y belong to the
same copy of A, that is, to the same grey box in Figure 3.3.
We claim that
(as,a2)g = (g V ) Ny € L. (3.3.4)

To show the “2” inclusion, assume that x # y and (z,y) € (g V ) A ay. Then
(x,y) € o and there is a shortest path P from = to y in the graph whose edges
are colored with o and . Since «; is row-preserving, x and y belong to the same
row. Suppose, for a contradiction, that this row is {bo(U),b;(U),...}. If P goes
entirely within this row, then it is clear by definitions, or by our figures, that
either (z,y) € ap U B, or (z,y) = (by(U),bs(U)). In both cases, (z,y) ¢ a1, which
is a contradiction. On the other hand, if P leaves this b-row, then it arrives at
some e;(V) in the next step, where V € H and i € {—1,2,3,4,...}. But the only

new vertex we can go from e;(V') via an (ag U )-colored path is the neighboring
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vertex to the right of e;(V). Then, in the next step of the path, we must turn
back. This contradicts the minimality of P. Therefore, x and y belong to an a-
row, {ap(U),a1(U),...}. Observe that our path P lies entirely in the same a-row.
Really, if not, then P contains a f-colored edge (e;(U),e(U)), (eo(D),eo(U)) or
(e1(U), e1(@)). However, all ¢;(U) and all €(U) belong to distinct two-element cvo-
classes. All of these ayg-classes have the property that either at most one S-colored
edge’s endpoint belongs to the class or if two [-colored edge’s endpoints are in the
class, then these edges are directed in the same way. Hence, P can not leave this
latter row, which is a contradiction. Thus, P lies in the a-row containing x and y.
Since ag A a1 = Ay = a1 A B, both colors, ag and [, occur in our path P. Since
P is the shortest path and the a-row of x and y contains only one -colored edge,
P contains exactly one S-colored edge, (ag(U),as(U)). Therefore, x € ao(U)/ap
and y € a2(U)/ap. Using (3.3.3), we have that x € {ag(U) : k € Z} and y €
{a1(U),as(U)}. Thus, taking (z,y) € aq into account, (z,y) = (az(U),ax(U)) €
(a3, as)y. This proves the “O” inclusion in (3.3.4); the reverse inclusion is obvious.
This proves (3.3.4).

Next, we assert that
<CLO, CL2> = ((ag, CL2>H V Oé[)) A ﬂ € L. (335)

To see this, let (z,y) € ({as,az)y V ap) A 5 such that z # y. Since both (a3, as)y
and o are row-preserving,  and y belong to the same row. In the shortest path
connecting x and y, both of the colors o and (as, as)y occur, because the intersec-
tions of these colors with /3 is A4. The presence of (a3, as)y yields that we are in
an a-row, say, in Ag(U). Since the restriction of 5 to this a-row is (ao(U), ax(U)),
we obtain that (z,y) = (ag(U),a2(U)) € (ap, az)y. This proves the “O” inclusion
in (3.3.5), while the converse inclusion is evident.

Next, we show that
<b0, b1> = (CYQ V 5) Aoy € L. (336)

Assume that (z,y) € (a2 V) Aag and = # y. Again, since « is row-preserving and

as Aoy = Ay = BAaq, z and y are in the same row and the shortest (ay U 3)-path
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P connecting them contains both colors, as and 5. As in the argument verifying
(3.3.4), exactly one edge of this path is S-colored and P does not leave the row of
and y. Suppose, for a contradiction, that we are in an a-row. It follows easily from
definitions that either (z,y) € asUp, or x € {ap, a1} and y € {asr2 : k € No}, but
this contradicts (x,y) € «;1. Hence, z and y are in a b-row. So the only [-colored
edge in P is (by(U),bo(U)). After its S-colored edge, P consists of at most one
edge. This gives that y € {b1(U),b2(U)}. There can be arbitrary many as-colored
edges before the only [-colored one, but we have that x € {bs : k € Ng}. Taking
(z,y) € a; into account, we conclude that (x,y) = (by(U),b:1(U)) € (by,b1)m, as
required. The converse inclusion is obvious, so we have proved (3.3.6).

Similarly to (3.3.5), we obtain the following containment easily:

<bo, b2> = ((bo, bl)H V Oég) A 5 € L. (337)

1 maps B to f,, it

follows that L is closed with respect to this automorphism, that is, for all z,y € A,
Ue€H, and u,v € Ay(U),

Since the involutory automorphism L — L, defined by o+ o~

(x,y) € L<= (y,z) € L and (u,v)y € L <= (v,u)y € L. (3.3.8)

Combining (3.3.5) and (3.3.7) with (3.3.8), we obtain that (as,ao)y € L and
(ba, bo)ur € L. For a subset X of Quo(A), the smallest complete sublattice including
X will be denoted by [X]. Our next task is to show that, for all k& € Ny,

(g, aps1)0 € [<ak7 Qp2)H 5 o, O, 042]- (3.3.9)

Observe that, for every U € H, there exists a unique i € {0, 1,2} such that the
pair (ax4+1(U), ag42(U)) is in «;, and this ¢ depends only on & but not on U. As it
is clear from definitions, for all s,¢,j € Ny and i € {0, 1,2},

(as,a;) € o <= (asyj, Gtj) € Qiyy, (3.3.10)

where the addition in the subscript of a is understood modulo 3. This allows us
to assume that i above is 0, that is, (ag+1(U), ax+2(U)) € ap for all U € H. This
means that k£ = 3 (mod 3).
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To prove (3.3.9), it suffices to show that

(ag, apr1)g = (oo V (g, ags2)m) N Q. (3.3.11)

The “C 7 inclusion is obvious. To verify the reverse inclusion, assume that (z,y) €
(o V {ak, agro)m) Aag. Since ay is row-preserving, there is a U € H such that x and
y are in the same row of Ay(U). Using that ag Aag = Ay, every (oo U (ag, agro)n)-
path P from z to y must contain an (ay, ayyo)y-colored edge. So, since aq is
also row-preserving, both = and y are in the a-row of Ayg(U). Let P above be a
shortest path, then it contains an (ay, agi2)g-colored edge only once. Thinking of
the segments of P after this edge, it follows that y € {ax1(U), ars2(U)}, while
the segment before this edge yields that € {a;(U) : i = 0 (mod 3)}. Now the
definition of ay gives that (z,y) = (ar(U), ar+1(U)) € (ag, ag+1)m, proving (3.3.9).

Since (agi1, agro)g = (a2 V (ag, agr2)m) N ap follows basically in the same way
as (3.3.11), we obtain that

(gy1, Qpro)y € [(ak, Agr2)H, Qo) Q1 aﬂ ) (3.3.12)
Similarly, we obtain (ag o, ari3)y = (ao V {ag2, ak>H) A aq, whence
(Ahy2, Qpys) € [<ak+2, k)i, o, 11, 042} . (3.3.13)
Using the rule
(bst1,be41) € ap <= (as,a) € ay, (3.3.14)

one concludes easily from (3.3.9), (3.3.12), and (3.3.13) that

(b, bes1 )i € [(bi, biyadr, o, 01, 2]
(brs1, ber2)m € [(be, byadir, o, 01, 2], and (3.3.15)
(bit2, bera)i € [(bryo, b, o, 01, 2.
If we combine the generators occurring in (3.3.9), (3.3.12), and (3.3.13), then we

obtain a larger subset of Quo(A) that is closed with respect to the involutory
automorphism ¢ mentioned right after (3.3.7). Therefore, (3.3.9), (3.3.12), (3.3.13),
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and (3.3.15) yield that

{{ars1, o), (rr, Ghir )i, ks, Gha)rr, @k, Q)i
(Qhy1s Oy, (Qrias Ak, (Orirs Ok)es (Brr2, brgr ),
(Oh 35 Do)z Ok bia)irs (Oryr, Dkso )i, (ks brva)er } (3.3.16)
C [{ak, arsa)m, (arra; ar ), (Ors Drya)m,

<bk+27 bk>H7 Qp, O, 012] =. E

Here L denotes the sublattice on the right of “C”. We say that two sequences,
(x = po,p1,---,pr = y) and (z = qo,q1,---,qn = Y), are internally disjoint se-
quences from x to y if {p1,...,pr—1}N{q,...,q—1} = &. The following lemma is
straightforward.

Lemma 3.3.3. If (x = po,p1,--.,0xk = y) and (x = qo,q1,-..,q, = y) are inter-

nally disjoint sequences from x to y, then

((posp1) V-V (D=1, 08)) A ({05 1) V -+ V (=1, @) = (2, ).

We claim that

{{aks1. arsa)ir, (O, bissh } C L.

To see this, consider any U € H and the equivalence «; with (ax(U), ax3(U)) € a.
As usual, (3.3.10) allows us to assume that i = 0, and (ay, ag3)g = ((a, AGgr2)m V

(agy2, apis3)m) A g follows easily. So, according to (3.3.13),

-~

<CLk, ak+3>H € L. (3317)
For every U € H, Lemma 3.3.3 yields that

(ar1(U),ar43(U))
= ((ak+1(U), ar(U)) V (ar(U), ar+3(U))) (3.3.18)
A (a1 (U), a2 (U)) V (ak12(U), ar13(U))).
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Since all the atoms occurring in (3.3.18) are row-preserving, we conclude that
(Qkt1, i3l =
((ars1, ar)r V (ak, Grers)i)AN(Oks1s Q) V (Qkt2; Qs )i)-

Hence, using (3.3.16) and (3.3.17) and (3.3.14), which says that the a-rows and

b-rows play similar roles, we obtain that

{<6Lk+1, ak+3>H, <bk+1, bk+3>H} Q E (3319)

Combining L C L, (3.3.5), (3.3.7), (3.3.8), (3.3.16), and (3.3.19), we obtain that,
for all 7,7 € Ny,

i —j| € {1,2} = {{ai, a;)u, (b, bj)u } C L. (3.3.20)

Next, let [i—j| > 2. In the computation below, (3.3.8) allows us to assume, without

loss of generality, that ¢ < j. If j — ¢ is even, then
(CLZ‘, Ai12, Qjt gy .- - ,(lj_g, CLj) and
(az', Qi1 Gi+35 Ajt5, - -« Aj—5, Aj-3, Aj-1, aj)

are internally disjoint sequences from a; to a; in Ay. So, Lemma 3.3.3 and (3.3.20)
give that
(a;,a;)p and (b;,b;)y belong to L

in this case. The same holds for j — ¢ being odd, because then
(@i, Qig1, Qits, - ., Gj—2,a5) and (a;, Giyo, Qitra, Qj—3, Gj—1, G;))
are internally disjoint. Therefore,
if x,y € A are in the same row, then (z,y)y € L. (3.3.21)

As a first step to go beyond the limits of a single row, we claim that

(as, be)rr = (<a5, ag)g vV BV (bs, b6>H) A ((as, a7 V Bi V (bs, b6>H)7

(3.3.22)
(ag, by = ((ag, as)y V BV (bs,br)ir) A ({ag, ar)g V Bi V (bs, br)u ).
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We only deal with the first equality, because the second one is analogous. We say
that a 8- or f,-colored edge is far on the right if both of its endpoints belong to
the set:

{e:(U),e;(U) | i €Ny, Ue H}.

Observe that
(as, ag)y V BV (bs, bohr = | {(a0(U), aa(U)), (bo(U), b2(V),

UeH

(a4(U), b5(U)), (bs(U), a7 (U)), (a5(U), as(U)), (3.3.23)
(b5(U), b6 (U)), (a5(U), b5(U)), (as(U), bs(U)),
(as5(U),bs(U))} U {some edges far on the right}.

Similarly,
(as, az)r V B V (bs, beir = | {(a2(U), ao(U)), (b2(U), bo(1))),
(b5(U)7 a4(U))7 (a7(U>7 bS(U>)7 (a5(U>> CL7(U)), (3324)

(bs(U), b(U)), (a5(U), bs(U)), (a7 (U), bs(U)),
(a5(U),bs(U))} U {some edges far on the right}.
By our construction, no edge far on the right occurs both in (3.3.23) and (3.3.24).

Thus, we obtain (3.3.22).
Now, we are in the position to fully extend the validity of (3.3.21) as follows:

if x,y € A are in the same Ay(U), then (z,y)g € L. (3.3.25)

To see this, let U € H and z,y € Ay(U) such that x # y. Apart from x—y
symmetry, (3.3.21) allows us to assume that = a;(U) and y = b;(U). Since we

obtain

() = ((, as)0 V {as, be)u V (be, y)ir) N ((&, a6)r V (a6, br)e V (br, y)r)

from Lemma 3.3.3, (3.3.25) follows.
Next, we turn our attention to atoms. As a first step, we will show that, for
every U € H,
(a1(U),b1(U)) € L.
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To see this, we claim that
(a1 (U),b1(U)) = (a1, b1 )a

Zé}] ((ax, i V BV (i, b)) (3.3.26)

N\ (s, e VBV (er, b))
ieI\U
The ”C” inclusion is evident. To see the reverse inclusion, let V'€ H, V # U. This
means there is a j € I such that j € V\U or j € U\ V. Because of symmetry, we
can assume that j € U and j ¢ V. This means that (a1, e;)z VBV (e;,b1)g is a part
of the right side of (3.3.26). It is clear that (a1 (U),b1(U)) € (a1, €V BV (e;,b1)u.
However, (a1(V),b1(V)) & (a1, €} V BV (ej,b1)u, because (a1, €} and (e;, b1)y
are box-preserving, a, (V') and by (V') are the only elements of their S-blocks and,
since j ¢ V, (e5(V),¢e;(V)) ¢ 3. Hence, (3.3.26) holds.
Next, we claim that if U € H and {w, z,y, 2} C Ap such that [{w,z,y, z}| = 4,
then
(w(U),2(U)) € L= (z(U),y(U)) € L. (3.3.27)

Since each quasiorder occurring in the right-hand side of

(@(U),y(U)) = {z,y)r A ((z, 0 V {w(U), 2(U)) V (z,y)n) (3.3.28)
is box-preserving, (3.3.28) holds and implies (3.3.27). Starting from (3.3.26) and
applying (3.3.28) once or twice, we obtain that

if U € H and z,y € Ag(U) with = # y, then (x,y) € L.

Next, we leave a single box similarly as we left a single row around (3.3.22)—
(3.3.25). This justifies to give less details. First we obtain that, for U #V € H,

(a5(U),a5(V)) =
((as(U), eo(U)) V B. V (eo(@), e1(2)) V B V {er(V), a5(V))) A
((as(U),er(U)) V BV {e1(2), e0(2)) V BV {eo(V), a5(V)))
is in L. Note that the second occurrence of 5, and that of S could be omitted;
they only serve a better understanding. Similarly, (ag(U), as(V)) € L. Hence,
Lemma 3.3.3 yields easily that for all x # y € A, (z,y) € L. This proves part (ii)
of Theorem 3.3.1. O
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3.4 A concise approach to small generating sets
of lattices of quasiorders and transitive

relations

Definition 3.4.1. By a Zddori configuration of rank n € N, we mean an edge-
colored graph F,, = {ag,ai,...,an,bo,...,b,—1} with a-colored horizontal edges
(a;—1,a;) and (bj_1,b;) fori € {1,...,n} and j € {1,...,n — 1}, B-colored wertical
edges (a;,b;) for ¢ € {0,...,n — 1}, and 7-colored slanted edges (of slope 45°)
(a;_1,b;) for i € {1,...,n}; these edges are solid edges in our figures. For example,
Fg is given in Figure 3.4 but we have to disregard the dotted edges. We do not
make a notational distinction between the graph and its vertex set, F},. The colors
a, (B, and 7 are also members of Equ(F},); we let (a,b) € a if there is an a-colored
path from a to b in the graph, and we define the equivalences 5,y € Equ(F},)

analogously.

The following lemma is due to Zadori [87]. Note that this lemma is implicit in
[87], and it was used, implicitly, in Czédli [7], [8], [9], and [19]. The lattice operations

join and meet are also denoted by + and - (or concatenation), respectively.

Lemma 3.4.2 (Zadori [87]). If n € N and A is the base set of the Zddori config-
uration F,,, then Equ(A) is generated by {«, 3,7, {ag, bo)¢, (an, bp_1)¢}.

We already used part 3.4.1 of the following straightforward lemma in the previ-
ous section, with different notations, see Lemma 3.3.3. This lemma was also used,
explicitly or implicitly, in several earlier papers; see Chajda and Czédli [4, second
display on page 423|, Czédli [7, last display on page 55], [8, circle principle on page
12], [9, first display on page 451], and [19, Lemma 2.1], Takach [85, page 90], and
Zadori [87, second display on page 583].

Lemma 3.4.3. For an arbitrary set A and j,k € N, if {u,v}, {z1,...,2;.1}, and

{y1, ..., yk—1} are pairwise disjoint subsets of A, u = xy = yo, and v = x; = Yy,
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then

M;r

;(Ii—laxi>> : (l
>

<$i71, SL’z>€> : (

Lemma 3.4.4. Assume that |A| > 3 and that oq,...,04 € Quo(A) are anti-

(u,v) = ( (i 1,yl>> (3.4.1)

and (u,v)® = ( (Yi1,9:)¢ > (3.4.2)

= Il
I > =
—_

i=1

symmetric (in other words, they are orderings) and {oq, ..., ap} generates the
complete involution lattice Quo(A). Then {ag \ Aa,...,ar \ Aa} is a generat-
ing set of the complete involution lattice Tran(A). The same holds if we consider

Quo(A) and Tran(A) as complete lattices (without involution).

Proof. Let Rel(A) stand for the complete involution lattice of all binary relations
over A. The meet in this lattice is the usual intersection, the involution is the
map p — p* := p~ !, but the join is defined in the following way: for p; € Rel(A)
and (z,y) € A% we have (z,y) € \/{p; : i € I} iff there is an n € N, there
exists a finite sequence x = zg,21,...,2, = y of elements of A, and there are
i1,...,i, € I such that (z;_1,2;) € p;, for all j € {1,...,n}. Note that Tran(A)
and Quo(A) are complete involution sublattices of Rel(A). For a relation p, denote
p\ A by p~. Instead of (Bi,...,5k) € Rel(A)* and (B;,...,B; ), we write 3 and
,61, respectively. We need k-ary |A|-complete involution lattice terms, which are
defined in the usual way by transfinite induction, see, for example, [6]; these terms
are built from at most |A|-ary joins and meets and the involution operation *. For
such a term ¢, ¢~ (3) and ¢~ (57) will stand for (¢(3))~ and (¢(67))". Then, for

every k-ary |A|-complete involution lattice term ¢, we have that
for every 3 € Rel(A)*, ¢ (B) =t (F). (3.4.3)

If the rank of ¢ is 0, then ¢ is a variable and (3.4.3) holds obviously. If (3.4.3)

holds for a term ¢, then it also holds for t*, because * is a lattice automorphism.
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Next, assume that t = A{t; : i € I} and (3.4.3) holds for all the ¢;. Then
t(B) =t(B)\ Aa = (V{t:(B) i e I})\ Au=[V{t:i(F)\ Ax:i eI}
=\t (B):iel}=(t;(F):iel}
—ﬂ{t NAsiiell= (Wt ):iel})\ A,
=t(B)\Aa=1t"(5),
whereby (3.4.3) holds for t.

Next, assume that t = \/{t; : i € I}. In order to show the validity of (3.4.3)
for ¢, assume first that (z,y) € t~(5). Then x # y and (z,y) € t(f3). So there is
a shortest finite sequence r = zg, 21,...,2, = y of elements of A and there are
i1y...,4, € I such that (z;_1,2;) € tij(g) for all j € {1,...,n}. Since x # y and
we use a shortest sequence, n € N is at least 1 and z;_; # z; for j € {1,...,n}.
Thus, (zj-1,2;) € t»_(g) whereby the induction hypothesis gives that (ZJ 1,%5)
t;(ﬁt) C t; (ﬂ ). Therefore, (z,y) € t;,(87)V -V, (37) C \{t:(3) : i
I} = t(3). But x # y, whence (z,y) € t~(f~). This proves that ¢t~ (5) C t~ (5~
Conversely, since the lattice operations and the involution are monotone, t(ﬁ )

t(f). Subtracting A4, we obtain that ¢t~(5~) C ¢~ (). This proves (3.4.3).
Armed with (3.4.3), let a # b € A. Since {aq,...,ax} generates the complete

S
S
)-

-

involution lattice Quo(A), there is a k-ary |A|-complete involution lattice term ¢
such that (a,b) = t(d). Subtracting A4 from both sides, we obtain that {(a, b} =
(a,b) \ Ay = t(a@) \ Aa =t~ (a). Thus, by (3.4.3), {(a, b} =t~ (&"). This means
that for all @ # b € A, the complete involution sublattice L generated by &~ in
Rel(A) contains {(a, b)}"". But L is also what &~ generates in Tran(A). Thus, what
we need to prove is that L = Tran(A). For a # b, {a,b}'"" € L. Based on this
containment, for each ¢ € A, we can pick x,y € A such that [{z,y, c}| = 3; then

e} = ({e, 2} VA, ) A {e )} V{ly, e}) € L. (3.4.4)

Finally, for an arbitrary p € Tran(A), we obtain from p = \/{{(a, b} : (a,b) € p}
that p € L. Consequently, L = Tran(A) is generated by &~ as required. O

The main result of this section, Theorem 3.4.9, relies on the following three

lemmas.
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Lemma 3.4.5. For a set A such that 13 < |A| < Xy and |A] is odd, Quo(A) is
(14 1+ 2)-generated.

Proof. Take F,, for 6 < n € N from Lemma 3.4.2, see Figure 3.4.

bs b

(5 _________________ 0
Notation: _a, |5, /Y’ 0

Figure 3.4: Fs with dotted d-edges, twice

Define
0 = (ag, an)® + (bo, by—1)° + (ag, as) € Quo(A); (3.4.5)

the join above is denoted by plus and it is taken in Quo(A). Note that (3.4.5)
makes sense since, say, (ag, a,)¢ € Equ(A4) C Quo(A). In the figure, § is visualized
by the dotted lines. Let L := [a,...,d] < Quo(A). The (6 + 6! + 7)-block of ay
is {b1, as, b3, as}, see the black-filled elements on the left, whereby it follows easily
that (ag, bo)® = B(v + d). Similarly, the (§ + 6! + 3)-block of ay consists of the
black-filled elements on the right, and we conclude that (a,, b,-1)¢ = v(8+6). By
Lemma 3.4.2, Equ(A) C L. Actually, Equ(A) C L, since § € L\ Equ(A). Thus,

the statement follows from Lemma 3.3.2. O
Let us agree that every infinite cardinal is even.

Lemma 3.4.6. For 56 < |A| <Xy, if |A| is even, then the complete lattice Quo(A)
is (1 + 1+ 2)-generated.

Proof. For 13 < t € N, define the graph Fi3 @ F; in the same way (but with a new
notation) as in Czédli [8]; see Figure 3.5 for ¢t = 16.

Note that, for example, (b3,al;) is a y-colored edge, no matter how large ¢
is. Let A := Fi3 ® F;. The dotted lines stand for § again; note that because
of (a9,a}) € & but (a3, al) ¢ 0, 6 ¢ Equ(A). Let L := [a,...,d] < Quo(A).
Clearly, |A| = 2- 13+ 14 2t + 1 ranges in {56,58,60,...} C N. For Ry, we let
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Notation:

Figure 3.5: F13 D F16

A= Fi3® F,® Fi5® ... as in [8]. Since the d-edge (a),aj) does not disturb
anything in the proof given in [8], Equ(A) C L. This inclusion, § € L \ Equ(A),
and Lemma 3.3.2 yield the lemma. O]

Next, we formulate the “large accessible” counterpart of Lemma 3.4.6.
Lemma 3.4.7. If Xy < |A| is accessible, then Quo(A) is (14 1 + 2)-generated.

Proof. Instead of Fyy in Czédli [9, Figure 1], start with Fj4. Instead of the five
switches of Fyg, designate six switches in F34, but use only five of them exactly in
the same way as in [9]. Follow the construction of [9] with F34 instead of Fyy and,
of course, not using the sixth switch. This change does not disturb the argument,
and we obtain a (14 1+ 2)-generating set of the complete lattice Equ(A); the only
difference is that very many unused switches remain by the end of the construction.

Now, we pick one of the unused switches and turn it to, say, the upper half of
9, Figure 4] but in a slightly modified form: instead of the non-oriented dotted arc
(for ), now we use an oriented arc. Since this arc changes neither 3(y + d), nor
v(B+9), 0 ¢ Equ(A), we still have that Equ(A) C [a, ..., d]. This fact, 6 ¢ Equ(A)
and Lemma 3.3.2 complete the proof. O]

The following lemma adds 6, 8, and 10 to the scope of the main result of Czédli
[19]; unfortunately, the case |A| = 4 remains unsettled. Furthermore, it simplifies

the approach of [19] for finite sets A with |A| being even.
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Lemma 3.4.8. For 6 < |A| € N cven, the (complete) lattice Quo(A) is four-

generated.

Proof. For n € {6,8,10,12,...}, in accordance with our previous constructs and
notation, take the one-point extension A := F, B {x} of F,; see Figure 3.6 for
n € {6,8,10}.

Notation:

. s A

Figure 3.6: F,, B {z} for n € {2,3,4}

s

Let L :=[a,...,d]. Also, let A" := A\ {z}, and let Quo'(A) := {u € Quo(A) :
the (1 + p~')-block of z is {z}}. For ¢ € Quo(A), let ¢’ := e(a + §) € Quo'(A).
By Czédli [19] and Quo’(A) = Quo(A4’), Quo'(A) C L. Clearly, we have that
(ag, )¢ = B({ap,an)® + ) and (an, )¢ = v({ag,a,)® + [) belong to L. Hence,
Lemma 3.4.3 gives that Equ(A) C L. Thus, Lemma 3.3.2 applies. O

Now, the conclusion of this section is summarized in the following theorem.
Theorem 3.4.9. Let A be a non-singleton set. Then the following statements hold.

o If|A| # 4 and |A| is an accessible cardinal, then the complete lattice Quo(A)

is four-generated.

o If |A| > 13 and either |A| is an odd number, or |A| > 56 is even, then the
complete lattice Quo(A) is (14 1 + 2)-generated.

e [f13 <|A| < XNg and either |A| is an odd number, or |A| > 56 is even, then
the lattice Quo(A) (not a complete one now) contains a (1+142)-generated

sublattice that includes all atoms of Quo(A).
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Lemma 3.4.10. If 3 < |A| and |A]| is an accessible cardinal, then the complete

lattice Tran(A) is siz-generated.

Proof. By Czédli [7], there are a1, ...,as € Equ(A) such that {aq,..., a4} gen-
erates Equ(A) as a complete lattice. Let p be a strict linear order on A; for ex-
ample, it can be a well-ordering. In order to see that the complete sublattice
L := [ai,...,a4,p,p" '] is actually Tran(A); it suffices to show that L contains
all the atoms of Tran(A). Take an atom; it is of the form {(a,b)}"". First, assume
that a # b. Then either p, or p~! contains the pair (a,b). Hence, {(a,b)}*" is either
{a,b)¢ A p, or {a,b)¢ Ap~'. In both cases, since (a, b)* € Equ(A) = [ay,...,a4] C L,
we obtain that {a,b)}'"" € L. Second, assume that a = b; that is, we need to
deal with {(a,a)}'. The assumption 3 < |A| allows us to pick x,y € A such that
{a,z,y}| = 3. Using (3.4.4) with a in place of ¢, we obtain that {a,a)}' € L, as
required. O

Lemma 3.4.11. If 3 < |A| and |A| is an accessible cardinal, then the complete

involution lattice Tran(A) is three-generated.

Proof. Observe that the three generators constructed in Takach [85] are orderings.

Thus, Lemma 3.4.4 applies. O

Note that this proof is more complicated than the proof of Lemma 3.4.10,
because this proof uses Lemma 3.4.4. Note also that (3.1.1) and Lemma 3.4.11
imply Lemma 3.4.10. Now, based on Lemmas 3.4.10 and 3.4.11, we are in the

position to conclude this section and chapter with the following theorem.

Theorem 3.4.12. If A is a set such that 3 < |A| and |A| is an accessible cardinal,
then Tran(A) is siz-generated as a complete lattice, and it is three-generated as a

complete involution lattice.

3.5 A mini-survey of recent related results

In Zadori [87], the problem of whether Equ(A) is (1+ 14 2)-generated for |A| €
{5,6} remained open. Czédli and Oluoch [41] solved this problem. Ahmed and
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Czédli [2] proved that if A is a finite set such that |[A| € {3,6,11} or |A| > 13, then
Quo(A) is (1 + 1+ 2)-generated. By allowing 24 new values of |A|, this statement
generalized the middle part of Theorem 3.4.9. This paper uses Lemma 3.3.2, which
is [2, Lemma 2.4] in it. Czédli [25] and Czédli and Oluoch [41] prove that many
direct products (in particular, direct powers) of finite equivalence lattices are four-
generated. For example, Czédli [25] implies that if |A] = 100 and k& < 1034, then
Equ(A)* is (1+ 1+ 2)-generated. Czédli [25] and [31] point out that a large lattice
with small generating set could be applied in cryptography. Finite Boolean lattices
and, more generally, finite direct powers of small distributive lattices are large and
we know from Czédli [30], [31], and [32] that these lattices can be generated by
few elements. So are “large” principal filters F' of Quo(A) by Czédli [29], in which
“large” is appropriately defined.
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Chapter 4

On the largest numbers of

congruences of finite lattices

4.1 Introduction

This chapter is the same as our joint paper [77]. The problem of the existence
of lattices with certain values for the cardinalities of their sets of congruences,
filters, and ideals was raised in Muresan [75, 76]. In Czédli and Muregan [40], it
was proved that the set of all the congruences of an infinite lattice can be of any
size between 2 and the cardinality of the lattice, or it can have the same cardinality
as the lattice’s subsets. Thus, under the Generalized Continuum Hypothesis, the
set of all the congruences of an infinite lattice can be of any size between 2 and
the cardinality of the lattice’s subsets. This does not hold for finite lattices, due
to the limited number of configurations.

It has been proved in Freese [50] and Czédli [21] that a finite lattice can have at
most as many congruences as the chain with the same cardinality, and in Czédli [21]
that the second largest possible number of congruences is that of a glued sum of
two (not necessarily nonsingleton) chains with the four-element Boolean algebra,
and, moreover, that these are the only possible structures of finite lattices wit-
nessing those numbers of congruences; in Czédli [23], the same problem has been

investigated for semilattices, and the title of Czédli [24] speaks for itself.
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In our main result of this chapter, Theorem 4.3.7, we determine the third, fourth
and fifth largest possible numbers of congruences of a finite lattice, along with the
structures of the finite lattices with these numbers of congruences, which also
show the structures of their congruence lattices. The study of the representation
of lattices in the form of congruence lattices of lattices goes back to Dilworth and
was milestoned by Grétzer and Schmidt [68], Wehrung [86], Ruzicka [80], Grétzer
and Knapp [62], and Ploséica [79], and surveyed in Gréatzer [57] and Schmidt [81].
A lot of the results have been proved on the representation problem of two or more
lattices and certain maps among them by (complete) congruences; for example, see
Grétzer and Schmidt [69], Gratzer and Lakser [63], Czédli [10, 18]. Even the posets
and monotone maps among them have been characterized by principal congruences
of lattices; for example, see Grétzer [56, 58, 59, 60], Grétzer and Lakser [64], and
Czédli [14, 15, 17, 20, 22]. Finally, the above-mentioned trends, focusing on the
sizes of congruence lattices, on the structures formed by congruences, and on maps
among these structures, have recently met in Czédli and Muregan [40], enriching
the first two trends and even related to the third one.

Regarding the determination of all possible numbers of congruences of an n-
element lattice, we do not know whether, for an appropriately large finite number
n of elements and an appropriately large natural number k,,, we can find n-element
lattices with any number of congruences between 2 and the k,th largest possible
number of congruences of an n-element lattice. But in the older version of the
paper this chapter is based on, available at arXiv:1801.05282v2, we have obtained
some results on the smallest numbers of congruences of n-element lattices and we
have laid down some ideas for bridging the gap between these and an appropriately

chosen k,th largest possible number of congruences.

4.2 Definitions, notations and immediate
properties

As usual, U will be the disjoint union of sets. For any set M, we denote

the bounded lattice of all partitions on M by Part(M). Just like in the previ-
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ous chapter, Equ(M) stands for the lattice of all equivalences on M, and Ay =
{(z,z) : x € M}, also, Vjy = M? as usual. We denote the canonical lattice
isomorphism Part(M) — Equ(M) by eq; for any finite partition {M, ..., M},
eq({ My, ..., My}) will simply be denoted by eq(My, ..., My).

All lattices will be nonempty and they will be designated by their underlying
sets. Let L and M be lattices, L is said to be trivial iff |L| = 1, L' stands for the
dual of L, and if L and M are isomorphic, then we denote it by L = M.

The congruences, filters and ideals of L also form lattices, denoted by Con(L),
Filt(L) and Id(L), respectively. Of course, Con(L) = Con(L’). Following [21],
we use the notation con(a,b) for the principal congruence of L generated by the
ordered pair (a,b). If L is a bounded lattice, then Cong; (L) stands for the set of
the congruences of L where the classes of 0 and 1 are singletons: Cong; (L) = {6 €
Con(L) : 0/0 ={0},1/6 = {1}}. As an immediate consequence of Con(L) being
a complete sublattice of Equ(L) (see [53, Corollary 2, page 51]), Cong(L) is a
complete sublattice of Con(L) (see also [51, Lemma 2]).

For a,b € L arbitrary, [a); and (a]; will be the principal filter and principal
ideal of L generated by a, respectively, and we denote the interval [a);, N (b]L by
la,b]. If L is the lattice of the natural numbers with the natural order, then the
index L will be eliminated from the previous notations. Recall that [a, b], is called
a prime interval iff a < b, that is a < b and [a,b], = {a,b}. We will call [a, ],
a contractible edge (in brief, c-edge) iff it is a prime interval such that a is meet-
irreducible and b is join-irreducible in L, so that b is the only successor of a and
a is the only predecessor of b in L. If L has a smallest element, then At(L) will
denote the set of the atoms of L.

We denote the glued sum and the horizontal sum by + and H, respectively,
whose constructions we briefly recall here; see [76, 51| for their rigorous definitions,
but note that, in these papers, the operation + described below is denoted by &
and called ordinal sum; see also the examples in the following diagrams.

If L has a largest element 1% and M has a smallest element 0, then the glued
sum of L and M is the lattice L + M whose underlying set is the quotient set of
the equivalence of LUM which collapses only 1 and 0¥, and L 4 M is obtained
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from L and M by identifying 1% with 0 and stacking M on top of L. Also, for any
a € Con(L) and any 8 € Con(M), the equivalence generated by U 3 is denoted
by a8, namely a+ 8 = eq((L/a\ {12/a}) U(M/B\ {0 /8}) U{1E/all0M /3}),
whose classes are the union of 1/a and 0¥ /3 = 1%/3, along with all the other
classes of o and all the other classes of . Clearly, Con(L + M) = {a 4
a € Con(L),B € Con(M)} = Con(L) x Con(M), and the glued sum of bounded
lattices, also of congruences of those lattices, is associative.

If L and M are nontrivial bounded lattices, then the horizontal sum of L and
M is the nontrivial bounded lattice L HH M whose underlying set is the quotient
set of the equivalence of LUM which collapses only 0% with 0™ and 1% with 1¥,
and L B M is obtained from L and M by identifying their bottom elements 0”
and 0™, identifying their top elements 1% and 1™, and letting every element of
L\ {0%,1%} be incomparable to every element of M \ {0M 1M} in L 8 M. Also,
for any o € Equ(L) and any § € Equ(M), o B § stands for the equivalence on
L B M generated by a U 3, so that, if « # V and g # V,;, then a B =
eq((L/a\ {0/a;1/a}) U (M/B\ {0/5,1/8}) U {0/ U0/B,1/a U 1/8}), where
0=0F=0Mand 1 =1 =1M in LB M, whose classes are the union of 0/a and
0/8 and the union of 1/a and 1/, along with all the other classes of o and all the
other classes of . Clearly, the horizontal sum of nontrivial bounded lattices, also
of proper equivalences on those lattices, is both associative and commutative.

For any n € N, we denote the n-element chain by C,,. Clearly, if L is a nontrivial
bounded lattice, then LEHCy = L. Note that C3HC3HC5 is the five-element modular
nondistributive lattice M3, while C3 H C, is the five-element nonmodular lattice
NE.

Now let us make some quick calculations in order to prove that the following
lattices occurring in the proof of Theorem4.3.7 have the congruence lattices shown

below them:

=C3HC, C3HC; C,HCy C2HC,

[SI e
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Cy B (C2 +Cy)
CECG+C) CIEC3+C)  GE(C+C+0)

Con(C3 B Cs) = Con(C, BCy) =
)

Con(C3 B (Co + €3 + C2)) = €2 + €2
Con(A;) = ¢, 1 2 (Cs 8 (Co+C3 +C2)) = C5 +Cy

COH<C4 H (622 + CQ))
Con(C3HCy) = Con(C3 B (C3 +C3))
COD(C3 H (CQQ —|— CQ)) = Cg

1211

Cy

For this, assume that L and M are bounded lattices and the length of each
of them is at least three. Since L and M are sublattices of L H M, for every
0 € Con(L B M), we have 6 N L* € Con(L), # N M? € Con(M), and, clearly,
6 = (0N L% B (0 N M?). However, if a € Con(L) and 8 € Con(M), then the
equivalence ol 8 on LH M is not always a congruence of this lattice; it is routine
to prove (see also [76, 51]) that, whenever o and [ are proper congruences of L
and M, respectively, then the proper equivalence a H (3 is a congruence of L HH M
iff either the a- or the [-classes of 0 and 1 are singletons or o H ( is a two-class
congruence obtained from two-class congruences of the form a = eq({0}, L \ {0})
and 8 =eq({1}, M \ {1}), which, by the convexity of any congruence class, means
that 0 is meet-irreducible in L and 1 is join-irreducible in M. Just note, for instance,
that, if « B 8 € Con(L B M) and 0/« is not a singleton, then 0/f is a singleton
and 1/8 = M \ {0}. Therefore:
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o Congi (LB M) = {aBS | a € Cony(L),s € Cong; (M)} = Cong (L) x
Congy (M),

e Con(LEHM) = Cong (LEHM)UConges(LBM)U{V @y}, where Conges(LH
M) is the set of the two-class congruences of L H M,

o Congas(L B M) C {eq(L\ {0}, M\ {1}),eq(L \ {1}, M \ {0})} and, out of
these two two-class equivalences: eq(L \ {0}, M \ {1}) € Con(L B M) iff
0 is meet-irreducible in L and 1 is join-irreducible in M, while, similarly,
eq(L\ {1}, M \ {0}) € Con(L B M) iff 1 is join-irreducible in L and 0 is

meet-irreducible in M.

Hence, noting that each of the equivalences eq(L \ {0}, M \ {1}) and eq(L \
{1}, M \ {0}) includes all members of Congy, (L B M), we get that Con(L B M) is
isomorphic to the glued sum (Cong; (L) x Cong(M)) + T, where T is Cy, C3 or C3,
depending on whether the number of two-class congruences of L H M is zero, one
or two, respectively (see also [76]).

Noting that the four-element Boolean algebra is O-regular and thus, for any
bounded lattice K, Cong (C5 + K + C2) = {Acz +60 + A¢, : 0 € Con(K)} =
Congy (Co + K 4+ Co) = {Ac, + 0+ A¢, : 6 € Con(K)} = Con(K), we obtain the

congruence lattices displayed above.

4.3 The theorems

Let n € N and L be an arbitrary lattice with |L| = n. By [21], the largest and
the second largest possible numbers of congruences of L, along with the structures
of the n-element lattices L with these numbers of congruences, are represented in
the first row of the figure below. In this section, we will show that the third, fourth
and fifth largest possible numbers of congruences of L, along with the structures of
the n-element lattices L with these numbers of congruences, are as in the second

row of the figure below:
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|Con(L)| = 2! |Con(L)| = 2"2

1
I;
! !
0 0
Con(L)| =5-2" & |Con(L)| = 2" (Con(L)] = 7- 270
1 I 1 1 1
A j
I ¢ i i f
0 |Con(L)| =7-2"°
Con(L)| = 23

Our observations on the smallest possible numbers of congruences of an n-
element lattice suggest that, in order to fill the gap between these and the largest
possible numbers of congruences of finite lattices, it might be useful to represent
the numbers of congruences in base 2; this is why, in our main result below, we
also indicate the numbers of congruences in base 2, apart from the fact that it

helps to clarify the ordering of these numbers.

Lemma 4.3.1 ([21, 52, 57]). If L is nontrivial, then:
(i) @ # At(Con(L)) C {con(a,b) : a,b € L,a < b};
(ii) for any 6 € At(Con(L)), |Con(L/0)| > |Con(L)|/2;

(iii) for any a,b € L such that a < b: [a,b]y is a c-edge iff {a,b} is the only
nonsingleton block of con(a,b) iff |L/con(a,b)| = |L| —1;
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(iv) for any a,b € L such that a < b and |L/con(a,b)| = |L| — 2, we have the
following situation or its dual (meaning the dual of the following for the case
when b is join-reducible): a is meet-reducible, a < ¢ for some ¢ € L\ {b}
such that b < bVe, c <bVe, [a,bV L = {a,b,c,bV c} = C2 and the only
nonsingleton blocks of con(a,b) are {a,b} and {c,bV c}.

Remark 4.3.2. Let a,b € L with a # b. Also, let § € Con(L). If a < b and
a/0 # b/, then, clearly, a/0 < b/6. If a/0 < b/6, then there exists no u €
[a,b]1\ (a/0Ub/0), because otherwise we would have a/0 < u/0 < b/6. Let us also
note that a/0 < b/0 iff a Vb € b/0 iff aNb € a/0 iff a < z for some = € b/0 iff
w < b for some w € a/6.

By Lemma 4.3.1(iii), if [a, b]., is a c-edge, then con(a, b) collapses a single pair
of elements, thus, clearly, con(a,b) € At(Con(L)). Since a/con(a,b) = b/con(a,b),
we have |L/con(a,b)| < |L| — 1, hence the second equivalence in Lemma 4.3.1(iii)
is clear.

By Lemma 4.3.1(iii), if |L/con(a,b)| < |L| — 1, as in Lemma 4.3.1(iv), then
[a,b] is not a c-edge, hence a is meet-reducible, so a has a successor different
from b, or b is join-reducible, so b has a predecessor different from a. With the
notations in Lemma 4.3.1(iv), if |L| — |L/con(a,b)| = 2 and, for instance, a is
meet-reducible, then, simply, the fact that (a,b), (¢,bVec) = (aVe,bVe) € con(a,b)
implies that L/con(a,b) = {{a,b},{c,bV c}} U{{z} : = € L\ {a,b,c,bV c}},
with a/con(a,b) # x/con(a,b) # c/con(a,b) for all x € L\ {a,b,c,bV ¢} and
a/con(a,b) # c¢/con(a,b), which, along with the fact that a < ¢, as above, proves
that a/con(a,b) < ¢/con(a,b) = (b V c)/con(a,b).

Lemma 4.3.3. For any a,b € L such that a < b and |L| — |L/con(a,b)| = 3, we
have the following situations or their duals (when b is join-reducible, as in Lemma
4.8.1(v)): a is meet-reducible, so that a < ¢ for some ¢ € L\ {b}, and one of the
following s fulfilled:

(i) b<bVe,c<bVe, [a,bV ] ={a,b,c,bVc} = C3 and the only nonsingleton
block of con(a,b) is {a,b,c,bV c};
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(i) b<bVe, ¢ <bVcand, for somed € L\ {a,b,c,bVc}, d=<a,[dbVc], =
{d,a,b,c,bV c} = Cy 4 C2 and the only nonsingleton blocks of con(a,b) are
{d,a,b} and {c,bV c};

(iii) ¢ < bV ¢ and, for some d € L\ {a,b,c,bVec}, b<d=<bVe,[a, bV, =
{a,b,c,d,bVc} =2 N5 and the only nonsingleton blocks of con(a, b) are {a,b, d}
and {c,bV c};

(iv) b < bVe, ¢ < bV and, for somed € L\ {a,b,c,bVc}, bV e < d,
la,d]r, = {a,b,c,bV ¢,d} = C3+ Cy and the only nonsingleton blocks of
con(a,b) are {a,b} and {c,bV c,d};

(v) b < bV c and, for some d € L\ {a,b,c,bV ¢}, ¢ < d < bV e, the only
nonsingleton blocks of con(a,b) are {a,b} and {c,d,bV ¢}, and [a,bV c|;, =
{a,b,c,d, bV c} = Nj;

(vi) b <bVec, c<bVe, la,bV ]y = {a,b,e,bV c} = C3 and, for some d,e €
L\ {a,b,c,bV c} such that d < e, the only nonsingleton blocks of con(a,b)
are {a,b}, {c,bV ¢} and {d,e}.

Proof. Let 6 = con(a,b). We have a < b and |L/0| = |L| —3 = n — 3, hence
la, b], is not a c-edge, according to Lemma 4.3.1(iii), thus a is meet-reducible or b
is join-reducible. We analyze the case when a is meet-reducible, that is a < ¢ for
some ¢ € L\ {b}; the case when b is join-reducible is dual to this one. We depict

the different situations that can appear in the following diagrams:

(i) bVe (i) bVve

Q) bVec b . d
1 b .
b c a

a

d
(iv) WbV e c
b c

a
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If a/6 =b/0 = ¢/, thus (bV ¢)/0 = a/0, then, since a/f is a convex sublattice
of L and |L| — |L/0] = 3, we have a/0 = {a,b,c,bV ¢} = [a,bV c|;, = C3, that is
b<bVcandc<bVe,and L/0 = {{a,b,c,bVc}}U{{z} : © € L\{a,b,c,bVc}};
this is case (i) in the statement of the present lemma.

If a/0 # c/0, then, since a < ¢, it follows that a/0 < ¢/6 = (bV ¢)/0 by Remark
4.3.2. Since |L| —|L/0] = 3 > 2, we get that there exists d € L\ {a,b,c,bV ¢} such
that {d} C d/6. The fact that |L| — |L/0| = 3 shows that there are three possible

situations:

e d € a/f, in which case a/0 = {a,b,d}, ¢/0 = {c,bV ¢} and z/0 = {z} for all
x € L\{a,b,c,bVec, d};

e d € ¢/0, in which case a/0 = {a,b}, ¢/0 = {c,bV ¢,d} and x/0 = {z} for all
x € L\{a,b,c,bVc,d};

e d¢ a/fUc/l,in which case a/0 = {a,b}, ¢/0 = {c,bV ¢}, d/0 = {d, e} for
some e € L\ {a,b,c,bVe,d} and /0 = {z} for all x € L\ {a,b,c,bV ¢, d, e}.

If d € a/6, then a/6 is a three-element lattice, thus a/0 = {a,b,d} = Cs, that
isd<a<bora<b<dsince a < b. The convexity of a/f ensures us that, if
d < a<b,thena/d = [d,b];,sod < a, hence {d,a,b,c,bV c} = Cy+C3; this is case
(ii) in the statement of the present lemma. If a <b < d,thenc 2 b<d<dVce
(aVe)/d=c/0={c,bVcl thusb<d<dVe=bVc#d, thatisb<d<bVec.
Therefore {a,b,c,d,bV ¢} = N5, and, since d/f < (bV ¢)/0 and any = € L with
d < x < bV c would be such that x ¢ d/0 U (bV ¢)/6, Remark 4.3.2 shows that
d < bV c¢; this is case (iii).

If d € ¢/0, then ¢/6 = {c,bV ¢,d} = C3, thatisd < c<bVcorc<d<
bVcorc<bVe<d Ifc<bVec<d, then {a,b,c,bV c,d} = C3+ Cy and
{c,bV c,d} =c/0 = [c,d]r, thus bV ¢ < d; this is case (iv). If ¢ < d < bV ¢, then
{a,b,c,d,bV c} = N5 and {c,d,bVc} =c¢/0 = [c,bV ], that is ¢ < d < bV ¢; this
is case (v). Finally, if d < ¢ < bV ¢, then {a,b} = a/0 = (aNc)/0 = (aNd)/0,
hence b > a > a Ad € {a,b}, thus a Ad = a # d, so we obtain a < d < ¢, which
contradicts the fact that a < c.
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The remaining possibility is that d/0 = e/ for some e € L\ {a,b,c,bV ¢, d},
that is ¢/0 = {c,bV ¢} = Cy and d/0 = {d, e} = Cy, thus ¢ < bV ¢ and either d < e
or e < d; this is case (vi). O

Remark 4.3.4. As pointed out by the anonymous referee of our paper [77], cases
(ii) and (iv) in the previous lemma cannot occur, and they can be excluded by
using [52, Lemma 229] to prove that. If con(a,b) collapses the elements from the
nonsingleton blocks indicated in those cases, then it collapses more elements, that
is |L/ con(a,b)| < |L| — 4, which contradicts the hypothesis of Lemma 4.3.3.

For the purpose of keeping self-containedness, while avoiding the lengthy pro-
jectivity arguments of [52, Lemma 229], we have kept these cases in the previous

lemma, since they will be easily eliminated in the proof of Theorem 4.3.7 below.

For the Hasse diagrams of the lattices in the following theorems, see the figure

at the beginning of this section.

Remark 4.3.5. Since the lattices with at most four elements are C;, Ca, C3, C4
and C3, we notice that: if |Con(L)| < 2"7!, then n > 4, while, if |Con(L)| < 2772,
then n > 5.

Theorem 4.3.6. (i) [50, 21] |Con(L)| < 2" and: |Con(L)| = 2""! iff L = C,.

(ii) [21] If |Con(L)| < 271 then |Con(L)| < 2772 and: |Con(L)| = 2772 iff
L=C,+C2+4Cpyo for somek € [1,n— 3.

Following the line of the proof from [21] of Theorem 4.3.6, now we prove:
Theorem 4.3.7. Let L be a finite lattice with n elements.

(i) If |Con(L)| < 2"72, then n > 5, |Con(L)| < 5275 = 2773 4 2" qnd:
|Con(L)| =5-2" iff L = Cp + N5+ Cp_y_3 for some k € [1,n — 4].

(ii) If |Con(L)| < 5-2"75, then |Con(L)| < 273, and: |Con(L)| = 2"3 iff either
n>6 and L = C,+ (Co x C3) + Cp——q for some k € [1,n—5], orn > 7 and
L=CL+C3+Cn+Co4+Chpma for some k,m € N such that k+m < n—5.
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(iii) If |Con(L)| < 273, then |Con(L)| < 72776 = 2n=4 4 9n=5 4 9n=6 gn(:
|Con(L)| = 7-2"% iff n > 6 and, for some k € [1,n — 5], L =2 C; + (C3 @
Cs) 4+ Cpg—s or L=Cr 4+ (C4BCy) + Crpg—as.

Proof. Assume that [Con(L)| < 2"7% < 2"~! that is n > 5 by Remark 4.3.5. We
will prove the statements of the theorem by induction on n € N, n > 5, identifying
the lattices up to isomorphism.

The five-element lattices are: M3, N5, Co +C3, C3 +Cy and Cs, whose numbers
of congruences are: 2, 5, 8, 8 and 2* = 16, respectively. The five-element lattices
with strictly less than 2572 = 8 congruences are M3 and N5, out of which Nj =
Cy + N5 + C5_1_3 is of the form in (i) and has 5 = 5 - 2°7® congruences, while M3
has 2 < 4 = 2°73 congruences. From this fact and Remark 4.3.5, it follows that, if
|Con(L)| = 2"3, then n > 6.

The six-element lattices are: My = M3HCs, C4HC3, (C3+Cs)HBCs, (C2+C3)HCs,
Ms +Cs, Co + M3, CsHCs, C,BCy, Cy X C3, N5 +Co, Co + N, CS +Cs, Cs -1-022,
Cy +C2 4+ Cy and Cg, whose numbers of congruences are: 2, 3, 3, 3, 4,4, 7, 7, 8, 10,
10, 16, 16, 16 = 2572 and 32 = 271, respectively. So, the third largest number of
congruences of a six-element lattice is 10 = 5 - 267°, the fourth largest is 8 = 263
and the fifth largest is 7 = 7- 2576, As above, we notice that A5 + Cy and Co + N
are of the form in (i), Co x Cs is of the first form in (ii) and C3 H C5 and C4 B C4
are of the forms in (iii).

It is easy to construct, as above, the 7-element lattices, and see that the ones
with strictly less than 2772 = 32 congruences are: the ones having 20 = 5 - 27°°
congruences, namely N5 + C3, C3 + N5 and Cy + N5 + Cs, all of the form in (i); the
ones having 16 = 277 congruences, namely (Cy X C3) +Cy and Cy + (C % C3), which
are of the first form in (ii), as well as C5 + C2, which is of the second form in (ii);
the ones having 14 = 7 - 277% congruences, namely (C3 B Cs) + Ca, Co + (C3 HCs),
(C4 B Cy) + Cy and Cy 4 (C4 B Cy), all of the forms in (iii); and the ones having
strictly less than 14 congruences.

Now assume that n > 8 and the statements of the theorem hold for all lattices of

cardinality at most n— 1. Note that, in the rest of this proof, whenever |Con(L)| =
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5-2"7° L is of the form in (i), whenever |Con(L)| = 2"7%, L is of one of the forms
in (ii) and, whenever |Con(L)| = T7-2""% L is of one of the forms in (iii).

Let # € At(Con(L)). By Lemma 4.3.1(i), at least one such 6 exists, and § =
con(a,b) for some a,b € L with a < b. Then a/0 = b/0, that is |L/0] < n — 1,
hence |Con(L/#)| < 2"~2 by Theorem 4.3.6(i). By Lemma 4.3.1(ii), |Con(L/6)| >
|Con(L)|/2.

(i) By the hypothesis of the theorem, |Con(L)| < 2"72. Assume by absurdum
that |Con(L)| > 5-2"° so that |Con(L/6)| > 5-2"76 > 4.2n76 = on—4 = o(n=3)—-1
thus |L/0| > n — 3 by Theorem 4.3.6(i), hence |L/0] € {n — 1,n — 2}.

Case (i).1: Assume that |L/0] = n— 1, that is, according to Lemma 4.3.1(iii),
L0 = {{a,b}} U{{z} : x € L\ {a,b}} and [a,b]; is a c-edge, thus b is the
unique successor of a and a is the unique predecessor of b. Since |Con(L/0)| >
5.276 =5.20=D=5 Theorem 4.3.6 and the induction hypothesis ensure us that
|Con(L/6)| € {272,273},

Subcase (i).1.1: Assume that |Con(L/0)| = 272 = 2=V~ that is {{a,b}} U
{{z} + € L\ {a,b}} = L/O = C,_1 by Theorem 4.3.6(i), and thus, for any
xz,y € L\ {a,b}, either /0 < a/0 or a/6 = b/0 < x/6, and either x/0 < y/0 or
y/60 < /6, that is, by the form of the classes of § and Remark 4.3.2; either x < a
or b < z, and either z < y or y < z, therefore L = C,. But then |Con(L)| = 2",
which contradicts the hypothesis of the present theorem that |Con(L)| < 2772

Subcase (i).1.2: Assume that |Con(L/0)| = 2"~ = 2("=1=2 that is, according
to Theorem 4.3.6(ii), L/0 = Cp + C2 + Cp_j_3 = Cp, + (C3 B C3) + C,,_1_3 for some
k € [1,n — 4]. If we denote the elements of L/f as in the first diagram below,
with z,y,2z,u € L, and we also consider the facts that |L| — |L/0] = 1, b is the
unique successor of a and a is the unique predecessor of b, a/0 = b/6 = {a,b} and
v/0 = {v} for all v € L\ {a,b}, then we notice that L is in one of the following

situations, represented in the three diagrams of L after that of L/6:

e if a/0 =b/0 < z/0, then b < z and L = Cy + L/0 = Cpiy + C3 + Cp_i_3,
while, if a/0 = 0/0 > u/0, then a > v and L= L/0+Cy = Cp +C3+Cppo,
but in these situations |Con(L)| = 2”2, which contradicts the hypothesis of
the theorem that |Con(L)| < 2"~
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o ifz/0 <a/f=0b/0 <u/b,thenz < a <b < u,hence {a,b}N{y, 2z} # &, that
is L= Cp+ (C3E8Cy) 4 Cpp—z = Cr, + N5 + Cppp—s, thus |Con(L)| = 2F1.5.
2n=k=4 = 5.2"75 which contradicts the assumption that |Con(L)| > 5-2"75.

1/0 1 1 1
Lo gglieri/e : AT Ig LB 0 < g I
u/9
S
x/@ I:b :x
I ; I !
0

Case ( ).2: Now assume that |L/6| = n — 2, which means that we are in the
situation from Lemma 4.3.1(iv), and assume, for instance, that a is meet-reducible,
that is a < ¢ for some ¢ € L\ {b}, and we have b < bV ¢ and ¢ < bV ¢, that is
a/ = {a,b} < {c,bVc} = ¢/0 by Remark 4.3.2, [a, bV ], = {a,b,c,bVc} = C2, and
x/0 ={z} for all x € L\ {a,b,c,bVc}; the dual case is analogous to this one. Since
|Con(L/0)| > 5276 >4.276 = 2n=4 = 20n=2)=2 ' Theorem 4.3.6 ensures us that
|Con(L/6)| = 2=t = 273 and {{a,b},{c,bVc}}U{{z} : 2 € L\ {a,b,c,bV
c}} =L/0=C,_5. So L/0is a chain, thus, for all z,y € L\ {a,b,c,bV c}, we have
either /6 < a/0 < ¢/0 or a/f < ¢/0 = (bV ¢)/0 < x/0, and either 2/0 < y/6 or
y/0 < x/0, hence, by the form of the classes of # and Remark 4.3.2, we have either
r<aorbVc<ux, and either x < yor y <z, that is L = C;, + C3 + C,,_j_» for
some k € [1,n — 3], with {a,b,c,bV c} being the sublattice of L isomorphic to C3;
but then |Con(L)| = 2"~2, which contradicts the hypothesis of the theorem that
|Con(L)| < 2"2.

Therefore, indeed, |Con(L)| < 5275 Now assume that |Con(L)| =5 - 2",
that is |Con(L/0)| > 5-2"76 > 4.2776 = 27~4 thus, as above, |L/0] € {n—1,n—2}.
By Case (i).1, the equality |Con(L)| = 5 - 2”75 shows that, if |L/0| = n — 1, then,
for some k € [1,n —4], L/ = C, +C2+Cp__3and L = Cp + N5 +Cp_r_3. By
Case (i).2, we cannot have |L/0| =n — 2.

(ii) Assume that |Con(L)| < 5-2"7° and assume by absurdum that |Con(L)| >
273 that is |Con(L/6)| > 2"~* = 2("=3=1 hence |L/0] > n — 3 by Theorem
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4.3.6(i), thus |L/0] € {n — 1,n — 2}. By Cases (i).1 and (i).2 above, in both of
these situations we obtain that |Con(L)| > 5 - 2"5 contradicting the current
assumption that |Con(L)| < 5 - 2", Therefore |Con(L)| < 2773,

Now assume that |Con(L)| = 272, that is |Con(L/6)| > 2"~* = 2("=3~1 hence
|L/6] > n — 3 by Theorem 4.3.6(i), thus |L/0| € {n — 1,n — 2,n — 3}.

Case (ii).1: Assume that |L/0] = n — 1. Then, since |Con(L/6)| > 2"~ =
2(n=1)=3 Theorem 4.3.6 and the induction hypothesis ensure us that |Con(L/0)| €
{2n=2 2n=3 5.2n=6 2n=41 By Case (i).1, we cannot have |Con(L/0)| € {272,273},

Subcase (ii).1.1: Assume that |[Con(L/#)| = 5 - 2" which, by the induction
hypothesis, means that L/0 = Cj, + N5 4 C,,_x_4 for some k € [1,n — 5], thus L is
in one of the following situations, that we separate as above, where the elements

of /0 are denoted as in the diagram below, with z,y, z,t,u € L:

e ifa/60 =0/0 <z/0,thena<b<zand L=Co+L/0 = Cri1+N5+Cpia,
while, if a/6 = b/0 > u/0, then u < a <band L = L/0+Cy = C, + N5 +
Cn—k—3, hence |Con(L)| =2 - |Con(L/0)| =5 - 2"5;

o ifx/0 <a/0=0/0 <u/f,then z < a < b < uand: either {a,b}N{z,t} # @,
in which case a, b, z, t are pairwise comparable, because otherwise a would be
meet-reducible or b would be join-reducible, thus L 2 Cy,+ (C3EBC5) +C, 4,
or y € {a,b}, thus L = C;, + (C4 B Cy) + Cp_j_4, hence |Con(L)| = 2F71 .
(22 +3) - 27%5 = 7. 2776 which contradicts the current assumption that
|Con(L)| = 2"73.

1/6
L/6 in i
Subcase (ii).1.1:
u/f

jo< 1
! x/ge

!
0/0
The following subcases can be treated exactly as above. For brevity, we only

indicate the shapes of the lattices in the remaining part of the proof.
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Subcase (ii).1.2: Assume that |Con(L/0)| = 2"* = 2"=D=3 which, by the
induction hypothesis, means that either L/0 = C, + (Cy x C3) 4 C,,_,_5 for some
rell,n—=6],or L/ =2C.+C3+C,+C3+Cp_m_s for some k,m € N such that

k+m <n — 6, so that L is in one of the following situations:

o [ = CT+1 —|- (CQ X Cg) + Cn,r,5 or L = Cr —|- (CQ X Cg) + Cn,r,4 or L =
CkJrl + 622 —I_Cm —I_CQQ ‘i‘cnfkfmff) or L/H = Ck —I_C% —i—chrl +C22 + Cnfkfmffi or
L0 =Cy+C3+Cr+C2+Cotma, thus |Con(L)| = 2-|Con(L/0)| = 2"3;

e L= Ck+N5+Cm+CQ2+Cn7k7m75 or L = Ck_i_cg_i—cm—]_NS‘i_Cnfkfmea in which
case |Con(L)| = 5.22.2k=1m=ltn=k=m=6 _ 5.9n=6  7.9n=6 ~ 8.9n=6 — gn=3,

contradicting the current assumption that |Con(L)| = 2"73;

e L>C. +G+Chpsor L=C, +G +Cppsor L=C,+H+Cp_p_5 or
L=C4+H+Cys500 L=C, +K+Chp 500 L=C + K +Crrs,
where G, H and K are the following glueings of a pentagon with a four-
element Boolean algebra and G’, H' and K’ are the duals of G, H and
K, respectively, hence |Con(L)| = 9 - 2r—1+n=r=6 = 9. on=7 < 14 . 27" 7 =
7.2"76 < 2773 contradicting the current assumption that |Con(L)| = 2773,
since |Con(G)| = |Con(H)| = |Con(K)| = 9, which is simple to verify, and
thus |Con(G")| = |Con(H")| = |Con(K')| = 9 as well; in the diagrams below,
we are indicating the positions of ¢ and b in these copies of G, H, K, GG,
H’ and K’ from L, which, along with the shapes of these lattices, are easy
to derive from the fact that, by the hypothesis of Case (ii).1, con(a,b) only

collapses a and b:
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Case (ii).2: Assume that |L/0] = n — 2. Then, since |Con(L/0)| > 2"~* =
2(n=2)=2 Theorem 4.3.6 ensures us that |Con(L/0)| € {2"3,2"*}. By Case (i).2,
we cannot have |Con(L/0)| = 2773 thus |Con(L/#)| = 2"~*, hence L/0 = C; +
C3 4 C,_j_4 for some k € [1,n — 5], according to Theorem 4.3.6(ii). We are in the
situation from Lemma 4.3.1(iv), hence a is meet-reducible or b is join-reducible.
We will assume that a is meet-reducible, that is a < ¢ for some ¢ € L\ {b},
and we will apply Lemma 4.3.1(iv) and Remark 4.3.2; the case when b is join-
reducible shall follow by duality. Since {a,b} = a/0 < ¢/0 = {c,bV ¢} and, for all
xe L\ (a/0Uc/)=L\{a,b,c,bVc} x/0={z} and x ¢ [a,bV c]r, L has one

of the following forms:

o [~C,+C3+Ci+C2+C, s ¢4 for some s,t € N such that s+t < n—5;in
this case, one of the two copies of C3 from L is {a,b,c,bVc}, k € {s,s+t+2},
and, indeed, |Con(L)| = 2"3;

o [ ~C;+ (Cy xCs)+ Cpp4, in which case, indeed, |Con(L)| = 2"73, and a,
b, ¢, bV ¢ belong to the copy of Cs x C3 from L, in which they are situated as
in one of the following first two diagrams, since § = con(a,b) only collapses

a,band ¢,bV c;

o LXCp+ (C3HB(C3+Co))+Chpgor LEC,+ (C3H (Co+C3))+Cria,
in which a, b, ¢ and bV ¢ would be positioned in the copy of C3 B (C3 + Cy),
respectively C3 B (Co + C3), as in the third and fourth diagrams below, but
then |Con(L)| = 3 -2~ 1Hn=h=5 = 3. 9776 < 7.9n76 < 8.97=6 = 27=3 which
contradicts the current hypothesis that |Con(L)| = 2"73.

o S D

Case (ii).3: Assume that |L/0] = n — 3. Then, since | Con(L/0)| > 2" =
2(n=3)=1 Ly Theorem 4.3.6(i), it follows that | Con(L/0)| = 2", so that L/0

1%
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Cn_3. We are in the case from Lemma 4.3.3; assume that a is meet-reducible, that
is a < ¢ for some ¢ € L\ {b}; the case when b is join-reducible follows by duality.

In the situation from Lemma 4.3.3(i), since L/6 is a chain, it follows that, for
any x,y € L\{a,b,c,bVc}, {z} =2/0 <a/l ={a,b,c,bVc}ora/f=(bVc)/0 <
x/0, and x/0 < y/0 = {y} or y/0 < /0, so x <y ory <z, and z < z for every
z € {a,b,c,bVc}or z < z for every z € {a,b, c,bVc}. Therefore L = Cp+C5+C, 1o
for some k € [1,n — 3], thus |Con(L)| = 2"~2, which contradicts the hypothesis of
the present theorem that |Con(L)| < 2772,

In the same way, in the situations (ii) and (iv) from Lemma 4.3.3, we obtain
that L = Cj, + C3 4 C,_x_o for some k € [1,n — 3], thus |Con(L)| = 2”2, which
contradicts both the hypothesis of the theorem that |Con(L)| < 2”72 and the fact
that 6 = con(a, b). Similarly, in the situations (iii) and (v) from Lemma 4.3.3, we
get that L = Cy, + N5 + C,_j_3 for some k € [1,n — 4], hence |Con(L)| = 5-2"?,
which contradicts the current assumption that [Con(L)| = 2773,

Now assume we are in the situation from Lemma 4.3.3(vi), with d and e as in
the statement of the lemma. Since L/6 is a chain, without loss of generality, we
may assume that d/0 < a/0 < ¢/6, because the other case is dual to this one. So, in
L/0, we will have {d, e} < {a,b} < {c,bV c} and, for all z € L\ {a,b,c,bVec,d, e}:
either /0 < a/8 < c¢/8 or a/0 < ¢/0 = (bV ¢)/0 < x/0, and either z/0 < d/6
or d/§ = e/0 < x/0, therefore, since z/0 = {z}, Remark 4.3.2 ensures us that we
have either x < a or bV ¢ < z, and either x < d or e < z.

If we had ¢ < a, then L = C, + C3 + C,,_p_» for some k € [3,n — 3|, be-
cause d, e,a,b,c,bV c would be positioned in L as in the first diagram below, thus
|Con(L)| = 2"72, which contradicts the hypothesis of the theorem that |Con(L)| <
2772 as well as the fact that 6 = con(a,b). We have {d,e} = d/0 < a/0 = {a,b}.
Since a/0 and d/§ = e/ are convex, we cannot have e > a. Hence e and a are
incomparable, d < a and e < b. Sod < aNe<e, thusaAe € d/f ={d, e} by the
convexity of d/0, hence a A e = d since e £ a by the above. Analogously, a Ve = b.
Hence {d, e, a,b,c,bV c} = Cy x Cs.

Recall that d < e, a <b<bVe,a<c=<bVcand [a,bV ] ={a,b,c,bVc}.
Assume by absurdum that [d,b]; # {d,e,a,b}, that is x € [d,b]; for some x €
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L\ {d,e,a,b,c,bVvc} =L\ (d/0Ua/0Uc/0). If x is comparable to neither e,
nor a, then {d,e,z,a,b} = Msj, thus (a,d) € con(a,b) = 60, which contradicts
the fact that a/0 # d/6. If x is comparable to a, then d < = < a, while, if z is
comparable to e, then e < < b, since d < x < b, d < e and a < b; in each
of these cases, {d,e,z,a,b} = N5, so € a/con(a,b) = a/f in the first of these
two cases, and = € d/con(a,b) = d/f in the second, and each of these situations
contradicts the fact that z ¢ d/0Ua/0Uc/0. Therefore [d,b];, = {d, e, a, b} and thus
[d,bVc]p ={d,e,a,b,c,bVc} =2 CyxCs,80d, €, a, b, ¢, bV are positioned in L as in
the second diagram below, and, since L/# is a chain, for all x € L\{d, e, a, b, ¢,bVc},
we have {z} = x/0 < d/0 < a/0 < c/0 or d/§ < a/0 < c/0 < x/0, thus x < d or
bV e < x by Remark 4.3.2. Hence L 2 C+ (C2 X C3) +C, k4 for some k € [1,n—5],
which, indeed, has |Con(L)| = 2"3.
bVe bVece

LK
{0
Ie
d d

(iii) Assume that |[Con(L)| < 2" and assume by absurdum that |Con(L)| >
7-2"75 so |[Con(L/0)| > 7-2""7 > 5.2""7 > 4.2"7 = 2n=% = 200=)~1 hy Lemma
4.3.1(ii), hence |L /6| > n—4 by Theorem 4.3.6(i), thus |L/0| € {n—1,n—2,n—3}.

Case (iii).1: Assume that |L/0| = n — 1. Since |Con(L/0)| > 7-2"7 =7
2(n=1=6 1y Theorem 4.3.6 and the induction hypothesis, we get that |Con(L/0)| €
{on=2 9n=3 5.2n=6 9n=41 By Case (i).1, |Con(L/0)| ¢ {272,273}, By Subcase
(i1).1.1, since |Con(L)| > 7-2"7% it follows that |Con(L/6)| # 5-2"°. Finally, by
Subcase (ii).1.2, since 2" > |Con(L/6)| > 7-2"7, it follows that |Con(L/6)| #
on—4,

Case (iii).2: Assume that |L/0| = n — 2. Since |Con(L/0)| > 7-2"7 > 5-
2"=7 by Theorem 4.3.6 and the induction hypothesis, it follows that |Con(L/6)| €
{2n=3 2n=1} By Case (i).2, |Con(L/0)| # 2"~3. By Case (ii).2, |Con(L/0)| # 2"~

Case (iii).3: Assume that |L/0| = n — 3. Since |Con(L/0)| > 7 -2"77 >
4. 27T = 2n=5 = 2(n=3)=2 by Theorem 4.3.6, it follows that |Con(L/#)| = 2"~* =
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2(m=3)=1 and hence L/ = C,_3. By Case (ii).3, it follows that we cannot have
2773 > |Con(L)| > 7-2"S.

Therefore |Con(L)| < 72776,

Now assume that |Con(L)| = 7-2"7% so |Con(L/0)| > 7 -2 7 >5.2""7 >
4.2m 7 = 2n=5 = 2(n=4)=1 by Temma 4.3.1(ii), hence |L/0| > n — 4 by Theorem
4.3.6(i), thus |[L/0] € {n —1,n —2,n — 3}.

Case 1: Assume that |L/0] = n — 1. Since [Con(L/0)| > 7277 = 7.2(n=1=6
by Theorem 4.3.6 and the induction hypothesis, it follows that |Con(L/0)| €
{on=2 9n=3 5. 2n=6 gn=4 7. 97T} By Case (i).1, |Con(L/0)| & {2"2,2"3}.

Subcase 1.1: Assume that |[Con(L/6)| = 5-2"7°. Since we also have |Con(L)| =
7-2"% by Subcase (i).1.1, it follows that, for some k € [1,n — 3|, L/ = C}, +
Ns+Copa =Cr+ (C3BCy) +C,pq and either L 2 Cp + (C3HBCs) + Cpo_g_4 or
L=Cy+ (C4BCy) +Crogy.

Subcase 1.2: Assume that [Con(L/0)| = 7-2"77, so, by the induction hypothesis,
for some k € [1,n—6], L/0 = C,+(C3HCs)+Cp—i—5 or L/0 = Cp+(C4HCy)+Cp—s—s,

thus, since [a, b], is a c-edge in this Case 1, we have one of the following situations:

o [ = Ck+1 —f— (Cg H C5) + Cn—k;—5 or L = Ck + (Cg H C5) —f— Cn—k—4 or L =
Crp1 + (C4BCy) +Crpp—s or L=Cp + (C,HCy) + Cri—ss

o L 2C,+(C3BC)+Cppsor L=EC,+ (C4EBCs)+ Cris, but in these
cases Con(L) = CI™7 x (C3 + C2), thus |Con(L)| = 2777 (23 +3) = 11 -
2T < 14 -277 = 7.2"6 which contradicts the current assumption that
|Con(L)| = 7-2"°.

Case 2: Assume that |L/0| = n—2. Then, by Lemma 4.3.1(iv), we can assume
that a is meet-reducible, that is a < ¢ for some ¢ € L\ {b}, since the other case is
dual to this one. Since |Con(L/f)| > 7-2""7 > 5.2""7 = 5.2=2=5 by Theorem
4.3.6 and the induction hypothesis, it follows that |Con(L/0)| € {273,274 5 .
2777}, By Case (i).2, |Con(L/0)| # 2"3. By Case (ii).2, since |Con(L)| = 7-2"75,
it follows that |Con(L/6)| # 2" 4. Hence |Con(L/#)| = 5 -2"7, thus, by the
induction hypothesis, for some k € [1,n — 6], L/ = C; + N5+ C,_i_5, hence L is

in one of the following situations, as shown by Lemma 4.3.1(iv):
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e cither k > 4 and, for some r,s € N such that r +s =k, L=C, +C3+C, +
N5 +Cp_t_5, or n > k+9 and, for some r, s € N such that r+s=n—k —5,
L=Cp+ N5+ C, +C2+C,, but in these cases Con(L) = Cy % x (Cy + C2),
so |[Con(L)| =5-2%-2""8 =5.2"6 < 7.2776 which contradicts the current
assumption that |Con(L)| = T7-2"¢;

o L2Cp+((C24+Co)BCy)+Cpp_50r L 2Cp+ ((Co+C3)HCy) +Cpps, with
the positions of a, b, ¢ and bV ¢ in the copy of (C3 + Cy) B Cy, respectively
(Co+C3)HC, from L as depicted in the first two diagrams below, but in these
cases Con(L) = C;xCy ™7, 50 |Con(L)| = 2"° = 2-2"7% < 7.2"5 which gives

us another contradiction to the current assumption that |Con(L)| = 7-2";

o L 2Cp+ (C3H(Cy+C2+Cy)) + Crrs, with the positions of a, b, ¢ and
bV ¢ in the copy of C3 H (Co + C3 + C3) from L as depicted in the third
diagram below, but in this case Con(L) = (C2 + C2) x C5~", so |Con(L)| =
7-2"7 < 7.276 and, again, we obtain a contradiction to the assumption
that |Con(L)| =7 - 2"

o LCL+(C3B(C3+C3))+Cprsor L =Cp+ (C3B(C5+C3))+Cpis, with
the positions of a, b, ¢ and bV ¢ in the copy of C3 B (C3 4 C3), respectively
C38(C5+C3) from L as depicted in the last two diagrams below, but in these
cases Con(L) 22 Cy~7 x Cy, thus |Con(L)| = 4-277 =275 < 14.2"7 =

7-2"% which gives us another contradiction to |Con(L)| =7 -2"°.

bVe

bVe c
bV
c
b
a 0]
a a

Case 3: Assume that |L/0| = n — 3. Since |Con(L/0)] > 7-2"" > 4.2 =
2"=5 = 2(=3)=2 Theorem 4.3.6 ensures us that |[Con(L/#)| = 2"~ = 2("=3~1 thus

o
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L/6 = C,_3. But Case (iii).3 shows us that, in this case, |Con(L)| # 7-2"75 so we
have a contradiction to the current assumption that |[Con(L)| =7 -2"6. O
Corollary 4.3.8.

(i) |Con(L)| = 2" iff Con(L) = Cy~'.

(ii) |Con(L)| =272 iff n > 4 and Con(L) = Cy 2.

(iii) |Con(L)| =5-2"7% iff n > 5 and Con(L) = Cy° x (Cy + C3).

(iv) |Con(L)| = 2"3 iff n > 6 and Con(L) = Cy 2.

(v) |Con(L)| =7-2"5 iff n > 6 and Con(L) = Cy°® x (C2 + C2).

Proof. The converse implications are trivial, and the direct implications follow
from Theorems 4.3.6 and 4.3.7. O
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Summary

In this dissertation, our goal was to get a better understanding of the structure
of some lattices and some related lattices. We described slim rectangular lattices by
permutations, and we also counted these lattices. We searched for minimum-sized
generating sets of the lattices of quasiorders. Also, we characterized lattices with
many congruences. While counting these congruences, we described the structure

of the congruence lattices, too.

Following the introductory Chapter 1, Chapter 2 is about slim rectangular
lattices and is based on [33]. An element of a lattice is join-irreducible if it has
exactly one lower cover. A finite lattice L is slim, if Ji L, the set of the join-
irreducible elements of L, is included in the union of two chains of L. Slim lattices
are planar, that is, they possess planar diagrams. By our convention, the lattice
properties of a planar lattice diagram D are those of the lattice determined by
D. A semimodular (lattice) diagram D is rectangular if both its left boundary
chain, denoted by Cy(D), and its right boundary chain, C.(D), have exactly one
doubly irreducible element, and these two elements, called the corners of D, are
complementary. Rectangular lattices are those that have rectangular diagrams.

A minimal non-chain region of a planar lattice diagram D is called a cell. A
four-element cell is a 4-cell. A diagram is a 4-cell diagram if all of its cells are
4-cells. Tt was proved in Grétzer and Knapp [61, Lemmas 4 and 5] that D is a
slim semimodular diagram iff it is a 4-cell diagram and no two distinct 4-cells
have the same bottom. Two prime intervals of a slim semimodular diagram D
are consecutive if they are opposite sides of a 4-cell. The consecutiveness of two

prime intervals in a slim semimodular lattice L does not depend on the planar
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diagram chosen. Maximal sequences of consecutive prime intervals form a trajec-
tory. In other words, a trajectory is a class of the equivalence relation generated
by consecutiveness. By Czédli and Schmidt [43, Lemma 2.8], if T" is a trajectory
of a slim semimodular diagram D, then T contains exactly one prime interval of
Ci(D), and the same holds for C,(D). Going from left to right, 7" does not branch
out. First T" goes up (possibly in zero steps), then it may turn to the lower right,
and finally it goes down (possibly, in zero steps).

We denote the set of the similarity classes of slim rectangular diagrams of length
n and that of slim semimodular diagrams of length n by the acronyms SRectD(n)
and SSmodD(n), respectively. Similarly, the set of the isomorphism classes of slim
rectangular lattices of length n, that of slim semimodular lattices of length n are
denoted by SRectL(n) and SSmodL(n).

There are several known tools for examining semimodular lattices; one of them
is describing these lattices by permutations. For a slim rectangular diagram D of
length n, let Ci(D) ={0=c) <1 <--- < ¢, =1} and C,(D) = {0 =dp < d; <
.-+ < d, = 1}. Following Czédli and Schmidt [45], the permutation m = mp € S, is
defined by the rule 7(z) = j iff [¢;_1, ¢;] and [d;_1, d;] belong to the same trajectory.
Czédli and Schmidt proved in [45] that the map SSmodD(n) — S, defined by
D — 7p, is a bijection.

In Chapter 2, we described the permutations belonging to slim rectangular

lattices.

Definition 2.3.1. A permutation 7w € S,, is called rectangular if it satisfies the

following three properties.
(i) For all ¢ and 7, if 77 1(1) <4 < j < n, then 7(z) < ().
(ii) For all 7 and j, if m(1) <i < j <mn, then 7~ 1(z) < 77 1(4).
(iii) m(n) <m(1).

Proposition 2.3.3. A slim, semimodular, planar diagram D of length n > 2 is

rectangular if and only if T = mp € S, is rectangular.
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With the help of this description, we gave formulas for the numbers of slim

rectangular diagrams and slim rectangular lattices.

Proposition 2.4.2. For 2 < n € N, the number of (the similarity classes of) slim

rectangular diagrams of length n is

SRectD(n)[ = 3 <”;f1_1) (na_le>(n—a—b)!.

a+b<n
a,beN

Let Invl(k) = {m € Sy : m = 7'} denote the set of involutions acting on

the set {1,...,k}. For k£ € N, the number of involutions in Sy is |Invl(k)| =
k/2] (K :
Z]L:/oJ (kaj) (25 =D

Proposition 2.4.4. For 2 < n € N, the number of (the isomorphism classes of)

slim rectangular lattices of length n is

[n/2]
1 n—a-—1
|SRectL(n)| = 3 (|SRectD(n)| + agl ( 41 ) - [Invl(n — 2a)|).

Based on the formulas, we were able to give asymptotic results, in which e ~
2.71828.

Proposition 2.5.1. The number of (the similarity classes of) slim rectangular

diagrams of length n is asymptotically (n—2)!-e?, that is, |[SRectD(n)| ~ (n—2)!-e%.
This led to the main result of Chapter 2.

Theorem 2.5.2. The number of (the isomorphism classes of) slim rectangular
lattices of length n is asymptotically (n — 2)! - €*/2, that is,

. |SRectL(n)|
lim ———— =

In Chapter 3, we aimed to determine a minimum-sized generating set of the
lattice of quasiorders, also of the lattice of transitive relations. This chapter was
based on [37] and [72].

A quasiorder is a reflexive and transitive relation. Quasiorders on a set A form

a complete lattice Quo(A). So do the transitive relations on A; their complete
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lattice is denoted by Tran(A). Similarly, Equ(A) will stand for the lattice of all
equivalences on A.

For a subset X of Equ(A), Quo(A), or Tran(A), we say that X generates the
complete lattice in question if the only complete sublattice including X is the
whole lattice itself. For k € N :={1,2,3,...}, we say that a complete lattice L is
k-generated if it can be generated by a k-element subset X. If a complete lattice
is generated by a four-element subset X = {1, x9, z3, 24} such that z; < x5 but
both {z1, 23,24} and {xs,z3, 24} are antichains, then we say that this lattice is
(14 1+ 2)-generated.

All sets in this chapter were assumed to be of accessible cardinalities. A cardinal

K is accessible if it is finite, or it is infinite and for every A < k,
e cither A < 2* for some cardinal p < A,

e or there is a set I of cardinals such that A <37 u, [I] <A, and p < A for
all pel.

ZFC has a model in which all cardinals are accessible, hence the scope of many of
our results includes all sets in an appropriate model of set theory.

It was known by Strietz [83] and [84], Zadori [87], and Czédli [7] that the
complete lattice Equ(A) of all equivalences is four-generated, provided the size
|A| of A is an accessible cardinal and |A| > 2. Also, Equ(A) cannot be generated
by less than four elements if |A| > 4. We know from Chajda and Czédli [4] and
Takéch [85] that Quo(A) is six-generated as a complete lattice, provided that | A] is
accessible. Actually, we know from Dolgos [48] for 2 < |A| < Vg that the complete
lattice Quo(A) is five-generated.

We extended Dolgos’ result in two ways. The first one is short and states
more (about all sets A where |A] is accessible) than the second one, but it is
based heavily on Czédli’s quite involved and long constructions from [7] and [9].
This justifies the second way: we gave an easier, more understandable and self-
contained construction for a five-element generating set of Quo(A) if |A] < 2%,

based on Dolgos” work.

Theorem 3.3.1. Let A be a set with at least three elements.

81



SUMMARY

(i) If |A| is an accessible cardinal, then Quo(A) is five-generated as a complete

lattice.
(ii) If Ry < |A| < 2%, then Quo(A) is five-generated as a complete lattice.

Following this result, Czédli proved in [19] that the complete lattice Quo(A) is
four-generated for |A| = {Xo}U(N\{1,4,6,8,10}). It is also shown in [19] that the
complete lattice Quo(A) cannot be generated by less than four elements, provided
|A| > 3. Concerning transitive relations, Dolgos [48] has shown that the complete
lattice Tran(A) is eight-generated for 2 < |A| < N,.

So our second goal in Chapter 3 was to show, in a concise but not self-contained
way, that Quo(A) is four-generated if |A| # 4 and |A| is an accessible cardinal.
Furthermore, we proved that Quo(A) is (141+2)-generated in many (however not

all) cases. We also improved the earlier results on the generating sets of Tran(A).
Theorem 3.4.9. Let A be a non-singleton set. Then the following statements hold.

e If|A| # 4 and |A| is an accessible cardinal, then the complete lattice Quo(A)

18 four-generated.

o If |A| > 13 and either |A| is an odd number, or |A| > 56 is even, then the
complete lattice Quo(A) is (14 1 + 2)-generated.

e [f13 < |A| < Ng and either |A| is an odd number, or |A| > 56 is even, then
the lattice Quo(A) (not a complete one now) contains a (1414 2)-generated

sublattice that includes all atoms of Quo(A).

Theorem 3.4.12. If 3 < |A| and |A| is an accessible cardinal, then Tran(A) is

siz-generated as a complete lattice

Chapter 4 deals with the problem that given a natural number n, find the n-
element finite lattices with the most, second-most, third-most, etc. congruences;

also, give the diagram of the lattice of their congruences. This chapter is based on
[77].
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By Czédli and Muresan [40], the set of all the congruences of an infinite lattice
can be of any size between 2 and the cardinality of the lattice, or it can have
the same cardinality as the lattice’s subsets. But the situation is quite different
for finite lattices. To formulate our results, the following lattice operations and
notations are needed.

Let L and M be lattices. If L has a largest element 1* and M has a smallest
element 0™, then the glued sum of L and M, denoted by L 4 M, is obtained
from L and M by identifying 1% with 0" and stacking M on top of L. If L and
M are nontrivial bounded lattices, then the horizontal sum of L and M, denoted
by L B M, is obtained from L and M by identifying their bottom elements 0%
and 0™, identifying their top elements 1* and 1™, and letting every element of
L\ {0%, 1%} be incomparable to every element of M \ {0 1™} in LE M. For any
n € N, we denote the n-element chain by C,. As usual, N5 denotes the five-element
nonmodular lattice C3 H C,.

Using these notations, Freese [50] and Czédli [21] determined the largest and
second largest numbers of congruences. Namely, if L is a finite lattice with n
elements, then |Con(L)| < 2", also, |Con(L)| = 2" iff L 2 C,,. In other words,
a finite lattice can have at most as many congruences as the chain with the same
number of elements has. Furthermore, if [Con(L)| < 27!, then |Con(L)| < 272
moreover, [Con(L)| = 2" 2 iff L = C, +C3 + C__o for some k € [1,n — 3].
That means the second largest possible number of congruences is witnessed by a
glued sum of two chains with the four-element Boolean algebra. Following the line
of Czédli’s proof, we obtained the next result about the lattices with the third,

fourth and fifth largest possible numbers of congruences.
Theorem 4.3.7. Let L be a finite lattice with n elements.

(i) If |Con(L)| < 2"72, then n > 5, |Con(L)| < 52" = 2n73 4 2775 qnd:
|Con(L)| =5-2"5 4ff L =2 Cx + N5+ Co—g—3 for some k € [1,n — 4].

(ii) If |Con(L)| < 5-2"7?, then |Con(L)| < 2"73, and: |Con(L)| = 273 iff either
n>6and L = C,+ (CoxC3)+Cpg_g for some k € [1,n—5], orn >7 and
L~C+C2+Cp+C24Chtma for some k,m € N such that k+m < n—5.
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(iii) If |Con(L)| < 273, then |Con(L)| < 72776 = 2n=4 4 9n=5 4 9n=6 gn(:
|Con(L)| = 7-2"% iff n > 6 and, for some k € [1,n — 5], L =2 C; + (C3 @
Cs) 4+ Cpg—s or L=Cr 4+ (C4BCy) + Crpg—as.

Combining the earlier theorems with ours, we summarized the results on the
lattices of the congruences of a finite lattice with the most, second-most, third-

most, etc. congruences.
Corollary 4.3.8.
(i) |Con(L)| = 2"! iff Con(L) = Cy~'.
(ii) |Con(L)| =2""2 iff n > 4 and Con(L) = Cy 2.
(iii) |Con(L)| =5-2"7° iff n > 5 and Con(L) = Cy~° x (Cy + C2).
(iv) |Con(L)| = 2" 3 iff n > 6 and Con(L) = Cy 3.
(v) |Con(L)| =7-2"5 iff n > 6 and Con(L) = Cy % x (C? + C2).
This dissertation is based on four of the author’s papers. These publications are
the following:

1. G. Czédli, T. Dékany, G. Gyenizse and J. Kulin: The number of slim rectan-
gular lattices. Algebra Universalis 75/1 (2016), 33-50.

2. G. Czédli and J. Kulin: A concise approach to small generating sets of lattices
of quasiorders and transitive relations. Acta Sci. Math. (Szeged) 83 (2017),
3-12.

3. J. Kulin: Quasiorder lattices are five-generated. Discussiones Mathematicae

- General Algebra and Applications 36 (1) (2016), 59-70.

4. C. Muregan and J. Kulin: On the largest numbers of congruences of finite
lattices. Order 37 (2020), 445-460.
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Another publication of the author not used in this dissertation:

e T. Dékany, G. Gyenizse and J. Kulin: Permutations assigned to slim rectan-
gular lattices. Acta Sci. Math. (Szeged) 82 (2016), 19-28.
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Osszefoglalé (Summary in

Hungarian)

E disszertacioban az volt a célunk, hogy jobban megértsiik bizonyos halok
segitségével jellemeztiik, és megadtuk e halok szamat. A kvazirendezések haldinak
minimalis elemszamu generdléhalmazait kerestiik. Tovabbd jellemeztiik a ,,sok”
kongruenciaval rendelkez6 haldkat, valamint megadtuk a kongruencidk szaméanak

néhany lehetséges legnagyobb értékét és a jellemzett halok kongruenciahéléit is.

A bevezetd 1. fejezetet kovetden a 2. fejezet sovany téglalapszerti haldkkal
foglalkozik, és a [34] cikkiinket dolgozza fel. Egy halé valamely elemét egyesités-
wrreducibilisnek nevezziik, ha pontosan egy elemet fed. Egy L véges halo sovdny, ha
az egyesités-irreducibilis elemek Ji L halmaza lefedhet6 két lanccal. A sovany halék
stkbarajzolhatdak, azaz van olyan diagramjuk, amely sikgraf. Amikor azt mondjuk,
hogy egy D sikba rajzolt halédiagram rendelkezik a ® halétulajdonséggal, azt gy
értjik, hogy a D altal meghatarozott haloé rendelkezik a ® tulajdonsaggal. Egy D
féligmoduldris halédiagram téglalapszeri, ha a bal hatdrlinca, amelyet C,(D) jeldl,
és a jobb hatdrlanca, amelyet C.(D) jeldl, pontosan egy-egy duplan irreducibilis
elemet tartalmaz, és ez a két elem, melyeket D sarkainak hivunk, egymas komple-
mentuma. A téglalapszeri diagrammal rendelkezé haldokat nevezziik téglalapszert
haloknak.

Egy sikba rajzolt D halédiagram minimaélis, nem lanc tartomanyait celldknak
hivjuk, a négyelemi cellakat pedig 4-celliknak. Egy diagram 4-cella diagram, ha

az Osszes celldja 4-cella. Gritzer és Knapp [61, Lemma 4 és 5] bizonyitotta, hogy
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D akkor és csak akkor sovany féligmodularis diagram, ha 4-cella diagram, és két
kiilonbozo 4-celldjanak nem lehet ugyanaz az alsé eleme. Egy D sovany téglalap-
szerl diagram két primintervalluma egymdsutdni, ha egy 4-cella szemkozti oldalai.
Az, hogy egy L sovany féligmoduléris haléban két primintervallum egymasutani-e,
nem fiigg a diagram sikba rajzolasatol. Egymasutani primintervallumok maximaélis
sorozata trajektoridt alkot. Masképp fogalmazva, az egymasutanisag altal generalt
ekvivalenciarelacié osztalyait trajektoridknak nevezziik. Czédli és Schmidt [43,
Lemma 2.8] munkdja alapjdn tudjuk, hogy egy sovény téglalapszeri D diagram
barmely T trajektéridgja Ci(D)-nek pontosan egy primintervallumét tartalmazza,
és ugyanez elmondhaté C,(D)-re is. A T trajektoria balrdl jobbra tart, nem agazik
ketté. El6szor felfelé halad (lehetséges, hogy nulla lépésben), majd lefelé fordulhat,
és végiil lefelé halad (lehetséges, hogy nulla 1épésben).

Az n hosszusagu sovany téglalapszeri diagramok hasonlosag-osztdlyainak hal-
mazat SRectD(n)-nel jeloljiik, az n hosszusdgi sovdany féligmoduldris diagramok
hasonlésag-osztalyainak halmazét pedig SSmodD(n)-nel. Hasonléan, az n hosszu-
sdgu sovdny téglalapszeri hdldk izomorfia-osztalyainak halmazat SRectL(n) jeldli,
az n hosszisagu sovany féligmodularis halok izomorfia-osztalyainak halmazat pedig
SSmodL(n).

Féligmodularis halék tanulmanyozasahoz tobb ismert eszkoz is a rendelkezé-
siinkre all, ezek egyike e halék permutacidkkal torténo leirdsa. Egy n hosszusagu
sovany téglalapszerti D diagram esetén legyen C)(D) ={0=cy <¢; <-+- < ¢, =
1} és C(D) ={0=dy <dy <---<d, =1}. A Czédli és Schmidt [45] altal leirt
felépitést kovetve a m = mp € S, permutdciot a kovetkezo szaballyal definidljuk:
m(i) = 7, ha [¢;i_1,¢] és [dj_1,d;] ugyanahhoz a trajektéridhoz tartozik. Czédli
és Schmidt bebizonyitotta [45]-ben, hogy a D +— 7p hozzarendeléssel definiélt
SSmodD(n) — S, leképezés bijekcid.

A disszertacié 2. fejezetében leirtuk a sovany téglalapszeri halékhoz tartozo

permutacidkat.

2.3.1. Definicié. Egy m € S, permutéciét téglalapszeriinek neveziink, ha ren-

delkezik a kovetkezd harom tulajdonsaggal.
(i) Minden i és j esetén, ha 7=1(1) < i < j <n, akkor 7(i) < m(j).
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(i) Minden ¢ és j esetén, ha (1) <i < j < n, akkor 71 (i) < 7~ 1(4).
(iii) m(n) <m(1).
2.3.3. Allitas. Eqy sovdny, féligmoduldris, sikba rajzolt, n (> 2) hosszusdgi D

diagram akkor és csak akkor téglalapszerid, ha a m = wp € S, permutdcio téglalap-

szert.

Ennek a jellemzésnek a segitségével formulakat tudtunk adni a sovany négy-

szogletes diagramok és a sovany négyszogletes halok szamara.

2.4.2. Allitas. Az n (> 2) hosszusdgu sovdny téglalapszert diagramok (hasonlo-

sag-osztalyainak) szdma

SRectD(n)| = Y (”;f;l) (“a_le)m—a—b)!.

a+b<n
a,beN

Legyen Invl(k) = {m € Sy : # = 7'} az Sy-beli involicidk halmaza. Ismert,
hogy az Si-beli involicidk szama |Invl(k)| = Z]LZ/OQJ (k_ij) (27 — D! (tetszoleges
k € N esetén).

2.4.4. Allitds. Az n (> 2) hosszisdgi sovdny téglalapszerti hdldk (izomorfia-

osztdlyainak) szama

[n/2]
1 n—a-—1
|SRectL(n)| = 3 (|SRectD(n)| + agl ( a1 ) - [Invl(n — 2a)|).

A formuldk alapjan aszimptotikus eredményeink is sziilettek, ezekben e az
Euler-féle szamot jeldli (e ~ 2.71828).

2.5.1. Allitas. Az n hosszisagi sovdny téglalapszerd diagramok (hasonlésag-osz-

tdlyainak) szdma aszimptotikusan (n — 2)! - €2, vagyis |SRectD(n)| ~ (n — 2)! - €.

A disszertacié 2. fejezetének f6 eredménye a kovetkezo.
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2.5.2. Tétel. Azn hosszusagi sovdny téglalapszert halok (izomorfia-osztdlyainak)

szdma aszimptotikusan (n — 2)! - €?/2, azaz

. |SRectL(n)|
lim ———— =

A 3. fejezetben a célunk az volt, hogy meghatarozzuk, legkevesebb hany elem-
mel generalhaté a kvazirendezések héldja, valamint a tranzitiv relaciok haléja. Ez
a fejezet a [37] és [72] cikkeinken alapul.

Egy reflexiv és tranzitiv relaciét kvdzirendezésnek neveziink. Egy A halmaz
kvazirendezései teljes halot alkotnak, melyet Quo(A)-val jelolink. Az A halmaz
tranzitiv reldciéi szintén teljes halét alkotnak, ezt a hélét Tran(A) jeloli. Ha-
sonl6an, Equ(A)-val jeloljiik az A ekvivalenciareldcidi altal alkotott teljes haldt.

Az Equ(A), Quo(A), illetve Tran(A) halé egy X részhalmaza esetén azt mond-
juk, hogy X generdlja az adott teljes hdlét, ha az egyetlen teljes, X-et tartalmazo
részhalé maga az egész hald. Egy L teljes halot k generdltnak neveziink valamely
ke N:={1,2,3,...} egész szdmra, ha a halét generdlja egy k elemii részhalmaza.
Ha egy teljes halot general olyan négyelemti X = {xy, 2, 3, x4} részhalmaza, ahol
x1 < T, viszont {xy,x3, 24} és {xe,x3, 24} is antildnc, akkor azt mondjuk, hogy
ez a halo (1 + 1+ 2)-generdlt.

Az ebben a fejezetben el6fordulé oOsszes halmazrdl feltettiik, hogy elérheto
szamossagu. Egy k szamossag elérheto, ha vagy véges, vagy pedig végtelen, és

barmely A < k szamossag esetén
e vagy A < 2¥ valamely p < A szdmosségra,

e vagy létezik szdmossdgok olyan I halmaza, amelyre A < >y, [I] < A és

1 < A minden p € I esetén.

A halmazelmélet ZFC axiémarendszerének létezik olyan modellje, amelyben min-
den szamossag elérhetd, tehat tobb eredményilink érvényes minden halmazra a
halmazelmélet egy megfelel6 modelljében.

Strietz [83] és [84], Zadori [87] és Czédli [7] eredményei alapjan tudjuk, hogy
az ekvivalenciareldcick Equ(A) teljes héléja négygeneralt, feltéve, hogy |A| egy
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elérhet6 szamossag és |A| > 2. Tovabba Equ(A) nem generdlhaté kevesebb, mint
négy elemmel, ha |A| > 4. Chajda és Czédli [4] és Takach [85] megmutatta,
hogy Quo(A) mint teljes hdl6 hatgeneralt, ha A elérheté szamossdgi. Dolgos [48]
munk&jabol tudjuk, hogy 2 < |A] < Ry esetén a Quo(A) teljes hdlo dtgenerdlt.
Dolgos eredményét kétféle modon altalanositottuk. Az elsé mddszer rovid és a
masodikndl tébbet ad (négygeneraltsagot elérheté | A| esetére), de nagyban tdmasz-
kodik Czédli [7], [9] bonyolultan és hosszan bizonyitott eredményeire. Ez indokolja
masodik modszeriinket, amellyel Dolgos mddszerét tovabbfejlesztve kiilsé hivatko-

z4s nélkiil bizonyitottuk Quo(A) Gtgeneraltsagat |A| < 2% esetén.

3.3.1. Tétel. Legyen A legaldbb hdaromelemi halmaz.
(i) Ha |A| elérhetd szdmossdg, akkor Quo(A) mint teljes halo dtgenerdlt.
(i) Ha Rg < |A| < 2% akkor Quo(A) mint teljes hdld dtgenerdlt.

Ezt az eredményiinket kévetéen Czédli bebizonyitotta a [19] cikkében, hogy a
Quo(A) teljes hélé négygenerélt abban az esetben, ha |A| = {No} U (N\ {1,4,6,8,
10}). Azt is megmutatta [19]-ben, hogy a Quo(A) teljes halé nem generalhaté
négynél kevesebb elemmel, feltéve, hogy |A| > 3. A tranzitiv relaciékat tekintve
Dolgos [48] megmutatta, hogy a Tran(A) teljes halé nyolcgeneralt 2 < |A| < Ny
esetén.

Tehat ezutan a mésodik célunk a 3. fejezetben az volt, hogy tomor bizonyitast
adjunk arra, hogy Quo(A) négygeneréalt, ha |A| # 4 és | A| elérhetd szamossag; ezen
tomor bizonyitasunk viszont szamos korabbi eredményre épitkezik. Tovabba tobb
esetben is igazoltuk (bar nem az Osszesben), hogy Quo(A) (1 + 1 + 2)-generélt.

Javitottunk a Tran(A) generatorhalmazairdl sz6l6 kordbbi eredményeken is.

3.4.9. Tétel. Legyen A legalabb kételemi halmaz. Ekkor teljesiilnek a kovetkezdk.

e Ha |A| # 4 és|A| elérhetd szamossag, akkor a Quo(A) teljes hald négygene-

rdlt.

e Ha |A| > 13, wvalamint vagy |A| pdratlan, vagy |A| > 56 pdros, akkor a
Quo(A) teljes hdlo (1 + 1+ 2)-generdlt.
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e Ha 13 < |A] < XNy és vagy |A| pdratlan, vagy |A| > 56 pdros, akkor a
Quo(A) hdlonak van olyan (itt most nem teljes értelemben) (1 + 1 + 2)-

generdlt részhdldja, amely Quo(A) dsszes atomyjat tartalmazza.

és

3.4.12. Tétel. Ha 3 < |A
halo hatgenerdlt.

A| elérhetd szamossdg, akkor Tran(A) mint teljes

A 4. fejezetben azzal a problémaval foglalkoztunk, hogy adott n természetes
szam esetén mely n elemi véges haloknak van a legtobb, mésodik legtobb, har-
madik legtobb, stb. kongruenciaja; tovabba azzal, hogy az ilyen halék kongruen-
ciahaléinak milyen a szerkezete. Ezek az eredmények a [77] cikkiinkben jelentek
meg.

Czédli és Muresan [40] munkéja alapjan végtelen hélék kongruencidinak szé-
mossaga tetszoleges értéket felvehet 2 és a hélé szamossaga kozott, vagy a kongru-
enciak szamossaga megegyezhet a halo részhalmazainak szamossagaval. De véges
halok esetén egészen mas a helyzet. Az eredményeink ismertetéséhez a kovetkezo
halémiiveletekre és jelolésekre van sziikség.

Legyen L és M halé. Ha L-nek van legnagyobb eleme, amelyet 1% jelol, és M-
nek van legkisebb eleme, 0M, akkor L és M ragasztott osszege, amelyet L + M-mel
jeloliink, az a hald, amelyet tigy kapunk L-bdl és M-bél, hogy 1%-et azonositjuk
0M-mel, és M-et L ,tetejére ragasztjuk”. Ha L és M nemtrividlis korldtos haldk,
akkor L és M wizszintes dsszege, amelyet L H M-mel jeloliink, az a halo, amelyet
tigy kapunk L-bdl és M-bél, hogy azonositjuk egymdssal a 0L és 0 legkisebb
elemeiket, azonositjuk egymassal az 17 és 1M legnagyobb elemeiket, és L\ {0%, 17}
egyik eleme sem lesz osszehasonlithaté M \ {0, 1M} egyik elemével sem L B M-
ben. Tetszdleges n € N esetén az n-elemti lancot C,-nel jeloljiik. Szokds szerint N
jeloli az otelemii nem moduléris C3 H C4 hélét.

Freese [50] és Czédli [21] meghatarozta a kongruencidk lehetséges legnagyobb
és masodik legnagyobb szamat, eredményeiket a kovetkezdképpen fogalmazhatjuk
meg az el6z6 jeloléseket haszndlva. Ha L véges n elemi hald, akkor |Con(L)| <
2"~ valamint [Con(L)| = 2"~ ! akkor és csak akkor, ha L = C,. Méas szdval egy

véges halonak legfeljebb annyi kongruenciaja lehet, mint az azonos elemszamu lanc
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kongruencidinak a szdma. Tovéabbd, ha |Con(L)| < 2" !, akkor |Con(L)| < 2"2
valamint |Con(L)| = 2”2 akkor és csak akkor, ha L = Cy + C3 4 C,,_i_o valamely

k € [1,n — 3] esetén. Azaz a lehetséges masodik legtobb kongruencidval pontosan

azok a halok rendelkeznek, amelyek két lanc és a négyelemii Boole-algebra ra-

gasztott Osszegei. A Czédli dltal adott bizonyitast kovetve, a kdvetkez6 eredményt

kaptuk halok kongruenciainak harmadik, negyedik és 6todik lehetséges legnagyobb

szamarol.

4.3.7. Tétel. Legyen L véges n elemi hdlo.

(i)

(iii)

Ha |Con(L)| < 2"72, akkor n > 5, |Con(L)| < 52" = 2"73 4 2775 ¢s
|Con(L)| = 5-2"75 akkor és csak akkor, ha L = Cy + N5 + Cn_x_3 valamely
k € [1,n — 4] esetén.

Ha |Con(L)| < 5-2"7°, akkor |Con(L)| < 2" 3, és|Con(L)| = 2" akkor és
csak akkor, ha vagyn > 6 és L = Cp+(CaxC3)+Cp_g—4 valamely k € [1,n—5]
esetén, vagyn > 7 és L = Cp +C3 +Cp +C3 + Cot—m—a valamely k,m € N
esetén, ahol k+m < n —5.

Ha |Con(L)| < 2"73, akkor |Con(L)| < 7276 = 2n=4 4 9n=5 4 9n=6 " ¢g
|Con(L)| = 7-2"75 akkor és csak akkor, han > 6, és L = Cp,+(C38HC5)+Cp_p 4
vagy L = Cp, 4+ (C4, B Cy) + C__4 valamely k € [1,n — 5]-re.

A korabbi eredményeket és a sajatjainkat osszegezve adodik a legtobb, méasodik

legtobb, harmadik legtobb, stb. kongruenciaval rendelkez6 véges halok kongruen-

ciahdléinak aldbbi jellemzése.

4.3.8. Kovetkezmény.

(i)
(i)
(i)
(iv)

|Con(L)| = 2"~ akkor és csak akkor, ha Con(L) = Cy~.
|Con(L)| = 22 akkor és csak akkor, han > 4 és Con(L) = Cy 2.
|Con(L)| = 5-2"7° akkor és csak akkor, han > 5 és Con(L) = Cy~°x (Co4-C2).

|Con(L)| = 2"~ akkor és csak akkor, ha n > 6 és Con(L) = Cy~°.
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(v) |Con(L)| = 7-2" akkor és csak akkor, han > 6 és Con(L) = Cy % x (C2 +
C3).

A disszertacié a szerzo publikacié koziil négyen alapul, ezek a kovetkezok:
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2. G. Czédli, J. Kulin: A concise approach to small generating sets of lattices
of quasiorders and transitive relations. Acta Sci. Math. (Szeged) 83 (2017),
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3. J. Kulin: Quastorder lattices are five-generated. Discussiones Mathematicae
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