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Introduction 

Our nervous system collects a plethora of information from the environment surrounding us. 

The processing of this information amount directly would overload the system and the 

formation of meaningful perception would be impossible. The sensory system employs several 

methods to reduce the load on itself, e.g. sensory filtering, during which the brain extracts 

relevant signals, while simultaneously suppressing noise (Nakajima et al., 2019). It can also 

segment the continuous information flow into meaningful chunks (F. Zhou et al., 2007). One 

foundation of the segmentation process can be based on the statistical relationship between 

stimuli since this information flow is not random. Spatial and/or temporal co-occurrences of 

certain stimuli can create environmental regularities, which can be discovered, acquired, and 

later used by the sensory system. This course can also create an internal representation of the 

environment which has many beneficial traits for information processing (Frost et al., 2019; 

Pelucchi et al., 2009). It can reduce the sensory load by not processing redundant information 

again and again (Rao & Ballard, 1999) and it can also facilitate the sensory process since stimuli 

can become predictable and the cortical areas can anticipate the appearance of a stimulus 

(Denham & Winkler, 2020). The consolidation of these above-mentioned neural mechanisms, 

the discovery, acquisition, and usage of environmental statistical information is called statistical 

learning.  

Statistcal learning (SL) has been a widely examined phenomenon for decades and there is a 

general agreement that it is a fundamental part of sensory processing and perception. Many 

studies have found behavioral and neural evidence which resulted in hypotheses regarding the 

background of SL, yet there is still a considerable gap in the SL literature to build a unifying 

theory. 

The generality of statistical learning 

Before the term was coined, the phenomenon we now know as SL was originally called 

‘Artificial Grammar Learning’ and later ‘Implicit learning’ (A. S. Reber, 1967, 1993). The term 

‘statistical learning’ was first used to describe the language acquisition of infants (Saffran et al., 

1996). Since then, its definition has expanded to linguistic (Batterink & Paller, 2017; Pinto et 

al., 2022) and non-linguistic (Henin et al., 2021) paradigms and has been observed in several 

modalities. It has extensive literature in auditory (Saffran et al., 1999) and visual paradigms 

(Fiser & Aslin, 2002; Kaposvari et al., 2018), but it was also examined in tactile (Conway & 

Christiansen, 2005) and multimodal studies (Seitz et al., 2007). The statistical relationship 
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between stimuli has two main domains: spatial or temporal. Spatial connection refers to the 

case, when stimuli appear simultaneously and the location of different stimuli provides the 

statistical information (Fiser & Aslin, 2001), while temporal relationship defines the order of 

the stimuli that appear in a sequence (Fiser & Aslin, 2002). In the case of temporal regularities, 

we can describe this relationship with the transitional probabilities between the stimuli. The 

transitional probability describes the chance that a certain stimulus is followed by another. For 

example, if a visual sequence contains associated stimulus pairs that always follow each other 

in a fixed order, the transitional probability between the two will be 1.  

Since its initial description, SL has been at the focus of cognitive research and an increasing 

number of features have been reported. SL is incidental, meaning the nervous system extracts 

these regularities without any external instruction or without being aware of their presence 

(Arciuli et al., 2014; Aslin, 2017). It is also a form of implicit learning; thus, the learning and 

the learned regularities do not necessarily become conscious knowledge and this information 

cannot be recalled voluntarily (Christiansen, 2019; Perruchet & Pacton, 2006). A growing 

number of papers also suggest that SL is a fundamental cognitive process, influencing several 

other cortical mechanisms. This fundamentality is supported by the facts that SL has been 

observed across stimulus and task complexity (Perfors & Kidd, 2022), across different age 

groups (Bertels et al., 2015; Nemeth et al., 2013; Zwart et al., 2019) and even across different 

species, like primates (Hauser et al., 2001; Kaposvari et al., 2018), dogs (Boros et al., 2021) or 

rats (Toro & Trobalón, 2005). It also shows a close, intertwined relationship with other 

cognitive functions. Although it is not crucial (Duncan & Theeuwes, 2020), attention impacts 

the progress of SL (Turk-Browne et al., 2005). It has been reported that environmental 

regularities in the focus of attention are acquired more efficiently (Musz et al., 2015). Besides, 

SL can also shift attention creating a ‘pop-out’ effect. SL can reallocate the cortical resources 

of attention, distributing neural assets towards the processing of new, unrecognized stimuli that 

violate the previously learned regularities (Kristjánsson et al., 2007). Apart from attention, the 

connection between SL and working memory has been reported too. It has been suggested that 

working memory capacity plays a role in implicit SL (Cashdollar et al., 2017). Despite this 

suggestion, reports on the topic provide mixed results (Janacsek & Nemeth, 2013), since many 

has reported null findings (Kaufman et al., 2010). 

The elemtariness and its connection to several cognitive function gives SL a broad definition, 

but not all forms of SL can be combined directly. An ongoing discussion regarding SL is 

whether it is domain-general or modality specific (Frost et al., 2015). Domain-generality 

implies that all statistical information is computed in one center regardless of stimulus modality. 
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This hypothesis is supported by both behavioral and neural evidence. Behavioral evidence 

includes observation of a link between SL scores and other cognitive functions in different 

modalities (Bogaerts et al., 2022). This would suggest a general SL ability that would bring 

together other cognitive functions and unite them under one umbrella term. One possible 

candidate for the domain-general center is the hippocampus (Turk-Browne et al., 2010). 

Considering its role in mnemonic functions (Burgess et al., 2002) and its rich connections the 

cortex (Lavenex & Amaral, 2000), it is a very plausible option, that it computes statistical 

properties of stimuli relationships across the modalities. Other structures that could function as 

a domain-general SL center could be the basal ganglia (Karuza et al., 2013) or the inferior 

frontal lobe (Fedorenko et al., 2012; McNealy et al., 2006). These regions have been associated 

with SL, and their involvement in different studies are not necessarily contradictive since as 

mentioned before, SL involves several cognitive functions, thus all could play a part in the 

complex processing what we call SL (Sherman et al., 2020). The other possibility is that every 

modality-specific cortical area is sensitive to statistical information and is able to compute these 

interstimulus relationships. The evidence for that is that we can observe different affinities 

towards co-occurrences in different modalities. One notable phenomenon regarding modality-

specificity is the different developmental trajectories in different modalities. SL in the visual 

domain appeared to improve with age, while auditory SL abilities did not show change with 

age (Raviv & Arnon, 2018). Besides, auditory and visual SL scores do not show correlations 

indicating distinct backgrounds (Siegelman & Frost, 2015). Changes in the modality specific 

cortices have been observed regarding stimulus expectancy, as well. An fMRI study found that 

an expected stimulus elicits neural responses with lower amplitude in the primary visual cortex 

while simultaneously increasing stimulus representation in the same area (Kok et al., 2012). It 

has also been reported that sensory expectations can result in smaller wave amplitudes in both 

ERPs and frequency bands, like the gamma, or the alpha band (Todorovic et al., 2011; Y. J. 

Zhou et al., 2020). However, these observations do not invalidate the domain-general theory as 

we currently have limited information about the source of these modulatory effects on the 

sensory areas. 

Regardless of the domain-general vs. modality specific debate, the mentioned behavioral and 

neural evidence implies that results in different SL modalities are not interchangeable. Separate 

investigation of these phenomena is necessary to fully explore this cognitive function. Not only 

the modality, but the supervision of the paradigm affects the learning outcome. As mentioned 

before, SL can emerge in unsupervised paradigms that is without any explicit instructions about 

the statistical information. In these case participants of the experiment are usually instructed, 
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for example, to attend a stimulus sequence and unbeknownst to them, certain stimuli have 

higher than chance statistical relationship with each other. This way the acquired information 

remains implicit knowledge and many times participants are not able to recall the regularity 

despite other behavior or neural evidence of regularity acquisition. Yet many studies implement 

a quasi-supervised manner, where participants are told about a hidden regularity, but the exact 

parameters remain untold. This leads to the participants actively searching for statistical 

relationships which can result in explicit knowledge. The underlying mechanisms also show 

differences when participants are explicitly instructed to look for regularities rather than being 

exposed passively to stimulus sequences. This phenomenon is evidenced by RT difference 

between an explicit and implicit group in a SL paradigm along with the electrophysiological 

changes in the amplitude of the P300 component of the participants’ ERP (Batterink, Reber, 

Neville, et al., 2015; Batterink, Reber, & Paller, 2015). Taking these reports into consideration 

we can conclude that not all SL findings can be grouped together without restraints and in many 

cases, we must treat these results as individual entities based on their modalities, supervision, 

and other parameters of the paradigm.  

Neural background of SL 

The neural background of SL is a widely studied topic in neuroimaging. Many cortical and 

subcortical structures have been identified regarding SL. Several hypotheses have emerged 

about the background networks, but we have yet to find a definitive answer to the question. 

Talking about the cortical structures calls for their categorization. SL paradigms have 

demonstrated the involvement of both modality-specific and non-specific areas. For example, 

statistical regularities in a speech stream resulted in the activation of higher-level auditory 

cortices, like the left superior temporal gyrus and the left inferior frontal gyrus (Cunillera et al., 

2009; Karuza et al., 2013). Visual stimuli elicited similar results with the activation of the lateral 

occipital cortex (Turk-Browne et al., 2009) and the V1 region (Kok et al., 2012). These 

observations led to the conclusion that statistical information is computed in their respective, 

modality-specific sensory areas (Frost et al., 2015). This idea was also supported by the 

observation that while low-level sensory areas can retain information for milliseconds, higher 

levels can do the same for seconds, or even minutes (Farbood et al., 2015; Kiebel et al., 2008). 

The fact that sensory areas can store information for prolonged times makes the integration of 

temporal regularities within the cortex possible.  
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On the other hand, statistical patterns seem to activate other cortical structures, not only their 

respective sensory areas. The left inferior frontal gyrus was activated by not only speech 

patterns (Karuza et al., 2013), but by non-linguistic tone sequences (Abla et al., 2008) and visual 

stimuli, as well (Turk-Browne et al., 2009). Other domain-general areas showed affinity toward 

statistical information, like the prefrontal cortex or the parietal cortex (Forkstam et al., 2006). 

The engagement of the PFC is hardly surprising, considering its role in the working memory 

system or selective attention which are closely connected to SL (Funahashi, 2017; Knight et al., 

1995). The observed activation of both modality-specific and domain-general cortical areas 

proposed the frontoparietal or rostro caudal network hypothesis (Conway, 2020). It describes 

the functional connectivity between the frontal areas, like the PFC and the sensory areas. The 

PFC is responsible for the executive functions with its contribution to the working memory, 

behavior, and planning while the posterior areas are responsible for the perceptual computing. 

Neuroimaging has shown the simultaneous activation of the PFC and sensory areas, like the 

inferotemporal area in case of visual memories, the superior temporal gyrus with auditory or 

the posterior parietal cortex with spatial relationship (Fuster & Bressler, 2012). Another theory 

integrates the role of domain-general areas and modality-specific cortices. Domain-general 

parts are responsible for global processing on a larger scale or in case of non-adjacent 

regularities, while the importance of sensory regions lies in local computation on a smaller scale 

(Uhrig et al., 2014). 

Despite these theories the relationship between the PFC and sensory areas is still ambiguous. 

Many studies reported a rather antagonistic relationship between the explicit attention network, 

involving the PFC and the automatic, implicit learning networks. The functional connectivity 

in the anterior areas showed a negative correlation with the outcomes of an implicit learning 

paradigm (Tóth et al., 2017). Additionally, the inhibition of the dorsolateral PFC improved the 

learning outcome in SL (Ambrus et al., 2020). This study led to the hypothesis that model-free 

and model-based learning, which means generating new representation based on environmental 

information or making predictions based on the already existing internal representation are 

competitive in nature.  

As we can see, SL utilizes an extensive cortical network which is expected considering the 

scales that SL works along, like modality and timeframes. But subcortical structures seem to be 

involved in SL alongside the cortex, e.g. the hippocampus, the cerebellum, or the basal ganglia. 

Cerebellum has been associated with motor learning (Steinmetz et al., 2000) besides other 

learning types, like associative learning (Timmann et al., 2010). The role of subcortical sites in 

the different memory networks is well-known. The hippocampus and the medial temporal lobe 
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have a function in declarative memory (Squire 2004), while the basal ganglia seem to play a 

role in the nondeclarative, procedural memory system (Ullman, 2004). SL was found to use 

both networks (Batterink et al., 2019). Yet, the hippocampus might not be as crucial for SL as 

previously thought. Patients with extensive hippocampus and medial temporal damage were 

reported to underperform in SL task, but this result was argued by the fact, that many healthy 

participants do not perform above chance in these tasks. The authors argue that the hippocampus 

has major contribution to SL performance, but it is not crucial to it (Siegelman & Frost, 2015). 

The background structure of SL seemingly activates both cortical and subcortical areas. The co-

operation of these systems is bound together by the following hypothesis based on three main 

structures: the hippocampus, posterior neocortex, and the PFC (Atallah et al., 2004). In the 

model, the hippocampus was assigned to be responsible for the quick learning of details, while 

the role of the neocortex is the acquisition of general statistical information. The PFC with its 

connections to the basal ganglia (Poldrack & Rodriguez, 2004) maintains the information in the 

nervous system and together they are responsible for the acquisition and utilization of this 

information.  

The wide network described here play potential roles in the course of SL. Studies show that 

different sites are activated based on the modality of stimuli, the task connected to paradigm, 

the relationship between the associated stimuli and the timescale between obtaining and using 

the statistical information. Since both cortical and subcortical sites are concerned, their 

simultaneous examination is a great challenge.  

EEG findings in VSL 

EEG is a suitable tool for the examination of SL considering its high temporal resolution which 

is able to detect short lived cortical changes regarding learning effects. Both amplitude changes 

in ERPs and power changes in the time-frequency domain have shown modulation by SL. EEG 

components, especially ERP waves show SL related modulations, like the expectation 

suppression and prediction error (Summerfield & de Lange, 2014; Summerfield & Koechlin, 

2008). Expectation suppression is represented as smaller components in case of a pattern or 

high stimulus expectancy. Expectancy related ERP modulations were reported between 100-

700 ms diffusely (Feuerriegel et al., 2018), while more limited components were reported to be 

sensitive to predictability, as well. The P50 wave exhibited smaller amplitudes while presenting 

predictable auditory stimuli, which was previously considered a preattentional component 

(White & Yee, 2006). Subsequent components also showed suppression, like the N100 and 
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N400 components in linguistic, speech segmentation paradigms (Hodapp & Rabovsky, 2021; 

Sanders et al., 2002). 

Many ERP signs have been reported to reflect pattern and regularity violations. A widely studied 

phenomenon, the mismatch negativity in the N200 component showed sensitivity towards 

statistical information and emerged when violating predictability (Fitzgerald & Todd, 2018). 

And the amplitude of many late positive components also shows prediction error elevation in 

their amplitude. These components diffusely emerged between 500 and 1200 ms after stimulus 

presentation in linguistic paradigms. It is worth mentioning separately the P600 component 

showing strong prediction error patterns in language paradigms (Van Petten & Luka, 2012).  

Despite the numerous reports, the literature consists abundant null ERP results, as well 

(Bogaerts et al., 2020; Rungratsameetaweemana et al., 2018; Y. J. Zhou et al., 2020). The 

difficult reproducibility of these findings raised doubt about the validity of these reports. The 

review of previous papers proposes the argument that in many cases the results are not effects 

of prediction suppression, but rather co-founds of attentional shifts, repetition suppression and 

surprise effects (Feuerriegel et al., 2021). It has also been suggested that the ERPs elicited in 

current paradigms are not suitable indicators of statistical information processing (den Ouden 

et al., 2023). 

Cortical oscillations could also potentially reflect probabilistic computations. Many oscillatory 

bands have been associated with statistical learning. The low frequency theta band (4-7 Hz) 

was found to be modulated by expectancy and learning which is not surprising since it its close 

tie the working memory (Gevins et al., 1997; Hsieh & Ranganath, 2014). Studies have observed 

that stimulus consistency was coupled with lower frontal theta amplitudes (Crivelli-Decker et 

al., 2018) and vice versa, expectancy violation and unexpectedness resulted in greater frontal 

theta power (Cavanagh et al., 2012; Rungratsameetaweemana et al., 2018). Participants with 

weaker theta oscillations showed better probabilistic learning outcomes, as well (Tóth et al., 

2017).  

Alpha oscillations (8-12 Hz) also showed a role in expectancy processing (Y. J. Zhou et al., 

2020). Alpha power showed a negative relationship with transitional probability, since 

unexpected stimuli elicited greater alpha powers. Two possible roles of this alpha waves were 

hypothesized: either it represents the attentional changes that emerge between unexpected and 

expected stimuli or it can act as so-called travelling waves These travelling waves carry forward 

and backward computations and they can connect large scale cortical networks to integrate 

spatial and temporal information (Alamia & VanRullen, 2019; Bastos et al., 2015; Strube et al., 

2021).  
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Beta band differences also appeared in both visual and auditory paradigms. Comparing low-

expectancy and high expectancy stimuli, low expectancy auditory tones elicited higher beta 

(14-30 Hz) power over the parietal lobe (Pearce et al., 2010). Beta waves (~20 Hz) also showed 

a difference in visual sequence with associated triplets, where greater powers were observed 

between triplet transitions than within triplet transitions. The power difference also showed a 

positive correlation with learning test scores (Bogaerts et al., 2020).  

Pursuit of statistical learning 

SL is supposed to reduce computational load and time, which can result in behavioral changes. 

Tracking these changes can provide us with evidence about regularity acquisition or inform us 

about learning trajectories. Two main behavioral tracing methods are available: the offline and 

online method. Both have their place in SL studies with their own advantages and 

disadvantages. 

The offline method usually utilizes the so-called familiarity test (Fiser & Aslin, 2001, 2002; 

Saffran et al., 1999). Participants are exposed to a stimulus sequence where certain stimuli are 

predictable or form regularities. After the exposure, participants are reintroduced to the 

previously experienced regularities while simultaneously inserting foils. These foils are created 

by combining stimuli with otherwise no above-chance statistical relationships. Then 

participants must decide whether the originally presented or the new foil patterns are more 

familiar to them. The benefit of this offline test is that it can show behavioral evidence of SL 

while the participants’ stimulus exposure is passive, thus reducing noise and artefacts. This 

method is ideal for electrophysiological measurements, since we generate less noise without 

constant button presses or not inserting additional decision-making strategies into the SL 

process. The disadvantages include that it only supplies information about the learning 

outcome, but not about the trajectory and progression of the learning. Also, the familiarity test 

requires explicit knowledge about the patterns and only measures the recollection of the 

regularities without any information about the unsupervised, implicit pattern acquisition 

(Batterink, Reber, Neville, et al., 2015; Batterink, Reber, & Paller, 2015; R. Kim et al., 2009).  

The other possibility for tracing behavioral changes of SL is the online, SRT method. This 

method involves inserting an unrelated cover task to the stimulus stream, for example a 

categorization task. Participants must decide about every stimulus presented to them with a 

button press. This way we can collect response and RT data and we expect changes in these 

data based on whether the stimulus is expected/predictable or not. The data can lead to the 
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description of the learning trajectory and a behavioral level, while also RT changes are more 

implicit and do not require the explicit recollection of the regularity. The cover task also helps 

to keep up the attention level during the sequence (Conway, 2020) but studies also have shown 

that motor task and motor learning can interfere with perceptual learning (Ambrus et al., 2020; 

Hallgató et al., 2013). Furthermore, we don’t have information about the participants’ decision-

making strategies and how it affects SL. Motor activity can also create noise during 

electrophysiological recordings. 

Interpersonal differences in SL 

The methods described above measure average SL scores on the population level. This would 

not raise skepticism if we could follow the characteristics of SL as first described. Original SL 

studies characterized the SL as an effect which shows little variance between individuals (A. S. 

Reber, 1993). However, an increasing number of recent studies suggest that SL does not appear 

to be a consistent ability. A substantial number of participants in SL paradigms show miniscule 

or no learning effect at all. On the population level, the variance between participants is great 

and the population mean is just above the control mean (Arciuli et al., 2014; Conway et al., 

2010; Evans et al., 2009; Karuza et al., 2013; Kaufman et al., 2010; Misyak & Christiansen, 

2012). These contradictory observations indicate significant individual differences including 

not just the overall performance variances, but differences in both the extent and the speed or 

trajectory of learning and the individual variation in the sensitivity to certain stimulus types. 

How could such an elemental processing mechanism show this considerable difference in 

individual affinity towards statistical relationships? Many studies have aimed to find a link 

between SL and other factors such as age, intelligence, and certain cognitive functions. 

Studies aiming to find a correlation between SL and age are inconclusive. It has been reported 

that there’s no relationship between age and SL (Bertels et al., 2015; Saffran et al., 1997), unlike 

explicit learning, where a negative correlation can be observed (Verneau et al., 2014). Contrarily 

to the null findings in SL paradigms, it has been shown that before early adolescence people 

have a higher affinity toward statistical relationships (Janacsek et al., 2012; Juhasz et al., 2019; 

Zwart et al., 2019). One theory suggested that this higher affinity was due to a not fully 

developed frontal cortex, which reduces the suppression of the frontal lobe on this unconscious 

form of learning. In a study, the left dorsolateral prefrontal cortex was inhibited via TMS, which 

supported regularity consolidation resulting in better behavioral results in an alternating serial 

reaction time task (Ambrus et al., 2020). On the other hand, greater behavioral performance in 
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adults has been reported in the case of non-linguistic paradigms compared to children between 

the age of 5 to 12 (Shufaniya & Arnon, 2018). These results are somewhat contradictory and 

do not fully explain the relationship between age and SL.  

Another option for an influential factor could be intelligence. Most studies focused on 

correlating SL score with the g factor of intelligence defined by Spearmen (Spearman, 1904). 

The g factor characterizes a general intelligence that affects other, specific cognitive abilities. 

Most studies have concluded that SL (mostly artificial grammar learning paradigms) and g 

factor have no correlation or only a weak correlation (Gebauer & Mackintosh, 2007). The 

reason behind this can be the fact that the implicit nature of SL is evolutionarily older than the 

explicit intelligence measured with psychometric methods (Kaufman et al., 2010). Although it 

seems like general intelligence has no effect on SL, specific higher cognitive functions have 

been reported to show a relationship with it. A positive correlation has been found between 

literacy and both visual and auditory triplet learning (Frost et al., 2013; Qi et al., 2019), while 

null findings have been reported as well (van Witteloostuijn et al., 2021). The music skills of 

children and adults and the social competency of young adults alike showed a positive 

relationship with triplet learning (Mandikal Vasuki et al., 2017a, 2017b; Parks et al., 2020). Age 

and intelligence differences, however, still cannot explain the interpersonal differences in many 

cases, since they can be found within relatively homogenous groups as well, like young 

university students. 

The relationship between SL and lower-level, more basic cognitive functions is not so 

straightforward. Based on the work of Turk-Browne and his colleagues it was theorized that 

attention was necessary for SL to occur since in a paradigm with visual regularities only 

attended sequences were learned, but unattended regularities were not acquired (Turk-Browne 

et al., 2005). Subsequent studies revealed that attention is not indispensable in sequence 

learning since learning in an unattended stream was observed, but to a smaller extent (Batterink 

et al., 2019; Musz et al., 2015). Further studies demonstrated that SL and attention have a 

reciprocal relationship since attended regularities have a higher chance to be acquired and SL 

can have a “pop-out” effect guiding top-down attention toward previously learned regularities 

(Conway, 2020; Moorselaar & Slagter, 2019).  

Examining the relationship between SL and memory is contradictory, as well. It seems logical 

that having a greater working memory capacity allows the integration of more regularities. This 

correlation has not been proven, but it is theorized that various aspects of working memory are 

linked to SL within their modality, meaning SL and working memory processes within the 

modality-specific sensory cortices are linked. For example, a greater correlation was found 
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between learning visuospatial sequences and visuospatial working memory than with the 

acquisition of other types of modalities (Janacsek & Nemeth, 2013). Although the effect of 

working memory capacity on SL is not fully determined, the existence of some kind of link has 

evidence, since paired stimuli represented as one can increase the capacity of memory (Brady 

et al., 2009; Lengyel et al., 2019, 2021). Furthermore, predictions coming from SL can shape 

memories (Sherman et al., 2020). Violating the previously learned regularities with new sensory 

information weakens memory representation (G. Kim et al., 2017). Besides, memory units tied 

to a regularity or even violating said regularity can alter memory encoding (Greve et al., 2017).  

Through SL, we integrate previous experiences and observations into a model of our 

environment, which later helps us make optimal decisions (Perkovic & Orquin, 2018). The 

advantage of this model is that it is flexible, so we can update it with new information, thus 

adjusting our decision-making strategies (Richards et al., 2014). The shift between relying on 

the model or applying new, incoming information was investigated in different psychiatric 

conditions. One paper claimed they found that methamphetamine-dependent individuals are 

more likely to choose learning-independent strategies in a reward-seeking paradigm. They also 

found that the dependent group is less likely to update their model and decision-making criteria 

based on new information compared to the control group (Harlé et al., 2015). The positive 

symptoms of schizophrenic people such as delusions and hallucinations can be the products of 

the aberrant function of the inferencing mechanism. The malfunction of this mechanism can be 

caused by improper integration of new sensory information into the model (Fletcher & Frith, 

2009) or the low precision of their prior knowledge (Sterzer et al., 2018). In the case of autistic 

people, attenuated prior knowledge is theorized to be responsible for more accurate perception 

(Pellicano & Burr, 2012). This could result in an altered perception since, without prior 

knowledge or predictions, the speed of the process of environmental information decreases.  

Many behavioral and psychometric factors have been investigated, but only a few studies have 

been done to find neurological traces of this interpersonal affinity difference in SL. In a study, 

tritone words made of pure tones were presented to participants in three sessions and they had 

to perform a familiarity test afterward. Based on their behavioral results, subjects were grouped 

into three categories: high-learners, middle-learners, and low-learners. Differences in the N100 

and N400 components were observed between the initial and subsequent tones, and the 

temporal distribution differed in the three groups. In the case of high-learners, the difference 

was elicited in early sessions; middle-learners showed a similar difference in later sessions 

while low-learners showed no difference (Abla et al., 2008).  
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Another powerful tool to investigate SL and its neural correlates is frequency tagging or neural 

entrainment. In an EEG study, participants were shown tone triplets along a random tone 

sequence. A positive correlation was found between behavioral results and the normalized 

power of the region of interest, which was a left anterior and a right occipital cluster in their 

case (Buiatti et al., 2009). In a following study, participants were exposed to a random and 

structured tone sequence during MEG recording. It was observed that the behavioral results 

showed a positive correlation with intertrial phase coherence of the left pre-central gyrus and 

the right temporo-frontal area. These results were interpreted as attention changes during the 

presentation of regularities. The personal differences in the behavioral results were explained 

as the learned sequences emerged as explicit knowledge on different levels (Moser et al., 2021). 

Beta activity has been correlated with the behavioral results of SL, as well. In a recent paper, a 

19-21 Hz oscillatory activity difference was found comparing within-pattern and between-

pattern transitions. This difference emerged before stimulus presentation and this prestimulus 

beta-power was increased before the first stimulus of a visual triplet (Bogaerts et al., 2020).  

Besides EEG and MEG results a positive correlation has been observed between the 

performance in an offline familiarity test and hemodynamic changes. In the paradigm, 

participants were presented with stimulus pairs (scenes and faces) during fMRI recording. In 

the subsequent analysis, results of the offline test positively correlated with neural anticipation 

in the right intraparietal sulcus and the left middle occipital gyrus. In the study, anticipation was 

defined as neural changes elicited by the stimulus preceding the predictable stimuli (Turk-

Browne et al., 2010). 

 Implicit, visual statistical learning 

The two most commonly studied SL modalities are the auditory and visual. As mentioned 

before, the results of different modalities and SL paradigms cannot be conflated. A more rarely 

studied phenomenon is the visual SL that is completely unsupervised and implicit. Several 

studies use visual stimuli, but in many cases, participants are hinted at a hidden pattern. Thus, 

the behavioral and neural background and its description is currently incomplete in the 

literature. We can derive several parameters about implicit VSL from earlier studies.  

The learning trajectory of VSL has been described before (Siegelman et al., 2018). In this self-

paced paradigm, they successfully described the learning curve of VSL using 2AFC task with 

online, RT tracking. The exposure was not completely unsupervised, since participants were 
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informed about the hidden pattern in the image sequence, yet it still provides useful information 

about the behavioral changes during the emergence of VSL.  

A completely implicit VSL paradigm has been used before, which contributed both behavioral 

and neural data to the literature (Turk-Browne et al., 2010). This fMRI study used a picture 

sequence with faces and scenes. Participants were only instructed to categorize the appearing 

image with a button-press. Not revealed to the participants, the images formed associated 

stimulus pairs, that always followed each other in a fixed order. Thus, the second member of 

the image pairs became predictable. They found RT reduction for predictable images and an 

anticipatory effect. This anticipatory effect was a prolonged RT for the first member of the 

associated stimulus pairs. The examination of these effects was possible due to the introduction 

of so-called single images, which had no above-chance statistical relationship with preceding 

images, and they had no function in VSL. They also confirmed the pair acquisition with an 

offline familiarity test after the stream exposure.  

The image sequence, however, contained additional information above the associated pairs. 

Their image pairs were always formed using pictures for different categories (face-scene, scene-

face). Thus, from the participants’ point of view there was a greater chance that the next image 

will be of a different category. Besides, category repetition could only occur between a single 

condition and the first member of the pair. Since there was a smaller probability of category 

repetition, it could introduce a motor artefact that prolonged the RT of the first members.  
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Aims 

Our goal was to examine unsupervised statistical learning with a visual sequence where an 

undisclosed, temporal regularity was placed into the stream. Reports were found to be either 

quasi-supervised (Siegelman et al., 2018) or altered by higher level information (Turk-Browne 

et al., 2010). To do this we adapted and tested a previously reported unsupervised, visual SL 

paradigm (Turk-Browne et al., 2010). We examined the possible co-factors impacting the 

behavioral results and modified the paradigm to investigate the behavioral evidence for SL with 

an online RT test. The online paradigm also helps us not only to report the evidence for an SL 

effect, but also to describe the learning curve. The description of the SL trajectory further helps 

us to understand the complex network behind the cognitive process. 

After establishing the behavioral parameters, we further adapted the paradigm to EEG. By 

recording cortical activity, we wanted to find possible differences, that are not only 

characteristics of SL but can also help us understand factors affecting the learning processes 

and possibly provide information about individual traits that influence SL.  
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Materials and methods 

Behavioral study 

Experiment 1a 

In the first experiment we recreated the paradigm of Turk-Browne (2010) with different images. 

We increased the number of participants to boost the statistical power. Our goal was to observe 

the priming and anticipatory effect in the RT and accuracy data. Namely, we wanted to observe 

the RT reduction to expected stimuli, which are the second members of associated stimulus 

pairs and RT increase to the first member of the pairs.  

Participants 

Thirty-eight volunteers (20 females, mean age: 25.34 y, range: 21-41 y) participated in 

Experiment 1a, who were all right-handed with correct or corrected to normal vision. All of 

them gave written informed consent; the study protocol was approved by the Human 

Investigation Review Board of University of Szeged (266/2017-SZTE). 

Stimuli 

For the stimuli of the experiment, we used gray-scale pictures of everyday objects which were 

selected from the Bank of Standardized Stimuli (BOSS, Brodeur et al., 2010, 2014). Selection 

of the stimuli was based on a pilot study, where 5 participants, who were not part of any of the 

experiments discussed here, performed a 2AFC discrimination test. In this test they had sorted 

presented objects based on whether they fit inside an imaginary shoebox or not. Stimuli with 

concordant answers among all participants were included and assigned ‘Large’ or ‘Small’ 

category. In Experiment 1a we used 96 stimuli in total, 48 from each category. The 

measurements were divided into 8 runs and in each run, we used 12 of the 96 images previously 

selected. These stimuli were presented at a 7.5° × 7.5° visual angle.  

Design 

A stream created from these images was presented to the volunteers. RT and accuracy were 

measured through 8 runs. In one run, the 12 images formed 4 associated image pairs, that always 

followed each other in the sequence. The rest of the images served as control, so-called single 

images. Then these pairs and singles were presented in a pseudorandom manner. One stimulus 
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was never presented in two different runs for one participant. In one run, 72 trials were 

presented to the subject, which was divided into 6 cycles. In one cycle all 12 images were 

presented, meaning that the subject had to see every stimulus before presenting the images 

again. The presentation of the pairs and singles had one constraint, that at least three other 

stimuli must be presented before the reappearance of an image, which can only happen at the 

junction of the cycles.  

Task and procedure 

Participants were seated in a sound-attenuated room with dimmed lighting. They were asked to 

indicate the category of the presented object with a button press (1 on the numeric keyboard – 

‘Small’, 2 on the numeric keyboard – ‘Large’). Participants received no feedback during the 

task. Every stimulus was presented for 300 ms and the next stimulus was presented 500 ms 

after the subject’s response (Fig. 1.). Subject paced stimulus presentation was carried out using 

Psychtoolbox (Brainard, 1997; Kleiner et al., 2007) on an HP 650 ProBook G4 (15.6 inches, 

1920 × 1080 pixels, 60 fps). Participants were completely naïve to the sequence and the 

associated pairs. After 8 runs, participants were interviewed to see whether they recognized the 

pairs, using the following questions: (1) What is your impression of the experiment? (2) Do you 

have any observations about the experiment (3) Did you recognize any pattern regarding 

pressing the response keys (4) Did you find any pattern regarding the images (5) Did you find 

any systematic regularities about the order of the images? 

 

 

Figure 1: The design of Experiment 1a and 1b. Participants had to categorize the appearing 

image based on its size and respond with a button press. Images were shown for 300 ms, and a 

fixed 500 ms ITI was applied after the answer. 
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Pattern 

To create a balanced sequence, 6 stimuli from both categories were randomly selected for each 

participant. Eight of the 12 images were assigned to be associated stimulus pairs with their order 

fixed. The image transition could fall under two definitions: category-repeating or category-

alternating. These definitions mean that the leading and following images during transition 

belong to the same, repeating (Small-Small, Large-Large) or different, alternating categories 

(Large-Small, Small-Large). Experiment 1a only included category-alternating pairs. The 

remaining images, two Small and two Large were part of the control condition, the single 

images (Fig. 2.).  

 

Figure 2: The stimuli and the regularity used in Experiment 1a. A: A few examples of the 

presented images in both categories (Large and Small). B: In Experiment 1a all asssociated 

stimulus pairs were category-alternating. The information chunks were repeated 6 times 

resulting in the sequence of one run.  

Data processing 

During data acquisition we recorded participants’ answers and measured their RTs and 

accuracies. Correct answers for the categorization tasks were determined based on the 
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concordant answers of the previously mentioned pilot. For the RT data, trials with incorrect 

answers were excluded. The following trials were excluded from the analysis: where RT is 

shorter than 200 ms, where RT is longer than mean + 3 SD. We further excluded those runs, 

where accuracy was lower than 80%. Additionally, five subjects were completely omitted from 

the analysis, due to their mean accuracies being under 60%. To increase signal-to-noise ratio, 

the first three trials of every run were excluded from the visualization and the first cycle of 

every trial was further omitted from the statistical analysis, since we do not expect any 

modulation in those trials. Based on these criteria, we excluded 9.5% of all trials: 0.3% due to 

long RTs, 0.1% due to short RTs and 9.1% due to accuracy under 80%. 

Statistics 

Every image was assigned a condition based on their location in the stream: P1, P2 and S. The 

first images of the stimulus pairs were labelled P1, second images P2 and the single images 

were labelled S. According to the hypothesis, P1 images induce anticipatory effect, while we 

should observe priming effects for P2 images. S images serve as control, so we can examine 

both anticipation and priming.  

Mean RTs in all three conditions were compared using one-way repeated measure ANOVA and 

later Tukey-Kramer test as pairwise post hoc analysis. For the accuracy data, Friedman test later 

Wilcoxon signed-rank test was used to compare the medians.  

Experiment 1b 

To check the assumed motor pattern in Experiment 1a, the pattern was modified in Experiment 

1b to balance the category-alternating and category-repeating transitions in the sequence. Other 

parameters of the experiment were left unchanged. 

Participants 

Thirty-eight volunteers (18 females, mean age: 27.6 y, range: 21-42 y) participated in 

Experiment 1b, who were all right-handed with correct or corrected to normal vision. All of 

them gave written informed consent; the study protocol was approved by the Human 

Investigation Review Board of University of Szeged (266/2017-SZTE). We excluded three 

subjects due to poor performance (mean accuracies were under 60%). We excluded 2.61% of 

all trials from Experiment 1b using the same criteria as in Experiment 1a: 0.8% for long RTs, 

0.02% for short RTs, and 1.8% for low accuracy.  
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Pattern 

In Experiment 1b, we used 12 images for every participant, as well. Out of the 12, 4 pairs were 

created, but only two were category-alternating, while the remaining were category-repeating. 

S images still included two Large and two Small images (Fig. 3.). By introducing category-

repeating the transition were balanced: 47.6% were category-repeating out of all the transitions. 

This modification reduced the motor pattern in the stream that could bias the SL effects. 

 

Figure 3: The stimuli and the regularity used in Experiment 1b. A: A few examples of the 

presented images in both categories (Large and Small). B: In Experiment 1b two of the pairs 

were category-alternating and two were category-repeating. Other parametrs of the 

experiment were kept the same as in Experiment 1a. 

 

Experiment 2 

Based on the observation from Experiment 1a and 1b we made the following modifications on 

the paradigm to achieve our goal and examine the behavioral effects of VSL. First, we changed 

the categorization task based on the feedback of the participants. We also increased the number 

of single stimuli in the stream. This modification reduced the transitional probabilities between 
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non-associated stimulus pairs thus further increasing the contrast between predictable and non-

predictable conditions. The number of subjects was increased compared to the first two 

experiments based on the smaller effect sizes experienced in Experiment 1b. We increased the 

number of stimulus presentations as well to raise the effect size. To not lose the first trials and 

to avoid introducing noise into the pseudorandom stream an initial random sequence with the 

same stimuli was inserted at the beginning of the stream. This way participants got familiarized 

with the task and we minimized the procedural learning effect (Manahova et al., 2018) skewing 

the RT data. Finally, to reduce the monotony of the task, a jittered ITI was introduced. 

Participants 

In Experiment 2, we had 87 healthy participants with correct or corrected-to-normal vision (48 

females, mean age: 21.26 y, range: 18-28 y). All of them gave written informed consent; the 

study protocol was approved by the Human Investigation Review Board of University of 

Szeged (266/2017-SZTE). Due to low average accuracy, 4 participants were omitted from the 

analysis.  

The exclusion criteria of the trials were changed. Due to the introduction of the random warm-

up period, variance in RT dropped and cut off was determined at mean + 2SD. Other criteria 

were implemented from the previous experiments. This way, 4.15% of all trials were excluded 

from the analysis (2.1% because of long RT, 0.2% for short RT and 1.8% for accuracies under 

80%).  

Stimuli 

Sixteen images from Bank of Standardized Stimuli were selected for Experiment 2 (Brodeur et 

al., 2010, 2014). Eight of these images were everyday objects, while the rest were images of 

animals.  

Design 

A sequence of images was presented to the participants in two runs, during which we recorded 

their answers and RTs. For each participant and run 16 images were randomly selected (8-8 

from each category, Fig. 4.). The same images were never presented to the same participant in 

different runs. Each image was presented 25 times, so each run contained 400 trials. The first 

10 presentations were the random stream, while the last 15 contained temporally associated 
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stimulus pairs formed from the familiarized stimuli. These were connected without any cue, 

seamlessly to the participants. The stimuli association and thus the temporal regularity was 

unique for each run. 

Task and procedure 

The task was changed from categorization based on size to categorization based on whether it 

is an object or an animal. Participants had to answer with a button press on the numeric 

keyboard. The next trial was presented after a jittered ITI (500-1200 ms). Participants sat 60 cm 

from a desktop computer and screen (1920 × 1080 resolution, 60 fps). All participants were 

naïve to the regularity and task. To determine the explicitness of the learning, volunteers were 

interviewed afterwards with the same questions as in Experiment 1a.  

Pattern 

We used a similar pattern as in Experiment 1b, but the number of single images was increased 

from 4 to 8. The sequence also contained 4 associated pairs, where two of them were category-

alternating and two were category-repeating (Fig. 4.). 

 

Figure 4: Examples of stimuli and the design of the regularity in Experiment 2. The 

categorization task, the number of presentation and the number of single stimuli were changed 

compared to Experiment 1a and 1b.  



26 

 

Statistics 

For the evaluation of the RT data, a linear mixed-effect model with restricted maximum 

likelihood criterion was implemented in the lme4 package in R (Bates et al., 2014). The linear 

model was chosen instead of a generalized linear model based on the robustness of the model 

and the residual diagnostics. The following fixed effects were included: the natural logarithm 

of the repetition number (1 to 15), the conditions (P1, P2, S) their interaction and the ITI. 

Random effects consisted of the random slope and intercept for the subject, the presented image, 

and the new variable, called ‘NVAR’. NVAR describes the answers of the current image with 

the previous one: 1 - current and previous answers are correct, 2 – current answer is correct, the 

previous is wrong, 3 – current answer is wrong, but the previous is correct, 4 - both of the 

answers are wrong. Likelihood ratio test was used to evaluate random effects in the lmetest 

package (Zeileis & Hothorn, 2002). Fixed effect was evaluated using type III ANOVA from the 

lmerTest package (Kuznetsova et al., 2017). Satterthwaite’s method was used to obtain degrees 

of freedom and p values. Post hoc analysis included the estimated marginal means with Tukey 

correction. The interaction was evaluated using the estimated marginal means of linear trend 

with Tukey correction.  

A generalized linear mixed-effect model with binomial distribution was fit to evaluate the 

accuracy data. To test the fixed effects, we used type III Wald χ2 test in the lmerTest package. 

Fixed effect included the natural logarithm of the repetition number, the condition, and the ITI. 

The random effects were the subject number and image. We performed a post hoc power 

analysis as well using the simr package.  

EEG study 

After examining the behavioral evidence of implicit VSL, we adapted our paradigm to EEG. 

This included abandoning the categorization task and online monitoring of SL and changing it 

to the offline familiarity test. To maintain participants’ focus we inserted a detection task in the 

stream, as well. To confirm the adapted paradigm, we conducted a pilot behavior study. 

Participants 

In the pilot study we had 17 participants (9 females, mean age: 25.7 y, range: 20–26 y), while 

we recorded the EEG data of 30 participants (16 females, mean age: 26.4 y, range: 21–37 y) 

afterwards for course credits. The results of the pilot study were used to determine the effects 
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size and a priori sample size calculation. The calculation showed the need for a sample size of 

33. All participants provided written, informed consent; all stated having a correct or corrected-

to-normal vision and no history of epilepsy or other neurological diseases. One participant 

showed extremely high noise during the recording; thus, this one participant was excluded from 

the latter analysis. The study protocol was approved by the Human Investigation Review Board 

of the University of Szeged (266/2017-SZTE).  

Sequence design 

The previously used paradigm was adapted to EEG. All participants were exposed to 3 runs of 

image sequences. In each run, participants were presented with 412 trials. One run was made 

up of 25 presentations of 16 images of everyday objects. Twelve images of animals were 

inserted into the stream randomly (Fig. 5.). Similarly, to Experiment 2, the first 10 presentations 

of the images were random in their presentation order, while the last 15 contained temporal 

regularity, the image pairs. Eight images formed associated pairs (P1 and P2 images), the rest 

served as control, single images (S images).  

 

Figure 5: The sequence structure in the EEG study. The associated stimulus pairs and single 

stimuli were kept intact. The behavioral task was changed to a detection task, where 

participants had to indicate the appearance of animals with a button press. These trials were 

omitted from the later analyis. 
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Task 

Participants were instructed that they were going to see an image stream of everyday objects 

and they had to indicate the appearance of an animal in the sequence as fast as possible with a 

button press (Fig. 6.). Our goal with the detection task was to maintain the attention level of the 

participants during the stream. 

 

Figure 6: The design of the stimulus presentation. Stimulus presentation was machine-paced. 

Images were shown for 300 ms and then an ITI of 700-1400 ms was applied. Three runs of 

sequences were shown to the subjects. 

Familiarity test 

To evaluate the regularity acquisition participants performed an offline, familiarity test after the 

presentation of the sequences. The test was a subject-paced 2AFC design with a total of 32 

presentations of stimulus pairs. Eight pairs were presented 4 times; 4 out of the 8 were the true 

pairs presented during the sequence while the rest were foils. Foil pairs were created by 

swapping the members of the original pairs while keeping the position intact. The presentation 

of the pairs was identical to the presentation during the sequence. Participants had to answer 

with a button press whether they find the stimulus pair familiar or not (‘S’ – familiar, ‘K’ – not 

familiar). Subjects’ response was followed by the next pair. 

Stimulus presentation 

All images presented to the participants were gray-scale images selected from the Bank of 

Standardized Stimuli (Brodeur et al., 2010, 2014). The images were displayed at a visual angle 

of 7.5°× 7.5° sitting approx. 50 cm from the screen. Stimulus presentation was carried out on 

an ASUS ROG Swift PG248Q Monitor (1920 × 1080), using Psychtoolbox, MATLAB 
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(Brainard, 1997; Kleiner et al., 2007). The images were presented for 300 ms and between 

images a jittered ITI was used (700 – 1400 ms). 

Procedure 

First, we ran the pilot study to test whether the adaptation of the paradigm still results in pair 

acquisition. Here, participants were instructed that they are going to see an image sequence and 

they must indicate the appearance of animals with a button press. After only one run, they 

performed the familiarity test where they were informed about the hidden pairs.  

After establishing the phenomenon in the pilot study, the stimulus presentation was coupled 

with EEG recording. To increase signal-to-noise ratio, each participant performed three runs of 

sequences, which took about 25 min. In each run, new images and new regularities were used, 

so every image was presented 25 times, and every pair was presented 15 times. Between runs, 

participants had the chance to take a few minutes before continuing. After completing all three 

streams, participants had to perform the familiarity test based on only the images and pairs of 

the last sequence. 

EEG data acquisition 

For the recordings, a 64-channel Biosemi Active II system was used with a sampling rate 2048 

Hz. EOG was acquired with four channels: 1 cm above and below the left eye and the outer 

canthi of both eyes.  

Preprocessing was carried out in EEGLAB, MATLAB (Delorme & Makeig, 2004). Channels 

with significant noise were interpolated based on visual inspection. Then, a Notch filter and a 

bandpass filter were applied between 48-50 Hz and 1-80 Hz. Rereferencing was based on grand-

average, and we resampled the data to 200 Hz. To remove eye-movements and other noise we 

used EyeCatch (Bigdely-Shamlo et al., 2013) and Multiple Artifact Rejection Algorithm 

(Winkler et al., 2011, 2014). After removing the EOG channels, we defined the epochs: 700 ms 

before and 1700 ms after stimulus presentation.  

After acquiring segmented data, further analysis was carried out in Fieldtrip, MATLAB 

(Oostenveld et al., 2010). ERP, TF and ITPC analysis was performed. For the ERPs, the 

epoched data were baselined to -200 to 0 ms before stimulus presentation. The ERP was 

calculated for each condition, subject, and channel by averaging the trials. 

TF analysis was performed by Morlet wavelet convolution with zero padding between -700 to 

1700 ms and between 2 to 80 Hz. To inspect the different frequency bands alternate cycle 
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numbers were applied (4 and 10). After convolution the data was baselined to -400 to -200 ms 

before presentation and it is given in dB. As a last step, TF data was averaged together across 

trials. ITPC was computed in the same window as TF according to Tallon-Baudry et al. (1996, 

Eqs. 1), where F stands for phase, f for frequency, t for time and n for number of trials.  

𝐼𝑇𝑃𝐶(𝑓, 𝑡) =  
1

𝑛
∑

𝐹𝑘 (𝑓, 𝑡)

|𝐹𝑘 (𝑓, 𝑡)|

𝑛

𝑘=1

 (1) 

Statistical analysis 

The data of the familiarity test was first converted into sensitivity according to the modified 

Grier’s formula (Aaronson & Watts, 1987; Grier, 1971). The formula describes a participant’s 

sensitivity in a 2AFC design (Eqs. 2,3), where hit probability (HIT) and false alarm probability 

(FA) is converted into A’. This value ranges between 0 and 1. 0.5 marks chance accuracy, while 

1 mark 100% accuracy. The modified formula takes into consideration the ratio of hit and false 

alarm rate and different equation is used, when hit probability is higher than false alarm (Eqs. 2) 

or vice versa (Eqs. 3). 

𝐴′ =
1

2
+

(𝐻𝐼𝑇 − 𝐹𝐴)×(1+𝐻𝐼𝑇−𝐹𝐴)

4𝐻𝐼𝑇×(1−𝐹𝐴)
 (2)  

𝐴′ =
1

2
+

(𝐹𝐴 − 𝐻𝐼𝑇)×(1+𝐹𝐴−𝐻𝐼𝑇)

4𝐹𝐴×(1−𝐻𝐼𝑇)
 (3) 

After collecting subjects’ sensitivity values, it was tested against 0.5 with one sided t-test. 

Additionally, we used these values to divide participants into two groups: chance performers 

(C), i.e., those whose accuracy was 0.5 or under, and above-chance (AC) performers, who 

performed above 0.5.  

ERPs between conditions were compared using permutation statistics with cluster-based 

correction. Due to the multiple comparison between conditions, additional Bonferroni 

correction was applied and channels with p value under 0.0167 were accepted. Emerging 

clusters were tested against a permutated population of 1000 iterations and clusters with were 

accepted as significant which had a summed t value in 95th percentile of the permutated 

population.  

After acquiring TF data, we determined a window of interest. We followed the methodology of 

Bogaerts et al. (2020). First, we averaged all trials together across subjects, conditions, and 
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channels. Based on the visual inspection of this data, we determined a window of interest along 

the time and frequency axes and the average power within the window was used for later 

analyses. The mean power of this window was correlated with subjects’ A’ value using Pearson’s 

correlation. Afterwards, the power in the TF window was compared between the AC and C 

groups and determined the scalp distribution of the difference. Additionally, the power was 

compared between conditions, as well. In both cases permutation statistics with cluster-based 

correction was used, similarly to the ERP comparison.  

Lastly, the ITPC values in the TF window of interest were compared against a same size window 

in the prestimulus baseline period using Wilcoxon sign rank test due to the non-normal 

distribution of the data. 
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Results 

Behavioral study 

Experiment 1a 

The answers of the post-sequence interview revealed that only one participant suspected some 

kind of pattern in the stream but was unable to specify the pattern or recall any of the pairs. 

Based on these answers we did not exclude any subject from Experiment 1a. 

Analyzing the RT data of the different conditions showed a great effect in the learning paradigm 

(F(2,64) = 10.002, p<0.001, Fig. 7.). Pairwise comparison of the three conditions revealed a 

priming effect on condition P2 (mean = 0.592 s, SD = 0.123s) as its mean RT was lower than 

both Condition P1 (mean = 0.614 s, SD = 0.133 s, q = 3.94, p = 0.001) and Condition S 

(mean = 0.611 s, SD = 0.133 s, q = 3.484, p = 0.004). Post hoc power analysis showed a 

statistical power of 98.7% (1000 iterations, Monte Carlo simulation). We could not detect a 

significant difference between the RT of Condition P1 and S. 

Accuracy data also showed the priming effect (n = 33, χ2 = 20.33, p < 0.001, Fig. 7.). Post hoc 

analysis showed that Condition P2 (median = 0.95, IQR = 0.063) has a higher accuracy than P1 

(median = 0.931, IQR = 0.086, z = -3.45, p < 0.001) and S (median = 0.919, IQR = 0.070, 

z = -3.806, p < 0.001). The power analysis showed a statistical power of 99% in this case. 
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Figure 7. Performance in Experiment 1a. A: RT changes in the three conditions by presentation 

number. B: Mean RT in the three conditions with SD error bars (** p < 0.01). C: Accuracy 

changes in the three conditions by presentation number. D: Boxplots of the median accuracy 

with IQR in the three conditions (*** p<0.001).  

An additional analysis was conducted to confirm the presence of the hypothesized skewing 

effect of the motor pattern in the sequence. Since the number of category-repeating transitions 

was substantially lower we removed the trials where the previous image belonged to the same 

category. This way we lost 38% of all trials and these all belonged to either Condition P1 or 

Condition S. Due to this removal the effect size observed in the RT and accuracy data decreased. 

The RT of Condition P2 (mean = 0.592 s, SD = 0.119 s) did not differ significantly from either 

Condition P1 (mean = 0.595 s, SD = 0.112 s) or Condition S (mean = 0.594 s, SD = 0.132 s) 

using repeated measure ANOVA (F(2,64) = 0.145, p = 0.866). The effect size of the accuracy 

showed the same tendency, where the significant difference disappeared (n = 33, χ2 = 0.14, p = 

0.934) between the three conditions (P1: median = 0.942, IQR = 0.084; P2: median = 0.95, 

IQR = 0.064; S: median = 0.94, IQR = 0.057). 
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Experiment 1b 

During Experiment 1b, one participant reported some suspicion about a hidden regularity, yet 

again no explicit knowledge could be recalled. For this reason, we kept the data of this 

participant, similarly, to Experiment 1a.  

ANOVA revealed a tendency in the RT data (F(2,68) = 2.458, p = 0.093, Fig. 8.) between the 

three conditions (P1: mean = 0.618 s, SD = 0.097 s; P2: mean = 0.611 s, SD = 0.097 s; 

S: mean = 0.617 s, SD = 0.097 s). The accuracy data did not show a significant effect either 

(n = 35, χ² = 0.41, p = 0.814; P1: median = 0.944, IQR = 0.064; P2: median = 0.95, IQR = 0.052; 

S: median = 0.944, IQR = 0.064, Fig. 8.).  

 

Figure 8. Performance in Experiment 1b. A: RT changes in the three conditions by presentation 

number. B: Mean RT in the three conditions with SD error bars. C: Accuracy changes in the 

three conditions by presentation number. D: Boxplots of the median accuracy with IQR in the 

three conditions. 



35 

 

Comparing the results of Experiment 1a and 1b 

The only modification between Experiment 1a and 1b was the introduction of category-

repeating pairs, which greatly reduced the effect experienced in Experiment 1a. Due to the 

phenomenon, we directly compared the results of the two experiments (Fig. 9.).  

Holm-Bonferroni corrected t-test showed tendency (t(66) = 2.083, p = 0.082) in the RT 

difference between Condition P2 and S in Experiment 1a (mean = 0.019 s, SD = 0.031 s) and 

Experiment 1b (mean = 0.006 s, SD = 0.019 s), while Holm-Bonferroni corrected Mann-

Whitney U test revealed a significant difference (z = -2.56, p = 0.0315) in the accuracy data 

between Experiment 1a (median = -0.025, IQR = 0.028) and Experiment 1b (median = 0.0, 

IQR = 0.044).  

The difference between Condition P1 and P2 also showed a tendentious change (t(66) = 2.421, 

p = 0.054) in the RTs of Experiment 1a (mean = 0.022 s, SD = 0.032 s) and Experiment 1b 

(mean = 0.006 s, SD = 0.021 s). The accuracy difference appeared to be significant between the 

two experiments (z = -2.33, p = 0.039; Experiment 1a: median = -0.025, IQR = 0.052; 

Experiment 1b: median = 0.0, IQR = 0.061). Condition P1 and S difference did not show a 

change in either RT or accuracy data. 

 

Figure 9. The differences between conditions in Experiment 1a and 1b. A: RT difference 

between Conditions P1 and P2 (# p<0.1). B: RT difference between Conditions S and P2 (# 

p<0.1). C: RT difference between Conditions P1 and S. D: Accuracy difference between 
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Conditions P1 and P2 (* p<0.05). E: Accuracy difference between Conditions S and P2 (* 

p<0.05). F: Accuracy difference between Conditions P1 and S. 

Experiment 2 

No participant reported explicit knowledge or suspicion about the regularity in the image 

stream. The mixed model did not detect a significant effect on the accuracy by any of the 

investigated variables (repetition: χ² =1.949, df = 1, p = 0.163; condition: χ² = 2.308, df = 2, 

p = 0.315; interaction: χ² = 1.237, df = 1, p = 0.539) except for the effect of the ITI (χ² = 14.936, 

df = 1, p < 0.001). 

The model fitted to the RT data revealed significant effects such as the condition, the interaction 

of the log(repetition number)×condition and the ITI (Table 1.). Power analysis showed a 

statistical power of 76% for the interaction. 

Table 1. Results of the linear mixed effect model fitted to the RT data 

We performed a post hoc pairwise comparisons for the categorical significant effects. 

Examining the estimated marginal means of the condition variable (Table 2A.) led to 

inconclusion since none of the pairwise contrast reached significance (Table 2B.). However, 

comparing the linear trends (Table 2C.) of the repetition and condition interaction revealed that 

P2 and S slopes are significantly different while, P1 and P2 showed tendency (Table 2D.) 

 Degrees of freedom F value p value 

Repetition 1, 85 0.178 0.674 

Condition 2, 38030 3.344 0.035 

ITI 1, 38048 407.456 <0.001 

Interaction 2, 38018 4.303 0.014 
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Table 2. Results of the pairwise comparison in the RT data. A: EMMs by conditions. B: Z and 

p values of the comparison of the EMMs. C: EMM of linear trends of the interaction in the 

different conditions. D: Z and p values of the pairwise comparisons of the linear trends. 

A EMM (s) SEM  B z value p value 

S 0.463 0.0281  S-P1 -1.804 0.168 

P1 0.465 0.0282  S-P2 0.158 0.986 

P2 0.462 0.0282  P1-P2 1.701 0.205 

       

C EMM trend SEM  D z value p value 

S 0.00117 0.0002  S-P1 0.32 0.945 

P1 0.00058 0.0023  S-P2 2.856 0.012 

P2 -0.00408 0.0023  P1-P2 2.195 0.072 

In the next step of the analysis, we examined the RT difference slope of Conditions S and P2. 

This data was fitted to linear regression model as a function of the repetition number (Fig. 10.). 

To test the hypothesis that the emergence of the behavioral evidence shows a logarithmic 

trajectory we fitted two models: Model A, with a linear predictor variable and Model B with a 

logarithmic predictor variable. Both Model A (R2 = 0.005, F(1,1243) = 6.926, p = 0.012) and 

Model B (R2 = 0.008, F(1,1243) = 9.767, p = 0.002) achieved significance. To compare the 

models, we used encompassing test (lmtest package, R). The test compares the two models to 

a combined, encompassed model. The test reaches significance when the originals models 

provide more information compared to the encompassed model, meaning they contribute less 

to the combined model, thus it is a worse fit. Model A reached significance in the encompassing 

test (F(-1,1242) = 4.984, p = 0.026), while model B did not (F(-1,1242) = 1.528, p = 0.217). 
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Figure 10. The learning trajectory was determined by the RT difference between Condition S 

and P2 in Experiment 2. 

EEG study 

Behavioral results of the pilot study 

Testing participants A’ values (mean = 0.6, SD = 0.17) confirmed that the sample mean is 

significantly above 0.5 (t(16) = 2.44, p = 0.0132). Based on this result, we utilized the adapted 

paradigm and recorded EEG (Fig 11.). 

Behavioral results of the EEG study 

One participant reported not comprehending the task in the familiarity test, while we suspect 

that three additional participants misunderstood the task as they only answered “not familiar” 

during the test. The first participant was excluded from the familiarity test, but later nobody 

was excluded after all, as the familiarity test did not influence the stream and the EEG recording. 

During the EEG study, mean A’ was above 0.5 (mean = 0.53, SD = 0.18), however it did not 

reach significance (t(28) = 1.002, p = 0.162, Fig. 11.). 
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The performance of the familiarity test in latter analysis was used to divide participants into 

two groups: group AC (above chance, those who have A’ above 0.5) and group C (chance, those 

who have A’ equal or below 0.5). 

 

Figure 11. Performance of individual participants in the familiarity test plotted by the hit and 

false alarm probabilities in the pilot study (left) and the EEG study (right).  

ERP results 

Analyzing the ERPs in the three conditions did not reveal a significant cluster either including 

all participants or only including the AC group. 

Spectral results 

First, we determined a window of interest, by averaging the trials together over subjects, 

conditions, and channels. Based on the visual inspection of the averaged data, we defined a 

time-frequency window of interest between 40-70 Hz and 0.5-0.75 s after the start of the 

stimulus presentation (Fig. 12.) 
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Figure 12. Average power in the post stimulus interval. The dashed window borders the selected 

window of interest between 40-70 Hz, and 0.5-0.75 s. 

After establishing the window, we investigated the relationship between the neural data and the 

behavioral performance. The average power within the time window showed a positive 

correlation with the participants’ A’ values (n = 29, r = 0.371, p = 0.048, Fig. 13.). To confirm 

this relationship, we reanalyzed the data excluding the previously mentioned four participants, 

who misunderstood the task. The correlation still emerged with only 25 subjects (n = 25, r = 

0.449, p = 0.024). 
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Figure 13. Correlation of the average gamma power (0.5-0.75 s,40-70 Hz) and individual A’ 

values.  

Based on this result we pursued the analysis of the gamma window regarding the behavioral 

results. We compared the AC and C groups to see whether they show a difference and what 

scalp distribution they exhibit. Permutation statistics revealed an emerging cluster in the 

average power of the TF window appearing in the left frontoparietal region (tsum = 860.57, 

p = 0.041, Fig. 14.). The AC group exhibited higher gamma power (mean = 0.35 dB, 

SEM = 0.07 dB), than the C group (mean = 0.08 dB, SEM = 0.05 dB). 

 

Figure 14. Scalp distribution of the average gamma power (0.5-0.75 s,40-70 Hz). Left: Power 

difference between AC and C group. Middle: Standard deviation of the difference between the 

AC and C group. Right: Scalp distribution of the statistical difference (t value) between the AC 

and C group. Channels of the significant cluster (p<0.05) are marked by black dots. 
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After determining the scalp distribution of the post stimulus gamma difference, we examined if 

this activity is whether condition specific. We compared the different conditions (P1, P2 and S) 

including all subjects first. This analysis did not yield any results as no significant cluster 

emerged on the scalp. In the next step we compared the condition within the AC and C group 

separately. The C group again, did not show the appearance of any channel cluster. The 

examination of the AC group led to the observation of a cluster emerging in the left 

frontoparietal area (tsum = 681.3, p = 0.021, Fig.15) when comparing Condition P1 and S. 

 

Figure 15. Scalp distribution of the average gamma power (0.5-0.75 s,40-70 Hz). Left: Power 

difference between Condition P1 and S. Middle: Standard deviation of the difference between 

Condition P1 and S. Right: Scalp distribution of the statistical difference (t value) between the 

Condition P1 and S. Channels of the significant cluster (p<0.05) are marked by black dots. 

Our hypothesis was, that either Condition P2 differs from the other, or Condition P1 shows 

anticipatory effect thus it shows difference with Condition P2 and S. The isolated difference 

between Condition P1 and S was not in line with our expectations. To understand the 

phenomenon, we examined the average power in the TF window (0.5-0.75 s, 40-70 Hz) 

separately for each condition (Fig. 16.). This observation showed that P1 trials have the highest 

gamma power on average (mean = 0.469 dB, SEM = 0.118 dB), while the control images have 

the lowest (mean = 0.219 dB, SEM = 0.049 dB). The means power for Condition P2 was 

between the other two conditions (mean = 0.322 dB, SEM = 0.102 dB) which can explain why 

we were not able to detect any difference regarding the predictable images.  
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Figure 16. The average gamma power in the window of interest (0.5-0.75 s, 40-70 Hz) by 

conditions. The error bars indicate SEM. 

As the last step, we examined if the gamma activity is phase-locked to the stimulus presentation 

and performed ITPC analysis in Condition P1 of the AC group and it was compared to a 

prestimulus baseline window (-0.4 - -0.15 s, 40-70 Hz) in the same group and condition. The 

ITPC of the AC group (median = 0.07, IQR = 0.005) did not show significant difference (n = 

14, z = -0.282, p = 0.78) comparing it against the prestimulus window (median = 0.068, IQR = 

0.005).  

After demonstrating changes in the gamma range, we examined the theta (4-7 Hz), alpha (8-12 

Hz) and beta band (13-30 Hz) but these frequencies did not show any group or condition 

specific changes or tendencies in the same time window. 
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Discussion 

The apparent fundamentality of SL calls for its meticulous investigation, however this 

fundamentality also impedes the process. As discussed previously, SL can be observed in 

numerous paradigms and modalities all with their own distinct cortical and subcortical network. 

It affects several other cognitive functions and vice versa, while also shows great individual 

differences. These remarks call for the investigation of SL separately in different modalities and 

paradigm so we can identify distinct properties that aid us to understand the full picture.  

A less frequently studied aspect of SL is the unsupervised paradigm with temporally associated 

visual stimuli. Our goal was to identify behavioral and cortical properties of unsupervised VSL. 

To do this we adapted a previously used paradigm (Turk-Browne et al., 2010). First, we 

established the presence of a skewing motor pattern in the original stream and subsequently 

modified the temporal regularity to remove this noise. With the new paradigm we managed to 

observe behavioral features of VSL, like the reduced RT experienced in case of predictable 

images. Additionally, we examined the learning trajectory which showed a logarithmic trail. 

To identify further cortical activities related to VSL we further modified our paradigm, so it is 

suitable for EEG recording. This way, we observed a high frequency oscillatory activity that 

showed a positive relationship with the behavioral results of the paradigm. Furthermore, this 

activity in the left frontoparietal area appeared to be condition specific and emerged between 

the member of stimulus pairs.  

Behavioral study 

The aim of the present study was to observe the previously published effects in an unsupervised 

VSL paradigm: priming and anticipatory effects. We used a modified version of a formerly 

utilized paradigm in Experiment 1a (Turk-Browne et al., 2010) and replicated their results of 

reduced RT and greater accuracy for the predictable member of temporally associated image 

pairs which led to the conclusion of a priming effect, however we could not find any evidence 

for an anticipatory effect. Notwithstanding this observation, the pattern of the image categories 

raised doubt whether the results are truly effects of VSL. 
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Motor learning vs perceptual learning 

Experiment 1a only contained category-alternating associated pairs. This resulted in the fact 

that 65% of the image transitions became category-alternating while category-alternating 

transition is 100% in the case of a stimulus pair. Furthermore, the smaller chance of category-

repeating transitions and thus the violation of the statistical motor information can only occur 

in Condition P1 and S. The appearance of unexpected stimuli can lead to greater RT (Sebastian 

et al., 2021) and this further increases the RT difference between category-repeating and 

category-alternating transitions. This is a form of implicit learning as well, however it cannot 

be specified as VSL since the acquired information is not visual but rather motor response. 

The parallel categorization task and motor responses biased the outcome of the experiment 

which was proved by a reanalysis of the data of Experiment 1a and the follow-up measurement 

in Experiment 1b. We reduced the motor pattern by the introduction of category-repeating 

stimulus pairs, and we experienced a drastic drop in the priming effect size, nevertheless the 

statistical regularity remained unchanged in the image sequence. 

Many have argued before that RT effects in implicit learning paradigms are due to underlying 

motor learning components rather than perceptual learning (Lungu et al., 2004; Willingham et 

al., 1989; Zießler, 1994) and in the absence of motor pattern RT changes are not detectable. 

Since then, the RT effects of sequence learning has been presented (Heyes & Foster, 2002; 

Mayr, 1996; Robertson & Pascual-Leone, 2001), yet some still question the validity of these 

results (Dennis et al., 2006) and claim the presence of motor patterns. 

The learning trajectory of VSL 

 After the assessment of Experiment 1a and 1b, we set out to modify this paradigm in a way 

that shows the behavioral remarks of VSL without underlying motor components. First, we 

raised the number of subjects and the number stimulus presentation to boost the effect size. We 

also changed the categorization task to be more straightforward, since participants reported 

confusion regarding the task. The variance in the RT data and its curve called for the need of 

insertion a warm-up period at the beginning of the stream so our volunteers can get familiar 

with task, and we can lower the noise in the data, as well. To reduce the monotone pace of the 

task random ITI was introduced in the sequence. The modified paradigm appeared as an 

effective tool to observe behavioral aspects of VSL, since we detected condition specific RT 

changes and managed to characterize the learning curve. 
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The analysis of RT data of Experiment 2 revealed the emergence of the priming effect through 

the changes in the linear trends. Besides, the learning trajectory showed a rather logarithmic 

curve. This implies the relatively rapid development of SL effect additionally to the evidence, 

that the number of regularity presentation in the experiments were low compared to other 

studies (Henin et al., 2021; Moser et al., 2021; Saffran et al., 1997; Siegelman et al., 2018).  

This is not the first observation regarding the learning curve of VSL. A previous study had 

described the phenomenon with similar results (Siegelman et al., 2018). They also experienced 

an RT drop for expected stimuli compared to unexpected ones after a somewhat low 

presentation number. They also managed to describe the learning curve which shows a great 

similarity to our curve, where it exhibits a logarithmic trajectory. A key difference between their 

and the presented study here is the supervision of the paradigms. Their participants were 

informed about a regularity thus it cannot be specified as an unsupervised learning similarly the 

previous designs (Amato & MacDonald, 2010; Gómez et al., 2011; Misyak & Christiansen, 

2012). The explicit and implicit learning processes are different and are evidenced by RT 

difference (Batterink, Reber, Neville, et al., 2015; Batterink, Reber, & Paller, 2015). The 

explicit instruction also leads to the participants actively searching for regularities, thus 

changing their attention level (Turk-Browne et al., 2005). Due to this the presented results offer 

a contribution towards the complete description of different SL phenomena. 

A great limitation of the current study is the small effect size experienced in Experiment 2, 

which is the result of the short learning phase. Many changes have been applied to the original 

paradigm in one step. Changing the categorization task reduced the effect size in the accuracy 

data, however more and more studies point towards the direction the accuracy is not a reliable 

measurement of SL (Y. J. Zhou et al., 2020). Due to this we focused on the effect size in the RT 

data, which also showed a small effect size. Sacrificing accuracy for the effect size of RT was 

reasoned, as many viewpoints face towards RT being a reliable implicit measurement of SL (R. 

Kim et al., 2009). Further action towards boosting the effect size could be increasing the number 

of presentations. This would lead to longer runs where we must take into consideration the 

effects of fatigue and lower attention levels.  
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EEG study 

Behavioral results reflect explicit knowledge 

Behavioral data of the EEG study showed high variance, which is consistent with previous 

research (Batterink & Paller, 2017; Bogaerts et al., 2022; Franco et al., 2015; Turk-Browne et 

al., 2010). This variance can be observed between studies, where some studies report great SL 

effect (Bogaerts et al., 2020), meanwhile many reports nil behavioral findings (Y. J. Zhou et al., 

2020). It is also observable within studies where participants show diverse results, even within 

a relatively homogeneous population, like young university students (Batterink & Paller, 2017; 

Pinto et al., 2022).  

Though the familiarity test of the EEG study did not yield significant results, the results of the 

pilot study provided us evidence that the paradigm is adequate to prompt learning effects. Many 

factors could have played a role in these contradicting results. One factor that cannot be 

overlooked in this case is fatigue. Participants of the EEG study were exposed to three 

sequences additional to the time of preparation for the EEG recording, while the volunteers of 

the pilot study spent considerably shorter time with the measurement. Another likely factor 

could be the fact that EEG subjects were exposed to three times more pairs during their stimulus 

presentation. The pictures and the stimulus association were changed in every run, yet it is a 

possibility that the higher number of regularities took a load on the mnemonic networks. We 

have evidence that overwriting of previously acquired information is possible and subjects can 

learn different stimulus associations (Siegelman et al., 2018), but we currently do not have 

enough information whether the extent of this paradigm is sufficient for this. Despite the 

nonsignificant results of the familiarity test during the EEG recording, the electrophysiological 

data cannot be diminished because as discussed before, unsupervised SL utilizes implicit 

systems while the familiarity test requires explicit knowledge. 

High frequency oscillation appeared in correlation with the behavior 

The EEG results consist of high frequency oscillation 0.5-0.75 s after post stimulus, which does 

not appear to be phase-locked to the image presentation. This activity also showed a positive 

correlation with the behaviors findings and emerged in the frontoparietal region of the scalp. 

Many cortical oscillations have been associated with SL. Low frequency oscillations, like the 

theta and alpha band have been observed in regard to stimulus expectancy, where unexpected 

stimuli were coupled with greater oscillatory power (Cavanagh et al., 2012; 
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Rungratsameetaweemana et al., 2018; Y. J. Zhou et al., 2020). The beta band also exhibited 

modulation in previous SL studies. These beta waves appeared diffusely on the scalp and 

generally had lower power within regularity transition, than between. The power of the beta 

waves also showed a strong positive correlation with offline measurements of SL (Bogaerts et 

al., 2020). Currently not many studies have investigated the gamma band in relation to SL, but 

it’s a widely studied frequency band in cognitive and perceptive processes.  

Gamma oscillations after stimulus presentation have been divided into early and late activities. 

Early gamma activity can be identified by its latency, since it usually ends 0.15 s after the 

presentation of the stimulus, and it is also phase-locked to the stimulus presentation. It is 

associated with basic perceptual processes in sensory networks (Pulvermüller et al., 1999). 

These early activities are mostly modulated by exogenous effects. Stimulus properties heavily 

affect gamma oscillations, both in visual and auditory modalities. Visual stimulus properties, 

like the size of the stimulus its position from the center, its contrast and details can modulate 

the gamma activity (Busch et al., 2004; Schadow, Lenz, Thaerig, Busch, Fründ, Rieger, et al., 

2007). These modulatory effect caused by the lower level stimulus properties were attributed 

to the early visual areas (Zaehle et al., 2009). Similar findings were observed in the auditory 

domain, where basic auditory properties modulate the gamma band in the early auditory areas 

(Schadow et al., 2009; Schadow, Lenz, Thaerig, Busch, Fründ, & Herrmann, 2007). 

 Late gamma waves are more diffuse in time and do not appear as phase-locked activity. It can 

usually be observed anywhere between 0.2-1s from stimulus presentation in the 30-80 Hz range. 

It was debated whether endogenous effect can alter the gamma response, but since then several 

cognitive functions have been associated with it. The first to be observed is the relationship of 

gamma waves and attention (Tiitinen et al., 1993). After this many more factors have been 

investigated, like stimulus representation (Bertrand & Tallon-Baudry, 2000), mnemonic 

functions (Busch et al., 2008), language processing (Bastiaansen & Hagoort, 2006) and 

awareness (Ohla et al., 2007).  

The roles and functions of these gamma waves were described in the match and utilization 

model. Early gamma activity represents the matching of the incoming sensory input to 

previously experienced and acquired environmental information while late gamma is the 

representation of the utilization process. Utilization involves the control and modification of 

behavior and other cognitive functions through top-down processes (Herrmann et al., 2004). 

One cognitive function change could be the control of attention which has been linked to 

gamma activities before (Fell et al., 2003) and also gamma activity has been observed in the 

phenomenon that predictable stimuli shift the focus of attention (Gonzalez Andino et al., 2004). 
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Considering the frequency and temporal properties of the observed gamma activity we can 

conclude that it can be a late gamma activity representing utilization. The scalp distribution of 

cortical activities further corroborates their function. Early, posterior oscillations have been tied 

to lower-level sensory processes, while posterior activities more distant from the stimulus 

presentation tend to represent executive functions (P. J. Reber et al., 2003; Smittenaar et al., 

2013).  

Similar observations to the match and utilization model have been made, and it was defined as 

model-free and model-based learning as mentioned previously (Daw et al., 2005; Dayan & Niv, 

2008). The two models have a great overlap in their definitions on how to divide cortical 

processes, however the match and utilization model defines its function based on the latencies 

if the cortical representations, the model-free and model-based learning division rely on the 

spatial distribution. Stimulus-driven model-free learning is responsible for the extraction and 

acquisition of environmental stimulus-patterns and regularities. It is hypothesized as a function 

utilizing bottom-up processes and it is tied to the posterior areas of the brain. Parallelly, model-

based learning is a rather top-down process, that makes use of the already collected information 

and construct a model, an internal representation of the environment. Model-based learning 

applies the model to adjust cortical function and achieve higher performance, overall leading to 

a goal-oriented behavior. These processes have been tied to frontal regions. Model-based 

learning has been linked to the dorsolateral prefrontal cortex (Smittenaar et al., 2013) and SL 

has its ties with model-free/model-based learning (Tóth et al., 2017; Virag et al., 2015). The 

model-free/model-based learning theory was tested by disrupting the function of the 

dorsolateral prefrontal cortex using transcranial magnetic stimulation (Ambrus et al., 2020). 

Impairing the function of the prefrontal cortex led to the conclusion that model-free and model-

based learning are competitive in nature since they found higher SL scores in an SRT task, after 

manipulating the frontal area.  

The frequency, spatial and temporal properties of the observed gamma activity led us to the 

deduction that this condition specific oscillatory change represents model-based learning, 

which is analogous to the utilization process. This observation related to explicit processes is 

valuable, but it does not paint a full picture. Associating frontal gamma activity with explicit 

knowledge and model-based learning, it does not fully explain the neurological background of 

the SL variance due to the definition of model-based learning. It involves several cognitive 

functions (e.g. attention, mnemonic processes, decision-making), thus it does not give a 

definitive answer. Attention could be a great candidate that would explain the differences 

experienced here and previously. The performance for attended and unattended stimuli has been 
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observed, where attended stimuli resulted in greater behavioral performance (Richter & de 

Lange, 2019). Attention is also essential for the formation of explicit memory (Keane et al., 

2015), which the familiarity test requires. Future goals involve the systematic investigation of 

the gamma-band and identification of its source and exact role it plays in the process of SL. 

Identifying this component helps us understand the neural background and better investigate its 

function in perception and cognition. 

Implicit and explicit aspects of regularity acquisition 

We have evidence that both explicit and implicit knowledge emerges during SL (Bertels et al., 

2015). However, up until now, there is no accordance about the relationship of these different 

information. The model-free/model-based frameworks offers a competitive nature between the 

two, where the inhibition of model-based learning leads to improvements of implicit knowledge 

(Ambrus et al., 2020). This is also supported by the observation the that inhibition of explicit 

memory formation aided implicit learning (Frank et al., 2006). We also have evidence that 

implicit knowledge is unrelated to the recall tests (R. Kim et al., 2009), but these results were 

questioned claiming the authors conscious knowledge (Bertels et al., 2012). Others claim a 

parallel link between the implicit and explicit processes and knowledge emerges together with 

their distinct properties, like their decay in time, but overall they are responsible for the SL 

effect together (Liu et al., 2023). Some results also led to hypothesis that these systems are 

interdependent, i.e., that explicit knowledge emerges when we the processing network has 

enough implicit information and can form predictions. These behavioral observations prompt 

unclear outcomes, but we also have neural evidence regarding the phenomena. 

The disruption of the frontal area functions increased SL scores, while our results indicate that 

the emerging gamma activity shows a positive correlation with SL scores. This controversy can 

be resolved by considering the results of different behavioral performance. SRT tasks measure 

the RT difference which is generally categorized as a measurement of implicit learning and 

knowledge, while the familiarity test measures the explicit recollection of an acquired regularity 

(R. Kim et al., 2009). While the previously discussed study found a negative relationship with 

the engagement of the frontal areas, another study found a correlation between the activity of 

the posterior regions and the RT results (Batterink, Reber, Neville, et al., 2015). Interestingly, 

the subsequently recorded results of the familiarity test did not show the same correlation. These 

results indicated that the posterior areas play a role in the implicit processes of statistical 

learning. Our results appearing in the frontal region of the scalp emerged as an activity 



51 

 

correlating with the explicit knowledge of the participants. It is important to note here that the 

low spatial resolution and the volume-conduction phenomenon limits our ability to make great 

conclusions about the localization of the observed cluster. 

These observations can be united under the afore-mentioned rostro-caudal or frontoparietal 

hypothesis (Conway, 2020; Kiebel et al., 2008). The model describes the functional 

connectivity of the higher-level domain-general areas, like the prefrontal cortex which is 

responsible for the top-down cognitive control and larger-scale learning, while the parietal areas 

are modality-specific, and their local computations are affected by higher-levels. The mentioned 

observation and the presented result can fit into this framework and can complement it with the 

implicit/explicit observations.  

  



52 

 

Conclusion 

In the presented studies we explored the behavioral and cortical aspects of the unsupervised 

acquisition of temporally associated visual stimuli. We adapted a previously published 

paradigm that utilizes stimulus pairs and recorded participants’ answers and RTs. We recreated 

their results and found that predictable stimuli elicited higher accuracies and lower RT. 

Following these observations, we modified the design to eliminate a suspected motor pattern in 

the stream. The modified paradigm with the same statistical regularity but lower amount of 

motor information yielded considerably smaller effects sizes. The individual results of 

Experiment 1a and 1b and their direct comparison led us to the conclusion that the original 

design and its results are skewed and do not reflect a reliable SL effect. Subsequently to this 

remark, we set our goals to modify the design and increase the SL effect. In order to achieve 

this aim, we increased the number of subjects and the number of presentations. Additionally, 

we introduced a random warm-up period at the beginning of the sequence and random ITI to 

reduce the monotony of the task. Based on the lack of trend in the accuracy data, we simplified 

the categorization task, as well. With these adjustments we managed to observe the reduction 

of RT and negative linear trend for predictable images without the motor pattern this time. 

Moreover, we could describe the learning trajectory based on the RT difference of the 

predictable and control images. The curve showed a logarithmic trajectory which is in line with 

previous findings.  

After establishing the behavioral aspect of unsupervised VSL, we shifted our attention toward 

the cortical activities associated with SL. We adapted the design to be suitable for EEG 

recording. This included changing the categorization task to a detection thus eliminating the 

decision-making and motor activities from the recording and adding a familiarity test and the 

end of the image stream. After data collection, we first determined a window of interest based 

on the average of all trials. A window of interest emerged in the gamma range (40-70 Hz) 0.5-

0.75 s after stimulus presentation. The average power within the window showed a positive 

correlation with the results of the familiarity test. To determine the scalp distribution of this 

behavior-related activity we compared subjects who exceeded the familiarity test above chance 

with those who did not. This comparison showed that the gamma activity spread across the 

frontoparietal area with a greater expanse in the frontal region. Additional analysis of this 

activity revealed that the observed high frequency oscillation is a non-phase locked condition-

specific activity, that appears after presentation of the first member of a temporally associated 

stimulus pair.  
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The spatial and temporal distribution of the observed activity showed a great similarity with the 

utilization or model-based learning processes. These cortical functions are described as top-

down mechanisms that control our attention, decision making and overall create goal-oriented 

behavior. These activities are part of a greater cortical network, called frontoparietal network. 

Previous results and our findings suggest that the posterior part of this network is responsible 

for the mostly stimulus-driven, bottom-up processes of learning that contribute towards the 

implicit knowledge of environmental regularity. The anterior areas are responsible for the goal-

oriented top-down behavior, that modulates other cognitive functions based on the previously 

acquired information. Our results show that explicit knowledge shows a correlation with 

activities related to these top-down processes. 
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