
The Role of Software Testing and
Machine Learning in Automated

Program Repair

PhD Thesis

Viktor Csuvik

Supervisor:

Dr. László Vidács

Doctoral School of Computer Science

Department of Software Engineering

Faculty of Science and Informatics

University of Szeged

Szeged
2024

Contents

I NTRODUCTION 7

B ACKGROUND 11

1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY 17
1.1 Overview . 17
1.2 Related Work . 19
1.3 Method . 21

1.3.1 Term Frequency–Inverse Document Frequency: TF-IDF 22
1.3.2 Document embeddings: Doc2Vec 23
1.3.3 Latent Semantic Indexing: LSI 23
1.3.4 Result Refinement With an Ensemble Technique 23
1.3.5 Soft computed call information 24

1.4 Data Collection and Source Code Representations 25
1.5 Evaluation Procedure . 29
1.6 Results . 31

1.6.1 NC-based Evaluation . 32
1.6.2 Evaluation on Manual Data . 34

1.7 Discussion . 35
1.7.1 Traceability Link Recovery Technique Improvements 37
1.7.2 Performance on Manual Data 38
1.7.3 Implications . 39

1.8 Threats to Validity . 40
1.9 Concluding remarks . 41

2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR 43
2.1 Overview . 43
2.2 Related Work . 46
2.3 Coverage Matrix-Based Fault Localization 49

2.3.1 Measuring Model Stability using Churn 51
2.3.2 Adapting Churn for Fault Localization 51

i

2.4 Results on DLFL . 53
2.4.1 Potential Improvement on Stability in DLFL 54

2.5 FixJS: Data Collection to Support APR 56
2.5.1 Bug-fix mining . 56
2.5.2 Patch Abstraction . 57
2.5.3 Structure of the Constructed Dataset 59

2.6 APR with a pre-trained model . 60
2.6.1 Prompts to generate patches . 61
2.6.2 Evaluation of the generated patches 62
2.6.3 Repair performance of ChatGPT 62

2.7 Genetic Automated Program Repair . 66
2.7.1 GenProg for JavaScript . 66
2.7.2 Dataset and experiment setup 69
2.7.3 Results and Discussion . 71

2.8 Threats to validity . 80
2.9 Concluding remarks . 82

3 AUTOMATED ASSESSMENT OF AUTOMATICALLY GENERATED PATCHES 85
3.1 Overview . 85
3.2 Related Work . 86
3.3 Method . 89

3.3.1 Using similarity in PCC . 89
3.3.2 Feature-based PCC . 92

3.4 Datasets . 96
3.4.1 Sample Plausible Patches to Measure Similarities 97
3.4.2 Dataset on feature-based PCC 98

3.5 Results . 98
3.5.1 Similarity-based Evaluation . 98
3.5.2 Feature-based Classification . 102

3.6 Discussion . 107
3.6.1 Patch filtering based only on similarity 107
3.6.2 Using Features for Patch Classification 107

3.7 Concluding remarks . 108

S UMMARY 111

Ö SSZEFOGLALÁS 115

Bibliography 121

ii

List of Figures

1 General architecture of the embedding model. 13
2 General approach of Automated Program Repair 15
1.3 A high-level illustration of linking test cases to code classes. 22
1.4 Ranked lists produced by different approaches for the StringUtilsSub-

stringTest test class. 23
1.5 Source code and Abstract Syntax Tree. The numbers inside each ele-

ment indicate the place of the node in the visiting order. Leaves are
denoted with standard rectangles (note that here the value and the
type is also represented), while intermediate nodes are represented
by rectangles with rounded corners. 26

1.6 Example source code and extracted representations. 28
1.7 Various possible naming convention criteria components. 30
1.8 Results showcasing Ensemble, trained on the IDENT representation of

the source code. 32
1.9 Results of the ensembleN learning approach using NC-based evaluation. 33
2.10 A comprehensive overview of Theses II. 45
2.11 Coverage matrix with 9 statements and 5 test cases. 49
2.12 Components of DL-enhanced SBFL. 50
2.13 Statement boxing including 3 statements each. Boxes are highlighted

with colors, the faulty statement is bold and the list is ordered by the
suspiciousness assigned by each model. The churn is calculated as
follows: Churn = 1 − 1/12 = 0.917, BoxChurn = 1 − 5/12 = 0.583,
while FlBoxChurn = 1− 1/1 = 0. 51

2.14 Histogram of churn values measured using the MLP model on the ob-
served programs. 54

2.15 Histogram of churn values measured using the simplified MLP model
and resampling. 56

2.16 A high level overview of the dataset creation approach 57
2.17 Manually evaluated results of ChatGPT on the Java dataset 62
2.18 Manually evaluated results of ChatGPT on the JavaScript dataset . . . 63
2.19 Distribution of correct fix answers in the used prompts 65

1

2 List of Figures

2.20 Operator usage per fix type . 78
3.21 Illustration of the implemented similarity-based process. 90
3.22 A high level overview of the used features and their optimization for

PCC. On part (a) all features are concatenated then the most descrip-
tive ones are selected to teach several ML models. On (b) static fea-
tures (Hand-crafted, Engineered and Distances) and embeddings are
first fed into dense layers and the neural network concatenates them,
allowing it to learn a dynamic representation. 95

3.23 The values of nDCG based on the two developer evaluation. The pos-
sible values of the metric ranges from 0.0 to 1.0, a higher metric value
means better ranking. 99

3.24 The developer fix and patches ranked based on their similarity to the
original program . 100

List of Tables

1 Correspondence between the thesis points and publications. 8
1.2 Size and versions of the programs used. 25
1.3 The applicability of NC using different approaches. 31
1.4 Top-1 results featuring the different text-based models trained on vari-

ous source code representations, evaluated using naming conventions.
- highest value in a row - highest value in a column 35

1.5 Top-1 and top-5 results featuring the different text-based models and
the applicability of NC on each project. Models were trained on 5
different source code representations. - highest value in a row
- highest value in a column . 36

2.6 DLFL Average Expense results of 5 seperate runs of each version by
different models . 53

2.7 Effect of using the Resampling and the Simplified models combined
on Average Expense results . 55

2.8 Summary of the constructed datasets. 59
2.9 Summary of the constructed datasets. 60
2.10 Systems contained by the BugsJS dataset. 70
2.11 Repairs on the BugsJS dataset produced by GenProgJS. 72
2.12 Results of test-suite-based program repair tools. 74
2.13 Bugs and their corresponding plausible patches. 75
3.14 The used PCC features to classify overfitting patches. 93
3.15 Plausible patches and their corresponding developer fix in the Eslint

project . 97
3.16 Features selected using the RFECV algorithm: features that yield

best performance for a single execution among the 10 feature selections.
intersection between all of the features that were selected in the 10 feature
optimization turns. 103

3.17 Measures on various feature subsets. 104
3.18 Evaluation of the RFECVbest feature set on 9 ML classifiers. 104
3.19 Evaluation of Deep Representation Learning 106
3.20 Results showcasing the stacked performance of the 9 ML models. . . . 106

3

Glossary

AI Artificial Intelligence 8, 11, 18, 57, 58, 82, 112

APR Automated Program Repair 7, 8, 11, 14, 15, 16, 43, 44, 45, 60, 66, 71, 73, 74,
75, 80, 82, 83, 85, 86, 87, 89, 90, 91, 92, 99, 101, 105, 107, 108, 111, 112,
113

AST Abstract Syntax Tree 1, 14, 18, 26, 27, 28, 39, 42, 47, 58, 59, 66, 69, 93

CNN Convolutional Neural Network 48, 50, 55

DL Deep Learning 1, 8, 9, 12, 44, 49, 50, 54, 82, 112

DLFL Deep Learning Fault Localization 3, 48, 53

DOM Document Object Model 76

FL Fault Localization 7, 8, 9, 14, 44, 45, 81, 82, 83, 111, 112

G&V Generate-and-Validate 43, 44, 45, 66, 80, 85, 112

LLM Large Language Model 45, 81, 83

LSI Latent Semantic Indexing 18, 20, 21, 23, 24, 32, 37, 39, 42

ML Machine Learning 2, 7, 8, 9, 11, 12, 14, 17, 18, 21, 22, 26, 29, 43, 44, 49, 82,
86, 89, 93, 94, 95, 105, 106, 107, 112, 113

MLP Multi-Layer Perceptron 48, 50, 55, 86, 104, 106, 108

nDCG Normalized Discounted Cumulative Gain 91, 98, 99

NLP Natural Language Processing 14, 18, 27

OOP Object Oriented Programming 66

4

Glossary 5

PCC Patch Correctness Check 8, 9, 85, 86, 89, 93, 94, 96, 103, 106, 107, 108, 109,
113

RNN Recurrent Neural Network 48, 50, 55

SBFL Spectrum-Based Fault Localization 1, 50, 52, 82, 83

SE Software Engineering 8, 49, 82, 93, 107, 112

TF-IDF Term Frequency-Inverse Document Frequency 9, 20, 21, 22, 23, 24, 32, 37,
38, 42, 111, 115

I NTRODUCTION

There is no perfect software. Every program can contain bugs, and most commercial
system contains some kind of anomaly [95]. The basic approach to improve quality
is software testing. This can provide an objective, independent view of the software,
allowing businesses to assess and understand the risks of implementing software. Al-
though testing can confirm the correctness of software by assuming certain specific
hypotheses, it has limited ability to understand bugs and cannot improve the tested
program. Testing cannot ensure that the product will work properly in all circum-
stances, but that is not the goal: rather, it is only to find circumstances in which this
is not the case. In order to maintain quality, defects also need to be fixed, which
is both time-consuming and resource intensive. In general, most of the budget for
software projects will be spent on software maintenance and debugging [97].

This work dives into the several roles of software testing, traveling around several
domains. First, a traceability problem is discussed: given test- and code classes, how
to find a link between them. Without knowing the purpose of a test, its maintenance
becomes cumbersome and it is of little significance. Next, Machine Learning (ML)
approaches are applied on test-related tasks: Fault Localization (FL) and Automated
Program Repair (APR). The role of test cases are multi-layered here: on one hand
locating the bug usually relies heavily on test execution traces, on the other hand,
fixes are generated by generating code that passes previously failed tests. Lastly,
these automatically generated patches are supervised, as the test suite is usually not
sufficient for correct patch generation (algorithms happen to overfit, thus generating
patches for a program that only pass the test oracle, but are actually incorrect). These
three main parts are connected by (1) the applied ML approaches, (2) presence of
testing / test cases and (3) software quality improvement.

The theses is divided into three main chapters, each aligning with one of the
three main points. The methodologies, experiments, and findings presented in the
thesis have been extensively discussed in several of the author’s prior works, nine of
which are referenced here. Their relevance to the specific thesis points of the thesis
is presented in Table 1.

7

8 I NTRODUCTION

Table 1: Correspondence between the thesis points and publications.

Publications
No. [32] [33] [86] [35] [28] [34] [31] [29] [30]

I. • • •

II. • • •

III. • • •

The thesis is organized as follows: the Background chapter, which follows, pro-
vides a concise overview of key concepts that traverse various chapters of this thesis.

The first part, Chapter 1 delves into textual methodologies aimed at identifying
classes suitable for unit testing. It offers an overview of the significance and the
latest advancements in test-to-code traceability techniques, indicating that the ma-
jority incorporate textual methods in their approaches. The chapter aims to conduct a
thorough examination of the most prevalent textual techniques and explore potential
avenues for their improvement.

The second part, Chapter 2 describes some ML applications in Software Engi-
neering (SE). First, Fault Localization is assisted with Deep Learning (DL) techniques
to enhance bug fixing, as the primary goal of testing is usually to identify software
bugs so that they can be detected and corrected. Next, faulty programs are repaired
automatically, using both modern and standard techniques. The chapter’s main con-
tributions include a method for stable Artificial Intelligence (AI) training, a dataset
for learning-based APR training and tools that generate patches automatically.

The third part, Chapter 3 investigates possible solutions for the Patch Correctness
Check (PCC) problem: that is, given an automatically generated fix for a program,
decide whether it is really correct, or it overfits on the oracle. A similarity-based
approach is proposed, as well a classification method that employs latest techniques
in the field. Through profound investigations, the findings of the chapter indicate
that improvement on overfitted patch detection can be achieved on certain level, thus
improving the overall developer experience of Automated Program Repair (APR).

At the end of the thesis, brief summaries of the work are shown in English and in
Hungarian, respectively. These, furthermore, contain brief summaries on the thesis
points, as well as the author’s contributions and publications.

Contributions

The ideas, figures, tables and results included in this thesis were published in scien-
tific papers (listed at the end of the thesis). In a nutshell, the author is responsible

I NTRODUCTION 9

for the following contributions:

Chapter 1.: The author implemented the Doc2vec and TF-IDF methods for recov-
ering traceability links. Additionally, he implemented the text-based recovery tech-
nique that retrieved call graph information from static code. The definition of the
used source code representations and metric visualizations was also part of the au-
thor’s work. He also took part in the evaluation and explanation of various other
results, as well as in the planning and writing of all the published papers.

Chapter 2.: The author coordinated the experimentations on diverse network archi-
tectures on DL-based FL and implemented the bucketing approach. He also adapted
churn metric and took part in the design and writing of the published paper. The
FixJS benchmark creation and ChatGPT experiments were entirely the work of the
author. In the GenProgJS tool, the author implemented the base genetic algorithm,
and the interface for test case evaluation and operator calls. He also executed the ex-
periments, coordinated the analysis and took a big part in the explanation of results.

Chapter 3.: The author laid the groundwork for the similarity-based PCC technique
and implemented the base algorithm. He took part in the manual annotation of
the generated patches. The author coordinated the implementation of the ML-based
classifiers and conducted benchmark creation / gathering of all required metrics. He
also planned the experiment guidelines and took a big role in the evaluation and
explanation of the results and their implications.

Publications not included in the dissertation

[1] Márk Lajkó, Viktor Csuvik, Tibor Gyimóthy, and László Vidács Automated
Program Repair with the GPT Family, including GPT-2, GPT-3 and CodeX. In
IEEE/ACM International Workshop on Automated Program Repair (APR), IEEE,
31-38, 2024.

[2] Dániel Horváth, Viktor Csuvik, Tibor Gyimóthy, and László Vidács An Exten-
sive Study on Model Architecture and Program Representation in the Domain of
Learning-based Automated Program Repair. In IEEE/ACM International Work-
shop on Automated Program Repair (APR), IEEE, 31-38, 2023.

[3] Márk Lajkó, Dániel Horváth, Viktor Csuvik and László Vidács Fine-Tuning GPT-2
to Patch Programs, Is It Worth It?. In Computational Science and Its Applications
- ICCSA, Springer, 79-91, 2022.

10 I NTRODUCTION

[4] Márk Lajkó, Viktor Csuvik and László Vidács Towards JavaScript program repair
with Generative Pre-trained Transformer (GPT-2). In IEEE/ACM International
Workshop on Automated Program Repair (APR), IEEE, 61-68, 2022.

[5] András Kicsi, Viktor Csuvik, László Vidács, Ferenc Horváth, Árpád Beszédes,
Tibor Gyimóthy and Ferenc Kocsis Feature analysis using information retrieval,
community detection and structural analysis methods in product line adoption.
Journal of Systems and Software, Volume(155), 70-90, 2019.

[6] András Kicsi, Viktor Csuvik, László Vidács, Árpád Beszédes and Tibor Gyimóthy
Feature Level Complexity and Coupling Analysis in 4GL Systems. In Computa-
tional Science and Its Applications - ICCSA, Springer, 438-453, 2018.

[7] András Kicsi, László Vidács, Viktor Csuvik, Ferenc Horváth, Árpád Beszédes
and Ferenc Kocsis Supporting Product Line Adoption by Combining Syntactic
and Textual Feature Extraction. In New Opportunities for Software Reuse - 17th
International Conference, ICSR, Springer, 148-163, 2018.

B ACKGROUND

In the following chapters of the thesis I am going to talk about seemingly three
distinct topics, but all of these are actually part of Automated Program Repair. As the
task is vast and incredibly complex, subfields also tend to be inexhaustible and may
operate on different domains of software engineering. In this chapter my goal is to
establish basic knowledge that play crucial role in the following chapters - as some
of the underlying concepts are of course common in all of the thesis points and some
prior knowledge is necessary to understand the bigger picture.

Artificial Intelligence

To discover the link between human thinking and mechanical computers was already
a concern of philosophers and mathematicians in the 17th and 18th centuries. How-
ever, questions related to Artificial Intelligence (AI) only emerged around the 1940s,
but as a scientific field it became stable in 1956. Despite being a relatively young
science, the literature on AI is very rich and expanding rapidly. Although hard to
grasp the main goal of AI, a good way to think of it is to describe a hardware or
software that allows a machine to mimic human intelligence. In this definition a lot
of questions remain unanswered (e.g. what is intelligence in general), thus making
AI an umbrella term covering many scientific fields and industries.

Machine learning

AI defines the goal to mimic human intelligence, but does not say anything how to
do that. Machine Learning (ML) on the other hand, develops and applies algorithms
that can learn from experience and improve over time without being explicitly pro-
grammed. Thus, it is a technique to imitate human intelligence. It collects large
amounts of data, analyses and learns from it, then makes intelligent decisions. The
goal of ML is to create programs that can improve their own efficiency by using the
experience they gain during operation. Compared to a traditional program, where
the programmer defines the behaviour, telling the machine how to behave and what
to output in response to a given input is, in ML the ”programmer” only defines what
the ”program” should be able to do and given the input, tells it to learn the output

11

12 B ACKGROUND

- so in most cases it has no control over it (there are exceptions, of course). In case
of ML, usually the machine defines (learns) the rules based on the input, whereas in
the case of classical software, it is the programmers who do this.

Neural Networks

Incredible as it may seem, the basis of neural networks that now seems almost magi-
cal was laid a long time ago, in 1957, with the so-called perceptron model. The idea
was to mimic human intelligence by using mathematics to simulate the functions of
nerve cells (neurons) in the human brain. The human brain is estimated to have
50-100 billion such neurons, and this initial approach mimicked the function of only
1 such neuron. Its practical use is very limited, and research in this area has been
neglected in the following decades. The perceptron model was later developed into
multilayer neural networks. Like most good ideas in general, this one is also very
natural: connect neurons in a similar way to how they are connected in the human
brain, thus forming a network. Neurons are connected to each other, usually they
are organized in layers. This neural network needs to be trained to complete certain
tasks, during the learning process the network adjusts the weights of the connections
to achieve the best possible result. As more examples are available and computation
power became more accessible, deep neural networks emerged. They have more
hidden layers than traditional neural networks to solve more complex tasks. The
advantage of them is that they can learn more complex correlations as they process
data in more layers. It can also be shown that as the network goes deeper, it man-
ages to recognize more abstract concepts. The disadvantage of Deep Learning (DL)
is that they are more difficult to train (technical problems can arise), and more data
is required. Nevertheless, most approaches today work with deep neural networks.

Transformers

Traditional neural networks are also called as Feedforward Neural Networks (FNN)
because data always flows ”forward” in them. In theory every practical problem
can be solved using these, but the practice shows that in special tasks, special net-
work architectures are more advantageous. For example it is a common practice to
use Convolutional Neural Networks (CNNs) for image-related tasks, while Recurrent
Neural Netowkrs (RNNs) in tasks where the order of data is important. The Trans-
former model was introduced recently and overperformed previous architectures in a
lot of tasks [170]. The innovative approach of this model changes the way traditional
neural networks are built and operate in a way that makes it more efficient to handle
sequential data. It has no classical layers and consists of two main components: an
encoder and a decoder. The structure of the two components is similar, but the data
between them does not flow sequentially from one layer to the other. Instead, the

B ACKGROUND 13

so-called attention mechanism plays a very important role. This allows the model to
weight and consider different parts of the input sequence while processing the data.
It is very useful, for example, when processing longer texts, as the model can decide
on which part of the text pay more attention. The attention mechanism determines
the importance of the relationships between words.

Document embeddings - Doc2Vec

Doc2Vec is originated from Word2Vec, which was introduced by Google’s developers
in [123]. Word2Vec encodes words into vectors containing real numbers with a
neural network, these are called word embeddings. The basic idea is the following:
for a given surrounding, the model predicts the current word (CBOW model) or the
prediction goes in the opposite direction (Skip-gram model). The trick is that the
hidden layer of the shallow neural network used has fewer neurons than the input
and output layers, forcing the model to learn a compact representation. The weights
in the hidden layers will provide the word embeddings and the number of neurons
will be the dimension of the embedding. Doc2Vec differs only in small details: it can
encode whole documents by adding a unique identifier of the document to the input
layer. This way a word can have multiple embeddings in different documents (which
is more realistic in some cases, e.g.: blue, bear). Utilizing the embeddings, one can
compute the similarity between documents.

∑

∑

∑

∑

∑

∑

∑

∑

Input layer Output layerHidden layer

N dimensional “one-hot” vector N neurons

The probability
that the i-th
word is in the
environment

The i-th word
randomly
selected from the
environemnt.

P(word = vocab[N])

P(word = vocab[i])

P(word = vocab[0])

P(word = vocab[1])

…

H < N neurons

Softmax
activation

Weights connecting the
input and output layers
== embedding

w00

Linear
activation

∑

∑

∑

∑

0

1

0

0

…

0

∑

Figure 1: General architecture of the embedding model.

14 B ACKGROUND

Software Testing

Testing constitutes a major aspect in the assurance of the quality of a software. Be-
sides simply indicating faults in software, tests are also essential for other areas in
software engineering, like code maintenance, Fault Localization or Automated Pro-
gram Repair. The primary aspect of testing is to provide information on whether
the software achieves the general result its stakeholders desire. Testing can provide
an independent view of the software and opens new opportunities in calculating the
risks. It is known that complete testing is not fully achievable, still writing tests on
edge cases and increasing their amount is considered to be a good coding practice. It
is not a coincidence that large systems often incorporate vast amounts of tests.

Source Code Representation

From a technical point of view, source code is textual information, thus it can serve
as input to any Machine Learning model that requires such data format. However, it
is not straightforward how the source code need to be represented to such models,
as the structure of the source code holds some underlying information. The Abstract
Syntax Tree (AST) of a source code is a tree representation of the abstract syntactic
structure of that text. Parsing ASTs into a feasible input format is not a straightfor-
ward process as different tasks might require different aspects from it. In Natural
Language Processing (NLP), words and sentences are usually split into tokens. To-
kens are the frequent character sequences in the text, i.e. the word fragments. The
process that generates tokens from running text is called tokenization, which may
vary from approach to approach, but the essence is the same: generating tokens that
are the building blocks of words (including lemmatization, stemming, etc.). In case
of source code the word boundries by which the splitting is done is less intuitive:
special characters, keywords and not meaningful words also occur in the text.

Automated Program Repair

Automated Program Repair (APR) is a field of software engineering that aims to
automatically fix defects in computer programs. APR has the potential to significantly
improve software reliability and reduce the cost and time associated with manual
debugging and repair [174]. There are several near equivalents of software failure,
it is important to distinguish between them so that we can be precise in the following:

• Error/Mistake: human error leading to incorrect results.

• Fault/Defect: is the manifestation of the Error in the code, i.e. when the error
occurs in the program (we call this bug).

B ACKGROUND 15

• Failure: a deviation from the expected functionality of the software caused by
a bug.

It is the latter that can typically cause great damage to companies. Therefore it is
best to avoid these mistakes, so that maintenance costs do not skyrocket. One solu-
tion to this is Automated Program Repair, which is designed to fix defects before they
become failures. By definition, the process by which defects in software are automat-
ically fixed [126]. This is a rather general formulation, thus several approaches have
been introduced to tackle with the problem. However, the goal is well stated: given
a program, as many bugs as possible should be corrected automatically - without hu-
man intervention. It is a rather complex task, often even finding the location of the
error itself can be rather difficult. Several Automated Program Repair approaches
have been introduced, their skeleton is similar [11], and they mainly consist of the
steps depicted on Figure 2.

Fault localization

Patch generation

Patch validation

Correct?

Potentially fixed program

Buggy program Test cases

Yes

No

</>

</>

THESIS I

THESIS II

THESIS III

Figure 2: General approach of Automated Program Repair

1. Fault localization: determining the source of the error, finding the buggy mod-
ule (this part can also include the detection and diagnosis of the anomaly). The
output is usually a list of suspicious statements that needs to be repaired, but
more recently the assumption of perfect fault localization is also widespread
among works focusing only on patch synthesis.

16 B ACKGROUND

2. Patch generation: taking steps to eliminate the misbehaviour. Typically, there
are more than one correct fix for a bug and these should be tested or scored.
The program under repair is usually referred to as a program variant in the
literature, while the set of changes is the patch [11, 21, 70]. The ”goodness” of
variants is evaluated using a so-called fitness function.

3. Patch validation: validate the correctness of a variant. If a previously existing
error has been fixed, the algorithm stops, otherwise it starts to make a new
variant.

The output of the process is a potentially fixed program. The reason of having only
a potentially fixed program is that despite validating the patch, it is usually not correct
(thus the validation step is not sufficiently thorough). The reason of potentially is
that it is usually necessary to have experienced software developers check the patch -
the automatically generated program, despite having behaved correctly in testing, is
often not correct. As can be seen on Figure 2 it is the input test cases that reveal the
incorrect behaviour (by having at least 1 failing test case), and most often they play
an important role in the repair process as well. Tests are also often used to validate
patches: if the patched program passes all test cases, the patch is considered to be
potentially correct. In fact, patch generation is also often based on tests [159, 192].
Thus, the simplest way to capture the basic task of APR is: given a buggy program
and a test database with at least one failing test, generate a patch for it, which causes
all test cases to pass [177]. It is clear that automated program repair is closely linked
to tests, their existence is crucial for a correct repair process.

The conventional APR approach is to generate a patch (e.g., using genetic al-
gorithm) and then validate it against an oracle (i.e., test suite). Although these
approaches have been criticized several times, they still define the research direc-
tion of APR [83]. Their standalone and easy-to-use nature makes them competitive
against learning-based approaches [107]. On the other hand, data-driven APR ap-
proaches utilize machine learning techniques to learn from a dataset of programs
and their corresponding repair patches. These approaches often require a huge
train-test-validate dataset to adapt to different repair strategies and programming
languages [113, 196]. The training of such methods is resource-intensive, and the
approaches are often not usable due to availability issues (e.g., confidentiality), ex-
ecutability concerns (e.g., specific execution environment), or configurability limita-
tions [83].

1 TEXTUAL SIMILARITY TECHNIQUES IN

CODE LEVEL TRACEABILITY

1.1 Overview

Test-to-code traceability means finding the links between test cases and production
code. More precisely for a test case we want to find certain parts of the code which it
was meant to test. For a large system, this task can be challenging, particularly when
the development lacks good coding practices [180] like proper naming conventions.
Using practices like naming the test classes after the tested production code auto-
matically creates a conceivable link between the test and the tested artifact. It is well
known that with proper naming conventions, retrieving traceability links is a minor
task [152]. If we consider, however, a system where the targets of the test cases are
unknown to us, other approaches should be applied.

Considering tens of thousands of tests in a software system, their maintenance
becomes cumbersome and the goal of some tests may even become unknown. In
these cases recovering which test case assesses a specific part of code can prove to
be a challenge. Traceability in general stands for the task of tracing software items
through a variety of software products. The previously described specific problem is
called test-to-code traceability. Traceability is a well-researched area with a serious
industrial background. While the most widespread problem in this field is domain
requirement traceability [9, 115], test-to-code traceability also gained attention from
the research community [33, 152].

Using good coding practices [180] can make the task easier and with proper nam-
ing conventions [152] very accurate results can be achieved. However, if a developer
lacks these skills or proper foresight, the traceability problem becomes non-trivial.
In these cases, automatic recovery approaches should be introduced, which does not
require such assumptions from the examined system. While several attempts have
already been made to cope with this problem, these techniques are limited since
they typically depend on intuitive features. In this chapter a method is described,
that automatically links test cases and production classes relying only on conceptual
information and an attempt to improve results by involving new ML techniques.

17

18 1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY

In its most basic form, adhering to naming conventions entails that the name
of a test case should correspond to the name of the production code element it is
designed to test. Specifically, the name of the test case should include the name of the
target class or method along with the term ”test”. Moreover, the test should maintain
the same package hierarchy as the production code it targets. According to a 2009
study by Rompaey and Demeyer [152], the application of naming conventions during
development can achieve complete precision in detecting traceability links. However,
enforcing these conventions is challenging and heavily reliant on developer practices.
Additionally, method-level naming conventions present various complicating factors.

Certain recovery techniques utilize structural or semantic information within the
code that is less dependent on individual working practices. One such technique
is based on information retrieval (IR), which primarily leverages textual informa-
tion extracted from the system’s source code. In addition to the source code, other
forms of non-textual information can be derived, such as the Abstract Syntax Tree
(AST) or other structural descriptors. While source code syntax is highly formalized
with predefined language keywords, it also typically contains a significant amount of
unregulated natural text, including variable names and comments. The naming of
variables, functions, and classes is highly variable and usually meaningful. Although
source code is challenging for humans to interpret as natural language, Machine
Learning (ML) methods commonly used in Natural Language Processing (NLP) can
still be effectively applied.

Compared to a small manual dataset, Rompaey and Demeyer [152] found that
lexical analysis (Latent Semantic Indexing (LSI)) applied to this task performed with
3.7%-13% precision while the other methods all achieved better results. Thus, it is
known that IR-based methods most probably do not produce the best results in the
test-to-code traceability field. However, these techniques are continually employed
in current state-of-the-art solutions. While textual methods may not be the most
effective means of producing valid traceability links, modern approaches still incor-
porate them alongside other techniques. The textual methods used in these systems
are often outdated, with many solutions relying on simple class name matching or
the Latent Semantic Indexing (LSI) technique as part of their contextual coupling.
Consequently, identifying more effective textual methods can enhance these combi-
nations, potentially making significant contributions to the field. Research findings
indicate that improved lexical analysis methods can substantially outperform previ-
ous approaches, increasing average precision to over 50%. To recover test-to-code
traceability links based solely on source files, an appropriate input representation
must first be generated, followed by training an AI model to search for the most
similar test-to-code matches.

1.2 Related Work 19

1.2 Related Work

Traceability in software engineering research typically refers to the discovery of trace-
ability links from requirements or related natural text documentation towards the
source code [9, 115]. Based on the study of Borg et al. [16], most of the traceability
evaluations have been conducted on small bipartite datasets containing fewer than
500 artifacts, which is a severe threat to external validity. While data limitations
still persist, the current paper’s evaluation is conducted on eight software systems,
using different oracles. While to the best of our knowledge, test-to-code traceability
is not the most widespread topic amongst other recovery tasks, several well-known
approaches aim to cope with this problem. Still, as yet, none of them has provided a
perfect solution for the problem [32, 33, 84, 152]. The current state-of-the-art tech-
niques [147] rely on a combination of diverse methods - i.e. techniques based on
dynamic slicing and contextual coupling. The use of textual information is common
in these techniques. Our current work took a closer look at various textual similarity
techniques, and combinations of these resulted in promising recovery precision.

In a recent work [179], authors presented TCtracer, a tool which combines an en-
semble of new and existing techniques and exploits a synergistic flow of information
between the method and class levels. The tool observes test executions and create
candidate links between these artefacts and the tested artefacts. It then assigns scores
(which are used to rank the candidates) to the candidate links. These scores are cal-
culated using the combination of eight test-to-code traceability techniques including
four string-based techniques, two statistical, call-based techniques, Last Call Before
Assert (LCBA) and Naming Conventions (NC). Although this and our work share
many common factors, there are significant differences. First of all, our technique
does not rely on information based on test-execution. Secondly, the two rankings are
fundamentally different: our work relies on IR techniques (and refine these using
various approaches, with an initial static analysis), while White et al. calculate the
ranking scores based on formulas defined in the paper. Finally, we also researched
different ways of representing the source code.

The utilization of structural information has also occurred in other works [136,
147, 148]. In their 2015 work, Ghafari et al. [54] also employed structural infor-
mation. Here, the main goal was to identify traceability links between test cases
and methods under test, which is still not a mainstream topic in the field, as most
methods aim for production classes. The proposed approach correctly detects focal
methods under test automatically in 85% of the cases. Bouillon et al. leveraged a
failed test case to find the location of errors in source code [17]. To link the tests to
the production code, they built the static call graph of each test method and anno-
tated each test with a list of methods which may be invoked from the test. The use of
structural information also occurs in other extraction methods, feature extraction for

20 1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY

instance, where it was shown that its combination with LSI is capable of producing
good results [46]. In the current paper, structural information was used in several
source code representations. Call information was also utilized, even though it was
extracted only from the text. Even so, it was found a valuable addition as a filter.

Like LSI, TF-IDF is also a text-based model commonly used in the software en-
gineering domain. This technique was, for instance, used by Yalda et al. [191] to
trace textual requirement elements to related textual defect reports. In require-
ment traceability, the use of TF-IDF is so widespread, that it is considered a baseline
method [163]. Text-based models are still very popular in the requirement trace-
ability task also, they are incorporated in several recent publications [50, 68]. Our
experiments covered LSI and TF-IDF as standalone techniques and also as a refine-
ment for Doc2Vec, which was shown in our previous work [32] to produce higher
quality results.

In our findings, the use of document embeddings resulted in the highest preci-
sion values. Word2Vec [123] gained a lot of attention in recent years and became
a very popular approach in natural language processing. Calculating similarity be-
tween text elements using word embeddings became a mainstream process [120].
Doc2Vec [123] is an extension of the Word2Vec method dealing with whole docu-
ments rather than single words. Although not enjoying the immense popularity of
Word2Vec, its use is still prominent in the scientific community [39, 173, 203].

The use of recommendation systems is widespread in the field of software engi-
neering [91]. Presenting a prioritized list of most likely solutions seems to be a more
resilient approach even in traceability research [33, 84].

Because of the numerous benefits of tests, developers tend to create a lot of them
even though it is challenging to determine what new tests to add to improve the
quality of a test suite. Since 100% coverage is often infeasible, several new ap-
proaches have been proposed for interpreting coverage information. For instance,
Huo et al. [74] introduced the concepts of direct coverage and indirect coverage,
that address these limitations. In addition, several other challenges are present in
general software testing [13], like coherent testing, test oracles and compositional
testing. The more challenges are solved, and the more the community understands
about testing in general, the better test-to-code traceability results can become [137].
The current paper also aimed to shed some light on class and method naming habits
which can lead to a better understanding of testing in real-life software systems.

Although natural language based methods are not the most effective standalone
techniques, state-of-the-art test-to-code traceability methods like the method pro-
vided by Qusef et al. [147, 148] incorporate textual analysis for more precise re-
covery. Jin et al. in [61] presented a solution that uses deep learning and word
embeddings to incorporate requirements artifact semantics and domain knowledge
into the tracing solution. The authors evaluated their approach against LSI and VSM

1.3 Method 21

(Vector Space Model). They found that their neural-based approach only outper-
forms these when the tracing network has a large enough training data which is hard
to obtain. Other works also explore the use of word embeddings to recover trace-
ability links [61, 62]. Our current approach differs from these in many aspects. To
begin with, we make use of different similarity concepts and further refine these with
structural information. Next, our document embeddings are computed in one step,
while in other approaches this is usually achieved in several steps. Finally, our mod-
els were trained only on source code (or on some representation which was obtained
from it), and there was no additional natural language corpus.

1.3 Method

Figure 1.3 provides an illustration of the comprehensive proposed approach. A soft-
ware system written in Java programming language is considered, which contains
both test classes and production code and the aim is to recover the relationship be-
tween them. No assumptions were made about the names of the software artifacts.
From the raw source code, classes, production code and test cases of the system are
extracted using the Source Meter 1 static analysis tool. This also includes the ex-
traction of soft computed call graph information, which essentially is an additional
structural data that might help in the linking process. Five diverse representations
of the source code is generated and we use ML techniques to measure the similar-
ity between code snippets. In the case of Latent Semantic Indexing (LSI) and Term
Frequency-Inverse Document Frequency (TF-IDF) methods the models are trained on
the production code (corpus) and the test cases are the queries. There is a slight dif-
ference in the case of Doc2Vec since the training corpus consists of both the test and
production classes. After the models are trained, we measure the similarity between
tests and code classes, from which a ranked list is constructed. This ranked list is then
fine-tuned using the previously extracted call graph information. The basic idea is
that test and code classes are similar in some sense and that additional structural in-
formation will filter out the errors of the previous steps. Therefore, from the ranked
similarity list, one can observe the first N production classes, allowing to consider
these techniques as recommendation systems.

In this work classes are recommended for a test case starting from the most sim-
ilar and also the top 2 and top 5 most similar classes are examined. Looking at
the outputs in such a way holds a number of benefits. Foremost, if only the most
similar class would be extracted then those instances when tests assess the proper
functioning of several classes rather than only one would be missed. Also, a class
usually relies on other classes, consequently a recommendation system can highlight

1https://www.sourcemeter.com/

22 1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY

Source codeJava

?

SRC AST

Textual
preprocessing

Ranked List of
Similar Classes

public class SomeClass {

 public boolean doSomeStuff() {

 //an example production code

 ...

 }

}

public void otherTestMethod() {

 // another example test

method

 assertFalse(x == y);

}

public void someTestMethod() {

 // an example test method

 assertTrue(z == w);

}

?

?

Test cases Prod. code

Extraction of different representations

QUERY !CORPUS

Doc2Vec

1 0
1 1

LSI

TF-IDF
Term

is 2

a 1

Term count

Measuring similarities

Related classes
1.
2.
3.

+

Text mining

Call Graph information +
Naming Conventions

Figure 1.3: A high-level illustration of linking test cases to code classes.

the test and code relationship more thoroughly. Since overly abundant recommenda-
tions can result in a high number of false matches which can diminish the usefulness
of the information itself, we restricted the consideration to only the 5 most similar
classes in each case, keeping the technique as simple as possible. In the upcoming
subsections, the used techniques are explained to obtain the similarity between two
parts of the source code. The Gensim [1] toolkits implementation was used for all
three ML methods.

1.3.1 Term Frequency–Inverse Document Frequency: TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) is an information retrieval
method, that relies on numerical statistics reflecting how important a word is to a
document in a corpus [99]. It is basically a metric and its value increases propor-
tionally to the number of times a word appears in the document but is offset by the
frequency of the word in the corpus. One can compute TF-IDF by multiplying a local
component (term frequency) with a global component (inverse document frequency)
and normalizing the resulting documents to unit length. The formula for a non-
normalized weight of term i in document j in a corpus of D documents is displayed
in Equation 1.1. One of the simplest ranking functions is computed by summing the
weights for each query term, but many more sophisticated ranking functions also
exist [69].

1.3 Method 23

weightij =
(
frequencyij ∗ log2

D

DocumentFrequencyi

)
(1.1)

1.3.2 Document embeddings: Doc2Vec

Doc2Vec is a shallow neural network that can produce document embeddings. The
detailed description of it can be found in Chapter . Here, the 3COSMUL metric, pro-
posed in [102], displayed in Equation 1.2 was used, to measure similarity between
the vectors. The choice of similarity metric is arbitrary and the selection of it was out
of scope of the current research.

argmax
b∗∈V

(cos(b∗, b)cos(b∗, a∗)
cos(b∗, a) + ϵ

)
(1.2)

1.3.3 Latent Semantic Indexing: LSI

Latent Semantic Indexing (LSI) is a technique in natural language processing of ana-
lyzing the relationships between documents. During the learning procedure, a matrix
is constructed, which contains word counts. The elements inside the matrix are typ-
ically weighted with the TF-IDF values, but note that the base process differs from
the previous one. The main idea of LSI is that the matrix is transformed into a lower
dimension using singular value decomposition and in the resulting matrix the con-
ceptually more similar elements get more similar representations. The most similar
documents to a query can easily be found as the query also represents a multidi-
mensional matrix with which a suitable distance method can rank each document by
similarity.

1.3.4 Result Refinement With an Ensemble Technique

After test and code classes had been separated and the code representations had
been obtained, three models separately have been trained and investigated the sim-
ilarities. In Figure 1.4 the ranked lists of the three alternative methods trained are

..\lang3\StringUtils

..\lang3\builder\ToStringStyle

..\lang3\text\StrSubstitutor

..\lang3\builder\DiffBuilder

..\lang3\math\NumberUtils

..\lang3\concurrent\MultiBackgroundInitializer

..\lang3\tuple\Pair

..\lang3\tuple\MutablePair

..\lang3\Range

..\lang3\StringUtils

Doc2Vec

..\lang3\text\translate\EntityArrays

..\lang3\StringEscapeUtils

..\lang3\JavaVersion

..\lang3\CharEncoding

..\lang3\ClassPathUtils

TF-IDF LSI

Figure 1.4: Ranked lists produced by different approaches for the StringUtilsSub-
stringTest test class.

24 1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY

shown. For a given test class (StringUtilsSubstringTest) only the Doc2Vec method
classified the desired code class (StringUtils) as the most similar (while of course in a
different case another one of the methods could provide the desired class). Addition-
ally note, that TF-IDF put the StringUtils class in the fifth place, while LSI did not rank
it among the top-5 most similar classes (it was in the eleventh place on the ranked
list). This example demonstrates that the ranked list of each technique can contain
useful information, the desired code class appears close to the top of every list. Thus
it can be possible to refine the obtained results one technique provides with the list
of other techniques. A simple algorithm has been defined to achieve this goal, which
is shown in Listing 3.1. The ranked list obtained from the first method is filtered with
the second methods ranked list. Since the ranked lists contain every code class, these
are limited up to the top 100 most similar classes, this way the featured algorithm
will drop out classes from the first if those are not present on the second ranked list.
Note, that this refinement procedure cannot introduce new classes to the first ranked
list, only removes them.

1 # ranked_list_i: ranked list from the i-th technique ,

2 # which contains the top 100 most similar classes

3 result = []

4 for code_class in ranked_list_1:

5 if code_class in ranked_list_2:

6 result.append(code_class)

Listing 3.1: Algorithm used to refine the obtained similarity lists.

1.3.5 Soft computed call information

Since the listed techniques do not consider class information, I contributed an ad-
ditional simple filter to enhance the accuracy. This filter is based on two primary
assumptions: (1) the package of the class under test should either be the same as
that of the test or it should be imported in the test, and (2) a valid target class should
define at least one method that is invoked within the body of the test case. Although
these criteria do not guarantee a valid match, they provide a more focused approach.
To extract methods and imports from Java files, I utilized regular expressions tailored
to the syntax of the Java programming language. Specifically, the regular expressions
were designed to identify method definitions and import statements within the code.
It is important to note that these regular expressions would need to be adapted for
different programming languages due to variations in syntax. This method of using
regular expressions to parse Java files allows for the precise extraction of relevant
structural elements, thus enhancing the reliability of the traceability links.

1.4 Data Collection and Source Code Representations 25

Extended Naming Convention Extraction

The techniques described above yield a filtered list of soft computed links, without
guaranteeing their correctness. Naming conventions, however, are known to produce
traceability links with very high precision [152]. If a project lacks proper naming
practices, these conventions cannot be used to identify correct matches. In the final
approach, naming conventions are applied first. If applicable, they are accepted.
Otherwise, results from an IR-based approach are considered.

1.4 Data Collection and Source Code Representations

The designed approach is applicable to projects written in Java, one of the most
popular programming languages in use [2]. In general, the featured technique is
independent of text representations, so the programming language of the source code
is not necessarily important. In Table 1.2 one can observe the projects, on which the
proposed technique is evaluated.

Table 1.2: Size and versions of the programs used.

Program Url (github.com/) Version Classes Methods Test methods

ArgoUML argouml-tigris-org/argouml 0.35.1 2 404 17 948 554
C. Lang apache/commons-lang 3.4 596 6 523 2 473
C. Math apache/commons-math 3.4.1 2 033 14 837 3 493
Gson google/gson 2.8.0 757 2 467 924
JFreeChart jfree/jfreechart 1.0.19 953 11 594 2 239
Joda-Time JodaOrg/joda-time 2.9.6 522 9 934 3 779
Mondrian pentaho/mondrian 3.0.4.11371 1 626 12 186 1 546
PMD pmd/pmd 5.6.0 1 608 9 242 825

The choice of the projects was influenced by several factors: (1) the projects
should be publicly available, so source code can be obtained (2) proper naming con-
vention were followed to some extent. Two of the systems strive to have minimal de-
pendencies on other libraries [10] and are modules of the Apache Commons project,
these are Commons Lang and Commons Math. Lang aims to broaden the functional-
ity provided by Java regarding the manipulation of Java classes, while Math provides
mathematical and statistical functions missing from the Java language. Mondrian has
a large development history (the development was started in 1997 [125]) and is an
open source Online Analytical Processing system, which enables high-performance
analysis on massive amounts of data. JFreeChart is a relatively new software, its first
release was in 2013. The project is one of the most popular open source charting

26 1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY

tools. Gson is a Java library that does conversions between Java objects and Json for-
mat efficiently and comfortably. PMD is a tool for program code analysis. It explores
frequent coding mistakes and supports multiple programming languages.

It is evident that the exact contents of the input are of crucial importance. In
the following sections, the representations of code snippets (classes or methods) are
described. A code representation is the input of a Machine Learning algorithm that
computes the similarity between distinct items. Abstract Syntax Tree were utilized
to form a sequence of tokens from the structured source code. An AST is a tree that
represents the syntactic structure of the source code, without including all details like
punctuation and delimiters. For instance, a sample Abstract Syntax Tree and source
code sample is displayed in Figure 1.5. To better understand the advantages and best
possible methods of using the AST, the paper describes experiments on five differ-
ent code representations, of which four relies on AST information. The five chosen
representations are described below. The five representations under evaluation were
constructed according to the most widely used representations in other research ex-
periments [178], constructed along the work of Tufano et al. [169]. In order to help
understanding the difference between each representation, an example is shown in
Figure 1.6.

boolean contains(Object target) {

for (Object elem: this.elements) {

if (elem.equals(target)) {

return true;

}

}

return false;

}

(a) An example method declaration.

0) MethodDeclaration

2) BlockStmt1) Parameter
4) PrimitiveType

boolean

3) SimpleName

contains

6) SimpleType

Object

5) SimpleName

target
7) ForEachStmt 8) ReturnStmt

9) BlockStmt 10) FieldAccesExpr 11) VariableDeclarationExpr
false

12) BooleanLiteral

14) ThisExpr

this

15) SimpleName

elements
13) IfStmt

16) SimpleType

Object

20) SimpleName

elem

17) VariableDeclarator

19) MethodCallExpr18) BlockStmt

true

25) BooleanLiteral

21) ReturnStmt
22) SimpleName

elem

23) SimpleName

equals

24) SimpleName

target

. . .

(b) An AST generated from the source code.

Figure 1.5: Source code and Abstract Syntax Tree. The numbers inside each element
indicate the place of the node in the visiting order. Leaves are denoted with standard
rectangles (note that here the value and the type is also represented), while intermediate
nodes are represented by rectangles with rounded corners.

1.4 Data Collection and Source Code Representations 27

SRC

Let us consider the source code as a structured text file. In this simple case, similar
methods are used in the context of Natural Language Processing (NLP). These tech-
niques include the tokenization of sentences into separate words and the application
of stemming. With natural language, the separation of words can be quite simple.
In the case of source code, however, we should consider other factors as well. For
instance, compound words are usually written by the camel case rule, while class and
method names can be separated by punctuation. The definition of these separators
are one of the main design decisions in this representation. For the current work
words were split by the camel case rule, by white spaces and by special characters
that are specific to Java (”(”, ”[”, ”.”). The Porter stemming algorithm was used for
stemming. This approach notably does not use the AST of the files, making it a truly
only text-based approach.

AST

To extract this representation for a code fragment, an Abstract Syntax Tree (AST)
has to be constructed. This process ignores comments, blank lines, punctuation, and
delimiters. Each node of the AST represents an entity occurring in the source code.
For instance, the root node of a class (CompilationUnit) represents the whole source
file, while the leaves are the identifiers in the code. In this particular case, the types of
AST nodes were used for the representation. The sequence of symbols was obtained
by pre-order traversal of the AST. The extracted sequences have a limited number of
symbols, providing a high-level representation.

IDENT

Every node in the Abstract Syntax Tree (AST) has a type and a value. The top nodes
of the AST correspond to a higher level of abstraction (like statements or blocks),
their values typically consist of several lines of code. The values of the leaf nodes are
the keywords used in the code fragment. In this representation, these identifiers are
used by traversing the AST tree and printing out the values of the leaves. The values
of literals (constants) in the source code also might occur here, these are replaced
with placeholders representing their type (e.g. an integer literal is replaced with the
¡INT¿ placeholder, while a string literal with ¡STRING¿). The extracted identifiers
contain variable names. In the current experiments, they were split according to the
camel case rule popularly used in Java.

28 1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY

LEAF

In the previous two representations, distinct parts of the AST were utilized to get
the input. This approach takes both the types and node values into account. Just as
before, a pre-order visit is performed from the root. If the node is an inner node then
its type, otherwise (when it is a leaf) its value is printed. This representation captures
both the abstract structure of the AST and the code-specific identifiers. Considering
the latter, these can be very unique and thus very specific to a class or a method.

SIMPLE

The extraction process is very similar to the previous one, except that in this case
only values with a node type of SimpleName are printed out. These nodes occur very
often, they constituted 46% of an AST on average in the experiments. These values
correspond to the names of the variables used in the source code while other leaf
node types like literal expressions or primitive types hold very specific information.
Note that in the IDENT representation, the replacing of literals eliminated the AST
node types of literal expressions. Only the modifiers, names, and types remained,
thus becoming similar to this representation. With this representation, however, we
do not exclude the inner structure of the Abstract Syntax Tree (AST).

int a = 12;

Identifier
type: SimpleName

value: a

Literal
type: IntegerLiteralExpr

value: 12

Type
type: PrimitiveType

value: int

SOURCE CODE

VariableDeclarationExpr

VariableDeclarator

ABSTRACT SYNTAX TREE

(1) SRC - int a = 12 ;
(2) AST - VariableDeclarationExpr VariableDeclarator PrimitiveType SimpleName IntegerLiteralExpr
(3) IDENT - int a <INT>
(4) LEAF - VariableDeclarationExpr VariableDeclarator int a <INT>
(5) SIMPLE - VariableDeclarationExpr VariableDeclarator VariableDeclarator a IntegerLiteralExpr

Figure 1.6: Example source code and extracted representations.

1.5 Evaluation Procedure 29

1.5 Evaluation Procedure

To evaluate the text-based methods, one should know whether the proposed ML tech-
niques recommend the correct production class for a given test case. To achieve this,
we used existing naming conventions, which are based on package hierarchy and
exact name matching (see Section 1.5 for further details). Due to the potential in-
fluence of naming convention habits, we also evaluated the approach using a human
test oracle as described in [85]. TestRoutes is a manually curated dataset contain-
ing data on four of our eight subject systems: Commons Lang, Gson, JFreeChart, and
Joda-Time. This dataset is suitable for class-level evaluations, a relaxed version of the
problem. It lists the methods under test as focal methods (with multiple focal meth-
ods possible for a test case), as well as test and production context. Our current focus
is on the classes associated with these focal methods. For JFreeChart and Joda-Time,
the dataset specifically targeted test cases not covered by simple naming conventions,
as reflected in the results. For the other systems, the dataset includes data on ran-
domly selected test cases. The TestRoutes data was annotated by a graduate student
familiar with software testing. During the annotation process, the tests were not ex-
ecuted. The annotator worked in an integrated development environment, studied
the systems’ structure beforehand, and maintained regular communication with the
researchers to address any arising concerns. The collected traceability links were in-
spected and validated by one researcher, with another researcher verifying the links
for at least ten test cases from each system.

Precision - the proportion of correctly detected test-code pairs is also calculatedm
the formula can be observed on Equation 1.3. Here the upper part of the fraction
denotes how many tests the algorithm could retrieve, while the bottom is the number
of test cases that match the naming convention. This evaluation strategy is well
suited for the listed systems since they are fairly well covered by proper naming
conventions.

precision =
|relevantTest ∩ retrievedTest|

|retrievedTest|
(1.3)

With such an evaluation, it is only possible to find one pair to each test case
correctly. The observed methods produce a list of recommendations in order of sim-
ilarity. Every class is featured on this list. Thus, using this evaluation method, the
customary precision and recall measures always coincide, which necessarily means
that the F-measure metric would also have the same value. This is in accordance with
the evaluation techniques commonly used for recommendation systems in software
engineering. Because of this equality, I shall refer to these quantified results in the
future as precision only.

30 1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY

Applicability of Naming Conventions

class

package
The package hierarchy must
match either completely or after
the "test" or "tests" package.

a.b.c.SomeClass test.a.b.c.TestSomeClass
a.b.c.SomeClass a.b.TestSomeClass

The name of the test class must
match completely with the
production class, the word "Test"
appended to the beginning or
the end.

The name of the class must
contain the whole name of the
production class.

The name of the test method
must match completely with the
production method, except for the
word "Test" appended to the
beginning or the end.

The name of the method must
contain the whole name of the
production method.

SomeClass SomeClassTest
SomeClass AnotherSomeClassTest
SomeClass OtherTest

someMethod
someMethod
someMethod

someMethodTest
anotherSomeMethodTest
otherTest

someMethod
someMethod
someMethod

someMethodTest
anotherSomeMethodTest
otherTest

SomeClass SomeClassTest
SomeClass AnotherSomeClassTest
SomeClass OtherTest

~class

method

~method

Figure 1.7: Various possible naming convention criteria components.

Naming conventions for tests encompass a wide range of practices and are often
loosely defined. Typically, these conventions are informally agreed upon by develop-
ers, with written guidelines being rare. They are generally regarded as best practices,
with usage varying across teams or even individuals. Given the diversity of naming
conventions and their inconsistent application across different systems, flexible cri-
teria are necessary to detect them effectively. We propose a set of general criteria
for our examination, as illustrated in Figure 1.7. While other criteria, such as ab-
breviations or alternative identifiers for tests beyond the word ”Test,” are possible,
the criteria presented here are among the most intuitive and commonly used. Let us
consider some potential combinations of these criteria components:

• Package, Class and Method = package + class + method

• Package and Method = package + method

• Package, Wildcard Class and Wildcard Method = package + ∼class + ∼method

• Package and Wildcard Method = package + ∼method

• Method = method

1.6 Results 31

• Package and Class = package + class

• Class = class

• Wildcard Method = ∼method

• Package and Wildcard Class = package + ∼class

• Wildcard Class = ∼class

Some other viable combinations can also exist, which did not seem suitable for
the unique distinction of test-code pairs. The criteria are ordered by strictness in
a descending manner. While the stricter criteria produce more distinction between
pairs, they are less versatile and are harder to uphold. Table 1.3 presents the extent to
which the naming conventions were found to be applicable to the evaluated systems.

Table 1.3: The applicability of NC using different approaches.

Criteria ArgoUML Commons Lang Commons Math Gson JFreeChart Joda-Time Mondrian PMD

PCM 14.91% 17.04% 12.50% 1.74% 32.60% 3.60% 6.57% 7.93%
PM 20.73% 19.80% 16.85% 2.18% 38.95% 10.09% 9.04% 8.43%
PCWM 19.82% 56.67% 32.19% 9.59% 49.53% 23.78% 11.51% 15.86%
PWCWM 21.27% 66.73% 37.52% 9.59% 50.92% 59.65% 12.09% 16.48%
PWM 33.45% 70.79% 45.42% 15.47% 58.64% 74.42% 31.01% 25.53%
M 28.91% 19.96% 21.16% 3.05% 40.15% 11.38% 12.22% 11.90%
PC 60.18% 84.58% 75.07% 26.14% 96.47% 36.80% 17.82% 58.36%
C 64.00% 84.58% 75.07% 27.89% 96.47% 37.30% 20.81% 66.91%
WM 74.00% 80.00% 81.53% 60.24% 61.28% 78.55% 73.34% 58.36%
PWC 75.09% 99.11% 88.06% 28.87% 97.05% 98.04% 21.52% 61.09%
WC 80.55% 99.11% 91.42% 44.77% 97.41% 98.04% 35.96% 72.12%

1.6 Results

As detailed in the previous sections, five different source code representations and
three text-based similarity techniques have been explored. We provide an overview
of various naming conventions along with their relevance determined through auto-
mated extraction. Subsequently, we present our experiments employing the ensembleN
approach, where we sought the optimal N value using NC-based and manual trace-
ability links. Furthermore, we compare the traceability approaches based on both NC
and manual assessments. It is important to note that production methods with fewer
than three tokens in their bodies were excluded, as such trivial and abstract methods
are unlikely to be the primary focus of testing.

32 1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY

1.6.1 NC-based Evaluation

Ensemble Experiments

In the Ensemble setup (detailed in Section 1.3.4) the relation between the used tech-
niques is asymmetric, since the first methods ranked list refines the second ones.
From experiment results it has been observed that combining LSI just with TF-IDF
only seems to damage the results in both directions, the average precision using
this combination was merely 50% for most similar classes, while 70% for the top
five items in the ranked list. Combining LSI and TF-IDF with Doc2Vec in such a
way that they provide the base of the ranked list and being only refined by Doc2Vec
also performed poorly. However, the refinement of Doc2Vecs ranked list with both
other techniques improved the results. The refinement of the similarity list with LSI
resulted in more than 2.5% improvement compared to Doc2Vec as a standalone tech-
nique. Although TF-IDF also improved the values, the improvement was just under
2%. Due to space limitations and to stick to the results that seem more important
these results are not displayed in detail. The combination of all three techniques was
also explored: the main similarity list was provided by Doc2Vec and refined by TF-IDF
and LSI. When Doc2Vec is combined with both of the other methods, the obtained
results were even better than in the other cases. If only the most similar code class is
considered, Doc2Vecs average precision improves by an absolute 3%.

Thus, the main similarity list is provided by Doc2Vec and it is refined with the
other two algorithms, results are presented on Figure 1.9 and Figure 1.8. As one
can see in the figures, the experiments were carried out using different N values: 50,
100, 200, and 400. These values only influence the size of each similarity list. If N is
relatively big, then the filtering on the original similarity list (which originates from
Doc2Vec) will not drop out many entries since many of the elements are present
in the other two lists. In contrast, if N is a small number, the filtering is stricter
since every similarity list contains only a limited number of entries. The previous
argument can be further elaborated: if N is big, the resulting similarity list is going
to rely mostly on the original one, while if it is small, the approach makes better use
of the information from the other two lists.

Commons Lang

78.3% 1936

Correctly assigned test:

Commons Math

40.1% 1401

Correctly assigned test:

JFreeChart

42.5% 952

Correctly assigned test:

Mondrian

67.2% 1039

Correctly assigned test:

Commons Lang

78.3%

Commons Lang Commons Math

48.3%

Commons Math JFreeChart

45.3%

JFreeChart Mondrian

67.6%

Mondrian

1936
Correctly

assigned test:

Improvement:

0.0%

1687
Correctly

assigned test:

Improvement:

8.0%

1014
Correctly

assigned test:

Improvement:

2.8%

1045
Correctly

assigned test:

Improvement:

0.4%

Figure 1.8: Results showcasing Ensemble, trained on the IDENT representation of the
source code.

1.6 Results 33

As depicted in the figures, the experiments were conducted with different N val-
ues: 50, 100, 200, and 400. These values solely influence the size of each similarity
list. When N is relatively large, filtering the original similarity list (derived from
Doc2Vec) will exclude fewer entries, as many elements are also present in the other
two lists. Conversely, when N is small, the filtering becomes more stringent because
each similarity list contains only a limited number of entries. To elaborate further,
if N is large, the resulting similarity list will primarily depend on the original list.
However, if N is small, the approach will make better use of the information from the
other two lists.

0

10

20

30

40

50

60

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

Ensemble-50 Ensemble-100 Ensemble-200 Ensemble-400

0

10

20

30

40

50

60

70

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

0
10
20
30
40
50
60
70
80

A
rg
o
U
M
L

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

IDENT LEAF SIMPLE SRC TYPEIDENT LEAF SIMPLE SRC TYPE

TOP-1

TOP-2

TOP-5

Figure 1.9: Results of the ensembleN learning approach using NC-based evaluation.

In Figure 1.9 the small flags atop the bars indicate the highest values for each
system in their respective categories (top1, top2, top5). The flag’s color matches its
corresponding bar, with a white flag indicating that the highest values are tied. No-
tably, there were no instances of two or three highest values being identical. This
experiment also considers different source code representations. The figure shows
that most flags appear at the IDENT representation. Additionally, the ensemble50
approach tends to produce the highest values for top1 results. For multiple recom-

34 1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY

mendations (top2 and top5), the results are less clear, with ensemble100 also yielding
good results. However, ensemble400 appears to be less precise, being prevalent only in
the case of Mondrian using the SIMPLE representation. The findings on the manual
dataset further support this observation.

Based on the above observations, in the following sections, N is fixed to 50 in the
EnsembleN experiments with Doc2Vec providing the main similarity list which is
refined by the other two approaches.

Comparison of ML models

Table 1.4 shows the top1 results of different machine learning approaches, evaluated
via naming conventions. Cells of color teal indicate the highest values for each
system within a method, while cells of color violet indicate the overall top values.
For the EnsembleN , only those cases are listed where N = 50, since this setting
seemed to be the most beneficial (for further discussion see Subsection 1.3.4). The
listed approaches correspond to the ones introduced in Section 1.3. The notion [ap-
proach]+CG refers to filtering with our soft computed call information described in
Section 1.3.5. Based on the table, multiple observations can be made. First, the
IDENT representation seems to fit the best for all of the listed techniques. It seems
to capture just enough information, while still maintaining some level of abstraction.
From the observed models, Doc2Vec predominantly resulted the best similarity lists.
Moreover if the resulted similarity list is even enriched with CG information, the
accuracy value goes up even further.

1.6.2 Evaluation on Manual Data

The results measured on the manual dataset are presented in Table 1.5. Similar to
the previous table, teal indicates the highest values within a method, while violet
highlights the overall highest value. Top-5 results are always equal to or higher than
top-1 numbers, as multiple similar matches are considered during evaluation. This
comparison involves different approaches against a dataset containing manually cu-
rated traceability links for four of our subject systems. Additionally, two new rows
are introduced. The first row shows the applicability of the naming convention (de-
noted as PC in the previous subsection). These values reflect the applicability of the
conventions to specific test cases in the dataset, rather than to the entire system.

If naming conventions are considered accurate, their precision should intuitively
correspond to the achievable precision without relying on any additional IR-based
approach, solely depending on the names. The last row, labeled with NC, represents
our method, which first attempts to establish the link using naming conventions. If
this fails, the Doc2Vec suggestion is considered. If the resulting precision values were

1.7 Discussion 35

Table 1.4: Top-1 results featuring the different text-based models trained on various
source code representations, evaluated using naming conventions. - highest value in
a row - highest value in a column

Method Representation ArgoUML C. Lang C. Math Gson JFreeChart Joda-Time Mondrian PMD

IDENT 19.63% 82.16% 50.00% 45.83% 49.22% 41.43% 66.42% 37.15%
LEAF 18.43% 61.00% 33.01% 47.92% 25.10% 20.79% 65.33% 42.04%

Doc2Vec SIMPLE 24.77% 67.91% 33.78% 47.50% 30.69% 26.26% 65.33% 34.82%
SRC 7.85% 31.32% 15.46% 16.67% 22.64% 22.30% 21.53% 15.92%
TYPE 0.60% 4.36% 0.78% 2.92% 2.36% 5.18% 0.00% 0.00%

IDENT 32.93% 66.08% 19.42% 30.83% 33.29% 35.04% 22.99% 19.96%
LEAF 14.80% 23.11% 3.63% 7.08% 9.63% 16.12% 11.31% 7.80%

LSI SIMPLE 15.71% 21.48% 3.47% 4.37% 13.15% 6.69% 4.38% 11.46%
SRC 19.64% 54.64% 24.36% 14.17% 21.48% 28.20% 31.02% 22.29%
TYPE 0.00% 0.48% 0.65% 4.58% 0.00% 0.50% 0.00% 0.00%

IDENT 35.95% 73.62% 35.78% 35.00% 45.65% 48.71% 73.72% 24.63%
LEAF 32.63% 70.94% 37.33% 38.33% 48.93% 47.77% 66.79% 23.99%

TF-IDF SIMPLE 28.70% 69.49% 33.08% 30.00% 44.30% 47.77% 72.26% 23.57%
SRC 27.79% 51.51% 28.68% 18.75% 25.19% 31.08% 50.73% 22.29%
TYPE 0.00% 0.48% 0.65% 4.58% 0.00% 0.50% 0.00% 0.00%

IDENT 13.89% 48.00% 28.27% 27.92% 50.00% 30.22% 4.75% 33.97%
LEAF 11.18% 31.61% 19.29% 33.75% 33.56% 24.89% 1.45% 35.03%

Ensemble-50 SIMPLE 15.41% 28.54% 18.93% 38.75% 34.01% 22.73% 1.01% 25.48%
SRC 6.04% 20.00% 11.02% 13.33% 23.24% 16.33% 1.46% 16.35%
TYPE 0.00% 3.79% 0.12% 0.00% 1.11% 0.00% 0.00% 0.00%

IDENT 45.01% 83.14% 61.04% 85.83% 62.82% 43.02% 68.61% 54.14%
LEAF 42.29% 72.66% 45.65% 44.17% 56.48% 34.10% 73.72% 52.23%

Doc2Vec+CG SIMPLE 41.69% 71.89% 51.41% 52.92% 58.06% 24.32% 74.09% 51.80%
SRC 32.33% 54.48% 29.62% 35.42% 37.36% 23.38% 47.08% 36.31%
TYPE 3.63% 17.61% 13.22% 42.08% 10.46% 16.04% 41.24% 15.92%

lower than before, it would imply that either the dataset is incorrect or the naming
conventions are misleading. It is also evident that if the results of this combined
approach and the pure NC approach were identical, the IR-based addition would be
unnecessary. However, Table 1.5 shows that none of these concerns were realized. In
fact, this combined approach produced the best results in almost every case.

1.7 Discussion

According to the results, the names of test methods are much less likely to mirror the
names of their production pairs correctly. Although the experiments only deal with
eight open-source systems, it is highly probable that the developers of other systems
also tend to behave similarly in focusing more on class-level naming conventions.
Production method names should be descriptive and lead to an easy to understand
and quick comprehension of what the method does. This is also true about the
names of test cases, they should also refer to what functionality they are aiming to
assess. Consequently, the names of the test cases would become rather long if they

36 1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY

Table 1.5: Top-1 and top-5 results featuring the different text-based models and the
applicability of NC on each project. Models were trained on 5 different source code
representations. - highest value in a row - highest value in a column

Method Representation
Top-1 Top-5

C. Lang Gson JFreeChart Joda-Time C. Lang Gson JFreeChart Joda-Time

NC - 76.00% 26.00% 0.00% 0.00% 76.00% 26.00% 0.00% 0.00%

IDENT 58.00% 15.69% 15.49% 32.00% 62.00% 25.49% 15.49% 48.00%
LEAF 30.00% 13.73% 11.27% 20.00% 52.00% 21.57% 15.49% 52.00%

Doc2Vec SIMPLE 15.69% 17.65% 14.08% 16.00% 48.00% 21.57% 16.90% 52.00%
SRC 16.00% 9.80% 12.68% 32.00% 42.00% 29.41% 30.99% 54.00%
TYPE 4.00% 1.96% 11.27% 4.00% 22.00% 3.92% 11.27% 10.00%

IDENT 34.00% 17.65% 4.23% 10.00% 68.00% 5.64% 5.63% 44.00%
LEAF 12.00% 7.84% 4.23% 2.00% 34.00% 23.53% 5.63% 28.00%

LSI SIMPLE 4.00% 5.88% 4.23% 2.00% 30.00% 23.53% 5.63% 24.00%
SRC 34.00% 17.65% 12.68% 20.00% 70.00% 37.25% 23.94% 58.00%
TYPE 4.00% 0.00% 0.00% 0.00% 8.00% 64.71% 0.00% 14.00%

IDENT 30.00% 19.61% 4.23% 46.00% 76.00% 31.37% 5.63% 70.00%
LEAF 30.00% 19.61% 4.23% 44.00% 76.00% 33.33% 5.63% 70.00%

TF-IDF SIMPLE 28.00% 21.57% 4.23% 44.00% 72.00% 33.33% 5.63% 72.00%
SRC 38.00% 19.61% 23.94% 12.00% 78.00% 43.14% 25.35% 68.00%
TYPE 4.00% 0.00% 0.00% 0.00% 8.00% 64.71% 0.00% 14.00%

IDENT 44.00% 13.73% 4.23% 6.00% 52.00% 23.53% 4.23% 10.00%
LEAF 13.73% 13.73% 4.23% 10.00% 38.00% 19.61% 4.23% 14.00%

Ensemble-50 SIMPLE 14.00% 15.69% 4.23% 2.00% 40.00% 19.61% 4.23% 8.00%
SRC 7.84% 11.76% 11.27% 12.00% 36.00% 17.65% 28.17% 22.00%
TYPE 2.00% 1.96% 0.00% 2.00% 8.00% 1.96% 0.00% 2.00%

IDENT 58.00% 64.71% 16.90% 24.00% 76.00% 80.39% 23.94% 64.00%
LEAF 54.00% 54.90% 18.31% 20.00% 72.00% 78.43% 33.80% 66.00%

Doc2Vec+CG SIMPLE 50.00% 56.86% 25.35% 26.00% 76.00% 78.43% 45.07% 64.00%
SRC 50.00% 56.86% 36.62% 32.00% 78.00% 82.35% 66.19% 74.00%
TYPE 42.00% 47.05% 11.27% 6.00% 62.00% 74.51% 28.17% 24.00%

IDENT 76.00% 64.71% 16.90% 24.00% 86.00% 72.55% 23.94% 64.00%
LEAF 78.00% 64.71% 18.31% 20.00% 84.00% 70.59% 33.80% 66.00%

Doc2Vec+CG+NC SIMPLE 78.00% 66.71% 25.35% 26.00% 84.00% 76.47% 45.07% 64.00%
SRC 80.00% 66.67% 36.62% 32.00% 88.00% 78.43% 66.19% 74.00%
TYPE 74.00% 64.71% 11.27% 6.00% 78.00% 76.47% 28.17% 24.00%

always aimed to contain both the name of the method or methods under test and also
provide additional meaningful information about the test itself. It can also be tough
to properly reference the method under test on method level by naming conventions
only. Polymorphism enables the creation of several methods with identical names
that perform similar functionalities with different parameters. These should be tested
individually, and test names can have a hard time distinguishing these. The inclusion
of parameter types can be a possible solution as performed in Commons Lang for
example, at the test case test toBooleanObject String String String String, testing the
production method toBooleanObject that gets four String parameters. Our manual
investigation shows that test methods are indeed more likely to be named after the
functionality they mean to test rather than after single methods even if they only test
one method. One method can also be tested by multiple test cases. Thus this is not a
very surprising circumstance. It is apparent that naming conventions on the method

1.7 Discussion 37

level have to be more complicated, and their maintenance necessitates more work
on the part of the developers. Thus, method-level naming solutions are likely to be
a less valuable option in method-level test-to-code traceability. On the other hand,
method-level traceability still requires proper class-level traceability. Thus, names
should still be helpful.

Although serious differences can be observed between systems, method-level naming
conventions are either complicated or entirely abandoned in most cases, which means
that their usefulness is negligible in a general extraction algorithm. Class-level nam-
ing conventions seem to be better regarded by developers, and there is a visible effort
to uphold them. Our findings show them to be suitable for general use in automatic
extraction algorithms. Matching package hierarchies do not provide precise results
but seem to be at least as commonly used as class-level conventions. They are likely
to be suitable for filtering out false-positive results in algorithms.

1.7.1 Traceability Link Recovery Technique Improvements

It is immediately evident that the teal cells are predominantly located in the first
rows of Table 1.4. The IDENT source code representation is notably prevalent,
achieving the highest values in 37 out of 48 cases (77%). The violet cells are
confined to the last vertical segment of the table, specifically in the Doc2Vec+CG
approach. The Ensemble50 approach yielded better results than standalone tech-
niques (Doc2Vec, LSI, TF-IDF), and incorporating soft-computed call graph informa-
tion further improved these results. Doc2Vec supplemented with call graph informa-
tion achieved the highest precision values. This is likely because EnsembleN acts as
a filtering technique, producing a reduced similarity list compared to the original,
especially when N is small. Consequently, Ensemble50 might exclude some correct
links even before applying the call graph (CG) information.

According to the results in the table, IDENT is the most precise approach, except
for the Mondrian project, where the SIMPLE representation performs best. The dif-
ference between IDENT and SIMPLE, however, is not significant. Notably, in cases
where IDENT is not predominant, SIMPLE is best in 5 out of 11 instances. IDENT
and SIMPLE are quite similar, which is reflected in the results. In contrast, TYPE
consistently produces weaker results across all approaches. LEAF is also less precise,
likely because its structure significantly overlaps with TYPE (LEAF combines IDENT
and TYPE). This suggests that the TYPE information in an AST holds less significance
for the text-based test-to-code traceability task.

38 1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY

Our inspections concluded that Doc2Vec seems to be the best-performing standalone
technique in the field. Although combinations of different techniques can also boost
the results, the textually extracted soft-computed call information is likely to boost
IR-based approaches even more. In a scenario of combined techniques, call graphs
can be a valid filter even for textual connections.

1.7.2 Performance on Manual Data

Compared to the NC-based evaluation, the results from the manual dataset are more
complex to interpret. As shown in Table 1.5, not every violet cell appears in the last
row, but most do. Analyzing the top-1 results on the left side of the table, we find
that in 3 out of 4 systems, the highest precision values are achieved using Doc2Vec
combined with call information and naming conventions. The exception is Joda-
Time, where TF-IDF is predominant. However, TF-IDF results tend to vary more
than others, suggesting this individual case may be due to chance. Nevertheless,
Doc2Vec+CG still produced high precision values, and the inclusion of naming con-
ventions further improved the approach. For JFreeChart and Joda-Time, the results
did not improve with the added naming convention pairs, which is expected since
the dataset intentionally contained links not covered by naming conventions. This
indicates that IR-based approaches can successfully supplement naming conventions
while maintaining their beneficial properties.

On Table 1.5 the precision values are higher, which is expected as the text-based
models have a broader range to identify correct matches. While the top-1 results var-
ied in precision, with JFreeChart and Joda-Time having lower results, even a small
number of additional candidate links significantly improved match correctness. Fur-
ther experiments showed that considering top-10 or top-20 results often yielded a
100% match, although developers are unlikely to search through lists of this length
in practice. Therefore, a recommendation system providing five results could still be
practical.

From the manual dataset analysis, it is evident that in projects with proper nam-
ing conventions, traceability links can be extracted based solely on this information.
However, for projects lacking such conventions, IR-based techniques can identify the
correct links in a significant number of cases. Comparing the results of the final
Doc2Vec approach to NC alone, the precision values increased by an average of 28%.
Even with complex, system-specific naming conventions, IR-based methods can pro-
vide substantial assistance. Good programming practices can also enhance the per-
formance of text-based techniques, which rely on names more flexibly.

The choice of an ideal input representation is less clear-cut than in the previ-
ous case. While the IDENT representation was predominant in the NC-based com-
parison, the SRC representation yielded the highest precision values here. Among

1.7 Discussion 39

AST-based representations, SIMPLE performed best. The SRC representation also ex-
celled in the Top-5 values, which is advantageous as it is purely text-based. Since the
Doc2Vec+CG+NC method uses call information extracted via regular expressions, it
remains viable without static analyzer tools. While both IDENT and SRC contribute
valuable data, the variation in their performance across different datasets suggests
that further research is needed to determine the best representation. Possible errors
in the automatically gathered NC data and the limited size of the manual dataset
could affect these findings, necessitating additional investigation.

According to the manual data, Doc2Vec achieves the best results in most cases. In
exceptional cases, however, other text-based techniques can still outperform it. The
use of naming conventions and call information also tends to improve the results
further. Naming conventions, if existing, are highly precise and can be supplemented
with other IR-based techniques to achieve a more versatile text-based approach.

1.7.3 Implications

Our experiments yield several key insights for researchers and developers aiming to
build new test-to-code traceability systems. While naming conventions are highly
precise when applied correctly, their implementation at the method level is chal-
lenging, as the source code often lacks sufficient connections that can be extracted
through simple rules. However, package and class names can effectively imply con-
nections, even at this level, where method names may not be as informative. Thus,
naming conventions are extremely useful across all levels of traceability link extrac-
tion, and incorporating them into new extraction methods would likely enhance their
performance.

Doc2Vec represents a significant advancement over more traditional semantic
similarity techniques. Although it is slightly more resource-intensive than LSI, the
difference is not substantial, and like other techniques, Doc2Vec can provide real-
time results for identifying the most similar parts of the code for a given test case.
Therefore, if only one textual technique is to be considered, Doc2Vec is the optimal
choice.

Combining Doc2Vec with other techniques can yield even better results. How-
ever, using other textual techniques as filters can sometimes exclude valuable data,
potentially negatively impacting the overall performance when combined with non-
semantic techniques. Call information, even when gathered via regular expressions,
significantly enhances these techniques. Combining call graphs obtained through
static or dynamic analysis could further improve precision, as evidenced by current
state-of-the-art solutions where the LCBA (Last Call Before Assert) technique is con-
sidered one of the most reliable methods.

40 1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY

The effectiveness of different source code representations remains inconclusive.
While IDENT performed best in the NC-based evaluations, manual data suggests
that SRC contributes most to correct extraction. Therefore, further experiments are
required to determine the optimal representation definitively. Nevertheless, IDENT
and SRC are the most promising options.

1.8 Threats to Validity

Although our experiments were conducted with the intention of providing a large-
scale evaluation and a relatively deep comprehension of current textual methods,
some threats to the validity of the derived conclusions still have to be mentioned.
While naming conventions are considered a very precise source of information, they
have clear limitations. Thus, our automatically-collected evaluation data may contain
some errors and is likely to miss at least some valid links. Although manual data
is usually considered best, naming conventions enabled us to assess hundreds of
tests for each system and even thousands for most. On the other hand, our manual
dataset used for the evaluation is limited in size. Thus, noise in the data could cause
discrepancies in the results. This could be tackled by the inclusion of additional
manual data, which will hopefully be more widely available in the future.

Our experiments only covered systems written in the Java language. This is a
significant limitation as Java differs greatly from several other popular programming
languages. Even the structure of the code can show severe differences. Popular nam-
ing conventions can vary in these circumstances, new viable combinations could be
constructed, and others could become less relevant. This also reflects a great amount
on the source code representations. Even the text and even variable names could
be susceptible to such a difference. On the other hand, textual methods, building on
semantic information rather than program structure, are still the most likely to retain
their properties this way.

The experiments were conducted on JUnit tests. The JUnit framework is one of
the trail-blazers of current software testing and is extremely popular among develop-
ers. Still, it is easy to see that other tests could perform differently when subjected
to the experiments. Even in this, however, semantic information should be the least
affected as it does not rely on a specific structure or specific forms of assertion state-
ments.

Similarly to the difference in programming languages, the size of the systems
could also influence the results. Our systems under evaluation are all medium-sized
open-source systems. There is no guarantee that small or large systems would per-
form the same way, even though the question of proper traceability is probably easier
for small systems. The same questions can arise about the domains of the systems,
which could also affect traceability. It is visible that systems vary significantly in

1.9 Concluding remarks 41

their properties. An average value of precision is thus hard to pinpoint, it is easier to
compare techniques to each other. Our experiments covered more than 1.25 million
code lines to provide a large-scale investigation, significantly more than our previous
inquiries.

Our experiments with naming conventions and even the source code representa-
tions represent the options we found most viable. There might be many more naming
conventions that could be applied to some systems with great success, even with au-
tomated extraction. As there are usually no descriptions about naming conventions
for software systems, finding these and judging their usefulness is highly complex.
Our experiments considered some of the most simple and widely used conventions.
There seems to be a balance between complete precision and easy usage in naming
conventions. Our experiments also attempted to investigate this, building our subse-
quent experiments on a middle way that seemed widely applicable but still precise
for our current level.

1.9 Concluding remarks

Test-to-code traceability helps to find production code for a given test case. Our
assumption was that the related test and code classes are similar to each other in
some sense. We employed three different similarity concepts, based on Doc2Vec,
LSI and TF-IDF. Since these methods are intended for natural language texts, we ex-
perimented with three different source code representations. Analyzing the obtained
data, we derived the conclusion that from simple source code representations, IDENT
performs more desirable in test traceability. We compared the obtained results from
the three textual similarity techniques and found that the Doc2Vec based similar-
ity performs better in the recovery task than other approaches. Finally, we refined
Doc2Vec’s ranked similarity list with the recommendation of the other approaches.
With this experiment we have successfully improved the performance of Doc2Vec
for every project, therefore introducing a successful mixed approach for the textual
matching of tests and their production code.

In the preceding sections, experiments focused on the textual aspect of enhancing
test-to-code traceability. Two prominent techniques, reliance on naming conventions
and information retrieval, were explored, with new ideas, experiments, and observa-
tions provided on their potential improvements and combination opportunities.

We conducted a detailed investigation of developers’ naming convention practices
through experiments with eight open-source systems and nine possible combina-
tions of generalizable and simple rules. This experiment revealed that package- and
class-level conventions are generally followed with at least moderate effort, whereas
method-level conventions, although present in every system, are less consistently up-
held. In addition to our evaluation on manual data, we used an automatic extraction

42 1 TEXTUAL SIMILARITY TECHNIQUES IN CODE LEVEL TRACEABILITY

method for further evaluation, relying on package- and class-level conventions.
The evaluation encompassed six traceability link extraction methods assessed

with five distinct source code representations. Among these, the identifier-centric
(IDENT) representation, leveraging ASTs, emerged as the most effective in the ma-
jority of cases during the naming convention-based evaluation. However, the text-
centric (SRC) representation exhibited greater precision when compared to a lim-
ited amount of manual data. The inclusion of call information retrieved via regular
expressions significantly bolstered results when employed as a filtering technique
for Doc2Vec. Although Latent Semantic Indexing (LSI) and Term Frequency-Inverse
Document Frequency (TF-IDF) also demonstrated promise for the same purpose, the
fusion of Doc2Vec and call information yielded superior results. While well-defined
and consistently adhered to naming conventions have the potential to yield highly
precise traceability links, their application remains constrained. Automatic recovery
of naming conventions stands to benefit substantially from the integration of other
text-based techniques, fostering a versatile semantic approach that can be effectively
employed alongside other mainstream methods.

The author of this PhD thesis is responsible for the following contributions pre-
sented in this chapter:

I/1. Implementation of the following models: Doc2Vec, TF-IDF and EnsembleN .

I/2. Design and implementation of the source code representations.

I/3. Design and implementation of the Call Graph information extraction technique
from source files.

I/4. Planning, execution and explanation of the experiments.

I/5. Measurement and visualization of the evaluation metrics.

2 MACHINE LEARNING IN AUTOMATED

PROGRAM REPAIR

2.1 Overview

In recent years, there has been growing interest in using Machine Learning tech-
niques for Automated Program Repair [109]. These techniques have shown promise
in generating high-quality repair patches for a variety of programming languages and
domains [128]. However, APR is a challenging task due to the complexity and vari-
ability of software systems with many open challenges [52, 96]. Generating repair
patches that are both correct and maintain the original functionality of the program
is a non-trivial task. APR approaches may be limited by the quality and coverage of
the training data, as well as the ability of the model to generalize to new programs
and defects. Additionally, APR approaches must be able to scale to large codebases
and handle a wide range of defects. As a result, there is a need for further research
to improve the effectiveness and efficiency of these approaches [42, 141, 204].

Many flagship APR solutions are implemented in such a way to repair programs
written in C, Java or even Python. Since the appearance of GenProg [174] and it’s
genetic approach, many excellent researchers tried to improve the performance of
it by creating several distinct APR tools [63, 114, 116, 119, 145, 169, 190]. Many
of these follow the Generate-and-Validate (G&V) approach [58], that is, first a patch
is generated and than the test suite is executed to check the correctness of the gen-
erated candidate. However, the previously mentioned programming languages are
frequently used for desktop and android applications, or in research projects, their
use is not widespread in web development. For the seventh year in a row, JavaScript
(JS) is the most commonly used programming language [162]. It is the de-facto web
programming language globally and the most adopted language on GitHub [56].
JavaScript is massively used in the client-side of web applications to achieve high
responsiveness and user friendliness. In recent years, due to its flexibility and effec-
tiveness, it has been increasingly adopted also for server-side development, leading
to full-stack web applications [77].

43

44 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

Data-driven Automated Program Repair (APR) approaches utilize Machine Learn-
ing techniques to learn from a dataset of programs and their corresponding repair
patches. One advantage of data-driven APR approaches is that they can learn from a
variety of repair patches, allowing them to adapt to different repair strategies and
programming languages. These approaches can be effective in generating high-
quality repair patches for a wide range of defects and programming languages [113,
196]. Data-driven APR approaches often involve training a Machine Learning model
on a large dataset of programs and their corresponding repair patches, and then us-
ing the trained model to generate repair patches for new programs with defects. One
such dataset was made in 2019 by Tufano et al. [168], on which these models can
be trained and evaluated. Their seminal work has been encased in the CodeXGLUE
benchmark [111], featuring a platform for future publications including diverse pro-
gramming language tasks. The dataset is highly successful among researchers, new
model architectures are proposed rapidly (usually published on arXiv.org first, thus
bypassing the traditionally slow publication process) and new records are booked in
a monthly basis.

The current chapter applies ML on several subtasks in the APR domain, Fig-
ure 2.10 depicts a comprehensive overview of it. Since fixing a bug always starts
by localizing it, in Section 2.3 we dive into more details about Fault Localization.
The main focus in this chapter is on the relationship between traditional and Deep
Learning algorithms. By conducting a large-scale training, the stability of DL-based
FL methods are investigated. As can be seen on Figure 2.10, the FL part of the pro-
cess takes the coverage information from test execution and outputs a list of most
suspicious statements that needs to be repaired. The classical G&V patch generation
approaches then try to modify these faulty statements to fix the whole program. On
the other hand, DL approaches usually refrain from FL (assuming perfect knowledge)
and only focus on the generation of repair candidates based on a dataset. Data flows
for each approach are marked on Figure 2.10: orange arrows signal data for tradi-
tional APR approaches, blue arrows for learning-based approaches, while flows that
are employed by both of them are marked with black arrows.

Next, in Section 2.5 a data collection approach is described, since modern data-
intensive APR applications need a lot of training data. As JavaScript lacks such cu-
rated dataset, the evaluation of the proposed APR methods is difficult. The section
introduces the FixJS dataset, describes its properties and structure. The proposed
dataset is available on GitHub 2 and have a DOI to make it easily citable 3. It con-
tains roughly two million bug-fixing commits from GitHub. From these commits, the
modified functions were extracted (the state before and after the bug fix happened).
These functions are then tokenized and abstracted, resulting in three different source

2https://github.com/RGAI-USZ/FixJS
310.5281/zenodo.6340207

https://github.com/RGAI-USZ/FixJS

2.1 Overview 45

Patch generation

Potentially fixed
program

Dataset of bug fixes
Fault localization

Test cases

Software artifact
</>

</>

</>

</>

NO FAILING
TEST

DEPLOYMENT

TESTING FAILS

0 0 0 0 0

1 1 1 0 1

1 1 1 0 1

COVERAGE INFO

TRADITIONAL FLDEEP LEARNING FL

List of most suspicious statements
1.
2.
3.

GENETIC ALGORITHMDEEP LEARNING

Patch validation

1 0 0

0 1 0

0 0 1

cv1

cv2

cvm

=
𝐷𝑠𝑡𝑎𝑟 =

𝑐𝑒𝑓
∗

𝑐𝑛𝑓 + 𝑐𝑒𝑝

𝑂𝑐ℎ𝑖𝑎𝑖 =

𝑐𝑒𝑓

(𝑐𝑒𝑓+ 𝑐𝑛𝑓)(𝑐𝑒𝑓+ 𝑐𝑒𝑝)

</>

BUGGY / FIXED PROGRAMS

DEVELOPER FIX

TEST RE-EXECUTIONEXACT MATCH

Human written patch

Generated patch

PATCH

VALIDATION SUCCESSFUL
VALIDATION FAILS

Figure 2.10: A comprehensive overview of Theses II.

code representations. FixJS can be used to train and evaluate a deep learning model
that predicts correct fixes without any further processing steps.

The remaining of the chapter focuses on the generation of repair patches both
with traditional and data-driven approaches. An adaptation of the seminal APR tool
GenProg has been adapted to JavaScript. Also, to bypass the cumbersome process
of designing, training, and evaluating a new model, a new approach is proposed
that fixes buggy programs automatically using ChatGPT, simply relying on this Large
Language Model (LLM). On Figure 2.10 we can see that there is a fundamental dif-
ference of the two: while learning-based APR approaches are evaluated against the
developer fix (i.e. the automatically generated patch should match the one created
by human developer), classic G&V tools evaluate the generated patch by re-executing
the test cases. The former one is obviously more strict, but has three main flaws: (1)
it needs a sufficient database to train and evaluate on (see Section 2.5), (2) does
not consider semantically identical patches and (3) overlook the fact that a devel-
oper patch can be flawed. On the other hand, classifying a patch by test execution is
both more time-consuming (due to the execution of the tests) and more susceptible
to overfitting - where only test cases are successfully executed, but the real bug is
not fixed. This phenomena is detailed in Chapter 2.9. As the repair process usually
starts with Fault Localization, after depicting an overview of related works, in the
next chapter the conducted work on this domain is described.

46 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

2.2 Related Work

Classical APR approaches

There have been several implementations for Java and C programming languages
which aimed at automatically repairing programs. GenProg [174] was one of the first
to perform a fully automatic fix with relatively good results. It was originally written
for the C programming language, but has since been implemented for Java [116].
The tool uses genetic programming (GP) to fix errors without the need for any for-
mal specifications. PAR is a synthesis-based tool which leverages the knowledge of
human-written patches [87]. It works in Java and repairs source code based on 10
predefined templates. DeepFix is another repair tool, which uses a multilayer neural
network. The program to be repaired is considered as a sequence of tokens from
which another is generated with appropriate transformation [63]. In addition to
completely general repair techniques, there are those that specialize only in certain
error classes. An example is Nopol, which improves conditional control structures (if-
then-else structure). In the generated patch Nopol either modifies the if structure or
gives it a prerequisite (guard condition) [190]. Another such tool is Kali, which uses
only deleting or skipping the source code to synthesize patches. This is obviously not
a program repair technique, it is mainly used to identify weak test cases and poorly
specified bugs [145]. Figra has been proposed in a recent work [51], where the tool
improve the fix step through a search-based automated program repair technique
that reuses code from the program under repair. Their results yield that Figra out-
performs other APR tools in terms of correctness on the observed benchmarks. In
a 2014 initiative, a framework was created that can automatically repair Java pro-
grams [117]. The name of the framework is Astor and its goal is to combine previous
approaches and provide a unified interface for the APR community. It also includes
the implementation of several repair strategies, such as Genprog, Kali or Cardumen.
Of course, there are other approaches that tend to generate the fix from previous
manual fixes [87, 95]. Although such approaches have yielded promising results,
they have been criticized several times [126].

However, a general repair tool for JavaScript does not exist, there are several
works that are closely related to this topic. In a recent work [151] authors presented
Mutode, a generic mutation testing tool. In the paper several mutation operators are
defined, from which most of them are pretty straightforward and not specified for the
JavaScript language. The search for genetic operators has a long history, and many
papers proposed several general operators. For instance in [97] authors investigate
representation and operator choices for evolutionary program repair in the original
GenProg framework. Another interesting approach is presented by Jensen et al. [77]
where the authors automatically transformed common uses of eval into other lan-

2.2 Related Work 47

guage constructs. While their work is not considered directly as Automatic Program
Repair, the paper is an excellent basis for further research. The paper of Selakovic et
al. [158] also focuses on JavaScript bugs, but their approach is not general because
the presented tool only fixes performance bugs using static patterns.

Data-driven Repair Approaches and LLMs
Data-driven repair approaches form a separate research area in the Automated

Program Repair field [128]. These techniques usually create a large train-test-validate
database and evaluate the tool on that. Recently several such tools have emerged,
such as SequenceR [25], Hoppity [41], DLFix [196], CoCoNuT [113] or CURE [80].
Hoppity predicts the changes to be made to the AST of JavaScript commits with
a graph-based neural network. Transformer-based approaches seem to dominate
this subfield recently, a great amount of work use this model to synthesize source
code. For code completion Transformers also [88] perform great by learning the
syntax of the language by including AST information to the input/output sequences.
Finding the right source code representation is often not trivial for learning-based
approaches, a recent study tries to tackle with this challenging problem [130]. In
a recent work [24] Chen et al. addressed the problem of automatic repair of soft-
ware vulnerabilities by training a Transformer on a large bug fixing corpus. They
concluded that transfer learning works well for repairing security vulnerabilities in
C compared to learning on a small dataset. Variants of the Transformer model are
also used for code-related tasks, like in [3] where authors propose a grammar-based
rule-to-rule model which leverages two encoders modeling both the original token
sequence and the grammar rules, enhanced with a new tree-based self-attention.
Their proposed approach outperformed the state-of-the-art baselines in terms of gen-
erated code accuracy. Another seminal work is DeepDebug [42], where the authors
used pretrained Transformers to fix bugs automatically.

Prenner et al. [144] used Codex for automated program repair, evaluating it on
the QuixBugs benchmark [106], consisting of 40 bugs in Python and Java. Although
they experimented with different prompts, their focus was primarily on code gener-
ation from docstrings. Although OpenAI has introduced GPT-4 recently [132], the
available scientific literature of it is is scarce. There is no available scientific paper
specifically for ChatGPT and most of its use cases are undocumented in scientific
literature, her a brief review is presented on the use of the GPT family. GPT-2 [8]
was introduced in 2018, followed by GPT-3 [19] in 2020 by OpenAI. They have been
applied to various tasks, including poetry, news, and essay writing [44, 202]. The
capabilities of GPT have also been explored in the CodeXGLUE benchmark [111]
for multiple tasks, where CodeGPT achieved an overall score of 71.28 in the code
completion task. In a recent work [7], CodeGPT served as a baseline model for text-
to-code and code generation tasks. A recent work introduces Text2App [66], which
enables the creation of functional applications from natural language specifications.

48 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

Deep Learning Fault Localization
In the realm of DLFL, coverage matrix-based approaches have emerged as pivotal

contributions. Zhang et al. in their seminal work [201] utilized three deep learn-
ing architectures (MLP, CNN, RNN) for fault localization. Subsequent research ex-
panded on this foundation, employing oversampling [200] and test generation [199]
to address class imbalance. The results demonstrated that these approaches en-
hanced fault localization effectiveness, surpassing previous DLFL approaches. The
group later proposed Aeneas, synthesizing failing test cases from a reduced feature
space [184]. This approach statistically outperformed baselines. To address class
imbalance further, subsequent works introduced cost-effective data augmentation
approaches, such as between-class learning [100] and the Lamont approach [72].
Additionally, the use of Generative Adversarial Networks (GANs) in CGAN4FL [101]
demonstrated their efficacy in constructing a class-balanced dataset for fault local-
ization. While these publications share a common theme, each introduces a unique
improvement in fault localization. Unfortunately, not all listed papers have online
appendices or repositories, but only one [184] provides source code. Also, the lack
of predefined seeds in the training process poses challenges to the reproducibility of
their experiments.

The issue of data imbalance in intelligent fault diagnosis methods has garnered
extensive attention, leading to numerous publications [104, 110, 149]. For instance,
Fang et al. [47] employ a conditional variational autoencoder (CVAE) for synthe-
sis and apply fault localization techniques. GNet4FL [146] combines static and
dynamic features for more precise fault localization. Other techniques, such as
DeepFL [103] and FLUCCS [161], leverage additional information, with DeepFL au-
tomatically learning latent features and FLUCCS using Genetic Programming and
linear rank Support Vector Machines (SVMs) for learning fault localization formulae.

Stability of Deep Learning
Conventional training methods for neural networks incorporate various sources of

randomness, such as initialization, mini-batch order, and data augmentation. Since
neural networks tend to be significantly over-parameterized in practical applications,
this inherent randomness can lead to issues [75]. Situations when two models inde-
pendently trained by the same algorithm produce differing predictions for the same
input are referred to by literature as churn [14, 27]. Churn represents the propor-
tion of test samples where predictions of the models do not match. One approach
to mitigate churn involves eradicating all forms of randomness within the training
configuration. However, even if one manages to control the seed used for random
initialization and the data ordering, which itself presents challenges, it remains dif-
ficult to evade the inherent non-determinism present in contemporary computing
platforms [129]. Distillation [78] transfers knowledge from larger to smaller neural
networks to reduce churn, while this paper does not explore other properties of neu-

2.3 Coverage Matrix-Based Fault Localization 49

ral networks [90]. Having stable models capable of generating predictions unaffected
by the random training factors is essential for developers to trust DL approaches - a
challange modern ML still have to tackle with [60].

Liu et al. [108] examines the reproducibility of DL models in the field of SE. The
study reveals that only 10.2% of the reviewed publications address replicability or
reproducibility, with over 62.6% not sharing high-quality source code or complete
data. Experimental results underscore the importance of reproducibility and repli-
cability, demonstrating challenges in reproducing DL model performance due to an
unstable optimization process, non-convergence in model training, and sensitivity
to vocabulary and testing data size. While sharing a reproduction package in deep
learning supports reproducibility, the inherent randomness in model initialization
and optimization makes it challenging to guarantee that models trained by differ-
ent researchers will produce identical experimental results even when re-running the
provided source code and data. Thus stable models are fundamental to have reliable
and applicable DL models in any domain.

2.3 Coverage Matrix-Based Fault Localization

To the best of my knowledge, DL-enhanced coverage matrix-based fault localization
was introduced in 2009 by Wong et al. [182]. In tthe following their proposed
method is described in short. Suppose we have a program with m executable state-
ments and exactly one fault. Suppose also that there are n executable test cases of
which k tests are successful and n - k are failed. This data is then organized into an
n x m sized matrix, where inside the matrix there is 1 if the test covers the statement
and 0 otherwise. An example of such a matrix can be seen in Figure 2.11. The result
of the test execution is also organized into a vector form that has n rows, denoting
whether the test was successful (0) or failed (1).

0 0 0 0 0 1 1 0 0

1 1 1 0 1 0 1 1 1

1 1 1 0 1 1 1 1 1

0 0 1 0 0 1 1 1 0

1 1 1 1 0 1 0 1 1

0

0

0

1

1

3 successful tests

2 failed tests

Statement coverage

Figure 2.11: Coverage matrix with 9 statements and 5 test cases.

50 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

Next, a neural network is being constructed. The input layer has m neurons,
as a single row from the above matrix (i.e. ’statement coverage vector’) forms the
input of the model. The output is a single neuron, and the desired outcome is to
predict whether the test execution result was successful or not. The inner structure
of the neural network is arbitrary, in the literature one can find diverse architectures,
including Multi-Layer Perceptron, Convolutional Neural Network, Recurrent Neural
Network and even Graph Neural Networks [124, 146, 181]. The outcome can be
interpreted as an estimation of the test execution result. Note that there is no train-
test-validation split of the training data, as the training objective is to learn to predict
whether a test was successful or not, based only on the test coverage matrix as we
depicted this process on Figure 2.12 (a). Thus the training objective is to perfectly
learn when will a test case fail and when will succeed, no generalization needed.

1

1

0

1

Statement coverage

0 - 1

Probability of

an execution

being failed

(a) High-level illustration of the neural network used
for fault localization.

1 0 0

0 1 0

0 0 1

cv1

cv2

cvm

=

(b) Virtual test simulating coverage of
a single statement.

Figure 2.12: Components of DL-enhanced SBFL.

The fault localization part comes after the neural network has been trained. As-
sume there is a set of so called virtual test cases whose coverage vectors are cv1, ..., cvm.
The execution of a virtual test case covers only one statement and if we organize these
into a matrix form again, the result is a diagonal matrix as shown in Figure 2.12 (b).
The execution of such a virtual test case is interpreted as a test that only covers one
statement. If a statement is contained in a lot of failed test executions, the output
of such a virtual test case is expected to be high. This implies that during the fault
localization, we should first examine the statements whose output values are high.
The output value of the neural network is between 0 and 1, the larger the value is the
more likely it is that the corresponding statement (in which in the coverage vector
the value was 1) contains a bug. This output can be treated as the suspiciousness of
a given statement in terms of its likelihood of containing the bug.

2.3 Coverage Matrix-Based Fault Localization 51

The fault localization process continues from this step the usual way: the state-
ments are ranked based on their suspiciousness - more suspicious statements are
sorted at the top, while less suspicious ones to the bottom of the list.

2.3.1 Measuring Model Stability using Churn

Here, churn is interpreted as defined by Cormier et al. as the expected disagreement
between the predictions of two models [27]. Churn is zero if both models provide
the same output for the same input, while large churn values mean that models
independently trained disagree on most of the test data - suggesting that an error
could have occurred in model design, or in learning and evaluation phase. This
probability is essentially implemented in practice as:

1− #SamplesOnModelsAgreed

#AllSamples
(2.4)

where #SamplesOnModelsAgreed is the number of samples on which the two in-
dependently trained models agree, while #AllSamples is the number of samples in
the dataset. In Figure 2.13 one can observe that most of the assigned ranks differ
between independent trainings.

2.3.2 Adapting Churn for Fault Localization

The straightforward adaptation of this metric for fault localization would be to con-
sider every rank as a class label and models need to produce the exact same list of
suspicious statements. However, two key observations can be made: (1) statements
on similar positions are counted as disagreement and (2) not all ranks are of equal
importance - buggy statements are more important. To overcome these limitation we
define two revised versions of churn for fault localization.

■ org.mockito.internal.invocation.InvocationMatcher#122

■ org.mockito.internal.invocation.InvocationMatcher#123

■ org.mockito.internal.invocation.InvocationMatcher#121

■ org.mockito.internal.invocation.ArgumentsProcessor#36

□ org.mockito.internal.util.collections.ArrayUtils#8

■ org.mockito.internal.invocation.ArgumentsProcessor#28

■ org.mockito.internal.invocation.ArgumentsProcessor#34

□ org.mockito.internal.handler.InvocationNotifierHandler#40

□ org.mockito.internal.handler.InvocationNotifierHandler#65

1;org.mockito.internal.invocation.InvocationMatcher#123

2;org.mockito.internal.invocation.InvocationMatcher#122

3;org.mockito.internal.invocation.InvocationMatcher#121

4;org.mockito.internal.invocation.ArgumentsProcessor#38

5;org.mockito.internal.util.collections.ArrayUtils#11

6;org.mockito.internal.invocation.ArgumentsProcessor#35

7;org.mockito.internal.invocation.ArgumentsProcessor#26

8;org.mockito.internal.invocation.ArgumentsProcessor#28

9;org.mockito.internal.handler.InvocationNotifierHandler#42

Mockito 1 – model train #1 Mockito 1 – model train #2

Figure 2.13: Statement boxing including 3 statements each. Boxes are highlighted
with colors, the faulty statement is bold and the list is ordered by the suspiciousness
assigned by each model. The churn is calculated as follows: Churn = 1− 1/12 = 0.917,
BoxChurn = 1− 5/12 = 0.583, while FlBoxChurn = 1− 1/1 = 0.

52 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

Statement Boxing: in the following, boxing is referred to as the process that groups
statements into fixed sized boxes and then churn is measured not on the actual ranks,
but on the assigned boxes. For example, in Figure 2.13 we defined a box size of 3.
It can be observed that although the two independent trainings placed the faulty
statement on different ranks, they are mapped in the same box, thus reducing churn
value. It is expected that BoxChurn values are lower compared to regular Churn,
as fewer classes are created in this new setting.

Faulty Box: as the rank of the faulty statement is the most important in fault local-
ization applications, we decided to adapt churn to meet this criteria. In the previous
metrics disagreement between correct statements is also measured. To overcome this
limitation, FlBoxChurn is defined as BoxChurn calculated only on the box contain-
ing faulty statements. Note that there might be more faulty statements in a system,
thus the value of FlBoxChurn is not necessarily 0 or 1. In Figure 2.13 this amend-
ment results in a churn value of 0, which gives a better indication of the problem.

SFL Metric - Expense SBFL’s effectiveness can be measured in various ways [67], but
most rely on estimating the effort programmers need to identify the faulty element
using the tool. The rank list serves as a proxy for this property, with the number of
elements before the first faulty element, often collectively called the Expense. Most
often, the absolute version of the Expense metric is used which means that we simply
count the number of code elements in the rank list in front of the faulty one. One
complication with this method are rank ties [189], i.e. situations when different code
elements share the same suspiciousness scores. Typically, all elements in a rank tie
are assigned the same rank value, based on one of these approaches [183]: minimum,
which refers to the top most position of the elements sharing the same suspiciousness
value (optimistic or the best case); maximum, where the bottom most position is used
(pessimistic or the worst case); and the average strategy, where the medium position
of the elements sharing the same suspiciousness value is used (average case).

Equation 2.5 shows the absolute average rank calculation [6], where i and f are
code elements, the latter being the faulty one, while si and sf are the respective
suspiciousness score values.

E(f) =
|{i|si > sf}|+ |{i|si ≥ sf}|+ 1

2
(2.5)

Another issue arises when a program has multiple faults, which is common. Typi-
cally, the E value linked to the element with the highest suspiciousness score is used
(min(E(f)), where f ∈ {faulty elements}). We will use this as the expense measure-
ment in the following.

2.4 Results on DLFL 53

2.4 Results on DLFL

To examine the stability, various models were run on every selected program-versions
5 times in a row. The only difference between each 5 runs on the same input and
model is the selected random seed, fixed at start. The separate runs have to produce
same, or similar outputs, if the models are stable.

Table 2.6: DLFL Average Expense results of 5 seperate runs of each version by different
models

Mean Standard deviation Minimum Maximum
MLP CNN RNN MLP CNN RNN MLP CNN RNN MLP CNN RNN

Chart 419.54 460.50 521.47 312.28 225.47 232.54 124.81 223.69 293.00 853.17 760.52 830.00
Lang 201.89 329.80 306.34 122.63 179.35 139.67 82.19 134.65 162.25 385.27 569.00 493.98
Math 511.06 899.46 896.25 283.61 480.60 283.29 199.81 321.86 565.00 866.07 1454.44 1254.11
Mockito 522.48 707.43 679.70 310.54 402.02 295.12 184.43 259.93 315.62 906.22 1219.76 1038.05
Time 1618.37 1681.39 1422.41 571.25 941.65 506.16 871.86 638.21 912.07 2263.71 2857.71 2153.00

Average 450.87 691.29 676.50 253.82 373.56 246.75 177.70 259.65 396.79 778.01 1145.81 993.17

Table 2.6 shows a summary of results by programs and total. One can see in the
first 3 columns the mean expense of the models on the benchmark, by programs.
Columns 4–6 show the average of standard deviation, presenting the disparity from
mean values of the five separate run by each version. These are quite high values,
showing the high variety of the outputs of the separate runs, and it strengthens our
conclusions of previous table. From columns 7–12 are the average maximum and
minimum expense values of the five runs of models. As we can see there are really
high differences between them, in most of the cases the maximal expense is 4–5 times
bigger than the minimal one. The RNN model on Chart has proportionally the small-
est distinctness, however that has still a double difference quotient. We also used
statistical significance testing, by using Wilcoxon sign-rank test [26], complemented
with Cliff’s Delta effect size measure [59], which proved that maximum values are
significantly larger than minimals, with large to medium magnitude of effect size in
all cases. Detailed statistical test results appear in the online appendix [4].

Churn was measured in three settings: (1) by the original definition, (2) by align-
ing statements into boxes and (3) by filtering out boxes that do not contain faulty
statements. In Figure 2.14, one can observe histograms of the measured churn val-
ues. These values were measured using the 5 trained MLP models, while other mod-
els show similar trends. Churn is measured on model variant-pairs, for example on
version 1 between training attempt 1 and 2, next between training attempt 1 and 3,
etc. These pairwise churn values are then averaged so that the histogram can more
concisely represent all the measured data. It is clear from the figure that Churn val-
ues are highest, FlBoxChurn values the lowest and BoxChurn somewhere between.

54 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

(a) Origin churn

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

(b) BoxChurn, box
size = 5

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

(c) BoxChurn, box
size = 10

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

(d) FlBoxChurn,
box size = 5

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

(e) FlBoxChurn,
box size = 10

Figure 2.14: Histogram of churn values measured using the MLP model on the observed
programs.

It is application dependent what is an acceptable churn, but having an average
value of 0.99 means that if the model is being trained again using different seeds,
the statements will receive a different rank than before with 99% probability, which
is clearly disadvantageous. One can argue that only the rank of the faulty statement
is important, and that minor differences between ranks are still acceptable. To this
end, we defined FlBoxChurn and by measuring it on the subject programs we still
see considerably high values. Notably, using a box size of 5, 65.08% of statements
have a churn value higher than 0.5. For box size of 10 and 50, this is somewhat
reduced to 64.94% and 60.94%, respectively. Average BoxChurn value of box size
10 is 0.96, while for FlBoxChurn it is 0.41.

In the 5 independent trainings performed, it was found that the output of the same
model varies greatly due to the effect of random factors during training phase. Stan-
dard deviation of ranks is 291.37, with 606.22 mean values on average, implying
48.06% relative standard deviation, while based on boxed churn measurements the
probability that two statements are going to end up in different boxes is 99.89%.
These high values are good indicators of system instability.

2.4.1 Potential Improvement on Stability in DLFL

Metaparameter optimization techniques has been applied to fine-tune the three ob-
served models, with the hope of achieving significant performance enhancements.
However, despite exhaustive experimentation and resource allocation, the outcomes
proved to be disappointing. On the other hand, model simplification proved effective.
In Deep Learning it refers to the process of reducing the complexity and size of a neu-
ral network while maintaining acceptable performance levels. This technique aims to
achieve several objectives, including improved model interpretability, reduced com-
putational resource requirements, and enhanced generalization on limited data [12].
On the observed models the following architectural adjustments were made:

2.4 Results on DLFL 55

Table 2.7: Effect of using the Resampling and the Simplified models combined on Aver-
age Expense results

Mean Standard deviation Minimum Maximum
MLP CNN RNN MLP CNN RNN MLP CNN RNN MLP CNN RNN

Chart 188.72 595.78 209.87 67.42 302.65 55.67 85.33 204.33 143.33 246.48 952.48 263.81
Lang 28.00 354.93 94.39 13.01 146.31 12.57 14.80 182.28 80.32 45.54 541.61 111.25
Math 124.05 860.38 209.13 51.32 432.69 58.57 67.88 361.98 150.30 193.82 1396.74 289.84
Mockito 336.86 617.54 278.98 117.34 298.77 103.02 193.19 270.32 146.16 468.57 985.00 404.30
Time 997.94 1945.97 337.43 413.92 1050.84 162.31 503.14 595.71 135.71 1514.43 3120.79 535.86

Total 163.64 687.35 191.91 63.62 337.15 55.61 87.88 289.17 128.78 241.11 1100.74 262.89

Diff -287.23 -3.94 -484.58 -190.20 -36.41 -191.14 -89.82 29.51 -268.01 -536.89 -45.06 -730.28
Diff % -63.71 -0.57 -71.63 -74.94 -9.75 -77.46 -50.55 11.37 -67.54 -69.01 -3.93 -73.53

• MLP: reduced the number of hidden layers

• CNN: the number of channels in convolution layers has been decreased to the
2/3 of the baseline

• RNN: the original two recurrent layers have been replaced by a single one

Resampling techniques can be roughly categorized into three commonly used
types: oversampling, undersampling, and sampling with the creation of artificial
data [200]. Oversampling was also applied to improve stability, which is simple yet
effective and incurs a little cost. The approach first identifies failing test cases; then
iteratively resamples failing test cases into original test cases; finally stops the iter-
ative resampling process until obtaining a balanced test suite, where the number of
failing test cases is the same as that of passing test cases.

In Table 2.7, we can see the mean values of DLFL using the two new improvement
technique. The structure of table is same as for Table 2.6, but there are two extra
rows, which show the absolute and percentage difference compared to the baseline.
We can see that all models improved in average expense and in standard deviation
as well. There are 70% improvements at MLP and RNN model in standard devia-
tion, which indicates that stability seems to be improved. The maximal and minimal
expense values both are highly decreased, however their ratios still seems to be too
high to call models stable. Like in the previous section, CNN seems to be not really
improved, the combined technique does not make it more stable. We used statisti-
cal significance testing here as well: the maximal values, despite the improvements,
were still significantly greater than minimals in all cases, however the effect sizes
decreased a bit in some cases.

Churn measurements support the statistical analysis. In the following discussion,
experiments were carried out with a box size of 10. In Figure 2.15, histograms
of boxed churn values are depicted using the MLP model. The histograms therefore
represent the same data as in Figure 2.14, but the bars on the left side of the x-axis are

56 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

80

(a) BoxChurn, box size = 10
0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

(b) FlBoxChurn, box size = 10

Figure 2.15: Histogram of churn values measured using the simplified MLP model and
resampling.

higher than before. This essentially means that churn has been somewhat reduced.
To quantify this improvement: the churn value decreased by 0.0063 on average,
resulting an average value of 0.98 in case of Churn, 0.93 in case of BoxChurn and
0.32 in case of FlBoxChurn. Although the improvement is measurable, this can only
be considered as moderate success.

Enhancement of stability and applicability can be achieved to a certain extent; how-
ever, the improvements may not suffice to ensure consistently reliable outcomes. Both
statistical and churn measurements confirmed that stability improved, but the models
remained insufficiently stable to produce reliable results in practical applications.

2.5 FixJS: Data Collection to Support APR

Lacking sufficient commit information, the evaluation of the proposed APR methods
is always difficult. The aim of the dataset creation was to ease this burden by pro-
viding a dataset that can contribute to the efforts of the community. The result is
the FixJS dataset, which is available on GitHub 4 and have a DOI to make it easily
citable 5. It contains roughly two million bug-fixing commits from GitHub.

2.5.1 Bug-fix mining

Two external tools were used in this phase: GH Archive [55] to retrieve commits
from a specific time range and GitHub REST API [57] to get detailed information

4https://github.com/RGAI-USZ/FixJS
510.5281/zenodo.6340207

https://github.com/RGAI-USZ/FixJS

2.5 FixJS: Data Collection to Support APR 57

about a commit. To start off, we fetched every push event from GH Archive rang-
ing between 01.01.2012 and 30.12.2012. Since GH Archive stores the commit hash
and the commit message as well, bug-fixing commits were filtered out in this step.
All commit messages containing one of the following keywords are identified as
a bug-fix: ["fix", "solve", "bug", "issue", "problem", "error"]. The same
patterns are used in the work of Tufano et al. [168] and a similar approach in [49].
2.129.715 bug-fixing commits were retrieved. These commits are saved in a csv file
contating the date, event type, commit hash (sha), message and url in a monthly
breakdown.

GH ARCHIVE

2 million commits JavaScript bug-fixes

ba77d170bd5d14226b11f924d5d6f3b37324a732

a7a58f5da8ab8a077e7f5008c3357f576623c31d

511060ecff032c06ca14466085725b63e4548b2c

buggy code

fixed code

{

url: https:api.git…

sha: 51100ecff0356…

message: Some fixs.

files: [

filename: app.js

]

…

}

function () {

return { ok: 'OK’,

timeout: 500 };

}

PRIMA

~200k
JS files

FUNCTION EXTRACTION

IDIOMS

MAPPING

Idiomized function Mapped function

SMALL
MEDIUM

LARGE

T
O
K
E
N
I
Z
E
D

SMALL
MEDIUM

LARGE

I
D
I
O
M
I
Z
E
D

M
A
P
P
E
D

SMALL
MEDIUM

LARGE

function () {

return { ok: 'OK’,

timeout: 0 };

}

function () {

return{VAR_0:STRING_0,

VAR_1:NUMERIC_0};

}

function () {

return{ok: STRING_0,

VAR_1:NUMERIC_0};

}

IDIOMS

~2m
commits

2012-01.csv

date, event_type, sha, message, url

2012-01-01-0,PushEvent, 51...2c,Add some fixs., https://api.github.com/...

2012-01-01-0,PushEvent, a7...1d,bug:2496 ..., https://api.github.com/...

2012-01-01-0,PushEvent, ba...32,merge..., https://api.github.com/...

2012-01-01-0,PushEvent, 92...96,bug:2503 in ...,https://api.github.com/...

...

511060ecff032c06ca14466085725b63e4548b2c

0

after.js

before.js

diff

a7a58f5da8ab8a077e7f5008c3357f576623c31d

map.txt

{'METHOD_0': 'incoming', 'VAR_0':

'valfn', 'METHOD_1': 'unwrap',

'VAR_1': 'translateTo', 'VAR_2':

'validators', 'METHOD_2': 'push’}

...

50

after

00a51123392afb459c29dfceecb8725726601676_0_1.js

00cbc1f36e16afc6b5b940e43b6d4c1bb257c16a_0_1.js

before

00a51123392afb459c29dfceecb8725726601676_0_1.js

...

...

...

after_[idiom/mapped/tokenized].txt

before_[idiom/mapped/tokenized].txt

50-100
...

~300k
samples

function () { return { ok : 'OK' , timeout : 5000 } ; }

function () { return { ok : STRING_0 , VAR_1 : NUMERIC_0 } ; }

function () { return { VAR_0 : STRING_0 , VAR_1 : NUMERIC_0 } ; }

function () { return { ok : 'OK' , timeout : 0 } ; }

function () { return { ok : STRING_0 , VAR_1 : 0 } ; }

function () { return { VAR_0 : STRING_0 , VAR_1 : NUMERIC_1 } ; }

BUGGY

FIXED

Figure 2.16: A high level overview of the dataset creation approach

Next, files are being fetched that are affected by the commit. Using GitHub
API [57], non-JavaScript files were filtered out (files with not ”.js” extension) and
download the before- (i.e. buggy program) and after (i.e. fixed program) state of
it. During the process some of the commits were ignored because their repository
were renamed or deleted. At the end of this phase 103.115 commits were identified
containing 201.198 files overall. These commits are saved in a folder named by their
sha, containing three files: before.js (the JS file before the bug-fix) after.js (the JS file
after the fix) and diff (the git diff of these files).

2.5.2 Patch Abstraction

The goal of this phase is to (1) identify the modified functions and (2) create a repre-
sentation of it that can be fed into an AI model. Functions are extracted without their

58 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

names. Function expressions and arrow functions do not have names by definition
in JavaScript, while function statement and member functions do have. The over-
whelming majority of bug-fixes take place at the body of a function, thus ignoring
names does not result with significant data loss.

Three different source code representations were createed for each raw function.
To retrieve the Abstract Syntax Tree (AST) of the observed function, the Esprima
library [45] was used. During this phase syntactical errors were filtered out. Part of
the following representations are adapted from [168], while others are introduced
before in Chapter 1.4, thus here their specification in full length is omitted. A small
example on the right part of Figure 2.16 depicts this. Note that, in an AI-model point
of view the main difference is in vocabulary size. While in the tokenized function
every kind of identifier and literal can occur (resulting in a vocabulary of arbitrary
size), in the other two representations the vocabulary size is fixed. We created three
datasets with different token lengths: small (#tokens <50), medium (50 <= #tokens
<100) and large (100 <= #tokens).

Tokenization

In this representation the function is split into tokens without any further modifi-
cations. Each token is separated by a space in the dataset. The vocabulary size is
arbitrary.

Full-mapping

We call mapping the process in which identifiers and literals are mapped to generic
IDs. Every ID follows the pattern TYPE INDEX, where TYPE is the corresponding token
type, while index ensures that each ID is unique in a before/after function pair. The
indexing is sequential: when the parser finds e.g. an identifier, it will assign the
ID METHOD 0 to it, the second method will have the ID METHOD 1, and so on. The
used types are the following: [STRING, NUMERIC, BOOLEAN, REGULAREXPRESSION]

for literals and [VAR, METHOD] for identifiers. Vocabulary size <130 + I (where I is
the sum of the largest index in each of the mapped keywords, 130 = 6 defined types
+ 63 JS keywords + ˜60 special characters).

Idiomization

Idiomization is the generalization of the full-mapping representation. Frequent iden-
tifiers and literals are often referred to as idioms [20]. In some cases they appear
so often in the code that, they can almost be treated as keywords of the language
(e.g. i, j, 0, -1). To retrieve these common keywords we counted the frequency
of every token present in the fetched commits. From this then we picked the TOP-N
idioms (N is arbitrary), let us call it the idiom-set. When parsing, and a token occurs,

2.5 FixJS: Data Collection to Support APR 59

the parser first examines whether it is present in the idiom-set. If yes, the token value
is being used, otherwise the same mapping process is executed as in full-mapping.
Vocabulary size <N + I + 130 (where N is the number of idioms, other same as
before).

Table 2.8: Summary of the constructed datasets.

Tokens # Samples Size (mb)

Small #tokens <50 67,070 78
Medium 50 <= #tokens <100 70,816 180
Large 100 <= #tokens 186,021 5,350

Overall 323,907 5,608

The token number (#tokens) determined using the Esprima [45] standard parser. Note that in #tokens each literal counts as one
token. This can be confusing especially for string literals if they are not mapped (since they typically consist of multiple syllables).

2.5.3 Structure of the Constructed Dataset

FixJS distinguishes three source code representations in three different sized setting.
Functions are separated based on token numbers and organized the files in different
directories. Each of the folders contain seven text files: a mapping file, three before
and three after files. In the latter mentioned files each line corresponds to a function
of a specific representation. For example the sixth line in after idiom.txt is the
sixth bug-fix in 2012 that affects a JavaScript file and is preprocessed as described in
Section 2.5.2, the corresponding buggy function can be found in before idiom.txt

in the sixth line. The same applies to the tokenized and mapped representations as
well, the before/after state of the functions can be connected using their index in the
files. The map.txt is the mapping file which contains the real world identifiers that
are replaced in the tokenized and idiomized representations. Each line contains a
dictionary where the keys are the IDs from the parsed function, while the values are
the real world namings. In Table 2.9 the size of the assembled dataset is presented.
Here we can see that the Large subset contains the majority of the samples, this and
the sheer size of the functions implies that its size in megabytes is also the greatest.
FixJS contains both single- and multi-line bugs. Before- and after state of the mined
functions are differentiated using their Abstract Syntax Tree, meaning that if only
comments have changed the samples are filtered out.

The dataset is available on GitHub, containing a detailed README of the featured
files. To use the resulting dataset one should carry out the following steps:

1. Clone the repository and pick a dataset size (50, 100 or 100+)

60 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

Table 2.9: Summary of the constructed datasets.

Tokens # Samples Size (mb)

Small #tokens <50 67,070 78
Medium 50 <= #tokens <100 70,816 180
Large 100 <= #tokens 186,021 5,350

Overall 323,907 5,608

The token number (#tokens) determined using the Esprima [45] standard parser. Note that in #tokens each literal counts as one
token. This can be confusing especially for string literals if they are not mapped (since they typically consist of multiple syllables).

2. Load the before rep.txt and after rep.txt (where rep can be [idiom, mapped,
tokenized])

3. Split the dataset (e.g. 80-10-10) and train the model

4. Evaluate the model on the test set

The possible uses of FixJS is quite generic and similar to existing datasets like
Defects4J or BugsJS. However, these databases are small in size to teach a deep
learning model, and their preparation requires a serious development effort. On the
other hand, the bug-fixes in FixJS are already extracted and organized in quite large
quantities. Real world bug-fixing commit information facilitates automatical software
refactoring and may improve software evolution. It can enable seamless integration
between continuous code changes and serve as a ground to better understand the
software development cycle. The proposed dataset serves these goals, it can provide
a common ground in evaluating data-driven repair solutions, potentially contribut-
ing to a better understanding of the strengths and weaknesses of different source
code extraction methods and lead to their best combination. It provides more de-
tailed data than the currently available alternatives and can also be used in different
representation evaluations.

FixJS includes ∼300k samples containing separately the buggy and fixed codes.
It comes in three sizes: small, medium and large. In each of these datasets three
source code representations with different abstraction levels are present. The dataset
is mainly intended for Automated Program Repair research evaluation purposes.

2.6 APR with a pre-trained model

To automatically generate patches, experiments were conducted using ChatGPT [133].
The original Generative Pre-trained Transformer, or GPT for short, was published in

2.6 APR with a pre-trained model 61

2018. ChatGPT is a descendant of this architecture. Its base is a Transformer, which
is an attention model that learns to focus attention on the previous words that are
most relevant to the task at hand: predicting the next word in the sentence. ChatGPT
is fine-tuned from a model in the GPT-3.5 series, which finished training on a blend
of text and code in early 2022. At the time of writing this paper, some details of
the underlying architecture of ChatGPT are unknown, but the research community
knows that ChatGPT was fine-tuned using supervised learning as well as reinforce-
ment learning [22]. In both cases, humans were involved to improve the model’s
performance by ranking answers from previous conversations and imitating conver-
sations [133]. Although GPT-4 became available while writing this thesis, in my
experiments, I used the GPT-3.5 version of ChatGPT.

2.6.1 Prompts to generate patches

At the time of writing this thesis (Q2 2024), ChatGPT is available via API and also
via a graphical interface, where users can communicate with the model by inputting
a prompt [134]. To fix a candidate buggy function, I experimented with different
configurations: the input of the model consists of the sample code snippet from the
observed datasets + one of the below-listed prompts. These prompts are proposed by
myself, but note that the choice of these is arbitrary, and I included the below ones
because during the experiments, I found them interesting. The following prompts
are proposed:
P1: Fix or improve the following code: [code]

The most natural way to prompt the model is to just input the buggy function with
the instruction to fix it.
P2: Modify the following Java/JavaScript code: [code]

Based on our observations, the keyword fix or repair can confuse the model: it looks
for a syntactical error, but in most cases, the bug is semantic - thus only refinement/-
modification is needed.
P3: Fill in the missing part in the following: [code] [code]

By deleting the original buggy part of the code, we force the model to generate
something in its place.
P4: Continue the implementation of the following function using X

tokens:[code]

Since the underlying model (GPT-3) was trained to estimate the next word in a se-
quence, it makes sense to use the first few statements in the code and ask ChatGPT
to generate the rest.
P5: Fix or improve the following code (with bug location hint): [code]

* Refinement starts here * [code] * Refinement ends here *[code]

Essentially the same as the first prompt listed here, but here the bug location is
marked with comment blocks. The specification of the exact location of a bug might

62 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

not be too realistic since real-life bug localization is usually less precise, but for the
sake of experimentation, it might provide interesting insights.

2.6.2 Evaluation of the generated patches

Since the goal of ChatGPT is to mimic a human conversationalist, it is in its nature
that answers are long and explanatory, with a lot of natural language text. Thus,
the use of standard evaluation metrics (e.g., precision, recall) is not possible. There-
fore, I manually analyzed the answers and classified them into one of the following
categories:

1. Undecided: when we were uncertain about the correctness of the response or
ChatGPT was unable to generate a fix

2. Incorrect patch: the output code is different from the developer patch

3. Fix in answer: the generated answer contains the correct fix for the given bug

4. Semantical match: the proposed fix semantically matches the one generated
by a human engineer

5. Syntactical match: the returned fix is the same as the developer patch, except
for whitespaces

2.6.3 Repair performance of ChatGPT

1 0

15
8

12

75

87

67

84
79

22

8
4 4

12
5 5 4 5

0 0

9

0
3

0

10

20

30

40

50

60

70

80

90

100

P1 P2 P3 P4 P5

N
U

M
B

ER
 O

F
SA

M
P

LE
S

Undecided Incorrect patch Fix in answer Semantical match Syntactical match

Figure 2.17: Manually evaluated results of ChatGPT on the Java dataset

In this section, results are presented obtained by feeding 100 Java and 100 JavaScript
samples to ChatGPT using 5 different prompts (forming a total of 1000 trials/input-
output pairs). Figure 2.17 and Figure 2.18 show the manually evaluated results for

2.6 APR with a pre-trained model 63

Java and JavaScript, respectively. Upon examining the figures, it is evident that Chat-
GPT is not proficient in generating patches that semantically or syntactically match
the developer fix. Instead, it provides suggestions on how to repair the code or gener-
ates a fix that contains the correct solution. The manual evaluation also revealed that
different prompts trigger different response mechanisms from the language model.
For instance, candidates generated using P2 often involve significant code changes,
rarely deleting or simplifying code snippets, but rather creating more advanced solu-
tions. Another observed pattern is that, for the Java dataset and P5 , the generated
answers typically contain a try-catch block (which is less apparent in the case of
JavaScript).

1 0

24
17

9

86

95

65

80 82

4
0

5
2 45 5

1 1
4

0 0
5

0 0
0

10

20

30

40

50

60

70

80

90

100

P1 P2 P3 P4 P5

N
U

M
B

ER
 O

F
SA

M
P

LE
S

Undecided Incorrect patch Fix in answer Semantical match Syntactical match

Figure 2.18: Manually evaluated results of ChatGPT on the JavaScript dataset

Based on the results, it can be concluded that prompts have a major effect on
the repair performance of ChatGPT. Among the proposed prompts, best results have
been achieved in terms of repair suggestions using P1 and P3 in terms of syntactical
matches.

The answers generated using prompts P3 and P5 often did not include the fix be-
cause ChatGPT was unable to generate it. This phenomenon can be observed in cases
where significant changes were made during the bug fix, and these prompts essen-
tially delete the modified part, leaving the model with little information about the
code’s purpose. We also noticed that even small modifications to a prompt can have
a significant impact. For example, modifying P3 to include the number of tokens to
be generated (i.e.: Fill in the missing part in the following code applying

X tokens:)resulted in a significant performance drop. The answers consistently in-
cluded combinations or reformulated versions of statements such as (1) the missing
part cannot be filled with the information provided, (2) in order to complete the
code, more context and information about the specific implementation is needed
and (3) the information provided is not sufficient for me to understand the context

64 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

and purpose of the method. The prompt P5 also often resulted in ”undecided” an-
swers. However, here it can be attributed to the fact that the original code is usually
syntactically correct in its context, and the bug fix usually only makes sense when ob-
serving a larger context or when it is a simple code refinement. Thus, the semantics
of the code remain the same.

An interesting insight is that different prompts tend to modify the code in different
styles, which suggests the possibility of classifying which prompt fixes which types
of bugs, thereby optimizing the repair performance. We observed similar patterns in
both Java and JavaScript cases. However, as shown in Figure 2.17 and Figure 2.18,
ChatGPT suggested significantly more correct fixes for Java. Based on our empirical
observations, we hypothesize that this difference is due to the fact that JavaScript
developers often use custom object creations (e.g., {key: val, ...}) and diverse
libraries, while Java follows more standardized conventions with commonly used
keywords and methods. Overall, we can conclude that the two languages are distinct
and differ greatly in design. Additionally, in the JavaScript dataset, function names
are often omitted due to anonymous and arrow functions, whereas in Java, func-
tion names are present, which helps the model in understanding the purpose of the
function.

Although the possibility of dataset bias cannot be excluded, based on the empirical
evaluation, ChatGPT tends to generate better repair candidates for Java and less
satisfactory ones for JavaScript. Further research in this area is required to determine
the exact reasons for this difference in performance.

One might wonder why variable names are not generalized in the used samples,
as it is a common practice even in state-of-the-art approaches to reduce vocabulary
size [111]. Without in-depth analysis, we experimented with placeholders but expe-
rienced a decrease in performance. It seems that actual variable names and types are
beneficial in bug-fixing with ChatGPT. Without them, the answers usually included
the following observations: (1) TYPE 1 and TYPE 2 are not defined as actual types,
and you will need to replace these placeholders with the appropriate types, or (2)
METHOD 1 is not implemented, and you will need to provide the implementation.
Overall, it appears that language models, such as ChatGPT, contain the most common
names and types, so masking them is not beneficial.

Different prompts tend to generate independent fix templates, and this behav-
ior is also observed for Java and JavaScript. For example, P2 always modified large
chunks of code, while P1 modified only some parts or even left it untouched. Based
on these observations, the results in the Venn diagram in Figure 2.19 are not surpris-
ing. The diagram illustrates the distribution of correct fix answers among the used
prompts, representing the overlap of fixed bugs using the proposed prompts. In the
case of Java, there is only one sample that was fixed by all prompts (a variable name

2.6 APR with a pre-trained model 65

1 10

11
0

2

0

1

1

0

1

1
00

1
13

1
10

2

0 00

2

3

1

0

0

0

0

1

P1
P2
P3
P4
P5

(a) Java - overall 44 distinct fix

6 11

7
0

0

0

0

0

0

0

0
00

0
2

1
00

1

0 00

2

0

0

0

2

0

1

0

P1
P2
P3
P4
P5

(b) JavaScript - overall 24 distinct fix

Figure 2.19: Distribution of correct fix answers in the used prompts

change was necessary, see example 50 in the online appendix), while in the case of
JavaScript, there were none. Furthermore, in the Java dataset, ChatGPT repaired 44
different bugs (including answers with the correct fix, semantically identical patches,
or syntactically identical ones), while in the JavaScript dataset, it repaired only 24.
This also demonstrates that prompts trigger different repair mechanisms, and choos-
ing the right one is a crucial decision.

Since there is insignificant overlap in the fixed bugs and different prompts tend to
repair different types of bugs, no particularly easy-to-fix bugs have been found during
the experiments. However, some bugs are more likely to be correctly patched by a
well-chosen prompt rather than a poorly chosen one.

Discussion

Overall, results show that choosing the right prompt is a key aspect as it biases the
generated fix in many ways. The impact of programming languages is not negligible.
It seems that LLMs, such as ChatGPT, tend to generate higher-quality patches for
Java (a classic OOP language) and lower-quality patches for JavaScript (an event-
driven, functional language). One possible explanation might be that Java is more
human-like and its readability is more natural compared to JavaScript. However, to
understand the in-depth consequences, further research in the area is needed.

Although the same patterns are apparent in the results, the overlap of fixed bugs
is insignificant, and we did not find easy-to-fix bug types in either of the datasets. It
is clear that choosing the right prompt holds great importance. On average, Chat-

66 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

GPT was able to propose corrections in approximately 19% of cases, but choosing
the wrong input format can drop the performance to as low as 6%. Compared to
Transformer models that were fine-tuned to automatically repair programs, this ac-
curacy is not significantly high. For example, on the CodeXGLUE benchmark [111],
the highest-ranking approach achieved 24% on the small dataset, which is compara-
ble to our data. On the other hand, ChatGPT is surprisingly effective at generating
repair candidates, despite not being explicitly trained for that purpose.

As language models continue to improve and evolve, it is possible that prompts
that were effective in the past may become less effective or even irrelevant in the
future. One approach that can be used to mitigate the impact of model evolution is
to periodically re-evaluate the model and prompt selection process to ensure their
continued effectiveness.

2.7 Genetic Automated Program Repair

Since the appearance of GenProg [174] and its genetic approach, many excellent
researchers tried to improve the performance of it by creating several distinct APR
tools [63, 114, 116, 119, 145, 169, 190]. Many of these follow the Generate-and-
Validate approach [58], that is, first a patch is generated and than the test suite is
executed to check the correctness of the generated candidate. In this section Gen-
ProgJS is presented, a general automated repair tool which generates repairs for
real-world JavaScript bugs. To the best of my knowledge it is the first APR tool,
which uses genetic algorithm to generate patches for JS. It is built in a way, that
the progress of patch creation is well traceable, making it possible to further analyse
the usefulness of operators and meta-parameters. This tool is an implementation of
GenProg [98] for JavaScript, with greater or lesser language-specific improvements.

The source code of each individual in the population is represented as an AST,
which holds additional information to make the required code transformations. Al-
though JavaScript (partially) supports Object Oriented Programming (OOP), it is not
guaranteed that every source file in a project is written with this in mind. Thus,
unlike in Java, where the search space for repair code snippets is usually class level
(or package level), in case of JavaScript the fixes were extracted from the bugs own
source file.

2.7.1 GenProg for JavaScript

GenProgJS adapts the genetic approach of GenProg, adding some new operators, to
boost its performance on JavaScript. In this section first the applied genetic algorithm
is presented, then the used mutation and crossover operators.

2.7 Genetic Automated Program Repair 67

Genetic Algorithm

The implementation follows the generic schema of a genetic algorithm, as can be seen
in Algorithm 1. The process starts with the initialization of the population, which
basically means to load the buggy program into the memory. The algorithm runs
until it reaches the maximum number of generations, which is an input parameter.
The essence of the algorithm starts at line 4: the (re)calculation of the fitness values is
carried out here. The calculation goes along a predefined formula which can be seen
in Equation 2.6, where P denotes a program variant,Wpos and Wneg are the weights
for positive (passed) and negative (failed) tests, respectively. In the equation Tpos(P)
and Tneg(P) denotes the set of passed and failed tests respectively on a P program.

fit(P) = Wpos × |{t|t ∈ Tpos(P)}|+Wneg × |{t|t ∈ Tneg(P)}| (2.6)

After updating the fitness values, the offsprings set is being initialized, in which
the descendants of the given population are stored. At the beginning of the iteration
a random number is generated, which reinforces the presence of randomness, as we
can see at line 9 in the algorithm. As the iteration goes through all the mutation
operators, the probability of each operator is examined – this value can be specified
in creation time, and if it is greater than the generated random number, the operator
gets the chance to operate on the given individual. Thus, if an operator is applied
to the current population, new individuals are added to the set containing the de-
scendants. Once this is done for all the operators, the next important statement can
be found at line 14. The situation is similar to the previous operators, but here a
descendant is obtained by crossing two parent elements and not mutating only one
individual. After that a new population is selected from the generated offsprings
using genetic selection.

Selection makes use of the fitness values: those individuals stay in the population,
which have the smallest fitness values, as many as the maximum population number
(an adjustable parameter). To give space to randomness, first an n times larger set
is selected than the size of the population, and after this the individuals are selected
randomly. At the end the iteration counter is increased and the set of potentially
improved programs are expanded. While it is true that at the end of the iteration,
in principle, the population contains only improved individuals, the size of the pop-
ulation is limited, and potentially improved programs may be lost, not to mention
the side effects of randomness. A ”theoretical guarantee” cannot be given that the
generated program variants are correct, but one can have a guess by checking the
fitness value of a given variant – based on this it can be determined if it does not
contain failed tests.

68 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

Algorithm 1 The high-level algorithm of the GenProgJS approach

Input:
- P buggy program
- a set of passed Tpos and failed Tneg tests
- MG max generations
- OPS set of mutation operators

Output:
- REP set of potentially fixed program variants

Algorithm:

1: popul0 ← init popul(P)
2: i← 0
3: REP ← ∅
4: while i < MG do
5: refresh fitness(populi, Tpos, Tneg)
6: offsprings← ∅
7: for all o ∈ OPS do
8: r ← rand()
9: if r < o.probability then

10: offsprings← offsprings ∪ op.operate(populi)
11: end if
12: end for
13: r ← rand()
14: if r < crossover.probability then
15: r1, r2 ← rand()
16: offsprings← offsprings ∪ crossover(populr1 , populr2)
17: end if
18: populi+1 ← select(offsprings)
19: i← i+ 1
20: REP ← REP ∪ {o | o ∈ offsprings ∧ o.fitness == Wpos × |Tpos|}
21: end while

2.7 Genetic Automated Program Repair 69

Operators

Astor [119] is an automated software repair framework for Java. Its purpose is
manifold, in our case we adapted some of the mutation operators from their imple-
mentation to GenProg. GenProgJS also contains JavaScript operators, which are not
present in other repair tools. These operators have been derived by examining works
about the most common JavaScript errors [65, 131, 135]. Hanam et al. [65] cate-
gorized JS bugs in six big groups, based on a large scale experiment on open source
projects. According to them, these categories are: (1) Dereferenced Non-Values, (2)
Incorrect Comparison, (3) Missing argument, (4) Incorrect API config, (5) this not
correctly bound, and (6) Unhandled exception. By manually inspecting the BugsJS
dataset we found that these categories rather well specify the erroneous behaviour
of JavaScript. With these in mind mutation operators have been designed, which try
to tackle with these challenges. In addition operators which create patches that span
through multiple lines (i.e. multi-line repairs) are also included in the tool. Since the
implementation of these operators is not direct work of the author, their description
is opted out from the dissertation but can be found in the online appendix of the
tool [53]. Unlike mutation operators, crossover operator operates on two program
variants, which were selected beforehand by the Python API. Basically it works as
follows:

1. The operator gets the AST representation of each parent individual, where the
buggy lines are.

2. Selects a subtree from both of them.

3. Replaces the subtrees with one another.

4. Selects one of the offsprings.

This offspring then passed back to the genetic algorithm, which handles it as a new in-
dividual. We designed the implementation to be as generic as possible: the described
approach is TreeCrossover, which extends the base Crossover, thus allowing future
extension (e.g. crossover operating on raw source code instead of AST).

2.7.2 Dataset and experiment setup

The BugsJS dataset [64] contains reproducible JavaScript bugs from 10 open-source
Github projects. The dataset contains both single- and multi-line bugs as well. These
projects are listed in Table 2.10. It’s not listed in there that in the original dataset
there are 453 bugs, but not every one of them are ”repairable”, because of the lack
of failed test cases. Thus, the number of bugs, for which there is at least 1 failed test
is 352. For the very same reason, 3 projects which are present in BugsJS are exluded

70 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

from our experiments, namely Hessian.js, Shields and NodeRedis. BugsJS features
a rich interface for accessing the faulty and fixed versions of the programs and ex-
ecuting the corresponding test cases. These features proved to be rather useful for
the comparison of automatically generated patches with the ones which was created
by developers. GenProgJS also incorporates static data from BugsJS, which includes
bug location indices as well, meaning that the implemented tool currently does not
include bug localization, its main purpose is to generate patches automatically.

Table 2.10: Systems contained by the BugsJS dataset.

System kLOC #bugs Github URL

Bower 16 3 https://github.com/bower/bower
Eslint 240 290 https://github.com/eslint/eslint
Express 11 27 https://github.com/expressjs/express
Hexo 17 7 https://github.com/hexojs/hexo
Karma 12 6 https://github.com/karma-runner/karma
Mongoose 65 12 https://github.com/Automattic/mongoose
Pencilblue 16 7 https://github.com/pencilblue/pencilblue

Total 377 352

The GenProgJS tool comes with a number of adjustable parameters. Based on
the literature the size of the population should be kept relatively low, thus we chose
it to be 20 in our experiments. Keeping the number of generations low is implied
in some way by the previous number, since for a few individual many operators can
be applied relatively quickly. One can choose from five stopping criteria when using
the GenProgJS tool: (1) stopping by reaching the maximum generation number, (2)
running time goes beyond the specified value, (3) reaching the specified number of
repair candidates, (4) all of the above criteria must meet, or (5) any of the above cri-
teria must meet. In the experiments the algorithm was terminated when it reached
the maximum number of generations of 30, but this has a relatively small signifi-
cance, since a potentially repaired program is usually created in earlier generations.
Accordingly, it is dependent on the complexity of the repair, and in other scenarios
alternative stopping criteria may be more useful. The weights in the fitness function
are based on the original GenProg implementation: the value of Wpos and Wneg are
1 and 10, respectively. Although other fitness functions are also used [119] ranging
from simple ones such as the number of failed tests to rather complex ones, the point
of them is the same: to punish negative test execution in some way with some weight.
Last but not least, the probability of using each operator must be set. Because the
benefits of using each operator are very difficult to quantify, these probabilities have
not been optimized. The probability to use an operator is 0.8 for every operator.
All experiments were executed on a computer with an Intel(R) Xeon(R) CPU E5-

2.7 Genetic Automated Program Repair 71

2630 v4 @ 2.20GHz processor. The random nature of the genetic algorithm makes it
harder to validate and reproduce our results, thus, for the sake of generalization our
experiments were carried out on 5 independent runs.

2.7.3 Results and Discussion

In this section, the featured automated program repair tool is evaluated and dis-
cussed. First, the overall repair performance is summarized and then further exam-
ination of some repaired bugs is presented to provide analysis of the use of repair
operators and the searching process.

Repaired bugs

GenProgJS found plausible patches for 31 bugs in the BugsJS dataset. In Table 2.11
basic data is collected of these repairs. In order to save space, the following ab-
breviations are being used: F-Feature, Impl-Implementation, Expr-Expression, Decl-
Declaration. The shapes in the fifth column have the following meaning: ✓✓- syntac-
tically identical, ✓- semantically identical, ×- uncertain The fourth column (Average
runtime) averages the time it took to find the first plausible patch over the five in-
dependent runs. For each bug the BugsJS Dissection site6 provides several useful
information on its nature and the bugfix type it requires. In the table, next to the
Bug Id, the bug type according to the dissection taxonomy is shown. The 31 repaired
bugs cover a variety of bug types (31 bugs belong to 14 types of bugs) and belong to
6 different open-source projects, which shows that the system indeed provides a gen-
eral way of bugfixing. Although it is true that almost half of the fixes were generated
for the Eslint project, worth noting that in the BugsJS database there are way more
bugs for this project than for others (see Table 2.10). The overall 31 bug repairs is
a good starting point for JavaScript program repair, GenProg implementations for C
(10) and Java (9) started with even less bug fixes [116, 174]. Considering that state-
of-the-art repair tools can repair up to 30 bugs from a well-known database does not
make these more efficient, since most of the fixed bugs are non-exclusives [97]. Also,
many authors in the APR community reason that the number of patched bugs by each
repair tool is dependent of famous bug databases (e.g. Defects4J) [43] and their pre-
cision/performance could dramatically drop on other previously unseen databases.

The search for plausible patches was not stopped at the first one that is found,
each experiment went until reaching 30 generations. This resulted a variable num-
ber of plausible patches in each run. We experimented with two different settings
of the tool, which we call (1) generator and (2) mutator. In the first case, when
the tool founds a plausible patch, stores it and removes it from the population of
program variables. This approach encourages the tool to generate different patch

6https://bugsjs.github.io/dissection/

72 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

Table 2.11: Repairs on the BugsJS dataset produced by GenProgJS.

Bug Id Taxonomy Fix type

run

Average Identical (Plausible patches)

runtime found? 1 2 3 4 5

1. Bower 2 Incomplete F. Imp.� Configuration Processing Chg. of If Condition Expr. 87646 × - 2 - - 1
2. Eslint 1 Incomplete F. Imp.� Missing Input Validation Chg. of If Condition Expr. 15988 × 1 3 4 6 -
3. Eslint 7 Incomplete F. Imp.� Missing Input Validation Multiple 51 × 15 16 - 17 29
4. Eslint 41 Incomplete F. Impl.� Missing Input Validation Chg. of a return statement 35899 × - 2 3 - 1
5. Eslint 47 < uncategorized > Chg. of Class Field Decl. 113 ✓✓ 1 1 3 1 1
6. Eslint 72 Incorrect F. Impl.� Incorrect Output Message Chg. of Class Field Decl. 1141 ✓✓ 3 4 7 5 7
7. Eslint 94 Incorrect F. Impl.� Missing Type Check Chg. of If Condition Expr. 357 × 70 94 14 67 114
8. Eslint 100 Incorrect F. Impl.� Missing Type Check Chg. of Assignment Expr. 1447 ✓ 20 26 12 9 26
9. Eslint 122 Incorrect F. Impl.� Incorrect Input Validation Chg. of Method Decl. 219 × 1 - - 1 -
10. Eslint 130 Incorrect F. Impl.� Incorrect Data Processing Chg. of Assignment Expr. 8293 × - - 1 - -
11. Eslint 154 < uncategorized > Chg. of Assignment Expr. 2155 × 21 - 25 - 29
12. Eslint 158 Incorrect F. Impl.� Incorrect Input Validation Chg. of Method Call 481 × - - 34 24 20
13. Eslint 217 Generic� Typo Chg. of If Condition Expr. 1329 ✓ 6 5 4 4 6
14. Eslint 221 Incorrect F. Impl.� Incorrect Input Validation Chg. of a return statement 278 ✓ 100 334 221 202 183
15. Eslint 321 Generic� Typo Chg. of If Condition Expr. 12058 ✓ 9 4 5 8 13
16. Eslint 323 Incorrect F. Impl.� Unnecessary Type Check Chg. of If Condition Expr. 716 ✓✓ 260 192 198 159 220
17. Express 2 Incomplete F. Impl.� Incomplete Data Processing Chg. of Method Call 2333 ✓✓ 2 5 4 115 19
18. Express 3 Incomplete F. Impl.� Incomplete Initialization Chg. of Class Field Decl. 9961 × 1 - - - 3
19. Express 5 Incomplete F. Impl.� Incorrect Filepath Chg. of If Condition Expr. 456 × 23 61 57 15 100
20. Express 8 Incorrect F. Impl.� Empty Input Parameters Chg. of If Condition Expr. 357 ✓ 487 350 402 284 468
21. Express 9 < uncategorized > Chg. of Assignment Expr. 3428 × - - - 1 -
22. Express 16 Incorrect F. Impl.� Incorrect Data Processing Multiple 280 × 20 - 20 20 19
23. Express 18 Incorrect F. Impl.� Incorrect Data Processing Chg. of If Condition Expr. 155 × 122 151 67 110 127
24. Express 26 Incomplete F. Impl.� Handling Special Characters Chg. of Assignment Expr. 8635 × - 1 - - -
25. Karma 3 Generic� Missing Return Statement < uncategorized > 9154 ✓ 1 2 3 2 -
26. Karma 4 Incomplete F. Impl.� Missing Input Validation Chg. of If Condition Expr. 7917 × - - 1 - -
27. Karma 9 Incorrect F. Impl.� Incorrect Filepath Chg. of a return statement 232 × 28 30 22 20 31
28. Mongoose 3 Incorrect F. Impl.� Incorrect Data Processing Chg. of If Condition Expr. 1071 ✓✓ 166 286 226 516 270
29. Mongoose 8 Generic� Missing Return Statement < uncategorized > 59144 ✓ - 4 9 22 12
30. Mongoose 11 Incomplete F. Impl.� Missing Input Validation Chg. of If Condition Expr. 8035 × 300 477 382 588 147
31. Pencilblue 4 Incomplete F. Impl.� Missing Type Check Multiple 473 × 5 3 4 4 -

variants. On the other hand, mutator does not remove the plausible patch from the
population, but checks whether the patch was already generated (thus ensuring that
every plausible patch is unique). In the latter case we observed that after the first
plausible patch the process most likely re-used the plausible ones and from that point
constantly generated new plausible candidates. Hence, the first plausible patch has
an emphasized role in the process. Although we expected that the two settings will
produce very different results, the outputs are essentially the same. The following
experiments were carried out using the generator approach, although mutator would
not give very different results.

In Table 2.11 next to the Fix type, the average repair time of the first repair can-
didate is listed in seconds. Despite that the algorithm was not stopped when it found
a plausible patch, the importance of the first found patch is undeniable. Although
it cannot be stated in general that only those operators are useful, which were in-

2.7 Genetic Automated Program Repair 73

volved in the repair process of the first plausible patch, as we progress through the
generations, more and more operators are employed and it is becoming increasingly
difficult to decide which operator application was useful and which was not. We have
also indicated in the table whether there is a plausible patch which is identical (or
lies close) to the human patch.

As can be seen on Table 2.11, in 12 cases the generated patch semantically
matches the developer fix. If one considers every patch, 7 out of 12 repair pro-
cess involved a JS operator (58%), while if we examine only the first candidate, JS
operators has only been used 3 times(25%). Interestingly there are cases where al-
most every applied operator was JS specific (e.g. Eslint 221 or Eslint 321), while no
JS operator were involved during the synthesis of the first patch. During the repair
process of Eslint 221, 5 JS operators were used, whereas for Eslint 321 only 1, which
is NullCheck. This operator alongside with VarChanger were actually used in 6 out of
7 cases of the observed bugs. From this and from other empirical observations we
would like to emphasize the prominent role of these operators in JavaScript program
repair. They are applicable in a lot of real world scenarios and as we have seen here,
it in fact creates correct patches. The NullCheck operator is more interesting in this
sense, since it captures the dynamic nature of JavaScript and summarizes well the
root cause of the misbehavior. Although NullCheck is an eminent operator it is worth
noting that if we consider only the first patch, it was involved only in 1 repair process,
while VarChanger in 3 processes.

To put our results in a context, we observed 18 test-suite-based state-of-the-art
repair tools. Without claiming this to be the complete list of such tools, we did
our best to place the most recent works on the list. Worth noting that data-driven
approaches are intentionally excluded, since the evaluation criteria of those often
differs from test-based repair. This exploratory research is based on the Living Review
on Automated Program Repair by Martin Monperrus [128]. The found tools and
their corresponding ”repair performance” can be found on Table 2.12. Precision
means the precision of correctly fixed bugs in bugs fixed by each APR tool (x/y). Fix
rate is the percentage of bugs for which the repair tool has generated a plausible
patch (y/#bugs). To the best of our knowledge GenProgJS is the first test-suite-
based automated repair tool for JavaScript (and the first which was evaluated on the
BugsJS dataset), we could not directly compare it to other approaches. On the other
hand one can see that both the Fix rate and the Precision is comparable with other
state-of-the-art repair tools. Note that the implementation of GenProg both for C and
Java generated less correct-patches than for JavaScript. This result has little to do
with the quality of the implementation, rather it is due to the unique characteristics
of the observed datasets and/or the applied genetic operators. APR tools written
for Java are usually evaluated Defects4J [81] and do not consider other datasets.
That is why current tools can easily have the problem of overfitting: they are biased

74 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

Table 2.12: Results of test-suite-based program repair tools.

Repair tool # bugs x/y Fix rate Precision

GenProgJS 352 12/31 8.8% 38.7%
GenProg [174] 105 1/10 9.5% 10.0%
JGenProg [116] 224 5/27 12.1% 18.5%
JKali [116] 224 1/22 9.8% 4.5%
MutRepair [38] 463 -/25 18.5% -
jMutRepair [117] 224 3/17 7.6% 17.7%
Nopol [190] 224 5/35 15.6% 14.2%
ARJA [198] 224 18/59 26.3% 30.5%
CapGen [118] 224 21/25 11.2% 84.0%
SimFix [79] 357 34/56 15.6% 60.1%
HDRepair [95] 90 -/23 25.6% -
ACS [188] 224 17/23 10.3% 73.9%
ssFix [185] 357 20/60 16.8% 30.0%
ELIXIR [153] 82 26/41 50% 63.4%
JAID [23] 138 25/31 22.5% 80.6%
SketchFix [73] 357 19/26 7.3% 73.1%
FixMiner [92] 357 26/32 8.9% 81.3%
Prophet [109] 69 14/20 28.9% 70.0%

Average 231 14/31 17.5% 44%
Median 224 17/27 13.9% 38.7%

The column next to the tool name corresponds the total number of bugs on which the given approach was evaluated. In each row,
we provide x/y numbers: x is the number of correctly fixed bugs; y is the number of bugs for which a plausible patch is generated by
the APR tool (i.e., a patch that makes the program pass all test cases).

to the database. Although the available datasets are limited to Java and have been
criticized recently [108], it is relatively well tested and mature compared to what is
available for JavaScript.

In average it took the algorithm quite a long time to execute the 30 generations.
The runtime depends heavily on the test suite: for instance the total execution time of
the Eslint 72 bug was 33 hours, while for Karma 4 only 9 hours. Of course if we are
only interested in the first plausible patch and stop the algorithm then, the execution
time drops heavily. Also, running only the failed test cases in the algorithm is highly
recommended. While the running time is far from optimal, so far, efficiency is not
a widely-valued performance target in the field of APR. Authors in [97] found, that
state-of-the-art APR tools are the least efficient. While execution time is an important
aspect of a software artifact, it always depends on the hardware architecture. The
simplest way to boost the speed of the algorithm, is to put more powerful hardware
behind it. However, there are other options as well. One, so to speak, trivial speed
up possibility is to run the test suite in a smarter way, meaning while the patches

2.7 Genetic Automated Program Repair 75

are generated, first try to fit only on the failed test cases and later check whether
the code transformation ruined the previously positive ones. This approach could
result in a significant improvement, especially in projects where there are thousands
of test cases. The test execution described above is not yet supported by GenProgJS.
We made steps to make it available in the future, though we encountered technical
difficulties (i.e. using Mocha –grep with inline tests).

In the following in the source code listing the original buggy line is marked with
red background and - sign, the automatically generated patch with green back-
ground and + sign, while the developer fix with yellow background and > sign.

Repairing on script language

JavaScript does not compile and is weakly-typed, thus tolerates partially incorrect
programs to run. This removes the part of the candidate validation typically offered
by the compiler for other languages such as C and Java. This lack of validation on
the one hand prolongs the process of patch synthesis (since the patches only rely on
test executions), on the other hand, the algorithm is able to generate a whole new
class of plausible patches, which are fundamentally different from what we get used
to in traditional languages.

Table 2.13: Bugs and their corresponding plausible patches.

Bug Id Operator Original line Plausible patch

Eslint 1 StringCut if (name === "Math" || name === "JSON") if (name <= "Math" || name <= "S")

Eslint 130 CallChanger notEmpty.forEach(function(x, i) { notEmpty.forEach(function(i) {

trimmedLines[i] = x; trimmedLines[i] = context;

Express 3 ShiftOpChanger var key = req.accepts(keys); const key = !! keys.length >> req && req.accepts(keys);

Karma 4 FunctionMaker if (file && file.sourceMap) if (file && (line || ’’).replace())

Mongoose 8 ReturnInserter this.constructor.update.apply(this.constructor, args) return this.constructor.update.apply(this.constructor,args ,args)

Bower 2 ArithmeticOpChg. if (that. options.save || that. options.saveDev) if (that. jsonFile || this. manager * direct)

The first column is the unique identifier of the bug. Next to it the name of the operator is highlighted that created the patch which
we found specific for JavaScript. The remaining columns list the original source line and the automatically generated patch. Code
removals and additions are highlighted with red and green background respectively.

Table 2.13 shows some of the generated patches, which we found to be specific
for JavaScript. Genetic operators in general does not take context into account: if an
integer variable is compared against a number, an operator might replace the vari-
able with another one, which holds a string value for instance. However, in case of
repairing strongly-typed programming languages like Java or C++, the developer
of the APR tool can take this information into account and design the operator to
maintain the type of the variable as well. The types of the variables can also help
to change conditional expressions, since most languages require the condition to be

76 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

a type of boolean or integer. In JavaScript, on the other hand, this intuition cannot
guide the search process. For example comparing two strings or a string and an in-
teger with the <= operator makes perfect sense here as can be seen in the first row
of the table. In Table 2.13 in the rows of Eslint 72 and Karma 4 we can observe the
use of the logical or (||) operator that in these cases serves as a kind of default value
assignment. If we consider the case of Eslint 72, the assignment works as follows:
first, the value of penultimateToken.loc.end is tested and if it is defined, the exe-
cution goes with it, otherwise the rest of the condition will be evaluated. Another
aggravating circumstance for scripting languages is that it is much more difficult to
examine the existence of an (overloaded) function. The example of Mongoose 8
demonstrates this phenomenon: the argument list of apply cannot be obtained and
moreover it can be called with arbitrary number of parameters: if we do not specify
some of the parameters they will be undefined, but the function call is syntactically
correct. On the contrary if too many arguments are given, the leftover will not be
taken into account in the function.

For script languages the search space is orders of magnitude larger than for compiled
languages. This is mainly due to the fact that these languages are generally more
permissive, giving operators more space to operate. Of course, if the operators are
of such that do not leverage the restricting factors detailed above, the repair process
is essentially the same for compiled and script languages (except for candidate val-
idation offered by the compiler). However, the possibility to create more intelligent
repair operators means a big advantage as the search space is definitely huge.

Another aspect of JavaScript program repair is its frequent interaction with the
Document Object Model (DOM). In this work we could not focus on this kind of de-
fects, since the BugsJS dataset does not contain bugs related to DOM manipulations.
However most of the string manipulating operators are suitable for repairing such
dynamic errors

Multi-line repairs

Batch operators have been designed with the aim to generate patches that span mul-
tiple lines. In addition the original ”genetic setup” is also implemented which allows
the creation of multi-line fixes. Although the batch-operators are not able to gener-
ate multi-hunk fixes, we thought the tool could generate repairs more efficiently with
these special operators (e.g. inserting a default branch in a switch-case and/or pro-
tecting a statement with a try-catch block could make sense). These approaches were
constantly used in the search process. From the 31 generated patch 5 is a multi-line
fix, thereby confirming that the approach is widely applicable. Since the human writ-
ten developer fix is available for every bug in the dataset, we compared these with

2.7 Genetic Automated Program Repair 77

the generated patches. We observed that there are cases when (1) the developer
modified more lines than the GenProgJS tool and (2) the other way around: the gen-
erated patch includes multiple lines, while the developer fix is only a single line fix
(usually it was a result of a batch operator and not the standard genetic approach).
We found the case of (1) more interesting and depicted an example on Listing 4.1.

1 } else if(allowDangle === "always -multiline"){

2 > lastTokenOnNewLine = node.loc.end.line !== penultimateToken.loc.end.line;

3 - if(hasDanglingComma && !nodeIsMultiLine){
4 > if(hasDanglingComma && !lastTokenOnNewLine){

5 context.report(lastItem , penultimateToken.loc.start ,

UNEXPECTED_MESSAGE);

6 + hasDanglingComma = penultimateToken.value === ",";

7 - } else if(!hasDanglingComma && nodeIsMultiLine){
8 > } else if(!hasDanglingComma && lastTokenOnNewLine){

9 context.report(lastItem , penultimateToken.loc.end ,

MISSING_MESSAGE);

10

Listing 4.1: (-) Original code of Eslint 7, (+) generated patch and (>) developer fix

The key insight of Listing 4.1 is that the developer modified three lines in the
patch, while the GenProgJS tool only one (the auto-generated patch is more con-
cise than the developer fix). However the generated patch is clearly incorrect, the
tests ran successfully (making it a plausible patch only). In our experiments those
automatically generated patches which modified less lines than the developer were
all incorrect ones. This of course, may be due to the work of chance or the unique
characteristics of the BugsJS database.

Operator expedience

When to use which operator is of great interest, but a far-reaching conclusion can
only be drawn with a sufficiently large database. The characteristics of the BugsJS
database or the JavaScript language might imply the use of some operators, thus
further examination needed in the field with the involvement of other databases and
programming languages as well. We know that in our case each repair category is
represented by a very limited number of bugs, but the correlation of some of the
fix types and operators are easily visible and clearly explainable. Thus, we attempt
to illustrate the reviewed correct patches in a figure and examine the relationship
between operators and fix types.

The resulting chart can be found in Figure 2.20. Operators are listed on the
vertical axis of the heatmap, while on the horizontal axis the repair types can be
observed. Since the number of correctly repaired candidates varied widely, the usage

78 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

Ch
an

ge
 o

f C
las

s F
iel

d
De

cla
ra

tio
n

Ch
an

ge
 o

f I
f C

on
d

iti
on

 E
xp

re
ss

ion

Ch
an

gi
ng

 a
 re

t
ur

n
st

at
em

en
t

Re
m

ov
al

of
 a

n
 If

 P
re

di
ca

te

Re
pl

ac
ig

 a
ss

ig
nm

en
t w

ith
 re

tu
rn

ArithBinChg

ArraySubscripter

BinChg

BwiseBinChg

CallChg

CondBinChg

CondChg

ExprReplacer

FuncCallRm

FuncMaker

IfElseChg

LogicalExprChg

NullCheck

NumChg

ReturnIns

ReturnNone

ShiftChg

StringChg

TreeCrossover

TryCatcher

VarChg
0.0

0.2

0.4

0.7

0.9

1.1

1.3

1.5

1.8

Figure 2.20: Operator usage per fix type

of operators was averaged per bug. That is for example, in case of a fix and two
operators let us consider, that operator p1 was used 10 times, operator p2 was used
15 times, and a total of 10 candidates were generated, then p1 would have the value
of 1 on the figure, while p2 would have the value of 1.5. For the same reason, on the
heatmap not just integer values are indicated (which correspond to operator usages).
The darker the color, the more times an operator was used for a given fix type.

What we can see is that for each fix type which operator made attempt to repair
the bug (and actually during the process the bug was repaired). So for example in
case of the fix type Replacig assignment with return only two operators are being used:
CallChanger and ReturnInserter and it is clear that the latter one was used in most
of the cases (its coloring is much darker). This connection seem to be quite obvious

2.7 Genetic Automated Program Repair 79

and in fact it is, but highlighting the coherency of the operators and fix types further
validates our work and may lead us to a better understanding of the whole process.
The case of Change of If Condition Expression is however less self-evident: almost
every operator made changes on the candidate patches. This clearly implies the fact
that there were no single operator that was suited to repair this type of erroneous
behaviour. The reason of this is however more nuanced. On the one hand, changing
an if expression can involve a variety of changes; replacing an assignment with a
return statement is quite straightforward, while changing an if expression is much
more general. On the other hand, the operators which were used most of the time
here make sense as well:

• CallChanger: is included in most types of repairs, we attribute this to the fact
that functions are heavily used in JavaScript programs.

• ConditionalBinaryOpChanger, BinaryOpChanger and LogicalExprChanger: chang-
ing binary and/or logical operators in an if expression makes sense - this is
basically the goal of these repair operators.

• NullCheck: it is obvious that checking the value of a variable also makes sense
in and if expression. However thanks to the unique nature of JavaScript, this
operator can be used in many scenarios - for example for default value assign-
ment - probably that’s why it is present in other fix types as well.

Defining the operator set that will generate correct fixes is impossible in prac-
tice, at least for now. As we saw on Figure 2.20 there are fix types for which it
is rather easy to create a genetic operator, while for others it is nearly impossible
to do so. Defining newer and newer operators might enhance the performance of
some repair tools on a specific dataset (like BugsJS or Defect4J), however tailoring
operators to databases is not forward-looking. The more operator is present in the
repair process, the probability of each of them to operate will drop accordingly. One
more complicating factor is that before creating a patch, in a real world scenario
no one knows neither the type of the bug nor the type of the fix. Nevertheless, we
can argue that in some cases (e.g. when the test case clearly fails under an if con-
dition), it may be worthwhile to use certain operators in a targeted way. In these
cases targeted operators more likely to synthesize a patch than others. Of course, the
question arises about the use of completely generic operators such as ExprReplacer or
ExprStatementInserter. These kind of operators are able to fix in theory any kind of
bugs, but since the search space is large, they usually fail to find a plausible patch.
Nevertheless, their use is definitely recommended, as only they are able to generalize
to some degree in the traditional genetic approach. Finally we would like to empha-
size that in this experiment we considered only those operator usages which resulted
in a correct patch (and not plausible one).

80 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

Summary

With the following points the conducted experiments can be summarized:

• GenpPogJS successfully generated 31 plausible patches, which is comparable
to the results of other languages.

• 5 plausible patches are identical and another 7 are semantically similar to the
developer fix.

• Through the presentation of the generated patches, we described the unique
nature of Automated Program Repair on JavaScript.

• The first patch of each bug is of prominent importance: both time-wise and
operator-wise.

• Using genetic operator traces may highlight the weaknesses of some operators,
the optimal usage of a given operator depends on the bug type.

• The generated plausible patches show variability in the types of bugs they ad-
dress (14 types of bugs were covered).

2.8 Threats to validity

GenProgJS - G&V program repair
The experiments were conducted on a single bug dataset, which affects the gen-

eralization of the results. BugsJS contains actively maintained Node.js systems, and
it is a manually curated dataset with dissection information, comparable to the De-
fects4J dataset, which is widely used in Java APR studies. We note that BugsJS
contains server side Node.js projects, thus not intended to reason about client side
repair problems. Generate and validate methods heavily depend on test suites, which
are, in case of JavaScript, significantly better developed in server side projects [48].
Another threat is that this is the first work to study repairs on BugsJS, which is not
directly targeted towards repair studies. At some points we needed to double check
statistics and the test evaluation data provided.

The core process of GenProgJS is based on successful origins of GenProg and
JGenProg, however it is adapted to the nature of JavaScript programs and uses an ex-
tended set of operators. We carefully examined several Java repair tools and checked
whether their intended functionality is available in GenProgJS. In addition, we think
that the repairs found by the algorithm validate the selection of operators. The im-
plementation concentrated on the repair part of the process, thus missing fault lo-
calization. The analysis of the role of the operators is based on only one time runs

2.8 Threats to validity 81

for each bug. We addressed this threat by emphasizing the role of the first plausible
patch, since other patches many times are just extensions of the first one. However,
a more targeted analysis is desired on this topic in the future. Finally, the parameters
of the genetic algorithm are originated from the literature. JavaScript programs may
require a different setup, which is to be found using a more exhaustive, systematic
search.

Study on Fault Localization

A possible threat to validity of the FL research relates to the benchmark used.
Only Defects4J has been utilized for evaluation, however it is the most commonly
employed dataset in the literature for conducting similar studies. We believe that
this choice does not impact the assessment of stability. Also, not all bugs from the
benchmark were used in our experiments, due to hardware limitations. This does
not limit the validity of the results, as if a model proves unstable even on this subset,
it implies instability across the entire dataset. In this study we did not investigate the
impact of low convergence levels, posing a threat to the validity of the findings. In
scenarios when the primary objective is not generalization to new data, omitting a
traditional train-test-validation split and convergence levels may align with the goals.

ChatGPT generated patches

ChatGPT was trained on a variety of text information, including source code. De-
spite the fact that this LLM was not fine-tuned to repair programs, it is quite effective
in this task, albeit with some clear limitations. Since the language model used was
also trained on source code, we cannot guarantee that the data used was not included
in their training set. To address this issue, one would need to know exactly which
repositories were included by OpenAI, and that information is not widely available.
However, there are mitigating factors: (1) since ChatGPT was trained until a certain
period of time, the data used by us is from a different version compared to the data
OpenAI might have used; (2) although our dataset satisfies our evaluation criteria, it
constitutes only a tiny fraction of the training data used by OpenAI.

Although choosing the right prompt is of great importance, in this paper, we
did not provide guidance on how to approach the choice of prompts. During our
experiments, we observed that a certain prompt triggers a specific repair mechanism,
and if these templates could be mapped to bug types, it would guide developers
on how to choose the right prompt. ChatGPT (specifically the model in the correct
version) is not openly available, unlike some other LLMs, so reproducibility cannot
be ensured. Since the model is exposed via a UI and an API, OpenAI can change the
model at any time, even without the user knowing it. To address this limitation, we
included input/output prompt samples in the online appendix of this chapter.

82 2 MACHINE LEARNING IN AUTOMATED PROGRAM REPAIR

2.9 Concluding remarks

In this chapter the usage of Machine Learning is discovered in the domain of Auto-
mated Program Repair. First, the application of Deep Learning is discussed in the
start of the repair process: classical Fault Localization methods still seem to be more
reliable than ones supported by AI. Next, a dataset creation process is showcased
which helps in the training and evaluation of repair techniques. Patches are gener-
ated using two quite distinct approaches: genetic algorithm and a transformer model.
Both of these were able to generate correct fixes, although overfitting is still a major
issue in the field.

In the domain of FL, the work only concentrated on the issue of stability; how-
ever, this might be a general problem in SE research using DL. DL reproducibility
can be largely supported by sharing a reproduction package, however without ex-
amining the stability of the proposed model, its applicability is limited. As we have
seen, standard statistical measures serve as a good indicator of whether a model is
stable or not, and the adapted churn metric can further support such arguments. By
applying the proposed method, we believe better practices can be built for publishing
DL applications and testing their stability. Another question that arises is what can
we conclude about the reasons for the instability and how it can be mitigated. The
major problems which we managed to moderate were the imbalanced data, subomp-
timal network architecture and parameterization, and in general, suitability of DL for
SBFL. The implications of this research are twofold. First, SBFL research employing
Machine Learning techniques should pay much higher attention on model stability
because it decisively impacts the soundness and significance of the results. Second,
other SE fields employing DL could also benefit from our stability measurement ap-
proach.

State-of-the-art APR approaches are typically evaluated on their own datasets
which are often not publicly available, which hampers the comparative evaluation
of novel methods. In part of this chapter, the FixJS dataset is described, which in-
cludes ˜300k samples containing separately the buggy and fixed codes. During the
dataset creation process ˜2 million commits were examined and ˜200k JavaScript
files mined. From this massive amount of data three datasets of different sizes were
created: small, medium and large. In each of these datasets three source code rep-
resentations with different abstraction levels are present. FixJS is of similar size like
in [168], but it only contains commit info for a limited time interval. Although the
two datasets operate on different programming languages, tools evaluated on them
are might be comparable.

The presented program repair tool, GenprogJS, is based on a genetic algorithm
and targets buggy programs written in JavaScript. It is designed relying on the well-
known tools for the C and the Java languages, but taking into account the properties

2.9 Concluding remarks 83

of the language it is adapted for. The motivation for this work is that to our best
knowledge there is no such generic test-based repair tool available for JavaScript.
According to the first experiments GenProgJS found plausible repairs for 31 bugs in
6 Node.js projects, which is a comparable result to the related work done on other
languages. We provided a detailed analysis of the applicability of genetic operators,
as well as presented examples of plausible patches that found by the algorithm. We
provide this work and the belonging GitHub repository to facilitate APR research and
hope that this could serve as a baseline for future work on JavaScript programs.

The capabilities of ChatGPT were also investigated in the field of APR, specifically
how it performs when tasked with fixing buggy code. 200 buggy codes were sampled
from seminal APR datasets, consisting of 100 Java and 100 JavaScript samples. 5 in-
put prompts were designed for ChatGPT. The results demonstrate that these prompts
have a significant effect on the repair performance, as different prompts trigger dif-
ferent repair mechanisms of the LLM. The overlap of the fixed bugs is negligible.
Through manual evaluation of the outputs, we observed that better repair candidates
are generated for Java compared to JavaScript. The best prompt for Java generated
correct answers in 19% of cases, while for JavaScript, the same prompt yielded a
performance of only 4%. In total, 44 distinct bugs were repaired in Java and 24
in JavaScript out of the overall 200 samples and 1000 repair trials. We found that
some bugs are more likely to be correctly patched with a well-chosen prompt rather
than a poorly chosen one. Therefore, the most important question before starting the
repair process is to select the appropriate prompt. ChatGPT may be a useful tool for
improving software reliability in practice, but one should not blindly trust the code
it generates. ChatGPT appears equally confident when generating correct code as it
does when generating incorrect code.

The author of this PhD thesis is responsible for the following contributions pre-
sented in this chapter:

II/1. Adaptation of churn to FL.

II/2. Design of experiments in SBFL, neural network optimization approaches.

II/3. Development of the FixJS mining process, dataset curation and publication.

II/4. Implementation of the genetic algorithm in GenProgJS.

II/5. Design and coordination of experiments in genetic program repair.

II/6. Prompting and evaluating ChatGPT in the sampled datasets.

3 AUTOMATED ASSESSMENT OF AUTO-
MATICALLY GENERATED PATCHES

3.1 Overview

Automated Program Repair (APR) strives to minimize the expense associated with
manual bug fixing by developing methods where patches are generated automatically
and then validated against an oracle, such as a test suite. However, due to the poten-
tial imperfections in the oracle, patches validated by it may still be incorrect. Several
approaches have been proposed that use a variety of information from the project
under repair, such as diverse manually designed heuristics or learned embedding vec-
tors. The predominant focus of APR research revolves around Generate-and-Validate
(G&V) approaches, wherein patch candidates are generated (e.g., via genetic algo-
rithm, heuristics, or learned code transformations) and subsequently verified against
an oracle. If the oracle is the test suite (which is usually), the approach is referred
to as test-suite-based program repair. Despite facing criticism on multiple occasions,
these methods still shape the trajectory of APR research [83]. A notable obstacle
encountered in test-suite-based repair is the potential to create a patch that enables
the entire test suite to pass, yet remains incorrect. This phenomenon is commonly
referred to as the overfitting patch problem [172] and the goal of Patch Correctness
Check (PCC) is to determine the actual correctness of a patch, without additional
manual effort.

The generation of overfitting patches leads to the generation of program repair
patches with limited utility, thereby substantially affecting the practical applicability
of program repair. It also makes developers less confident in APR tools, thus reduc-
ing their widespread use. The use of data-augmentation techniques [185, 195], and
repair operator curation [176] can lead to more correct patches, but at the time of
writing this dissertation, the classification of generated patches is the most popular
research direction. Among these recent studies have introduced static methods for
detecting overfitting patches, mainly because of their ease and speed of use. Xin et
al. [186] defined 2 static features in ssFix, while 3 static features are leveraged in
S3 [94] and 202 in ODS [194]. Another approach is the use of source code em-

85

86 3 AUTOMATED ASSESSMENT OF AUTOMATICALLY GENERATED PATCHES

beddings directly [105]. Most of these works operate on distinct datasets, and ap-
proaches are in competition with each other and not complementary. My aim is to
handle all of these crafted knowledge as features for a machine learning model and
select which of these are the most useful in the PCC domain. In addition, similarity
measured on the embedding vector is also introduced as a standalone technique and
as a feature as well.

In the following two experiments are executed and evaluated. First, it is investi-
gated whether similarity is an appropriate approach to tackle with the PCC problem.
To do so, similarity between generated plausible patches and the original code is mea-
sured. The intuition behind similarity-based approach is that more similar patches
deem to be more simple. Using source code embeddings allow us to place these tex-
tual documents into some high-dimensional space, where usual similarity measures
can be applied. For example considering an APR patch that lies closer to the devel-
oper patch than the other patches, it might be better in some way. Of course in higher
dimensions, the similarity metric should be well defined, and the exact meaning of
each dimension can not be interpreted in most cases. In the following similarity is
measured between the generated patches and the original program and also included
the developer fix in the comparison process. The source code similarities are mea-
sured using document/sentence embeddings, specifically with two state of the art
techniques borrowed from the natural language processing domain: Doc2vec [140]
and Bert [40].

Next, 903 patches generated by APR tools in Defects4J [81] and previously la-
beled by researchers [172] are used for classification purposes. For these patches fea-
tures are mapped achieving state-of-the-art results in previous works: hand-crafted
features [94, 176, 186], static code features [194], embedding vectors [105] and
the introduced similarity metrics [31] - thus forming a feature vector of 490 di-
mension. On this set, a feature selection process is performed, which resulted in
a 43-dimensional feature vector. The selected features served as the basis for the
model selection, in which ML models are trained and selected in which Multi-Layer
Perceptron (MLP) yielded the overall best performance.

3.2 Related Work

Evaluating existing Automated Program Repair approaches is crucial, but assess-
ing APR tools solely on plausible patches is inaccurate due to the overfitting is-
sue inherent in test suite-based automatic patch generation. Identifying the correct
patches among plausible ones requires additional developer effort. Recently several
approaches have been proposed to tackle the problem of Patch Correctness Check
(PCC) [193].

3.2 Related Work 87

Generation of correct patches
To generate repair patches as simple as possible, has already mentioned in many

works [121, 168, 177]. This makes the repaired programs more understandable to
humans. Such codes that are generated by APR tools without any effort to make
them readable are called ”alien code” [127]. Although, their subsequent mainte-
nance may be costly, according to a recent study [171] 25.4% (45/177) of the cor-
rect patches generated by APR techniques are syntactically different from developer-
provided ones. Angelix is a semantics-based test-driven automated program repair
tool for C programs, which is capable of producing multi-line fixes, that are less prone
to deleting functionality [122]. The Hercules tool repaired 15 multi-hunk bugs in the
Defects4J dataset, which is an important contribution towards generalizing APR. An
important aspect of the future of program repair is deciding the correctness of can-
didate patches [11]. In [52] authors highlighted this issue as an open question.
Previous works [159] has pointed out that too many test cases are not beneficial
in the field of automatic program repair, as this is when the problem of overfitting
typically occurs. It is also a known phenomenon that there are errors that remain hid-
den under ”laboratory conditions” [71]. Nevertheless, the significance of test cases
is particularly important, as in some cases even the creation of patches is based on
tests [159, 192]. Other approaches also exists, which generate patches by learning
human-written program codes [87, 95]. While such approaches have shown promis-
ing results, they have recently been the subject of several criticisms [126]. Evalu-
ating APR tools based on plausible patches are not accurate, due to the fact of the
overfitting issue in test suite-based automatic patch generation. Finding the correct
patches among the plausible patches requires additional developer workforce. Liu
et al. [108] proposes eight evaluation metrics for fairly assessing the performance
of APR tools beside providing a critical review on the existing evaluation of patch
generation systems.

Feature-based PCC
In a recent study [172] benchmarks the state of art patch correctness techniques

based on the largest patch benchmark so far and gathers the advantages and disad-
vantages of existing approaches beside pointing out a potential direction by integrat-
ing static features with existing methods. Another work where embedding methods
were used for ranking candidates is [165], where beside Doc2Vec and Bert, code2vec
and CC2Vec were also applied. In this work they investigate the discriminative power
of features. They claim that Logistic Regression with BERT embedding scored 0.72%
F-Measure and 0.8% AUC on labeled deduplicated dataset of 1,000 patches. Liu et al.
[108] proposes eight evaluation metrics for fairly assessing the performance of APR
tools in addition to providing a critical review on the existing evaluation of patch
generation systems. Opad [192] (Overfitted Patch Detection) is another tool which
aims to filter out incorrect patches. Opad uses fuzz testing to generate new test cases

88 3 AUTOMATED ASSESSMENT OF AUTOMATICALLY GENERATED PATCHES

and employs two test oracles to enhance the validity checking of automatically gen-
erated patches. Anti-pattern based correction check is also a viable approach [164].
Syntactic or semantic metrics such as cosine similarity and output coverage [94] can
also be applied to measure similarity, like in the tool named Qlose [37]. A recent
study [76] presents a new lightweight specification method that enhances failing
tests with preservation conditions, ensuring that patched and prepatched versions
produce identical outputs under specific conditions.

Dynamic PCC
Numerous studies [121, 168, 177] emphasize the importance of simplifying the

generated repair patches. A recent study [171] found that 25.4% (45/177) of cor-
rect patches generated by APR techniques differ syntactically from those provided by
a developer. Other methods, such as learning from human-written code [87, 95],
have shown promise but have faced recent criticism [126]. In other works [29]
candidate patches were ranked according to their similarity to the original program
and assessed as a recommendation system. Others have also used embedding tech-
niques, but not only focusing on the changed code, but also taking into considera-
tion the unchanged correlated part [105] by measuring the similarity between the
patched method name and the semantic meaning of body of the method [142] or
based their approach onthe fact that similar failing test cases should require similar
patches [166]. The reliability of automated annotations for patch correctness has
also been proposed [93]. Authors compared them with a gold standard of correct-
ness labels for 189 patches, finding that although independent test suites may not
suffice as effective APR oracles, they can augment author annotations. Meanwhile,
Xiong et al. [187] proposed leveraging behavior similarity in test case executions
to determine correct patches. By improving test suites with new inputs and using
behavior similarity, they prevented 56.3% of incorrect patches from being generated.
Syntactic or semantic metrics like Cosine similarity and Output coverage [94] can
also be applied to measure similarity, like in the tool named Qlose [37]. These met-
rics have several limitations, like maximal lines of code to handle or that they need
manual adjustment. On the other hand, the use of document embeddings offers a
flexible alternative. Opad [192] (Overfitted Patch Detection) is another tool, which
aims to filter out incorrect patches. Opad uses fuzz testing to generate new test cases
and employs two test oracles to enhance validity checking of automatically generated
patches. Anti-pattern based correction check is also a viable approach [164].

This work
In a recent study [93] authors assessed reliability of automated annotations on

patch correctness assessment. They constructed a gold set of correctness labels for
189 patches through a user study and then compared these labels with automated
generated annotations to assess reliability. They found that independent test suite

3.3 Method 89

alone might not serve as an effective APR oracle, it can be used to augment author
annotation. In the paper of Xiong et al. [187] the core idea is to exploit the behavior
similarity of test case executions. The passing tests on original and patched programs
are likely to behave similarly while the failing tests on original and patched programs
are likely to behave differently. Based on these observations, they generate new test
inputs to enhance the test suites and use their behavior similarity to determine patch
correctness. With this approach they successfully prevented 56.3% of the incorrect
patches to be generated. In this work, I mainly focused on the optimization of the
features used in ML models and partly with enhancing the performance with deep
learning. The data used is partly from the study of Wang et al. [172] and the engi-
neered features from ODS [194]. The work is fundamentally different from previous
onw: (1) I defined a new similarity-based feature together with others existing ones,
(2) all available features are treated as complements to each other, (3) the goal was
to achieve a cross-research feature set which is the most optimal to PCC. In a recent
study, Tian et al. [167] already proposed deep-combination of features, but their
approach (1) does not apply feature selection, (2) no diverse ML model training is
carried out, and (3) the used static feature set is not as thorough as the ones we
have presented. Here, the training dataset along with the fixed seeds and the source
code of the experiments is also published (which is only partially true for previous
studies).

3.3 Method

Traditionally, a patch is deemed correct if it successfully passes all the test cases,
unfortunately practical test suites often fail to guarantee the accuracy of generated
patches. Consequently, patches that pass all tests (referred to as plausible patches)
may incorrectly address the bug, fail to fully fix the issue, or disrupt intended func-
tionalities, thus becoming overfitting patches [112]. In the following sections two
methods are described: first an embedding based approach, where the similarity
between the original code and the generated patches is the only decisive factor in
the classification task (correct / incorrect patch). Next, other code features are also
considered (alongside with embeddings) and multiple ML classifiers are trained to
support the decision.

3.3.1 Using similarity in PCC

In this section the used approach is described to determine the usefulness of similarity
based patch validation. A high-level overview of the proposed process can be found
in Figure 3.21. First an APR tool creates plausible patches, usually more than one.
In this case the tool always ran for 30 generations resulting in a high number of

90 3 AUTOMATED ASSESSMENT OF AUTOMATICALLY GENERATED PATCHES

plausible patches for each bug. From the original program and from the generated
potentially fixed programs, the faulty line is extracted and a small environment of it
- this snippet of code will serve as a basis for calculating similarity. After a Doc2Vec
model is trained, for every code snippet an N dimensional vector is created on which
one can measure similarity. The generated plausible patches then lined up alongside
with the developer fix, based on the similarities calculated previously. Based on the
list we can analyze which version of the fixed program is the most similar to the
original one - the one created by an APR tool or a developer fix.

USER

DOC2VEC

ORIGINAL

PROGRAM

#1 #2 #3 #4

#5 #6 #7 #8
DEVELOPER FIX

Figure 3.21: Illustration of the implemented similarity-based process.

Ranking plausible patches alongside with the developer patch may point out that
a human written patch differs greatly from the original source code. This does not
necessarily mean that the developer made a mistake: it might be that he adapts a new
approach that was never used before in the code base, or simply made a refactoring
of considerable size.

3.3 Method 91

Learning Document Embeddings

For every bug a small environment of the faulty line was selected, and this was
embedded using Doc2Vec (detailed description of it can be found in Chapter). This
code environment includes the faulty line itself and three lines in front of and behind
it. For the training data this small code fragment is first tokenized with a simple
regular expression, which separates words and punctuations, except for words with
the dot ’.’ (member) operator. For a simple code example like: function foo () {
return this.bar; } the tokenized version would be: ’function’, ’foo’, ’(’,

’)’, ’{’, ’return’, ’this.bar’, ’;’, ’}’ . In Doc2Vec a window size of 5 was
used, which tells the model the maximum distance between the current and predicted
word. Every word with a frequency of less than 2 was ignored. As for the training, the
model was trained for 50 epochs. Every other parameter was left as default. On the
obtained embeddings (vectors containing real numbers) similarity is measured with
the COS3MUL metric, proposed in [102]. According to the authors positive words
still contribute positively towards the similarity, negative words negatively, but with
less susceptibility to one large distance dominating the calculation.

Evaluation of the similarity list

The main question is, whether it is true — from the perspective of Doc2Vec — that
the developer fix lies close to the original program. Current state-of-the-art APR
applications still fail to repair real complex issues, thus the demand for simple patches
may be desirable. To measure the quality of the ranking, we used the Normalized
Discounted Cumulative Gain (nDCG) metric, which is computed as:

nDCGp =
DCGp

IDCGp

(3.7)

Where DCG stands for Discounted Cumulative Gain, IDCG stands for Ideal DCG
and p is a particular rank position. DCG measures the usefulness, or gain, of a docu-
ment based on its position in the result list. IDCG basically is the maximum possible
DCG value that can be achieved on a ranked list - this is done by sorting all relevant
documents in the corpus by their relative relevance. Since the similarity lists vary
in length (the number of plausible patches is different for each bug), consistently
comparing their performance with DCG is not possible. To be able to compare these
lists, cumulative gain at each position for a chosen value of p should be normalized,
thus resulting in the nDCG metric defined above in Equation 3.12. The definition of
DCG and IDCG is presented in Equation 3.8 and Equation 3.9 respectively.

92 3 AUTOMATED ASSESSMENT OF AUTOMATICALLY GENERATED PATCHES

DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
(3.8) IDCGp =

|RELp|∑
i=1

2reli − 1

log2(i+ 1)
(3.9)

The reli is the graded relevance of the result at position i. Since the similarity
values give us the ordering, each item in the list should have another value which
validates its placement. We manually checked each and every generated bug and
categorized them based on their relevance. The following relevance scores were
introduced:

• 3: the developer fix always has the highest relevance, in ranking the most
favorable is when this patch comes first

• 2: the patch syntactically matches the developer fix - we use the term syntactic
match when the codes are the same character by character, apart from white
spaces

• 1: it is semantically identical to the developer fix - that is, the two source codes
have the same semantical meaning, but there may be character differences

• 0: we were uncertain about the patch

• -1: the patch is clearly incorrect (e.g. syntactic errors)

In addition to these, intermediate categories are also conceivable: e.g. -0.5 would
mean that a patch is probably incorrect, but because of the lack of domain knowledge
about the examined system it is undecideable. Two experienced software developers
separately annotated the generated patches, they did not have the chance to influ-
ence each other. In cases where individual scores differed a third expert decided on
the correctness of the patch. These annotated relevance scores are available in an
online appendix 7.

3.3.2 Feature-based PCC

In this section the usefulness of features proposed in previous works are investigated,
to tackle the problem of identifying correct patches among incorrect and plausible
APR-generated patches. First the necessary background is provided on the used en-
gineered and learned features.

7https://github.com/RGAI-USZ/JS-patch-exploration-APR2021

3.3 Method 93

Features used in Classification

Generally, within Machine Learning, a feature represents a distinct and measur-
able attribute or characteristic of a phenomenon, while a feature vector refers to
real numbers in an n-dimensional space, consisting of features [157]. Features are
widely used in Software Engineering for diverse tasks including just-in-time quality
assurance [82], fault localization [89], vulnerability prediction [36] and others. In
this work, we focus on optimal feature selection in the domain of Patch Correctness
Check. The overview of these features van be found in Table 3.14.

Hand-crafted Features
Manually crafting features so that a classifier can prioritize correct patches over

overfitting ones is not uncommon in the literature. Features of ssFix [186], S3 [94]
and CapGen [176] are adapted, as their implementation is available and because
these values are available in the seminal work of Wang et al. [172]. The features
introduced in S3 quantify both syntactic and semantic disparities between a candi-
date solution and the original buggy code. Subsequently, these features are used to
prioritize and discern correct patches. In ssFix, authors employ token-based syntax
representation of code to pinpoint syntax-related code fragments, aiming to generate
accurate patches. CapGen has proposed three context-aware models - the genealogy
model, variable model, and dependency model, respectively - to prioritize correct
patches over overfitting ones.

Engineered Features
ODS [194] is also used to extract metrics from the source code. It performs static

analysis of the differences in AST between the buggy and patched programs; these
differences are encoded as feature vectors. The authors grouped the ODS features
into three categories: code description features, repair pattern features, and contex-
tual syntactic features. We extracted these features using Coming 8, an open source
commit analysis tool. Due to space limitations, not all features are described here
(they are available in the original study), just an overview in Table 3.14.

Table 3.14: The used PCC features to classify overfitting patches.

Category Feature Origin Description # dim

Token- Strct/Conpt ssFix [186] Structural & conceptual token similarity obtained from the buggy code and the generated patch. 2
Hand-crafted AST/Variable- Dist S3 [94] Number of the AST changes and distances between the vectors representing AST patch nodes. 4

Var/Syn/Sem- Simi CapGen [176] Similarity between variables / syntactic structures / contextual nodes affected by the change. 3

Code descriptor ODS [194] Describe the characteristics of code elements (operators, variables, statements, AST operations) 155
Engineered Repair pattern ODS [194] Repair patterns based on the work of Sobreira et al. [160] as binary features. 38

Contextual Syntactic ODS [194] Describe the scope, parent and children’s similarities of modified statements. 24

Dynamic Embedding Cache [105] Dimensions of the embedded patch. 256
Similarity [31] Similarity metrics measured between the embeddings of the patch and the original program. 8

490

8https://github.com/SpoonLabs/coming

94 3 AUTOMATED ASSESSMENT OF AUTOMATICALLY GENERATED PATCHES

Code Embeddings and Patch Similarity
Mapping source code into vector space can be beneficial in many ways, it can

grasp aspects of the program that other metrics cannot. In the domain of patch cor-
rectness assessment, these techniques assess patch correctness by embedding token
sequences extracted from the changed code of a generated patch [105]. Here again,
Doc2Vec is used to gerenate embeddings, detailed in Chapter . The embeddings can
be used in various ways; two scenarios are considered in this study.

1. Use the generated embeddings directly, as if a dimension of the embedded vec-
tor is a feature. Thus, each dimension is treated as a metric measured on the
patch.

2. Measure the vector distance between the embedded vector of the patch and the
original program. The intuition here is the same as described in Section 3.3.1

Experiment Setup

Figure 3.22 shows a comprehensive overview of this classification task. The goal is
straightforward: find the set of features and ML models that most effectively detect
overfitting patches. In Figure 3.22 (a) one can see that features are concatenated
as is and then selected some of them, while (b) part depicts a deep representation
model where features are fed into a neural architecture, allowing the net to learn
the weights and biases of each feature. The obtained features from previous studies,
described in Section 3.3.2, form a feature vector of l=480 dimensions (composing
of both static and dynamic features). Using feature selection techniques, l’ features
are selected from these (l’ ¡ l) - the ones that best explain the input data. ML models
are trained and evaluated on this subset to determine which yields the most optimal
results. In the experiments a 32-bit Intel(R) Core(TM) i7-10510U CPU of 1.80GHz
was used to train and evaluate each model and feature configuration. All of the code
runs in Python 3.11.6, using the scikit-learn library version 1.4.0 [138]. The source
code and detailed experimental data can be found in the online appendix [5].

Feature Selection

Feature selection is the process of selecting a subset of relevant features to be used in
model training [154]. There are many available feature selection algorithms, from
which the scikit-learn implementation of RFECV was used [150] to achieve the goal
depicted in Figure 3.22 (a). It recursively eliminates features with cross-validation
to select the most important features. The number of features selected is tuned
automatically by fitting an RFE selector to the different cross-validation splits. A
RandomForestClassifier was used as an estimator to provide information about feature
importance mainly because it is a preferred model in previous PCC studies [172, 194]

3.3 Method 95

f1 f2 … fh fh+1 fh+2 … fe fe+1 fe+2 … fs fs+1 fs+2 … fl

. . .

f1 f2 … fh fh+1 fh+2 … fe fe+1 fe+2 … fs fs+1 fs+2 … fl

Hand crafted Engineered Distances Code embedding

Feature selection

f1 f2 … fl’-1 fl'

. . .

f1 f2 … fl’-1 fl'

l’ < l

Training models

Probability of a

patch being correct
Correct /

Overfitting

correct

overfitting

f1 f2 … fs fs+1 fs+2 … fl'

f1 f2 … fs fs+1 fs+2 … fl'

Selected

embedding dims

Selected static

features

Dense layers Dense layers

Cocatenation

Dense layers

0 - 1

(a) Naïve Vector Concatenation (b) Deep Representation Model

Figure 3.22: A high level overview of the used features and their optimization for
PCC. On part (a) all features are concatenated then the most descriptive ones are se-
lected to teach several ML models. On (b) static features (Hand-crafted, Engineered and
Distances) and embeddings are first fed into dense layers and the neural network con-
catenates them, allowing it to learn a dynamic representation.

and it has easily accessible coefficients required by the feature selection algorithm.
Experiments were carried out in a Stratified K-Fold setting using 10 splits and the
minimum number of features was required to be 10.

ML models

The utilization of scikit-learn is motivated by its accessibility, robust performance,
and inclusion of well-established, reliable models, facilitating the execution of our
experiments with ease and efficacy. The following 10 models were used in part of our
experiments (Figure 3.22 (a)): DecisionTreeClassifier, GaussianNB, KNeighborsClas-
sifier, LinearDiscriminantAnalysis, LogisticRegression, MLPClassifier, RandomForest-
Classifier, LogisticRegression, SGDClassifier and SVC. The description each of these
models can be found the official documentation of the scikit-learn library [155]. The
concatenated features form the input for these models.

To further enhance the performance, in addition to built-in ML models, a neural
network was built using Pytorch 2.1.2. It is able to combine features with learned
embeddings as suggested by Tian et al. [167]. The approach can be observed on
Figure 3.22 (b). Note that this model operates on the already selected features,
but treats embeddings dimensions and numeric features separately and concatenates
them dynamically. The gist of this approach is that the neural architecture can learn
the weighting of each feature and is able to inference more complex relations com-
pared to naive concatenation.

96 3 AUTOMATED ASSESSMENT OF AUTOMATICALLY GENERATED PATCHES

Evaluating the Classification Task

Previous studies have underscored the importance of PCC techniques in avoiding
the dismissal of correct patches (as they are quite expensive to generate in the first
place) [197]. Consequently, a PCC technique is deemed effective if it produces mini-
mal false positives while maintaining a high recall rate. To quantify the classification
results, the following metrics are introduced:

• True Positive: An overfitting patch is correctly identified.

• False Positive: A correct patch identified as overfitting.

• False Negative: An overfitting patch identified as correct.

• True Negative: A correct patch identified as correct.

Using the above items, precision, recall, and F-meaure can be computed. Precision
is the proportion between correctly classified overfitting patches among all the clas-
sified instances, while recall is the proportion between correctly classified overfitting
patches and all relevant items. They are computed as:

precision =
TP

TP + FP
(3.10) recall =

TP

TP + FN
(3.11)

The F-measure can be defined by the two metrics above:

Fβ =
(β2 + 1) ∗ precision ∗ recall

β2 ∗ precision+ recall
(3.12)

β signifies the importance of precision or recall. If we want precision and recall to
weigh in with exact the same importance, we simply assign the value 1 to β.

3.4 Datasets

First, the results of similarity-based approach is presented. To show the effective-
ness of this approach, for a given bug several generated patches need to be present.
To the best of my knowledge no such dataset exists, thus the previously presented
GenProgJS tool was used to generate patches on the BugsJS dataset. This process is
detailed below. To evaluate feature-based PCC we used a widely adapted and curated
Java dataset, for which the previously showcased features are their calculations are
already implemented and accessible.

3.4 Datasets 97

3.4.1 Sample Plausible Patches to Measure Similarities

The BugsJS dataset [64] containes 453 reproducible JavaScript bugs from 10 open-
source Github projects. The dataset contains multi-line bugs as well, which are be-
yond the scope of the current research. There are 130 single-line bugs, but not every
one of them are ”repairable”, because of the lack of failed test cases. Thus, the num-
ber of single-line bugs, for which there is at least 1 failed test is 126 (and 94 only
comes from the Eslint project). BugsJS features a rich interface for accessing the
faulty and fixed versions of the programs and executing the corresponding test cases.
These features proved to be rather useful for the comparison of automatically gen-
erated patches with the ones which were created by developers. Experiments were
limited strictly to the Eslint project because it is the largest project in the BugsJS
dataset, it contains the most single-line errors. The automatic repair tool which was
used was able to repair 10 bugs from 94 in the Eslint project. Since the tool was
configured to run for 30 generations in every case (so it does not stop at first when
a fix is found), there was a high number of repair candidates in most cases of the
runs as can be seen in Table 3.15. In the first column one can find the id of each bug
and next to it how many plausible patches were generated to it. The two remaining
columns show the original source code and a fix for it created by a developer.

Table 3.15: Plausible patches and their corresponding developer fix in the Eslint project

Bug Id
(Eslint) No. Original line Developer fix

1 4 if (name === "Math" || name === "JSON") if (name === "Math" || name === "JSON" || name === "Reflect")

41 3 end.column === line.length) (end. line === lineNumber && end. column === line.length));

47 3 column: 1 column: 0

72 7 loc: lastItem .loc.end, loc: penultimateToken .loc.end,

94 14 op.type === "Punctuator" && (op.type === "Punctuator" || op.type === "Keyword") &&

100 12 penultimateType === "ObjectExpression" (penultimateType === "ObjectExpression"

|| penultimateType === "ObjectPattern")

217 4 if (!options || typeof option === "string") if (!options || typeof options === "string")

221 221 return parent.static ; return false ;

321 5 ...loc.end.line !== node.loc. end .line &&... ...loc.end.line !== node.loc. start .line &&...

323 192 else if (definition.type === "Parameter" else if (definition.type === "Parameter")

&& node.type === "FunctionDeclaration")

Total 465

We can see that there are bugs of different difficulty in Table 3.15: from quite
simple where a number had to be replaced (Eslint 47), to quite complex where a
conditional expression needed to be supplemented (Eslint 100). The number of gen-
erated candidates also varies greatly, this is due to the difficulty of the fixes and the
random factor in the GenProg algorithm. In total 465 plausible patches were gener-

98 3 AUTOMATED ASSESSMENT OF AUTOMATICALLY GENERATED PATCHES

ated. These patches were checked and found that only three of these are syntactically
identical to the developer fix (Eslint 47, Eslint 323 and Eslint 72), although many of
them are semantically identical.

It is apparent that for Eslint 221 and Eslint 323 the number of plausible patches is
orders of magnitude more than for any other. To explain it let us examine the nature
of these bugs. The case of Eslint 221 is quite easy to understand: the return value
should be false, making it rather simple to generate. We examined the generated
patches and found that essentially anything would satisfy this criteria: in JavaScript
0, -0, null, false, NaN, undefined, or the empty string ("") create an object with an
initial value of false. On the other hand in case of Eslint 323 the high number of
plausible patches is most probably because of the weak test suite. As we can see from
Table 3.15 the fix is not quite obvious, but after carefully inspecting the generated
fixes we came to the conclusion that every modification on which the if condition
evaluated to true successfully passed testing.

3.4.2 Dataset on feature-based PCC

Wang et al. [172] published a curated dataset comprising 902 labeled patches from
Defects4J bugs, generated by 19 repair tools. This dataset is being used, which
encompasses 654 patches labeled as overfitting and 248 patches labeled as correct
by the respective authors. The dataset is still actively maintained, easily available,
and popular to this day. In their online appendix 9, authors have also published the
measured hand-crafted features on this dataset which we used directly from there.
ODS features are calculated using their tool, while dynamic features are calculated
using our implementation available in the attached repository [5].

3.5 Results

3.5.1 Similarity-based Evaluation

The calculated metric values of nDCG described in Equation 3.12 can be found in
Figure 3.23. We can see that in case of Eslint 217 and Eslint 41 the values are 1.0,
this is clearly because the developer fix was ranked to the first place in these cases
and irrelevant documents were placed on the end of the similarity list. Based on this
metric it is clear that in most cases similarity lists hold their place in ranking patches.
The nDCG metric value reaches its lowest point at the Eslint 94 bug. If we take a
look at the subplot (e) at Figure 3.24 we can see that indeed Doc2vec failed to rank
the developer fix at the top of the list. Moreover, most of the patches at the top of the
list are incorrect ones, meaning that they hold low relevance. The case of Eslint 100

9https://github.com/claudeyj/patch correctness/

3.5 Results 99

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Eslint_94 Eslint_41 Eslint_72 Eslint_1 Eslint_100 Eslint_217 Eslint_321 Eslint_221 Eslint_47 Eslint_323

Developer 1 Developer 2

Figure 3.23: The values of nDCG based on the two developer evaluation. The possible
values of the metric ranges from 0.0 to 1.0, a higher metric value means better ranking.

is different from the previous one. Although it is true that the nDCG value of Eslint
94 is 0.67, while for Eslint 100 it is 0.84, compared to others it still seems to be quite
low. If we take a look at the rankings at Figure 3.24 we can see that in this case the
developer fix is placed on the second place of the ranked list. So the question arises,
what causes the low metric value? The answer is quite obvious: the patch which is
placed ahead is an incorrect one, decreasing the metric value drastically. The case
of Eslint 221 is also interesting: although the developer patch is placed closer to the
end of the list than anywhere else, the nDCG metric value is not that low. This is
due to the fact that in case of this bug the majority of generated plausible patches
are semantically the same as the developer fix, resulting in overall higher relevance
scores.

The produced similarity lists can be observed on Figure 3.24. It is cleary visible
that in most cases the developer fix has been placed on a prime location in the sim-
ilarity list. The developer fix is at the top of the list in 3 cases and takes the second
place in 4 cases. Note that the ranking of the lists are quite instable for two reasons:
(1) the numerical difference is not outstanding between each similarity value, and
(2) Doc2Vec fails to give back identical similarity value even though the same doc-
uments are compared. Because of these previously mentioned limitations different
Doc2Vec model trainings can even result in completely distinct lists of similarities.

In Listing 5.1 one can examine the original line with red background and the line
that was generated by an APR tool with green background. In this case the developer
fix adds another logical testing in the if condition, allowing the name variable to have
the value "Reflect" as well. The modifications which the APR tool made bears no
resemblance to this. At first sight it does show greater similarity with the original
line than the developer fix, however the generated code is clearly not the best. First

100 3 AUTOMATED ASSESSMENT OF AUTOMATICALLY GENERATED PATCHES

1 dev 0 3 20.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 0.91

(a) Eslint 1

dev 1 2 00.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 0.91

(b) Eslint 41

0 dev 2 10.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.86

(c) Eslint 47

0 dev 2 5 4 1 3 60.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 0.91

(d) Eslint 72

1 0 7 12 2 3 10dev 4 6 8 5 11 9 130.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.88

(e) Eslint 94

3 dev 1 2 4 7 6 0 5 8 9 11 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.87

(f) Eslint 100

dev 0 2 1 30.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 0.93

(g) Eslint 217

40 24 21 1 52 28 96 84 25 203 85 63 3 31 79 16 17 2 32 76 123 135 120 46 104 186 158 138 60 4 180 201 89 82 55 171 97 100 22 133 56 71 154 137 23 33 125 0 112 105 10 26 121 144 18 6 34 27 107 101 11 35 68 36 148 87 49 59 42 118 134 111 164 140 64 74 61 109 41 114 8 163 93 110 162 106 167 13 12 145 75 80 159 98 90 150 5 202 77 54 7 130 69 72 66 102 37 73 191 78 15 9 94 14 131 187 160 70 103 91 51 57 183 146 92 53 88 50 149 113 115 108 129 124 116 20 127 86 44 182 141 178 48 117 168 161 128 99 58 38 dev 30 65 176 198 136 19 126 172 132 81 67 45 170 95 152 151 39 43 169 62 83 177 188 185 196 142 122 147 143 139 195 192 119 181 153 194 208 199 189 200 210 29 193 173 156 174 218 166 211 207 197 184 205 165 179 157 155 175 204 217 190 209 216 220 206 213 215 219 214 212 470.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.74

(h) Eslint 221

dev 0 3 2 4 10.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 0.95

(i) Eslint 321

2 108 11 12 1 133 101 dev 118 174 31 66 3 138 100 83 60 163 113 23 35 160 13 112 136 74 24 51 42 7 185 34 134 141 4 135 76 172 49 10 116 122 155 151 153 92 50 183 114 158 43 20 9 132 25 120 102 78 32 107 125 110 130 87 90 82 96 79 129 15 41 19 14 109 5 62 44 105 6 45 71 52 67 73 88 131 33 169 26 123 137 127 64 145 17 85 98 68 189 187 80 93 182 161 55 117 162 188 115 150 106 53 89 111 77 152 119 166 121 124 63 103 168 157 94 171 70 46 154 176 170 72 91 181 95 22 144 97 184 16 81 30 178 75 8 142 149 147 54 143 28 65 190 86 18 186 179 21 69 146 104 37 165 61 58 27 173 139 84 99 180 167 57 0 29 126 38 191 128 40 48 148 39 56 156 159 177 164 47 59 175 140 360.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.75

(j) Eslint 323

APR patch Developer fix

Figure 3.24: The developer fix and patches ranked based on their similarity to the
original program

let us understand the generated line of code. The name variable contains a string
value and it is compared with <= relation to another string value. In JavaScript if
both values are strings, they are compared based on the values of the Unicode code
points they contain. Meaning that every string which begins with a letter in front
of S in alphabetical order will evaluate to true otherwise false - according to this
if the name variable has the value "Reflect" or "JSON" it will evaluate to true. So
far not that bad. Surprisingly changing the logical or (||) operator to the bitwise or
operator (|) does not have any effect here, since the bitwise operation false | true

results in 1 which converted to boolean evaluates to true. Similarly true for every
case of the logical operation.

1 const name = node.callee.name;

2

3 - if (name === "Math" || name === "JSON") {
4 + if (name === "Math" | name <= ’S’) {
5 context.report(node , " ’{{name}}’ is not a function.", { name

});

6 }

7

Listing 5.1: Original code of Eslint 1 (-), and the most similar automatically generated patch
to it (+)

Overall classifying this patch as an incorrect feels a bit ill-judged. If an experi-
enced software developer examines this code modification, he comes to the conclu-
sion that the fix has something to do with the name variable. However it might be
true that the generated patch is overfitted, it contains valuable information about

3.5 Results 101

the repair i.e. gives a hint to the developer which variable might cause the incorrect
behaviour.

Based on the observed patches, a more sophisticated technique is needed to validate
patches than plain source code embeddings. As we have seen the problem itself is more
nuanced and complex than a simple true/false classification that can be decided using
a threshold.

One can argue that this is due to the fact that fixes are often limited to a single
line, and in some cases only a single character is affected (eg. > instead of < in an if

structure). It needs to be mentioned that the patches were generated with the use of
a single APR tool, it is hard to justify if the conclusions are valid for other tools and
multi-line fixes as well. However, defining a threshold and based on this deciding
on the correctness of a patch, seems to oversimplify the decision criterion too much.
On the other hand, the strive for understandable and simple patches is a reasonable
and important aspect of automatic software repair. Generating unreadable patches
does not help much with a real-life problem. But if a patch is not too similar to the
original program, does it exclusively mean that it is unreadable? On Listing 5.2 we
can observe another code snippet, but this time the least similar generated patch is
picked from the bug Eslint 321. At first glance the two lines seem to be very similar
even though in the similarity list it was the last one. The latter does not necessarily
mean a big difference, especially if there are very few candidates: in this special case
even the last plausible patch shows great similarities with the original program.

1 fix: fixer=>fixer.insertTextBefore(node , "\n")

2 });

3

4 - else if(tokenBefore.loc.end.line !== node.loc.end.line && option==="beside") {
5 + else if(tokenBefore.loc.end.line - node.loc.start.line && option===’beside’) {
6 context.report ({

7 node ,

8

Listing 5.2: Original code of Eslint 321 (-), and the least similar automatically generated patch
to it (+)

In case of Eslint 321 the developer fix only changed the end word to start. This
is obviously a small bug and is probably due to developer inattention. Though the
automatically generated fix also changed this class member it made further changes.
First it changed the double quotes (") to single ones (’). Next deleted the strict not
equal operator (!==) to subtraction (-). The first change obviously did not affect the
meaning of the if structure, but neither did the latter, because if the observed two

102 3 AUTOMATED ASSESSMENT OF AUTOMATICALLY GENERATED PATCHES

values are equal and if we subtract them, the result is 0, which is evaluated to false

in JavaScript.

The last item in the similarity list can also be a semantically correct one, even though
it is less similar to the original program. From this, it can be concluded that while
similarity-based methods may be suitable for filtering out too many patches, one
should use them for classification cautiously bearing in mind the possible misclassifi-
cation.

3.5.2 Feature-based Classification

Feature Selection

To examine the effect of each feature, first 10 independent trainings were carried out
and executed the feature selection algorithm described in Section 3.3.2. The results
of the feature selection can be observed in Table 3.16. In the table, the feature set
which opts for the best results (cells of color gray) and the intersection of the 10

independent trainings (cells of color violet) are included. In the performed experi-
ments, we found that the output of the feature selection algorithm varies greatly due
to the effect of random factors during the training phase. Despite these differences,
it is clear that most features can be opted out, and that hand-crafted ones form the
most important subset of such features. It is also interesting to observe that some
embedding dimensions hold more valuable information than others.

Based on the experiment data, on the used ML models and parameter configurations,
some features are not beneficial - omitting these does not affect the results negatively,
quite the opposite, precision and recall improved in best scenarios. Overall 43 features
have been selected by a single run and 15 joint features have been identified across
all the 10 independent trainings.

To further investigate each feature subset, 10 independent classifiers have been
trained on each. The results are listed in Table 3.17. What we can see is that the MIN
and MAX values vary greatly in all of the feature sets. Despite the deviations, it is
evident that some features can be opted out without any negative consequences and
that on average the RFECVintersect yielded the best result in Precision, while RFECVbest

in Recall and F1 - thus it is more suitable for PCC. Certain embedding dimensions
apear to contain valuable information; however, the model fails to encompass all
necessary components. Sole reliance on embeddings led to a decrease in classifier
performance. A future research direction could be to investigate what (if any) em-
bedding dimension is equivalent to which hand-crafted/engineered feature.

The selected engineered features rmLineNo and P4J LATER NONZERO CONST VF seem

3.5 Results 103

Table 3.16: Features selected using the RFECV algorithm:
features that yield best performance for a single execution among the 10 feature selections.
intersection between all of the features that were selected in the 10 feature optimization

turns.

Hand-crafted Engineered Distances Embeddings

s3-tool patchedFileNo cosine distance vec dim 0 vec dim 62 vec dim 182
AST-tool addLineNo braycurtis distance vec dim 5 . . . vec dim 183
Cosine-tool rmLineNo canberra distance vec dim 6 vec dim 84 vec dim 184
s3variable-tool insertIfFalse chebyshev distance vec dim 7 . . . vec dim 185
variable-tool updIfFalse cityblock distance vec dim 8 vec dim 90 vec dim 186
syntax-tool ifFalse euclidean distance
semantic-tool dupArgsInvocation minkowski distance vec dim 12 vec dim 108 vec dim 192
structural score removeNullinCond seuclidean distance . . . vec dim 109 . . .
conceptual score condLogicReduce vec dim 21 vec dim 110 vec dim 200

insertBooleanLiteral . . . vec dim 111 . . .
insertNewConstLiteral vec dim 27 . . . vec dim 208
UpdateLiteral . . . vec dim 130 vec dim 209
wrapsTryCatch vec dim 31 . . . vec dim 210
. . . vec dim 32 vec dim 144 vec dim 211
P4J LATER MEMBER VF . . . vec dim 145 . . .
P4J LATER MODIFIED SIMILAR VF vec dim 43 . . . vec dim 220
P4J LATER MODIFIED VF . . . vec dim 161 vec dim 221
P4J LATER NONZERO CONST VF vec dim 51
P4J LATER OP ADD AF vec dim 52 vec dim 167 vec dim 225
.
S6 METHOD THROWS EXCEPTION vec dim 58 vec dim 243

9 / 7 7 217 / 2 2 8 / 1 0 256 / 33 6 Overall: 490 / 43 15

to grasp an important aspect of PCC, as these are selected in all feature selection at-
tempts. Together with the hand-crafted features, these form the most essential part
of the features. Table 3.17 supports this observation, as the Engineeredplus subset
yields only slightly lower F1 values than the optimized sets. However, it should be
noted that Engineered features only bring an additional absolute growth of 1% on
average, which can also be attributed to random factors. Random interplay is re-
flected in huge differences in performance in our experiments. This is not unique
for PCC, but for example, if we consider the subset of the distance metrics, it can be
seen that in the worst-case scenario it achieved 0% precision, while on the best case
100% precision (but on average quite moderate). We did not explore the random
effects on the embedding model but hypothesize that they might have a similar im-
pact. By selecting alternative features, not limited to embeddings and distances, one
may potentially mitigate this effect.

Model Selection

Prior studies on PCC [172, 194] have exhibited a predilection for Random Forest
as the classifier of choice. Additionally, it has been widely adopted in addressing
various Software Engineering-related issues due to its demonstrated efficacy across
diverse tasks [15, 18]. These experiences drove our intuition to use Random Forest

104 3 AUTOMATED ASSESSMENT OF AUTOMATICALLY GENERATED PATCHES

Table 3.17: Measures on various feature
subsets.

F1 Prec Recall

All .62 .65 .59
RFECVbest .65 .69 .59
RFECVintersect .58 .58 .50
Distances .00 .00 .00
Embeddings .54 .51 .45
Engineered .56 .52 .55
Engineeredplus .63 .63 .61

MIN

Hand-crafted .17 .35 .10

All .80 .81 .82
RFECVbest .81 .84 .78
RFECVintersect .80 .85 .76
Distances .18 .59 .11
Embeddings .70 .69 .71
Engineered .76 .76 .76
Engineeredplus .77 .77 .78

MEAN

Hand-crafted .42 .57 .35

All .92 .96 .96
RFECVbest .91 1.00 .97
RFECVintersect .91 1.00 .90
Distances .41 1.00 .31
Embeddings .81 .88 .90
Engineered .89 .95 .93
Engineeredplus .90 .96 .93

MAX

Hand-crafted .59 .89 .61

Table 3.18: Evaluation of the RFECVbest

feature set on 9 ML classifiers.

F1 Prec Recall

DecisionTree .46 .45 .45
GaussianNB .44 .30 .82
KNeighbors .45 .43 .46
LDA .52 .46 .54

MIN LogRegression .62 .59 .62
MLPClassifier .62 .65 .59
RandomForest .61 .70 .48
SGDClassifier .55 .53 .52
SVC .60 .60 .52

DecisionTree .64 .64 .65
GaussianNB .51 .35 .94
KNeighbors .70 .69 .71
LDA .67 .60 .76

MEAN LogRegression .74 .69 .79
MLPClassifier .80 .81 .82
RandomForest .77 .86 .71
SGDClassifier .71 .68 .75
SVC .76 .74 .79

DecisionTree .79 .81 .89
GaussianNB .56 .39 1.00
KNeighbors .83 .85 .90
LDA .80 .72 .97

MAX LogRegression .88 .89 1.00
MLPClassifier .92 .96 .96
RandomForest .91 1.00 .93
SGDClassifier .84 .89 .93
SVC .89 .88 .97

The grouped rows (MIN, MEAN, MAX) indicate the minimum, average and maximum values of each metric we used in the 10
independent trainings. Each subset contains the followings: All (all 490 features), RFECVbest (43 features from the feature selection
algorithm), RFECVintersect (the 15 joint feature that were selected in all 10 runs), Distances (the 8 distance metrics), Embeddings
(256 dimension of the embedded code vectors), Hand-crafted (9 hand-crafted features from previous studies), Engineered (217
feature from ODS) and Engineeredplus (static features comprising of hand-crafted and engineered ones).

in feature selection, but it also raises the question of whether other classifiers might
outperform it. In the subsequent experiment, 9 classifiers have been trained 10 times
each to obtain the results presented in Table 3.18. The RFECVbest feature set was used
obtained in the previous section on all observed models. What we can see is that on
average the MLPClassifier is the most harmonic: the F1 metric reaches highest values
here on average. Also, apart from the GaussianNB classifier (which is insufficient in
terms of Precision), MLP provides the highest Recall values.

3.5 Results 105

While GaussianNB consistently produced the highest Recall values, its efficacy in pre-
cisely detecting overfitting patches appears inefficient. On the other hand, as previous
studies suggested, RandomForest consistently provides reliable results, however, our
findings indicate that MLPClassifier outperforms it by a small margin.

Relying only on the MAX values would flow the findings of our paper, thus we try
to see the whole picture and are looking for a classifier that works well in real life
scenarios most of the time (even in the worst case). What we can see in Table 3.18
is that the MLPClassifier performs reasonably well compared to other models in the
MIN case, also. On the other hand, the motivation behind the use of Random Forest is
understandable: it provides a well-explainable output with moderate training costs.
The benefit of the MLPClassifier might lie in its flexibility, as the Multilayer Perceptron
is a built-in model within scikit-learn with limited possibilities for customization,
building a neural network from scratch and including domain-specific knowledge
might add additional value to this model. While in this section every feature is treated
equally and are combined naively (i.e. forming a feature vector which includes all
the features of a subset), in the following we explore the possibility to combine the
selected features dynamically by expanding the MLPClassifier and implementing a
Neural Network in Pytorch.

Improvements of the PCC Classifier

As depicted in Figure 3.22 (b) and described in Section 3.3.2, we further tried to
enhance the performance. In the previous experiments the RFECVbest feature set was
already identified as the 43 features worth training on and the MLPClassifier due
to its flexible nature and reliable outcome. A Neural Network has been constructed
that learns a deep representation of the input features; the measured results are
shown in Table 3.19. Having a Neural Network also gives the possibility to weight
input features - apart from filtering unnecessary features out this approach can give
different weights to features depending on how important they are. Similarly to
the previous experiments, the model was trained and evaluated 10 times, thus the
MIN, MEAN, and MAX values are displayed of each metric. It is evident that the
metric values did not improve on average (or at least not significantly, which cannot
be attributed to random factors). On the other hand, the stability of the approach
improved: the previous absolute deviation of 30% in the F1 score has been reduced
to 16%, thus making the model much more reliable than before. These ML predictors
are complementary to other state-of-the-art methods and similar to them in filtering
out patches generated by APR tools (Tian et al. [167] 79%, Wang et al. [172] 87%
F1 score).

106 3 AUTOMATED ASSESSMENT OF AUTOMATICALLY GENERATED PATCHES

Table 3.19: Evaluation of Deep Representation Learning

F1 Precision Recall

MIN 72.73% 69.70% 68.97%
MEAN 81.92% 80.77% 83.68%
MAX 88.89% 91.67% 96.55%

Ensemble Learning [143] and Majority Voting [139] are both techniques em-
ployed in ML to enhance predictive performance by combining the outputs of multi-
ple (usually weak) individual models. Through the aggregation of predictions, ma-
jority voting leverages the collective wisdom of diverse models to make decisions. As
decision in a Random Forest is obtained by majority voting of the individual trees,
it alone can be treated as a Majority Voting approach. However, several recent ap-
proaches integrate the learned models either by Ensemble Learning or by Majority
Voting strategies. To investigate the performance of such approaches, the combina-
tion of the nine observed ML model is also used by weighting their output. We call
this method stacking, and it is based on a StackingRegressor [156]. Stacked general-
ization consists of stacking the output of individual estimator and using a regressor
to compute the final prediction.

Table 3.20: Results showcasing the stacked performance of the 9 ML models.

F1 Precision Recall

Min 64.15% 66.67% 58.62%
Mean 82.38% 85.83% 79.68%
Max 93.10% 96.30% 93.10%

The results of this approach can be observed in Table 3.20. Stacking allows the
useage of the strength of each individual estimator by using their output as input of
a final estimator. Although the F1 score and Precision improved on average, Recall
decreased making this method unsuitable for PCC. Another unfavorable inspection
suggests that the deviation of all three metrics has doubled compared to the previous
measurement. During the experiment, we also noticed that results are close to the
ones obtained with the MLPClassifier. After further investigation we found that the
algorithm assigns most of its weights to the MLP (on average 26%), Random Forest
(38%) and SVC (32%) classifiers and relies only negligibly on other models. The
implication of this observation suggests that machine learning models exhibit equal
confusion regarding the remaining incorrectly classified samples, whereas the cor-
rectly classified examples are largely identical. The underlying reason might be data
quality, inaccurate oracle (human error on classification), imbalanced data, subopti-
mal network architecture and parameterization, etc.

3.6 Discussion 107

Improvement in stability can be achieved to a certain extent; however, the improve-
ments may not suffice to ensure consistently reliable outcomes. Both Deep Repre-
sentation Learning and Stacking failed at improving filtering out overfitting patches,
although the former yields similar results with a more reliable standard deviation.

3.6 Discussion

3.6.1 Patch filtering based only on similarity

Natural language processing methods are widely applied in Software Engineering
research, even in the APR domain. Document/sentence embedding methods were
employed on source code to qualify the reliability of candidate patches. Since these
methods are intended for natural language texts, first the tokenization needed to be
adapted. In total 465 automatically generated patches were used in the similarity-
based Patch Correctness Check study. From these 13 were syntactically equivalent
to the developer fix and 211 semantically. We found that most of the semantic-
matched patches were more similar to the original code than others. This behavior
can be observed on Figure 3.23, where the metric values were calculated using data
annotation based on the correctness of each patch. The similarity of the developer
fix also tends to be close to the original program as one can see on Figure 3.24.
Experiments targeted one-line modification and the evaluation was conducted on
only one project. These might seem to be limitations, however at the time of writing
the dissertation, there was no available APR tool, which could generate multi-line
patches for JavaScript programs. As APR methods advance, one can expect that a
more complex language understanding models, like Bert, would be advantageous in
deciding patch correctness.

3.6.2 Using Features for Patch Classification

In this experiment, the primary emphasis lay in optimizing the features utilized
within machine learning models, with a secondary focus on enhancing performance
and stability through deep learning techniques. Only the domain of PCC was ex-
amined, however, this might be a general problem in Software Engineering research
using ML. As we have seen, features significantly influence both the performance
and stability of the applied machine learning model; however, careful construction
of a neural architecture may also enhance stability. Through the application of this
method, improved practices can be established for the publication of machine learn-
ing applications and the assessment of their stability in APR and also in the wider
domain of Software Engineering.

108 3 AUTOMATED ASSESSMENT OF AUTOMATICALLY GENERATED PATCHES

An interesting insight arises from the study of Wang et al. [172], where they
achieved 87.01% Precision and 89.14% Recall using only Hand-crafted features and
a Random Forest classifier, contrasting sharply with our own results of 57% Precision
and 35% Recall on average using the same features. While these figures closely ap-
proximate Wang et al. ’s results under the best-case scenario (MAX), they remain un-
reproducible. Another factor to consider is the choice of library; the aforementioned
article utilized the Weka app [175], which, by its graphical interface, inadvertently
undermines reproducibility, unlike our use of the scikit-learn library. Reproducibil-
ity can be significantly improved by sharing a reproduction package; however, the
applicability of the proposed model remains limited without evaluating its stability.
Notably, the selected feature set RFECVbest yields more reliable results than previous
iterations, and the constructed neural networks contribute to the stability and repro-
ducibility of our study. Additionally, the online appendix offers full reproducibility of
the experiments conducted [5].

3.7 Concluding remarks

Patch validation in the APR domain is a less explored area, which holds great poten-
tial. Filtering out incorrect patches from the set of plausible programs is an important
step forward to boost the confidence towards APR tools. In this chapter experiments
were conducted both with a similarity-based patch filtering and feature-based clas-
sification approach. The similarity between patches was calculated with the use of
source code embeddings produced by Doc2Vec. Although the applied approach may
be useful when a high number of plausible patches are present, we found that plain
source code embeddings fail to capture nuanced code semantics, thus a more sophis-
ticated technique is needed to correctly validate patches. It is expected that a more
complex language understanding model may be advantageous in deciding whether a
patch is correct or not.

On the other hand, we acquired 490 features, comprising both engineered fea-
tures and code embeddings, to address Patch Correctness Check. Initially, a feature
selection algorithm was used to extract 43 features from the extensive feature set,
indicating the limited informational contribution of most original features. Subse-
quently, we conducted training and evaluation of nine machine learning models to
discern the optimal performer. To counteract random factors, each model under-
went 10 training iterations using different random seeds. Our findings suggest better
performance of the models on average when utilizing the selected feature set in
comparison to the entire feature set or other subsets. Among the models examined,
Multi-Layer Perceptron (MLP) and Random Forest consistently exhibited the most re-
liable results, achieving average F1 scores of 0.8 and 0.77, respectively. However, due
to random factors, the MLP score fluctuated to 0.62 in unfavorable cases or peaked

3.7 Concluding remarks 109

at 0.92 in fortuitous circumstances. Employing a more complex neural architecture
that integrates learned embeddings with other features enabled us to mitigate this
variability, reducing the absolute fluctuation in the F1 score from 30% to 16%.

Research results underscores two major implications. First, the development of
PCC classifiers requires careful planning of both feature selection and model con-
struction; While hand-crafted features remain paramount, embeddings may also con-
tain useful information. Second, machine learning methodologies must prioritize
model stability, as it profoundly influences the validity and significance of results.

The author of this PhD thesis is responsible for the following contributions pre-
sented in this chapter:

III/1. Definition of similarity-based PCC.

III/2. Design and implementation of the Doc2Vec model and similarity measure-
ments.

III/3. Evaluation of PCC experiments, relying on both similarities and classifiers.

III/4. Feature gathering and arrangement for classifiers.

III/5. Planning and coordinating most of the experiments.

S UMMARY

Three main topics has been discussed in this PhD thesis, which are all related to each
other. The quality of a software product depends heavily on developer habits and
best practices. From the thesis one can see the importance of test cases - starting
from their naming, through their role in Fault Localization and APR.

Textual Similarity Techniques in Code Level Traceability

The first part of the dissertation, Chapter 1, provides insight into a traceability prob-
lem: to connect test cases with code classes solely base on textual methods. The
thesis examines several prevalent methods, such as naming conventions and LSI,
and introduces a fresh alternative: Doc2Vec. It experimented with different source
code representations and found that IDENT, a simple representation, yielded bet-
ter results for traceability. Doc2Vec-based similarity outperformed other methods.
Combining Doc2Vec with recommendations from other approaches further improved
performance, establishing a successful mixed approach for matching tests with pro-
duction code. It is evident that a combination of methods yields optimal results in
this field, and textual analysis is expected to remain important in future work.

Contributions of the thesis

In the first thesis group, the author implemented the Doc2vec and TF-IDF methods for
recovering traceability links. Additionally, he implemented the text-based recovery
technique that retrieved call graph information from static code. The definition of
the used source code representations and metric visualizations was also part of the
author’s work. He also took part in the evaluation and explanation of various other
results, as well as in the planning and writing of all the published papers. Detailed
discussion can be found in Chapter 1.

Journal publications

[1] András Kicsi, Viktor Csuvik and László Vidács. Large scale evaluation of natural
language processing based test-to-code traceability approaches. IEEE Access,
Volume(9), 79089-79104, 2021.

111

112 S UMMARY

Full papers in conference proceedings

[1] Viktor Csuvik, András Kicsi, and László Vidács. Evaluation of Textual Similarity
Techniques in Code Level Traceability. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) - LNCS, Springer, 529–543, 2019.

[2] Viktor Csuvik, András Kicsi, and László Vidács. Source code level word embed-
dings in aiding semantic test-to-code traceability. In 10th International Work-
shop at the 41st International Conference on Software Engineering (ICSE) – SST,
IEEE, 29-33, 2019.

Machine Learning in Automated Program Repair

Chapter 2 started with a discussion on Fault Localization using Deep Learning. The
findings of the study can be generalized to the whole SE and AI domain: scientific
work using ML should concentrate more on reproducibility and stability aside from
publishing great results. Next, a data mining approach has been presented, and
the FixJS dataset. It can be used for APR research: just as in the subsequent parts
where patches are generated both by DL and traditional approaches. Results show
that in practical application G&V APR approaches still play a prominent role, with
DL-based tools outperforming them in some cases. An important and difficult task
for future research will be to combine the strengths of the two areas and avoid the
weaknesses. The dissertation presents a thorough examination of the effectiveness of
genetic operators and showcased instances of potential patches discovered by both
of the algorithms. Offering both this study and its associated GitHub repository, we
aim to streamline APR research and aspire for it to become a foundational resource
for future endeavors concerning JavaScript programs.

Contributions of the thesis

In the second thesis group, the author coordinated the experimentations on diverse
network architectures on DL-based FL and implemented the bucketing approach. He
also adapted churn metric and took part in the design and writing of the published
paper. The FixJS benchmark creation and ChatGPT experiments were entirely the
work of the author. In the GenProgJS tool, the author implemented the base ge-
netic algorithm, and the interface for test case evaluation and operator calls. He
also executed the experiments, coordinated the analysis and took a big part in the
explanation of results. Detailed discussion can be found in Chapter 2.

S UMMARY 113

Full papers in conference proceedings

[1] Viktor Csuvik, Roland Aszmann, Árpád Beszédes, Ferenc Horváth, and Tibor
Gyimóthy On the stability and applicability of deep learning in fault localiza-
tion. In 2024 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, 2024.

[2] Viktor Csuvik, and László Vidács. Fixjs: A dataset of bug-fixing javascript
commits. In 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR), ACM, 712–716, 2022.

[3] Viktor Csuvik, Tibor Gyimóthy, and László Vidács. Can chatgpt fix my code?.
In Proceedings of the 18th International Conference on Software Technologies -
ICSOFT, SciTePress, 478-485 2023.

Automated Assessment of Automatically Generated Patches

The third part tried to tackle with the PCC problem - that is, given an automatically
generated patch, one should decide whether it is a real fix to the bug, or an overfit
to the test oracle. Chapter 3 elaborates on how our work contributed to the field, by
defining similarity-based patch filtering and evaluating classification on state-of-the-
art features sets. In the realm of APR, patch validation remains relatively uncharted
yet promising. Filtering out erroneous patches is crucial for enhancing confidence in
automatic tools. This chapter explores experiments employing both similarity-based
patch filtering and feature-based classification methods. Results show that while the
current solutions still have some flaws, by selecting proper features and classifiers,
one can filter out overfitting patches with a high degree of confidence. The research
findings emphasize two key points. Firstly, constructing effective PCC classifiers de-
mands meticulous consideration of feature selection and model construction. While
handcrafted features remain essential, embeddings can also offer valuable insights.
Secondly, ML approaches should prioritize model stability, as it significantly impacts
the reliability and importance of the results obtained - a similar observation made in
previous section.

Contributions of the thesis

In the third thesis group, the author laid the groundwork for the similarity-based PCC
technique and implemented the base algorithm. He took part in the manual anno-
tation of the generated patches. The author coordinated the implementation of the
ML-based classifiers and conducted benchmark creation / gathering of all required

114 S UMMARY

metrics. He also planned the experiment guidelines and took a big role in the eval-
uation and explanation of the results and their implications. Detailed discussion can
be found in Chapter 3.

Full papers in conference proceedings

[1] Viktor Csuvik, Dániel Horváth, Ferenc Horváth, and László Vidács. Utilizing
Source Code Embeddings to Identify Correct Patches. In IEEE 2nd International
Workshop on Intelligent Bug Fixing (IBF), IEEE, 18–25, 2020.

[2] Viktor Csuvik, Dániel Horváth, Márk Lajkó, and László Vidács. Exploring plau-
sible patches using source code embeddings in javascript. In IEEE/ACM Interna-
tional Workshop on Automated Program Repair (APR), IEEE, 11–18, 2021.

[3] Viktor Csuvik, Dániel Horváth, and László Vidács. Feature extraction, learning
and selection in support of patch correctness assessment. In Proceedings of
the 19th International Conference on Software Technologies - ICSOFT, SciTePress,
2024.

Acknowledgement

I am incredibly thankful for the support of my family during my academic journey,
as well as other individuals. While it is impossible to name everyone, I want to
express my deepest gratitude to my supervisor, László Vidács, for his exceptional
mentorship. I am also grateful to my co-authors, colleagues, including András Kicsi,
Dániel Horváth, Márk Lajkó and Ferenc Horváth who have played pivotal roles in
our research success. Special thanks to Tibor Gyimóthy for offering me a doctoral
position and providing enriching research opportunities.

The research presented in this dissertation was supported in part by the ÚNKP-19-
2-SZTE-19, ÚNKP-20-3-SZTE-457, ÚNKP-21-3-SZTE-385, ÚNKP-22-3-SZTE-396 and
ÚNKP-23-3-SZTE-435 New National Excellence Program of the Ministry for Culture
and Innovation from the source of the National Research, Development and Inno-
vation Fund, and by the European Union project RRF-2.3.1-21-2022-00004 within
the framework of the Artificial Intelligence National Laboratory. The national project
TKP2021-NVA-09 also supported this work. Project no TKP2021-NVA-09 has been
implemented with the support provided by the Ministry of Culture and Innovation of
Hungary from the National Research, Development and Innovation Fund, financed
under the TKP2021-NVA funding scheme.

Ö SSZEFOGLALÁS

A doktori disszertáció három fő témát tárgyal, amelyek mindegyike valamelyest kapc-
solódik egymáshoz. Egy szoftvertermék minősége nagyban függ a fejlesztői szokások-
tól és gyakorlatoktól. Az értekezésből látható a tesztesetek fontossága - kezdve a
megnevezésüktől a hibalokalizációban és az automatikus programjav́ıtásban betöltött
szerepükben.

Szöveges Hasonlósági Technikák a Kódszintű
Nyomonkövethetőségben

A disszertáció első része, a fejezet, betekintést nyújt egy nyomonkövethetőségi prob-
lémába: a tesztesetek összekapcsolásába kódosztályokkal, kizárólag szöveges mód-
szerek felhasználásával. A dolgozat számos jól ismert módszert vizsgál, mint például
a névkonvenciókat, az LSI-t, és bemutat egy új alternat́ıvát is: a Doc2Vec-et. Kü-
lönböző forráskód reprezentációk kerültek bemutatásra, és azt láthattuk, hogy az
egyszerű IDENT reprezentáció jobb eredményeket adott a nyomonkövethetőség tek-
intetében a többi szöveges reprezentációtól. A Doc2Vec-alapú hasonlóság felülmúlta
a többi módszert. A Doc2Vec más megközeĺıtésekből származó hasonlósági listákkal
való kombinálása tovább jav́ıtotta a teljeśıtményt, és sikeres kombinált megközeĺıtést
hozott létre a tesztek és az osztályok összekapcsolására. Láthattuk, hogy a szöveges
technikák rugalmas megközeĺıtést biztośıtanak, valamint ezek kombinációja jav́ıtja
a teljeśıtményt, ı́gy a szövegelemzés várhatóan továbbra is fontos marad a jövőbeni
munkákban.

A disszertáció hozzájárulásai

Az első téziscsoportban a szerző a Doc2vec és a TF-IDF módszereket valóśıtotta
meg a teszt-kód kapcsolatok helyreálĺıtására. Emellett megvalóśıtotta a szövegalapú
helyreálĺıtási technikát, amely statikus kódból h́ıvásgráf-információkat (Call Graph -
CG) nyert vissza. Az alkalmazott forráskód-reprezentációk és metrikus vizualizációk
meghatározása szintén a szerző munkájának részét képezte. Részt vett továbbá a
legtöbb eredmény kiértékelésében és magyarázatában, valamint az összes publikált
cikk meǵırásában. Részletes tárgyalása az fejezetben található.

115

116 Ö SSZEFOGLALÁS

Folyóirat publikációk

[1] András Kicsi, Viktor Csuvik and László Vidács. Large scale evaluation of natural
language processing based test-to-code traceability approaches. IEEE Access,
Volume(9), 79089-79104, 2021.

Konferenciakötetben megjelent teljes publikációk

[1] Viktor Csuvik, András Kicsi, and László Vidács. Evaluation of Textual Similarity
Techniques in Code Level Traceability. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) - LNCS, Springer, 529–543, 2019.

[2] Viktor Csuvik, András Kicsi, and László Vidács. Source code level word embed-
dings in aiding semantic test-to-code traceability. In 10th International Work-
shop at the 41st International Conference on Software Engineering (ICSE) – SST,
IEEE, 29-33, 2019.

Gépi Tanulás az Automatikus Programjav́ıtás Területén

A 1.9 fejezet a mélytanulás alapú hibalokalizáció tárgyalásával kezdődik. A fejezet
megállaṕıtásai általánośıthatók az egész szoftverfejlesztés és mesterséges intelligen-
cia területre: a gépi tanulást használó tudományos munkáknak a nagyszerű ered-
mények publikálása mellett jobban kellene koncentrálnia a reprodukálhatóságra és
a stabilitásra. Ezután egy adat kinyerési megközeĺıtés került bemutatásra, és a FixJS
adathalmaz. Ennek egyik alapvető felhasználása az automatikus programjav́ıtás ku-
tatása: akárcsak ahogy ez a következő fejezetben bemutatásra is kerül, ahol a patchek
mind mélytanulással, mind hagyományos megközeĺıtésekkel generálódnak. Ezek az
eredmények azt mutatják, hogy a gyakorlati alkalmazásban a hagyományos genetikus
megközeĺıtések még mindig kiemelkedő szerepet játszanak, a mélytanuló eszközök
csak egyes esetekben múlják felül azokat. A jövőbeli kutatások fontos és nehéz fela-
data lesz e két terület erősségeinek ötvözése a gyengeségek elkerülésével. A dissz-
ertáció alaposan megvizsgálja a genetikus operátorok hatékonyságát, és bemutatja a
mindkét algoritmus által generált potenciálisan jav́ıtó patch-eket. A cikket és a hozzá
kapcsolódó GitHub repository-t egyaránt publikussá téve célunk az automatikus pro-
gramjav́ıtás kutatás fejlesztése, és arra törekszünk, hogy a JavaScript programokkal
kapcsolatos jövőbeli törekvések alapvető kiindulópontjává váljon.

A disszertáció hozzájárulásai

A második téziscsoportban a szerző koordinálta a különböző neurális hálózati ar-
chitektúrákon végzett ḱısérleteket a mélytanulás alapú hibalokalizációt kutatva, és

Ö SSZEFOGLALÁS 117

megvalóśıtotta a bucketing (dobozolás) megközeĺıtést. Emellett adaptálta a churn
metrikát, és részt vett a publikált cikk megtervezésében és meǵırásában. A FixJS
adathalmaz létrehozása és a ChatGPT ḱısérletek teljes egészében a szerző munkái. A
GenProgJS eszközben a szerző implementálta az alap genetikus algoritmust, valamint
a tesztesetek kiértékeléséhez és az operátorh́ıvásokhoz szükséges interfészt. A pro-
gram futtatásokat is ő hajtotta végre, koordinálta az elemzést, és nagy szerepet vállalt
az eredmények magyarázatában. Részletes értekezés a 1.9 fejezetben található.

Konferenciakötetben megjelent teljes publikációk

[1] Viktor Csuvik, Roland Aszmann, Árpád Beszédes, Ferenc Horváth, and Tibor
Gyimóthy On the stability and applicability of deep learning in fault localiza-
tion. In 2024 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, 2024.

[2] Viktor Csuvik, and László Vidács. Fixjs: A dataset of bug-fixing javascript
commits. In 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR), ACM, 712–716, 2022.

[3] Viktor Csuvik, Tibor Gyimóthy, and László Vidács. Can chatgpt fix my code?.
In Proceedings of the 18th International Conference on Software Technologies -
ICSOFT, SciTePress, 478-485 2023.

Automatikusan Generált Jav́ıtások Spontán Értékelése

A harmadik rész az automatikus patch kiértékelés problémával foglalkozik - vagyis
egy automatikusan generált jav́ıtás esetén el kell dönteni, hogy az a hiba valódi
jav́ıtását jelenti-e, vagy csupán túlillesztés történt a tesztekre. A 2.9 fejezet részletezi,
hogy munkánk hogyan járult hozzá a területhez - a hasonlóság-alapú patch szűrés
definiálásával és az osztályozók kiértékelésével a legkorszerűbb jellemzőkészleteken.
Az automatikus programjav́ıtás területén a patch-ek helyességének vizsgálata még
viszonylag feltérképezetlen, mégis ı́géretes terület. A hibás jav́ıtások kiszűrése kulcs-
fontosságú az ilyen automatikus eszközökbe vetett bizalom növeléséhez. Ez a fejezet
olyan ḱısérleteket mutat be, amelyekben hasonlóság-alapú patch szűrést és jellemző-
alapú osztályozási módszereket alkalmaztunk. Az eredmények azt mutatják, hogy
bár a jelenlegi megközeĺıtések még korán sem tökéletesek, a megfelelő jellemzők és
osztályozók kiválasztásával nagyfokú megb́ızhatósággal ki lehet szűrni a túlillesztett
jav́ıtásokat. A kutatási eredmények két kulcsfontosságú következtetést mutatnak.
Először is, jó osztályozók késźıtése érdekében a jellemzők kiválasztásánál és a mod-
elléṕıtésnél különös figyelmet kell szentelni a hatékonyságra. Bár a kézzel késźıtett
jellemzők továbbra is alapvető fontosságúak, a beágyazások is értékes információt

118 Ö SSZEFOGLALÁS

nyújthatnak. Másodszor pedig, az ilyen megközeĺıtések alkalmazásakor prioritást
kell adni a modell stabilitásának, mivel ez jelentősen befolyásolja a kapott eredmények
megb́ızhatóságát - ez az előző fejezetben tett megállaṕıtáshoz hasonló.

A disszertáció hozzájárulásai

A harmadik téziscsoportban a szerző lefektette a hasonlóságon alapuló patch hely-
esség vizsgálat technika alapjait, és megvalóśıtotta az alapalgoritmust. Részt vett
a generált jav́ıtások kézi elemzésében és annotálásában. A szerző koordinálta a
gépi tanuló osztályozók implementćlćsćt, és elvégezte az összes szükséges metrika
létrehozását és gyűjtését. Ő tervezte meg a ḱısérleti irányelveket is, és nagy szerepet
vállalt az eredmények és azok következményeinek kiértékelésében, magyarázatában
és publikálásában. Részletes léırás a 2.9 fejezetben található.

Konferenciakötetben megjelent teljes publikációk

[1] Viktor Csuvik, Dániel Horváth, Ferenc Horváth, and László Vidács. Utilizing
Source Code Embeddings to Identify Correct Patches. In IEEE 2nd International
Workshop on Intelligent Bug Fixing (IBF), IEEE, 18–25, 2020.

[2] Viktor Csuvik, Dániel Horváth, Márk Lajkó, and László Vidács. Exploring plau-
sible patches using source code embeddings in javascript. In IEEE/ACM Interna-
tional Workshop on Automated Program Repair (APR), IEEE, 11–18, 2021.

[3] Viktor Csuvik, Dániel Horváth, and László Vidács. Feature extraction, learning
and selection in support of patch correctness assessment. In Proceedings of
the 19th International Conference on Software Technologies - ICSOFT, SciTePress,
2024.

Köszönetnyilváńıtás

Hihetetlenül hálás vagyok a családom támogatásáért a tanulmányaim során, valamint
minden barátom és ismerősöm bátoŕıtásáért. Óvodás korom óta számos nevelő és
tańıtó járult hozzá ahhoz ami most vagyok, a jelen disszertáció az ő érdemük is.
Bár lehetetlen mindenkit megnevezni, szeretném kifejezni legmélyebb hálámat té-
mavezetőmnek, Vidács Lászlónak kivételes mentorálásáért. Hálás vagyok továbbá
társszerzőimnek, kollégáimnak, köztük Kicsi Andrásnak, Horváth Dánielnek, Lajkó
Márknak és Horváth Ferencnek, akik nagy szerepet játszottak a kutatási sikerek-
ben. Külön köszönöm Gyimóthy Tibornak, hogy doktori hallgatói helyet ajánlott
fel számomra és ösztönző kutatási lehetőséget biztośıtott.

Ö SSZEFOGLALÁS 119

A disszertáció részben az Innovációs és Technológiai Minisztérium ÚNKP-19-2-
SZTE-19, ÚNKP-20-3-SZTE-457, ÚNKP-21-3-SZTE-385, ÚNKP-22-3-SZTE-396, ÚNKP-
23-3-SZTE-435 kódszámú Új Nemzeti Kiválóság Programjának a Nemzeti Kutatási,
Fejlesztési és Innovációs Alapból finansźırozott szakmai támogatásával készült, vala-
mint az Európai Unió RRF-2.3.1-21-2022-00004 azonośıtójú, Mesterséges Intelligen-
cia Nemzeti Laboratórium projekt keretében. A TKP2021-NVA-09 nemzeti projekt
szintén támogatta a munkát. A TKP2021-NVA-09 számú projekt a Nemzeti Kutatási,
Fejlesztési és Innovációs Alapból a Nemzeti Kulturális és Innovációs Minisztérium
által a TKP2021-NVA támogatási séma keretében finansźırozott támogatással valósult
meg.

Bibliography

[1] Gensim gensim webpage. https://radimrehurek.com/gensim/. Accessed:
2019.

[2] TIOBE programming community index. https://www.tiobe.com/

tiobe-index. Accessed: 2019.

[3] Grammar-Based Patches Generation for Automated Program Repair. Find-
ings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages
1300–1305, 2021.

[4] Supplemental material for on the stability and applicability of deep learning
in fault localization, 2023.

[5] Supplemental material for ”feature extraction, learning and selection in sup-
port of patch correctness assessment”. https://anonymous.4open.science/

r/PCC-2024-45CF/, 2024.

[6] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. On the accuracy
of spectrum-based fault localization. In Proceedings of the Testing: Academic
and Industrial Conference Practice and Research Techniques - MUTATION, pages
89–98, 2007.

[7] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified
Pre-training for Program Understanding and Generation. pages 2655–2668,
mar 2021.

[8] Ilya Sutskever Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei. [GPT-2] Language Models are Unsupervised Multitask Learners. Ope-
nAI Blog, 1(May):1–7, 2020.

[9] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recover-
ing traceability links between code and documentation. IEEE Transactions on
Software Engineering, 28(10):970–983, oct 2002.

[10] Apache Commons webpage. http://commons.apache.org/, 2019.

121

https://radimrehurek.com/gensim/
https://www.tiobe.com/tiobe-index
https://www.tiobe.com/tiobe-index
https://anonymous.4open.science/r/PCC-2024-45CF/
https://anonymous.4open.science/r/PCC-2024-45CF/
http://commons.apache.org/

122 Bibliography

[11] Fatmah Yousef Assiri and James M. Bieman. Fault localization for automated
program repair: effectiveness, performance, repair correctness. Software Qual-
ity Journal, 25(1):171–199, mar 2017.

[12] Mohammad Mahdi Bejani and Mehdi Ghatee. A systematic review on overfit-
ting control in shallow and deep neural networks. Artificial Intelligence Review,
pages 1–48, 2021.

[13] Antonia Bertolino. Software testing research: Achievements, challenges,
dreams. In 2007 Future of Software Engineering, pages 85–103. IEEE Com-
puter Society, 2007.

[14] Srinadh Bhojanapalli, Kimberly Wilber, Andreas Veit, Ankit Singh Rawat, Se-
ungyeon Kim, Aditya Krishna Menon, and Sanjiv Kumar. On the reproducibil-
ity of neural network predictions. ArXiv, abs/2102.03349, 2021.

[15] Peter Bludau and Alexander Pretschner. Feature sets in just-in-time defect
prediction: an empirical evaluation. Proceedings of the 18th International Con-
ference on Predictive Models and Data Analytics in Software Engineering, 2022.

[16] Markus Borg, Per Runeson, and Anders Ardö. Recovering from a decade: a
systematic mapping of information retrieval approaches to software traceabil-
ity. Empirical Software Engineering, 19(6):1565–1616, dec 2014.

[17] Philipp Bouillon, Jens Klinke, Nils Meyer, and Friedrich Steimann. EZUNIT:
A framework for associating failed unit tests with potential programming er-
rors. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 4536 LNCS,
pages 101–104. Springer Verlag, 2007.

[18] David Bowes, Tracy Hall, and Jean Petrić. Software defect prediction:
do different classifiers find the same defects? Software Quality Journal,
26(2):525–552, jun 2018.

[19] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. J.
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. ArXiv, abs/2005.14165, 2020.

Bibliography 123

[20] Antonio Carzaniga, Alessandra Gorla, Andrea Mattavelli, Nicolo Perino, and
Mauro Pezze. Automatic recovery from runtime failures. Proceedings - Inter-
national Conference on Software Engineering, pages 782–791, 2013.

[21] Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè. Au-
tomatic Workarounds for Web Applications. In ACM Transactions on Software
Engineering and Methodology, volume 24, pages 1–42, New York, New York,
USA, 2015. ACM Press.

[22] Chatgpt: Understanding the chatgpt ai chatbot. https://www.eweek.com/

big-data-and-analytics/chatgpt/, 2023.

[23] Liushan Chen, Yu Pei, and Carlo A. Furia. Contract-based program repair
without the contracts. Technical report, 2017.

[24] Zimin Chen, Steve James Kommrusch, and Martin Monperrus. Neural Transfer
Learning for Repairing Security Vulnerabilities in C Code. IEEE Transactions
on Software Engineering, apr 2022.

[25] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis Noel Pouchet,
Denys Poshyvanyk, and Martin Monperrus. SEQUENCER: Sequence-to-
Sequence Learning for End-to-End Program Repair. IEEE Transactions on Soft-
ware Engineering, (01):1–1, sep 2019.

[26] William Jay Conover. Practical nonparametric statistics, volume 350. John
Wiley & Sons, 1998.

[27] Q. Cormier, M. Milani Fard, K. Canini, and M. R. Gupta. Launch and iterate:
Reducing prediction churn. In Proceedings of the 30th International Confer-
ence on Neural Information Processing Systems, NIPS’16, page 3179–3187, Red
Hook, NY, USA, 2016. Curran Associates Inc.

[28] Viktor Csuvik., Tibor Gyimóthy., and László Vidács. Can chatgpt fix my code?
In Proceedings of the 18th International Conference on Software Technologies -
ICSOFT, pages 478–485. INSTICC, SciTePress, 2023.

[29] Viktor Csuvik, Dániel Horváth, Márk Lajkó, and László Vidács. Exploring plau-
sible patches using source code embeddings in javascript. 2021 IEEE/ACM In-
ternational Workshop on Automated Program Repair (APR), pages 11–18, 2021.

[30] Viktor Csuvik, Daniel Horvath, and Laszlo Vidacs. Feature extraction, learning
and selection in support of patch correctness assessment. In Proceedings of the
19th International Conference on Software Technologies - ICSOFT, 2024.

https://www.eweek.com/big-data-and-analytics/chatgpt/
https://www.eweek.com/big-data-and-analytics/chatgpt/

124 Bibliography

[31] Viktor Csuvik, Deniel Horvath, Ferenc Horvath, and Laszlo Vidacs. Utilizing
Source Code Embeddings to Identify Correct Patches. In 2020 IEEE 2nd Inter-
national Workshop on Intelligent Bug Fixing (IBF), pages 18–25. IEEE, 2020.

[32] Viktor Csuvik, András Kicsi, and László Vidács. Evaluation of Textual Similarity
Techniques in Code Level Traceability. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 11622 LNCS, pages 529–543. Springer Verlag, 2019.

[33] Viktor Csuvik, András Kicsi, and László Vidács. Source code level word em-
beddings in aiding semantic test-to-code traceability. In 10th International
Workshop at the 41st International Conference on Software Engineering (ICSE)
– SST 2019. IEEE, 2019.

[34] Viktor Csuvik, Aszmann Roland, Beszédes Árpád, Horváth Ferenc, and
Gyimóthy Tibor. On the stability and applicability of deep learning in fault
localization. In 2024 IEEE International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), 2024.

[35] Viktor Csuvik and László Vidács. Fixjs: A dataset of bug-fixing javascript com-
mits. In 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR), pages 712–716, 2022.

[36] Hoa Khanh Dam, Truyen Tran, Trang Pham, Shien Wee Ng, John Grundy, and
Aditya Ghose. Automatic feature learning for predicting vulnerable software
components. IEEE Transactions on Software Engineering, 47(1):67–85, 2021.

[37] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. QLOSE: Program repair
with quantitative objectives. Technical report, 2016.

[38] Vidroha Debroy and W. Eric Wong. Using mutation to automatically suggest
fixes for faulty programs. ICST 2010 - 3rd International Conference on Software
Testing, Verification and Validation, pages 65–74, 2010.

[39] Ralph A. DeFronzo, Andrew Lewin, Sanjay Patel, Dacheng Liu, Renee Kaste,
Hans J. Woerle, and Uli C. Broedl. Combination of empagliflozin and
linagliptin as second-line therapy in subjects with type 2 diabetes inadequately
controlled on metformin. Diabetes Care, 38(3):384–393, jul 2015.

[40] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
oct 2018.

Bibliography 125

[41] Elizabeth Dinella, Hanjun Dai, Google Brain, Ziyang Li, Mayur Naik, Le Song,
Georgia Tech, and Ke Wang. Hoppity: Learning Graph Transformations To
Detect and Fix Bugs in Programs. Technical report, 2020.

[42] Dawn Drain, Chen Wu, Alexey Svyatkovskiy, and Neel Sundaresan. Generating
bug-fixes using pretrained transformers. MAPS 2021 - Proceedings of the 5th
ACM SIGPLAN International Symposium on Machine Programming, co-located
with PLDI 2021, pages 1–8, jun 2021.

[43] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. Em-
pirical review of java program repair tools: A large-scale experiment on 2,141
bugs and 23,551 repair attempts. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019, page 302–313, New
York, NY, USA, 2019. Association for Computing Machinery.

[44] Katherine Elkins and Jon Chun. Can GPT-3 Pass a Writer’s Turing Test? Journal
of Cultural Analytics, sep 2020.

[45] Esprima official website. https://esprima.org, 2023.

[46] Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai, Christophe Dony, and Ra’fat
Al-msie’deen. Recovering traceability links between feature models and source
code of product variants. In VARiability for You Workshop on Variability Mod-
eling Made Useful for Everyone - VARY ’12, pages 21–25. ACM Press, 2012.

[47] Xianmei Fang, Xiaobo Gao, Yuting Wang, Zhouyu Liao, and Yue Ma. Improving
fault localization using conditional variational autoencoder. IEICE TRANSAC-
TIONS on Information and Systems, 105(8):1490–1494, 2022.

[48] Amin Milani Fard and Ali Mesbah. Javascript: The (un)covered parts. In 2017
IEEE International Conference on Software Testing, Verification and Validation
(ICST), pages 230–240. IEEE, 2017.

[49] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a Release History
Database from Version Control and Bug Tracking Systems. IEEE International
Conference on Software Maintenance, ICSM, pages 23–32, 2003.

[50] J. M. Florez. Automated fine-grained requirements-to-code traceability link
recovery. In 2019 IEEE/ACM 41st International Conference on Software Engi-
neering: Companion Proceedings (ICSE-Companion), pages 222–225, 2019.

[51] Alcides Fonseca and Máximo Oliveira. Figra: Evaluating a larger search space
for cardumen in automatic program repair. In 2022 IEEE/ACM International
Workshop on Automated Program Repair (APR), pages 24–30, 2022.

https://esprima.org

126 Bibliography

[52] Mariani Leonardo Gazzola Luca, Micucci Daniela. Automatic Software Repair:
A Survey. IEEE Transactions on Software Engineering, 45(1):34–67, jan 2019.

[53] Online appendix for genprogjs. https://github.com/GenProgJS/GenProgJS,
2024.

[54] Mohammad Ghafari, Carlo Ghezzi, and Konstantin Rubinov. Automatically
identifying focal methods under test in unit test cases. In 2015 IEEE 15th
International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 61–70. IEEE, sep 2015.

[55] Gh archive official website. https://www.gharchive.org, 2023.

[56] The 2023 state of the octoverse. https://octoverse.github.com, 2024.

[57] Github rest api official website. https://docs.github.com/en/rest, 2023.

[58] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated pro-
gram repair. Commun. ACM, 62(12):56–65, November 2019.

[59] Robert J Grissom and John J Kim. Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers, 2005.

[60] Odd Erik Gundersen, Kevin L. Coakley, and Christine R. Kirkpatrick. Sources
of irreproducibility in machine learning: A review. CoRR, abs/2204.07610,
2022.

[61] J. Guo, J. Cheng, and J. Cleland-Huang. Semantically enhanced software
traceability using deep learning techniques. In 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering (ICSE), pages 3–14, 2017.

[62] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. Semantically Enhanced
Software Traceability Using Deep Learning Techniques. In Proceedings - 2017
IEEE/ACM 39th International Conference on Software Engineering, ICSE 2017,
pages 3–14. IEEE, may 2017.

[63] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing
common c language errors by deep learning. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, AAAI’17, page 1345–1351. AAAI
Press, 2017.

[64] Peter Gyimesi, Bela Vancsics, Andrea Stocco, Davood Mazinanian, Arpad
Beszedes, Rudolf Ferenc, and Ali Mesbah. BugsJS: A benchmark of javascript
bugs. In Proceedings - 2019 IEEE 12th International Conference on Software
Testing, Verification and Validation, ICST 2019, pages 90–101, apr 2019.

https://github.com/GenProgJS/GenProgJS
https://www.gharchive.org
https://octoverse.github.com
https://docs.github.com/en/rest

Bibliography 127

[65] Quinn Hanam, Fernando S. de M. Brito, and Ali Mesbah. Discovering bug
patterns in JavaScript. Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering - FSE 2016, pages
144–156, 2016.

[66] Masum Hasan, Kazi Sajeed Mehrab, Wasi Uddin Ahmad, and Rifat Shahriyar.
Text2App: A Framework for Creating Android Apps from Text Descriptions.
2021.

[67] Simon Heiden, Lars Grunske, Timo Kehrer, Fabian Keller, Andre Van Hoorn,
Antonio Filieri, and David Lo. An evaluation of pure spectrum-based fault
localization techniques for large-scale software systems. Software: Practice
and Experience, 49(8):1197–1224, 2019.

[68] T. Hey. Indirect: Intent-driven requirements-to-code traceability. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pages 190–191, 2019.

[69] Djoerd Hiemstra. A probabilistic justification for using tf - idf term weighting
in information retrieval. International Journal on Digital Libraries, 3(2):131–
139, aug 2000.

[70] Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling the HTML
DOM and Browser API in Static Analysis of JavaScript Web Applications. Tech-
nical report.

[71] Pieter Hooimeijer and Westley Weimer. Modeling bug report quality. In
Proceedings of the Twenty-Second IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE ’07, page 34–43, New York, NY, USA, 2007.
Association for Computing Machinery.

[72] Jian Hu, Huan Xie, Yan Lei, and Ke Yu. A light-weight data augmenta-
tion method for fault localization. Information and Software Technology,
157:107148, 2023.

[73] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. Towards
practical program repair with on-demand candidate generation. In Proceedings
of the 40th International Conference on Software Engineering, pages 12–23,
New York, NY, USA, may 2018. Association for Computing Machinery (ACM).

[74] Chen Huo and James Clause. Interpreting Coverage Information Using Direct
and Indirect Coverage. In 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pages 234–243. IEEE, apr 2016.

128 Bibliography

[75] Xuan Huo, Ferdian Thung, Ming Li, David Lo, and Shu-Ting Shi. Deep transfer
bug localization. IEEE Transactions on software engineering, 47(7):1368–1380,
2019.

[76] Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi.
Poracle: Testing patches under preservation conditions to combat the overfit-
ting problem of program repair. ACM Trans. Softw. Eng. Methodol., 33(2), dec
2023.

[77] Simon Holm Jensen, Peter A. Jonsson, and Anders Møller. Remedying the eval
that men do. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis, ISSTA 2012, page 34–44, New York, NY, USA, 2012.
Association for Computing Machinery.

[78] Heinrich Jiang, Harikrishna Narasimhan, Dara Bahri, Andrew Cotter, and
Afshin Rostamizadeh. Churn reduction via distillation. arXiv preprint
arXiv:2106.02654, 2021.

[79] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
Shaping program repair space with existing patches and similar code. Pro-
ceedings of the 27th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis - ISSTA 2018, 18:298–309, 2018.

[80] Nan Jiang, Thibaud Lutellier, and Lin Tan. CURE: Code-aware neural machine
translation for automatic program repair, 2021.

[81] René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In 2014
International Symposium on Software Testing and Analysis, ISSTA 2014 - Pro-
ceedings, pages 437–440. Association for Computing Machinery, Inc, jul 2014.

[82] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris
Mockus, Anand Sinha, and Naoyasu Ubayashi. A large-scale empirical study
of just-in-time quality assurance. IEEE Transactions on Software Engineering,
39(6):757–773, 2013.

[83] Maria Kechagia, Sergey Mechtaev, Federica Sarro, and Mark Harman. Evalu-
ating automatic program repair capabilities to repair api misuses. IEEE Trans-
actions on Software Engineering, 48(7):2658–2679, 2022.

[84] András Kicsi, László Tóth, and László Vidács. Exploring the benefits of utiliz-
ing conceptual information in test-to-code traceability. Proceedings of the 6th
International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering, pages 8–14, 2018.

Bibliography 129

[85] András Kicsi, László Vidács, and Tibor Gyimothy. Testroutes: A manually
curated method level dataset for test-to-code traceability. In Proceedings of
the 17th International Conference on Mining Software Repositories, MSR 2020,
pages 593–597. IEEE, IEEE, jun 2020.

[86] András Kicsi, Viktor Csuvik, and László Vidács. Large scale evaluation of nat-
ural language processing based test-to-code traceability approaches. IEEE Ac-
cess, 9:79089–79104, 2021.

[87] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic
patch generation learned from human-written patches. In Proceedings - Inter-
national Conference on Software Engineering, pages 802–811. IEEE, may 2013.

[88] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. Code prediction
by feeding trees to transformers. Proceedings - International Conference on
Software Engineering, pages 150–162, may 2021.

[89] Yunho Kim, Seokhyeon Mun, Shin Yoo, and Moonzoo Kim. Precise learn-to-
rank fault localization using dynamic and static features of target programs.
ACM Trans. Softw. Eng. Methodol., 28(4), oct 2019.

[90] Max Klabunde, Tobias Schumacher, Markus Strohmaier, and Florian Lem-
merich. Similarity of neural network models: A survey of functional and
representational measures. arXiv preprint arXiv:2305.06329, 2023.

[91] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. Practitioners’
expectations on automated fault localization. In Proceedings of the 25th In-
ternational Symposium on Software Testing and Analysis - ISSTA 2016, pages
165–176, New York, New York, USA, 2016. ACM Press.

[92] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. FixMiner: Mining relevant fix patterns
for automated program repair. Empirical Software Engineering, 25(3):1980–
2024, may 2020.

[93] Dinh Xuan Bach Le, Lingfeng Bao, David Lo, Xin Xia, Shanping Li, and Corina
Pasareanu. On Reliability of Patch Correctness Assessment. In Proceedings
- International Conference on Software Engineering, volume 2019-May, pages
524–535. IEEE Computer Society, may 2019.

[94] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
S3: syntax- and semantic-guided repair synthesis via programming by exam-
ples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, page 593–604, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery.

130 Bibliography

[95] Xuan Bach D. Le, David Lo, and Claire Le Goues. History Driven Program
Repair. In 2016 IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), pages 213–224. IEEE, mar 2016.

[96] Xuan Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues. Overfitting in
semantics-based automated program repair. Empirical Software Engineering,
23(5):3007–3033, oct 2018.

[97] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
A systematic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In Proceedings - International Conference on Software Engineering,
pages 3–13. IEEE, jun 2012.

[98] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.
Genprog: A generic method for automatic software repair. IEEE Trans. Softw.
Eng., 38(1):54–72, January 2012.

[99] Williams Lefebvre-Ulrikson, G. Da Costa, L. Rigutti, and I. Blum. Data Mining.
New York, 2016.

[100] Yan Lei, Chunyan Liu, Huan Xie, Sheng Huang, Meng Yan, and Zhou Xu. Bcl-fl:
A data augmentation approach with between-class learning for fault localiza-
tion. In 2022 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 289–300. IEEE, 2022.

[101] Yan Lei, Tiantian Wen, Huan Xie, Lingfeng Fu, Chunyan Liu, Lei Xu, and
Hongxia Sun. Mitigating the effect of class imbalance in fault localiza-
tion using context-aware generative adversarial network. arXiv preprint
arXiv:2303.06644, 2023.

[102] Omer Levy and Yoav Goldberg. Linguistic Regularities in Sparse and Explicit
Word Representations. Technical report, 2014.

[103] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. Deepfl: Integrating multi-
ple fault diagnosis dimensions for deep fault localization. In Proceedings of the
28th ACM SIGSOFT international symposium on software testing and analysis,
pages 169–180, 2019.

[104] Yi Li, Shaohua Wang, and Tien Nguyen. Fault localization with code coverage
representation learning. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 661–673. IEEE, 2021.

[105] Bo Lin, Shangwen Wang, Ming Wen, and Xiaoguang Mao. Context-aware code
change embedding for better patch correctness assessment. ACM Trans. Softw.
Eng. Methodol., 31(3), may 2022.

Bibliography 131

[106] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama.
Quixbugs: A multi-lingual program repair benchmark set based on the quixey
challenge. In Proceedings Companion of the 2017 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software
for Humanity, SPLASH Companion 2017, page 55–56, New York, NY, USA,
2017. Association for Computing Machinery.

[107] Hui Liu, Mingzhu Shen, Jiaqi Zhu, Nan Niu, Ge Li, and Lu Zhang. Deep
Learning Based Program Generation from Requirements Text: Are We There
Yet? IEEE Transactions on Software Engineering, pages 1–1, aug 2020.

[108] Kui Liu, Li Li, Anil Koyuncu, Dongsun Kim, Zhe Liu, Jacques Klein, and
Tegawendé F. Bissyandé. A critical review on the evaluation of automated
program repair systems. Journal of Systems and Software, 171:110817, jan
2021.

[109] Fan Long and Martin Rinard. Automatic patch generation by learning correct
code. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages - POPL 2016, pages 298–312, 2016.

[110] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang,
and Lingming Zhang. Boosting coverage-based fault localization via graph-
based representation learning. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 664–676, 2021.

[111] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou,
Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understand-
ing and Generation. undefined, 2021.

[112] Thibaud Lutellier, Lawrence Pang, Viet Hung Pham, Moshi Wei, and Lin Tan.
ENCORE: Ensemble Learning using Convolution Neural Machine Translation
for Automatic Program Repair. 2019.

[113] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei,
and Lin Tan. CoCoNuT: Combining context-aware neural translation models
using ensemble for program repair. ISSTA 2020 - Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis, 20:101–
114, 2020.

132 Bibliography

[114] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Hal-
fond. Automated repair of internationalization presentation failures in web
pages using style similarity clustering and search-based techniques. In 11th
IEEE International Conference on Software Testing, Verification and Validation,
ICST 2018, Västerås, Sweden, April 9-13, 2018, pages 215–226. IEEE Com-
puter Society, 2018.

[115] Andrian Marcus, Jonathan I Maletic, and Andrey Sergeyev. Recovery of Trace-
ability Links between Software Documentation and Source Code. International
Journal of Software Engineering and Knowledge Engineering, pages 811–836,
2005.

[116] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and
Martin Monperrus. Automatic repair of real bugs in java: a large-scale exper-
iment on the defects4j dataset. Empirical Software Engineering, 22(4):1936–
1964, aug 2017.

[117] Matias Martinez and Martin Monperrus. ASTOR: A program repair library for
Java (Demo). ISSTA 2016 - Proceedings of the 25th International Symposium
on Software Testing and Analysis, pages 441–444, 2016.

[118] Matias Martinez and Martin Monperrus. Ultra-large repair search space with
automatically mined templates: The cardumen mode of Astor. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 11036 LNCS:65–86, dec 2018.

[119] Matias Martinez and Martin Monperrus. Astor: Exploring the design space
of generate-and-validate program repair beyond GenProg. Journal of Systems
and Software, 151:65–80, feb 2019.

[120] Nayrolles Mathieu and Abdelwahab Hamou-Lhadj. Word embeddings for the
software engineering domain. Proceedings of the 15th International Conference
on Mining Software Repositories - MSR ’18, pages 38–41, 2018.

[121] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. DirectFix: Looking
for Simple Program Repairs. In 2015 IEEE/ACM 37th IEEE International Con-
ference on Software Engineering, pages 448–458. IEEE, may 2015.

[122] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), pages 691–701,
2016.

Bibliography 133

[123] Tomas Mikolov, Ilya Sutskever, Kan Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality.
NIPS’13 Proceedings of the 26th International Conference on Neural Information
Processing Systems, 2:3111–3119, dec 2013.

[124] Amr Mansour Mohsen, Hesham Hassan, Ramadan Moawad, and Soha H.
Makady. A review on software bug localization techniques using a motiva-
tional example. International Journal of Advanced Computer Science and Appli-
cations, 2022.

[125] Mondrian webpage. http://www.theusrus.de/Mondrian/, 2019.

[126] Martin Monperrus. A critical review of ”automatic patch generation learned
from human-written patches”: essay on the problem statement and the eval-
uation of automatic software repair. In Proceedings of the 36th International
Conference on Software Engineering - ICSE 2014, pages 234–242, New York,
New York, USA, 2014. ACM Press.

[127] Martin Monperrus. Automatic software repair: A bibliography. ACM Comput.
Surv., 51(1), January 2018.

[128] Martin Monperrus. The Living Review on Automated Program Repair. Techni-
cal report, dec 2020.

[129] Miguel Morin and Matthew Willetts. Non-determinism in tensorflow resnets.
ArXiv, abs/2001.11396, 2020.

[130] Marjane Namavar, Noor Nashid, and Ali Mesbah. A controlled experiment of
different code representations for learning-based program repair. Empirical
Software Engineering, 27(7), dec 2022.

[131] Frolin S. Ocariza Jr., Karthik Pattabiraman, and Benjamin Zorn. Javascript
errors in the wild: An empirical study. In Proceedings of the 2011 IEEE 22nd
International Symposium on Software Reliability Engineering, ISSRE ’11, page
100–109, USA, 2011. IEEE Computer Society.

[132] OpenAI. Gpt-4 technical report, 2023.

[133] Openai chatgpt. https://openai.com/blog/chatgpt/, 2023.

[134] Openai chatgpt app. https://chat.openai.com/, 2024.

[135] Kai Pan, Sunghun Kim, and E. James Whitehead. Toward an understanding of
bug fix patterns. Empirical Software Engineering, 14(3):286–315, jun 2009.

http://www.theusrus.de/Mondrian/
https://openai.com/blog/chatgpt/
https://chat.openai.com/

134 Bibliography

[136] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto, D. Poshyvanyk,
and A. De Lucia. When and How Using Structural Information to Improve IR-
Based Traceability Recovery. In 2013 17th European Conference on Software
Maintenance and Reengineering, pages 199–208. IEEE, mar 2013.

[137] Reza Meimandi Parizi, Sai Peck Lee, and Mohammad Dabbagh. Achievements
and Challenges in State-of-the-Art Software Traceability Between Test and
Code Artifacts. IEEE Transactions on Reliability, 63:913–926, 2014.

[138] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[139] L. S. Penrose. The elementary statistics of majority voting. Journal of the Royal
Statistical Society, 109(1):53–57, 1946.

[140] Christian S. Perone, Roberto Silveira, and Thomas S. Paula. Evaluation of
sentence embeddings in downstream and linguistic probing tasks. Technical
report, 2018.

[141] Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James Annibal, Alec Peltekian,
and Yanfang Ye. CoTexT: Multi-task Learning with Code-Text Transformer.
pages 40–47, may 2021.

[142] Quang-Ngoc Phung, Misoo Kim, and Eunseok Lee. Identifying incorrect
patches in program repair based on meaning of source code. IEEE Access,
10:12012–12030, 2022.

[143] Robi Polikar. Ensemble learning. Ensemble machine learning: Methods and
applications, pages 1–34, 2012.

[144] Julian Aron Prenner, Hlib Babii, and Romain Robbes. Can OpenAI’s Codex Fix
Bugs?: An evaluation on QuixBugs. Proceedings - International Workshop on
Automated Program Repair, APR 2022, pages 69–75, 2022.

[145] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis of patch
plausibility and correctness for generate-and-validate patch generation sys-
tems. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis, ISSTA 2015, page 24–36, New York, NY, USA, 2015. Association
for Computing Machinery.

Bibliography 135

[146] Jie Qian, Xiaolin Ju, and Xiang Chen. Gnet4fl: Effective fault localization via
graph convolutional neural network. Automated Software Engg., 30(2), apr
2023.

[147] Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. Recovering test-to-code traceability using slicing and textual analysis.
Journal of Systems and Software, 88:147–168, 2014.

[148] Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and David
Binkley. Evaluating test-to-code traceability recovery methods through con-
trolled experiments. Journal of Software: Evolution and Process, 25(11):1167–
1191, nov 2013.

[149] Zhijun Ren, Tantao Lin, Ke Feng, Yongsheng Zhu, Zheng Liu, and Ke Yan. A
systematic review on imbalanced learning methods in intelligent fault diagno-
sis. IEEE Transactions on Instrumentation and Measurement, 2023.

[150] Rfecv documentation. https://scikit-learn.org/stable/modules/

generated/sklearn.feature_selection.RFECV.html, 2024.

[151] Diego Rodŕıguez-Baquero and Mario Linares-Vásquez. Mutode: Generic
JavaScript and node.js mutation testing tool. In ISSTA 2018 - Proceedings
of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 372–375, New York, New York, USA, jul 2018. Association for
Computing Machinery, Inc.

[152] Bart Van Rompaey and Serge Demeyer. Establishing traceability links between
unit test cases and units under test. In European Conference on Software Main-
tenance and Reengineering, CSMR, pages 209–218. IEEE, 2009.

[153] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. Elixir:
Effective object-oriented program repair. In ASE 2017 - Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, pages
648–659. Institute of Electrical and Electronics Engineers Inc., nov 2017.

[154] Susanta Sarangi, Md Sahidullah, and Goutam Saha. Optimization of data-
driven filterbank for automatic speaker verification. Digital Signal Processing,
104:102795, 2020.

[155] Scikit-learn documentation. https://scikit-learn.org/stable/user_

guide.html, 2024.

[156] Scikit-learn stackingregressor. https://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.StackingRegressor.html, 2024.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html

136 Bibliography

[157] Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer, and Ran-
jit Jhala. Learning to blame: localizing novice type errors with data-driven
diagnosis. Proc. ACM Program. Lang., 1(OOPSLA), oct 2017.

[158] M. Selakovic and M. Pradel. Poster: Automatically fixing real-world javascript
performance bugs. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 2, pages 811–812, 2015.

[159] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. Is the cure
worse than the disease? overfitting in automated program repair. In Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering -
ESEC/FSE 2015, pages 532–543, New York, New York, USA, 2015. ACM Press.

[160] Victor Sobreira, Thomas Durieux, Fernanda Madeiral Delfim, Monperrus Mar-
tin, and Marcelo de Almeida Maia. Dissection of a bug dataset: Anatomy of
395 patches from defects4j. 2018 IEEE 25th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), pages 130–140, 2018.

[161] Jeongju Sohn and Shin Yoo. Fluccs: Using code and change metrics to im-
prove fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 273–283, 2017.

[162] Stack overflow developer survey results 2023. https://insights.

stackoverflow.com/survey/2023, 2024.

[163] Senthil Karthikeyan Sundaram, Jane Huffman Hayes, and Alexander Dekht-
yar. Baselines in requirements tracing. In ACM SIGSOFT Software Engineering
Notes, volume 30, page 1, New York, New York, USA, 2005. ACM Press.

[164] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury.
Anti-patterns in search-based program repair. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing - FSE 2016, pages 727–738, New York, New York, USA, 2016. ACM Press.

[165] H. Tian, K. Liu, A. K. Kaboré, A. Koyuncu, L. Li, J. Klein, and T. F. Bissyandé.
Evaluating representation learning of code changes for predicting patch cor-
rectness in program repair. In 2020 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 981–992, 2020.

[166] Haoye Tian, Yinghua Li, Weiguo Pian, Abdoul Kader Kaboré, Kui Liu, An-
drew Habib, Jacques Klein, and Tegawendé F. Bissyandé. Predicting patch
correctness based on the similarity of failing test cases. ACM Trans. Softw.
Eng. Methodol., 31(4), aug 2022.

https://insights.stackoverflow.com/survey/2023
https://insights.stackoverflow.com/survey/2023

Bibliography 137

[167] Haoye Tian, Kui Liu, Yinghua Li, Abdoul Kader Kaboré, Anil Koyuncu, Andrew
Habib, Li Li, Junhao Wen, Jacques Klein, and Tegawendé F. Bissyandé. The
best of both worlds: Combining learned embeddings with engineered features
for accurate prediction of correct patches. ACM Trans. Softw. Eng. Methodol.,
32(4), may 2023.

[168] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
Denys Poshyvanyk. On learning meaningful code changes via neural machine
translation. In Proceedings of the 41st International Conference on Software
Engineering, ICSE ’19, page 25–36. IEEE Press, 2019.

[169] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. Deep learning similarities from different rep-
resentations of source code. Proceedings of the 15th International Conference
on Mining Software Repositories - MSR ’18, 18:542–553, 2018.

[170] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. 2023.

[171] Shangwen Wang, Ming Wen, Liqian Chen, Xin Yi, and Xiaoguang Mao. How
Different Is It between Machine-Generated and Developer-Provided Patches? :
An Empirical Study on the Correct Patches Generated by Automated Program
Repair Techniques. In International Symposium on Empirical Software Engi-
neering and Measurement, volume 2019-Septe. IEEE Computer Society, sep
2019.

[172] Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou,
Xiaoguang Mao, and Hai Jin. Automated patch correctness assessment: how
far are we? In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’20, page 968–980, New York, NY, USA,
2021. Association for Computing Machinery.

[173] Suhang Wang, Jiliang Tang, Charu Aggarwal, and Huan Liu. Linked Document
Embedding for Classification. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management - CIKM ’16, pages 115–
124, New York, New York, USA, 2016. ACM Press.

[174] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
Automatically finding patches using genetic programming. In Proceedings
of the 31st International Conference on Software Engineering, ICSE ’09, page
364–374, USA, 2009. IEEE Computer Society.

[175] Weka webite. https://www.weka.io, 2024.

https://www.weka.io

138 Bibliography

[176] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung.
Context-aware patch generation for better automated program repair. In Pro-
ceedings of the 40th International Conference on Software Engineering, ICSE ’18,
page 1–11, New York, NY, USA, 2018. Association for Computing Machinery.

[177] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and
Denys Poshyvanyk. Sorting and transforming program repair ingredients via
deep learning code similarities. In Xinyu Wang, David Lo, and Emad Shihab,
editors, 26th IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019, pages
479–490. IEEE, 2019.

[178] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
Deep learning code fragments for code clone detection. Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering - ASE
2016, pages 87–98, 2016.

[179] Robert White, Jens Krinke, and Raymond Tan. Establishing multilevel test-
to-code traceability links. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE ’20, page 861–872, New York, NY,
USA, 2020. Association for Computing Machinery.

[180] Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis,
Richard T. Guy, Steven H.D. Haddock, Kathryn D. Huff, Ian M. Mitchell,
Mark D. Plumbley, Ben Waugh, Ethan P. White, and Paul Wilson. Best Practices
for Scientific Computing. PLoS Biology, 12(1):e1001745, jan 2014.

[181] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, Franz Wotawa, and Dongcheng
Li. Software fault localization: an overview of research, techniques, and tools.
Handbook of Software Fault Localization: Foundations and Advances, pages 1–
117, 2023.

[182] W. Eric Wong and Yu Qi. Bp neural network-based effective fault localization.
Int. J. Softw. Eng. Knowl. Eng., 19:573–597, 2009.

[183] W. Eric Wong, Yu Qi, Lei Zhao, and Kai-Yuan Cai. Effective fault localization
using code coverage. In 31st Annual International Computer Software and
Applications Conference (COMPSAC 2007), volume 1, pages 449–456, 2007.

[184] Huan Xie, Yan Lei, Meng Yan, Yue Yu, Xin Xia, and Xiaoguang Mao. A universal
data augmentation approach for fault localization. In Proceedings of the 44th
International Conference on Software Engineering, ICSE ’22, page 48–60, New
York, NY, USA, 2022. Association for Computing Machinery.

Bibliography 139

[185] Qi Xin and Steven P. Reiss. Identifying test-suite-overfitted patches through
test case generation. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2017, page 226–236, New
York, NY, USA, 2017. Association for Computing Machinery.

[186] Qi Xin and Steven P. Reiss. Leveraging syntax-related code for automated pro-
gram repair. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 660–670, 2017.

[187] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. Iden-
tifying patch correctness in test-based program repair. In Proceedings - Inter-
national Conference on Software Engineering, pages 789–799. IEEE Computer
Society, may 2018.

[188] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang,
and Lu Zhang. Precise condition synthesis for program repair. In Proceedings
of the 39th International Conference on Software Engineering, ICSE ’17, page
416–426. IEEE Press, 2017.

[189] Xiaofeng Xu, Vidroha Debroy, W. Eric Wong, and Donghui Guo. Ties within
fault localization rankings: Exposing and addressing the problem. Interna-
tional Journal of Software Engineering and Knowledge Engineering, 21:803–
827, 2011.

[190] Jifeng Xuan, Matias Martinez, Favio DeMarco, Maxime Clement, Sebas-
tian Lamelas Marcote, Thomas Durieux, Daniel Le Berre, and Martin Mon-
perrus. Nopol: Automatic Repair of Conditional Statement Bugs in Java Pro-
grams. IEEE Transactions on Software Engineering, 43(1):34–55, 2017.

[191] Suresh Yadla, Jane Huffman Hayes, and Alex Dekhtyar. Tracing requirements
to defect reports: An application of information retrieval techniques. Innova-
tions in Systems and Software Engineering, 1(2):116–124, sep 2005.

[192] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. Better test cases for
better automated program repair. Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering - ESEC/FSE 2017, pages 831–841,
2017.

[193] Jun Yang, Yuehan Wang, Yiling Lou, Ming Wen, and Lingming Zhang. A
large-scale empirical review of patch correctness checking approaches. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, page
1203–1215, New York, NY, USA, 2023. Association for Computing Machinery.

[194] He Ye, Jian Gu, Matias Martinez, Thomas Durieux, and Martin Monperrus.
Automated Classification of Overfitting Patches With Statically Extracted Code
Features. IEEE Transactions on Software Engineering, 48(8):2920–2938, aug
2022.

[195] He Ye, Matias Martinez, and Martin Monperrus. Automated patch assessment
for program repair at scale. Empirical Softw. Engg., 26(2), mar 2021.

[196] Li Yi, Shaohua Wang, and Tien N. Nguyen. Dlfix: Context-based code transfor-
mation learning for automated program repair. In Proceedings - International
Conference on Software Engineering, pages 602–614. IEEE Computer Society,
jun 2020.

[197] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and
Martin Monperrus. Alleviating patch overfitting with automatic test genera-
tion: a study of feasibility and effectiveness for the nopol repair system. Empir.
Softw. Eng., 24(1):33–67, 2019.

[198] Yuan Yuan and Wolfgang Banzhaf. ARJA: Automated Repair of Java Programs
via Multi-Objective Genetic Programming. IEEE Transactions on Software En-
gineering, 2018.

[199] Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, and Xin Xia. Improving fault
localization using model-domain synthesized failing test generation. In 2022
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 199–210. IEEE, 2022.

[200] Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, Ling Xu, and Junhao Wen.
Improving deep-learning-based fault localization with resampling. Journal of
Software: Evolution and Process, 33(3):e2312, 2021.

[201] Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, Ling Xu, and Xiaohong
Zhang. A study of effectiveness of deep learning in locating real faults. In-
formation and Software Technology, 131:106486, 2021.

[202] Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate
Before Use: Improving Few-Shot Performance of Language Models. 2021.

[203] Zhaocheng Zhu and Junfeng Hu. Context Aware Document Embedding. jul
2017.

[204] Yueting Zhuang, Ming Cai, Xuelong Li, Xiangang Luo, Qiang Yang, and Fei
Wu. The Next Breakthroughs of Artificial Intelligence: The Interdisciplinary
Nature of AI. Engineering, 6(3):245–247, mar 2020.

	push0 g 0 Gpop I [rgb]0.24,0.7,0.44push0 g 0 Gpoptowidthheightdepthntroduction
	push0 g 0 Gpop B [rgb]0.24,0.7,0.44push0 g 0 Gpoptowidthheightdepthackground
	push0 g 0 Gpop 1 [rgb]0.24,0.7,0.44push0 g 0 Gpoptowidthheightdepth Textual Similarity Techniques in Code Level Traceability
	Overview
	Related Work
	Method
	Term Frequency–Inverse Document Frequency: TF-IDF
	Document embeddings: Doc2Vec
	Latent Semantic Indexing: LSI
	Result Refinement With an Ensemble Technique
	Soft computed call information

	Data Collection and Source Code Representations
	Evaluation Procedure
	Results
	NC-based Evaluation
	Evaluation on Manual Data

	Discussion
	Traceability Link Recovery Technique Improvements
	Performance on Manual Data
	Implications

	Threats to Validity
	Concluding remarks

	push0 g 0 Gpop 2 [rgb]0.24,0.7,0.44push0 g 0 Gpoptowidthheightdepth Machine Learning in Automated Program Repair
	Overview
	Related Work
	Coverage Matrix-Based Fault Localization
	Measuring Model Stability using Churn
	Adapting Churn for Fault Localization

	Results on DLFL
	Potential Improvement on Stability in DLFL

	FixJS: Data Collection to Support APR
	Bug-fix mining
	Patch Abstraction
	Structure of the Constructed Dataset

	APR with a pre-trained model
	Prompts to generate patches
	Evaluation of the generated patches
	Repair performance of ChatGPT

	Genetic Automated Program Repair
	GenProg for JavaScript
	Dataset and experiment setup
	Results and Discussion

	Threats to validity
	Concluding remarks

	push0 g 0 Gpop 3 [rgb]0.24,0.7,0.44push0 g 0 Gpoptowidthheightdepth Automated Assessment of Automatically Generated Patches
	Overview
	Related Work
	Method
	Using similarity in PCC
	Feature-based PCC

	Datasets
	Sample Plausible Patches to Measure Similarities
	Dataset on feature-based PCC

	Results
	Similarity-based Evaluation
	Feature-based Classification

	Discussion
	Patch filtering based only on similarity
	Using Features for Patch Classification

	Concluding remarks

	push0 g 0 Gpop S [rgb]0.24,0.7,0.44push0 g 0 Gpoptowidthheightdepthummary
	push0 g 0 Gpop Ö [rgb]0.24,0.7,0.44push0 g 0 Gpoptowidthheightdepthsszefoglalás
	Bibliography

